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Abstract

Gasunie Transport Services (GTS) is the operator of the natural gas transmission network in the Netherlands.
This network is an entry-exit system where entry and exit capacities can be booked by parties called ship-
pers. Variations in usage lead to an enormous number of possible entry-exit combinations. GTS must be able
to accommodate all realistically possible gas transport scenarios that result from these entry-exit combina-
tions. In principle, hydraulic testing of all these scenarios is required to see if the current network is optimally
sized for this task. However, calculating all scenarios is extremely time consuming, so a smaller set of severe
scenarios that also covers the less severe ones, is needed to represent the complete set.

Reduction of the complete set of transport scenarios is a mathematically challenging task. The current
method to reduce the number of these scenarios is workable and probably meets the requirements of day-to-
day planning calculations at GTS. This method makes use of the so-called end point representation, which
describes transport scenarios by their capacities on entry and exit points only, while e.g. the flow pattern
is unknown. The distance function for the current reduction method measures the difference between sce-
narios by comparing the capacities on end points, where the end points are correlated by their respective
transport distances.

A new representation is introduced in this report: the flow representation. This representation makes use
of the flow patterns that emerge from balanced combinations of entry and exit capacities. A flow pattern
follows from an entry-exit combination by determining its minimum associated transport load. Compared
to the end point representation, the flow representation is more intricate to obtain (more calculations are re-
quired to get flow patterns), but the result is a more accurate representation in terms of the transport physics
of the network. The pay-off is that the distance function for the flow representation can be a lot simpler, e.g. a
weighted norm which approximates the transport effort. It also turns out to be more adaptable. For example
the diameter, pressure drop and other network information can easily be included in this weighted norm.

In this report both representations are compared. However, from the experiments no final conclusion
can be given for which representation has a better performance. Future studies, e.g. involving hydraulic
calculations, are recommended to conclude this matter.
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1
Introduction

1.1. Gasunie Transport Services
Gasunie Transport Services (GTS) is the gas Transmission System Operator (TSO) of the Netherlands. GTS is
a regulated part of the holding Gasunie, to which also a TSO in Germany belongs. GTS supplies entry and exit
capacity to the Dutch gas market. This is done through contracts with parties that supply or demand gas at
the entry and exit points. These parties are called shippers, which are companies from the Netherlands, or
other European countries, like Germany, the United Kingdom and Russia [16, 19]. Gasunie is responsible for
a network of 15.000 kilometer of gas pipes and numerous stations [10], through which 1236 Tera Watt hour
was transported in 2016 [12].

The entry and exit system of Gasunie differs in planning and optimisation from a system where capacity
can be controlled by the operator [19]. The main planning issue is to check whether every realistic situa-
tion is feasible by the current network. First from the many possible entry and exit combinations, the most
challenging transport situations must be found. Second, if a planned situation cannot be accommodated,
projects arise to make the situation transportable. Possible solutions to such a problem are to add new assets
to the system or to debottleneck the existing system.

The optimisation of this transport is a complex problem. Transport of capacity involves the presence
of gas of parties at the entry and exit points. Knowledge of scope, policy and behaviour of all the parties
is needed. Dealing with this problem can be dealt with by mathematical theories such as statistics, linear
algebra and numerical analysis [19].

Gas transmission systems operate on an hourly timescale. Every shipper is required to notify their need of
capacity within contractual limits. This notification is sent a couple of hours in advance for every hour of the
day. Each year has 8760 hours and for each hour, billions of different transport situations exist. This implies
that the planning of the gas transmission involves many possible scenarios. It is not desirable to analyse all
possibilities, because it requires many computations, which is extremely time consuming. Fortunately, there
are ways to reduce the amount of transport situations that have to be evaluated.

At Gasunie, reduction of the set of transport situations is done by calculating an approximation of the
gas flow through the network and only considering the most severe situations. After this selection, the set
of severe situations is further reduced by taking out similar ones. To define whether situations are similar, a
measure is needed to compare the situations. Researchers of the planning department at Gasunie decided to
use a certain parametrisation of a quadratic form distance for this comparison.

The goal of this project is to find the most suitable comparison method to obtain the minimal amount of
tests to be checked to ensure the feasibility of the gas network. This calls for an analysis of different measures
and different approaches.

1.2. Dutch gas network
In this report, only the High Pressure Grid (HTL) of the Dutch gas network is considered. The planning of
the Intermediate Pressure Grid (RTL), involves a different method because of the lower pressures and smaller
transport distances. There are three different types of natural gas in the Dutch gas network. H-gas has a high
calorific value and is usually imported. L-gas is gas with a lower caloric value and is exported to customers in
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2 1. Introduction

Germany and Belgium. The lowest quality is called G-gas, or Groningen gas. This is the gas quality commonly
used for the gas stoves and the CV boiler of Dutch households.

The Dutch gas network consist not only on entry points, exit points and pipelines, but also of compressor
stations, blending stations (to blend different types of natural gas), pressure regulation-stations and nitrogen
injections [4]. Compressor stations increase the pressure in the pipe such that there is enough pressure to
transport the gas over the required distance. Blending stations are used for the blending of different gas qual-
ities to G-gas. Nitrogen injection supports the process of converting H-gas into G-gas with nitrogen. Pressure
regulation-stations are used for e.g. the transition from the HTL-network to the RTL-network; odorisation
takes place there and it is made sure that the pressure is at the right level to safely transport gas into the
smaller pipes. The odorisation is needed to detect natural gas (without it the gas is odourless).

An overview of the HTL-gas infrastructure of the Netherlands is given on page 4. The yellow lines are the
pipelines which transport H-gas, the grey lines are the pipelines which transport G-gas. Furthermore, the
stations described above can be seen in the figure, along with gas storage facilities.

1.3. Research project
The research assignment of this project is to find improvements to an already good and efficient method
which computes whether the gas network will suffice for every scenario which can occur scenario-based
planning methodology. There are many factors which play a role in finding and evaluating scenarios. Much
time and memory is needed to compute all scenarios. The questions related to this problem are stated below.

1. What are important properties of the Dutch gas network to characterise the load of gas transport situa-
tions?

2. What is the current method for generating stress tests? Are there better methods for generating these
stress tests? What are the (dis)similarities and what are the (dis)advantages of the methods?

3. What is the current method for reducing the generated set of stress tests? Are there better methods for
reducing the set of stress tests? What are the (dis)similarities and what are the (dis)advantages of the
methods?

4. What are the criteria for similarity of stress tests?

The third research question covers the main part of the research presented in this report.
In this report, example networks are used to clarify various methods, techniques and problems. The five

example networks are depicted in Figures 1.2, 1.3, 1.4 and 1.5 (pages 5 and 6). Entry points are denoted by
an N and the exit points by an X . At every entry and exit point bounds of the capacity are given: one lower
bound (l b) and one upper bound (ub) are given by [lb,ub]. The pipelines have a length shown in blue.

In Figure 1.2 the one pipeline network is given. This is a simple network with only one pipeline. The net-
work, is special in that is has an entry and an exit point at the same location. In Figure 1.3a an H-shaped
network is shown: the simple H-network. This network is often used to show the effect of the two directions
in which gas can flow through a pipe (pipeline between E and F ). This network includes many symmetrical
components. To avoid degeneration, the advanced H-network is introduced (Figure 1.3b), where extra exits
and asymmetry is added. The fourth network is the triangular network, seen in Figure 1.4. This network has
some of the characteristics of the previous networks, but with an addition of a loop structure. An approxima-
tion of the HTL part of the Dutch gas network is the shopping cart network in Figure 1.5 . This network has
three loops, one of which is not really a loop. Besides loops, a new type of component is visible: gas storages.
For the simple networks there are no bounds on the pipelines, but there exists lower and upper bounds on
the flows through the pipelines in the shopping cart network.

1.4. Outline report
The following chapters answer the research questions as in the outline given below.

Chapter 2: Gas transport
Safety and supply of natural gas is ensured by GTS. Transport situations are being calculated while mak-
ing specific assumptions. The effort to transport gas can be defined as the power to transport gas through
pipeline segments. This quantity in turn can be approximated by the transport moment. By maximisation



1.4. Outline report 3

of this transport moment severe situations are be generated and these situations should be checked whether
they fail for the network to be examined.

Chapter 3: Generation of stress tests
Severe situations (stress tests) can be found under certain conditions and optimisations. In Section 3.1 the
current method of generating stress tests is explained and illustrated with an example. As an alternative,
another approach of representing the stress tests is introduced and how to find them. This is explained in
Section 3.2. The two stress test generation methods are discussed of the example networks given in previous
section (Dutch gas network, Figures 1.2 - 1.5).

Chapter 4: Reduction of the generated set of stress tests
The set of stress tests has to be reduced to make the number of computations manageable. First, in Section
4.1 the current reduction method is considered. A distance function with a specific parametrisation (the
quadratic form distance) is used to reduce the set. The distance function is illustrated by an example and it is
investigated whether this function is a metric distance function. Second, the set of stress tests will be shown in
a so-called “flow-representation”. The set of stress tests with the other representation should also be reduced.
Because these stress tests have been established differently, other norms can be used for this problem. These
norms are discussed in Section 4.2. An adapted Lp -norm is found which fulfil the requirements for the
distance between scenarios. Some additional reduction criteria are considered in Section 4.3 (e.g. pressure
drop and diameter of a pipeline). The further reduction process once the best norms are found is given in
Section 4.4.

Chapter 5: Results of the reduction methods
The reduction methods of previous chapters will be tested and the different techniques will be compared in
this chapter. Similarities and differences between the methods are examined. First, the method of compar-
ison will be explained. The criteria of similarity will be shown in Section 5.1. In Section 5.2 the comparison
between the reduction techniques is done. The impact of other properties will be discussed in Section 5.3.

Chapter 6: Conclusions
The results of the research questions are concluded in this chapter. Also, some discussion on the research
and future work is mentioned.
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Figure 1.1: Dutch HTL-gas network in 2014
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2
Gas transport

Gasunie is required by law to ensure safety and supply of natural gas in the HTL and RTL networks of the
Netherlands. Therefore calculations must be made to ensure these regulations. This is done at the planning
department of GTS. These calculations answer questions like: is the current gas network sufficient for its task,
or is it necessary that pipelines have to be added or updated. Realistic situations in a gas transmission system
where the entry and exit capacities are balanced are called transport situations. Balance means that the sum
of the entry capacities equals the sum of the exit capacities, which is also known as the flow conservation law.
The transportation of gas depends on pipe lengths and diameter, amount of flow, pressure requirements,
compressor stations, temperature and more.

An example of a transport situation is shown in Figure 2.1 on page 8. This network, the shopping cart
network, is an approximation of the H-gas part of the HTL gas network in the Netherlands. The flows in this
example are fictional. It is seen in this transport situation that the incoming flow equals the outgoing flow.
There is a flow of 1000 going from North to South and there is a flow from the North to the West of 750.

Realistic situations are situations that can happen in practice. An assumption underlying these situations
is that shippers always adhere to their contracts with Gasunie. If a shipper has a contract for entry point A,
a maximum and a minimum are agreed on the capacity of the gas transported into the network at A. These
bounds of entry and exit points are known to Gasunie from contractual information and can be further re-
stricted to a certain extent. A list of all the assumptions made in this report can be found in Appendix A on
page 49.

It is sufficient to check the network for only the most severe situations. If these situations are feasible for
the network, the non-severe situations will also be feasible [18]. The severity of the situation is given by a
quantity called transport moment, which approximates the transport load. The transport load is the power
needed to get a gas quantity from one location to another through a pipeline. The equation for this power is
given by Equation (2.1):

P =Q ·∆p (2.1)

P is the power in Watt, Q is the flow in m3/s and ∆p is the pressure drop in N /m2. The pressure drop is
not linear in a long pipeline, but in parts of the pipeline the pressure drop can be approximated by pipeline
length. It is assumed that transport distance and amount of flow through the network are the most important
quantities for the transport moment.

In the next chapter, two equations are given which approximate the transport moment from different
perspectives.

7
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3
Generation of stress tests

To ensure the safety of the gas network, hydraulic calculations on transport situations have to be made. How-
ever, these calculations are expensive. Since it is too expensive to compute all hydraulic calculations, only
the situations that are more likely to fail are used. These balanced situations are severe transport situations,
which are called stress tests [19]. Stress tests are the most severe realistic transport situations. To define the
severeness of a transport situation, the transport moment is used as is described in previous chapter. It is
assumed that the transport distance in relation to the gas flow over that distance are the most important
quantities for the transport load. When using these two quantities, the transport moment is approximated.
This approximation is needed, because the real hydraulic calculations are too expensive as well. Thus the
equations for the transport moment are defined by the transport distance and the gas flow.

Transport moment based on capacities through end points
Two equations are used to define the approximated transport moment. The first equation is from the ship-
pers point of view: the capacities on entry and exit points (end points). Shippers are only interested in the
entry and exit capacities, because they book their capacities on those points and GTS is responsible for the
transport in between. Equation (3.1) is the corresponding equation which is not based on the resulting flows,
but on the capacities of the end points and the mutual distances. The exact flow pattern is not needed for
the calculations of this end point representation. This transport moment is relative to a certain anchor point
(τ). It is only necessary to take an entry or exit points for τ in practice, because this results in the most severe
transport situations: the stress tests [18].

Let I be the amount of exit points and J is the amount of entry points. Exit point i ∈ [1, I ] is defined by Xi

and entry point j ∈ [1, J ] is N j , the capacity on the end points is given by c(·) and the distance between end
points is given by d(·, ·). The distance function d is the shortest path from one point to another along the gas
pipelines.

T (τ) =
I∑

i=1
c(Xi )d(Xi ,τ)−

J∑
j=1

c(N j )d(N j ,τ) (3.1)

Transport moment based on flows on pipelines
The second equation is an explicit equation which relates the pipeline length directly to the flow through that
pipeline. The total transport moment T is calculated by the sum of the transport moment per pipeline seg-
ment. This implies if the transport distance is twice as long, the transport moment will be twice as large, and
the same holds for the amount of flow. Therefore the transport moments are calculated by the product of the
flow through the pipeline segment ( f ) and the length of that segment (L). The total transport moment for-
mula is seen in Equation (3.2), where E is the set of pipeline segments. This equation approaches the physical
reality more than the previous definition of the transport moment, because this equation is the linearisation
of the power equation, which is shown in the previous chapter.

Ttotal =
∑
e∈E

T (e) = ∑
e∈E

f (e) ·L(e) (3.2)

f (e) is the flow through pipe e ∈ E and L(e) is the length of pipe e ∈ E .

9



10 3. Generation of stress tests

3.1. Stress tests based on end points
The current method to generate stress tests is based on the end points. The severe situations are found by
choosing the capacities on the entry and exit points such that the transport moment is maximised under the
conditions of the conservation law and the capacity boundaries [18]. It is unknown at this moment what
happens inside the network for the approximated transport moment, so it is only necessary to have informa-
tion of the capacity of the end points and the distances between end points for this approach. All situations
are covered by successively taking all entry and exit points as anchor point τ for the approximation of the
transport moment. In this way all directions of the flow will be taken into account.

Figure 3.1 shows a network with a feasible transport situation. Here, the entry and exit points are given
and the internal network is like a black box, because its flow pattern is unknown for finding the stress tests.
Assuming this is a realistic and severe situation for this network, the vector of this transport situation stated
below is a stress test.

The capacities on the points
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, where the exits are given by a minus sign.

The flows at the exit points are negative, such that the flow direction is preserved in the vector. It can
be seen that this stress test is balanced, because the sum of the entry capacities equals the sum of the exit
capacities.
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Figure 3.1: Example of a feasible transport situation
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3.1.1. Stress test algorithm
The algorithm to find the stress tests is given in Algorithm 3.1, which is the algorithm stated in the article
by Steringa, et al [18]. The algorithm maximises the transport moment of Equation (3.1) by iterating over
all anchor points and adding capacity at the closest entry point to the anchor point. The same is done for
the exit capacity furthest away from the anchor point such that balance is preserved. By putting the exit
capacity furthest away, the distance is maximised and by adding maximal capacity, the transport moment
is maximised. Adding more capacity to the network when the maximum is already reached, the transport
moment will decrease and the algorithm terminates. An example for finding the stress tests by this algorithm
is given in the next paragraph.

Algorithm 3.1 The Stress Test algorithm

for all anchor points do
while transport moment does not decrease and maintaining balance do

Add entry capacity at or, in case of maximum capacity used, near the anchor point
Add exit capacity furthest away from the anchor point at which the bounds will not exceed

end while
Store resulting entry-exit combination as the stress test for the chosen transport direction

end for

3.1.2. Example: Advanced H-network

A B

C D

E F

4

3

2

3

1

NA

[0,100]
Nb

[0,100]

XA

[0,20]
XB

[0,20]

XC

[0,80]
XD

[0,90]

Figure 3.2: Example generating stress tests

The network considered for this example is the advanced H-network, is illustrated in Figure 3.2. There are
two entry points (NA , NB ), four exit points (X A , XB , XC , XD ) and five pipelines. The length of each pipeline is
given in the figure next to the relevant pipeline and the gas can flow in both directions. The lower bound and
the upper bound of each entry and exit is given at these points by [lb,ub], where lb is the lower bound and
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ub is the upper bound.
Often, the simple H-network is used for illustrating the algorithm. The simple network has an almost

identical structure as the advanced version, but it has no exits at points A and B , all pipe segments have the
same length and the bounds on the entry and exit points are symmetric. In this example, the pipe lengths
are not chosen symmetric, so that the calculations between different anchor points are more clear. The exit
points at A and B are put into the network to show that some scenarios are similar, but not equal. The it-
erations of the algorithm are described below. The iterations of the first anchor point are explained in more
detail than the other anchor points. If a choice has to be made between entries/ exits, the first entry/ exit in
alphabetical order is chosen.

Anchor point NA

The illustration of the iterations for this anchor point is given in Figure 3.3. Although the flows through the
pipelines are unknown in the algorithm, in this network they can be seen easily and it gives a better view on
the transport situation when flow is indicated. This flow is visualised in the figure in red.

• The entry closest to anchor point NA is NA itself and exit furthest away to the anchor point is XD . The
minimum of the upper bounds on NA and XD that can be used is min{100,90} = 90. Therefore the
transport moment on the capacities becomes:

T (NA) = ∑
j={A,B ,C ,D}

c(X j )d(NA , X j )− ∑
i={A,B}

c(Ni )d(NA , Ni )

= 90 ·8−90 ·0

= 720

The resulting flow addition is seen in Figure 3.3a.

• More capacity at the entry and exit points can be added until the transport moment is decreasing. The
entry point closest with capacity left is NA and the exit point furthest away with capacity is XB . XC

can be chosen as well, but there is made a choice to have alphabetical priority. The minimum of the
maximal capacity that can be chosen on the entry and exit is 10. If this capacity is added, the transport
moment becomes:

T (NA) = ∑
j={A,B ,C ,D}

c(X j )d(NA , X j )− ∑
i={A,B}

c(Ni )d(NA , Ni )

= 10 ·7+90 ·8−100 ·0

= 790

The scenario has become more severe, which can be seen in Figure 3.3b.

• The next closest entry point is NB and exit point XB has some capacity left. The capacity added to these
points is 10. By adding this capacity, the transport moment is:

T (NA) = ∑
j={A,B ,C ,D}

c(X j )d(NA , X j )− ∑
i={A,B}

c(Ni )d(NA , Ni )

= 20 ·7+90 ·8−100 ·0−10 ·7

= 790

As is seen in Figure 3.3c, the transport moment does not increase, because the transport load does not
change.

• At exit point XB all possible capacity is being used, so the next exit, which is far away from the anchor
point and has capacity left is XC . The entry point is NB . The maximal capacity which can be added on
these points is 80. See Figure 3.3d for the result of this iteration.

T (NA) = ∑
j={A,B ,C ,D}

c(X j )d(NA , X j )− ∑
i={A,B}

c(Ni )d(NA , Ni )

= 20 ·7+90 ·8+80 ·7−100 ·0−90 ·7

= 790
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(a) First iteration, T=720
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(b) Second iteration, T=790
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100
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(c) Third iteration, T=790
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3 80
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3 90

1

20

NA

100
Nb

90
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20

XC

80
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90

(d) Fourth iteration, T=790

Figure 3.3: Finding stress test for anchor point NA
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• This fifth iteration will be the last iteration.

T (NA) = ∑
j={A,B ,C ,D}

c(X j )d(NA , X j )− ∑
i={A,B}

c(Ni )d(NA , Ni )

= 10 ·0+20 ·7+90 ·8+80 ·7−100 ·0−100 ·7

= 720

This transport moment is decreased with respect to the previous transport moment. So the addition of
flow on exit X A and entry NB will stop the while-loop and the stress test in Equation (3.3) is found on the
anchor point at NA . In this simple example, the flow through the network can easily be generated when
knowing the capacities on the entry and exit points. The fifth iteration is seen in Figure 3.4 and it is seen
that this is less severe than the situation at iteration 4. Iterations two, three and four produce the same
transport moment. This is not likely to happen in more complex networks and it is indifferent which
one is chosen. For algorithmic simplicity, the last scenario before the transport moment is decreased,
is stored. When another order of entry and exit points are chosen, an other order of the iterations is
found, so another stress test with the same transport moment is found.

A B

C D

4 90

3 80

2 80

3 90

1

10

NA

100
Nb

100

XA

10
XB

20

XC

80
XD

90

Figure 3.4: Fifth iteration, T=720



100
90
−0
−20
−80
−90

 (3.3)

This stress test represents the capacity on the entry and exit points. It is seen that the stress test is balanced,
because the sum of the capacities on the entries is 190 and the same capacity sum is found for the exit points.

The calculations of the other anchor points are given in the next few paragraphs. In each iteration, the
closest entry, the furthest exit, the added capacity is given. Then, in each iteration the calculations to the
transport moment is given.
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Anchor point NB

• Entry NB , exit X A , capacity that can be added is 20.

T (NB ) = 20 ·7−20 ·0

= 140

• Entry NB , exit XC , capacity that can be added is 80.

T (NB ) = 20 ·7+80 ·6−100 ·0

= 620

• Entry NA , exit XD , capacity that can be added is 90.

T (NB ) = 20 ·7+80 ·6+90 ·5−90 ·7−100 ·0

= 440

This addition of capacity causes a smaller transport moment, therefore the last addition is not included
for the stress test. It is seen that 620 is the maximum transport moment and therefore the most severe
scenario, because the addition in the third iteration of 90 causes a lower transport moment. Then
T (NB ) = 440. In the third iteration, the additional flow can also be 1, but that will also decrease the
transport moment, because then the transport moment becomes: T (NB ) = 618. The final stress test for
this anchor point is: 

0
100
−20
−0
−80
−0


Anchor points X A and XB

The stress tests for the exit points X A and XB is the same as for NA and NB respectively, because they are
located at the same point and therefore the same exit and entry points will be chosen. So for every point
where the distance is zero, these cases can be considered as the same. Algorithm 3.1 will again do the same
iterations as in NA and NB .

Anchor point XC

• Entry NB , exit X A , capacity that can be added is 20.

T (XC ) = 20 ·7−20 ·6

= 20

• Entry NB , exit XD , capacity that can be added is 80.

T (XC ) = 20 ·7+80 ·7−100 ·6

= 100

• Entry NA , exit XD , capacity that can be added is 10.

T (XC ) = 20 ·7+90 ·7−10 ·7−100 ·6

= 100

• Entry NA , exit XB , capacity that can be added is 20.

T (XC ) = 20 ·7+20 ·6+90 ·7−30 ·7−100 ·6

= 80
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This capacity addition causes a smaller transport moment, therefore the last addition is not included
for the stress test. 

10
100
−20
−0
−0
−90


Anchor point XD

• Entry NB , exit X A , capacity that can be added is 20.

T (XD ) = 20 ·8−20 ·5

= 60

• Entry NB , exit XC , capacity that can be added is 80.

T (XD ) = 20 ·8+80 ·7−100 ·5

= 220

• Entry NA , exit XB , capacity that can be added is 20.

T (XD ) = 20 ·8+20 ·5+80 ·7−20 ·8−100 ·5

= 160

This capacity addition causes a smaller transport moment, therefore the last addition is not included
for the stress test. 

0
100
−20
−0
−80
−0


Finally, different stress tests found, which are all balanced by definition of the algorithm, see Equation

(3.4). The stress tests of anchor point B and D are the same, because the order of nearest entry is the same at
each anchor point. And the order of exit points farthest away is almost the same, it holds for the first two exit
points: X A and XC . After using these two exit points in the algorithm, the transport moment of the capacities
is decreased. Therefore, the stress tests of the anchor points B and D are the same.

sA =



100
90
−0
−20
−80
−90

 , sB =



0
100
−20
−0
−80
−0

 , sC =



10
100
−20
−0
−0
−90

 , sD =



0
100
−20
−0
−80
−0

 (3.4)

A comparison of the two different approximations of the transport moment is made by the stress tests in
Table 3.1. The equations of the two transport moments are given in Equation (3.1) and in Equation (3.2) on
page 9. The flow of each unique stress test is illustrated in Figure 3.6 on page 18.

Anchor point
T based on T based on

capacities end points flows on pipelines
NA , X A 790 1070
NB , XB 620 620

XC 100 520
XD 220 620

Table 3.1: Two approximations of the transport moment of stress tests
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It is seen in the values of the table above and Figure 3.5 on page 17 that there is no clear correlation in
these two transport moments. There are two stress tests (of anchor points B and D) which have the same
transport moment based on the flow, but have a different transport moment based on capacities. That is
because the transport moment based on capacities on end points is dependent on the corresponding anchor
point.

Figure 3.5: Two approximations of the transport moment on different stress tests

3.2. Stress tests based on flows through pipelines

In the previous section, the stress tests are based on the capacities on the entry and exit points. In that case,
the representation includes only a few components so these are simple calculations. However, the load of the
gas transport may alternatively be based on the flow through the pipelines. When describing the problem
of generating stress tests based on flow through pipelines, the amount of physical information in the stress
tests is increased. The contractual bounds on the entries and exits are still needed for the computations and
the structure in the network is added to the known data. Apart from exit and entry points, there are points
in between as well which are connected to the network and the directions of flow are defined. The flow
which is generated is an approximation of the real flow, because the real flow requires calculations with more
parameters such as the pressure in the pipeline. In this chapter two methods of generating stress tests based
on flow through pipelines are given. The first method generates these stress tests directly from the network
information and the second one obtains the stress tests by transforming the stress tests based on end points.
Both methods are based on pipelines, so the transport moment of Equation (3.2) on page 9 is used for both
approaches.

3.2.1. Generation directly from the network to stress tests

Using the network information, severe transport situations are obtained by solving the maximisation problem
of the transport moment with certain conditions. These conditions are bounds on the entry and exit points,
flow conservation on the end points (what comes in, goes out) and the flow conservation on the inner network
points. In mathematics, this problem can be displayed into a LP, because it has a linear optimisation function
and linear constraints [7]. The standard form of a linear program is given in Equation (3.5). c ∈Rm is the cost
vector of the minimisation function, x ∈ Rm is the vector which is to be optimised. The conditions of Ax ≤ b
are the conditions with an inequality, where A ∈ Rn×m and b ∈ Rn , where n is the amount of conditions with
an inequality. The same holds for Aeq and beq , which represent the equality conditions. Furthermore, lb, ub
∈Rm are the lower bound and the upper bound respectively.
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(a) Stress test, anchor point A
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(b) Stress test, anchor point B
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(c) Stress test, anchor point C

Figure 3.6: Flow on the stress tests
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min cT x (3.5a)

subject to Ax ≤ b (3.5b)

Aeq x = beq (3.5c)

lb ≤ x ≤ ub (3.5d)

The set of solutions to the linear constraints is called a polyhedron [8]. If the polyhedron is bounded,
then it is called a polytope. Thus a polyhedron P ⊆ Rn is a polytope if there exists lower and upper bounds
l b,ub ∈Rn such that lb ≤ x ≤ ub for all x ∈ P .

Optimisation problem displayed as graph
The linear program leads to a problem which is similar as the maximal flow through a graph. This looks like
the gas network, but some adjustments have to be done. A graph from an LP is constructed by a start node
and an final node with internal nodes. The flow goes from the start node to the final node along the network
edges and internal nodes. However, in the original gas networks, there are multiple start and final nodes
which are the entry and exit points. Therefore the end points are replaced by a start and a final node.

So there are two nodes added to the problem which are the representatives of the entry and exit points
to have one node from which all gas flows (N ) and one node to which all gas gas flows (X ). The flow from N
(representing all entry points) must equal the incoming flow at X (representing all exit points). Below is a full
description of this representation. Afterwards the transformations of the example networks are given.

1. Take the nodes from the network and make edges between nodes which are connected.

2. The weight on each edge is the distance between the corresponding nodes.

3. The bounds of the flow is taken [lb,ub] = [−∞,∞], because now it assumed that through each pipeline
the flow can go both ways and there are no restrictions on the amount of flow (this bound will not be
shown in the illustrations).

4. Connect each node which has an entry with N and put the capacity bounds of the corresponding entry
point on the edge. These are the bounds of the flow through those edges.

5. Connect each node which has an exit point the same way as for entry points at X .

6. The edges connected to N and X have weight zero (this is not shown in the illustrations).

The mathematical definitions describing the network are given below.

• V = {N , X , v1, . . . , vk } is the set of nodes in the network.

• E = {(v1, v2) : there is a direct pipeline between node v1 and v2} is the set of edges in the network.

• G = (V ,E) is the graph that describes the network by nodes and edges.

• f : E →R is the function that describes the amount of flow through an edge or a set of edges.

• lb,ub : E → R are the lower and upper bounds (respectively) on the amount of flow through the pipe-
lines.

• L : E → R are the weights on edges. In the gas network problem, the weights are the corresponding
lengths of the pipelines.

• For A ⊆V is δi n(A) = {e ∈ E : e has only one end in A where the flow towards A is positive} [5]

• For A ⊆V is δout (A) = {e ∈ E : e has only one end in A where the flow leaving A is positive}

With these definitions describing the network, the following constraints are found to model the gas net-
work:

• f (δout (N )) = f (δi n(X )). This means that the total amount of flow from the entries is equal to the total
amount of flow to the exits. This ensures the flow conservation in the network.
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• f (δout (v)) = f (δi n(v)) for every v ∈ V \{N , X }. The incoming flow must equal the outgoing flow of an
internal node (v1, . . . , vk ).

• f (δi n(N )) = 0. There is no flow towards entry points in the network.

• f (δout (X )) = 0. There is no flow from exit points in the network.

Finding the severe situations by the description from above, a maximisation problem is constructed by
several corresponding constraints. If these constraints and the maximisation function are linear, then prob-
lems like this can be handled by linear programming.

Finding severe transport situations
Now that the description of the new network representation is given, the severe transport situations should be
found. In Equations (3.6), the desired optimisation problem is defined. This is not a linear program, because
the maximisation function is fun( f ) = LT | f |, so a NLP algorithm is used. Yet, this non-linearity does not have
a big impact on the running time, because this function is only piecewise linear. From the first constraint
follows the flow conservation at the entries and exits.

maximise L · | f | (3.6a)

subject to f (δout (v))− f (δi n(v)) = 0, v ∈V {N , X } (3.6b)

f ∈ [lb,ub] (3.6c)

In the system above f is the flow vector for each edge in the new representation. The directions of positive
flow are stored in the adjacency matrix Aad j , with the amount of internal nodes as rows and the amount of
columns are the number of edges. The entries of this matrix are defined as:

ai j =


−1 edge j is defined in direction from node i

+1 edge j is defined in direction towards node i

0 edge j has no direct connection to node i .

The columns of the edges which are connected to the entry node N have one +1 in that column and for
the exit node X there is one −1. There are a ‘−1’ and a ‘−1’ in the column for internal edges, because both
adjacent nodes are internal nodes (not N or X ). The constraint Aad j · f = 0 ensures the flow conservation in
each node. That is because on row i of A there is a −1 for each outgoing edge and a +1 for each incoming
edge for node i . So the summation of each row multiplied with the flow on each edge must be zero. Then
there is equally incoming flow and outgoing flow in each internal node.

An example is given below. This is the network matrix belonging to the one pipeline network. The graph is
given in Figure 3.7b, which is explained in the paragraph above this figure. The network matrix of this network
is given in Equation (3.7). If there is a flow is of 20 from entry A to exit A and a flow from entry A to exit B of
80, there is balance (see Equation (3.8)). But when there is more incoming flow than outgoing flow, there is
no balance and the result of the constraint will not be zero (see Equation (3.9)).

Aad j =
( N A AX B X AB

A +1 −1 0 −1
B 0 0 −1 +1

)
(3.7)

(
1 −1 0 −1
0 0 −1 1

)
100
20
80
80

=
(
0
0

)
(3.8)

(
1 −1 0 −1
0 0 −1 1

)
100
20
60
60

=
(
20
0

)
(3.9)
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The flow conservation of the entries and exits is a linear combination of these constraints, so no extra
condition is needed. If all internal nodes satisfy the flow conservation constraint, the incoming flow must
equal the outgoing flow.

Matlab has a function called fmincon which minimises a variable or vector f by a function fun, with a
given initial value x0 [14]. This function will return a scalar. This Matlab function use the same variables as
in Equation (3.5), but the first line (3.5a) is minfun(x). Optionally, non-linear constraints can be added. The
general inputs for fmincon are stated below.

[x, fval] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub)

Here x is the optimised vector and fval is the function value with the optimised vector.
The problem of the maximisation of the transport moment on a gas network, the initial value for the entry

and exit edges is chosen to be between the lower bound and the upper bound of these entries and exits and
the internal edges is chosen to be zero. Generally, this initial value will not comply with some flow conser-
vation constraints, but the function will adjust this initial value to a feasible optimisation variable vector. In
this case, there are no inequality constraints (apart from the lower and upper bound), so the following Matlab
code will give the most severe transport situation, based on flows on the pipelines and their lengths. TMfun is
the transport moment function, which is negative, because it has to be maximised and the standard Matlab
function minimises the input function. flow is the flow vector and TM is the value of the transport moment.

[flow, TM] = fmincon(-TMfun, f0, [], [], A, zeros(1,V), lb, ub)

Result for each example network
The algorithm, which is explained in the previous paragraphs, is applied to the first four example networks
(page 5). The new representation of those networks is illustrated next to the original representation of the
networks. Then the most severe situation is calculated. That situation is illustrated in the original network.
The stress tests found for the new network is given by vflow. The stress test with the largest transport moment
of the capacity representation is also given by vcap.

One pipeline network The original one pipeline network is given in Figure 3.7a. From the flow representa-
tion of Figure 3.7b the transport situation is calculated with maximal transport moment for this net-
work. The transport moment is 400 and the stress test based on capacities on entry and exit points and
the stress test based on flows through the pipelines corresponding to this moment is given in Equation
(3.10). The amount of flow going from the entry at A to the exit at A does not contribute to the severe-
ness of the network. At this point the optimisation function, in this case the transport moment, does
not improve by adding more capacity to the network, so the Matlab function has stopped. Moreover,
for the pipeline representation is only the value of AB required. The other values of the vector are only
needed for the optimisation and finding the stress test.

A B
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XA
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5 XB

[0,80]

(a) Original representation
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N X
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5
[0,80]

(b) Flow representation

Figure 3.7: One pipeline network
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Figure 3.8: One pipeline network: maximal transport moment

v cap = c

NA

X A

XB

=
100
−20
−80

 (3.10)

v flow = f


N A
AX
B X
AB

=


80.35
0.35
80
80

 (3.11)
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Simple H-network The original and flow representation of this network is given in Figure 3.9. The transport
moment found with this network is 5·4·100 = 2000. The situation is shown in Figure 3.10. This transport
situation is the one which is expected in terms of severeness. The most severe stress test based on end
points is the same as the stress tests based on pipelines as can be seen in Equation (3.12).
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(b) Flow representation

Figure 3.9: Simple H-network
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Figure 3.10: Simple H-network: maximal trans-
port moment

v cap = c


NA

NB

XC
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v flow = f
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(3.13)

Advanced H-network The two network representations are found in Figure 3.11. The transport moment of
the optimisation problem is 1070. The stress test vectors are found in Equation (3.15) and they are
illustrated in Figure 3.12. This is almost the same situation as the situation that is found in previous
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section (see Equation (3.14)). In the previous section there was a flow of 20 from NA to XB , but in the
new representation this flow does not contribute to the severeness of the scenario. Therefore the stress
test is accepted as long as the difference between N B and B X is 70 and the LP conditions are satisfied.
The entry and exit edges in the new representation do not have to be saved, only the internal edges are
needed and then the difference disappears. Just as the one pipeline network the algorithm stops if the
optimisation function does not improve.
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Figure 3.11: Advanced H-network
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Figure 3.12: Advanced H-network: maximal transport mo-
ment

v cap = c



NA

NB

X A

XB

XC

XD

=



100
90
0

−20
−80
−90

 (3.14)

v flow = f
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(3.15)

Triangular network This network is a simple network, but with a loop. In Figure 3.13 the transformation of
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this network is seen. When applying the algorithm to this network, a problem arises. The conditions
still hold, but much gas is flowing through the loop. Because of the large amount of flow, the capacities
on the entry and exit points are not significant for the optimisation function. Therefore the scenarios of
vcap and vflow are not the same. The algorithm has stopped because the maximal number of iterations
is exceeded.
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Figure 3.13: Triangular network
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Figure 3.14: Triangular network: maximal transport moment
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v flow = f
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(3.17)

The solution is not sufficient when running this function for the LP given in Equation (3.6) for a network
with a loop. It was seen in Figure 3.14 and also the Figure B.1 on page 52 for the shopping cart network. The
constraints to the problem are satisfied, but the flow in the loop is too high and this situation is not realistic.
Moreover, this situation is probably too severe in reality for the gas network. This is not a problem of using
the non-linear program, but the problem is with the definitions within the model. There are some solutions
to this problem:

• When reducing flow in the loop of the found solution until one pipeline has no flow, the problem of too
much flow in the loop is solved. Although this situation is more sensible than the previous one, it is still
not realistic and moreover this solution does not make use of the shortest path method. Mostly the gas
will flow along the shortest paths. The result is seen in Figure B.2 on page 53.

• The second possible solution is to put bounds on the pipelines. There exist bounds on the flow through
pipelines in the program MCA. These bounds can be used to suppress the excessive flow. The result of
this solution is seen in Figure B.3 on page 51. Despite the realistic scenario, the bounds on the pipelines
are chosen manually and this scenario is not necessary the most severe scenario. Again, the shortest
path is not used here.

• All gas networks have visible loops, so these loops are known. Therefore, the third solution is to add a
non-linear constraint to the problem which prevents that flow through the pipelines in a loop do not
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have the same direction. Yet, the function does not find a feasible solution when running Matlab with
this addition. Unfortunately fmincon is protected in Matlab and therefore there is not enough infor-
mation how this function optimises the non-linear program. Besides the optimisation of maximising
the transport moment, the flow pattern must be found such that the path is minimised. So the maximi-
sation of the transport moment should be done at the same time as the minimisation of the transport
path.

Previous solutions did not use the shortest path for the flow. For the stress test based on end points, this
method was not required, because the internal flow pattern was not needed to find the severe scenarios.
Moreover, this method (discussed in Section 3.1) finds a set of severe scenarios, but the methods with non-
linear programming only finds the scenario with the maximal transport moment. A set with stress tests is
preferred, because this set is representative for all the transport situations. Just one stress test can be the
only representative for all transport situations if the network is very simple. More stress tests can be found
by finding the vertices of the polytope. The vertices are the intersections of the linear conditions of the NLP.
However, this only holds when the polytope is convex, but the non-linear conditions of the problem can cause
a non-convex polytope. Another solution is to find scenarios in half planes. This is a more general approach
than the vertices. The anchor points in the stress test algorithm of the end points take direction of the network
into account, so such method may be considered to find the stress tests based on pipelines.

Finding a method more similar to the anchor point method of the stress test algorithm is to allow a partic-
ular directions in the network. This takes out an amount of freedom for generating the stress tests, but after
taking different directions every time the algorithm has run, a set is generated with many stress tests. It is
questionable whether this method gives the right set of scenarios. Restricting some directions may not give
the most severe scenarios.

Finding the stress tests based on capacities of end points, MCA also calculates a flow pattern based on
these stress tests. This lead to the same amount of stress tests as the generation method of end points. How
MCA converts the stress tests will be explained and discussed in the next section.

3.2.2. Conversion from the end point representation of stress tests
The following method is implemented in MCA to find the flow vector from the capacity vector. The (capacity)
stress tests found by the stress test algorithm (page 11) are considered to be known. There are also bounds on
the pipelines given: an upper and a lower bound. The conversion from the known stress test to the pipeline
stress test is done by adding flow on the pipelines such that the capacity stress test is satisfied. The optimal
flow pattern is found by minimising the following transport moment: T = LT f within the predefined bounds
for pipelines. Transport moment T is here defined by the vector of pipeline lengths L and flow vector f . It
is possible that no flow pattern is found if the pipeline stress test have to satisfy the known transport situa-
tion and the bounds on the pipelines. However, the bounds on the pipelines are not strict, but undesirable.
Therefore, if a flow on a pipeline must exceed its bound, the cost function transport moment is replaced by
another function L( f ) which has higher costs than the transport moment.

Figure 3.15 is an illustration to the cost function for one pipeline. When the amount of flow through the
pipeline is below the upper bound (ub), then the cost function is equal to the transport moment. If the flow
exceeds the upper bound, another cost function is used to give a penalty to the solution and crossing the
bound will be punished. Trivially, the same holds for the lower bound, which represents the opposite flow
direction.

When the stress vectors for the flow are derived for each scenario, this set should be reduced just as in the
previous case to reduce the amount of computations. The analysis for the reduction of the set of stress tests
is given in the next chapter.

3.3. Conclusions
There are two types of representations of the transport situations discussed in this chapter. The first one is
described by the capacities on the end points. These stress tests for a certain network are found by applying
the stress test algorithm. The contractual bounds of capacity on the end points and their mutual distances are
input variables for this algorithm. The algorithm makes use of the more implicit transport moment in which
directions are taken into account such that a set of stress tests is generated. This representation is taken from
the shippers perspective, because they are only interested in the end points of the gas network.

The other representation is by flow through pipelines. This representation is taken from the modeller’s
perspective and it can be used for a more explicit definition of the transport situation. To generate the stress
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Figure 3.15: Cost function of a pipeline for finding the flow pattern

tests for the scenarios based on pipelines, more calculations are needed. In the previous representation cal-
culations for the flow pattern was not required, because the network was like a black box in that representa-
tion. So in pipeline one, more calculations and information are required, but also more information is gained
by knowing the flow pattern. This pattern gives information which is valuable for the continuation of the
planning process.

No sufficient generation method directly from the network information for the stress tests based on pipe-
lines is found in this network. An optimisation function (transport moment) and conditions belonging to the
problem are known, so (non-)linear programming is used to solve the optimisation problem. Non-linearity
appears in the optimisation problem, because the flow vector must be positive in the optimisation function,
but the flow vector must include the direction by negative and positive values for the conditions in the optimi-
sation problem. Therefore, the optimisation function includes the absolute function which is not completely
linear, but piecewise linear. When applying only the bounds of capacity and flow conservation conditions,
the networks with loops get unrealistic solutions because much gas is flowing around in the loops. There-
fore a non-linear condition must be added to the Non-Linear Programming (NLP) to ensure that no unusual
amount of flow is in the loops. The Matlab function fmincon does not find a feasible solution to the NLP after
this addition. Even if the function finds the solution, there is only one stress test found; the most severe one
according to the transport moment. Moreover, in the NLP the solution for the flow pattern finds a pattern
with the shortest path. There are some possible solutions given in this chapter which are not carried out in
this report.

In the continuation of this report, the representation of the pipelines is received from the program MCA of
Gasunie. In MCA, a conversion is made from the stress tests based on end points to pipelines. This conversion
leads to the same scenarios as in the end point representation but in a different form, i.e. flows through
pipelines. The flow pattern found for a scenario takes the shortest path along the pipelines into account,
which is realistic.
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Reduction of the generated set of stress

tests

In the previous chapter, stress tests have been generated. Generally, a large number of stress tests are found.
The number of stress tests is equal to the number of exit points (around 1100 in HTL-network) plus the num-
ber of entry points (around 50 in HTL-network) [15]. To reduce the number of stress tests, similarities between
the stress tests can be used. To make this possible, a distance has to be defined to measure the difference be-
tween the stress tests and determine to the similarity of stress tests.

4.1. Current reducing method
The first step in the current reducing method is to have the generated set reduced by keeping only unique
stress tests. In the example of Section 3.1 it is seen that equal stress tests are found for different anchor
points. However, this unique set of stress test is still too large for the final computations. Therefore, the
quadratic form distance is used to measure the “difference” between the stress tests and a reduction criterion
can be given. The Lp -norm (see Equation (4.1)) is an often used distance for vectors. However, this distance
is not adequate in this case, because the severeness of gas transport is dependent on both flow and transport
distance.

Lp (x) =
(∑

i
|xi |p

)1/p

(4.1)

4.1.1. Quadratic form distance
The comparison of numerical objects is not only done for scenarios in gas networks, but also in other fields.
In the article of Skopal, et al [17] images are compared to each other and with the QFD (Quadratic Form Dis-
tance) a rate of similarity is given. There are some techniques for comparing images by making histograms of
the colours at every location of the image and comparing them with other images. However, if the image has
some noise or is scaled or rotated, those techniques do not give a good similarity measure between the dis-
torted image and the original. The QFD takes distortion of the image into account by increasing the number
of dimensions where more dependencies of the image are considered. An example of the dimensions of an
image is the amount of red, green and blue of each pixel, so for m pixels, the dimension of the image is 3m,
where only colour is included. Texture for example is also a quantity which can be added to be a dimension.

The quadratic form distance can also be used for comparing stress tests, because besides the Euclidean
distance (or other Lp -distances) between the vectors of stress tests, the geographical distance has also to be
taken into account for comparing stress tests. When two entry points N1 and N2 are close to each other in the
network, the transport load from N1 to exit point X is assumed to be similar to the transport load from N2 to
X .

The aim is that the quadratic form distance will give a good similarity rate of stress tests. The stress tests
can be denoted as n-dimensional vectors where n is the total number of entry and exit points. The capacity
on the entry points is given in the vector with a plus sign and the capacity on the exit points is given in the
vector with a minus sign, just as in the previous chapter.

27
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The quadratic form distance of the vectors x and y is given by

QF D A(x, y) =
√

(x − y)T A(x − y) (4.2)

where A is an n ×n symmetric semi-positive definite matrix [13] and x and y are the n-dimensional vectors
which represent two stress tests. The transport moment represents the severeness of the situation, so the
distance of the transport must be included in the matrix A.

In the article of Skopal et al the matrix A is defined by

ai j = 1− di j

dmax
, with dmax = max

i , j
di j , i , j = 1,2, . . . ,n, (4.3)

where ai j are the entries of matrix A and di j is the Euclidean distance between representatives of colours i
and j .

For gas transport situations, the matrix A is defined as in Equation (4.3), but with another distance di j

than in the colour comparison, see the master thesis of K. Lindenberg [13]. In the gas network the distance is
chosen to be the shortest path along the pipelines between point i and point j . These points are entry and
exit points.

This quadratic form distance is more preferable than the Lp -distance, because the QFD gives also the
correlation between different dimensions (capacities and shortest paths), while the Lp -distances give the
combination of the distances of each dimension independently and only the difference of capacities.

4.1.2. Example QFD
Illustrating the previous theory, the parametrisation of the one pipeline network is given in this paragraph.
This network was given in the introduction in Figure 1.2 on page 5 and matrix A is derived by Equation
(4.3) with D as the distance matrix of the shortest paths via pipelines. The considered network has only
one pipeline, so the length of the pipeline can be arbitrary chosen as long as it is greater than zero. Call this
length `> 0.

The distance matrix is for the network above is equal for every bounds on the capacity:

D =
0 0 `

0 0 `

` ` 0

 (4.4)

The matrix A can be computed from D, which is given in Equation (4.5). Matrix A is not a symmetric
positive matrix, which can be seen with the definition in next subsection.

A =
1 1 1

1 1 1
1 1 1

 − 1

`

0 0 `

0 0 `

` ` 0

 =
1 1 0

1 1 0
0 0 1

 (4.5)

From the stress test algorithm (Algorithm 3.1), the most severe situation is found by adding some capacity
to the network until the bounds are exceeded. Some of the severe situations can easily be seen in this example.
Like the situation that there is 80 injected at point A, no capacity leaves point A directly through the exit point
of A and 80 will leave at the exit point at B . This situation is represented in the following stress test vector
(80,0,−80)T .

Another severe situation is (100,−20,−80)T , so here 100 is injected to point A and immediately 20 is leav-
ing point A and 80 leaves point B at its exit point. In this example it is easily seen that these two situations
give the same transport moment, because T = f ·L = 80` for both situations.

In fact, all situations of the form (80+p,−p,−80)T with p ∈ [0,20] will give the same transport moment.
The QFD will show that they are similar, because the distance is zero. This is proven by taking two arbitrary
stress tests of the following form xp = (80+p,−p,−80)T and xq = (80+q,−q,−80)T and comparing them with
the QFD.
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QF D A(xp , xq ) =
√

(xp −xq )T A(xp −xq )

=

√√√√√(
p −q q −p 0

)1 1 0
1 1 0
0 0 1

p −q
q −p

0



=

√√√√√(
p −q q −p 0

)0
0
0


= 0

So for the one pipeline network all situations which correspond to (80+p,−p,−80)T with p ∈ [0,20] are
equally severe and most severe for the network with these bounds on the entry and exit points.

Using this relatively simple network the situations can be seen and be proven rather simply. For more
complex networks, the computer should do the work. The computations for stress tests of the advanced
H-network is given in Appendix C, Section C.1. There were three unique stress tests are found, so three com-
parisons have been done.

4.1.3. Metric distance
The quadratic form distance looks like a well defined distance, but is it a metric distance as required by math-
ematicians? In this section it is shown that the QFD with the defined parametrisation is not for every gas
network a full metric distance. However, a less strict property of the distance is sufficient for checking the
similarity between stress tests, because when the distance between two stress tests is zero, then these two
does not always have to be the exact same situations. This can occur if an entry and an exit point are at the
same location (see previous section). The situation when there is no flow in the network has distance zero to
the situation when there is flow from the entry point to the exit point on the same location. It is necessary
that (x − y)T A(x − y) ≥ 0 for every x, y ∈Rn , because then QFDA(x, y) ∈R.

The matrix A is always symmetric if the entries are defined by ai j = 1− di j

dmax
, because di j = d j i , thus

ai j = a j i .
Assume matrix A ∈ Rn×n is SPD (Symmetric Positive Definite), i.e. vT Av > 0 for every non-trivial v ∈

Rn . Then QF D A is a metric distance, because the next four requirements hold of the definition of a metric
distance function [9]. The detailed proof of these requirements are found in Appendix C, Section C.2. The first
two requirements are easy to see, but the others are more difficult. For the last requirement, the triangular
inequality, the theorem of Cauchy Schwarz is used for this special case.

Definition (Metric distance). d :Rn ×Rn →R is a metric distance function if the following requirements hold:

• d(x, y) ≥ 0

• d(x, y) = d(y, x)

• d(x, y) = 0 ⇐⇒ x = y

• d(x, y) ≤ d(x, z)+d(y, z)

In the simple example of previous subsection (4.1.2), the matrix A is not positive definite, but this is not
a necessarily desired property for measuring the similarity between stress tests. The QFD is a square root
of a vector-matrix-vector multiplication, so it is desired that the vector-matrix-vector multiplication is non-
negative. Therefore, the matrix A is required to be SSPD (Symmetric Semi-Positive Definite), which is a less
strict definition than SPD. If the matrix A is SSPD, the QFD is a semi-metric distance [9]. The definition of a
SSPD-matrix A ∈ Rn×n is vT Av ≥ 0 for every non-trivial v ∈ Rn . The definition of a semi-metric distance is
given below and the proofs are given in Appendix C in Section C.2.

Definition (Semi-metric distance). d :Rn ×Rn →R is a metric distance function if the following requirements
hold:

• d(x, y) ≥ 0
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• d(x, y) = d(y, x)

• d(x, x) = 0

• d(x, y) ≤ d(x, z)+d(y, z)

If A is a (semi-)negative definite matrix or an indefinite matrix, the QF D A is not a distance which can be
used for the similarity of stress tests.

4.1.4. Other definitions of the matrix
K. Lindenberg [13] tested some definitions of A on symmetric semi-positive definiteness, however she did
not find a definition such that it is SSPD for every transport network. In these definitions relations to trans-
port distance, diameter and a combination of the two are considered in different forms. The conclusion of

Lindenberg was that the original form of the QFDA, with ai j = 1− di j

dmax
is the best found parametrisation of

the QFD for the gas transport situations.

At Gasunie, ai j = 1− di j

dmax
is used as the definition of A without any problems. It is possible that some

properties of the gas network are not included, which leads to a symmetric semi-positive definite matrix.
More research is needed for to discover these properties.

4.2. Reduction of stress tests based on pipelines
The flow representation of the stress tests give a more explicit description of the transport situation. There-
fore, the quadratic form distance is unnecessary for this type of vectors. To use the quadratic form distance
on the flow vectors, a diagonal matrix is found for the parametrisation matrix A, where the diagonal elements
are the pipeline lengths. Then rewriting the QFD for the flow vector f a weighted Lp -norm is found, which
is shown in Equation (4.6) with weight vector w2.

QF D( f ) =

 f T

w2
1

. . .
w2

n

 f


1/2

=
(∑

i
(
wi fi

)2
)1/2

=L w
2 ( f )

(4.6)

The distance between two scenarios must depend on the flow or capacities and the dependency of the
transport distance in the network will be investigated in this paragraph.

The difference between two transport scenarios must depend on the relation of the transport distance
and the amount of flow or capacity in the network. Therefore the distances to be investigated have to be
dependent on the transport distance by adding a weight to the distance. This is already implemented at the
quadratic form distance by the parametrisation matrix A. The standard Lp -distance is metric which is given
in Equation (4.7a) [9]. This norm is often used as the distance function for vectors, because the function is
simple and it works in a multidimensional space Cn . The weighted Lp -distance d : Rn ×Rn → R with weight
vector w ∈Rn

≥0 becomes as in Equation (4.7b).

d(x, y) =Lp (x − y) =
(∑

i

(|xi − yi |
)p

) 1
p

(4.7a)

dw (x, y) =L w
p (x − y) =

(∑
i

(
wi |xi − yi |

)p

) 1
p

(4.7b)

The weighted Lp -norm is a metric distance. The proof of this statement is given in Appendix C, Section
C.3.

The adjustment of the weight w to the Lp -norm ensures that the entries of the compared vectors will
not be distributed equally to the distance function. This is preferred for the stress tests, because transporting
over a longer transport distance with a certain flow will have a larger transport load than the same flow over a
shorter distance. This assumption that the weighted norm is preferred over the standard norm is checked in
the next paragraph. There are requirements for the difference measure between transport scenarios. These
requirements are tested in the next paragraph.
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4.2.1. Test distances
The (semi-)metrics used for comparing the stress tests x, y ∈ Rn based on the capacities on entry and exit
points are the following (Equation (4.8)).

d(x, y) =∑
i
|xi − yi | (L1-norm)

d(x, y) =
√∑

i
(xi − yi )2 (L2-norm)

d A(x, y) =
√

(x − y)T A(x − y) (QFDA)

with ai j = 1−di j /dmax (4.8)

For the quadratic form distance on the capacities of the end points, the distance matrix D ∈Rn×n is used,
where the element di j is the transport distance between endpoint i and j . The weight of the flows is a vector
which represents the pipeline lengths. The distances used for the flow representation of the stress tests are
given in Equation (4.9).

d(x, y) =∑
i
|xi − yi | (L1-norm)

d(x, y) =
√∑

i
(xi − yi )2 (L2-norm)

dL(x, y) =∑
i

Li |xi − yi | (Weighted L1-norm)

dL(x, y) =
√∑

i
L2

i (xi − yi )2 (Weighted L2-norm)

(4.9)

The distances above are for stress tests x, y ∈Rm described by the flows on pipelines. The first two norms
are only defined by the flows through each pipeline i of the network. The weighted norms are defined by
these flows as well, but also in combination to the pipeline length vector L ∈ Rm , which is called the weight
vector of these norms.

The first check if the distances suffices the requirements of the gas transport network, the simple networks
one pipeline network, simple H-network and a temporary network (network 2) are used. The requirements are
drawn up to get the conditions for the network physics. The scenarios which are used to check the distances
are illustrated in Figure 4.1 (page 32), Figure 4.2 (page 32) and Figure 4.3 on page 33. The requirements are
listed below.

• d(1A,1B) = 0, because these scenarios are in terms of gas transport similarly severe.

• d(2A,2B) = d(2B ,2C ), because the scenarios of A and C should have the same distance to scenario B.

• d(2A,2B) > d(2A,2C ), the pipeline of scenario B is ten times larger than the other pipelines and there-
fore is the difference between scenario A and scenario B larger than the difference between scenario A
and scenario C.

• d(3A,3C ) = d(3B ,3C ), scenarios A and B have both three different pipelines with the same amount of
flow than scenario C.

• d(3C ,3D) < d(3C ,3E), because there is more flow difference in scenarios C and E than in C and D.

The main conclusion which is drawn from Table 4.1 is that the distance measure for gas transportation
scenarios has to be weighted with network distances (path lengths and pipeline lengths). For the distances
concerning the flow through pipelines both weighted L1-norm and weighted L2-norm satisfy the require-
ments and the QFD for the stress tests based on end points is the only sufficient distance which is tested in
this report.

The requirement for the first network holds almost for every distance function. For network 2, there are
two requirements. The first one is that d(2A,2B)=d(2B,2C) holds for every distance function in the table.
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Figure 4.1: Scenarios for the one pipeline network

A

B C D

100 1

100 1 10 1

100

100

(a) Scenario 2A

A

B C D

100 1

1 10100 1

100

100

(b) Scenario 2B

A

B C D

100 1

1 10
100

1

100

100

(c) Scenario 2C

Figure 4.2: Scenarios for network 2

However, the second requirement that the difference between 2A and 2B is strict larger than the difference
between 2A and 2C does not hold for every distance, it only holds for the quadratic form distance and the two
weighted Lp -norms.

The difference between 3A and 3C must have the same value as the difference between 3B and 3C. This re-
quirement is satisfied by all the distance functions which are investigated. The difference between scenarios
3C and 3E should be bigger than the difference between scenarios 3C and 3D. Actually, d(3C,3D)= 2·d(3C,3E)
for every definition of the distance in the table. This is caused by the flow that is chosen and that in each
scenario the same flow pattern is used. On every pipeline (except for pipeline EF) of the three scenarios 3C,
3D and 3E is the flow 100, 80, 60 respectively. Therefore, d(3C,3D)= 2 ·d(3C,3E) is reasonable, but the same
result is in other networks not necessary.

In Appendix B.2 on page 55 distances of the networks simple H-network, advanced H-network and the
shopping cart network are plotted. For each of the networks, the quadratic form distance between stress tests
based on capacities on end points is plotted on the x-axis. On the y-axis there are the two norms plotted:

Distance
Capacities on end points Flows on pipelines

L1-norm L2-norm QF D A L1-norm L2-norm L L
1 -norm L L

2 -norm
d(1A,1B) 40 28.28 0 0 0 0 0
d(2A,2B) 200 141.42 141.42 200 141.42 1100 331.66
d(2A,2C) 200 141.42 60.30 200 141.42 200 141.42
d(2B,2C) 200 141.42 141.42 200 141.42 1100 331.66
d(3A,3C) 200 141.42 141.42 300 173.21 1500 387.30
d(3B,3C) 200 141.42 141.42 300 173.21 1500 387.30
d(3C,3D) 80 40.00 32.66 80 40.00 400 89.44
d(3C,3E) 160 80.00 65.32 160 80.00 800 178.89

Table 4.1: Verifying requirements of the distance function for transport situations
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Figure 4.3: Scenarios for the simple H-network
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the weighted L1-norm and the weighted L2-norm of the difference of stress tests based on flow through
pipelines. The values of the distances are rounded off such that the density can be seen, which is represented
by the different colours.

The figures show that the more complex the network the wider the relative spread is between the two
representations of the stress tests. This is expected, because when the inner network gets more complex, this
leads to more divergence of the two representations of the stress tests.

Both weighted norms meet the requirements of the difference measure for the stress tests based on flows
through pipelines, so the L L

1 -norm is used in this report as the distance function for the scenarios based on
pipelines.

4.3. Other reduction criteria
Not only the flow through gas pipelines and the length of these pipelines have influence on the severeness of
the transport situation, but other network aspects as well. For example the diameter and the pressure drop
also have an effect on the severeness of the scenario. Instead of only taking the length of each pipeline as the
weight for the weighted L1-norm, the diameter can also taken into account. To get the right combination
between the length and the diameter, the physical relations must be kept in mind. The larger the diameter of
a pipeline, the less severe the situation with the same amount of flow is. This is also related to the pressure
drop formula. This formula is shown in Equation (4.10) [21]. pi n is the pressure at the start of the pipeline, the
pout is the pressure at the end of the pipeline and ∆p = pi n −pout is the pressure drop. Q is the flow from the
start to the end of the pipeline. The term in front of the flow is interesting for the weight of the new distance
function.

p2
i n −p2

out = k · L

D5 · |Q| ·Q (4.10)

The units of the quantities in Equation (4.10) are given in Table 4.2 and in Appendix E [21].

Description Quantity Unit
Pressure at the start of the pipe pi n bar
Pressure at the end of the pipe pout bar
Constant k 604 kg/m3

Length of the pipe L km
Diameter D m
Volumetric flow Q dam3/h

Table 4.2: Quantities and units of the equation of pressure drop (Equation (4.10))

The units of satisfy Equation (4.10), which is found below. The unit bar can be rewritten as 1 bar = 105 Pa =
105 J/m3 = 105 kg/(ms2). So the left hand side has the following unit:

[bar]− [bar] =
[

105 kg

ms2

]
−

[
105 kg

ms2

]
(to SI base units)

= 105 [kg ]

[m][s]2

= 105[kg ][m]−1[s]−2

And the right hand side has the same unit:

[604kg /m3] · [km]

[m]5 · |[d am3/h]| · [d am3/h]

= [604kg /m3] ·103 [m]

[m]5 ·
∣∣∣∣ 10

3600
[m3/s]

∣∣∣∣ · 10

3600
[m3/s] (to SI base units)

= 604 [kg ]

[m]3 ·103 [m]

[m]5 · 102

604

[m]6

[s]2

= 105[kg ][m]−3 · [m]−4 · [m]6 · [s]−2

= 105[kg ][m]−1[s]−2
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So the units of the pressure drop equation is correct. Adding the term of the length and diameter of
a pipeline, the new weighted L1-norm is as in Equation (4.11). k is assumed to be a fixed constant and
therefore irrelevant for the new distance function.

L LD
1 (x − y) =

∑
i

Li

D5
i

|xi − yi | (4.11)

The reduction distance appear even more like the pressure drop equation (Equation 4.10) if the following
distance is used:

L ∆p (x − y) =
∑

i

Li

D5
i

|xi − yi |(xi − yi ) (4.12)

Despite the appearance of the pressure drop, the distance above is not actually a distance function, be-
cause it is not always larger than zero. There is a version of the pressure drop equation which does not take the
transport direction into account. In this equation the flow is squared and becomes a mathematical distance
function.

L ∆p (x − y) =
∑

i

Li

D5
i

(xi − yi )2 (4.13)

In the next chapter the results in comparison with the original weighted L1-norm is given.

4.4. Reduction process
When the distance (described in Section 4.2) between stress tests is less than a certain number ε, then the
stress tests are considered to be similar. So considering one stress test v , all stress tests in the ball with radius
ε around this stress test, B(v,ε), are considered to be similar. The set of all these similar vectors can be reduced
to one stress vector.

Actually, the stress test set can be reduced even further. The scenarios which are less severe than the ones
in the ball can be removed from the set, because of the assumption that a scenario is feasible if a more severe
one is feasible. An illustration in R2 is given in Figure 4.4a. In this figure the cone of clustering is shown in
blue. All vectors in this cone can be reduced to the vector v . All the stress tests within this cone are in the
same cluster. However, the clustering technique is not unique, see Figure 4.4b. When vector v3 in this figure
is considered first, v2 will be in the cluster of v3, but if v1 is first considered, vector v2 is in the cluster of v1.
For a bigger set, the clustering of stress tests is a more complex problem. Gasunie has chosen to consider the
stress test with the largest corresponding distance first. Thus the most severe situations have priority of being
the main vector in a cluster. The goal of the clustering is to get less stress test vectors, so for this purpose it is
indifferent to which cluster vector v2 belongs.

Despite this procedure of priority, the reduced set of stress tests will change easily for a small change in
the network. It is preferred to have a stable set of stress tests for which the final hydraulic calculations are
done.

Furthermore, the question of what ε should be is difficult. This value of ε is strongly dependent of the
network. If the capacities of one network are larger than the capacities of the other network, the values of the
stress tests will be bigger and therefore ε is different to achieve the similar clusters. In the next chapter, the
value of ε is determined for each network and both types of stress tests and these values are analysed.

4.5. Conclusions
The amount of stress tests found by the generation methods discussed in Chapter 3 is too much in order to
check these scenarios by hydraulic calculations. This set of stress tests can be reduced by leaving out the
similar stress tests and the less severe ones. The stress tests within the ball with radius ε of a certain stress test
vector v are considered to be similar. Moreover, all vectors within the cone of clustering can be reduced to v .

All relative distances have to take the properties of the network into account. For example, the transport
distance is not equal to the Euclidean distance. In this chapter, there are distance functions tested on all
the requirements for transport situations. The conclusion is that these functions must depend on the flow
or capacity of gas and the transport distance. For the stress tests based on end points, the only sufficient
function found is the quadratic form distance:
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Figure 4.4: Clustering method

QF D A(x, y) =
√

(x − y)T A(x − y) (QFDA)

with ai j = 1− di j

dmax
, with dmax = max

i , j
di j

In this equation i , j are the end points and di j is the transport distance between end point i and j . A is
the parametrisation matrix with entries ai j .

The distance function for stress tests based on pipelines, two weighted norms are found: the weighted
L1-norm and the weighted L2-norm. Both norms satisfy the requirements for scenarios, so there is chosen
to use the weighted L1-norm in this report:

dw (x, y) =∑
i

wi |xi − yi | (Weighted L1-norm)

First, the weight wi for this norm is chosen to be the length Li of the i th pipeline. This choice of the weight
vector leads directly to the transport moment for stress tests based on pipelines (see Equation 3.2 on page 9).

However, the wider the pipeline, the less is the pressure drop. So the addition of the diameter to the dis-
tance function should improve the comparison of the stress tests. The term Li

Di
in the pressure drop equation

(Equation 4.10) relates the length Li and diameter Di of pipeline i , so this term should be sufficient as weight
for the the weighted L1-norm.

In the next chapter, the problems and results of the reduction techniques are given.
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Results of the reduction methods

Research question number four (“What are the criteria for similarity of stress tests?”) is answered in this
chapter. The answer will be discussed for different kind of stress tests and different networks. The comparison
of the two representations of stress tests will be done with these criteria. The impact of the structure of the
network will also be examined.

First, the criteria are determined by calculating the reduced set of stress tests by the program MCA as a
reference. The ε is found by taking the highest number such that the distance (QF D A or L L

1 ) between the
stress tests is larger than that number. If the ε is larger than this number, some of the stress tests are in the
cone of clustering of other stress tests. Then the set of stress test should be reduced even further and the
reference from MCA does not suffice. If the value of ε is smaller, the set of stress tests is not a representative
of all transport situations. This value for ε is found for the simple H-network, the advanced H-network, the
triangular network and the shopping cart network. In total 4 ·2 = 8 criteria will be found. The hypothesis is
that these criteria are different from each other, because for flow through pipelines another unit is used and
the distance norm is different for both types of stress tests. Moreover, the networks have other bounds and
the dimensions are also different for every network. For example, the stress test vector of capacities on end
points of the simple H-network is in R4 while the one for the advanced H-network is in R6. Therefore, it is
expected that the criteria of similarity are different from each other.

After this comparison, the differences between reducing methods of capacities on end points and flows
through pipelines can be examined. This is done by generating large numbers of feasible transport situations
by MCA. These situations are not necessarily the most severe scenarios. The transport situations are given
in both representations: vectors of end points and vectors of pipelines. For every situation, the distance
is measured to the stress tests of the reduced set, where the identifier of the nearest vector is saved. This
is done for capacities on end points as well as for flows through the pipelines. The hypothesis here is that
the classification of the situations to the stress tests is shows a higher degree of similarity for the simple and
advanced H-network than for the triangular network and the shopping cart network. This hypothesis is made
due to the fact that there are loops in the last two networks. Therefore, an optimisation step is performed to
get the vectors of pipelines. The optimisation step involves the shortest path optimisation as explained on
page 25.

5.1. Determining criteria of similarity
The criteria for each network and each representation of stress tests are found by Equation (5.1). S is the set of
stress tests found by MCA and d(·, ·) is the distance function. The quadratic form distance and the weighted
L1-norm are the distance functions for the end point stress tests and the pipeline stress tests respectively. It is
assumed that the stress tests from MCA are the ideal representatives of all the transport situations, therefore,
the minimum distance between the stress tests is the radius of the ball as explained in Section 4.4. If the radius
is larger, another stress test should not be included in the final set of stress tests. If the radius is smaller, there
is a possibility that a transport situation is not covered by the cones of clustering.

ε= min
si ,s j ∈S

d(si , s j ) (5.1)

37
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Network End points Pipelines Pipelines scaled
Simple H-net 1414 1535 307
Advanced H-net 1140 655 164
Triangular network 258 7170 24
Shopping cart network 2519 19248 160

Table 5.1: Criteria ε for every network and type of stress test

The criteria found for each network and each type of stress test is given in Table 5.1. The values are found
by Equation (5.1) and rounded down to an integer. It is rounded down, because there should not be areas
which coincide with two cones. In the last column, the criteria for stress test of pipelines are scaled by dividing
the criteria with the maximum pipeline length. It is useful to know information of the criteria in order to get
the criteria for a new network.

If the pipeline lengths of a network are multiplied with a factor α, the criteria of the end points do not
change, because the quadratic form distance has a parametrisation in which all transport distances are di-
vided by the maximal transport distance. The criteria of the pipelines are α times as large, because in the
weighted L1-norm there is no division done. However, this does not hold if only one pipeline length is
changed.

The values of possible relations to the criteria of similarity are given in Table D.1 on page 65. The relation
found in the network properties is the Euler’s Polyhedron Theorem [2]:

Theorem (Euler’s Polyhedron Theorem). For a graph G = (V ,E) the following relation holds:

V −E +F = 2 (5.2)

V is the number of the nodes in graph G, E is the number of edges and F is the number of faces in the graph.

A face is the connected area of the complement of a graph [6]. Only one face is unbounded, which is called
the external face. Every plane has at least the external face. There are loops in the network if there are more
than one faces in the plane in which the graph lies.

The theorem can be applied for gas networks if the following definitions are given:

• the number of nodes V is the number of the internal points: all network points excluding the end
points,

• the number of edges E are the number of the pipelines,

• and the number of faces F are the number of loops plus one.

This theorem is thus applicable for gas network, which is useful for finding the number of loops in the
network.

The calculations to find other relations to the criteria are found in Table D.2 on page 66. However, no
trends are found in the data of the network. For example, there is no relation between the two radii of the
cones of clustering and neither a relation of the radius to the pipeline length, number of edges and number
of nodes. Finally, there is no relation found to the total flow.

5.2. Classification of transport situations
To measure the similarities between the two distance functions, two methods are discussed below. Again, the
stress tests found in MCA for each network is used. Then there are scenarios randomly generated with MCA.
These scenarios are randomly drawn from the uniform distribution, but not all scenarios are feasible. For
example in the simple H-net, at both entries the upper bounds are 100, but the exits have upper bound 80
and 90. So the transport situation where every end bound have maximal capacity is not feasible. Therefore
the set of feasible draws is not uniform in the end.

For stress test vector x the normalisation in Equation (5.3a) is used for end points. Equation (5.3b) is
used for pipelines. The normalisation for the stress tests is done such that the clustering is done properly. If
the vectors are not normalised and then the distance is measured, problems arise as can be seen in Figure
5.1a. Scenario v is in the cone of stress test x, but this vector is closer to stress test y . If the stress tests
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are normalised, which is shown in Figure 5.1b, the distance from scenario vector v to x is smaller than the
distance to y .

xnorm = 1

QF D A(x, x)
x (5.3a)

xnorm = 1

L L
1 (x, x)

x (5.3b)

x

y

v

(a) Cone of clustering

x

y

v

(b) Problem of clustering without normalisation

Figure 5.1: Clustering transport situations

Network
Number of Number similar Similarity Switched

loops of 500 cases percentage cases
Simple H-net 0 419 83.8 81
Advanced H-net 0 405 81.0 49
Triangular network 1 306 72.0 41
Shopping cart network 2 98 19.6 0

Table 5.2: Similarity of clustering of the different types of stress tests for 500 scenarios

It is seen in Table 5.2 that if the number of loops increases and the network is more complex, the number
of similar classifications decreases. So the more complex the network, the more the classifications of the sce-
narios diverge in the end point and flow representations. The last column ‘switched cases’ are the scenarios
that for example are closest to stress test A and second closest to B for one representation and the other way
around for the other representation.

In the table the results are given where the nearest stress test vector is used for the classification of a
randomly generated scenario. However, there is a possibility that one scenario is in two cones, but is closer
to one stress test than another. Then it is preferred to know in which cones this scenario lies. An illustration
is given in Figure 5.2. In Figure 5.2a it is seen that vector v is closer to x than to y , but v is in both cones.

In Figure 5.2b, a stress test with its cone is shown. The angle of the cone can be calculated, because the
radius of the cone ε and the length of the scenario vector are known (the vectors are normalised). Therefore
the angle θ can be calculated as in Equation (5.4).

tanθ = ε (5.4)

Now the angle θ of the cone of clustering is known, so the randomly drawn scenarios are in the cone of
clustering of some stress test if the angle with that stress test is less than θ. The general equation for the angle
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Figure 5.2: Method for finding all cones for scenarios

between two vectors x, y is given in Equation 5.5. However, the L1-norm and the weighted L1-norm do not
induce an inner product space. Actually, an inner product that induces a norm exists if and only if that norm
satisfies the parallelogram law (see Equation (5.6)) [3]. A counter example for the (weighted) L1-norm and
proofs of the QF D A and the weighted L2-norm can be found in Section C.4 on page 63. The proofs are found
by using the definition of an inner product (see below) [3].

cosϕ= 〈x, y〉
‖x‖‖y‖ (5.5)

Theorem (Parallelogram law). Let ‖ ·‖ be a norm. Two quantities x, y satisfy the parallelogram law if

‖x + y‖2 +‖x − y‖2 = 2‖x‖2 +2‖y‖2. (5.6)

Definition (Inner product). For every x, y, z ∈Rn and α,β ∈R the following holds:

1. Non-negativity: 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 ⇐⇒ x = 0

2. Linearity: 〈z,αx +βy〉 =α〈z, x〉+β〈z, y〉
3. Symmetry: 〈x, y〉 = 〈y, x〉

To find the angle between the vectors x, y of the end point representation, the following equation is used:

cosθ = xT Ay√
xT Ax

√
yT Ay

(5.7)

The equation to find the angle between the vectors x, y with weight vector w is shown below.

cosθ =
∑

i w2
i xi yi√∑

i (wi xi )2
√∑

i (wi yi )2
(5.8)

In Table 5.3 results of the comparison of classification are given. Three stress tests are found for the Simple
H-network, two for the Advanced H-network, four for the Triangular network and nine for the Shopping cart
network. It appears that these stress tests do not represent all other scenarios or there is some error in the
method. In Table 5.4 it is seen that for many of the scenarios no classification is found. In Table 5.3 the
number of equal classes is seen for both representations. For the Simple H-network, all scenarios which are
classified have exactly one equal class. There are no scenarios in this network that are in more than one cone,
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so every scenario which is clustered has the same classification in both representations. For the Advanced
H-network there are 18 cases which have a completely different classification for the two methods. Most of
the scenarios have at least one cone in common of both representations. It can be seen that the networks
with a loop do not have many corresponding classes.

Network # classes 0 equal class 1 equal class 2 equal class >2 equal class
Simple H-network 3 0 3556 0 0
Advanced H-network 2 18 8464 1419 12
Triangular network 4 0 49 0 0
Shopping cart network 9 0 0 0 0

Table 5.3: Comparison of the classification for the two representations (10000 samples)

Network End points Pipelines
Simple H-network 4454 6444
Advanced H-network 68 5
Triangular network 9950 9914
Shopping cart network 10000 10000

Table 5.4: The number of scenarios that cannot be classified (10000 samples)

5.3. Addition of the pipeline diameter
A possible improvement of the weight of the norm is to add the diameter of pipelines. The term for this
improvement is explained in Section 4.3. The diameter for the H-networks is for the middle 0.6m and the
other pipelines have diameter 1.189m. It is seen in Table 5.5 that different criteria are found. Mostly the
criteria are increased, except for the Triangular network. In this network pipeline AC is 0.6m in diameter and
the other pipelines have diameter 1.189m.

Network Criteria pipelines
Simple H-network 7012
Advanced H-network 713
Triangular network 1423
Shopping cart network 39445

Table 5.5: Criteria of reduction with L LD
1

More results should be found if the classification method is improved.

5.4. Conclusions
The radius of the cone of clustering, i.e. the criteria of similarity are different in each network and each rep-
resentation of the scenarios. The relations of the network to the radius of the cone of clustering are useful to
know such that a new radius can be calculated if the network changes. There are two relations found: Euler’s
polyhedron theorem and the relation of multiplying all pipeline lengths or transport distances with a certain
value. The first relation has no correlation to the criterion of similarity, but only the relation between the
number of nodes, edges and loops in the network. The second relation applies only if all transport distances
are scaled with the same number. If this distance is changed with a parameter α, the criterion for the end
point representation does not change, because the the parametrisation matrix of the QFD is established by
dividing the lengths by the maximal transport distance. The criterion for the flow representation is scaled by
α if all pipeline lengths are scaled by α.

Reducing the set of stress tests, the angle between stress tests needs to be calculated. The calculation of
this angle an inner product is needed. However there exists no inner product for the weighted L1. There-
fore, the weighted L2 is used instead of the L1-norm, because this norm induces an inner product space.
Either this method is not correct or the data which is derived from MCA does not match for the classification
method, because for the networks with loops no classification is found.





6
Conclusions

6.1. Summary of the results
Gasunie Transport Services is required to secure the supply of the natural gas in the Netherlands. The plan-
ning of the network involves testing to see if all severe scenarios are feasible. The calculations are time con-
suming, therefore the set of scenarios should be reduced to a set of scenarios which represent all transport
scenarios. It is assumed that if the most severe scenarios, which are called stress tests, are feasible, the less
severe ones are feasible as well. The effort to transport gas from one location to another through pipelines is
given by the power equation:

P =Q∆p (2.1, revisited)

P is the power, Q is the flow and∆p is the pressure drop. The pressure drop equation contains non-linear
terms, e.g. L/D5 and Q · |Q|. In the first term the parameter L is the pipeline length and parameter D is the
diameter. The transport moment LT Q is an approximation of the effort and is used to measure the severeness
of a scenario.

The current reduction method makes use of stress tests based on capacities on end points to represent
the scenarios (‘end points’ is the name for entry, exit or storage points). In this representation, the bounds
of the capacities on the end points are known as well as the transport distances between the end points.
The network itself is treated as black box. The stress tests in this representation are obtained by a specific
algorithm, which makes use of anchor points such that various transport directions are taken into account.
The set of stress tests can be reduced by using the quadratic form distance to measure the difference between
the stress tests. All scenarios within a specific radius or those which are less severe to certain stress tests can
be grouped to that stress test. The QFD calculates the difference between scenario x and y as follows:

QF D A(x, y) =
√

(x − y)T A(x − y) (QFDA , revisited)

with ai j = 1−di j /dmax

Here di j is the transport distance in kilometres between end point i and end point j and dmax = maxi j di j .
The entries of matrix A are defined by ai j .

The current reduction method does not require many calculations, but the distance to measure the dif-
ference between scenarios is implicit, because of the ‘black box’ and the physical part of the matrix A is not
easily adaptable.

To overcome these problems, a flow representation can be introduced. This representation defines flows
through all pipeline segments in a unique way, i.e. by choosing the optimal flow pattern in terms of transport
load. The transport moment for this representation is a linearisation of the power equation. The transport
moment formula becomes as in Equation (3.2).

T = LT Q (3.2, revisited)

Various norms can be used to compare scenarios in this flow representation. The weighted L1-norm and
the weighted L2-norm seem the most promising:
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L L
1 (x, y) =∑

i
Li |xi − yi | (Weighted L1-norm, revisited)

L L
2 (x, y) =

√∑
i

L2
i (xi − yi )2 (Weighted L2-norm, revisited)

Both norms satisfy the requirements for the comparison of stress tests based on flows through pipelines,
but there is no inner product which induce the weighted L1-norm. The inner product is needed to find the
angle between two stress tests. Therefore, the weighted L2-norm may be more suitable.

The comparison of the two representations, the current representation from the end point perspective
and the method introduced in this research of the pipeline point of view is done by comparing their clas-
sification. The stress tests obtained from the program MCA are considered to be known. Randomly drawn
realistic stress tests can be classified into the cones of clustering of the stress tests for both representations.
This classification of both representations is compared. Unfortunately, no clear conclusions can be drawn
from these results.

A better comparison for these two representations may determine the set of stress test for these methods
and make the final hydraulic calculations for these stress tests. If one method does not find the failing sce-
nario and the other one does, the second method is ‘better’ than the first one. If both methods find all the
possible failing scenarios for every gas network, the one with the least amount of stress tests may be prefer-
able.

Furthermore, in this report methods have been examined to generate stress tests based on flows through
pipelines. To find these stress tests directly from network information, non-linear programming is used.
However, some problems arose. For example the solution found has much gas flowing around in loops, the
shortest path is not used for the flow pattern and only one solution is found instead of a set of stress tests. In
Section 6.3 possible solutions to this problem are given. In this report, the stress tests based on flows through
pipelines are used from MCA, which calculates these stress tests from the stress tests based on capacities at
end points.

Without knowing which method performs best according to the hydraulic calculations, a general con-
clusion can be given. First of all the method of end points has worked well in practice. There are no pre-
calculations needed for generating the stress tests and there is not much information needed beforehand.
However, the parametrisation matrix in the QFD cannot be changed easily and the vector space that is cre-
ated is difficult to imagine. The method of flows through pipelines needs more network information and
currently, pre-calculation of the stress test algorithm is required. Despite the data and calculations, this re-
duction method is closer to the physics: the transport moment is the approximation of the transportation
effort where the pressure drop is linearised to the pipeline length. The weighted L1-norm and weighted
L2-norm are easily adapted. For example, first the weight was taken as the pipeline length, but instead the
combination of the pipeline length and the diameter can be taken as the weight. The combination of pipeline
length and diameter (L/D5) is closer to the pressure drop equation. So there is a great potential in the method
with the flow representation.

6.2. Discussion
The transport moment is an approximation of the gas transport load. The amount of flow, transport distance
and diameter are included in the reduction methods and some results are drawn in this report. A concept for
including the pressure drop is written in Section 4.3, but other components are important as well. Compo-
nents such as blending stations and different types of gas qualities also have an impact on the transport load.
Nitrogen stations are often used to get a lower gas quality, but there is not a infinite amount of nitrogen avail-
able, so that troubles the process. Moreover, it is assumed that a large amount of gas has a linear relation to
the transport moment: the higher the amount of gas the higher the transport moment. It is not investigated
what the transport load for a scenario with a low amount of gas is.

The random scenarios which are drawn for the classification of scenarios to the stress tests are mostly
non-severe scenarios. The capacity on end points are drawn from a uniform distribution, but to get a feasible
transport situation, all capacities will probably not be uniformly chosen. The scenarios which have capacities
close to the boundaries are important to evaluate as well.
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6.3. Future work
This research project may have raised more questions than it has solved. Other projects may be initiated
starting from the theory and results of this project. The subjects of the future work are listed below.

• Most importantly, the verification of the two methods of reduction must be done differently. When the
hydraulic calculations are done, a better comparison of these methods can be done. The results of the
clustering with these calculations can be used as reference. The representation which clustering is most
similar to this reference clustering should be the best representation, because it is closest to the reality.
Furthermore it is preferred to have a stable set of stress tests, so when a component of the network is
changed, the set should not change much.

• There is potential to get an algorithm which computes stress tests based on pipelines directly from the
network. Some solutions have been tested in this report. Knowledge of combinatorial optimisation is
required to investigate this problem further. The vertices of the polytope or half spaces of the problem
can be used as stress tests. In this report a Matlab function is used which not always finds a feasible
solution. Other programs can be used to solve non-linear problems, but there was not enough time to
try these for this thesis.

• For the reduction of the set of stress tests based on pipelines, the weight for the weighted L1-norm is
chosen to be the pipeline length or a combination of the pipeline length and diameter. Other weights
may be used as well. There are other parameters which contribute to the transport load, for example
the pressure drop. At Gasunie, the models mostly run with pressure. In this project, it is assumed that
there is no pressure for simplicity. In Section 4.3 a description is given for adding pressure drop to the
model. When this parameter is added, Gasunie has a better view of the results.

• The effect of the loops in a network can be an interesting subject as well. In this report it is seen that
the representations diverge more if loops are involved. The number of similarities of the classifications
decrease as the number of loops are increased.
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A
Assumptions

• A network has no negative transport distance.

• The bounds on entry and exit points are known.

• The contracts with the shippers are not violated, this means that

– there is a balance of feed in and take off of gas in the network, and

– the minimal and maximal feed in and take off of gas is known and will not be violated.

• The length of the pipe and the amount of gas in the transport network are the most important quantities
for measuring the severity of the gas transportation (Chapter 2).

• The gas in a pipeline can flow into two directions and the quantities are the same in both directions.
Thus the transport moment of the flow through a pipeline in one direction equals the transport mo-
ment of the flow in the other direction with the same flow through the same pipeline.

• When methods work for the example networks, it will work in any gas transport network. Excluding the
following:

– Compressor stations

– Blending stations

– Pressure regulation station

– Nitrogen injection stations

• The more severe transport situations dominate the less severe transport situations. That means that
if the severe situations are feasible, the less severe ones are also feasible. Moreover, this holds for the
entire cone as described in Section 4.4.
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B
Figures

B.1. Generation of stress tests based on pipelines
The shopping cart network with the generated scenarios are given on pages 52-54.
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Figure B.1: Shopping cart network: scenario with maximal transport moment obtained by linear constraints



B.1. Generation of stress tests based on pipelines 53

zelz

maas

oss zand

hilv

bbr

ravwijn

bev

bgs

wiejul

omm

sda

app

spk emd

osz

grk

sch

grav boch

bot

wwz

0

0 17220

166.02

3176.01

0

2971

853.99

12771.17

0

0

6746

4874.01

6829

1137.76

1653.02

0.01

6789.99

0

2283

2279

3312

3370

0

1954

0

4067.97

1601

0.01

1788.99

14267

13302
0

1774023080

9884.99

20693.01

0.01

2477

16500

21499.48

29098

31455.97

19655.14

9884.99

2477

96262.94
95125.18

4531.93

17220

38135.18

73979.17

22
48

.9
2

13
41

3.
04

14267

19870

23534.13

12
36

1.
99

44132

69907.024

1774023
08

0

18480.04

68688.18

3502

21823.99
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B.2. Comparison (semi-) metrics and stress tests

Figure B.4: Distance stress tests of the simple H-network
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Figure B.5: Distance stress tests of the advanced H-network

Figure B.6: Distance stress tests of the shopping cart network



C
Proofs and examples

C.1. Example QFD on advanced H-network
In this subsection, the distance of stress tests of the advanced H-network in Section 4.1.2 is calculated. The
illustration of this network is given on page 5. The stress tests for this network are found in Section 3.1.2 and
these are again given below in Equation (C.1). The order of capacities in the stress tests is NA , NB , X A , XB ,
XC , XD .

sA =



100
90
−0
−20
−80
−90

 , sB =



0
100
−20
−0
−80
−0

 , sC =



10
100
−20
−0
−0
−90

 (C.1)

Three distances can be computed from these stress tests. The matrices used for the QFD are:

D =



0 7 0 7 7 8
7 0 7 0 6 7
0 7 0 7 7 8
7 0 7 0 6 7
7 6 7 6 0 7
8 7 8 7 7 0

 , A =



1 1
8 1 1

8
1
8 0

1
8 1 1

8 1 1
4

1
8

1 1
8 1 1

8
1
8 0

1
8 1 1

8 1 1
4

1
8

1
8

1
4

1
8

1
4 1 1

8
0 1

8 0 1
8

1
8 1


Now, the distances are calculated:

QF D A(sA , sB ) =
√

(sA − sB )T A(sA −SB )

=p
23175

= 15
p

103

≈ 152.2334

QF D A(sA , sC ) =
√

(sA − sC )T A(sA −SC )

=p
17575

= 5
p

703

≈ 132.5707
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QF D A(sB , sC ) =
√

(sB − sC )T A(sB −SC )

=p
13000

= 10
p

130

≈ 114.0175

It follows that QF D A(sA , sB ) >QF D A(sA , sC ) >QF D A(sB , sC ), so the scenario generated from anchor point
A is more similar to the scenario generated from C than from stress test with anchor point B .
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C.2. Proof QFD is semi-metric
QF D A(u, v) ≥ 0
If A is a SSPD-matrix (or SPD-matrix):

(u − v)T A(u − v) ≥ 0 (A is SSPD)√
(u − v)T A(u − v) ≥ 0

QF D A(u, v) ≥ 0

So non-negativity holds for the quadratic form distance.

QF D A(u, v) =QF D A(v,u)
If A is a SSPD-matrix (or SPD-matrix), then

QF D A(u, v) =
√

(u − v)T A(u − v)

=
√

(v −u)T A(v −u)

=QF D A(v,u)

So symmetry holds.

QF D A(u, v) ≤QF D A(u, w)+QF D A(w, v)
If A is a SSPD-matrix (or a SPD-matrix), then the theorem of Cauchy-Schwarz holds in this case (Equation
(C.2)).

xT Ay ≤
√

xT Ax
√

yT Ay (C.2)

The proof of this special case of the theorem is given below. Here it is used that a SSPD-matrix (or SPD)
can be written as A = BT B [22].

0 ≤
(√

xT Ax By −
√

yT Ay Bx

)T (√
xT Ax By −

√
yT Ay Bx

)
= xT Ax(By)T By −2

√
xT Ax

√
yT Ay(Bx)T By + yT Ay(Bx)T Bx

= xT Ax yT BT By −2
√

xT Ax
√

yT Ay xT BT By + yT Ay xT BT Bx

= xT Ax yT Ay −2
√

xT Ax
√

yT Ay xT Ay + yT Ay xT Ax

= 2xT Ax yT Ay −2
√

xT Ax
√

yT Ay xT Ay

This can be used for the triangular inequality d(u, v) ≤ d(u, w)+d(w, v):

(QF D A(u, v))2 = (u − v)T A(u − v)

= (u −w +w − v)T A(u −w +w − v)

= (u −w)T A(u −w)+2(u −w)T A(w − v)+ (w − v)T A(w − v) (A is symmetric)

≤ (u −w)T A(u −w)+2
√

(u −w)T A(u −w)
√

(w − v)T A(w − v)+ (w − v)T A(w − v)
(Cauchy-Schwarz, see Equation (C.2))

=
(√

(u −w)T A(u −w)+
√

(w − v)T A(w − v)
)2

So the triangular inequality holds for the QFD with a symmetric (semi-)positive definite matrix.

QF D A(u, v) = 0 ⇐⇒ u = v
If A ∈Rn×n is a symmetric positive definite matrix, then QF D A(u, v) = 0 if and only if u = v for every u, v ∈Rn .
The proof is given below.
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Assume u = v :

QF D A(u,u) =
√

(u −u)T A(u −u)

= 0

Assume QF D A(u, v) = 0, then

QF D A(u, v) = 0

⇐⇒√
(u − v)T A(u − v) = 0

⇐⇒
(u − v)T A(u − v) = 0

⇐⇒
(u − v)T A(u − v) = 0 ∀u, v(u 6= v)

or u = v

As A is positive definite, the first possibility does not hold. Therefore d(u, v) = 0 ⇐⇒ u = v . If A is semi-
positive definite, this reason does not hold. Therefore, if A is semi-positive definite, QF D A is not metric.
However, the equality d(u,u) = 0 holds for every u, so then QF D A is a semi-metric distance.
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C.3. Proof weighted Lp distance is metric

dw (x, y) ≥ 0

dw (x, y) =
(∑

i

(
wi |xi − yi |

)p

) 1
p

≥ 0 (w ≥ 0, and |xi − yi | ≥ 0)

dw (x, y) = dw (y, x)

dw (x, y) =
(∑

i

(
wi |xi − yi |

)p

) 1
p

=
(∑

i

(
wi |yi −xi |

)p

) 1
p

= dw (y, x)

dw (x, y) = 0 ⇐⇒ x = y

dw (x, y) = 0

⇐⇒(∑
i

(
wi |xi − yi |

)p

) 1
p

= 0

⇐⇒∑
i

(
wi |xi − yi |

)p = 0

⇐⇒ (All terms are positive)(
wi |xi − yi |

)p = 0 ∀i

⇐⇒
wi |xi − yi | = 0 ∀i

⇐⇒ (Non-trivial cases)

|xi − yi | = 0 ∀i

⇐⇒
xi = yi ∀i

⇐⇒
x = y
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dw (x, y) ≤ dw (x, z)+dw (z, y)

(dw (x, y))p =∑
i

w p
i |xi − yi |

=∑
i

(
wi |xi − yi |

)(
wi |xi − yi |

)p−1

≤∑
i

(
wi |xi − zi |+wi |zi − yi |

)(
wi |xi − yi |

)p−1 (Triangular inequality)

≤
(∑

i
w p

i |xi − zi |p
) 1

p

+
(∑

i
w p

i |zi − yi |p
) 1

p

(∑
i

(
wi |xi − yi |

)p

) p−1
p

(Hölder’s inequality)

= (dw (x, z)+dw (z, y))(dw (x, y))p−1(
dw (x, y)

)p ≤ (
dw (x, z)+dw (z, y)

)
(dw (x, y))p−1

⇒ dw (x, y) ≤ dw (x, z)+dw (z, y)
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C.4. Two proofs and a counterexample inner product spaces
For the weighted L1-norm a counterexample is found and the proofs are given for the weighted L2-norm
and the QF D A are given.

Take the following functions on the interval [0,1] for the weighted L1-norm with general weight w ∈R as
the norm.

f (x) =
{

0 x ∈ [0, 1
2 ]

1 x ∈ [ 1
2 ,1]

g (x) =
{

1 x ∈ [0, 1
2 ]

0 x ∈ [ 1
2 ,1]

Then the right hand side of the parallelogram equation (page 40) becomes:

‖ f (x)+ g (x)‖2
L w

1
+‖ f (x)− g (x)‖2

L w
1
= w2 +w2

= 2w2

The solution from above is not equal to the left hand side:

2‖ f (x)‖2
L w

1
+2‖g (x)‖2

L w
1
= 2

(
1

2
w

)2

+2

(
1

2
w

)2

= w2

Therefore, the weighted L1-norm is not induced by an inner product.
The three requirements for an inner product are given on page 40. The QF D A satisfies these requirements

for the inner product 〈x, y〉 = xT Ay if A is symmetric positive definite (SPD).

1. Non-negativity, for every x ∈Rn :

〈x, x〉 = xT Ax ≥ 0 (A is SPD)

x = 0 =⇒ 〈x, x〉 = 0

〈x, x〉 = 0 =⇒ x = 0 (A is SPD)

2. Linearity, for every x, y, z ∈Rn and α,βi nR

〈z,αx +βy〉 = zT A(αx +βy)

= zT Aαx + zT Aβy

=α〈z, x〉+β〈z, y〉

3. Symmetry, for every x, y ∈Rn

〈x, y〉 = xT Ay

= yT Ax

= 〈y, x〉

The weighted L2-norm satisfies these requirements for the inner product 〈x, y〉 =∑
i (wi xi )(wi yi ).

1. Non-negativity, for every x ∈Rn :

〈x, x〉 =∑
i

(wi xi )2 ≥ 0

x = 0 =⇒ 〈x, x〉 = 0

〈x, x〉 = 0 =⇒ x = 0 (w is non trivial)
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2. Linearity, for every x, y, z ∈Rn and α,β ∈R

〈z,αx +βy〉 =∑
i

(wi zi )(wi (αxi +βyi ))

=∑
i
α(wi zi )(wi xi )+β(wi zi )(wi yi )

=α〈z, x〉+β〈z, y〉

3. Symmetry, for every x, y ∈Rn

〈x, y〉 =∑
i

(wi xi )(wi yi )

= (wi yi )(wi xi )

= 〈y, x〉
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Tables

D.1. Data networks and the relation to criteria of similarity
The criteria of end points is defined by the variable εend and the criteria of pipelines is given by εpipe, which
are the radii of the cones of clustering. Lmax is the maximal pipeline length in the network and Ltot is the total
amount of length in the network. Define the two stress tests s1 and s2, which satisfy Equation (5.1), see page
37. Q i

tot is the total amount of flow going from entries to exits of stress test si , where i ∈ {1,2}. Qtotdiff is the
difference between the two Qtot. N is the amount of entry points, X is the amount of exit points and S is the
amount of storages. V is the amount of internal points and E is the total amount of (internal) pipelines.

Simple Advanced Triangular Shopping cart
H-net H-net network network

εend 1414 1140 258 2519
εpipe 1535 655 7170 19248
Lmax 5 4 300 120
Ltot 25 13 700 1209
Q1

tot 1 ·103 1 ·105 1 ·103 6.16 ·106

Q2
tot 1 ·103 6.2 ·105 1.2 ·103 8.70 ·106

Qtotdiff 0 5.2 ·105 2 ·102 2.54 ·106

N 2 2 2 16
X 2 4 3 24
S 0 0 0 3
V 2 6 3 23
E 5 5 3 24
F 1 1 2 3

Table D.1: Relations of the networks

65



66 D. Tables

Simple Advanced Triangular Shopping cart
H-net H-net network network

εend/V 707.11 190.03 86.07 109.54
εpipe/Lmax 307.08 163.78 23.90 160.41(
εpipe/εend

) ·Lmax 4.61 6.96 10.80 15.71
(εend −εpipe)/εend -0.08 0.43 -26.77 -6.64
(εend −εpipe)/εend ·Lmax 0.78 0.86 0.91 0.94
(εend −εpipe)/εend ·V -0.17 2.55 -80.31 -152.73
εend/E 282.84 228.04 86.07 104.98
εpipe/E 307.08 131.02 2390.00 802.06
εpipe/E ·Lmax 61.42 32.76 7.97 6.68
εend/εpipe 0.92 1.74 0.04 0.13
εend/εpipe ·Lmax 1.84 10.44 0.11 3.01
εend/εpi pe ·V 4.61 8.70 0.11 3.14
(εend −εpipe)/Qtotdiff - 0.00 -34.56 -0.01
(εend −εpipe)/(Q1

tot/Q2
tot) -121.19 3007.44 -8294.16 -23635.93

Table D.2: Relations of the criteria



E
Definitions, Abbreviations and Symbols

Glossary
Calorific value Energy value or volume of energy by gas (in MJ/m3) [11]. 1

End point Collective name for entry point, exit point or storage point. 9

Face Simply connected regions divided by a graph in a plane. 38

Polyhedron Set of solutions to the linear constraints of linear programming. 19

Polytope Bounded polyhedron. 19, 25, 45

Shipper Party who is recognised by the network operator of the national grid and consequently has pro-
gramme responsibility [16]. 1, 9

Stress test Transport situation which is severe for the transport of gas and is within the contractual bounds
of the shippers. 9, 27

Transport moment Quantity of the transport load, mostly dependent on the amount of flow through the
pipes and the length of the pipes. 7, 9

Transport situation Balanced combination of the quantities on the entry and exit points, the capacity is the
most common used quantity. 7

Vertex Intersections of the linear conditions of the (non-)linear programming. 25

List of Abbreviations
G-gas Groningen gas (Wobbe index ≤ 44.4). 2

GTS Gasunie Transport Services. 1, 7, 9

H-gas Natural gas with a Wobbe index ≥ 49.0. 1, 7

HTL High Pressure Grid. 1, 2, 7

L-gas Natural gas with a Wobbe index between 44.4 and 47.2. 1

LP Linear Programming. 17

MCA Multiple Case Analysis. 24, 37, 44
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68 List of Symbols

NLP Non-Linear Programming. 20, 26

QFD Quadratic Form Distance. 27

RTL Intermediate Pressure Grid. 1, 7

SPD Symmetric Positive Definite. 29, 59

SSPD Symmetric Semi-Positive Definite. 29, 59

TSO Transmission System Operator. 1

List of Symbols
A Parametrisation matrix for quadratic form distance. 28

c Capacity on an end point (entry, exit or storage point). 9

d Distance function (between end points or vectors). 9

D Distance matrix of end points. 28

ε Similarity number of stress tests. If the outcome of a metric distance from two stress tests is smaller than
this number, the stress tests are similar. 35

f Flow through pipelines. 9, 25

L Length of a pipeline. 9, 25

l b Lower bound. 2, 17

∆p Pressure drop. 34

pi n Pressure at the start of the pipe. 34

pout Pressure at the end of the pipe. 34

Q Gas flow. 34

τ Anchor point in the stress test algorithm. 9, 10

ub Upper bound. 2, 17
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