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Summary

In the last decade, the number of Earth observation satellites in orbit have exponentially increased.
These satellites are used for a wide range of applications, from environmental analysis and disaster
monitoring to precision farming and even military surveillance. Due to these increasingly specialized
demands of users, a rise has been seen in the number of Earth observation missions that make use of
satellite constellations.

This development mandates the need for better and improved mission analysis tools, in particular
for the design of satellite constellations. Since the launch of the first satellites, efforts have been made
in developing these tools, and to find the most optimal configurations of satellite constellations. This
thesis aims to add on to this research, by both providing a new, improved coverage analysis method
as well as providing more research on the topic of satellite constellation optimization.

The analysis of the established research showed a clear path for improvements. Both the existing
coverage analysis methods, as well as most optimizations did not consider either elliptical orbits or
asymmetrical constellations, or both. Therefore the objective of the new coverage analysis method
and constellation optimization was to be able to handle all types of orbits and all types of constellation
configurations.

In constellation optimization, the coverage analysis method is used to evaluate candidate constella-
tions based on the desired figures of merit and gives the candidate a score. These figures of merit were
established as the revisit time and coverage of the constellation. As the evaluation function is called
many times during optimization, the main objective of the coverage analysis method development was
to make it as computationally fast as possible. The creation of a semi-analytical, grid-based method
proved both fast in computation and accurate, as well as flexible in the type of orbits it can analyze.

With the coverage analysis method established, the optimizer framework could be developed. Here,
the biggest variable to choose is the optimization algorithms. In this thesis, six algorithms were im-
plemented and consequently compared. These algorithms included both single objective and multi
objective optimization algorithms. The algorithms were compared on the most optimal constellation
found, as well as the computation time of the full optimization. It was concluded that the genetic algo-
rithm and the covariance matrix adaptation evolution strategy performed the best for single objective
optimization. The non-dominated sorting genetic algorithm II was analyzed as a multi objective opti-
mization and proved to be a good alternative to single objective optimization.
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1
Introduction

In the past decade, the number of Earth observation satellites has increased exponentially. From 2013
to 2023 the number of satellites has seen a growth of 714.37% [65]. Furthermore, 86% of all Earth
observation satellites is part of a satellite constellation [65]. This number is only expected to grow, with
the majority of newly proposed satellite constellations being for Earth observation purposes [8].

Earth observation satellite constellations are used for a wide variety of objectives. These can range
from environmental analysis [47] and disaster monitoring [9] to precision farming [53] and even military
surveillance [48]. The rise in satellite constellation can also be related to more specialized demands
from users. New developments in technology allow for more precise definitions of the purpose of the
satellite constellations, as well as the narrowing or broadening of the area of interest.

These developments mandate the need for better and improved mission analysis tools, specifically
for the design of the constellations. Ever since the launch of satellites, researchers have developed
various ways of finding the most optimal constellation. One of the earliest studies was done in 1961 by
Luders [35]. In this study, the streets-of-coverage satellite constellation is proposed, aimed to provide
continuous global coverage. A decade later, in 1971, Walker introduced the famous Walker constel-
lations. Like Luders’ streets-of-coverage constellation, the Walker constellation is designed for con-
tinuous global coverage. More recently, in 2004, another well-known constellation was proposed by
Mortari, namely the flower constellation [41]. Contrary to the constellations proposed by Luders and
Walker, the flower constellation makes use of elliptical orbits in a symmetrical pattern instead of only
circular ones.

These standard constellation designs formed the backbone for the development of constellation op-
timization. Further, the increase of low Earth orbit constellation designs lead to increased attention to
discontinuous coverage designs [51]. Discontinuous coverage introduces a number of new metrics for
which satellite constellations can be optimized. The two most widely used are the total coverage of
Earth and the (maximum) revisit time of the constellation. However, to evaluate satellite constellations
based on these figures of merit, a so called coverage analysis has to be performed.

Many different coverage analysis methods have been proposed. Both numerical methods [63] that
aim to provide an as accurate as possible analysis, as well as analytical methods [46] [59] that focus
more on a fast computation, have been proposed. Additionally semi-analytical methods have been
developed [6] [33] that aim to strike a balance between accuracy and computational speed.

To find an optimal constellation, the coverage analysis is combined with a numerical optimization al-
gorithm to perform an optimization of the desired figures of merit. Many studies have been performed
on the optimization of satellite constellations using numerical optimization. These often differ in objec-
tives with some optimizing the dilution of precision [12] [54], some the number of satellites [68], and

2
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others the coverage and revisit time [52]. Furthermore, the multiple objectives allow for a variety of
different optimization algorithms to be applied to the problem. Single-objective optimization have been
performed using algorithms such as Nelder-Mead optimization [12], differential evolution [68], and lin-
ear programming [36] among others. Multi-objective optimization is also possible as performed by
Savitri [52] using the non-dominated sorting genetic algorithm II. While many different optimizations
have been performed, no real comparison has been made to determine which optimization framework
performs best, or if there even is a best optimization technique for the constellation optimization use
case.

The aim of this thesis is to create a general satellite constellation optimization tool. This tool should
be easy to use, run in a timely manner, and provide accurate results. Thus, the general objective of
the thesis can be stated as:

Create a general, fast and accurate satellite constellation optimizer.

After the literature study in chapter 2, this objective is expanded using a variety of research questions.
These can be found in chapter 3.

The layout of this thesis is as follows. Firstly, in chapter 2 amore in-depth look is taken into the existing
literature on coverage analysis methods, optimization algorithms and satellite constellation optimization.
This is followed by the identification of the research gap and the statement of the research questions
in chapter 3. In Part II the methodology of the research is stated. Here, chapter 4 gives an overview
of the development of the novel coverage analysis method and chapter 5 states the implementation
of the optimization framework. Next, in Part III, the results of the final tool are stated and discussed.
chapter 6 analyzes the coverage analysis method while chapter 7 evaluates the different optimization
results. Finally, the conclusions of this thesis are given in chapter 8 and recommendations are given in
chapter 9.



2
Literature study

Constellation design has a long history. Many different forms of coverage analyses have been pro-
posed for a variety of use cases. Furthermore, these analyses have since been applied in the field
of constellation optimization. First, this chapter discusses the primary objectives for which a coverage
analysis is to be performed for. Then, a variety of different existing coverage analysis methods are
studied. These methods have been developed for widely differing objectives and scenarios, and have
their own strengths and weaknesses. A good coverage analysis is of utmost importance when moving
to constellation optimization, as it is the primary method to assign objective values to individuals in the
optimization. Thus, after establishing the existing research on coverage analysis methods, a study is
performed on the implementation of constellation optimization. Many different methods and optimiza-
tion algorithms have already been applied on the satellite constellation scenario. Finally, a number of
popular optimization algorithms that are to be compared in this thesis are more thoroughly explained.

2.1. Figures of merit
To perform any type of optimization, it is important to correctly identify and define the desired objectives.
In satellite constellation design various figures of merit can be used depending on the intended usage
of the satellites. For Earth observation missions two main figures of merit exist, namely revisit time
[23] and coverage [2] [25]. Revisit time is defined as the time between two observations of the same
point by the satellite constellation. Coverage is the fraction of the target area that is observed by the
constellation during the analysis time frame. The revisit time and coverage can further be specified by
a number of definitions, which are described by Wertz [64]:

• The maximum revisit time, or maximum coverage gap, is defined as the maximum amount of time
between any two successive coverage periods of a point or area.

• The average revisit time, or mean coverage gap, is defined as the average length of time between
coverage periods of a point or area.

• Percent coverage is defined as the number of times a point is covered by any satellite divided by
the analysis period length. The percent coverage thus indicates the fraction of time that a point
or area is covered by the constellation.

The revisit time metrics can further be expanded to global figures of merit, i.e. including all analyzed
points:

• The maximum gap is the maximum of all maximum coverage gaps of all points.
• The mean maximum gap is the average of the maximum coverage gaps of all points.

2.2. Coverage analysis
With the revisit time and coverage figures of merit defined, a method to compute the objectives needs
to be created. For Earth observation missions this is typically done by a coverage analysis. Over the
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2.2. Coverage analysis 5

last fifty years many different methods have been suggested. In the beginning these methods were
used to analyze specific types of constellations, and to help design standard constellations.

One of the earliest studies on coverage analysis was performed by Luders [35]. In this study the
Streets-of-Coverage method was introduced, which was used to analyze a constellation of multiple
satellites in circular polar orbits on different orbital planes. The goal of this constellation was to provide
continuous global coverage. This means that every point of Earth should be visible to a satellite in the
constellation at every epoch.

Figure 2.1: A visual example of a polar-inclined streets-of-coverage constellation. [50]

About a decade later, Walker [62] introduced a new constellation design, the Walker constellation.
Contrary to Luders’ Streets-of-Coverage constellation, the Walker constellation is symmetric. It is de-
fined by three parameters: the number of total satellites, the number of orbital planes and the phasing
parameter for satellites in adjacent planes. Like Luders’ constellation, the Walker constellation was
designed for continuous global coverage.

Figure 2.2: A visual example of a Walker star, Walker delta and mixed constellation. [31]

The last of the basic constellation designs is the Flower constellation fromMortari [41]. Also designed
for continuous coverage, these constellations are characterized by eleven parameters and generally
consist of repeating ground tracks. Like Walker constellations, Flower constellations are symmetric. All
satellites in a Flower constellation have the same semi-major axis, eccentricity, inclination and argument
of perigee.
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Figure 2.3: A visual example of a 3D-lattice flower constellation. [10]

2.2.1. Discontinuous coverage
In the earliest works on constellation design, only continuous coverage was considered. Due to in-
creasing developments of satellite constellation operating in Low Earth Orbits (LEO), discontinuous
coverage has gained more attention. [51] In contrast to continuous coverage, discontinuous coverage
occurs when coverage gaps are present in the observation of a certain area. This leads to the dis-
continuous coverage problem having many differences with the continuous coverage problem which
make it much more complex. According to Razoumny [45], there are three main differences between
the two problems. Firstly, the rotation of the Earth does not influence the coverage characteristics of
the continuous problem. On the contrary, it does influence the discontinuous coverage problem, and
it is necessary to take it into account to solve the problem. Secondly, continuous coverage can be
calculated on a stationary unit sphere without any errors in the coverage characteristics, whereas for
the discontinuous case the specific altitude has to be taken into account when computing the coverage.
Finally, the precession of the orbit has to be taken into account as well for the discontinuous case, and
not for the continuous case.

Coverage geometry
Every discontinuous coverage analysis starts by defining the geometry of the field of view of one satellite.
In Vallado [61] the basic geometry for the field of view of a nadir pointing satellite is given.

Figure 2.4: The basic geometry for a nadir pointing satellite [61].

Figure 2.4 shows the basic geometry when assuming spherical Earth. There are two main parameters
of interest to model the coverage of a single satellite. These are the altitude of the satellite and the field
of view of the sensor (η̃FOV ). These parameters form a circular coverage area when projected on the
(spherical) Earth. This geometry forms the basis of many coverage analysis methods.

2.2.2. Numerical methods for discontinuous coverage
Wertz [63] defined two numerical methods. The first makes use of the simple ground track of the
mission geometry. This method is most useful for rapid mission analysis. The second method is a
point coverage simulation. Here, a grid of points is created on Earth after which one or more satellites
are flown over the grid. At the grid points the visibility characteristics are then evaluated.
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The point coverage simulation method has been used by many researchers before, as it is a very
straightforward method to implement. Furthermore, it can be applied to both continuous and discon-
tinuous coverage problems to analyze a constellation’s performance. Morrison [40] is one of the first
to have applied this point coverage method. Morrison aimed to find the minimum number of satellites
such that from any point on the surface of Earth three satellites are visible with an elevation angle of
twenty degrees, and four satellites are visible with an elevation angle of ten degrees, at any time. Using
numerical simulation, a sixteen satellite solution was found to meet all the objectives with the fewest
amount of satellites. Hongliang [32] used the grid method to evaluate the coverage effectiveness of a
remote sensing satellite. Similarly to point coverage, in the grid method an area is divided into many
grid points. The constellation coverage performance is then analyzed for each grid point, from which
statistical results, such as the average, maximum and minimum value, can be derived. Hongliang com-
pared the obtained results to simulations using the Systems Tool Kit (STK). STK is a commonly used
software tool that is also able to analyze satellite and constellation coverage using numerical methods.
It is often used as a validation or comparison tool such as in Hongliang or Ulybyshev [58], acting as the
baseline method.

The drawback of the numerical methods lies in its computationally intensive, almost brute force na-
ture. Hongliang states that its grid method used a lot of memory and was time intensive, especially
when increasing the amount of grid points. According to Crisp [6] numerical methods including STK
can take a considerable amount of time to run when analyzing a large number of satellites or when con-
sidering many different constellation configurations. This is primarily caused by the larger amount of
iterations that numerical methods perform to compute the results. Additionally, for STK specifically, nu-
merous unrelated analyses are performed at the same time as the coverage analysis, further increasing
the computational complexity.

2.2.3. Analytical methods for discontinuous coverage
Next to numerical methods, analytical coverage analysis methods have also been developed. In gen-
eral, analytical methods make a number of assumptions to greatly increase the computational speed
at the cost of slightly less accurate results. When using the coverage analysis in constellation optimiza-
tion, its computation time must be as low as possible to keep the total optimization time manageable.
This is due to the fact that the coverage analysis is called for every new solution generated by the
optimizer, meaning that the number of calls can easily become more than thousands.

Various analytical methods for discontinuous coverage have been developed, eachwith their strengths
and weaknesses. One of these methods is described by Ulybyshev [59] [60] which makes use of two-
dimensional visibility maps. Firstly, a number of assumptions are made: 1) Earth is considered round;
2) All satellites have the same altitude, and each orbital plane has the same number of satellites; 3) All
orbital planes have the same inclination. Using the coverage geometry (subsection 2.2.1), a formulation
for the coverage angle Λ can be created:

Λ = cos−1

(
Re

Re + hs
cos(el)

)
− el (2.1)

Here h is the altitude of the satellite. Considering the simplest case, the coverage of a point by a single
satellite, a two-dimensional map can be created, with the right ascension of the ascending node on the
x-axis and time on the y-axis. Assuming the inclination, altitude and elevation angle are specified, the
map is shown in Figure 2.5.
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Figure 2.5: Satellite visibility maps [60]

The visibility conditions for the satellite are represented by the oval shapes in the figure. Further, the
satellite trajectory can be shown as a vertical line. If the line intersects the visibility region, then there
is a visibility interval. The visibility regions can have different shapes depending on the geographical
latitude of interest ϕ, the coverage angle Λ and the inclination of the satellite i. Two categories can
be defined. For ϕ < i − Λ there are two distinct ovals for the ascending and descending passes. For
i−Λ ≤ ϕ ≤ i+Λ there is a single connected oval. On the next revolution, the maps should be shifted
to the right by ∆λ1 = ωeT , where ωe is the rotation rate of Earth and T the orbital period. It should be
noted that for time intervals longer than several orbital periods, the regression of the ascending node
should be considered. This would make the straight line slightly inclined to the y-axis.

The parameter of interest from the map is the visibility longitude range∆Ω. The computation is done
in two steps. First the visibility longitude range for non-rotating Earth ∆L is computed. This can be
done analytically using trigonometry (Figure 2.6).

Figure 2.6: Ascending node boundaries. Note: the coverage angle is represented by Θ (in text: Λ) [60]
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Then, the Earth’s rotation needs to considered, resulting in:

∆Ω = ∆L(ϕ, i,Λ)− ωeT [uN (ϕ, i,Λ)− uS(ϕ, i,Λ)]/2π (2.2)

Here uN and uS are the argument latitudes of the corresponding boundary points (Figure 2.6). An
interesting geometric pattern, a coverage belt, occurs when ∆λ1 < ∆Ω. This means that there are
longitude ranges with visibility intervals at consecutive revolutions. Figure 2.7 shows both the cases
when ∆λ1 is smaller (a)) and bigger (b)) then ∆Ω. In a) the coverage belts are formed.

Figure 2.7: Multirevolution maps for visibility of a single satellite.

Based on if coverage belts can be formed or not, the revisit time can be estimated. If coverage belts
can be formed, the revisit time can be estimated with an error no more than one orbital period:

∆t∗REV ≈ ⌊ 2π

2∆Ω1 −∆λ1
⌋T (2.3)

If coverage belts cannot be formed, only a lower bound for the maximum revisit time can be given:

∆tREV ≥ ∆tLOW
REV = ⌊ 2π

∆Ω1
⌋T (2.4)

If there is visibility in ascending and descending passes (figure b)) then the double value of∆Ω1 should
be used.

Extending the time interval to include many revolutions results in Figure 2.8. It can be seen that the
coverage belts overlap such that the whole range of Ω is periodically covered. An algorithm can be
applied to combine these coverage intervals to show where gaps appear.
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Figure 2.8: Extended multirevolution map [60]

Ulybyshev also proposes a simple algorithm to analyze homogeneous satellite constellations, namely
Walker constellations. This algorithm can be used to make an optimal choice for the altitude and
inclination to minimize the maximum revisit time. Finally, a note is also given on how to apply the
algorithm to non-homogeneous constellations (differing altitudes and inclinations of satellites).

Contrary to Ulybyshev’s ground-to-space method, Graziano [14] created a space-to-ground method
using the Streets-of-Coverage method as a starting point. Three methods were considered, leading
to both symmetric and asymmetric satellite patterns. The second method was found to perform the
best. This method relies on horizontal streets of coverage generated by 2Λ-separated orbital planes.
The minimum number of satellites guarantees a time separation of T/S < τ . Here S is the number of
satellites, T the orbital period and τ the required (maximum) revisit time.

Figure 2.9: Principle of constellation design method [14]

The satellites are placed in different orbital planes with the same phase angle and move from pole to
pole. Each of these ”lines” of satellites create a horizontal street of coverage that cover half the globe.
These lines sweep Earth, first ascending and then descending. The number of satellites per orbital
plane is defined by the orbital period and the required revisit time:

S = ⌈T
τ
⌉ (2.5)
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Due to the rotation of the Earth, it could occur that points are only observed in the first ascending
sweep, but not by the descending and following ascending sweep, due to lying close to the bound-
ary. This condition must be prevented in order to comply to the revisit time requirement. This is done
by considering the condition in the selection of the number of orbital planes. The number of orbital
planes now considers three conditions (Figure 2.10): 1) Guarantee requested re-observation in the
same phase only for the whole globe; 2) Guarantee for descending/ascending; 3) Guarantee for as-
cending/descending. It should be noted that the worst case is expected for ascending/descending at
ϕ > 0 and descending/ascending at ϕ < 0.

Figure 2.10: Selection criteria for number of orbital planes [14]

The main drawback of this method is that it does not find the optimal constellation design to minimize
the number of satellites. As it is based on the streets-of-coverage method, it suffers the same drawback
that the coverage edges outside of the streets are not considered. Furthermore, for higher latitudes
the satellites coverage regions suffer from a lot of overlap.

Sarno [51] takes the methods of Ulybyshev and Graziano and takes the positives of both methods to
create a new method. This new method exploits the coverage regions concept of Ulybyshev and the
asymmetric distribution of orbital planes around the equation from Graziano.

Figure 2.11: h = 600 km, i = 90◦, trev = 15 min, T = 96.6 min, ∆Ω = 24◦, N/P = 40/8. a) shows coverage regions for latitude
0◦ to 90◦ with step 5◦. b) represents the constellation pattern. [51]

Figure 2.11 shows a coverage map with various target latitudes. Note that the y-axis now represents
the argument of latitude (u) instead of time, as in Ulybyshev. The red ascending lobe corresponding
to the minimum latitude is selected and stretched along u to meet the temporal requirement. This is
used to define the separation between satellites in the same orbital plane, and between adjacent orbital
planes. Then, using the criteria from Graziano (Figure 2.10), the number of orbital planes is defined.
This results in the constellation pattern shown in b) of Figure 2.11. Comparing this method with that
of Graziano, Sarno shows that both the number of satellites per plane as well as the total number of
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satellites is lower, especially for larger swath width. However, this method still does not guarantee the
most optimal constellation.

Li [33] proposes another method which makes use of revisit orbits. The research is based on ob-
servation satellites with a very narrow swath, thus the constraint is added that a point on Earth is only
revisited when it is on the nadir of the satellite. An orbit is defined as a revisit orbit if the satellite ob-
serves the target point at the ascending stage and at the descending stage alternately in a single cycle
(Figure 2.12). This occurs when a satellite runs at a regressive orbit.

Figure 2.12: A revisit orbit [33]

Using spherical trigonometry, the mathematical model of the revisit orbit can be defined. It should be
noted that revisit orbits are typically circular, thus only three orbital parameters need to be determined,
namely the semi-major axis, the inclination and the right ascension of the ascending node. The math-
ematical relations between these parameters are stated both for round Earth as well as for including
J2 perturbations. Finally, a constraint function is given that, when solved, provides the circular revisit
orbit. Unfortunately, the constraint function can only be solved numerically.

The main benefit of the optimal circular revisit orbit for coverage analysis is the fact that the revisit
time is smaller than that of traditional repeat ground track orbits. However, this method is not fully
analytical. Furthermore, no mention is made of its application for satellite constellations.

Recognizing the shortcomings of the previous papers, Razoumny [45] proposes a method that is
free from them. This method applies the route theory for satellite constellation design for discontinuous
coverage. It considers (near-)circular orbits and J2 perturbations, as well as spherical Earth. The only
constraint specified is that the satellites fly in repeating ground track orbits.

As every coverage analysis, Razoumny starts by defining the geometry of the coverage. It is as-
sumed that the (spherical) Earth with radius Rm is covered by the swath of the satellite moving on a
circular, repeating ground track orbit. This orbit is defined by a radius rm, inclination i and a repetition
factor m/n, where:

Ttr = mTnod = nTef (2.6)

Here, Ttr is the tracks repetition period, Tnod is the nodal period of the satellites orbit and Tef is the
efficient period of Earth rotation.

The latitude of interest is specified as the parallels Rϕ in the latitude beltR. R is bounded by parallels
Rϕ on the latitudes ϕmin and ϕmax. A constraint is put on the inclination to make total coverage of the
latitude belt possible:

i0 + θ > ϕm, i0 = min(i, π − i), ϕm = max(|ϕmin|, |ϕmax|) (2.7)

Here, θ is the geocentric angular satellite swath width on non-rotating Earth. Two cases can be consid-
ered: if |ϕ| < i0 − θ the latitude is specified as a lower latitude. For lower latitudes, satellites cross the
parallel twice in a revolution; on the ascending latitudinal pointsAj and the descending latitudinal nodes
Dj . This means that in one track repetition period there are m points Aj and m points Dj . Each point
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system is uniform, where the distance between neighboring points is equal to the inter-nodal distance
∆L:

∆L = 2π/m (2.8)

The points A andD are characterized by angular distances. δR and δL (see Figure 2.13a)). Combining
this right and left shift results in the inter-nodal distance. To determine the value of the shifts, the sweep
angle of the points A and D ∆ψ is introduced. This designates the difference between the longitudes
of Ak and Dk.

∆ψ = ψBM − ψMN (2.9)

Here, ψBM is the longitude difference for the points of intersection between the orbit and theRϕ parallel
on non-rotating Earth, and ψMN is the angle by which the Earth rotates in the time the satellite flies
from B toM (see Figure 2.13b)).

Figure 2.13: Arrangement of points A and D [45]

Using the geometry shown in Figure 2.13b) the sweep angle can be computed using trigonometry.
From this, the right shift (and thus also the left shift) can now be computed:

δR = ∆ψ −∆L⌊∆ψ
∆L

⌋ (2.10)

The second case to be considered is when i0 − θ ≤ |ϕ| < i0 + θ. These latitudes are called upper
latitudes and are defined by only one crossing, the vertex point, instead of two. For one repetition
track period, a satellite covering an upper latitude will have m vertex points Vj , each with a distance to
neighboring nodes equal to the inter-nodal distance ∆L.

Next, the capture area, or instantaneous coverage area, of the satellite is to be defined. First, the
lower latitude case is considered. The capture α is defined by a left and right bound, αL and αR,
defined by points A and B of the swath on the Rϕ parallel (see Figure 2.14). Point Q is the (ascending)
latitudinal node.
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Figure 2.14: Swath capture for lower latitudes [45]

Assume that sL and sR are the distances from Q to the borders of the swath capture. Further, assume
that uI , uF and uϕ are the arguments of latitude of the initial and final contacts of the coverage area
and the parallel, and the moment of the satellite crossing the parallel. Then:

αL = max
u∈[uI ,uF ]

sL(u), αR = max
u∈[uϕ,uF ]

sR(u) (2.11)

where
uI = sin−1 sin(ϕ− θ)

sin(i)
, uϕ − sin−1 sin(ϕ)

sin(i)
, uF = sin−1 sin(ϕ+ θ)

sin(i)
(2.12)

The equations for sL and sR, can be found using trigonometry. This can then be used to solve the
equations for the capture bounds αL and αR.

A similar calculation is done for the upper latitude case. Here, it is noted that on a rotating Earth, the
left-side capture is equal to half a full capture (see Figure 2.15):

α = 2αL, αL = max
u∈[uI ,π/2]

sL(u) (2.13)

Figure 2.15: Swath capture for upper latitudes [45]

Again, the equation for sL is found using trigonometry, allowing the computation of the capture bounds.
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To analyze the coverage of a satellite, Razoumny considers the observability of an arbitrary point
r that lies on the parallel Rϕ. This point r is considered observed at moment t, if t is a moment of
the satellite passing its latitudinal node. The observation time stream is defined as a monotonically
increasing array of all moments in time when a point r is covered by a capture of a longitudinal point:
t1, t2, ..., tj , tj+1, ... The revisit times for a point r and the whole parallel are then:

τ [r] = max
j

(tj+1 − tj), τ [Rϕ] = max
τ

[r], r ∈ Rϕ (2.14)

This means that the observation time stream depends on the swath width, as this is what defines the
swath captures on the parallel. To compute the revisit time for r, knowing only the number of latitudinal
nodes l that capture r is not enough. It is also necessary to know which specific nodes capture r. The
manifolds of such nodes for various points r are defined as observation variants of these points and
are associated with specific satellites. Further, an invariance sector of the observation time stream is
defined as a continuous interval, with the property that for a given satellite or constellation, the same
observation variant corresponds to all points r of this arc. This means that all the points of a single
invariance sector are observed by the satellite with the same revisit time.

Razoumny finds that six different invariance sectors are possible: four variants for lower latitudes
and two for upper latitudes. Each of these invariance sectors provide an analytical formulation of the
revisit time. Expanding this analysis to aN -satellite constellation can be done by ”fusing” single-satellite
observation variants. It can be concluded that it has at most 4N different coverage variants from which
the desired revisit time metrics can be determined. Further, to minimize the revisit time, the change in
RAAN and argument of latitude for each satellite in the constellation can be computed analytically.

The work of Razoumny is very promising in the development of analytical coverage analysis methods.
The main drawback is the fact that the Route theory method is only applicable for repeating ground
track satellites. It should also be noted that the papers of Razoumny are mostly theoretical and that
the method has not been applied or validated much.

Another (semi)analytical method was explored by Crisp [6]. Similarly to Razoumny, Crisp states that
the calculation of the revisit time at a given latitude can be determined by correlating the longitude of
all projected passes and the instantaneous coverage of the sensor over a period of analysis. In this
method, oblate Earth and J2 perturbations are assumed.

As per usual, Crisp first looks at the sensor geometry to find the half-ground angle. This is followed
by the calculation of the longitude of successive passes. The drift in longitude of successive passes
can be calculated considering the rate of Earth rotation ωE , the rate of nodal regression δΩ, and the
nodal period Pn:

∆λ = Pn(−ωE + δΩ) (2.15)

The longitude where the orbit ground track crosses the target latitude can be calculated using the
true anomaly. As the satellite will cross the target latitude both ascending and descending, a pair of
results will exist for both the true anomaly and longitude representing the location of these passes. The
longitude of successive passes at the target latitude (up to a specified time) can be expressed as an
arithmetic series in which the difference between consecutive terms is ∆λ:

{λj} = λ1 + (j − 1)∆λ for j = 1, 2, 3...||Tlim
Pn

|| (2.16)

To consider the passes for a constellation, one can use the standard Walker notation of i : t/p/f , where
i is inclination, t the total number of satellites, p the number of equally spaced planes and f the relative
spacing between satellites in adjacent planes. From this the number of satellites per plane s can be
determined. To determine all passes of the constellation, the longitude of passes of satellites in multiple
planes {λp} can be defined:

{λp} = {λj}+ 2πm

(
1

p
+
f

t

)
for m = 1, 2, ..., (p− 1) (2.17)
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Similarly, the longitude of corresponding passes of multiple satellites in each plane {λs} can be defined:

{λs} = {λj}+
l

s
∆λ for l = 1, 2..., (s− 1) (2.18)

The total set of passes in an analysis period is thus:

λϕ = λj ∪ λs ∪ λp (2.19)

For non-symmetric constellations, each plane can be considered individually with the possibility of
variation in RAAN of each plane and in-plane spacing of the satellites.

To assess the revisit performance of the constellation, a discretised grid of longitudes {Π} about the
target latitude is defined. First, it should be indicated which longitudes in Π are visible by a pass of
longitude λϕ due to the angular range of the sensor Λ:

λϕ − {Π} ≤ Λ (2.20)

For the projection of the sensor footprint on the Earth surface, the rotation of the Earth and the angle
between the orbit track and the target latitude should be considered. Crisp states that for target latitudes
lower than 75 degrees the geometry of a simple ellipse can be used.

({Π} − λν)
2

Λ2
+

(ϕ− {ϕν})2

θ2
(2.21)

Here the coordinates of the origin of the ellipse (λν , ϕν) are defined by the latitudinal and longitudinal
coordinates of the ground track of the satellite over a range above and below the target latitude. By
evaluation of the equations for the longitude of each pass at each latitude of interest, a list of accesses
for each longitude on {Π} is established. The maximum gap in time between two consecutive accesses
represents the maximum revisit time.

Crisp validated the method using STK. Crisp’s method seems to be an improvement of that of Ra-
zoumny in that it is able to consider satellites that do not have a repeating ground track. However, the
validation was only performed on symmetric satellite constellations. Further, similarly to Razoumny,
only circular orbits were considered.

He [18] [19] aimed to improve the field-mapping method to apply it to circular repeating ground track
orbits. This means the orbits can be defined by their inclination, orbital radius and repetition factorm/n
(see Equation 2.6). He also considers J2 perturbations.

The first improvement He made to the field-mapping method was to fix the coverage region on the
map. This in turn changes the movement of the satellite to be several inclined lines on the map instead
of vertical ones. Furthermore, the x-axis now becomes the longitude of ascending node, instead of the
RAAN (see Figure 2.16).

Figure 2.16: Field-mapping improvement [19]
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For a repeating ground track orbit, the number of inclined lines is exactly m, i.e. the number of revolu-
tions in one repetition period. The slope can be expressed as:

ksat = − np

ωE − Ω̇
= −m

n
(2.22)

Here, Ω̇ is the RAAN change rate. Furthermore, the distance between adjacent tracks is equal to the
inter-nodal distance ∆L (see Equation 2.8).

To perform the coverage analysis, He takes inspiration from Razoumny. He applies the Route theory
method and refines it using field-mapping techniques. When analyzing the coverage of the parallel
(i.e. target latitude) by a single satellite, He uses the coverage variants and invariance sectors as
defined by Razoumny. However, while the principles are the same, the values are slightly altered due
to the improvements using field mapping. When considering a satellite constellation, the single-satellite
coverage analyses can be combined using slight shifts to create the optimal coverage.

Contrary to Razoumny, He did apply the method and validated it using STK. It should be noted that
only Walker constellations were used to obtain the results. The only drawbacks of this method are the
constraints to circular and repeating ground track orbits.

2.2.4. Summary on coverage analysis methods
In this section, various coverage analysis methods have been described and studied. To evaluate what
methods could be relevant for this thesis, a couple of distinctions can be made to group similar meth-
ods. Firstly, the coverage analysis methods can be split into methods to achieve continuous coverage
and methods to achieve discontinuous coverage. Here continuous coverage relates to constellation
designs that can observe the whole area of interest for every epoch. Examples of continuous cover-
age constellations are the Streets-of-Coverage constellation [35], the Walker constellation [62] and the
Flower constellation [41].

Discontinuous coverage occurs when the area of interest is not continuously observed by the con-
stellation. These types of constellations are characterized by a revisit time, i.e. the time between two
observations of the same point or area on Earth. For Earth observation missions, continuous coverage
is often not necessary, instead preferring discontinuous coverage.

Within the coverage analysis methods for discontinuous coverage, another distinction can be made,
namely between numerical and analytical methods. In general, numerical methods provide more ac-
curate results at the cost of an increase in computation time. Analytical methods operate oppositely,
slightly worsening results with assumptions to achieve a better computation time. The strengths and
weaknesses of the various methods discussed in this section have been summarized in Table 2.1.
This table also shows the expected suitability of the method within the scope of this thesis, namely
constellation optimization.
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Method Analytical or
numerical Strengths & weaknesses Suitability

Point coverage
simulation [63] Numerical

+ Accurate
+ Easy to determine revisit
time
- Slow
- Requires many parameters
- Can lead to misleading
results and conclusions

Too slow to be used in
optimization

STK 12 Numerical + Accurate
- Slow

Too slow to be used in
optimization

2D visibility
maps [59] [60] Analytical

+ Fast
- Restricted use case
- Must be repeated for every
point
- Only estimates revisit time

Too restricted use case
to be relevant

Graziano’s SoC [14] Analytical

+ Fast
+ Not limited to one point
+ Asymmetrical constellation
- Restricted to unoptimal
SoC constellations

Too restricted use case
to be relevant

Sarno’s method [51] Analytical

+ Fast
+ Not limited to one point
+ Asymmetrical constellation
- Not optimal constellation

No mention of revisit time
computation

Li’s revisit orbits [33] Semi-analytical

+ Somewhat fast
+ Easy revisit time
computation
- Restricted to RGT orbits

Not used on constellations

Route theory [46] Analytical

+ Fast
+ Accurate revisit time
computation
- Restricted to RGT orbits
- Must be repeated for every
point
- Not validated

Promising method, but too
constraint to RGT orbits

Crisp’s method [6] Semi-analytical

+ Fast
+ Applicable to all circular
orbits
+ Easy revisit time
computation
- Must be repeated for
each latitude bound
- Only validated for
symmetrical constellations

Can be applied if it can be
modified to include
eccentricity and if global
analysis can be made fast
enough

He’s field
mapping [18][19] Analytical

+ Fast
Accurate revisit time
computation
+ Validated
- Restricted to RGT orbits
- Must be repeated for every
point

Promising method, but too
constraint to RGT orbits

Table 2.1: Summary of discontinuous coverage analysis methods
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2.3. Constellation optimization
With the coverage analysis established as the way to evaluate constellations based on the figures of
merit, the framework of the complete optimizer can now be envisioned. The biggest factor of the opti-
mizer is the type of optimization algorithm that is to be used. Many different algorithms can be used for
the optimization of satellite constellations, and various studies have been performed implementing nu-
merous algorithms. In this section, first different popular algorithms are explored. This is then followed
by the analysis of various studies on constellation optimization.

2.3.1. Optimization algorithms
Considering the figures of merit stated before in section 2.1, the optimization problem of constella-
tion design can be considered a multi-objective problem. One could consider the minimization of the
maximum revisit time, the maximization of the coverage, or even the minimization of constellation pa-
rameters such as the total number of satellites. Many different algorithms exist, each with their own
strengths and weaknesses. It is therefore critical that the right choice of algorithm is made.

Gradient descent algorithms
Gradient descent optimization is one of the oldest types of optimization algorithms. It was first sug-
gested by Cauchy [4] in 1847, to compute the orbit of heavenly bodies such as stars. The algorithm
was first applied to non-linear optimization by Curry [7], and gained immense popularity among deep
learning applications during the rest of the 20th century. The stochastic gradient descent method [49]
in particular has been applied extensively to deep networks.

Stochastic gradient descent works as follows. The cost function of the optimization is in the form:

Qw =
1

n

n∑
i=1

∇Qi(w) (2.23)

To start the optimization, an initial guess is made for the parameter w. Then, a random point from
the training set is selected, at which the cost is computed using the cost function with the estimated
parameter w. The difference between the computed cost value and the actual value can then be used
to determine the gradient of the cost function at this point. Using this gradient function, parameter w is
updated via:

w := w − η∇Qi(w) (2.24)

Here, η is called the learning rate of the algorithm. By iterating these steps many times, the parameter
w is optimized to eventually find the correct function to predict solutions.

A number of issues can be identified when trying to use gradient descent methods on satellite con-
stellation optimization. First and foremost, the cost function of the constellation optimization is often not
differentiable, especially when considering the revisit time. This means that gradient descent methods
can often not be used as they require the cost function to be differentiable. Furthermore, as stochastic
gradient descent is trained on only one training set point at a time, it is considerably slow, while other
gradient descent methods that train on larger sets are more sensitive to bias and can get more easily
stuck in local optima.

Genetic Algorithm (GA)
The genetic algorithm was extensively described by Holland [20]. The algorithm is based on the evo-
lutionary process of natural selection found in biology. In genetics, the set of observable traits of an
individual is called the phenotype. This phenotype can be split into traits related to the individual’s
genetic code (genotype) and the impact of the environment on the individual. More specifically, the
environment can influence how well an individual with a certain genotype can thrive. This is based on
the opportunities and threats that the environment imposes onto the individual. Mathematical studies
of genetics allow for the summary of the performance of an individual’s genotype within an environ-
ment by a single performance measure, the fitness. The fitness roughly translates to the amount of
offspring of the individual that survives the environment to generate offspring of their own. More gen-
erally, the fitness relates to the influence of the individual upon the next generation. When taking a
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sample of different genotypes, the fitness can be used to find the best one. In order to create even bet-
ter genotypes, individuals are subject to various genetic operators. Most importantly are crossover and
mutation. Crossover is the practice of combining two genotypes into a new one. In biology this occurs
via the mating of two individuals. The resulting offspring has a combined genotype of its parents. The
second operator mutation, allows for additional variety within the sample (or population) of individuals.
Randomly, parts of the genotype of the offspring can be changed, i.e. mutated.

This process of evolution can be applied to optimization. Individuals can be evaluated using their
fitness values, which can then be optimized using the processes of crossover and mutation. One other
operator should be introduced, namely selection. Before the crossover, the parents that are to generate
the offspring need to be selected. A number of variants exist for the different genetic operators. These
differ mainly between preserving the most fit individuals, but narrowing the diversity of individuals, or
preserving diversity, but possibly discarding optimal solutions. Figure 2.17 gives an overview of the
framework of a genetic algorithm.

Figure 2.17: Overview of the genetic algorithm framework.

Particle Swarm Optimization (PSO)
Particle swarm optimization was introduced by Kennedy and Eberhart [22]. The algorithm is related
to artificial life (A-life), bird flocking, fish schooling and swarming theory. Further, it has ties to genetic
algorithms and evolutionary programming. Particle swarm optimization aims to simulate the social
behavior of a swarm.

Every iteration, a particle considers two parameters, namely its personal best position and the global
best position of the swarm. In optimization, this position can be viewed as the fitness of a combination
of decision variables. Based on the current position of the particle, its personal best, and the global
best, it is assigned a velocity (Equation 2.25).

vx = vx+ 2rand()(pbestx− presentx) + 2(pbest[gbest]− presentx) (2.25)

In this equation the cognitive and social parameters can clearly be seen. Both parameters include a
bias, which is set to two in Equation 2.25. These biases influence how much a particle considers its
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personal best versus the global best of the swarm. Further an inertia parameter can be introduced to
control the weight of the particle’s previous velocity when computing its new velocity. Using the velocity,
the position of the particle is updated each iteration. If the position is better than its personal best, it gets
updated. Further, if the swarm improves its global best, it is also updated. Changing the weights in the
velocity equation can change both the convergence speed, as well as the exploration of the algorithm.
Figure 2.18 provides an overview of particle swarm optimization.

Figure 2.18: Overview of the particle swarm optimization framework.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
Covariance matrix adaptation evolution strategy was proposed by Hansen [16]. It was created to specif-
ically handle non-linear optimization problems with non-convex or rugged search landscapes better. It
further overcomes a number of problems typical to evolutionary algorithms. Firstly, it can perform on
badly scaled and non-separable problems. Secondly, it has no inherent need for large population sizes.
In fact, smaller population sizes lead to faster convergence. Thirdly, the CMA-ES algorithm is able to
prevent premature convergence.

The working of the CMA-ES algorithm is described in detail by Hansen [15]. First, the parameters
of the algorithm are set and the problem is initialized. Next, similarly to other evolutionary algorithms,
selection and recombination is performed. During selection, the parents are greedily sampled from
the population. Notably, the parents are used to compute the weighted average of the sample. This
average is used to update the covariance matrix of the sample. The update of the covariance matrix
consists of two parts, namely the rank-µ update and the rank-one update. In the rank-µ update, the
information from the entire population is used. Additionally, the rank-one update uses the information
of correlations between generations. By modifying the learning rates (i.e. weights), the update can be
adapted to different populations. For large populations the rank-µ update is more important, while for
small populations the rank-one update is more important.
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Another aspect of the CMA-ES algorithm is its adaptable step-size. To control the step-size, the
algorithm uses the evolution path, which is the sum of (previous) successive steps. Three cases can
be identified based on the evolution path and the expected length of the step. Whenever the evolution
path is short, i.e. shorter than the expected length, the single steps in the evolution path cancel each
other out. This indicates that the step-size should be decreased. When the evolution path is longer
than the expected length, the single steps in the path point in similar directions. This means that a
longer step-size can be used. Finally, in the ideal situation the length of the evolution path is equal to
the expected length (Figure 2.19).

Figure 2.19: Three different evolution paths: left a short path, right a long path and middle the ideal situation.

The CMA-ES algorithm optimizes the average of the population, allowing it to converge to better solu-
tions. The framework is described in Figure 2.20.

Figure 2.20: Overview of the covariance matrix adaptation evolution strategy framework.

Differential Evolution (DE)
Storn [56] introduced differential evolution. According to Storn, users of optimization algorithms gen-
erally demand that minimization techniques fulfill four requirements. Firstly, the algorithms should be
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able to handle non-differentiable, nonlinear and multimodal cost functions. Secondly, the algorithm
should allow for parallelization to handle computation intensive cost functions. Thirdly, there should be
few control variables to control the minimization. These variables should also be robust and easy to
choose. Finally, the algorithm should be able to sho good convergence, and be able to find the global
minimum consistently. Differential evolution was designed to comply to all four of these requirements.

The differential evolution algorithm is initialized by the creation of the initial population of vectors. For
each vector, the decision variables are chosen at random from a uniform distribution. The first step
of the algorithm is called mutation. First, two random population vectors are chosen. The weighted
difference between these vectors creates a difference vector. Adding this difference vector to another
third population vector creates the mutated vector. The next step in the algorithm is crossover. Here,
the mutated vector’s parameters are mixed with those of another predetermined population vector,
called the target vector, which results in the trial vector. The final step is selection, which is performed
greedily. This means that if the fitness value of the trial vector is better than that of the target vector, the
target vector is replaced by the trial vector. If the fitness of the trial vector is not better, it is discarded
and the target vector remains in the population. This framework is shown in Figure 2.21.

Figure 2.21: Overview of the differential evolution framework.

Simulated Annealing (SA)
Simulated annealing was described by Kirkpatrick [24]. The algorithm is based on annealing in metal-
lurgy. In science, annealing is used in experiments to find the low-temperature state of a material. To
create a crystal without defects, the material first needs to be heated up and then slowly cooled down,
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spending a long time close to the freezing point. This perfect crystal can be seen as the global optimum.
Finding the low-temperature state of a material can be viewed as an optimization problem. However,
the changing temperature did not have an obvious equivalent in other optimization systems.

In 1953, Metropolis et al [39] developed a method to simulate atoms in equilibrium at a given tem-
perature. In each step, an atom is given a small random displacement. This changes the energy of the
system. If the change in energy is negative, the displacement is accepted and the changed atom is
used as the starting point in the next iteration. However, when the change in energy was positive, the
changed atom was not just discarded. Instead, the new atom was accepted probabilistically following:

P (∆E) = e
−∆E
kBT (2.26)

Thus, the lower the temperature, the less likely it is that the new atom would be accepted.

Kirkpatrick recognized that this simulation could be used in optimization problems by replacing the
energy of the atoms by the cost function of the optimization. Then, to apply the annealing process,
the algorithm is initialized with a high temperature. This means that the probability of accepting worse
solutions is high, which allows for better exploration of the solution space, and reduces the risk of getting
stuck in local optima. As the temperature is lowered with each iteration, the chance of accepting worse
solutions lessens and the algorithm moves towards a single optimal solution.

There are two main operators within simulated annealing. First is the initial temperature. Setting it
very high leads to great exploration of the solution space, but might either increase the computation
time or is not able to fully find the most optimal solution. On the contrary, a lower initial temperature may
find a solution quickly, but has a higher chance of getting stuck in local optima. The second operator is
the annealing schedule. This is the formula the temperature follows for every iteration. The schedule
also influences the amount of exploration and convergence depending on how fast the temperature
changes. Figure 2.22 gives on overview of the framework of simulated annealing.

Figure 2.22: Overview of the simulated annealing framework.

Non-dominated Sorting Genetic Algorithm II (NSGA-II)
Dep [11] proposed the improved non-dominated sorting genetic algorithm. This algorithm is very similar
to the generic genetic algorithm, but is used to optimize multi-objective problems. It is primarily used for
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two-objective optimization, but can also be applied to optimization problems with three objectives. As
a multi-objective optimizer, NSGA-II does not provide a single optimal solution. Instead, it generates a
Pareto front, which shows the solutions with the best combination of objective values. With NSGA-II,
Dep sought to improve the NSGA algorithm proposed by Srinivas and Deb [55]. Three main criticisms
of the NSGA algorithm were to be addressed by NSGA-II. Firstly, the high computational complexity
of non-dominated sorting. Secondly, the need for the sharing parameter σshare. Thirdly, the lack of
elitism.

In non-dominated sorting, the individuals of the populations are sorted into fronts (Figure 2.23). The
first front contains all individuals who are not dominated by other individuals of the population. Domi-
nation occurs when an individual is worse in all objectives than another individual. When the first front
is established it can be temporarily removed. Individuals in the new population that are then no longer
dominated are sorted into the second front. This continues until all individuals are sorted. In a naive
procedure, the whole population has to be evaluated to create the first front. Say the population is of
sizeN and there areM objectives, then the amount of evaluations for creating the first front isO(MN2).
In the worst case, only one individual is part of each front, meaning N fronts have to be created. This
leads to a total of O(MN3) evaluations. To reduce the computational complexity of the non-dominated
sorting, NSGA-II makes use of an improved procedure. First, two parameters are computed for each
individual p: the domination count np, which is the number of individuals that dominate individual p, and
the set Sp of the individuals that individual p dominates. All individuals with a domination count equal
to zero are sorted into the first front. For each individual p in the first front, the members in the set Sp

is visited, and their domination count is reduced by one. Any member whose domination count then
becomes zero is sorted into the second front. This process is continued until all individuals are sorted
into fronts. The complexity of this procedure is O(MN2).

Figure 2.23: A visualization of an example Pareto front. [34]

The original NSGA algorithmmade use of the sharing parameter σshare to preserve diversity throughout
the optimization. In NSGA-II, a new procedure is proposed that both aims to remove this additional
parameter and reduce the complexity of the procedure. The new procedure is called the crowded-
comparison approach. In this approach, the crowd density around an individual is estimated. For
each individual, the normalized distance between its neighbouring individuals within the same front is
computed. Thus, each individual now has two attributes. Firstly, the non-domination rank, i.e. the rank
of the front which contains the individual, and secondly the crowding distance. These attributes can be
used to compare two individuals. An individual with a lower rank is always preferred to an individual with
a higher rank. If two individuals have the same rank, and thus are within the same front, the individual
with the higher crowding distance, i.e. in the lesser crowded region, is preferred.
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The main algorithm is as follows. First, a population is initialized and an offspring is generated
according to a normal genetic algorithm. These two are combined and sorted according to the non-
dominated sorting procedure. Starting from the first front, the fronts are selected for the next population,
until the new population is the same size as the original. If the last front contains more individuals
than there is space in the population, the individuals are selected based on crowding distance. The
process then repeats by performing the classic genetic algorithm operations of selection, mutation and
crossover to generate a new set of offspring. The framework of the algorithm is shown in Figure 2.24.

Figure 2.24: Overview of the non-dominated sorting algorithm II framework.

Summary of the optimization algorithms
In this section a variety of optimization algorithms have been studied and explained. First, the algo-
rithms can be divided into two groups; the iterative gradient descent method and heuristic methods. It
was concluded that the gradient descent method is not a good fit for satellite constellation optimization
primarily due to the lack of a differentiable cost function, making the implementation of this algorithm
impossible.

Within the heuristic algorithms further distinctions can bemade, depending on which objectives are to
be optimized. When considering just the revisit time and coverage figures of merit, a simple weighted
sum cost function could be used. All of the studied single objective optimization algorithms can be
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applied to this optimization. When the minimization of the number of satellites is also considered an
objective of the optimization, two possibilities arise. First, the single objective weighted sum method
can still be applied by adding the cost of the number of satellites to the sum. The other option is to
use a multi-objective optimization algorithm, such as NSGA-II. Here, a Pareto front can be created with
the revisit time and coverage weighted sum on one axis, and the number of satellites on the other. As
these heuristic methods are all viable solutions to the problem, a comparison of their applications can
be very useful.

2.3.2. The history of satellite constellation optimization
Throughout the last decades, many researchers have studied the optimization of satellite constellations.
In this section, an exploration of past studies on constellation optimization is made.

The earliest optimizations of satellite constellations often considered symmetrical constellations such
as Walker, Streets-of-Coverage or Flower constellations. One of the earliest research on the optimiza-
tion of constellations was performed by Lang and Hanson [29]. They used an algorithm on symmetric
constellations to minimize the revisit time for global or partial coverage. The user specifies an input
consisting of the total number of satellites, the satellite altitude and their sensor characteristics. The
algorithm solves for the optimal inclination and arrangement of the satellites to minimize the revisit time.
Lang continued researching the optimization of discontinuous coverage of Walker constellations [28],
Street-of-Coverage constellations [27] and even the use of genetic algorithms [26].

Dufour [12] used an optimization algorithm to optimize the Dilution of Precision (DOP) for a navigation
satellite constellation. Five types of DOP were identified to optimize: geometric, position, horizontal,
vertical and time. Dufour used Walker constellations as the starting point of the algorithm. Dufour intro-
duced an alternative version of a Walker constellation which were named multi-Walker constellations.
These are a combination of multiple basic Walker constellations, which differ in initial RAAN and ini-
tial argument of latitude. These multi-Walker constellations add more flexibility to the coverage while
keeping the nice features of basic Walker constellations.

Dufour’s optimization algorithm is as follows. First, all Walker constellations within a bounded range
of satellites are evaluated and a selection is made of the most promising configurations. Next, the
algorithm optimizes the semimajor axis and inclination of the constellation. Finally, the algorithm aims
to improve the performance by splitting the best Walker constellation into multi-Walker configurations,
and optimizes the initial RAAN and argument of latitude of the different basic Walker constellations.

Dufour applies two methods to evaluate the performance criterion; a discrete and a continuous eval-
uation. In the discrete evaluation, usage is made of a weighted summation of all DOP criteria. This has
the benefit of allowing the user to choose (using weights) which DOPs to include and which they are
not interested in studying. To evaluate the precision and the computation time, the continuous method
is used. As the problem is nonlinear, Dufour makes use of the Nelder-Mead optimization method. This
is a heuristic and thus does not guarantee that it will find the most optimal solution. However, it can be
used to indicate the precision of the discrete solution.

In Zhang [68], optimization is used to minimize the mission cost. This is represented by the objective
function which includes the number of satellites in the constellation, the number of spacecraft carry
bus, and a penalty related to the geometric dilution of precision (GDOP). For simplicity, Zhang only
considers homogeneous satellite constellations, specifically Flower and Walker constellations. The
search space is even more constricted by only considering circular, repeating ground track orbits. To
perform the optimization, Zhang makes use of a differential evolution (DE) algorithm, stating that DE
exhibits better performance over particle swarm optimization and genetic algorithms. The previous
explored methods optimized symmetrical constellations. However, according to Razoumny [46], for
discontinuous coverage the optimal solution often is not a symmetrical constellation. In fact, Razoumny
states that the solution should instead by searched for in weakly symmetrical or even asymmetrical
constellations.
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Like Dufour, Shtark and Garfill [54] also use an algorithm to optimize the (geometric) dilution of preci-
sion of navigation satellites. Their constellation optimization algorithm determines the orbital elements
at an epoch t0, of a constellation with ns satellites, in circular repeating ground track orbits.

The algorithm consists of two stages. The first stage is like the coverage analysis. It consists of a
nonlinear equation solver to produce a virtual reference satellite. It passes over a ground station and
shares its mean semimajor axis, mean eccentricity and mean inclination with all other satellites. In
the second stage, a cost function is defined consisting of the GDOP criteria and the elevation angle
constraints. A genetic algorithm is used to optimize the cost function, after which a gradient-based
optimization method is applied to refine the results. In this stage, the mean longitude of ascending
node and mean argument of latitude are determined for each satellite.

Zhang [67] uses an optimization algorithm to minimize the number of satellites in a repeating ground
track constellation, while ensuring that the revisit time does not exceed the predefined one. The revisit
time is evaluated for multiple targets.

The algorithm consists of three parts. First, a grid search and numerical method are performed to
construct a database of repeating ground track orbits. Second, the least number of satellites is selected.
A visiting matrix is defined, where for each orbit in the database it is stated whether or not a target point
is visited. The problem then becomes how to visit all the target points with the least number of orbits
from the visiting matrix. This problem can be abstracted as a search tree, and a pruning method can
be applied to solve it. Finally, the constellation is constructed to meet the revisit time constraint. This
is achieved by placing more satellites in the repeating ground track orbits defined in the second step.

Savitri [52] applies a genetic algorithm to maximize percent coverage and minimize the revisit time for
a small satellite constellation. First, a semi-analytical initial guess is made by evaluating the coverage
of the target area by repeating ground track satellites. It must be noted that the considered orbits are
constraint to circular, RGT, low Earth orbits. The initial guess helps lower the overall computational
load of the computation.

As Savitri optimizes for two objective functions, usage is made of a multi-objective optimization algo-
rithm, namely the nondominated sorting genetic algorithms (NSGA-II). Four of the six orbital parameters
are optimized, only excluding eccentricity and argument of perigee due to the circular orbits constraint.
Four optimization objectives were considered: 1) maximum area percent coverage; 2) maximum av-
erage area time coverage; 3) minimization of maximum coverage gap time; 4) average coverage gap
time. These were combined into the two objective functions using weighted sums.

Lee [30] aims to optimize constellations for optimal regional coverage. The constellation design
can be split into two parts: defining the orbital elements of the reference satellite and defining the
constellation pattern. No simplifying assumption is made for symmetric constellations. The design is
constrained to only consider circular repeating ground track orbits.

Lee introduces a novel method, binary integer linear programming (BILP). This method takes the
reference satellite and the coverage requirement to find the minimum number of satellites required.
Further, the method is able to provide solutions using sub-constellations.

Mencarelli [36] introduces the mixed integer (non)linear programming (MI(N)LP) methods. These
methods minimize the total number of satellites while considering a maximum revisit time constraint.
Like in the other papers, only circular repeating ground track orbits are considered. The method op-
timizes the other four orbital parameters (semi-major axis, inclination, RAAN and mean anomaly) as
well as the placement of satellites within the constellation.

Summary on established optimizations of satellite constellations
The optimization of satellite constellations can take many forms, as could be seen in the highlighted
studies. Researchers optimized for revisit times, for dilutions of precision, for mission cost or coverage.
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Further, algorithms ranging from integer programming to NSGA-II have been applied. The main goal of
these studies was to optimize as many parameters of the constellation as possible, without drastically
impacting the computational complexity. However in the studies, the optimal constellations were often
constrained, either to symmetrical constellations, such as Lang andHanson [29], Dufour [12] and Zhang
[68], or to repeating ground track orbits such as Shtark and Garfill [54], Zhang [67], Savitri [52], Lee
[30] and Mencarelli [36]. This leaves room for the exploration of asymmetrical, non-repeating ground
track constellations. Further, the only study that involved elliptical orbits was that of Zhang [68], but this
was only in the context of symmetrical flower constellations.



3
Research gap and research questions

In light of the studies analyzed in the previous chapter (chapter 2), a number of research gaps can be
identified for both the coverage analysis and the constellation optimization. Combining this research
gap with the objectives of the thesis stated in the introduction, the research questions can be estab-
lished.

3.1. Research gap
Various research gaps can be identified from the literature analyzed in chapter 2, both in the coverage
analysis methods as well as the constellation optimization studies. Starting with the coverage analysis,
the different studies were summarized and evaluated in Table 2.1. In this table, only one method was
deemed suitable for the purpose of this research, namely the semi-analytical coverage analysis method
developed by Crisp [6]. Compared to the other coverage analysis methods, Crisp’s method was not
constrained to repeating ground track orbits or symmetrical constellations. However, the method is
not fully analytical, having to be repeated for every latitude bound, impacting the computational speed.
Further, the constellations analyzed by Crisp were still limited to circular orbits only. Thus the research
gaps for the coverage analysis are as follows:

• The coverage analysis method must be able to analyze all orbit types, even elliptical orbits.
• The coverage analysis method must be able to analyze all constellation configurations, including
non-symmetrical constellations.

• The coverage analysis method must be as fast as possible, i.e. as analytical as possible.

In the literature for the constellation optimization similar research gaps were identified, as the eval-
uated studies all constrained the constellations to either symmetrical constellations, or to repeating
ground track orbits. Additionally, the chosen optimization algorithm should be able to handle the non-
differentiable cost function as well as the non-convex solution space. To summarize the identified
research gaps for constellation optimization are:

• The optimizer must be able to optimize all orbit types, not just repeating ground track orbits.
• The optimizer must be able to optimize all constellation configurations, including non-symmetrical
constellations.

• The optimization algorithm must be able to handle a non-differentiable cost function.
• The optimization algorithm must be able to find a good solution in a non-convex solution space.

3.2. Research questions
By combining the objective as stated in chapter 1 with the research gap, the research questions can be
created. As the thesis can be divided into two parts, the coverage analysis method and the constella-
tion optimization, the research questions are split accordingly. For the coverage analysis method, the
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research questions are as follows:

1. Which figures of merit should the new coverage analysis method analyze?
2. How to make the new coverage analysis method as fast as possible?
3. How can the new coverage analysis method be used for elliptical orbits?
4. How can the new coverage analysis method be used for asymmetrical constellations?

Some hypotheses can be created to give an initial direction to the development of the coverage analysis
method. Firstly, from the figures of merit evaluated during the literature study in chapter 2, two stand
out, namely the revisit time and coverage. Secondly, the fastest way to perform a coverage analysis is
by making it as analytical as possible. Thus, efforts should be taken such that this is the case. Thirdly,
by combining, modifying and improving the existing coverage analysis methods, one could find a way
of analyzing elliptical orbits. Finally, if the coverage analysis can be performed for a singular satellite,
a combination of coverage analyses of other satellites could lead to the analysis of any constellation
configuration imaginable.

Similarly, research questions can be created for the optimization of the satellite constellations.

1. For what objectives should the satellite constellations be optimized?
2. How can the amount of decision variables be maximized?
3. What optimization algorithm performs the best?

Again, hypotheses can be created to answer the research questions. Firstly, the objectives of the
optimization should at the very least contain the figures of merit analyzed by the coverage analysis.
Furthermore, constellation parameters such as the number of satellites could also be considered as
objectives to be optimized. Secondly, the maximum amount of decision variables would be the inclusion
of all orbital parameters of all satellites in the constellation. To ensure maximum flexibility, this should
be aimed for. Finally, a comparison should be made of a variety of optimization algorithms to see
which performs the best. It can be expected that algorithms that perform well in non-convex, non-linear
solution spaces will outperform algorithms that are more suited to linear, predictable solution spaces.
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4
Computationally-efficient Earth

coverage analysis

Before being able to optimize the coverage and revisit time of a satellite, the method to compute the
figures of merit has to be established. This coverage analysis method has to be especially fast, as
many calls to this function would be made during the constellation optimization. Thus, great effort has
to be made to ensure that the analysis is as fast as possible while retaining accuracy. In this chapter
the development of the coverage analysis method is stated, starting with the initial idea and evolving
into the final established methodology.

4.1. Initial concept
In light of the Earth observation figures of merit, a satellite can be best be evaluated by performing a
coverage analysis. Various methods exist, including analytical, semi-analytical, and numerical varia-
tions, as shown in Table 2.1. The aim of the initial concept was to create a coverage analysis method
that was both not computationally expensive, while allowing great flexibility in the types of satellite or-
bits it could evaluate. Therefore, efforts were made to keep the initial concept as analytical as possible.
Further, to ensure flexibility, the concept should allow for the analysis of all orbits, including elliptical
orbits.

A satellite’s path around Earth can be visualized by its ground track. This ground track is a 2D
representation of the orbit of the satellite. When modeling an Earth observation satellite, its instrument
can also be accounted for, which creates an area over Earth that shows which parts will be observed
during the orbit of the satellite (Figure 4.1a). By computing the percentage of Earth’s surface that the
ground track covers, the coverage figure of merit can be analyzed. To also determine the revisit time, a
third dimension, time, can be added to the model. Now the ground track is modeled as a surface within
latitude-longitude-time space (Figure 4.1b). The revisit time is then the difference in time between two
overlapping parts of the ground track surface. By limiting the 3D space according to the user objectives,
specific parts of Earth could be analyzed within a specific time frame for coverage and revisit time.

The feasibility of the initial concept depended on two questions. The first of these questions was
whether there exists an analytical way of representing the 3D ground track surface. To answer this
question, it is important to first formulate the ground track line of the satellite as an equation. In Crisp
[6] the equations are given which transform Kepler elements to spherical coordinates (Equation 4.1).{

ϕ = sin−1 (sin (νϕ + ω) sin(i))

λ = tan−1
(

cos(ω+νϕ)sin(Ω)+sin(ω+νϕ)cos(Ω)cos(i)
cos(ω+νϕ)cos(Ω)−sin(ω+νϕ)sin(Ω)cos(i)

)
+

νϕ

2π∆λ
(4.1)

Further, the time coordinate can be found by relating the true anomaly to the mean anomaly via the ec-
centric anomaly. This completes the set of equations. Next, the swath should be included to transform
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(a) Example 2D ground track made with STK 12. (b) Example 3D ground track surface.

Figure 4.1: Different representations of an example satellite ground track.

the parametric ground track line to a parametric surface. A number of assumptions are made to model
the swath. Firstly, the swath is modeled as a slit. Furthermore, the swath is assumed to always be a
straight line. Finally, the swath is assumed to be perpendicular to the ground track of the satellite. This
swath line is bounded on both sides of the ground track by the field of view constraint of the instrument
of the satellite. These assumptions allow the surface to be classed as a ruled surface. A surface is
ruled if for every point a straight line lies on the surface. As a ruled surface, the ground track surface
can also be defined by either the two outer bound lines, or by one bound line and the equation of the
swath lines. [3]

Figure 4.2: An example of a ruled surface. [17]

The second question that is to be answered is whether there is an analytical way of computing the
relevant figures of merit from the ground track surface representation. Unfortunately, due to the complex
nature of the surface definition, only iterative methods would be able to compute the coverage and
revisit time of the satellite. Considering the latitude-longitude-time space and the system of equations
defining the surface, there are two ways of iterating. The figures of merit can be evaluated by either
propagating the satellite through time, or by iterating through the latitude-longitude grid. As the regular
spacing between observation points in the latitude-longitude grid is desirable for both the coverage and
revisit time purposes, it was decided to develop a method using this type of iteration.
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Figure 4.3: Simplified framework of the initial idea.

4.2. Development of grid-based analysis
The grid-based coverage analysis method consists of two parts. Firstly, the grid itself has to be defined
in a smart way. This means making sure that the resolution of the grid is not too coarse, which would
lack detail, but also not too fine, as this could make the computation much more expensive. Ideally, the
pixel size of the grid would be defined by the user. Furthermore, the creation of the grid should be made
as efficient as possible to keep the computation time low. The second part of the coverage analysis is
the computation of the visit times per grid point. The method should be as accurate as possible. Efforts
should also be made to keep the computation as fast as possible.

4.2.1. First grid-based method: the derivative method
During the development of the first grid-based method, the grid creation was kept rather simple. The
latitude-longitude grid points were evenly-split, with one degree distance in both latitude and longitude.
Every grid point was evaluated during the visit time computation. More focus was laid on establishing
the method for the computation of the visit times. Usage was made of the initial assumptions of the
swath, mainly that the swath line is straight and perpendicular to the ground track. This meant that the
slope of the swath line could be found by finding the slope of the ground track line and rotating it by
90 degrees. Using the slope of the swath line, the ground track of the satellite and the coordinates of
the grid point, the position of the satellite, the true anomaly, could be found. This position can then be
related to the time at which the grid point is observed. The slope of the ground track could be found by
differentiating Equation 4.1 (see Equation 4.2). The full derivation can be found in the Appendix B.

(
dϕ

dλ
(νϕ)

)
swath

= −
(
dϕ

dλ
(νϕ)

)−1

GT

= −
(
dϕ (νϕ)

dνϕ

dνϕ
dλ (νϕ)

)−1

= −dλ (νϕ)
dνϕ

(
dϕ (νϕ)

dνϕ

)−1

(4.2)

As can be seen, the slope of the swath line is a function of the true anomaly. This causes a problem
in the fact that the position of the satellite is to be computed by a function that takes the position as an
argument, meaning that it can not be solved analytically. Instead a numerical solver is used that can
find the solution using an initial guess. Once the position of the satellite is found, a check has to be
performed whether the grid point is within the field of view of the satellite. First the distance between
the sub-satellite point, the projection of the satellite on Earth, and the grid point is computed. This
is done by using the Haversine formula [38], which computes the distance between two points on a
sphere. This distance is then compared to the length of the swath. If a grid point is observed, the time
at which this occurs is saved in a dictionary. This dictionary can then be evaluated to easily find the
revisit time at every (visited) grid point, the maximum revisit time of the satellite, and the total coverage
of Earth. Finally, to decrease the computation time, it was decided that the visit time computation only
needed to be performed for the first orbit. The coverage for additional orbits could be derived using the
information of the (full) first orbit, and shifting the points according to the rotation of Earth within one
orbital period. The framework of the method is visualized in Figure 4.6.

A number of issues were identified when developing this method. Firstly, the simple grid creation
was very inefficient as most of the evaluated grid points would not be able to be observed during the
first orbit. At these points, the numerical solver would run for the maximum amount of iterations trying
to find a solution, which impacted the computation time greatly. Efforts could be made to reduce the
size of the grid in areas that are not close to the ground track.
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Secondly, the numerical solver caused various issues. It often got stuck in local optima resulting in
bad solutions and longer computation times. Further, it was unable to find solutions for grid points close
to the maxima of the ground track (Figure 4.4). This was partially solved by interpolating the visit times
for these points, but this made the model much less accurate (Figure 4.5).

Thirdly, the usage of the Haversine formula required the Earth to be assumed spherical instead of
oblate, making the model slightly more inaccurate. Finally, it was also found that Equation 4.1 did not
work for elliptical orbits. All in all, the method was too slow, taking in the order of tens of minutes to
analyze the first orbit, as well as too inaccurate. However, the usage of the first orbit to compute the
additional orbits proved to be very promising, as over a thousand orbits could be analyzed in a matter
of seconds.

Figure 4.4: Grid coverage for first method without interpolation.

Figure 4.5: Grid coverage for first method with interpolation.
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Figure 4.6: Framework for the first grid-based coverage analysis method.

4.2.2. Second grid-based method: the minimum distance method
In the second grid-based method efforts were made to improve and eliminate the limitations of the first
method. The size of the grid was reduced by using the position of the ground track. By iterating over
the ground track and evaluating the swath, relevant grid points could be identified. Grid points that were
far from the satellite’s orbit were not to be evaluated. This reduced the computation time substantially,
as the numerical solver no longer had to be called at every single grid point.

Next, the ground track equation 4.1 has to be analyzed. The issue with the elliptical orbits was
identified to be in the equation for the longitude, and more specifically in the second part of this equation.
In this part the drift in longitude due to Earth’s rotation and J2 perturbations are computed. The true
anomaly is used to identify the passage of time since the start of the orbit. This works for circular
orbits, however, for elliptical orbits the evolution of the true anomaly is no longer linear. This means
that the true anomaly should not be used to indicate the passage of time. The mean anomaly could
be used instead, as this behaves linearly for all orbits. This leads to the revised equation for longitude
(Equation 4.3).

λ = tan−1

(
cos(ω + νϕ)sin(Ω) + sin(ω + νϕ)cos(Ω)cos(i)

cos(ω + νϕ)cos(Ω)− sin(ω + νϕ)sin(Ω)cos(i)

)
+

(
MAϕ

nT
+ j

)
∆λ (4.3)

The orbit number j is also added to allow the evaluation of orbits other than the first orbit. This modifi-
cation was checked by the implementation of the unique Molniya orbit (Figure 4.7).

Figure 4.7: Grid coverage of the Molniya orbit using the seconds method.

Some new issues were identified by analyzing the Molniya orbit. Due to the loop in the Molniya orbit,
some grid points would be visited twice in one orbit. Thus, a distinction had to be made between
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ascending and descending visits, meaning that the grid had to be evaluated twice.

Next, the method to compute the visit times was reevaluated. If a numerical solver was to be used,
and the assumptions of the swath line were kept, one could also try to find the satellite position for which
the distance to the grid point is minimized. Usage was still made of the Haversine formula to compute
the distance between the two points. The implementation of this method also meant that the field of
view check could be made instantly. However, the need arose for check on the perpendicularity of the
swath line. At the start and end of the orbits, points were incorrectly identified as observed due to the
lack of restraints on the slope of the swath line. This caused a bloom of identified points to occur. By
ensuring that the line connecting the grid point and the sub-satellite point was (close to) perpendicular
to the ground track, these wrong points could be removed. The distance minimization method also
was able to correctly evaluate points at the maxima of the ground track, removing the need for the less
accurate interpolation. The framework of the method is visualized in Figure 4.8.

The minimum distance method seemed very promising. The improvements to the grid creation and
the visit time computation reduced the computation time to the order of tens of seconds. However,
there still exist inaccuracies due to the usage of the Haversine formula. Furthermore, the grid is still
very rigid and the resolution can not be modified by the user.

To verify the results of the method, a comparison was made with the numerical coverage analysis in
STK 12. However, the results of STK 12 were based on geographic coordinates. Thus, a correction had
to be made to account for the orientation of Earth at the start of the scenario. First the Kepler elements
of the satellite at the start of the orbit were transformed to ECEF coordinates. Then, Equation 4.3 was
used to compute the not corrected longitude of the satellite at the start of its orbit. By comparing these
two coordinates, the longitudinal shift could be determined. This could then be applied to the rest of
the computations.

Figure 4.8: Framework of the second grid-based coverage analysis method.

4.3. Finalized concept
While verifying the results of the second grid-based method, a crucial error was discovered. The as-
sumption that the swath line is perpendicular to the ground track was incorrect. The swath line is
perpendicular to the 3D representation of the orbit, but this does not translate to the 2D ground track.
This discovery meant that the computation of the visit times had to be revised again, as the minimum
distance method no longer holds.

4.3.1. Wrong assumption
A substantial wrong assumption was made during the development of the previous coverage analy-
sis methods. The swath was modeled as a slit, meaning that in the 3D visualization of the problem,
the swath would be a straight line perpendicular to the orbital track of the satellite. This is a correct
representation of a slit swath. Where it went wrong was in the transfer from the 3D case to 2D. In
2D, a map representation is made of Earth. This is, however, not a true representation of Earth, as
latitude-longitude points are shifted due to the lack of representation of the curvature of Earth.
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During the previous coverage analysis methods, this change in representation of Earth was not taken
into account. Instead, it was assumed that if the swath is a straight line perpendicular to the orbital track
in 3D, then it can be represented as a straight line perpendicular to the ground track in 2D. This is wrong
as it disregards both the curvature of Earth as well as the rotation of Earth. This in turn completely
invalidated the computation of the position of the satellite. In the first grid method the swath line could
only be fitted between the grid point and the ground track due to the straight line formula used. Further,
in the second method, the minimization of the distance between a grid point and the ground track only
holds if the swath connecting the two can be represented by a straight line. Thus, the coverage analysis
method had to be reenvisioned.

4.3.2. Observation time computation
The shift from 2D to 3D meant that Equation 4.3 could no longer be used to compute the time of
observation. Instead, a combination of the first and second methods could be made, while applying
them in 3D. The swath vector could be fitted between the satellite and the grid point by envisioning a
plane. This plane lies on the swath line and encompasses the satellite position as well as the center of
Earth. Then, the distance between the plane and the grid point could be minimized by optimizing the
position of the satellite. This is how the satellite position can be found for which the swath crosses a
grid point in 3D space. To start, the Kepler elements of the satellite are transformed to inertial Cartesian
coordinates, using Equation 4.4.

p = a(1− e2)

r = p
(1+ecos(ν))

h =
√
µp

x = r(cos(Ω)cos(ω + ν)− sin(Ω)sin(ω + ν)cos(i))

y = r(sin(Ω)cos(ω + ν) + cos(Ω)sin(ω + ν)cos(i))

z = r(sin(i)sin(ω + ν))

ẋ = xhe
rp sin(ν)−

h
r (cos(Ω)sin(ω + ν)− sin(Ω)cos(ω + ν)cos(i))

ẏ = yhe
rp sin(ν)−

h
r (sin(Ω)sin(ω + ν) + cos(Ω)cos(ω + ν)cos(i))

ż = zhe
rp sin(ν) +

h
r sin(i)cos(ω + ν)

(4.4)

As the latitude of the satellite is still the initial guess, the true anomaly can be found using the latitude
equation in Equation 4.1. A position and velocity vector can be formed from the inertial Cartesian
coordinates. The direction of the swath in 3D space can be found by taking the cross product of the
position and velocity vectors of the satellite. Next, the plane is to be formed using the swath direction
and the position of the satellite. The minimum distance between a point and a plane will be along a
line parallel to the normal vector of the plane. Thus, by taking the cross product of the swath vector
and the satellite position vector, the direction of the normal vector is found. Finally, the distance can be
computed using Equation 4.5 [57].

d =
|n⃗ · P⃗ |
|n⃗|

(4.5)

By minimizing this distance, the satellite position is determined for which the grid point is observed.
The satellite position, i.e. the true anomaly of the satellite, can then be used to find the observation
time. This is done using Equation 4.6. The framework of the coverage analysis method is visualized in
Figure 4.9

EA = tan−1

(√
1− e2sin(ν)

1 + ecos(ν)

)
MA = EA− esin(EA)

t =
MA

n

(4.6)
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Figure 4.9: Framework of the finalized coverage analysis method.

4.3.3. Grid creation
The overall grid creation method is similar to the one developed during method two. To summarize,
only grid points close to the ground track are to be included in the grid. A flag was added to indicate
whether a point is to be analyzed during the ascending phase, the descending phase or both, which
reduced the amount of iterations necessary. Further, a number of features were added to make the
grid more flexible and more customizable. Firstly, it was made possible to analyze specific latitude
bands. If the user is only interested in the coverage of the latitudes around the equator, this can now
be indicated and used. Secondly, the grid was made less rigid. The size of the pixels can be input in
degrees. Finally, the option is added to reduce the amount of grid points at higher latitudes. The user
can input the minimum and maximum pixel width in degrees. The grid will then be created with equally
sized pixels per latitude as close to the pixel width desired by the user. Figure 4.10 shows what such
a customized grid could look like.
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(a) Rectangular grid with equal pixel width and height of four degrees.
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(b) Variable grid with pixel height of four degrees and width of four to
twenty degrees. The grid is bounded in latitude between -60 and 60

degrees.

Figure 4.10: Comparison of a standard grid and a customized grid.

4.3.4. Assumptions and limitations
A number of assumptions and limitations occur in the new coverage analysis method. In this section,
a summary is made of these particularities.

• The swath line is no longer assumed to be perpendicular to the ground track. Instead, it is as-
sumed to be perpendicular to the 3D orbital path of the satellite. This also means that the swath
line is no longer assumed to be a straight line in the 2D representation. Instead it is a curved line
due to the curvature of Earth.
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• The Earth is assumed to be spherical.
• The coverage analysis can not evaluate more than two visits of a grid point in one orbit. This is
due to the fact that during the grid creation visited grid points are assigned to either the ascending
phase, the descending phase or both. Per phase only one visit is analyzed.

• The computation time of the analysis is sensitive to certain scenarios, specifically scenarios for
which the constellation observes large swaths of Earth, such as high altitudes and/or wide swaths.

• The coverage of grid points involves rounding, as partially observed points are not considered.
When considering the small inaccuracies due to the assumptions made, this can result in some
points incorrectly being labeled as observed or not. Furthermore, as the partial observations are
not stored, the inaccuracy is amplified when considering additional orbits of the same satellite,
due to the copying of the observations in the first orbit.



5
Constellation optimization

With the coverage analysis method established for a single satellite, it can be applied in the constellation
optimization. First, the coverage analysis should be expanded to be able to analyze the figures of
merit for the full constellation. Then, the overall framework of the optimizer should be defined. Finally,
numerous optimization algorithms are tuned and compared.

5.1. From satellite to constellation
The coverage analysis is established on a single satellite basis. To optimize a satellite constellation,
the analysis needs to be expanded. The coverage analysis for a single satellite yields all the observed
grid points with their respective times of observation. This can be repeated for all satellites in the
constellation, and merged into a result for the full constellation, which describes all grid points that
were observed by at least one of the satellites in the constellation.

5.2. Architecture of the optimization
A number of parameters and functions need to be defined clearly before starting the optimization. First
and foremost, the objectives should be clearly defined. There are three objectives that the optimization
should aim for, namely minimizing the revisit time, maximizing the coverage and minimizing the number
of satellites in the constellation. There are multiple ways in which these objectives can be represented
within the optimization. For single-objective optimization, the objectives can be combined into a single
cost function, such as Equation 5.1. Weights are added into the cost function to tune the importance
of the objectives with respect to each other.

C = wrttrevisit + wcvg(1− cvg) + wsatnsat (5.1)

For multi-objective optimization, different strategies can be used, as explained in subsection 2.3.1. The
most straightforward would be to optimize the three objectives separately, creating a 3D Pareto front to
show the most optimal solutions. If the algorithm is limited to two objectives, the choice can be made to
optimize for a cost function consisting of the revisit time and coverage, and for the number of satellites.
This creates a 2D Pareto front, showing the cost function versus number of satellites.

Second are the decision variables. As the optimization is be kept as flexible and unconstrained as
possible, the decision variables consist of all six orbital elements per satellite in the constellation. This
means that the length of an input sequence is variable, as it is dependent on the number of satellites
in the constellation. Not all optimization algorithms are able to handle variable-length input sequences
and measures should be taken such that this is adequately taken into account.

Thirdly are the constraints on the decision variables. These constraints are either set by the user, or
to ensure that the constellation is practically feasible. Each orbital element should be within the desired
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range specified by the user. The user can also specify the range in the amount of satellites that are
to be used. More practically, it should be ensured that the combination of the semi-major axis and the
eccentricity does not lead to a perigee that is within, or very close to, Earth. Finally, if the user does
not constrain the angular orbital elements, they are practically constraint by the definition of angles and
can not exceed 360 degrees (or 180 degrees for inclination).

5.3. Optimization algorithm
Many different optimization algorithms exist. In subsection 2.3.1, a variety of popular optimization algo-
rithms that could be used in satellite constellation optimization were presented. This section provides
an overview of the implementation of these different optimization algorithms. Two main Python pack-
ages were used to implement the optimization, namely Distributed Evolutionary Algorithms in Python
(DEAP) and SciPy. These packages allow for the creation and customization of the algorithms. Various
settings can be tuned and changed for each different algorithm. In this section an overview is given on
how the algorithm is implemented and what settings were used during the optimization.

5.3.1. Genetic Algorithm (GA)
The genetic algorithm was implemented using DEAP. DEAP allows for great customization of GA’s
and provides various methods for selection, crossover and mutation. It also allows for the creation of
custom methods to be used by the GA. As stated in section 5.2, not all algorithms are able to evaluate
variable-length input individuals. For these algorithms, the optimization was performed multiple times,
resulting in a solution for each constellation size. These solutions could then be compared by the user
and the best solution based on the user’s preferences is then chosen. If the optimization algorithm is
able to handle variable-length individuals, only the most optimal solution is provided. The user is able
to influence the desired solution by modifying the weights in the cost function.

Selection
Various studies have been performed on the comparison of different selection methods in genetic algo-
rithms. Pandey [43] compared rank based, roulette and tournament selection on a network security use
case. It was found that rank based selection performed the best, followed by roulette selection. Tour-
nament selection performed the worst. Another study was performed by Goldberg [13] on deterministic
differential equations. Proportionate reproduction, ranking selection, tournament selection, and Geni-
tor (or “steady state”) selection were compared. It was concluded that tournament selection with large
tournament sizes worked well, in constrast to the conclusion of Pandey. Thus, the choice in selection
method can be quite dependent on the use case of the algorithm.

Various different selection procedures can be used for a genetic algorithm in DEAP. Two of these can
be used in the single objective minimization optimization, namely tournament selection and roulette
selection. For tournament selection, twenty percent of the individuals in the population is randomly
chosen. The best individual in the tournament is then chosen to be part of the new population. This
is repeated until the new population is the same size as the old population. In random selection, a
random individual from the old population is selected to be part of the new population. This repeats
until the new population is the same size as the old population.

During the selection phase, elitism can also be applied to the optimization. In elitism, the top individ-
uals of the old population are directly copied to the new population. The rest of the new population is
then chosen by either tournament or random selection.

Crossover
Like selection procedures, crossover methods have also been extensively studied and compared. Jara-
dat [21] compared various crossover operators in a WSN lifetime use case. It was concluded that one-
point crossover performed the best. Magalhães-Mendes [37] concluded the same, one-point performed
the best followed by uniform crossover.

In the satellite constellation optimization use case a distinction has to be made for the crossover
method of the GA. Some methods are able to handle variable-length individuals while others can not.
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Thus, two different genetic algorithms were created to compare the influence of variable-length versus
fixed-length individuals. For the variable-length individuals two different crossover methods were com-
pared, namely one-point and two-point crossover. These crossover procedures are very similar. Either
one or two random points within the individual length are chosen. Two individuals are then split in these
points and their parts are interchanged. This creates two new children individuals that are added to
the new population. As the individuals are of variable length, it must be made sure that the point(s) at
which the individuals are split lie within the shortest individual.

For fixed-length individuals three different crossover methods were compared, namely one-point,
two-point and blend crossover. One- and two-point crossover work the same as for variable-length
individuals. In blend crossover, the children are created by selecting the decision variables between
the two parents using a uniform distribution. The interval in which the decision variable lie is determined
by a parameter α and the distance between the parents for the decision variable di.

x
(i)
child ∼ U [mini − αdi,maxi + αdi] (5.2)

This crossover method introduces an additional level of mutation and thus exploration into the optimiza-
tion.

Mutation
Finally, the mutation methods have also been compared in previous studies. Cazacu [5] compared
uniform, polynomial and Gaussian mutation on an OOGA framework. it was concluded that uniform
mutation performed better than Gaussian. Further, polynomial mutation also performed well.

In the use case of constellation optimization, mutation methods that switched around decision vari-
ables could not be applied, due to the structured nature of the input individuals. Further, due to the
difference in order of magnitude between the decision variables a standard mutation method would not
work correctly. Instead, two custom methods were created based on existing mutation methods, Gaus-
sian and uniform mutation. Instead of specifying one distribution for the whole individual, a separate
distribution is made for each decision variable, depending on the range of the variable. For the Gaus-
sian mutation, the standard deviation of the distribution is set to the difference between the maximum
and minimum value of the decision variable, divided by three. Due to the empirical rule, this means that
99.7 percent of values will be within the range. This value is then added to the original decision variable
of the individual. For uniform mutation, the mutation value is found by randomly picking a value within
the possible range of the decision variable.

An additional mutation has to be added to the GA handling variable-length individuals. This is due
to the fact that the number of satellites is technically also a parameter that should be mutated. Thus,
an additional mutation check is made to see if a random satellite in the constellation gets deleted, or if
a random satellite gets added to the constellation.

5.3.2. Particle Swarm Optimization (PSO)
The PSO algorithmwas implemented using DEAP. In particle swarm optimization, the main settings that
influence the optimization are the social and cognitive bias, the inertia of the particle and the velocity
bound. For this optimization the social and cognitive biases were kept equal. Further, the velocity
bound is set at twenty percent to ensure that the particle does not stray too fast. There exist multiple
methods for implementing the inertia of the particle. Based on Bansal [1], two of these methods were
chosen for comparison, namely constant inertia and random inertia. For constant inertia, the inertia
value was to 0.5. For random inertia, a value is selected from the standard uniform distribution. This
value is halved and added to 0.5.

w = 0.5 +
Rand()

2
(5.3)

5.3.3. Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
CMA-ES was implemented using DEAP. There are no parameters to change within the algorithm. In-
stead, attention has to be paid to the restrictions on the input individuals. The algorithm requires a
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singular value for the standard deviation of the initial distribution. As the original decision variables
have differing orders of magnitude, they have to be normalized to conform to the same standard devia-
tion. The normalization is performed by subtracting the minimum possible value of the decision variable
and then dividing it by the difference between the minimum and maximum value. This transforms each
variable to lie between zero and one. The initial centroid then becomes 0.5 for each decision variable.
The standard deviation of the initial distribution is set to 1/3.

5.3.4. Differential Evolution (DE)
The SciPy package was used to implement the differential evolution algorithm. The main setting that
can be changed is the strategy. These strategies influence the tuning parameters of DE, the scale factor
and the crossover ratio. Three strategies were chosen to be compared, the SciPy default of ”best1bin”,
and two standard strategies [66], ”rand1bin” and ”rand1exp”. In best1bin twomembers of the population
are randomly chosen. The difference between these individuals is used to mutate the best member
so far. This allows for the construction of a trial vector. Starting from a randomly chosen parameter,
the trial vector is filled with parameters from either the mutated or the original member. This choice is
made with a binomial distribution. The final parameter is always chosen from the mutated member. If
the trial vector performs better than the original, it replaces the original member. In rand1bin, a random
member is chosen for mutation instead of the best member. In rand1exp, an exponential distribution is
used instead of a binomial one. [44]

5.3.5. Simulated Annealing (SA)
Due to its simplicity, the simulated annealing optimization was implemented without using any package.
Instead, a simple Python script was written. The main settings to change in simulated annealing are the
initial temperature and the annealing schedule. Two annealing schedules were compared, exponential
and linear, which are both widely used [42]. In linear annealing the temperature of the simulation is
gradually and constantly lowered by a given parameter. This allows for wide exploration of potential
solutions, but often does converge slower. In exponential annealing the temperature decreases expo-
nentially. This allows for a faster converges, but might have a higher risk of premature convergence or
getting stuck in local optima.

The initial temperature is dependent on the order of magnitude of the objective function. For the
satellite constellation optimization, the objective function values are in the order 104 to 106. Therefore,
three initial temperatures were compared, 104, 105 and 106.

5.3.6. Non-dominated Sorting Genetic Algorithm II (NSGA-II)
The NSGA-II algorithm was implemented using DEAP. It is the only multi-objective optimization algo-
rithm that was used, as it allows for the usage of variable-length input individuals. Like the single
objective genetic algorithm, a variety of options are provided by the DEAP package.

Selection
In DEAP, the NSGA-II algorithm is characterized by its selection procedure. To perform an NSGA-II
optimization, the selection procedure has to be set to a specific selection method in DEAP. Thus no
comparison could be made between different selection methods.

Crossover
Similarly to the variable-length GA, two crossover methods were considered. These methods were
one-point crossover and two-point crossover.

Mutation
Twomutation methods were chosen to be compared, Gaussian mutation and uniformmutation, just like
the GA. As the NSGA-II algorithm handles variable-length individuals, the number of satellites should
also be mutated.

Summary of the optimization algorithms settings
In Table 5.1 the previous sections are summarized. It gives an overview of the various settings that are
to be compared for each different optimization algorithm.
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Algorithm Tuning parameters
GA • Selection: Tournament, Roulette, Elitist

• Crossover: One-point, Two-point, Blend
• Mutation: Gaussian, Uniform

PSO Inertia function: Constant, Random
CMA-ES -

DE Strategy: best1bin, rand1bin, rand1exp
SA • Initial temperature: 104, 105, 106

• Annealing schedule: Exponential, Linear
NSGA-II • Crossover: One-point, Two-point

• Gaussian, Uniform

Table 5.1: Summary of the tuning parameters of each algorithm

5.4. Multiprocessing
To speed up the optimization tool as much as possible, multiprocessing could be applied. There are
two main ways or levels at which parallel computing could be applied. Firstly, it could be applied at
satellite level during the coverage analysis. Here it can be used to speed up both the grid creation as
well as the observation time computation. During the grid creation, the script iterates over each true
anomaly step of the satellite orbit. To apply multiprocessing, the steps have to be divided among the
different processors. However, asmore points are expected at higher latitudes, the split should bemade
alternating. This will more evenly split the required work over the processors. During the computation
of the observation time, the script iterates over the established grid. Thus, to apply multiprocessing
the grid is split evenly among the processors. This split does not have to be alternating, as the work
required for each grid point is the same for every grid point.

The second way that multiprocessing could be implemented is at constellation level, during the op-
timization. The two packages that are used to implement most of the optimization algorithms, DEAP
and SciPy, both allow for the parallel evaluation of individuals. This means that parallel calls can be
made to the evaluation function to evaluate different constellations at the same time. On the contrary,
the coverage analysis multiprocessing is used with the evaluation function and requires many more
calls.

It can be expected that the constellation-level multiprocessing would outperform the satellite-level due
to the reduced overhead caused by starting the multiprocessing process. Nevertheless, a comparison
should be made to verify this hypothesis.
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6
Coverage analysis results

In this chapter the results of the coverage analysis are provided. There are three main objectives for
which the coverage analysis method is to be tested, accurate coverage of the grid, accurate revisit time
computation and an as low as possible computation time. These results are verified with the numerical
software of STK 12.

6.1. Coverage
It is of utmost importance that the coverage analysis is able to correctly evaluate all visited grid points
for all types of orbits. Thus a variety of orbital element combinations are to be tried to see if the script
is able to handle them. Figure 6.1 and Figure 6.2 show the coverage plots for different orbit types. The
colors of the grid points correspond to the first time of observation, where blue is the beginning of the
scenario and red the end.

The tested scenarios include specific edge case scenarios that often are used in the real world. The
first edge case is the equatorial orbit, shown in Figure 6.1a. When the satellite flies over the same
latitude for a large fraction of its orbit, a problem arises in the observation time computation. In the
algorithm, the latitude of the satellite is used as an initial guess to initialize the problem. This latitude ϕ
is then used to compute the true anomaly νϕ according to:

νϕ = sin−1

(
sin(ϕ)

sin(i)

)
− ω (6.1)

For small inclinations i, Equation 6.1 can not be solved. Thus, to allow for the analysis of (close to)
equatorial orbits, the algorithm has to be modified. Instead of using the latitude of the satellite as an
initial guess, from which the true anomaly is computed, an initial guess is immediately made of the true
anomaly. Although the argument of perigee is arbitrary for equatorial (and circular) orbits due to the
lack of the ascending node, it can still be used in the algorithm. By defining an argument of perigee, the
ascending node is also defined, dividing the orbit in an ascending and descending phase. This helps
in providing a more accurate initial guess, depending on the phase of the satellites:{

ϕ0 = 90◦ − ω, if ascending
ϕ0 = 270◦ − ω, if descending

(6.2)

The initial true anomaly guess is thus set in the middle of the respective phase of the satellite. This
allows the minimization algorithm to work and provide the correct results.

The second edge case is the polar orbit (Figure 6.1b). For (close to) polar orbits the swath of the
satellite is able to reach over the poles and observe grid points with a difference of 180 degrees. Due
to the conversion to Cartesian coordinates during the algorithm, this proved no issue. Furthermore, the
polar orbit case also shows the correct implementation of the rotation of Earth, as the coverage plots
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Equatorial orbit

(a) Coverage for equatorial orbit. a = 10000 km, e = 0, i = 0◦,
fov = 15◦
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Polar orbit

(b) Coverage for polar orbit. a = 10000 km, e = 0, i = 90◦,
fov = 15◦
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Inclined eccentric orbit

(c) Coverage for inclined, eccentric orbit. a = 10000 km, e = 0.3,
i = 30◦, fov = 15◦
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RAAN-shifted orbit

(d) Coverage for RAAN-shifted, inclined, eccentric orbit. a = 10000
km, e = 0.3, i = 30◦, Ω = 30◦, fov = 15◦

Figure 6.1: Some coverage plots for a variety of different orbits.

shows the satellite moving slowly eastward. Additionally, the flexibility of the grid creation method is
also shown, as grid points closer to the poles are more spaced apart in longitude than the grid points
at the equator.

With the edge cases of zero and 90 degrees inclination correctly working, a medium inclination should
also be checked. In the coverage plots the orbit inclined at 30 degrees is combined with the eccentric
orbit case, as seen in Figure 6.1c. It can be seen that the algorithm is able to correctly follow the
satellite’s inclined path, forming a wave pattern. Furthermore, the change in width of the coverage
swath shows the effect of the eccentricity.

Next to the inclination and eccentricity, the coverage analysis should also be able to handle differ-
ences in the other orbital elements. Figure 6.1d, Figure 6.2a and Figure 6.2b show the case for different
values of the right ascension of ascending node, argument of perigee and initial true anomaly respec-



6.1. Coverage 50

100 0 100
Longitude [deg]

80

60

40

20

0

20

40

60

80
La

tit
ud

e 
[d

eg
]

AOP-shifted orbit

(a) Coverage for argument of perigee shifted, inclined, eccentric orbit.
a = 10000 km, e = 0.3, i = 30◦, ω = 30◦, fov = 15◦
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TA-shifted orbit

(b) Coverage for true anomaly shifted, inclined, eccentric orbit.
a = 10000 km, e = 0.3, i = 30◦, ν0 = 30◦, fov = 15◦
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RGT orbit

(c) Coverage of one repeat cycle for repeating ground track orbit, with
repeat cycle of eleven orbits. a = 8524.7 km, e = 0, i = 105.85◦,

fov = 15◦
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Molniya orbit

(d) Coverage for Molniya orbit. a = 26600 km, e = 0.74, i = 63.4◦,
Ω = 0◦, ω = 270◦ fov = 5◦

Figure 6.2: More coverage plots for a variety of different orbits.

tively. The rest of the parameters were kept the same as the inclined, eccentric orbit (Figure 6.1c).
Comparing the RAAN-shifted orbit with the unshifted one, it can be seen that the starting position is
correctly shifted eastward according to the change of thirty degrees. For the orbit with a shift in the
argument of perigee, it can be seen that the satellite is at a higher latitude than for the unshifted orbit.
This is due to the fact that the coverage analysis always assumes that at the satellite is present at its
perigee at the scenario start. Thus a shift in the location of the perigee equates to a different initial po-
sition of the satellite. It can also be seen that the width of the swath is different between the two orbits.
This is again due to the shift in perigee position. Finally, the orbit shifted in true anomaly is very similar
to the AOP-shifted orbit. The initial position of the satellite is very similar. The main difference lies in
the swath width throughout the orbit. For the TA-shifted orbit this is the same as the unshifted orbit as
its perigee location is the same. Thus, the coverage analysis method correctly places the satellite at
the start of the simulation, not at the perigee, but thirty degrees true anomaly further.
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The next coverage plot, Figure 6.2c, shows a number of important factors of the coverage analysis. In
Earth observation, the repeating ground track or sun synchronous orbit is very often used. Thus, it was
of great importance that the coverage analysis was able to correctly evaluated this orbit type. Further,
the coverage also shows more than one orbit of the satellite. Instead of performing the algorithm for
each orbit, which is very time consuming, grid points are copied from the first orbit and shifted according
to the rotation of Earth. This coverage plot shows that this time saving method works correctly and is
viable as a time saving method. By plotting multiple orbits, the coverage plot also shows the repeating
ground track nature of the satellite, as the end of the last orbit connects back to the start of the first orbit.
Additionally, this coverage plot also confirms the coverage analysis to work for inclinations exceeding
90 degrees, as this particular orbit is sun synchronous.

The last coverage plot is that of the Molniya orbit (Figure 6.2d). The Molniya orbit is a very specific
orbit case where the ground track of a satellite makes a loop over its specific target. Correct implemen-
tation of this orbit proves that the coverage analysis can handle different arguments of perigee, as this
Molniya orbit has an argument of perigee of 270 degrees, as well as extreme eccentricity. What makes
the Molniya orbit special is that grid points can be observed more than once during one orbit due to
the loop in its ground track. To handle this, the algorithm categorizes the grid points in ascending and
descending points. Points that are observed in both will thus be evaluated twice. A limitation is that
the algorithm does not evaluate points more than three times, even though points within the loop might
be observed three or more times in a real scenario. Additionally, the Molniya orbit showed another
limitation of the coverage analysis method. In the case that many points are observed by the satellite,
such as a high altitude orbit with a wide field of view, the algorithm becomes very slow. Although these
scenarios are not often analyzed, caution should be taken.

6.2. Revisit time
When using the coverage analysis on a scenario with multiple orbits, either by extending the scenario
length or adding additional satellites, the revisit time can be computed. The analysis can provide the
maximum and average revisit time for both singular grid points as well as global values. A multitude of
scenarios were explored to examine the global revisit time results of the coverage analysis. The results
are shown in Table 6.2. It must be noted that in order to compute the revisit time for a grid point, it needs
to be visited at least twice. Thus, points that are only visited once are not accounted for in either the
maximum or average revisit time computation. Further, a nonlinear grid was used, were points closer
to the poles were spaced further apart in longitude than points closer to the equator.

Scenario Orbital elements Maximum revisit time [s] Average revisit time [s]

One satellite, ten orbits

a = 10000km
e = 0
i = 30◦

fov = 15◦

90015.1 34380.64

One satellite, ten orbits

a = 15000km
e = 0
i = 30◦

fov = 15◦

163054.3 61122.23

Four equally TA-spaced
satellites, five orbits

a = 10000km
e = 0
i = 30◦

fov = 15◦

45204.03 5936.435

One satellite,
one Molniya orbit

Molniya
fov = 5◦

38521.46 32034.79

Table 6.1: Maximum and average global revisit times for different scenarios.

The first two scenarios in the table show the results for the same satellite with a change in semi-major
axis. As a higher orbit has a longer orbital period, it can be expected that the revisit time would be
longer. This is indeed the case, as the higher semi-major axis scenario has almost double the revisit
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time of the lower scenario. The third scenario analyses a constellation of equally spaced satellites. here
it can be expected that the average revisit time is low, as the satellites fly in a train-like constellation.
Table 6.2 shows that this is exactly what the coverage analysis found. The average revisit time of the
constellation is very low. Finally, the fourth scenario analyses a Molniya orbit. Although only one orbit
was analyzed, a revisit time was found. This is due to the loop in the Molniya orbit, which causes the
satellite to visit certain grid points multiple times within a singular orbit.

6.3. Verification and validation
To verify the results of the coverage analysis, a similar analysis was made using STK 12. Both the
coverage results and the revisit time results can be compared. Figure 6.3 shows a visual comparison
between the two coverage analyses. It can be seen that the results are very similar. By performing
a comparison test in Python, the exact difference between the results can be computed. Three main
factors were analyzed: the (normalized) difference in the visit times between the coverage analyses,
the percentage of points that were present in of the analyses but not in the other, and the number
of visited points for which the amount of visits differed between the two analyses. These results are
summarized in Table 6.2. For the difference in visit times to values are given. In general, the normalized
difference is checked according to:

diffn =
tcvg − tstk

tstk
(6.3)

However, when the value of the visit time is small, this normalized difference is not a good indicator
anymore. In this case the absolute difference is evaluated. Thus, the first value in the table represents
the normalized difference limit, while the second value represents the absolute limit for values not
adhering to the normalized difference limit.

Scenario Orbital elements Difference in
visit time [%, s]

Not in
both [%]

Unequal
visits [%]

One satellite, two orbits

a = 10000km
e = 0
i = 30◦

fov = 15◦

<0.5, <17 5.38 0.570

Table 6.2: Verification test results.

6.4. Computation time
One of the most important aspects of the novel coverage analysis method is that it should be as fast
as possible. The computation speed was tested for a multitude of scenarios. These results are shown
in Table 6.3. These results show the influence of various levels of multiprocessing. It can also be seen
that the specific scenarios have an impact on the computation speed of the analysis. In general, the
more points the satellite visits, the longer the computation time. Thus, when the scenario includes either
a high altitude, a wide field of view, or both, the computation time can increase drastically. The results
of the STK 12 coverage analysis are also shown in the table. It should be noted that multiprocessing
was not applied to the STK 12 analysis. Further, the comparison is not completely fair due to the large
amount of different, non-related computations that STK 12 makes during its analysis. Still, it helps put
the coverage analysis computation into perspective.

The results clearly show the impact of multiprocessing. Using eleven processors can improve the
single processor computation time by two to five times. Furthermore, comparing the results to those
from STK 12, the impact of the orbit copying is noticed. The coverage analysis method is able to scale
much better with additional orbits than STK 12. Finally, the impact of a higher altitude is also seen. By
increasing the semi-major axis from 10000 km to 15000 km the computation time more than doubled
for the case with eleven processors and more than tripled for the single processor computation.
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(a) Coverage for inclined orbit. a = 10000 km, e = 0, i = 30◦,
fov = 15◦
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(b) STK 12 coverage for inclined orbit. a = 10000 km, e = 0,
i = 30◦, fov = 15◦
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(c) Coverage for Molniya orbit. a = 26600 km, e = 0.74, i = 63.4◦,
Ω = 0◦, ω = 270◦ fov = 5◦
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(d) STK 12 coverage for Molniya orbit. a = 26600 km, e = 0.74,
i = 63.4◦, Ω = 0◦, ω = 270◦ fov = 5◦

Figure 6.3: Coverage plots for the grid method and STK 12.

Scenario Orbital elements 1P [s] 5P [s] 11P [s] STK 12 [s]

One satellite, one orbit

a = 10000km
e = 0
i = 30◦

fov = 15◦

35.548 12.711 9.740 64.152

One satellite, ten orbits

a = 10000km
e = 0
i = 30◦

fov = 15◦

36.424 14.483 11.246 147.29

One satellite, ten orbits

a = 15000km
e = 0
i = 30◦

fov = 15◦

122.553 39.371 27.738 220.47

One satellite, 100 orbits

a = 10000km
e = 0
i = 30◦

fov = 15◦

55.580 32.373 27.919 734.48

One satellite,
one Molniya orbit

Molniya
fov = 5◦

87.384 27.757 19.377 165.308

Table 6.3: Computation time results.



7
Constellation optimization

In this chapter the results of the constellation optimization are provided. Following the establishment
of the coverage analysis method, effort can now be made to optimize the constellation of satellites.
To create the best optimization tool, a number of comparisons have to be made. First, the tuning
parameters for each optimization algorithm are compared. This allows for the selection of the best
settings for each algorithm. Then a comparison is made between the different optimization algorithms
to find the best performing algorithm for constellation optimization. To allow fair comparison, the seed
is kept the same for each optimization. Further, the scenario variables are the same and described in
Table 7.1. It should be noted that the number of satellites restraint is not used for variable-length GA
and NSGA-II optimization, as these algorithms also optimize for the number of satellites.

Parameter Value Unit
Scenario length 200000 s
# of satellites 4 -
Field of view 15 deg

Semi-major axis 6800-8000 km
Eccentricity 0-0.2 -
Inclination 0-180 deg
RAAN 0-360 deg

Argument of perigee 0-360 deg
True anomaly 0-360 deg

Table 7.1: Scenario variables for algorithm comparisons.

7.1. Comparison of tuning parameters
In this section a comparison is made between different tuning parameters for each optimization algo-
rithm. The parameters are compared by their convergence during the optimization. The convergence
is visualized as the best objective value found per iteration. The comparison is evaluated based on the
speed of convergence and the final result. To make sure the comparison is fair, all other settings should
be the same between the optimizations. For each algorithm, the standard settings are shown. Further-
more, it was decided that each algorithm should perform around 1000 function evaluations, based on
the combination of population size and iterations. For the single objective optimizations the weight on
the revisit time was set to one, while the weight on the coverage was set to two.

7.1.1. Fixed-length genetic algorithm
Various settings were compared for the genetic algorithm using fixed-length individuals, as described
in subsection 5.3.1. The standard settings are stated in Table 7.2. Further, for each optimization the
chance of crossover was set to 0.5 and the chance of mutation to 0.2. For the elitist tournament
selection, the top two individuals were kept as elites.

54
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Selection Crossover Mutation Population Generations
Tournament One-point Gaussian 40 25

Table 7.2: Standard settings for GA with fixed-length individuals.

First, the different selection procedures are compared. The three methods that were compared were
tournament selection, roulette selection and tournament selection with elitism.Figure 7.1 shows the
convergence of the objective value for the various selection methods.

All three selection methods show very similar convergence behaviour. During the early generations,
the algorithms using elitist and non-elitist tournament selection outperform roulette selection. This
can be explained by the fact that in tournament selection, especially elitist tournament selection, better
individuals are often selected. On the contrary, although there is a higher chance for more fit individuals
to be selected in roulette selection, there is still a chance that bad performing individuals are also
included. Interestingly, after eleven generations the roulette selection optimization catches up to the
two tournament selection algorithms. Further, after sixteen generations the roulette selection is able
to find a better solution than the elitist tournament selection. After twenty-five generations, non-elitist
tournament selection has found the most optimal individual, closely followed by the roulette selection.
Elitist tournament selection performs the worst by converging to the least fit individual out of the three
optimizations. These results show that a more exploration focused selection method is able to find
better solutions, meaning that the solution space is quite non-linear with many local optima. More elitist
selection methods get stuck in these local optima and end up performing worse than other methods.

Next, three different crossover methods are compared. These are one-point crossover, two-point
crossover and blend crossover. In Figure 7.2 the convergence of the objective value is shown for the
different crossover methods. Using the blend crossover method, the optimizer was able to immediately
find a substantially better solution after one generation than the other two optimizations. After ten gener-
ations, all three optimizations stagnate, with blend crossover still providing the best solution. However,
after eighteen generations one-point crossover overtakes blend crossover, and is able to steadily find
better solutions. A couple generations later, two-point crossover also finds a more optimal solution
than blend crossover. Seemingly, blend crossover converged prematurely and was not able to find a
better solution after the initial ten generations. In contrast, the other two are able to keep optimizing
the solution throughout the optimization.

Finally, two mutation methods are also compared, namely Gaussian mutation and uniform mutation.
The convergence of these optimizations is shown in Figure 7.3. It can be seen that Gaussian mutation
performs better than uniform mutation for every generation of the optimization. This could be explained
by the fact that Gaussian mutation stays more true to the unmutated individual compared to uniform
mutation. This allows good individuals to not be mutated to drastically, retaining the good genes within
the population.
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Figure 7.1: Comparison of selection methods for GA with fixed-length individuals.
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Figure 7.2: Comparison of crossover methods for GA with fixed-length individuals.
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Figure 7.3: Comparison of mutation methods for GA with fixed-length individuals.

From these comparisons, the final settings for the fixed-length GA can be chosen. The configuration
includes elitist tournament selection, blend crossover and Gaussian mutation. These are the settings
that will be used for the fixed-length GA during the comparison with the different algorithms (Table 7.3).

Selection Crossover Mutation
Tournament One-point Gaussian

Table 7.3: Final settings for GA with fixed-length individuals.

These final settings are used to further analyze the impact of the population versus generations ratio.
The number of function evaluations was kept the same at one thousand. Three different ratios were
compared, a population of 25 for 40 generations, a population of 40 for 25 generations, and a population
of 100 for ten generations. The convergence for these optimizations is shown in Figure 7.4. Comparing
the convergence of the three optimizations, it can be seen that the higher the population, the better the
initial best solution and the faster the convergence. This is expected as a higher population allows for a
better exploration of the solution space during every generation. It can further be noted that the 100/10
optimization is still in the process of converging when the optimization was ended. On the contrary, the
other two optimizations seemed to have stagnated at the end of the optimization. The final result and
computation time for each optimization is shown in Table 7.4. An interesting pattern can be seen in
the computation time, the higher the population, the lower the computation time. This is explained by
the crossover and mutation probability. These cause a little over half of the population to generate new
offspring which needs to be evaluated. The rest of the population has already been evaluated, reducing
the amount of function calls performed. This causes a slight difference in the amount of function calls
between the different population sizes, where larger populations (with fewer generations) perform less
function evaluations than smaller populations (with more generations). Comparing the final results of
the optimizations, it is interesting to see how much worse the 40/25 optimization performed. Seemingly,
it got stuck within a local optima and was not able to converge as well as the other two optimizations.
The 100/10 optimization was chosen to be the best out of the three compared, due to its good final
result, fast computation time, and the lack of stagnation.
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Figure 7.4: Comparison of different population versus generation ratios for GA with fixed-length individuals, non-elitist
tournament selection, one-point crossover and Gaussian mutation.

Pop/gen ratio Optimal cost function value Computation time [s]
25/40 501234.2 9044.1
40/25 614883.1 8899.7
100/10 512810.6 8628.5

Table 7.4: Final result and computation time for different population versus generation ratios of GA with fixed-length individuals,
non-elitist tournament selection, one-point crossover and Gaussian mutation.

7.1.2. Simulated annealing (SA)
Two settings were tuned for the simulated annealing optimization, the initial temperature and the an-
nealing scheme. The standard settings are shown in Table 7.5.

Initial temperature Annealing scheme Iterations
10E6 Exponential 1000

Table 7.5: Standard settings for SA optimization.

The magnitude of the initial temperature is related to the magnitude of the objective values that are
commonly obtained by the fitness function. As the order of magnitude of the objective is typically 10E5,
the initial temperatures that were compared were chosen to be 10E4, 10E5 and 10E6. The conver-
gence of the three initial temperatures can be compared in Figure 7.5. In the early generations, all
three optimizations perform similarly and are able to converge rapidly to better solutions. After around
100 generations, the optimization with an initial temperature of 10E4 plateaus. Due to its lower initial
temperature, it does not allow to accept worse solutions, limiting the exploration of the algorithm. This
causes it to get stuck in a local optima early on in the optimization. The algorithms with an initial tem-
perature of 10E5 and 10E6 are able to converge further, albeit slower than in the first 100 generations.
The optimization with an initial temperature of 10E6 is able to consistently outperform the other two op-
timizations. The fact that the highest tested initial temperature performs best indicates that the solution
space of the problem is quite nonlinear, with many local optima in which the optimization can get stuck.
Next, the annealing scheme was compared. Two schemes were chosen for the comparison, namely
an exponential annealing scheme and a linear scheme. In Figure 7.6 it can be seen that both converge
rapidly during the early generations.
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Figure 7.5: Comparison of initial temperatures for SA optimization.
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Figure 7.6: Comparison of annealing schemes for SA optimization.

7.1.3. Particle swarm optimization (PSO)
For particle swarm optimization, only one setting was evaluated. This was the implementation of the
inertia. Two methods were evaluated namely a constant inertia and a random inertia. Other settings of
the PSO algorithm were kept the same for both optimizations. These settings are shown in Table 7.6.

Cognitive bias Social bias Velocity bound Population Generations
2.0 2.0 0.2 40 25

Table 7.6: Standard settings for particle swarm optimization.

For the constant inertia, the inertia was kept at 0.5 for every generation. For random inertia, the inertia
is a random fraction between 0.5 and one. The convergence of both optimizations is shown in Fig-
ure 7.7. It can be seen that both methods behave rather similar, following similar rates of convergence.
With little variance between the two optimizations, the constant inertia method was chosen due to its



7.1. Comparison of tuning parameters 60

simplicity. This optimization was then used to analyze the impact of the population size and number of
generations. Three variants were compared, a population of 25 for 40 generations, a population of 40
for 25 generations, and a population of 100 for ten generations. The convergence of these three opti-
mization can be seen in Figure 7.8. All three optimizations behave quite similarly. The optimizations
with a larger population size converge slightly faster than the smaller population optimization. However,
all optimizations seem to converge to similar results. Although the 25/40 optimization converges the
slowest, Table 7.7 shows that it is able to find the best solution in the least amount of time. Therefore,
the 25/40 optimization is selected as the best setting for PSO.
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Figure 7.7: Comparison of inertia methods for PSO.
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Figure 7.8: Comparison of different population versus generation ratios for PSO with constant inertia.

Pop/gen ratio Optimal cost function value Computation time [s]
25/40 470316.3 14859
40/25 473477.5 18577
100/10 511445.3 15655

Table 7.7: Final result and computation time for different population versus generation ratios of PSO using constant inertia.
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7.1.4. Differential evolution (DE)
For the differential evolution algorithm, different strategies were compared. These were best1bin,
rand1bin and rand1exp. The popsize and number of generations were kept the same between the
different optimizations, and are shown in Table 7.8. Popsize is a parameter used to determine the
size of the population in differential evolution, along with the amount of decision variables in an individ-
ual. Thus, when using four satellites, meaning the individual has a length of 24, the total population is
popsize times 24.

Popsize Generations
2 20

Table 7.8: Standard settings for DE optimization.

The convergence of the three strategies can be seen in Figure 7.9. Here, it is observed that the
best1bin strategy outperforms the other two strategies throughout the whole optimization. Rand1bin
and rand1exp perform very similar, alternating which performed better throughout the optimization. The
main difference between best1bin and the other two strategies is in the mutation step. In best1bin, the
best individual of the population is mutated, compared to a random individual in rand1bin and rand1exp.
Thus, best1bin introduces a form of elitism into the algorithm. This elitism seemingly enables the opti-
mization to find better solutions than the non-elitist rand1bin and rand1exp. This gives some insight in
the solution space of the problem. It hints towards some form of linearity in the solutions, as a mutated
individual that lies closer to the best individual is more often found to be a better solution than when a
random individual is mutated.
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Figure 7.9: Comparison of strategies for DE optimization.

The best1bin optimization was used to analyze the impact of varying the population size and number
of generations. Three different optimizations were compared, a popsize of one for 41 generations, a
popsize of two for twenty generations, and a popsize of three for thirteen generations. The amount
of generations were chosen to roughly equate to 1000 function evaluations. Figure 7.10 shows the
convergence of the three optimizations. One would expect a larger population to find a better initial
solution in the first generation, and to converge faster than an optimization with a smaller population.
Interestingly, the optimization with a popsize of three does not find an initial solution better than the
2/20 optimization. It does, however, converge faster and overtakes the 2/20 optimization after seven
generations. Comparing the 1/41 and 2/20 optimizations, it can be seen that the larger population opti-
mization does find a better initial solution. However, the rate of convergence seems to be very similar
between the two optimizations. Due to the much better initial solution, the 2/20 optimization is able
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to keep finding better solutions than the 1/41 optimization. It should be noted that all three optimiza-
tions do not show significant signs of stagnation during their convergence, indicating that with more
generations they might be able to converge to even better solutions. Table 7.9 shows the final result
and computation time of the different optimizations. It can be seen that the 2/20 optimization is able
to find the most optimal solution. Further, it can be shown that the higher the popsize/generation ratio,
the lower the computation time. This can be explained due to the greedy selection in the differential
evolution algorithm. If an offspring individual performs worse than the parent individual, the parent
is selected for the next generation. As the parent has already been evaluated, it does not need to
be evaluated again later on, reducing the amount of function evaluations. This means that in larger
populations, the fraction of function evaluations per generation is less than that of smaller populations,
lowering the overall computation time. Between the 2/20 optimization and the 3/13 optimization, 2/20
is chosen as the better setting. This is due to the optimization finding the best solution, while not being
much slower than the 3/13 optimization,
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Figure 7.10: Comparison of different popsize versus generation ratios for DE using the best1bin strategy.

Popsize/gen ratio Optimal cost function value Computation time [s]
1/41 685541.0 15524
2/20 615165.7 13987
3/13 648109.3 13517

Table 7.9: Final result and computation time for different popsize versus generation ratios of DE optimization using the
best1bin strategy.

7.1.5. Covariance matrix adaptation evolution strategy (CMA-ES)
In covariance matrix adaptation evolution strategy the choice is parameters has to be made very care-
fully as many combinations can lead to a bad optimization. Therefore it was decided to keep all tuning
parameters of the algorithm to the default settings as described in DEAP. Instead, the impact of the
population size and number of generations was investigated. Four different population/generation ra-
tios were compared. These ratios were chosen to keep the number of function evaluations as close to
1000 as possible. The default ratio with population of thirteen for 77 generations, a population of 25 for
40 generations, a population of 40 for 25 generations, and a population of 100 for ten generations. The
convergence for these four optimizations is shown in Figure 7.11. It can be seen that all four optimiza-
tions follow a similar convergence rate. The main difference between the optimizations lies in the initial
found solution. Seemingly, the higher the population size, the better solution is found. In Table 7.10 the
final result and computation time for the optimizations is shown. A clear trend is visible, the higher the
λ/generation ratio, the lower the computation time, but the worse the solution. An outlier is the 25/40
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optimization, which was able to find a better solution than the 13/77 optimization. This motivated the
choice to select the 25/40 ratio as the best.
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Figure 7.11: Comparison of different population versus generation ratios for CMA-ES optimization.

λ/gen ratio Optimal cost function value Computation time [s]
13/77 388015.8 18681
25/40 386894.8 14494
40/25 404369.5 13656
100/10 505464.3 12877

Table 7.10: Final result and computation time for different population size λ versus generation ratios of CMA-ES optimization.

7.1.6. Non-dominated sorting genetic algorithm (NSGA-II)
The settings that can be tuned in the non-dominated sorting genetic algorithm are very similar to those
of the standard genetic algorithm. However, due to limitations of the DEAP package, only one option
exists for the selection method, aptly called deap.tools.selNSGA2. The crossover and mutation were
able to be compared. All four combinations of these settings were tested. The standard settings of
this algorithm include the population size and amount of generations. Furthermore, as the amount
of satellites is also compared, this is also part of the standard settings. These settings are shown
in Table 7.11. Further, like the standard GA, the crossover probability is set to 0.5 and the mutation
probability is set to 0.2.

Amount of satellites Population Generations
1-8 40 25

Table 7.11: Standard settings for NSGA-II algorithm.

Two crossover methods and two mutation methods were compared. For crossover, one-point and
two-point crossover were compared, while for mutation Gaussian and uniform were compared. The
Pareto fronts of the four combinations of settings are shown in Figure 7.12. It can be seen that all
four optimizations result in similar Pareto fronts. An interesting observation is that none of the four
optimizations found first front solutions for every amount of satellites possible. Two-point Gaussian
optimization found a first front solution for five satellites but not for four, the other three vice versa.
Further, none of the optimizations found a first front solution for eight satellites. This means that for
certain numbers of satellites the algorithm is not able to find non-dominated solutions within the amount
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of generations. As the Pareto fronts are very similar, the decision on the settings was made on the
computation time, shown in Table 7.12. It can be seen that the algorithm using two-point crossover and
uniform mutation was much quicker than the other three, thus it was selected as the final settings.
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Figure 7.12: Comparison of different settings for NSGA-II optimization.

Settings Computation time [s]
One-point, Gaussian 10376
One-point, Uniform 12343
Two-point, Gaussian 9727.4
Two-point, Uniform 7759.8

Table 7.12: Computation times for different settings for NSGA-II optimization

Next, the impact of the population size and number of generations was also analyzed using the finals
settings. Three different ratios were compared, each translating to around 1000 function evaluations.
The Pareto fronts of these optimizations are shown in Figure 7.13. The first thing to notice is the fact
that the 25/40 optimization was able to find Pareto optimal solutions for every number of satellites. On
the contrary, 100/10 optimization is missing one (at eight satellites) and 40/25 optimization is missing
two (at five and eight satellites). Further, the 100/10 optimization is not able to find comparably good
solutions at three to six satellites compared to the other two optimizations. The computation times
are also compared and shown in Table 7.13. It can be seen that the higher the population versus
generation ratio, the lower the computation time. Although 25/40 has the longest computation time, it
was still selected as the best setting due to its ability to find Pareto optimal solutions for every number
of satellites, and due to its good quality of found solutions compared to the other optimizations.
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Figure 7.13: Comparison of different population versus generations ratios for NSGA2 optimization using two-point crossover
and uniform mutation.

Pop/gen ratio Computation time [s]
25/40 9536.3
40/25 7759.8
100/10 7576.0

Table 7.13: Computation times for different population versus generation ratios for NSGA-II optimization using two-point
crossover and uniform mutation.

7.1.7. Variable-length genetic algorithm
Similarly to the fixed-length genetic algorithm, the settings of the variable-length genetic algorithm for
selection, crossover and mutation can be changed. The standard settings of the optimization can be
found in Table 7.14. For each optimization the crossover and mutation probability are set to 0.5 and
0.2 respectively. As the number of satellites is also a variable, the standard settings also includes the
possible number of satellites. The cost function of the optimization includes a weight for the number of
satellites, which was set to one.

Selection Crossover Mutation Amount of satellites Population Generations
Tournament One-point Gaussian 1-8 40 25

Table 7.14: Standard settings for GA with variable-length individuals.

Three different selection methods were compared, namely tournament selection, roulette selection and
tournament selection with two elites. Figure 7.14 shows the convergence for each of themethods. It can
be seen that roulette selection performs much worse than either tournament selection method. In the
early generations, elitist tournament selection slightly outperformed the non-elitist selection. However,
the elitist selection plateaued already around seven generations. Non-elitist tournament selection was
able to continue converging and outperforms elitist selection after eight generations. Seemingly, the
increased exploration of the non-elitist tournament selection helps the algorithm to climb out of local
optima to find more globally better solutions. However, increasing the exploration too much, such as
with the roulette selection, leads to even worse results than the elitist tournament selection.

For the crossover phase, two methods were compared, one-point crossover and two-point crossover.
In Figure 7.15 it can be seen that one-point crossover outperforms two-point crossover in the early
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generations. However, two-point crossover is able to find a better solution after five generations and
outperforms one-point crossover throughout the optimization.

Finally, the performance of Gaussian and uniform mutation were compared. Figure 7.16 shows the
convergence of both optimizations. In early generations, Gaussian mutation greatly outperforms uni-
form mutation, converging to a better solution quickly. However, after thirteen generations, the Gaus-
sian mutation optimization stalls, and is overtaken by the uniform mutation after eighteen generations.
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Figure 7.14: Comparison of selection methods for GA with variable-length individuals.
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Figure 7.15: Comparison of crossover methods for GA with variable-length individuals.
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Figure 7.16: Comparison of mutation methods for GA with variable-length individuals.

The final tuning parameters are chosen to be non-elitist tournament selection, two-point crossover and
uniform mutation (TourTwoUni). These settings were compared with the best-performing optimization
from during the comparison, namely tournament, one-point, uniform optimization (TourOneUni). Their
convergence is shown in Figure 7.17. It can be seen that the combination of best performing settings
in fact does not perform better than the existing TourOneUni optimization. Thus, the final settings are
instead non-elitist tournament selection, one-point crossover and uniform mutation.
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Figure 7.17: Comparison of tournament, one-point, uniform optimization and tournament, two-point, uniform optimization.

The final settings were used to analyze the impact of the population size and number of generations.
Three different population to generation ratios were compared, making sure to keep the number of
function evaluations similar. The convergence can be seen in Figure 7.18. It can be seen that the lower
population of the 25/40 optimization results in a slower rate of convergence compared to the other two
optimizations. The 40/25 and 100/10 optimizations have a similar rate of convergence. Due to the
higher amount of generations, the 40/25 optimization is able to outperform the other two optimizations
and find the most optimal result. In Table 7.15 it can be seen that the computation time for the three
optimizations is very similar. Interestingly, where one would expect to see the lower the population, the
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higher the computation time, this is not true for this particular case. Instead, the 40/25 optimization
took the longest to compute. As the difference is relatively small, it could be attributed to hardware
particularities. As the computation times are so similar, and 40/25 is able to find the best solution,
40/25 is chosen as the best setting for the variable-length individual GA.
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Figure 7.18: Comparison of different population versus generations ratios for GA with variable-length individuals, tournament
selection, one-point crossover and uniform mutation.

Pop/gen ratio Optimal cost function value Computation time [s]
25/40 1144120 13332
40/25 1090620 13727
100/10 1149951 12951

Table 7.15: Final result and computation time for different population versus generations ratios of GA with variable-length
individuals.

7.2. Comparison between optimization algorithms
With the best settings identified for each optimization algorithm, a comparison can be made to find
the overall best performing algorithm. This comparison is first made between the algorithms using
fixed-length individuals. Next, the results of the variable length GA are compared to the fixed-length
algorithms. Finally, multi-objective optimization is compared with single-objective optimization.

7.2.1. Comparison of algorithms using fixed-length individuals
The convergence and results of the different algorithms are shown in Figure 7.19 and Table 7.16. Note
that simulated annealing has been excluded from Figure 7.19 due to the much larger amount of gener-
ations used. Looking at the computation time, a clear winner emerges, namely the genetic algorithm.
It is almost twice as fast as the next algorithm. Interestingly, PSO, DE and CMA-ES all perform very
similar in terms of computation time. Finally, simulated annealing performs by far the worst in terms of
speed. The fact that SA does not make use of a population, and thus does not save part of its solution
to the next generation makes it very slow.

The algorithms can also be compared in terms of their best found solution. The objective function
for each algorithm was as follows:

C = trev + 2(1− fc)10
6 (7.1)

The coverage is scaled to have the same order of magnitude as the revisit time. Further, the coverage
is weighted twice as highly as the revisit time, as it is more desired to have full coverage and worse
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revisit time than a fast revisit time but bad coverage. Comparing the algorithms in terms of the best
solution found results in a different ranking. Now CMA-ES clearly outperforms the other algorithms.
This is due to the great coverage value it was able to find. In second place lies PSO, followed by GA
and SA who found very similar results. In last place is DE, although it found the best revisit time, its
solution had the worst coverage of all algorithms.

0 5 10 15 20 25 30 35 40
Generations

0.4

0.6

0.8

1.0

1.2
Ob

je
ct

iv
e 

va
lu

e
1e6

GA
PSO
DE
CMA-ES

Figure 7.19: Comparison of convergence of algorithms using fixed-length individuals excluding simulated annealing.

Algorithm Optimal cost function value Max revisit time [s] Coverage [%] Computation time [s]
GA 512810.6 196674.5 84.19 8628.5
SA 513494.2 199736.5 84.31 39801
PSO 470316.3 198728.3 86.42 14859
DE 615165.7 192553.2 78.87 13987

CMA-ES 386894.8 196399.0 90.48 14494

Table 7.16: Final result and computation time for difference fixed-length algorithms.

In Figure 7.19, it can be seen that the genetic algorithm did not yet plateau at the end of its simulation.
By increasing the amount of generations to match the computation time of the CMA-ES algorithm, it
might be able to outperform it. The computation time for the genetic algorithm becomes similar to that
of the CMA-ES algorithm when increasing the number of generations to 18. Figure 7.20 shows the
convergence of the two optimizations and Table 7.17 shows the detailed results. It can be seen that
the CMA-ES optimization still outperforms the GA optimization. Thus, it can be concluded that the
CMA-ES optimization is the overall best algorithm for the fixed-length individual use case.
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Figure 7.20: Comparison of convergence of the CMA-ES optimization and the genetic algorithm with 18 generations.

Algorithm Optimal cost function value Max revisit time [s] Coverage [%] Computation time [s]
GA,

18 generations 440924.2 196674.5 84.19 15087

CMA-ES 386894.8 196399.0 90.48 14494

Table 7.17: Final result and computation time for difference fixed-length algorithms.

7.2.2. Comparison of different optimization types
Two additional algorithms were used in the optimization, namely the variable-length individual genetic
algorithm and the NSGA-II algorithm, i.e. the multi objective genetic algorithm. The NSGA-II optimiza-
tion can also be seen as a variable-length individual optimization as it also optimizes the number of
satellites. First the variable-length GA optimization is compared with the fixed-length GA, using the
settings as described in section 7.1. The result can be seen in Table 7.18. As the result of the variable-
length GA optimization is a constellation of seven satellites, it is to be expected that the revisit time and
especially the coverage results are better than that of the fixed-length GA. Comparing the computation
time, the fixed-length optimization is faster than the variable-length optimization. As the variable-length
optimization converged to a larger constellation size, the evaluation of the individuals take longer, ex-
plaining this difference. However, this comparison is not quite fair, as the variable-length GA performs
an extra optimization in the number of satellites. A better comparison on computation time would be
when repeating the fixed-length GA for every possible number of satellites, which would take much
longer than the variable-length GA. Thus, when the optimization of the number of satellites is required,
the variable-length genetic algorithm is a great choice.

Algorithm Number of satellites Max revisit time [s] Coverage [%] Computation time [s]
Fixed-length GA 4 196674.5 84.19 8628.5
Variable-length GA 7 185871.1 99.41 13727

Table 7.18: Final result and computation time for fixed-length and variable-length GA optimization.

The results of the Pareto front found by the NSGA-II optimization are stated in Table 7.19. The higher
weight on the coverage objective can clearly be seen in the results. The coverage objective steadily
increases the more satellites are included, compared to the revisit time which remains largely con-
stant. The results of the NSGA-II optimization can also be compared to both the variable-length GA
(Table 7.18) and the best fixed-length optimization CMA-ES (Table 7.17). Firstly comparing with the
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variable-length GA, the solution of seven satellites in the Pareto front is used. It can be seen that the
variable-length GA does outperform the solution of the NSGA-II optimization. However, looking at the
computation time of NSGA-II (Table 7.13), it is much faster. Next, the NSGA-II optimization can be
compared with the CMA-ES optimization (Figure 7.20). Using the solution for four satellites, it can be
seen that the NSGA-II optimization is again outperformed. However, its computation time is quite a bit
lower than that of the CMA-ES optimization. All in all, the NSGA-II optimization can be useful when it
is desired to check adequate solutions for all possible number of satellites.

Number of satellites Max revisit time [s] Coverage [%]
1 176617.6 29.48
2 181852.4 45.90
3 199383.2 75.59
4 201396.8 84.18
5 197873.8 92.50
6 197697.3 95.51
7 197385.4 96.84
8 186932.9 97.53

Table 7.19: Final results of the Pareto front of the NSGA-II optimization.

7.3. Verification and validation
The verification and validation of the various optimization algorithms is done in multiple ways. Firstly,
the optimization scripts need to be verified to be correctly implemented. This can be done by using
the script to work on a verified problem with a known solution. The Rastrigin problem was used to
verify the optimizers. Secondly, the verification of the results is done by checking their sensibility and
if they are in line with what can be expected. Thirdly, a sensitivity analysis was made to evaluate the
behavior of the algorithms when presented with a slightly different scenario. Finally, the optimization
can be validated by optimizing for an existing constellation and comparing the results.

7.3.1. Verification using the Rastrigin function
The Rastrigin function is a performance test function that can be used to verify implemented single
objective optimization algorithms. It is a very non-convex function and is thus best solved by global
optimization algorithms, as local search algorithms would get stuck in one of the many local minima.
For n dimensions the function is as follows:

f(x) = An+

n∑
i=1

[x2i −Acos(2πxi)] (7.2)

Typically,A is ten and xi is constrained between−5.12 and 5.12. For two dimensions, the global minima
of the function is zero at [x1 = 0, x2 = 0] and the global maxima is 80.707 for xi = ±4.523. Knowing
these solutions, the various optimization algorithms can be checked if they have been implemented
properly by running this particular optimization and comparing the found results.

Algorithm Minimum Maximum
GA 1.551e−5 at x1 = 3.176e−5, x2 = −2.778e−4 80.706 at x1 = −4.523, x2 = 4.522
SA 1.042e−3 at x1 = −1.989e−3, x2 = −1.139e−3 75.375 at x1 = −4.697, x2 = −4.482
PSO 0.0 at x1 = 3.095e−9, x2 = −7.286e−10 80.707 at x1 = −4.523, x2 = 4.523
DE 2.024 at x1 = −0.9818, x2 = 0.9950 80.331 at x1 = −4.479, x2 = 4.524

CMA-ES 0.0 at x1 = −3.282e−9, x2 = 7.985e−10 80.707 at x1 = −4.523, x2 = −4.523

Table 7.20: Results of the Rastrigin optimization for various single objective optimization algorithms

Table 7.20 shows the results of the optimizations. It can be seen that almost all optimization algorithms
are able to find the correct values for both the minimum and maximum of the problem. Only the differen-
tial evolution algorithms for minimization finds a different value. Comparing this with the solution values
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of the Rastrigin function, it is found that the DE algorithm got stuck in the local minimum at xi = ±1, for
which the solution value is two.

7.3.2. Validation of the results
For the case of optimizing the revisit time and coverage, hypotheses can be made on what type of orbits
or constellations could be expected. In the particular scenario used in section 7.1 and section 7.2, due
to the use of a fixed field of view and the emphasis on the coverage objective, it can be expected
that results with a high semi-major axis perform better. Furthermore, as coverage of all latitudes is
analyzed, it can be expected that the orbits should have high enough inclination to observe the poles.
Finally, a combination of different perigee positions with a high eccentricity could also lead to overall
better coverage.

Table 7.21 shows the solution of the best performing fixed-length single objective algorithm, CMA-
ES. This solution can be compared with the scenario settings (Table 7.1) to check if the hypotheses are
met. Looking at the semi-major axes of the four satellites, it can be seen that they indeed are near the
upper limit set in the scenario. Looking at the inclinations of the four orbits, all are high, with three of
the four being close to polar. This also meets the expectation. Finally, the eccentricity of the four orbits
is high. Looking at the arguments of perigee, it can be seen that they are all quite similar, lying close to
pi radians. Combining this with the spaced out right ascensions of ascending node, it indicates that the
apogees are quite well spread out, allowing for maximum coverage and adhering to the hypothesis.

Satellite a [km] e i [rad] Ω [rad] ω [rad] ν0 [rad]
1 7859.4 0.17666 1.6264 5.8227 2.8810 5.7271
2 7838.1 0.17441 2.4022 2.3391 3.0595 1.7356
3 7847.4 0.17539 1.6501 3.7113 3.1276 4.5403
4 7960.0 0.18706 1.8684 0.063036 2.9505 1.0174

Table 7.21: Solution found by the CMA-ES algorithm.

7.3.3. Sensitivity analysis
For each optimization algorithm a sensitivity analysis was performed using a slightly different scenario.
This scenario differed in the instrument type of the satellites. Instead of a fixed field of view, the instru-
ments now have a fixed swath of 400 kilometers. The rest of the scenario settings and constraints were
kept the same (Table 7.1). Table 7.22 shows the results of the various fixed individual, single-objective
optimizations.

Algorithm Optimal cost function value Max revisit time [s] Coverage [%] Computation time [s]
GA 272678.9 197807.0 96.26 14230
SA 281268.0 203880.5 96.13 40604
PSO 295669.4 199804.0 95.21 19427
DE 286774.3 201794.5 95.75 19955

CMA-ES 280746.4 197047.2 95.82 17504

Table 7.22: Results of the sensitivity analysis.

It can be seen that the results of the different algorithms liemuch closer together then those in Table 7.16.
This is primarily due to the coverage metric being much more equal between the algorithms. This could
be attributed to the larger overall swath of the scenario, allowing the constellations to cover more of
Earth of easily. It can be seen that for this scenario the genetic algorithm finds the best solution, closely
followed by CMA-ES and SA.

To further identify if the algorithms behave as expected, a closer look can be taken at the results of
the optimizations. In particular, a comparison can be made between the final results of the CMA-ES
algorithm for the two scenarios. Due to the fixed swath size of the new scenario, the semi-major axis
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and eccentricity have a reduced impact on the coverage. In fact, one could expect that a lower semi-
major axis could provide better results, as more orbits could be completed within the scenario time.
This is exactly what can be seen in Table 7.23, the semi-major axes and eccentricity are lower than
those in Table 7.21. Further, it can be seen that the fourth satellite has an inclination close to polar to
allow for the coverage of the highest latitudes.

Satellite a [km] e i [rad] Ω [rad] ω [rad] ν0 [rad]
1 6800.0 0.048382 2.1996 1.4591 3.4210 3.2686
2 6813.1 0.050211 2.6724 2.6714 0.0 2.8438
3 7432.9 0.12941 1.9722 2.4787 1.9923 2.4964
4 7316.6 0.11557 1.5585 2.1699 5.6973 4.0461

Table 7.23: Solution found by the CMA-ES algorithm for the new scenario.

7.3.4. Validation with sentinel-2 constellation
To further validate the optimizer, a scenario can be created that closely resembles an existing con-
stellation. Here, the existing constellation was chosen to be the sentinel-2 constellation of ESA 1. The
sentinel-2 constellation consists of two sun synchronous satellites flying in the same orbit, phased apart
by 180 degrees true anomaly. To validate the optimizer (using the CMA-ES algorithm), a scenario was
created to closely match the sentinel-2 constellation, namely restricting the two satellites to be in the
same plane, to constrain the satellites to only sun synchronous orbits, and to constrain the semi-major
axis to values close to those of the sentinel-2 constellation. This means that the only parameters that
can be optimized is the true anomaly. The results of the optimization are shown in Table 7.24. It can
be seen that the optimizer indeed finds the most optimal phasing of the satellites to be pi radians, or
180 degrees, in true anomaly.

Satellite a [km] e i [rad] Ω [rad] ω [rad] ν0 [rad]
1 7158.8 0.0 1.7195 2.3509 3.0797 1.7539
2 7158.8 0.0 1.7195 2.3509 3.0797 4.8398

Table 7.24: Results of the CMA-ES optimization for the sentinel-2 scenario.

1https://sentiwiki.copernicus.eu/web/s2-mission#S2Mission-OrbitS2-Mission-Orbittrue

https://sentiwiki.copernicus.eu/web/s2-mission#S2Mission-OrbitS2-Mission-Orbittrue
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Conclusion

Conclusions can bemade by answering the research questions from chapter 3. The research questions
were split into two parts relating to the coverage analysis method and the constellation optimization.
First the research questions related to the new coverage analysis method are answered.

1. Which figures of merit should the new coverage analysis method analyze?

During the literature study, various different Earth observation figures of merit were found. In partic-
ular, for discontinuous coverage, the most used metrics were the revisit time and coverage. However,
further specifications exist of these figures of merit, as established by Wertz [63]. For the new coverage
analysis method, the specific figures of merit were established as:

• The global maximum revisit time. This is the maximum revisit time found in any of the grid points
observed at least twice by any satellite in the constellation.

• The coverage fraction of Earth. This is defined as the fraction or percentage of grid points that
are observed by the satellite during the analysis period out of all grid points.

2. How to make the new coverage analysis method as fast as possible?

In the hypothesis, it was stated that the coverage analysis method should be made as analytical as
possible to ensure a low computation time. After researching various approaches, it was concluded
that a fully analytical coverage analysis method is not feasible. Instead a semi-analytical grid-based
method was developed. To make the computation time as low as possible various actions were taken:

• By evaluating the ground track of the satellite before creating the grid, only grid points with a high
likelihood to be observed, i.e. close to the ground track, are added to the grid. This reduced the
amount of calls to the coverage analysis function, reducing the overall computation time.

• Only the first orbit of a satellite is analyzed using the coverage analysis function. Additional orbits
can be evaluated by copying the results from the initial orbit, shifting the results according to
the rotation of Earth, and finally modifying the observation time using the orbital period of the
satellite. This massively reduces the number of coverage analysis function calls, especially for
long analysis periods.

• The grid can be made non-rectangular, where fewer points are created at higher latitudes. Here
the pixels still represent similar area sizes due to the curvature of Earth. Reducing the amount
of grid points available reduces the amount of coverage analysis function calls, which in turn
reduces the computation time.

• Multiprocessing can be applied to analyze grid points in parallel, reducing the overall computation
time.

3. How can the new coverage analysis method be used for elliptical orbits?
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The eccentricity is used during various steps of the coverage analysis. It is first used before the grid
creation to establish the ground track of the satellite. To represent the ground track of an elliptical orbit,
the equation from Crisp [6] (Equation 4.1) is modified into Equation 4.3.

Secondly, the eccentricity is used during the evaluation of the observation. More specifically during
the transformation of the Kepler elements to inertial Cartesian coordinates (Equation 4.4).

Finally, the eccentricity is also taken into account during the computation of the observation time.
This is done in the transformation from the true anomaly of the satellite to the time of observation
(Equation 4.6).

4. How can the new coverage analysis method be used for asymmetrical constellations?

Expanding the coverage analysis to constellations is easily done by evaluating the individual satellites
and combining the observation times together. This has the additional benefit of not being restricted
to any form of symmetric or asymmetric constellation configuration, as the coverage analysis already
works for any type of satellite orbit.

Next, the research questions for the constellation optimization part are answered.

1. For what objectives should the satellite constellations be optimized?

In the hypothesis for this research question it was stated that at the very least the figures of merit
of the coverage analysis should be included as optimization objectives. Furthermore, constellation
parameters such as the number of satellites could also be included. This is exactly what has been
done during the optimization of the satellite constellations. The optimization objectives are as follows:

• Minimize the maximum revisit time of the constellation.
• Maximize the coverage of the constellation.
• Minimize the number of satellites in the constellation.

2. How can the amount of decision variables be maximized?

The hypothesis stated that the maximum amount of decision variables possible would be all orbital
elements of all satellites within the constellation. This has been implemented into the optimization
framework. All orbital elements are subject to the optimization, allowing for maximum flexibility of the
optimizer. The drawback is the fact that the number of decision variables is dependent on the number
of satellites in the individual constellation. This means that when optimizing the number of satellites, the
number of decision variables also varies per individual. This causes issues with most single-objective
optimization algorithms. Only the genetic algorithm is able to truly handle variable-length individuals.

3. What optimization algorithm performs the best?

Before comparing the different optimization algorithms with each other, the settings of each algo-
rithm had to be determined. For each optimization algorithm, a small optimization was performed with
different combinations of settings. The convergence of the solution was compared, as well as the final
optimal solution that was found by the optimization. The optimization with the best configuration of
settings was chosen to be compared with the other algorithms.

For the small test scenario, the genetic algorithm and the CMA-ES algorithm were found to per-
form the best for single objective optimization using fixed-length individuals. CMA-ES found the best
performing solution, while the genetic algorithm found an acceptable solution in a considerably lower
amount of time. An additional comparison was performed between the CMA-ES optimization and a
GA optimization using more generations to make the time of computation more comparable. Even with
additional generations, GA was still outperformed by CMA-ES, making CMA-ES the best performing
algorithm for this scenario.
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A sensitivity analysis was performed by analyzing a slightly different scenario. Again, all algorithms
were compared based on the convergence of the optimization and the final solution. Again, the ge-
netic algorithm and CMA-ES performed the best for the single objective optimization using fixed-length
individuals. However, for this scenario, the GA was able to find a better solution than the CMA-ES
algorithm.

Only two algorithms were able to be used to optimize variable-length individuals. This was the ad-
justed genetic algorithm for single objective optimization, and NSGA-II for multi-objective optimization.
These two optimizations were compared with the results of the fixed-length GA optimization and the
CMA-ES optimization. It was found that both the adjusted GA and the NSGA-II found acceptable re-
sults, but not better results than the fixed-length optimizations.

The primary conclusion that can be formed from the results is that the choice of best optimization
algorithm depends on the use case. If it is desired to find the most optimal constellation of a specific
number of satellites, either the genetic algorithm or the CMA-ES algorithm perform the best. If it is
desired to find one solution for which the number of satellites is also optimized, the adjusted GA is to
be used. Finally, if an overview is desired of the best constellation for each possible number of satellites,
the Pareto front of the NSGA-II optimization provides the most relevant information.



9
Recommendations

The limitations of the thesis open up new paths for further research. Both for the coverage analysis
method as well as the optimization of satellite constellations, some recommendations for further im-
provements can be given.

9.1. Recommendations for the coverage analysis method
In this thesis an overview was given of the development of a new coverage analysis method, starting
with an initial idea for a fully analytical design. While it was concluded that the analytical approach for
an analytical design was not feasible, further research could be made on different ways to design a fully
analytical coverage analysis method. Achieving this feat could allow for even better and faster analysis
and optimization of satellite constellations.

Some improvements can also be made on the developed coverage analysis method. Firstly, efforts
could be taken to remove the spherical Earth assumption. This would allow for more accurate results
of the coverage analysis. Secondly, the sensitivity of the computation time to changes in the scenario
parameters could be improved. This would allow the coverage analysis to have a more consistent
computation time when analyzing different constellations, making the optimization more predictable in
terms of computation length. Thirdly, the use of a grid should be evaluated as the method involves
rounding, causing slight inaccuracies throughout the analysis. In particular, efforts could be taken in
allowing the storage of partial observations, making the coverage analysis method more accurate.

9.2. Recommendations for the constellation optimization
A number of recommendations can be made on the selection of the optimization algorithm. Much
more exploration can be performed within the constellation optimization topic. Firstly, for the various
algorithms that have been evaluated in this thesis, numerous other settings can still be compared
and analyzed. This should also be done for different scenarios, to evaluate the impact of different
parameters on the settings of the algorithms. Further, many more optimization algorithms exist apart
from the algorithms that were analyzed in this thesis.
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A
Additional results

In this appendix, some visualizations are provided to give some more context to the optimal constella-
tions found in chapter 7. Further, an additional result is provided for a larger optimization.

A.1. Visualizations of the CMA-ES optimal constellation
The following visualizations are based on the optimal constellation found by the CMA-ES optimization.
The specific orbital elements of the satellites are given in Table 7.21. The visualizations are shown in
Figure A.1.

A.2. Results of a larger optimization
The CMA-ES algorithm was also applied to a larger optimization. The scenario constraints are stated
in Table A.1. The main differences with the optimization performed in chapter 7 lie in the higher semi-
major axis and bigger eccentricity constraints. Further, a population of 100 individuals as well as 100
generations were used.

Parameter Value Unit
Scenario length 200000 s
# of satellites 4 -
Field of view 15 deg

Semi-major axis 8000-10000 km
Eccentricity 0-0.4 -
Inclination 0-180 deg
RAAN 0-360 deg

Argument of perigee 0-360 deg
True anomaly 0-360 deg

Table A.1: Scenario variables for algorithm comparisons.

Visualizations of the found constellation are shown in Figure A.2. Further, the numerical results are
stated in Table A.2 and Table A.3. It can be seen that the longer optimization benefited the coverage
metric greatly, as almost full coverage was achieved. Further, compared to other results in the thesis,
the revisit time is quite low, although this could also be a result of the higher semi-major axis and
eccentricity.

The orbital elements are in line with what was to be expected, namely a high semi-major axis and
eccentricity. Interestingly, comparing this result with the optimal constellation of the smaller optimization,
some parallels can be drawn. Namely, that three of the four satellites have a high inclination, to cover
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(a) The color indicates the time of first observation, with blue being
earlier and red later.

(b) The color indicates the maximum revisit time, with blue being
shorter and red being longer.

(c) The color indicates the average revisit time, with blue being
shorter and red being longer.

(d) A 3D visualization of the constellation made using STK 12.

Figure A.1: Visualizations for the optimal constellation found by the CMA-ES optimization for the small test scenario.

all latitudes, while one satellite has a lower inclination. This last satellite might be used to lower the
revisit time for area of Earth closer to the equator, which have a higher revisit time than the poles.

Optimal cost function value Max revisit time [s] Coverage [%] Computation time [s]
141018.2 138045.2 99.85 419391

Table A.2: Final result and computation time for CMA-ES algorithm for the longer scenario.



A.2. Results of a larger optimization 86

Satellite a [km] e i [rad] Ω [rad] ω [rad] ν0 [rad]
1 9984.9 0.35192 1.5162 3.1060 2.9241 4.6555
2 9967.7 0.060111 1.5072 0.49661 3.3939 4.9835
3 9962.2 0.24255 2.4341 5.9691 0.32424 0.62591
4 9981.7 0.34425 1.4573 2.6787 3.1110 0.13438

Table A.3: Solution found by the CMA-ES algorithm for the longer scenario.

(a) The color indicates the time of first observation, with blue being
earlier and red later.

(b) The color indicates the maximum revisit time, with blue being
shorter and red being longer.

(c) The color indicates the average revisit time, with blue being
shorter and red being longer.

(d) A 3D visualization of the constellation made using STK 12.

Figure A.2: Visualizations for the optimal constellation found by the CMA-ES optimization for the larger test scenario.



B
Swath slope derivation

This appendix provides the derivation of the swath slope formula of the first grid-based method. More
information can be found in subsection 4.2.1. The derivation starts with the representation of the ground
track as provided by Crisp [6].

{
ϕ = sin−1 (sin (νϕ + ω) sin(i))

λ = tan−1
(

cos(ω+νϕ)sin(Ω)+sin(ω+νϕ)cos(Ω)cos(i)
cos(ω+νϕ)cos(Ω)−sin(ω+νϕ)sin(Ω)cos(i)

)
+

νϕ

2π∆λ
(B.1)

According to subsection 4.2.1, the swath slope formula can be derived following:(
dϕ

dλ
(νϕ)

)
swath

= −
(
dϕ

dλ
(νϕ)

)−1

GT

= −
(
dϕ (νϕ)

dνϕ

dνϕ
dλ (νϕ)

)−1

= −dλ (νϕ)
dνϕ

(
dϕ (νϕ)

dνϕ

)−1

(B.2)

Thus the derivatives dλ(νϕ)
dνϕ

and dϕ(νϕ)
dνϕ

should be found. Starting with dϕ(νϕ)
dνϕ

:

ϕ = sin−1 (sin (νϕ + ω) sin(i))

dϕ (νϕ)

dνϕ
=

d
dνϕ

[sin(i)sin(νϕ + ω)]√
1− (sin(i)sin(νϕ + ω))2

=
sin(i) d

dνϕ
[sin(νϕ + ω)]√

1− (sin(i)sin(νϕ + ω))2

=
sin(i)cos(νϕ + ω)√

1− (sin(i)sin(νϕ + ω))2

(B.3)

Next is dλ(νϕ)
dνϕ

. To simplify, the equation for λ(νϕ) is split into tan−1(ND ) +
νϕ

2π∆λ, where N stands for
numerator and D for denominator. Thus, the derivative can be written as:

dλ (νϕ)

dνϕ
=

d

dνϕ

[
tan−1

(
N

D

)
+
νϕ
2π

∆λ

]
=

d

dνϕ

[
tan−1

(
N

D

)]
+

∆λ

2π

=

d
dνϕ

[
N
D

]
1 +

(
N
D

)2 +
∆λ

2π
=

dN
dνϕ

D− dD
dνϕ

N

D2

1 +
(
N
D

)2 +
∆λ

2π
=

dN
dνϕ

D − dD
dνϕ

N

D2 +N2
+

∆λ

2π

(B.4)

D2 +N2 is easily computed:

N2 = (cos(νϕ + ω)sin(Ω) + sin(νϕ + ω)cos(Ω)cos(i))2

= cos2(νϕ + ω)sin2(Ω) + 2sin(νϕ + ω)cos(νϕ + ω)sin(Ω)cos(Ω)cos(i) + sin2(νϕ + ω)cos2(Ω)cos2(i)

D2 = (cos(νϕ + ω)cos(Ω)− sin(νϕ + ω)sin(Ω)cos(i))2

= cos2(νϕ + ω)cos2(Ω)− 2sin(νϕ + ω)cos(νϕ + ω)sin(Ω)cos(Ω)cos(i) + sin2(νϕ + ω)sin2(Ω)cos2(i)

N2 +D2 = cos2(νϕ + ω) + sin2(νϕ + ω)cos2(i)

(B.5)
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Next, the derivatives of N and D should be computed:

dN

dνϕ
=

d

dν
[cos(νϕ + ω)sin(Ω) + sin(νϕ + ω)cos(Ω)cos(i)]

= −sin(νϕ + ω)sin(Ω) + cos(νϕ + ω)cos(Ω)cos(i)

dD

dνϕ
=

d

dν
[cos(νϕ + ω)cos(Ω)− sin(νϕ + ω)sin(Ω)cos(i)]

= −sin(νϕ + ω)cos(Ω)− cos(νϕ + ω)sin(Ω)cos(i)

(B.6)

Which then becomes:
dN

dνϕ
D − dD

dνϕ
N = cos(i) (B.7)

Therefore, the derivative of the longitude function becomes:

dλ (νϕ)

dνϕ
=

dN
dνϕ

D − dD
dνϕ

N

D2 +N2
+

∆λ

2π
=

cos(i)

cos2(νϕ + ω) + sin2(νϕ + ω)cos2(i)
+

∆λ

2π

=
cos(i)

1− sin2(νϕ + ω) + sin2(νϕ + ω)(1− sin2(i))
+

∆λ

2π

=
cos(i)

1− sin2(νϕ + ω)sin2(i)
+

∆λ

2π

(B.8)

Combining the derivatives for the longitude and latitude:

−dλ (νϕ)
dνϕ

(
dϕ (νϕ)

dνϕ

)−1

= −
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)

= −

√
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(
cos(i)

1−sin2(νϕ+ω)sin2(i) +
∆λ
2π
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cos(νϕ + ω)sin(i)

(B.9)

Thus, The formula for the slope of the swath line is:

(
dϕ

dλ
(νϕ)

)
swath

= −

√
1− sin2(νϕ + ω)sin2(i)

(
cos(i)

1−sin2(νϕ+ω)sin2(i) +
∆λ
2π

)
cos(νϕ + ω)sin(i)

(B.10)
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