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Abstract
Dynamic programming languages (DPLs), such as Python
and Ruby, are often used for their flexibility and fast devel-
opment. The absence of static typing can lead to runtime
exceptions and reduced program understandability. To over-
come these problems, some DPLs have introduced optional
static typing. Because of the tedious effort of adding type
annotations to existing projects, different approaches have
been employed to generate type annotations. Static type in-
ference methods are sound in their suggestions, but the dy-
namic nature of DPLs, combined with insufficient satisfied
static dependencies, can cause imprecision. Other proposed
approaches used machine learning (ML)-based type inference
to predict type annotations. ML-based methods don’t have
the limitations of static type inference, however, their perfor-
mance depends on the training set’s quality and they cannot
guarantee type correctness because of their probabilistic tech-
niques. One of such ML-based inference approaches, is the
state-of-the-art Type4Py model. Type4Py suffers from some
of the same limitations of other learning-based approaches,
e.g. it cannot predict types outside of its pre-defined type
clusters. To this end, this paper presents hpredict, a
tool that combines type prediction of Type4Py’s pre-trained
model with static type inference. hpredict runs Type4Py’s
learning-based inference and static type inference on different
copies of type slots and combines the predictions from both
methods. Experiments on the test set of the ManyTypes4Py
dataset show that hpredict outperforms Type4Py signif-
icantly by 11% regarding Top-10 prediction. The findings
of this research, lend evidence that hpredict can increase
Type4Py’s general type prediction performance by employ-
ing static type inference as well.

1 Introduction
Dynamically typed programming languages (DPLs) have be-
come very popular in software development. In particular,
the dynamic programming language Python is ranked as most
popular by the IEEE Spectrum [9]. DPLs have some use-
ful features, for example, increased flexibility and fast pro-
totyping. However, the absence of static typing like lan-
guages can lead to problems as unforeseen exceptions during
run-time and reduced program understandability. To combat
these problems, some dynamically typed languages have in-

troduced optional static typing. Nevertheless, static typing
on existing projects requires manually adding type annota-
tions, which can be tedious [3]. Static type inference methods
can reduce this tedious effort by inferring part of the project’s
type annotations. Additionally, such methods can infer anno-
tations soundly when sufficient static dependencies are satis-
fied, which means that suggested type annotations are mostly
guaranteed to be type-correct. Still, the dynamic nature of
DPLs, such as allowing lists to contain differently typed el-
ements or dynamic evaluation, can be problematic for static
type inference methods. Some issues of static type inference
on DPLs include potential imprecision [7] and being rela-
tively slow.

Recently, researchers have developed a number of Machine
Learning (ML) based type inference models to predict types
for dynamic languages [1, 4, 8], based on type hints and fea-
tures extracted from the source files. It has been shown that
such approaches can be more precise than static type infer-
ence methods on DPLs [1, 8], although, the approaches’ per-
formance is dependent on the quality of the used training set.
One of these ML-based type inference models is the state-
of-the-art deep similarity learning-based hierarchical neural
network (HNN) model Type4Py [4], which can predict types
for variables, function arguments, and return values in Python
files.

However, Type4Py does have some limitations [4]. Firstly,
Type4Py cannot give sound predictions since it is a proba-
bilistic approach and not a static one, i.e. it provides type
predictions with various confidence scores instead of a guar-
anteed annotation. Secondly, it is not able to predict types
outside of its pre-defined type clusters, e.g. user-defined types
that have not been seen before.

To overcome the individual issues from static type infer-
ence and the ML-based type inference model Type4Py, this
paper presents hpredict, which combines the type pre-
diction of Type4Py’s pre-trained model with static type in-
ference from the Pytype tool [13]. hpredict is supposed
to utilize the strengths of both ML-based type inference and
static type inference methods, while reducing the effects of
both strategies’ limitations. This paper aims to answer if the
general type prediction performance of Type4Py can be im-
proved if combined with static type inference, i.e. in the form
of hpredict, using the original dataset ManyTypes4Py [5].

This main research question is divided into two sub-



questions that will be answered. Namely:

• Sub-RQ1: How does Type4Py perform compared to the
static type inference tool Pytype?

• Sub-RQ2: How does hpredict perform compared to
Type4Py alone?

The experiments’ results show that hpredict outper-
forms Type4Py with a margin of 11%.

All in all, this paper makes the following contributions:

• hpredict, which stands for hybrid predict, a combi-
nation of Type4Py’s ML-based type prediction and Py-
type’s static type inference that can predict type annota-
tions for Python code.

• Empirical evidence that hpredict increases
Type4Py’s general type prediction performance.

The rest of this paper is structured in the following way.
In Section 2, related work is discussed. Moreover, in section
3, the study’s methodology is described. The setup of the
evaluation are presented in Section 4. Furthermore, Section
5 gives the results of the evaluation. This study’s approach
to Responsible Research is outlined in Section 6. Section 7
discusses the achieved results. Finally, conclusions and direc-
tions for future work are given in Section 8.

2 Related Work
Static type inference for Python: Since the introduction of
type hints to Python, multiple static type checkers and type
inference tools have been released for Python. These include
static type checker MyPy [11] and the tools Pytype [13],
PyRight [12], and Pyre [14], that can perform both static
type checking and type inference. As mentioned earlier, such
static type inference approaches can be imprecise on DPLs.

ML-based type inference: In 2019, Malik et al. [3] presented
NL2Type, which is a model based on neural networks that
can predict type annotations for JavaScript functions. To do
this, it makes use of natural language information found in
source code.

Inspired by NL2Type, Pradel et al. [8] proposed Type-
Writer. The TypeWriter model is based on hierarchical deep
neural networks that can infer type annotations for Python
code. For the inference, it utilizes not only natural language
information, but also code context. Additionally, TypeWriter
performs combinatorial search strategies and an external type
checker to confirm its predictions.

These works use small and fixed-size type vocabularies,
which can result in problems in inferring user-defined and
rare types. To address this, Allamanis et al. [1] proposed Typ-
ilus, which is a graph-based neural network model. Typilus
makes use of things like identifiers, syntactic patterns, and
data flow to infer types for Python. Typilus has been shown
to outperform models with small type vocabularies.

However, as outlined by Mir et al. [4], the discussed
works have a couple of drawbacks. Firstly, the neural mod-
els are trained and evaluated on datasets containing non-type-
checked developer-given type annotations. This can be prob-
lematic for obtained model results because these annotations

are not guaranteed to be correct. Secondly, the discussed
works have decent performance for predictions being in the
Top-10 suggestions, whereas a focus on Top-1 can be more
effective for developers as they tend to pick a tool’s first pre-
diction [6].

Considering the mentioned drawbacks of some tools, Mir
et al. [4] proposed the Type4Py model. Type4Py is based
on a deep similarity learning-based hierarchical neural net-
work (HNN) model, which can differentiate between differ-
ent types by linking Python programs to high-dimensional
type clusters. Type4Py is trained on a large type-checked
dataset [5], which enables it to work with large type vocab-
ularies. Yet, Type4Py has some limitations such as not be-
ing able to provide sound type predictions and not being able
to predict types outside of its pre-defined type clusters, e.g.
generated types like List[List[Tuple[int]]]. In [4],
Type4Py has been shown to achieve an MRR of 77.1%, out-
performing Typilus and TypeWriter by 8.1% and 16.7%, re-
spectively.

Very recently, researchers developed hybrid type infer-
ence approach, called HiTyper [2]. HiTyper works with type
dependency graphs (TDGs) that record type dependencies
among variables. Static type inference is largely used to infer
the gaps in the TDG. For types that cannot be statically in-
ferred, HiTyper accepts recommendations from deep learning
type inference models. Wrong predictions on a TDG are re-
moved by building and using a series of type rejection rules,
after which static type inference is performed again on re-
maining correct type predictions. The researchers outline a
benefit of this approach being that the static type inference
rules are insensitive to type frequencies, which overcomes the
ML-models’ issue with predicting rare type annotations.

As a hybrid type inference approach, HiTyper combines
static type inference with type inference from ML-based
models. In concept, this is similar to this research’s topic.
However, this research specifically centers around improving
the general type prediction performance of Type4Py by com-
bining its type inference with static type inference in a hybrid
manner.

3 Methodology
This section discusses the proposed approach for solving the
two research sub-questions presented earlier. Firstly, in Sec-
tion 3.1, an outline is given for the pipeline developed for an-
swering sub-RQ1. Secondly, Section 3.2 details the changes
made to the pipeline to include hpredict and its evalua-
tion.

3.1 Sub-RQ1
For the first sub-question, the pipeline consists of two sub-
pipelines that are run independently from each other. Namely,
a sub-pipeline for Type4Py and another one for static type
inference (STI), as can be seen in the overview in Figure 1.

The pipeline starts by going through the processed JSON
files of ManyTypes4Py [5]. The JSON files include tags that
classify source files as either train, validation, or test files.
The dataset’s test set is recreated by selecting all source files
that are classified as test files. After this process, Many-
Types4Py’s test set contains projects (repositories) containing



a number of Python source files. Two copies of the result-
ing test set are created, where each sub-pipeline uses another
copy.

The Type4Py sub-pipeline receives its copy of the test set
and starts by handing it to its first component. This part of
the pipeline performs type annotation prediction by calling
the Type4Py API on each of the test set’s source files. Errors
can occur if Type4Py reaches a timeout or if the source file
contains type mistakes. Such errors are logged and then the
process continues with the next source file. Consequently,
the Type4Py API’s returned JSON objects are formatted to
have a similar structure to the output of the static type in-
ference pipeline. This last step produces a JSON file per
Python project (repository) containing type annotation pre-
dictions for each of the project’s files.

Similarly to the Type4Py pipeline, the static type inference
pipeline starts after receiving its copy of the test set. In its first
component, pre-existing type annotations are removed from
the received source files. This step is performed because Py-
type appeares to only infer types for expressions without pre-
existing annotations. Performing type annotation removal on
the test set’s source files, results in a type annotation cover-
age of 24%, which should actually be 0%. The reason was
found to be 11,790 files (see Table 1) without type slots but
with non-zero coverage. To overcome this issue, source files
with non-zero coverage are logged and ignored in the remain-
der of the static type inference pipeline. After type annota-
tion removal, static type inference is performed by Pytype on
the unannotated projects’ source files. During this process,
Pytype creates pyi files that contain its suggested type an-
notations per source file. Next, the inferred type annotations
from the pyi files are merged back into the respective Python
source files. Measuring the type annotation coverage gives
43%, which is a coverage improvement of 19% from the orig-
inal test set. Lastly, the annotated source files are passed to
the LibSA4Py [10] tool’s extraction functionality, which pro-
duces JSON analyses of a project’s Python files. If any errors
are encountered while removing annotations, running static
type inference, applying the inferred types, or performing ex-
traction, then the error is logged and the process continues
with the next source file.

In the pipeline’s next step, the JSON files from both sub-
pipelines are merged into new JSON objects. Since all JSON
files have a similar structure by now, Type4Py’s predictions
and Pytype’s suggestions can be combined in the following
way. First, an intersection is taken of both tools’ JSON file
names to avoid the processing of projects without inferred
types from both Type4Py and Pytype. This is done because
errors could have occurred in different components of the two
sub-pipelines that prevented files or entire projects from be-
ing processed. Next, the source file paths in Type4Py’s JSON
files are iterated over while it is checked if the file path ex-
ists in Pytype’s JSON file. If this is the case, then vari-
ables, parameters, and return values are considered among
all global variables, functions, and classes in the Type4Py an-
alyzed source file. During this process, for every variable,
parameter, and return value, it is checked if both developer-
provided type annotations (ground truth) and a Pytype sug-
gestion exist for the type slot. If so, then Pytype’s suggestion

Table 1: Dataset characteristics at different stages of the pipeline

Metrics in pipeline stage Amount

Projects before running pipeline 5,203
Projects in test set 3,296
Test files 57,783
... after type annotation removal 57,743
...... with non-zero type coverage 11,790
Processed projects after STI pipeline 4,354
Processed projects after Type4Py pipeline 4,086
Processed projects before merging JSON files 4,086
Type slots before evaluation 9,329
Type slots evaluated for Type4Py and Pytype 8,870
Type slots evaluated for hpredict 8,901
No ground truth during evaluation 699,074
No Pytype inferred type during evaluation 109,007

is added as a new JSON entry along with Type4Py’s predic-
tions. If either ground or Pytype’s suggestion is not available,
then the expression and file path are logged and processing
continues with the next type slot. This way, inconsistencies
are avoided and both tools are evaluated on predictions for
the same type slots. In this process, new JSON files are cre-
ated, where each file contains a list of JSON objects. The
JSON objects include the ground truth, whether or not ground
truth is a base type, the prediction task (variable, parameter,
or return value), Type4Py’s predictions, and Pytype’s sugges-
tions for type slots. The format of the JSON files largely fol-
lows Type4Py’s output format to mostly stay compatible with
Type4Py’s evaluation functionality.

Finally, the evaluation functionality of Type4Py is ex-
tended to enable processing of Pytype’s suggested type an-
notations as well, which is done by also keeping track of cor-
rect predictions for Pytype. During evaluation, the ground
truth, Type4Py’s predictions, and Pytype’s suggestion are
transformed to be correctly comparable. This transforma-
tion is done by performing three steps. First, types are made
consistent by converting fully qualified names (like typ-
ing.List) to a base name by removing the prefix (in this
example typing.). Second, in the case of ground truth, it
is checked to be neither Any nor None because evaluation
of such cases is not useful. Third, resolving of a type alias
is performed on the consistent type, which is done to prevent
different type aliases for the same type to be incorrectly com-
pared to each other. Evaluation is performed for every type
slot by iterating over the list of JSON objects and separately
evaluating Type4Py’s predictions and the single Pytype sug-
gestion. This way, the performance of each tool is computed
separately on ManyTypes4Py’s test set.

Characteristics of the dataset at various stages of the sub-
pipeline can be found in Table 1, where one can see a de-
creasing number of files, projects, etc. in next stages due to
occurred errors.

3.2 Sub-RQ2
In the pipeline for sub-RQ2, a new encapsulating component,
i.e. hpredict, is added that combines Type4Py’s prediction



Figure 1: Pipeline overview for research sub-question 1

functionality with Pytype’s static type inference. Similarly
to the pipeline for sub-RQ1, two different copies of Many-
Types4Py’s test set are used, which are required by hpre-
dict for running the two sub-pipelines. In Figure 2, the
pipeline overview for sub-RQ2 is presented.

The first component of this pipeline is identical to the one
discussed for sub-RQ1. Namely, it goes through the pro-
cessed JSON files and produces ManyTypes4Py’s test set.
Once again, the test set is copied and the two copies are
passed to the next step.

Next, in hpredict, the two test set copies are used in-
ternally to run both sub-pipelines. The two sub-pipelines are
identical to the ones presented in Section 3.1. To summarize,
test set copies are used as input, after which hpredict runs
these these sub-pipelines to produce each tool’s predictions
in the form of JSON files.

Afterward, the pipeline differs from sub-RQ1’s, starting
from the Merging & combination of type annotations step.
In this component, for type slots that have ground truth and a
Pytype suggestion available, Pytype’s suggested type is added
to Type4Py’s list of predictions. This is different from sub-
RQ1’s approach, where new Pytype entries are created next
to Type4Py’s predictions for type slots that have ground truth.

Type4Py’s predicted annotations for a type slot are sorted
by their confidence score, i.e. a value between 0 and 1.0 rep-
resenting Type4Py’s confidence in the prediction. Since Py-
type performs static type inference, its suggestions are guar-
anteed to be type-correct, as opposed to Type4Py’s proba-
bilistic predictions. This means that Pytype’s inferred types
can be considered to have a full confidence score of 1.0. As
1.0 is the highest possible confidence score, Pytype’s sugges-
tion is placed at the head of Type4Py’s prediction list during
the merging step. Using this approach, the merging compo-
nent of hpredict produces files containing lists of JSON
objects. The JSON objects hold ground truth, whether or not
ground truth is a base type, the prediction task, and Type4Py’s
list of predictions, prepended with Pytype’s suggestion. This
format of the JSON objects is almost entirely compatible with
Type4Py’s original evaluation implementation.

Lastly, the resulting JSON files are passed to a version of
Type4Py’s original evaluation function, which is modified by
adding the transormation of types discussed in the last sec-
tion. For sub-RQ2, evaluation is performed on the lists of
combined predictions to compute the performance of hpre-
dict. This determined performance can then be compared

to Type4Py’s or Pytype’s single performance from sub-RQ1.

4 Evaluation Setup
This section presents the baseline tools for performance com-
parison, hpredict’s implementation details, and the evalu-
ation metrics to measure the tools’ performance.

4.1 Baseline tools
hpredict is compared with the deep similarity learning-
based HNN-model Type4Py [4] and static type checking and
inference tool Pytype [13].

Regarding the static inference tool, there are a couple of
alternatives to Pytype that were considered. Namely, Pyre
[14] and Pyright [12]. For this research, the runtime should
not be too high and the inference tool should be able to in-
fer types for variables, parameters, and return values. Pyright
and Pyre both claim to be fast and meant for large code bases,
which seems like a good fit for ManyTypes4Py [5]. However,
a problem with Pyre is that, at the moment, it only infers types
for variables, which is not sufficient as inference for parame-
ters and return values are also needed. Regarding Pyright, it
was not used because it couldn’t be well integrated into the
static type inference pipeline. Pytype didn’t seem to have this
problem, although, Pytype is described to slow down notica-
bly once a source file is larger than approximately 1,500 lines.
Because of the significant size of the ManyTypes4Py dataset
(see Table 1), this was a potential deal-breaker. However, dur-
ing experiments it was found that most source files in Many-
Types4Py’s test set were being processed relatively quickly
when using multiprocessing. All in all, relative ease of Py-
type’s integration into the pipeline and its sufficient speed are
why Pytype is used as static type inference tool for this re-
search.

4.2 Implementation details
hpredict and its internal Type4Py and static type infer-
ence sub-pipelines are mostly implemented in Python 3 and
its ecosystem. A minor part of the system is implemented
in bash scripts, e.g. for running static type inference on
a project or applying inferred types to Python source files.
Regarding Type4Py and Pytype, their public implementa-
tion is used from GitHub [13, 15]. Multiple components
of the pipeline like type annotation removal, static type in-
ference, type annotation application, and Type4Py prediction



Figure 2: Pipeline overview for research sub-question 2

are parallelized using the parallel execution functionality of
LibSA4Py [10], which itself uses the joblib package. An-
other use of LibSA4Py regards type annotations are removed
from Python source files. The Type4Py API is used in a local
form using a Docker image. Lastly, information is extracted
from JSON objects using the jq package.

All experiments were performed on a computer running a
Linux operating system (Ubuntu 18.04.5 LTS).

4.3 Evaluation metrics

In evaluation of Type4Py, Pytype, and hpredict, some of
the metrics and general approach used by Mir et al. [4] are
followed in this research. Some of the same evaluation met-
rics are used to ensure that the results of this study can be
compared to those of Type4Py. Type predictions are evalu-
ated for variables, function parameters, and return values.

Comparison of type prediction from Type4Py or Pytype
with ground truth is performed using the Exact Match and
Base Type Match criteria originally proposed by Allamanis
et al. [1]. In Exact Match, two types have to be exactly the
same for a match to exist. Base Type Match is more lenient as
it only matches base types and ignores type parameters, e.g.
int is ignored in List[int].

As evaluation metric, the Top-n metric is used, which clas-
sifies a prediction as correct if one of the n predictions with
highest probability is true. For this study, Top-1 and Top-
10 are used as evaluation metrics. Top-1 is used to enable
comparison between Pytype and Type4Py since Pytype gives
only one suggestion per type slot. Top-10 is used to compare
hpredict’s type prediction performance with Type4Py’s.
Unlike Mir et al. [4], this research does not use Mean Recip-
rocal Rank (MRR@n), as an evaluation metric. MRR@n is
not used for two reasons. First, Pytype infers only one type
per type slot, which means that MRR@1 would be equivalent
to the Top-1 metric. Second, in hpredict, Pytype’s sug-
gestion is prepended to Type4Py’s list of predictions, which
makes MRR@n unsuitable in this case. MRR@n might be-
come usable with a kind of normalization of the prediction,
but this is outside the scope of this study’s research questions.

Finally, like in the evaluation methodologies of Mir et al.
[4] and Allamanis et al. [1], types are considered ubiquitous
if the type is in str, int, list, bool, float,

5 Evaluation Results
In this section, the evaluation results are outlined for both re-
search sub-questions. Sections 5.1 and 5.2 discuss the results
for sub-RQ1 and sub-RQ2, respectively.

• Sub-RQ1: How does Type4Py perform compared to the
static type inference tool Pytype?

• Sub-RQ2: How does hpredict perform compared to
Type4Py alone?

5.1 Performance of Type4Py vs. Pytype (sub-RQ1)
In this subsection, Type4Py’s type prediction performance is
compared to that of Pytype.

Method: The local Type4Py API and Pytype are used to
perform type prediction for the Python source files from
ManyTypes4Py’s [5] test set. Both tools’ inferred type
annotations are evaluated by considering their Top-1 and
Top-10 predictions, respectively. For this research question,
type predictions for variables, function parameters, and
return values are taken into account.

Results: Tables 2 and 3 show the overall performance when
considering Top-1 for Pytype and Top-1, 10 for Type4Py. Re-
garding Top-1 prediction, Pytype outperforms Type4Py based
on the Exact Match and Base Type Match of all types. At the
Top-1 prediction, Pytype performs better than Type4Py with
a margin of 5.1% and 13.8% for Exact Match and Base Type
Match, respectively. The only case for which Type4Py per-
forms better than Pytype, is predicting types for ubiquitous
types in Exact Match, where Type4Py performs 4.3% bet-
ter. It should be noted that Type4Py’s results are significantly
lower than the ones found by Mir et al. [4].

5.2 Performance of hpredict (sub-RQ2)
In this subsection, hpredict’s type prediction performance
is compared to that of Type4Py and Pytype.

Method: Similar to sub-RQ1, the local Type4Py API and
Pytype are used to perform type prediction for the Python
source files from ManyTypes4Py’s [5] test set. However,
now the sub-pipelines are encapsulated by hpredict
alongside modified pipeline components for merging JSON
files and performing evaluation. hpredict’s inferred
type annotations are evaluated by considering its Top-1 and



Table 2: Performance evaluation of neural model Type4Py

Top-n prediction Metrics %

Top-1

Exact Match All 21.8
Exact Match Ubiquitous 54.1
Exact Match Common 5.8
Exact Match Rare 0.1
Base Type Match All 24.9
Base Type Match Common 12.9
Base Type Match Rare 3.7

Top-10

Exact Match All 32.1
Exact Match Ubiquitous 73.5
Exact Match Common 18.0
Exact Match Rare 0.6
Base Type Match All 39.9
Base Type Match Common 37.0
Base Type Match Rare 9.3

Table 3: Top-1 performance evaluation of Pytype

Top-n prediction Metrics %

Top-1

Exact Match All 26.9
Exact Match Ubiquitous 49.8
Exact Match Common 18.7
Exact Match Rare 9.7
Base Type Match All 38.7
Base Type Match Common 45.9
Base Type Match Rare 23.7

Top-10 predictions, respectively. Like for sub-RQ1, type
predictions for variables, function parameters, and return
values are taken into account.

Results: Table 4 shows hpredict’s overall performance
when considering Top-1 for Top-10. These results are com-
pared with Type4Py and Pytype’s results in Tables 2 and 3,
respectively.

Regarding Top-1 prediction, it can be seen that hpredict
is approximately matching Pytype’s performance for Exact
match and Base Type Match. For most of these cases, it per-
forms the same as Pytype, and for the other ones, it performs
around 0.1% better or worse. In comparison with Type4Py,
hpredict outperforms Type4Py based on the Exact Match
and Base Type Match of all types with a margin of 5.0% and
13.8% for all types, respectively. This is almost identical to
Pytype’s performance in sub-RQ1.

For Top-10 prediction, one can see much more notable dif-
ferences between the tools’ performances. hpredict out-
performs Type4Py in every case. For Exact Match of all
types, hpredict outperforms Type4Py with a significant
margin of 11.0%. Breaking it down, shows that hpredict
outperforms Type4Py on rare types with a margin of 9.5% on
the low end and on common types Type4Py is outperformed
by 13.3% on the high end. For Base Type Match, the differ-
ences are more notable. Namely, for all types, hpredict
outperforms Type4Py with a margin of 19.2%. When break-
ing it down for the different types, one can see that Type4Py

Table 4: Performance evaluation of hpredict

Top-n prediction Metrics %

Top-1

Exact Match All 26.8
Exact Match Ubiquitous 49.8
Exact Match Common 18.7
Exact Match Rare 9.6
Base Type Match All 38.7
Base Type Match Common 45.8
Base Type Match Rare 23.8

Top-10

Exact Match All 43.1
Exact Match Ubiquitous 84.9
Exact Match Common 31.3
Exact Match Rare 10.1
Base Type Match All 59.1
Base Type Match Common 67.8
Base Type Match Rare 29.2

is outperformed by 30.8% on common types and 19.9% on
rare types, respectively.

6 Responsible Research
During this research, significant effort has been spent on per-
forming the experiments responsibly, honestly, and transpar-
ently.

The topic of this research hasn’t required any direct in-
volvement of other people or their data. For example, nei-
ther human participation was needed nor private data was
collected. The only data used in the research is in the form
of the ManyTypes4Py [5] dataset. ManyTypes4Py is con-
structed from public GitHub repositories, which should avoid
any potential problems with developers’ private information
or using work without consent.

Regarding the implementation of hpredict and its in-
ternal sub-pipelines, all of it is located on a private GitHub
repository of the Software Analytics Lab at TU Delft. If
and/or when this organization wants to make this repository
public, then the implementation should be accessible and us-
able for other experiments.

In Section 3, the approach is discussed for both of this
study’s research questions. This discussion has been made
as detailed as possible to (along with a potential public im-
plementation) ensure reproducibility and verifiability of the
used methodology.

7 Discussion
Based on the entire study’s process there are a number of
noteworthy remarks to be discussed.

• During experimentation, it was found that Pytype tends
to sometimes add additional classes and/or functions in
eiter the static inference or type annotation application
step. It is not clear why and in which step exactly this
can happen.

• In Section 3.1, it was mentioned that after static type
inference by Pytype, type annotation coverage of the
test set arrived at 43%. ManyTypes4Py [5] contains two



kinds of datasets, namely, one is the original one and the
other is augmented with additional type annotations us-
ing the Pyre [14] tool. In this study, the original (unaug-
mented) dataset was used to start with, however, because
of time limitations, it was not possible to change over to
the augmented dataset.

• In Section 5, Pytype’s static type inference has been
found to be valuable in improving the ML-based type in-
ference of Type4Py. However, perhaps other static type
inference tools could perform better for hpredict (in
certain cases), but his has not been researched yet.

• As can be seen in Table 1, a significant number of files
and projects have been left out between stages of the
pipeline due to errors. A lot of the errors were caused by
programming mistakes in ManyTypes4Py’s source files.
It might be possible to somehow create fixed versions of
these files before running the system, which could save
more files and projects for type prediction and evalua-
tion. This could possibly lead to more reliable evalua-
tions of the tools’ performances.

• In Section 5.1, it was mentioned that the determined
performance of Type4Py is significantly lower than that
found by Mir et al. [4]. For Top-10 Exact Match on
all types, the difference amounts to 43.7%. It could
possibly be that the ManyTypes4Py dataset has changed
somewhat between both experiments, which can explain
relatively small differences in performance, but 43.7%
is so high that it seems highly improbable to be caused
by (a relatively small number of) changes to the dataset.
It is reasonable to think that there could be mistakes in
the modified evaluation functionality used to determine
the tools’ performance. Namely, before transforming
types (see Section 3.1), performance of the tools was
almost non-existent. It could be that some other mis-
takes were overlooked in the evaluation’s implementa-
tion, specifically in the transformation and comparison
of types, which might have decreased performance sig-
nificantly for all evaluated tools. If this is true, then the
performance of each tool could actually be substantially
higher than what was found this in this study. However,
since the evaluation was the same for each tool, the dif-
ferences in performance between the tools should still
be relatively reliable.

• Given the results of sub-RQ1, Pytype was found to be
more effective than Type4Py in most cases for Top-
1. Of course, some of these results could be caused
by faulty evaluation, however, for some cases it could
be expected that Pytype outperforms. Namely, rare
types or more difficult types such as Dict[str, Op-
tional[List[int]]] will less likely be inferred by
Type4Py since these types might not exist in its type
clusters, while Pytype’s static type inference might be
more successful. The only case where Type4Py per-
forms better than Pytype, is in Exact Match on ubiqui-
tous types. This could be explained by ML-based in-
ference models’ generally good prediction of ubiquitous
types since their training sets probably contain a large
number of such types.

• hpredict’s performance was found to approximately
match that of Pytype for Top-1 predictions (sub-RQ2).
It could be expected that hpredict’s should at least
perform as well as Pytype since it uses Pytype internally
and has its suggestion in its list of predictions. The 0.1%
difference between the two tools could be caused by po-
tential mistakes in evaluation since, for Top-1, hpre-
dict should perform the same as Pytype. During eval-
uation, only the first inferred type is considered for Top-
1 and since Pytype’s suggestion is prepended to hpre-
dict’s list of predictions, it should evaluate like Pytype.
Still, even with the 0.1% difference, both tools evaluate
almost identically, which does support the above reason-
ing.

• Regarding Top-10, hpredict outperforms Type4Py
significantly. Namely, for Exact Match on all types,
Type4Py is outperformed by 11%. This significant im-
provement could possibly be explained by hpredict’s
combination of Type4Py and Pytype’s static type in-
ference. In cases where Type4Py’s learning-based ap-
proach could struggle, e.g. rare types, static type infer-
ence could provide hpredict with better predictions
than Type4Py. The biggest performance improvement
(30.8%) can be found in Base Type Match on common
types. This might be caused by the combined predictions
of Type4Py and Pytype, where there could be more often
a correct type prediction from hpredict.

8 Conclusions and Future Work
The overarching research question of this paper has been
if the general type prediction performance of Type4Py can
be improved if combined with static type inference, i.e. in
the form of hpredict, using the original dataset Many-
Types4Py [5].

To this end, this paper makes the two contributions. First,
hpredict, which stands for hybrid predict, which com-
bines Type4Py’s type prediction functionality with Pytype’s
static type inference to predict type annotations for Python
code. And second, empirical evidence that hpredict can
increase Type4Py’s general type prediction performance by
using static type inference.

To answer this question, it was split in the following sub-
questions:

• Sub-RQ1: How does Type4Py perform compared to the
static type inference tool Pytype?

• Sub-RQ2: How does hpredict perform compared to
Type4Py alone?

For sub-RQ1, it was found that Pytype outperforms
Type4Py in most cases. Regarding Top-1 prediction, Pytype
outperformed Type4Py with a margin of 5.1% and 13.8% for
Exact Match and Base Type Match, respectively. Because of
the large difference in evaluated performance of Type4Py be-
tween this study and Mir et al. [4], it is suspected that the used
evaluation implementation could contain some mistake(s).

For sub-RQ2, regarding Top-10, it was found that hpre-
dict outperforms Type4Py significantly by 11% on all types



and Exact Match. Moreover, hpredict was found to ap-
proximately match Pytype’s performance for Top-1 predic-
tion.

To answer the main research question, it appears that
Type4Py’s type prediction performance indeed can be im-
proved when combined with static type inference in the form
of something like hpredict. Namely, an improvement of
11% was found over Type4Py’s purely learning-based ap-
proach. It appears that when Type4Py’s learning-based ap-
proach is combined with static type inference, the approaches
complement each other with their strenghts and reduce each
others’ weaknesses to some extent.

During this study, a couple of new research questions arose
that could be worked on next.

• Sub-RQ3: What combination strategy, i.e. the way Py-
type’s suggestion is added to Type4Py’s list of predic-
tions, maximizes hpredict’s performance?

• Sub-RQ4: Can an incremental combination of Type4Py
and Pytype lead to better type prediction performance?
Here incremental, means running one tool after the other
on the same source files for some amount of time.

For future work, there may be a couple of noteworthy
things. First, one could look into running the pipeline on
ManyTypes4Py’s augmented dataset instead of the original
one. With the augmented dataset, a higher type annotation
coverage could be achieved for the original test set, thus pro-
viding a static type inference tool like Pytype with more type
information, which could potentially result in different find-
ings.

Furthermore, one could research other static type inference
tools and their performance to check if another tool is more
suitable than Pytype.

It is important to also look into the implemented evaluation
functionality since it might contain some mistakes that are
impacting the results significantly. If any changes are made or
mistakes are removed, then evaluation should be performed
again to gain new reliable results. Additionally, if possible,
it would be useful to run the evaluation of Mir et al. on the
current ManyTypes4Py test set. This way, the results can be
double-checked in comparison with this study’s findings.

Lastly, it could be beneficial to make sure whether or not
parts of the pipeline can be improved to increase things like
efficiency and/or type prediction performance.
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