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 A B S T R A C T

This study develops a probabilistic model, a Gaussian copula-based Bayesian Network (BN), to explain the 
joint probability distribution of the dimensionless mean wave overtopping discharge (𝑄 = 𝑞∕

√

𝑔𝐻3
𝑚0, being 

𝑞 the mean wave overtopping discharge, 𝑔 the gravity acceleration and 𝐻𝑚0 the spectral significant wave 
height) and a set of explanatory variables on mound breakwaters. This model estimates the distribution of 𝑄
conditional to the values of (all or some of) the explanatory variables. The goal of this model is to allow the 
incorporation of the uncertainties of the structural response and the overtopping phenomenon to probabilistic 
frameworks. Given a tolerable 𝑄 value, a probability of failure can be directly computed from the distribution 
of 𝑄 estimated by the developed BN, differently to current methods in the literature which are deterministic. 
To develop the BN, a subset of CLASH database focused on mound breakwaters is used (3,179 tests), using 
80% of those tests for training and 20% for statistical and performance testing. Ten dimensionless explanatory 
variables are selected with the following experimental ranges: bottom slope, 7.6 ≤ 𝑚 ≤ 1000; wave attack 
angle, 0 ≤ 𝛽 ≤ 80◦; roughness factor, 0.38 ≤ 𝛾𝑓 ≤ 1.00; dimensionless crest freeboard, 0 ≤ 𝑅𝑐∕𝐻𝑚0 ≤ 4.37; 
wave steepness, 1.31 ⋅ 10−3 ≤ 𝑠−1,0 ≤ 0.069; dimensionless width of the crest berm, 0 ≤ 𝐺𝑐∕𝐻𝑚0 ≤ 6.67; 
dimensionless height of the crest berm, 0 ≤ 𝐴𝑐∕𝐻𝑚0 ≤ 4.2; dimensionless width of the crest of the toe berm, 
0 ≤ 𝐵𝑡∕𝐻𝑚0 ≤ 15.9; dimensionless water depth at the toe of the structure, 1.03 ≤ ℎ∕𝐻𝑚0 ≤ 17.6; and armor 
slope, 1.19 ≤ 𝑐𝑜𝑡𝛼 ≤ 4. Empirical cumulative distribution functions are used to quantify the nodes of the BN. 
The Gaussian copula assumption is successfully validated using the training subset. The proposed model is 
evaluated using the testing subset in both statistical and performance terms. In statistical terms, the proposed 
model seems to satisfactorily capture the dependence structure between the studied variables. In performance 
terms, the predicted mean of the distribution of 𝑄 is a reasonable estimator of 𝑄 (𝑅2 = 0.78) and the percentage 
of the observations that lay within the predicted 90% confidence intervals is close to the expected 90%. Finally, 
the use of the model for the probabilistic design of the crest elevation of mound breakwaters is also illustrated 
through one example. It should be noted that the less information provided to the model, the wider the 
estimated distribution of 𝑄 as the uncertainty is higher.
1. Introduction

Ports are essential components of the global supply chain, playing 
a vital role in economic activities such as international trade and 
logistics (Haralambides, 2017). Ports are typically located in low-lying 
coastal areas, where they are exposed to a range of natural hazards, 
including storm surges, wave storms, and sea level rise (Verschuur 
et al., 2023; Lucio et al., 2024). To guarantee safe and continuous 
operations within these environments, coastal protection structures, 
such as mound breakwaters, are fundamental. In response to increas-
ing environmental uncertainties and the need for optimized resource 
allocation, the design of coastal structures is progressively shifting 

E-mail address: p.maresnasarre@tudelft.nl.

from traditional deterministic approaches to probabilistic design frame-
works (e.g.: ROM:0.0-01, 2001; ROM:1.0-09, 2009), which better ac-
count for the aleatoric uncertainty in loading conditions. Although 
various frameworks in the literature focus on the probabilistic mod-
eling of environmental loadings (e.g.: Lucio et al., 2020, 2024), rela-
tively few studies provide approaches to account for the uncertainty in 
the structural response of coastal defenses (e.g.: Mares-Nasarre et al., 
2024b).

Wave overtopping is a stochastic process that results of the inter-
action of individual waves with the mound breakwater which, after 
suffering a number of transformations, may overtop. Specifically for 
mound breakwaters, wave energy transforms when interacting with the 
https://doi.org/10.1016/j.coastaleng.2025.104792
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structure by being transmitted through the breakwater via overtopping 
and flow through the porous medium, and dissipated through wave 
breaking on the seaward slope and crest of the structure, and turbulent 
flow and friction inside the porous medium (Clavero et al., 2020). 
These processes are influenced by a large number of uncertain variables 
in practice, such as the porosity and placement of the elements in 
the core, filters, and armor, or the geometry of the overall structure 
and the different layers that compose the mound breakwater, between 
others (Medina et al., 2014; Díaz-Carrasco, 2023). During the design 
phase of a mound breakwater, the tolerable mean wave overtopping 
discharge (𝑞) is usually the applied criterion to determine the crest 
elevation of mound breakwaters. 𝑞 is then used as a representative vari-
able of overtopping that aims to summarize the result of a stochastic 
process (individual waves in a wave storm) interacting with the mound 
breakwater with a number of uncertainties.

Numerous methods to estimate 𝑞 can be found in the literature, from 
empirical equations (e.g.: EurOtop, 2018; Molines and Medina, 2016) 
to numerical models (e.g.: Irías Mata and van Gent, 2023; Molines et al., 
2019) and machine learning algorithms (e.g.: den Bieman et al., 2021; 
Carro et al., 2024). To the author’s knowledge, all the reported methods 
are of a deterministic nature. However, Romano et al. (2015) already 
reported wave overtopping as a highly uncertain phenomenon as 𝑞 can 
vary by up to an order of magnitude for different time series realiza-
tions from the same wave spectrum. In order to account for the natural 
variability of 𝑞, methods in the literature quantify confidence intervals 
based on observed errors in a limited set of observations (Mares-
Nasarre et al., 2020; Molines and Medina, 2016), Gaussian-distributed 
parameters in empirical equations (EurOtop, 2007, 2018), or ensembles 
of models built using a bootstrap strategy (van Gent et al., 2022; den 
Bieman et al., 2021). Although these confidence intervals provide an 
estimate of the observed error, they have two main limitations. First, 
they do not quantify the distribution of 𝑞. Therefore, the provided 
estimations of 𝑞 cannot be embedded into a probabilistic design frame-
work which accounts for the uncertainty in the structural response and 
provides with a probability of failure as a result. Second, the provided 
percentiles are only based on the value of 𝑞, not accounting for the 
influence of the explanatory variables on the distribution of 𝑞. This 
is, two situations with a comparable predicted value of 𝑞 by a deter-
ministic method can be caused by different situations. For instance, a 
more extreme wave storm with oblique wave attack and a milder wave 
storm with perpendicular wave attack on the same structure can have a 
similar predicted 𝑞. However, the distribution of 𝑞 can be significantly 
different; the situation with a more extreme wave storm can lead to 
a more asymmetrical distribution of 𝑞 with a longer right tail due to 
the higher uncertainty in the more extreme waves in the wave storm 
and, thus, a different probability of failure. Therefore, tools capable of 
estimating the distribution of 𝑞 as function of the explanatory variables 
are needed to capture the stochastic nature of overtopping and improve 
the design of mound breakwaters under wave attack.

Copula-based models are widely used to model uncertainty in 
the literature (e.g.: Leontaris et al., 2016; Torres-Alves and Morales-
Nápoles, 2020; Mares-Nasarre et al., 2024a). Specifically in the Coastal 
Engineering field, they have been applied to model the joint probability 
distribution of wave height and period (Antão and Guedes Soares, 
2014; Jaeger and Morales-Nápoles, 2017) or the dependence between 
the hydrodynamic variables of wave overtopping on mound breakwa-
ters (Mares-Nasarre et al., 2024b), between other applications. Within 
the existing copula-based models, Gaussian copula-based Bayesian 
Networks (BNs) (Kurowicka and Cooke, 2004; Hanea et al., 2006; 
Hanea et al., 2010, 2015) are gaining popularity as they enable the 
definition of joint distributions in high-dimensional spaces, combining 
the flexibility of copulas with efficient computations made possible by 
the Gaussian copula assumption. Examples of application of BNs range 
from the joint distribution of wind and wave variables (Mares-Nasarre 
et al., 2023) to the characterization of the variability of the corrosion 
depth in the elements of a steel bridge (Barros et al., 2024).
2 
This study proposes a probabilistic model, a BN, to describe the 
joint probability distribution of 𝑞 and a number of explanatory vari-
ables on conventional mound breakwaters based on part of CLASH 
database (CLASH database, 2005). Thus, the main contribution of this 
paper is the development of a probabilistic model based on Gaussian 
copulas capable of estimating the distribution of 𝑞 given a number 
of explanatory variables. Multivariate probabilistic models relate the 
probability distribution of different variables and, thus, allow to com-
pute the distribution of one variable given the value of other variables 
in the model. Specifically in this study, the proposed model enables 
the computation of the probability distribution of 𝑞 given the values 
of (all or some of) the explanatory variables. The paper is structured 
as follows. In Section 2, an overview of the existing methods in the 
literature to estimate 𝑞 is presented. In Section 3, the selection of the 
observations from CLASH database and the explanatory variables for 𝑞
are described. In Section 4, the theoretical concepts related to BNs are 
exposed. In Section 5, the definition and validation of the model are 
explained. In Section 6, an example of an application of the model is 
presented. Finally, in Section 7, conclusions and recommendations for 
future research are drawn.

2. Methods for the estimation of the mean wave overtopping 
discharge

Since Owen (1980) proposed an empirical exponential formulation 
to estimate 𝑞 as a function of the non-dimensional crest freeboard 
𝑅𝑐∕𝐻𝑚0, several authors have derived similar empirical expressions for 
the prediction of 𝑞. Based on the findings of studies such as van der 
Meer and Janssen (1994) and van Gent (2001), TAW (2002) manual 
recommended the following formulation 

𝑄 =
𝑞

√

𝑔𝐻3
𝑚0

= 𝑎1𝜉−1,0𝑒𝑥𝑝
(

−𝑏1
𝑅𝑐
𝐻𝑚0

1
𝛾𝑓 𝜉−1,0

)

(1a)

with a maximum of 

𝑄 = 𝑎2 𝑒𝑥𝑝
(

−𝑏2
𝑅𝑐
𝐻𝑚0

1
𝛾𝑓

)

(1b)

where 𝑄 is the dimensionless mean wave overtopping discharge, 𝑎1 =
0.067 and 𝑏1 = 4.74, and 𝑎2 = 0.2 and 𝑏2 = 2.6 for Eqs. (1a) and (1b), 
respectively, are empirical coefficients, 𝜉−1,0 = 𝑡𝑎𝑛𝛼

2𝜋𝐻𝑚0∕(𝑔𝑇 2
−1,0)

 is the surf 
similarity parameter or Iribarren number computed using the spectral 
significant wave height 𝐻𝑚0 = 4𝑚0.5

0  and the spectral wave period 
𝑇−1,0 = 𝑚−1

𝑚0
, where 𝑚𝑖 is the 𝑖th spectral moment, 𝑅𝑐 is the structure 

crest freeboard, and 𝛾𝑓  is the roughness factor. The variability of the 
fitting to the observations of 𝑞 is proposed to be modeled by assuming 
the coefficient 𝑏1 as Gaussian-distributed with a standard deviation of 
0.5.

EurOtop (2007) recommended using Eq. (1b) and correct the pro-
vided estimate using the reduction factor proposed by Besley (1999), 
𝐶𝑟, if 𝐺𝑐 > 3𝐷𝑛50, where 𝐺𝑐 is the width of the berm of the crest of 
the structure and 𝐷𝑛50 = is the nominal diameter of the elements in the 
armor. The reduction factor 𝐶𝑟 is computed as 

𝐶𝑟 = 𝑚𝑖𝑛
[

1.0, 3.06 𝑒𝑥𝑝
(

−1.5
𝐺𝑐
𝐻𝑚0

)]

(2)

The uncertainty of the fitting of Eq. (1b) recommended in EurOtop 
(2007) is proposed to be modeled by assuming the coefficient 𝑏2 as 
Gaussian-distributed with a standard deviation of 0.35.

Between 2001 and 2003, the European project CLASH collected 
10,532 overtopping tests of different coastal structures and laborato-
ries (Steendam et al., 2005). Each of the tests were described using 
a number of variables containing information about the geometry of 
the structure and the tested hydraulic conditions. Fig.  1 illustrates the 
main explanatory variables of 𝑞 considered in the present study. In 
addition, two factors were defined regarding the complexity of the 
tested structure and the reliability of the test: the Complexity Factor, 
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Fig. 1. Cross-section of a conventional mound breakwater and variables definition.
1 ≤ 𝐶𝐹 ≤ 4, being 𝐶𝐹 = 1 a ‘very simple’ structure where the variables 
in the database describe accurately the cross-section, and 𝐶𝐹 = 4 a 
‘very complex’ structure, and the Reliability Factor, 1 ≤ 𝑅𝐹 ≤ 4, being 
𝑅𝐹 = 1 a ‘very reliable’ test where all the required information was 
directly available, and 𝑅𝐹 = 4 for a ‘non-reliable’ test.

Based on part of that database (filtering including 𝐶𝐹 < 4, 𝑅𝐹 < 4
and 𝑞 > 0), van Gent et al. (2007) trained and validated Multi-layer 
Feed-forward Neural Networks (NNs) with three layers to estimate 
𝑞. Making use of bootstrapping, 500 NNs were created and used to 
compute confidence intervals for the predictions. The developed model, 
named CLASH NN, is still between the most accurate predictors for 
𝑞 according to scientific literature (e.g.: Mares-Nasarre et al., 2020; 
Molines and Medina, 2016).

Zanuttigh et al. (2016) extended CLASH database with tests re-
ported by the authors and Besley et al. (1993), Oumeraci et al. (2007), 
Andersen et al. (2009), Victor and Troch (2012), and Van Doorslaer 
et al. (2015). Based on the new database, Zanuttigh et al. (2016) 
developed a new predictive model based on a classifier and three NNs. 
Confidence intervals in the predictions of 𝑞 were computed in a similar 
fashion as van Gent et al. (2007) based on bootstrapping.

Molines and Medina (2016) used CLASH NN and CLASH database to 
develop an explicit estimator for 𝑞 on conventional mound breakwaters 
in non-breaking conditions using only 6 explanatory dimensionless 
variables: 𝑅𝑐∕𝐻𝑚0, 𝐺𝑐∕𝐻𝑚0, where 𝐺𝑐 is the width of the crest berm, 
𝜉−1,0, 𝑅𝑐∕ℎ, where ℎ is the water depth at the toe of the structure, 
𝐴𝑐∕𝑅𝑐 , where 𝐴𝑐 is the freeboard of the crest berm, and a toe berm 
variable based on 𝑅𝑐∕ℎ. A factor was also proposed to account for 
oblique wave attack.

EurOtop (2018) added a power law to Eq. (1b) to account for 
freeboards close to 0 and modified 𝛾𝑓  as 

𝑄 = 0.09𝑒𝑥𝑝

(

−
(

1.5
𝑅𝑐

𝐻𝑚0𝛾𝑓,𝑚𝑜𝑑

)1.3
)

(3a)

with 

𝛾𝑓,𝑚𝑜𝑑 = 𝛾𝑓 +
(𝜉−1,0 − 5)(1 − 𝛾𝑓 )

5
(3b)

van Gent (2022) noted that the power also affects the influence 
factors. The variability of the fitting of Eq. (3) is given by assuming both 
coefficients in Eq. (3a) as Gaussian-distributed with standard deviations 
𝜎(0.09) = 0.0135 and 𝜎(1.5) = 0.15.

One of the last methods to be applied to the estimation of 𝑞 is the 
XGBoost algorithm in den Bieman et al. (2021). This machine learning 
algorithm is based on ensembles of regression trees and makes use of 
the principle that a combination of weak predictions can form a strong 
predictor. Confidence intervals for 𝑞 were computed based on 500 
models built using 500 bootstrap resamples, following the methodology 
in van Gent et al. (2007).

In this section, models in the literature to estimate 𝑞 on mound 
breakwaters have been briefly summarized; all the proposed methods 
are deterministic and cannot quantify the distribution of 𝑞 given a 
number of explanatory variables. Therefore, further research is needed 
3 
to develop probabilistic estimators of 𝑞 that account for the stochastic 
nature of the phenomenon and can improve the design of mound 
breakwaters by incorporating structural uncertainty in probabilistic 
design frameworks.

3. Dataset and variable selection

This section first describes the data used in this research. After-
wards, the selection of the explanatory variables of 𝑞 is presented based 
on the existing literature.

3.1. Dataset based on CLASH database

Here, the database collected in the European CLASH project (Steen-
dam et al., 2005) is used. However, the CLASH database includes a wide 
variety of typologies of coastal structures, while this research is focused 
on conventional mound breakwaters. Therefore, a subset of CLASH 
database is used here. The following filtering criteria are applied: the 
slope needs to be continuous without changes in the slope angle (slopes 
in the upper and lower slope, 𝑐𝑜𝑡𝛼𝑢𝑝 = 𝑐𝑜𝑡𝛼𝑑𝑜𝑤𝑛) or berms in the slope 
(width of the berm, 𝐵 = 0, slope of the berm, 𝑡𝑎𝑛𝛼𝑏 = 0 and the depth of 
the berm, ℎ𝑏 = 0), the slope angles need to be in ranges reasonable for 
conventional mound breakwaters (1.19 ≤ 𝑐𝑜𝑡𝛼 ≤ 4, Molines and Medina, 
2016) and the structure needs to be ‘‘simple’’ (𝐶𝐹 = 1). Moreover, 
since erroneous data can degrade the performance of the developed 
models, the tests with low reliability were removed from the dataset 
as 𝑅𝐹 ≤ 2 and only tests with significant overtopping were considered, 
𝑄 = 𝑞∕

√

𝑔𝐻3
𝑚0 > 10−6. After the filtering of the dataset, a total of 3179 

tests were obtained.
The obtained dataset is splitted in training and testing subsets for 

further analysis. From the obtained dataset, 2582 tests were performed 
under perpendicular wave attack, while 597 were conducted under 
oblique wave attack. Therefore, in order to guarantee the presence 
of tests with oblique waves in both training and testing subsets, the 
dataset is first split by wave angle of incidence as 𝛽 = 0 and 𝛽 > 0. 
From those two subset, 80% of the observations are used for training, 
and 20% for testing. Thus, 2544 tests were used for training and 635 
tests were used for testing, having 2066 tests and 516 tests under 
perpendicular wave attack, respectively.

3.2. Selection and definition of dimensionless variables

This study is focused on the mean wave overtopping discharge, 
𝑞, which is made dimensionless as 𝑄 = 𝑞∕

√

𝑔𝐻3
𝑚0 (e.g.: TAW, 2002; 

EurOtop, 2018). The following dimensionless explanatory variables are 
selected based on the literature:

1. 𝑚 = 𝑐𝑜𝑡𝛼𝑏𝑜𝑡𝑡𝑜𝑚, is the foreshore slope. It determines the type 
of wave breaking on the toe of the structure and has been in-
cluded as an explanatory variable in previous studies to estimate 
𝑄 (Zanuttigh et al., 2016; den Bieman et al., 2021) or the distri-
bution of individual wave overtopping volumes (Mares-Nasarre 
et al., 2024b).



P. Mares-Nasarre Coastal Engineering 201 (2025) 104792 
2. 𝛽, is the angle of wave attack. Oblique wave attack is known to 
reduce wave loading in general (e.g.: van Gent, 2014; Yu et al., 
2002) and wave overtopping in particular (e.g. Lykke Andersen 
and Burcharth, 2009; Galland, 1994).

3. 𝛾𝑓 , is the roughness factor. This factor accounts for the armor 
unit, the number of layers of the armor, the porosity of the 
armor, between other characteristics of the structure (Molines 
and Medina, 2015; Pepi et al., 2022).

4. 𝑅𝑐∕𝐻𝑚0, is the dimensionless crest freeboard. It is the most 
widely accepted dimensionless variable to describe the mean 
wave overtopping discharge. It can be found as a primary vari-
able in empirical formulas (e.g.: Owen, 1980; EurOtop, 2018) 
and machine learning algorithms (e.g.: van Gent et al., 2007; 
den Bieman et al., 2021) to estimate 𝑄.

5. 𝑠−1,0 = 𝐻𝑚0∕𝐿−1,0, is the wave steepness calculated with 𝐿−1,0 =
𝑔𝑇 2

𝑚−1,0∕2𝜋. Wave steepness is one of the key variables that 
determine the hydraulic behavior of mound breakwaters, namely 
the reflected, dissipated and transmitted energy through the 
structure (Díaz-Carrasco et al., 2020; Díaz-Carrasco, 2023). Stud-
ies such as Koosheh et al. (2022) and van Gent et al. (2022) 
highlighted the role of wave steepness and included it in the de-
rived empirical expressions to compute 𝑄. Regarding the choice 
of wave period to compute the wave steepness, van Gent (2001) 
showed that 𝑇−1,0 can be applied to accurately estimate wave 
overtopping for a number of spectral shapes.

6. 𝐺𝑐∕𝐻𝑚0 is the dimensionless width of the crest berm. Wider crest 
berms lead to a reduction of 𝑄 as pointed out in studies such 
as Besley (1999) or Molines and Medina (2016).

7. 𝐴𝑐∕𝐻𝑚0 is the dimensionless height of the crest berm. Similar to 
𝑅𝑐∕𝐻𝑚0, the higher the crest berm, the lower the 𝑄 (e.g.: Molines 
and Medina, 2016; van Gent et al., 2007).

8. 𝐵𝑡∕𝐻𝑚0 is the dimensionless width of the toe berm. 𝐵𝑡 has 
already been reported as significant by van Gent et al. (2007), 
Molines and Medina (2016) or den Bieman et al. (2021).

9. ℎ∕𝐻𝑚0, is the dimensionless water depth at the toe of the struc-
ture. This variable is applied as an indicator of whether waves 
are depth-limited (e.g.: van Gent, 1999, defined it using the deep 
water 𝐻𝑚0). Thus, it is included in methods to estimate 𝑄 (e.g.: 
Koosheh et al., 2022; van Gent et al., 2007).

10. 𝑐𝑜𝑡𝛼 is the slope of the structure on the sea side. The slope angle 
determines the length of the slope and, thus, the energy dissi-
pated through the armor layer. Thus, it has a great impact on 
𝑄 as highlighted in Irías Mata and van Gent (2023) or Altomare 
et al. (2016).

Most of these variables are also depicted in Fig.  1. In addition of the 
aforementioned explanatory variables, ℎ𝑡∕𝐻𝑚0, where ℎ𝑡 is the water 
depth over the toe berm, was also analyzed. However, it was discarded 
as the observed (rank) correlation between ℎ∕𝐻𝑚0 and ℎ𝑡∕𝐻𝑚0 was 
almost 1, indicating that ℎ𝑡∕𝐻𝑚0 did not provide additional information 
when ℎ∕𝐻𝑚0 was already included.

The experimental ranges of the selected observations from CLASH 
database used in this study are 7.6 ≤ 𝑚 ≤ 1000, 0 ≤ 𝛽 ≤ 80◦, 0.38 ≤ 𝛾𝑓 ≤
1.00, 0 ≤ 𝑅𝑐∕𝐻𝑚0 ≤ 4.37, 1.31 ⋅ 10−3 ≤ 𝑠−1,0 ≤ 0.069, 0 ≤ 𝐺𝑐∕𝐻𝑚0 ≤ 6.67, 
0 ≤ 𝐴𝑐∕𝐻𝑚0 ≤ 4.2, 0 ≤ 𝐵𝑡∕𝐻𝑚0 ≤ 15.9, 1.03 ≤ ℎ∕𝐻𝑚0 ≤ 17.6, and 
1.19 ≤ 𝑐𝑜𝑡𝛼 ≤ 4.

4. Methodology

In this research, a Gaussian copula-based Bayesian Networks (BN) 
is implemented as a model to describe the uncertainty of the mean 
wave overtopping discharge, 𝑞. In this section, the concept of bivariate 
copula is introduced. Afterwards, the definition and validation of BNs 
are explained.
4 
Fig. 2. Possible DAGs for 3-nodes Bayesian Networks.

4.1. Concept of bivariate copula

Bivariate copulas, or just copulas, are bivariate distributions with 
uniform margins in [0, 1]. Following Sklar (1959)’s theorem, any 
multivariate distribution of continuous variables can be described as 
a set of univariate margins and a copula that models the dependence. 
The definition of copula for the bivariate case is given by 
𝐻𝑋,𝑌 (𝑥, 𝑦) = 𝐶{𝐹𝑋 (𝑥), 𝐺𝑌 (𝑦)} (4)

where 𝐻𝑋,𝑌 (𝑥, 𝑦) for (𝑥, 𝑦) ∈ R2 is a bivariate distribution with 
marginals 𝐹𝑋 (𝑥) and 𝐺𝑌 (𝑦) in [0, 1] and a copula in the unit square 
𝐼2 = ([0, 1] × [0, 1]), being Eq. (4) satisfied for all (𝑥, 𝑦) ∈ R2.

Different families of copulas exist in the literature (see Czado, 
2019). One of the features that distinguishes between copula families 
is tail dependence which characterizes the correlations in the tails 
of the distributions of two random variables. The upper tail depen-
dence coefficient is defined as 𝜆𝑢𝑝𝑝𝑒𝑟 = lim𝑡→1− 𝑃 (𝑋2 > 𝐹−1

2 (𝑡)|𝑋1 >
𝐹−1
1 (𝑡)) (Sibuya et al., 1960; Joe, 1997). In this research, the Gaussian 
copula is used, which is a symmetric model and, thus, does not present 
tail dependence. For further information about copulas the reader is 
referred to Nelsen (2006). The bivariate Gaussian copula is given by 
𝐻𝑋𝑌 (𝑥, 𝑦) = 𝛷2

(

𝛷−1(𝑥), 𝛷−1(𝑦)|𝜌
)

(5)

where 𝛷2{., .|𝜌} is the cumulative distribution function of the bivariate 
normal distribution with 0 expectation, unit variance and 𝜌 Pearson 
correlation coefficient (Pearson and Galton, 1895).

4.2. Gaussian copula-based Bayesian networks

Bayesian Networks (Pearl, 2013) are high-dimensional probability 
distribution functions composed by a directed acyclic graph (DAG) 
composed of a set of nodes and a set of arcs. Nodes represent random 
variables, while arcs connecting two nodes indicate the probabilistic 
dependence between the connected random variables. Therefore, a 
Bayesian Network encodes the joint probability density on a set of 
random variables by specifying conditional probability functions of 
each variable (child) given its direct preceding variables (parents). Fig. 
2 shows the three possibilities of 3-nodes DAGs for Bayesian Networks. 
Conditional independence statements can be read as follows. In Fig. 
2(a) and (b), 𝑋1 and 𝑋3 are not independent (𝑋1 ̸⟂ 𝑋3). However, 𝑋1
and 𝑋3 are conditionally independent given 𝑋2 (𝑋1 ⟂ 𝑋3|𝑋2). In Fig. 
2(c), 𝑋1 and 𝑋3 are independent (𝑋1 ⟂ 𝑋3), as no arc is connecting 
them, but they become not independent given 𝑋2 (𝑋1 ̸⟂ 𝑋3|𝑋2).

In this study, copula-based Bayesian Networks (BNs) are used, as 
introduced in Kurowicka and Cooke (2004) and extended in Hanea 
et al. (2006) and Hanea et al. (2010), where parametric univariate 
distributions are assigned to the nodes and bivariate copulas are applied 
to describe the dependence between each pair of random variables. BNs 
build the joint distribution function of a set of random variables by 
coupling the marginal distributions with the dependence structure in 
bivariate pieces so that the conditional dependence statements given 
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by the DAG are preserved. Thus, quantifying a BN implies a number 
of marginal distributions equal to the number of nodes in the DAG 
and a number of (conditional) dependence parameters equal to the 
number of arcs. Here, empirical distribution functions are used as 
univariate margins, as fitting parametric distributions is only beneficial 
when inferring extremes (probabilities that have not been observed 
yet) is necessary. In principle, different bivariate copulas can be used 
to quantify the arcs. In this study, the bivariate Gaussian copula (see 
Eq. (5)) is adopted for its advantages in computations and inference 
of complex problems (Mendoza-Lugo et al., 2022; Hanea et al., 2015). 
Therefore, the protocol given in Hanea et al. (2006) with the Gaussian-
copula assumption is applied in this research. The open-source toolbox 
BANSHEE (Paprotny et al., 2020; Koot et al., 2023) in Python is applied 
to implement the BNs.

4.2.1. Validation of Gaussian copula-based Bayesian networks
When working with BNs, two main validations need to be per-

formed: (1) the assumption of the Gaussian copula to describe the 
dependence between the variable pairs is reasonable, and (2) the 
defined DAG succeeds in capturing the dependence structure between 
the random variables.

In order to validate the assumption of the use of the Gaussian cop-
ula, the empirical copula defined from the observations of a pair of ran-
dom variables is compared with: (1) Gaussian, (2) Frank, (3) Clayton, 
and (4) Gumbel. The objective of this comparison is to detect whether 
copulas with tail-dependence (Clayton and Gumbel) arise as better 
models and, thus, a symmetric model such as the Gaussian copula might 
fail in describing the dependence structure. The aforementioned com-
parison is performed using Cramer–von–Mises statistic (Genest et al., 
2009). The Cramer–von–Mises statistic (𝑆𝐶𝑣𝑀 ) evaluates the distance 
between the empirical and the parametric copula; the perfect fit means 
𝑆𝐶𝑣𝑀 → 0. Therefore, the parametric copula with the lowest value of 
𝑆𝐶𝑣𝑀  provides the best fit.

Following the protocol by Hanea et al. (2006), a rank correlation 
matrix can be derived from the DAG of the BN. Therefore, validation 
procedures based on the comparison between rank correlation matrices 
are used. A rank correlation matrix is a matrix composed of the rank 
correlations between two of the random variables so the element 𝑒𝑖,𝑗
is the rank correlation between the random variables 𝑖 and 𝑗. The 
Spearman’s rank correlation coefficient (Spearman, 1904), 𝑟, quantifies 
the strength and direction of the association between two ranked 
variables. Thus, it assess monotonic relations between two variables. 
𝑟 ∈ [−1, 1], where 𝑟 = 1 and −1 represent perfect positive and negative 
monotonic dependence, respectively. 𝑟 is given by 

𝑟 =
𝐶𝑜𝑣[𝑅(𝑋), 𝑅(𝑌 )]

𝜎𝑅(𝑋)𝜎𝑅(𝑌 )
(6)

where 𝐶𝑜𝑣[𝑅(𝑋), 𝑅(𝑌 )] is the covariance of the ranked variables, and 
𝜎𝑅(𝑋) and 𝜎𝑅(𝑌 ) are the standard deviations of the ranked variables.

𝑟 assesses the strength and direction of association between two 
ranked variables. This is, it provides a measure of monotonicity of 
the relation between two variables. 𝑟 ∈ [−1, 1], where 𝑟 = 1 and 
−1 represent perfect positive and negative monotonic dependence, 
respectively. 𝑟 is defined as

In this study, three comparisons are performed: the first validates 
that the joint Gaussian copula adequately represents the underlying 
multivariate distribution, the second verifies that the defined DAG 
reasonably represents the observed dependence structure, and the third 
assesses how far the proposed model is from the best possible model. 
For the first comparison, the rank correlation matrix obtained from the 
observations (empirical rank correlation, 𝐸𝑅) is compared with that 
obtained from a saturated BN (𝑆𝑅). A saturated BN is one where all 
nodes are connected to each other and, thus, represents the best pos-
sible model. However, it does not explain the underlying dependence 
structure and can be seen as an ‘‘overfit’’ of the observations. If 𝑆𝑅
and 𝐸𝑅 are ‘‘close’’ to each other, it means that the assumption of the 
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joint Gaussian copula is able to describe the observed dependence. For 
the second comparison, 𝐸𝑅 is compared to the rank correlation matrix 
obtained from the defined DAG, 𝐵𝑅. If 𝐸𝑅 and 𝐵𝑅 are ‘‘close’’, it 
means that the main features of the observed dependence structure are 
properly represented, being thus the DAG a satisfactory model. Finally, 
for the third comparison, 𝐵𝑅 is compared with 𝑆𝑅. This enables 
determining how close the defined DAG is to the best possible model, 
𝑆𝑅.

To perform these comparisons and quantify how different 𝐸𝑅, 
𝑆𝑅 and 𝐵𝑅 are, dissimilarity measures for Gaussian densities are 
applied. Specifically, Morales-Nápoles et al. (2013, 2014) defined the 
d-calibration score (𝑑(𝛴1, 𝛴2)) as 

𝑑(𝛴1, 𝛴2) = 1 −
√

1 − 𝜂(𝛴1, 𝛴2) (7)

where 𝛴1 and 𝛴2 are correlation matrices and 𝜂(𝛴1, 𝛴2) is the Hellinger 
distance calculated under the Gaussian copula assumption as 

𝜂(𝛴1, 𝛴2) =
𝑑𝑒𝑡(𝛴1)1∕4𝑑𝑒𝑡(𝛴2)1∕4

𝑑𝑒𝑡
(

1
2𝛴1 +

1
2𝛴2

)1∕2
(8)

𝑑(𝛴1, 𝛴2) provides a measure of ‘‘how distant’’ the elements of two 
correlation matrices are. If the score is 1, matrices are equal, and it 
becomes closer to 0 as matrices differ from each other element-wise.

5. Building the model

This section starts with the development of the proposed BN. After-
wards, the proposed model is validated and, finally, its performance is 
tested.

5.1. Definition of the model

The empirical rank correlation based on the training subset, 𝐸𝑅, is 
computed as a starting point to define the model (see Section 4.2.1) 
and shown in Fig.  3(a). The significance of the individual rank correla-
tions, 𝑟, was also computed and almost all the observed 𝑟 were found 
significant (see Fig.  9 in Appendix  A).

In order to define the DAG, first, arcs are added between the 
variables that present the strongest rank correlations (|𝑟| > 0.3). That 
provides with a first ‘‘skeleton’’ of the model. Afterwards, arcs are 
added one by one between two random variables following with |𝑟| >
0.1 and it was assessed whether that arc made a difference in the 𝑑−𝑐𝑎𝑙
of at least 𝛥(𝑑 − 𝑐𝑎𝑙) > 0.01. Once adding more arcs did not make a 
difference 𝛥(𝑑 − 𝑐𝑎𝑙) > 0.01, arcs were removed one by one from the 
obtained BN to test their significance in the final model. If removing 
the arc made a difference 𝛥(𝑑 − 𝑐𝑎𝑙) > 0.01, the arc stayed. If it did not, 
it was removed. Fig.  4 shows the final defined DAG.

As described in Section 4, the defined DAG was quantified following 
the procedure described in Hanea et al. (2006) and the nodes were 
quantified using empirical distribution functions.

5.2. Validation of the model

As exposed in Section 4.2.1, the assumption of the Gaussian copula 
is first validated using 𝑆𝐶𝑣𝑀  to compare the fit of different copula 
families to the empirical bivariate copulas observed in the training 
subset. Fig.  10 in Appendix  B presents the values of 𝑆𝐶𝑣𝑀  for each pair 
of random variables. In 29% of the pairs Gaussian copula is selected 
as the best fitting model, while in 51% of the pairs a symmetric 
model (either Gaussian or Frank here) is selected as the best model. 
Moreover, in 80% of the pairs, either the Gaussian copula provides 
the best performance or its metric has a difference lower than 15% 
with the best fitting copula. Therefore, overall, it can be assumed that 
tail dependence does not seem to be significant in most of the random 
variable pairs and, thus, Gaussian copula can be a reasonable model.
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Fig. 3. Rank correlation matrices based on the training subset: (a) empirical, (b) saturated model, and (c) BN model.
Fig. 4. Proposed BN model. Labels in the nodes represent random variables while labels in the edges are (un)conditional rank correlations.
Further validations are performed through the comparison of rank 
correlation matrices (see 4.2.1). Fig.  3 presents the empirical rank 
correlation matrix computed from the training subset (𝐸𝑅), the rank 
correlation matrix corresponding to the saturated BN (𝑆𝑅) and the 
rank correlation matrix obtained from the proposed DAG in Fig.  4. The 
differences between these three matrices are assessed using 𝑑 − 𝑐𝑎𝑙. 
𝑑 − 𝑐𝑎𝑙(𝐸𝑅,𝑆𝑅) = 0.88 indicates that the empirical observations are 
well described by the Gaussian copula, using 𝑆𝑅 as the best possible 
model. 𝑑 − 𝑐𝑎𝑙(𝐵𝑅,𝑆𝑅) = 0.76 and 𝑑 − 𝑐𝑎𝑙(𝐸𝑅,𝐵𝑅) = 0.71 indicate that 
the defined DAG, although not being saturated, approximates well the 
best possible model, 𝑆𝑅, and the dependence in the observations.

Note that these validation steps are conducted using the data in the 
training subset and are also part of the development of the model as 
explained in Section 4.2.1.

5.3. Testing of the model

In this section, the test subset is used to evaluate the model from 
both the statistical perspective and the performance perspective. First, 
the proposed model is validated from the statistical perspective. To this 
end, the empirical rank correlation based on the testing subset, 𝐸𝑅𝑡𝑒𝑠𝑡, 
is computed, as shown in Fig.  5.

𝐸𝑅𝑡𝑒𝑠𝑡 is compared to 𝑆𝑅 and 𝐵𝑅 using 𝑑 − 𝑐𝑎𝑙 similar to the 
previous section. 𝑑−𝑐𝑎𝑙(𝐸𝑅 ,𝑆𝑅) = 0.88 and 𝑑−𝑐𝑎𝑙(𝐸𝑅 ,𝐵𝑅) = 0.71
𝑡𝑒𝑠𝑡 𝑡𝑒𝑠𝑡

6 
Fig. 5. Rank correlation matrix computed from the observations in the testing subset.
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Fig. 6. Comparison between the measured dimensionless mean wave overtopping 
discharge 𝑄 and the predicted median by the BN.

indicate that the proposed model is a reasonable approximation of the 
observed dependence in the testing dataset and the saturated model.

From the performance perspective, the accuracy of the proposed 
model is approximated by comparing the observations of 𝑄 with the 
50% percentile (median) of the predicted distribution of 𝑄 given by the 
model. It should be noted that the aim of the proposed model is not to 
be used as a deterministic predictor. In order to assess the goodness of 
fit in a quantitative manner, the coefficient of determination, 0 ≤ 𝑅2 ≤
1, is applied, which is defined as 

𝑅2 = 1 −
1

𝑁𝑜𝑏𝑠

∑𝑁𝑜𝑏𝑠
𝑖=1 (𝑜𝑖 − 𝑒𝑖)2

1
𝑁𝑜𝑏𝑠

∑𝑁𝑜𝑏𝑠
𝑖=1 (𝑜𝑖 − 𝑜)2

(9)

where 𝑁𝑜𝑏𝑠 is the number of observations, 𝑜𝑖 and 𝑒𝑖 are the observed 
and estimated values, respectively, and 𝑜 is the observed mean. Thus, 
𝑅2 assesses roughly the percentage of the variance explained by the 
model.

Fig.  6 presents the comparison between the observed 𝑄 and the 
median of the estimated distribution of 𝑄 from the BN for both the 
training and the test subsets. 𝑅2 = 0.79 and 0.78 for the training and 
test subsets, respectively. Thus, the performance of the BN is similar for 
both the training and test subsets, indicating that the model does not 
overfit the training subset. The accuracy of the estimated value of 𝑄 is 
satisfactory with a high value of 𝑅2, considering that the goal of this 
research is not to develop a deterministic estimator of 𝑄. Appendix  C 
presents a brief comparison of the estimations of deterministic models 
in the literature in the context the estimated distributions by the 
developed BN.

Finally, in order to account for the uncertainty of 𝑄, the observa-
tions of 𝑄 are compared to the 5%, 50% and 95% of the predicted 
distribution. This comparison is shown for 100 randomly selected 
observations in Fig.  7. Overall, 85% and 88% of the observations of 𝑄
in the training and test subsets fall within the 5% and 95% percentiles, 
respectively.

6. Example of application

Here, an example is given on how to apply the developed prob-
abilistic model to design the crest level of a mound breakwater. A 
rock-armored mound breakwater (𝛾𝑓 = 0.49 for CLASH NN according 
to Molines and Medina, 2015) with 𝑐𝑜𝑡𝛼 = 2.5 placed on a gentle sea 
bottom, 𝑚 = 50, faces a storm that can be characterized by 𝐻 = 5
𝑚0
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m, 𝑇−1,0 = 10 s, and 𝛽 = 25◦. The structure is placed at ℎ = 7.5
m, and presents a 𝐴𝑐 = 7 m, 𝐺𝑐 = 3 m, and 𝐵𝑡 = 2 m. This 
translates into the following dimensionless explanatory variables: 𝑚 =
50, 𝛽 = 25◦, 𝛾𝑓 = 0.49, 𝑠−1,0 = 0.032, 𝐺𝑐∕𝐻𝑚0 = 0.6, 𝐴𝑐∕𝐻𝑚0 = 1.4, 
𝐵𝑡∕𝐻𝑚0 = 0.4, ℎ∕𝐻𝑚0 = 1.5 and 𝑐𝑜𝑡𝛼 = 2.5. 𝑅𝑐 wants to be determined, 
so different values are considered; 𝑅𝑐 = 9, 10 and 11 m, leading to 
𝑅𝑐∕𝐻𝑚0 = 1.8, 2.0 and 2.2, respectively. The model is conditional-
ized on the aforementioned values of the explanatory variables, and 
the conditional distributions of 𝑄, denoted here as 𝐹 (𝑄) = 𝑃 [𝑄 ≤
𝑥|𝑚, 𝛽, 𝛾𝑓 , 𝑅𝑐∕𝐻𝑚0, 𝑠−1,0, 𝐺𝑐∕𝐻𝑚0, 𝐴𝑐∕𝐻𝑚0, 𝐵𝑡∕𝐻𝑚0, ℎ∕𝐻𝑚0, 𝑐𝑜𝑡𝛼], de-
picted in Fig.  8, are obtained.

The probability of failure is defined as the probability of exceeding 
a tolerable 𝑄 conditioned to the explanatory variables, 𝑝𝑓 = 𝑃 [𝑄 >
𝑥|𝑚, 𝛽, 𝛾𝑓 , 𝑅𝑐∕𝐻𝑚0, 𝑠−1,0, 𝐺𝑐∕𝐻𝑚0, 𝐴𝑐∕𝐻𝑚0, 𝐵𝑡∕𝐻𝑚0, ℎ∕𝐻𝑚0, 𝑐𝑜𝑡𝛼].
Given a value of the target probability of failure (for illustration 
purposes, here 𝑝𝑓 = 0.2 so 𝐹 (𝑄) = 1− 𝑝𝑓 = 0.8) and a tolerable value of 
𝑄 (here, 𝑄 < 10−4), the crest level can be chosen in Fig.  8 to meet the 
design conditions. In this case, 𝑅𝑐∕𝐻𝑚0 = 2.0 is required. This process 
can be repeated iteratively changing other design variables. It should 
also be noted that the model does not need to be conditionalized in all 
the explanatory variables to obtain a distribution of 𝑄. Thus, if some 
information on the structure is missing, the model can still provide 
𝐹 (𝑄), although the predicted uncertainty is expected to be higher.

This section presents an example of the application of the developed 
model, although there are others. For instance, in the design phase, it 
can be applied to assess the sensitivity of 𝑄 to the geometry of the 
breakwater given some design constrains (e.g.: design wave loading). 
That can help to optimize the design and gain insight into the physical 
interactions between the variables.

7. Discussion and conclusions

In this study, a probabilistic model based on bivariate Gaussian cop-
ulas, a Gaussian copula-based Bayesian Network (BN), is proposed to 
describe the joint probability distribution of 𝑄 and a set of explanatory 
variables on mound breakwaters. The goal of this model is to estimate 
the distribution of 𝑄 conditional to the values of (all or some of) the 
explanatory variables. In this manner, given a tolerable 𝑄, a probability 
of failure can be directly computed, and the uncertainties related to the 
structural response can be incorporated in a probabilistic framework.

To develop the proposed model, a subset of CLASH database is 
used with a total of 3179 test. 80% of those tests are used for the 
development of the model while 20% of them are used for testing. Ten 
dimensionless explanatory variables are selected to describe 𝑄 with 
the following experimental ranges 7.6 ≤ 𝑚 ≤ 1000, 0 ≤ 𝛽 ≤ 80◦, 
0.38 ≤ 𝛾𝑓 ≤ 1.00, 0 ≤ 𝑅𝑐∕𝐻𝑚0 ≤ 4.37, 1.31 ⋅ 10−3 ≤ 𝑠−1,0 ≤ 0.069, 
0 ≤ 𝐺𝑐∕𝐻𝑚0 ≤ 6.67, 0 ≤ 𝐴𝑐∕𝐻𝑚0 ≤ 4.2, 0 ≤ 𝐵𝑡∕𝐻𝑚0 ≤ 15.9, 
1.03 ≤ ℎ∕𝐻𝑚0 ≤ 17.6, and 1.19 ≤ 𝑐𝑜𝑡𝛼 ≤ 4. The proposed model 
has been developed for conventional mound breakwaters and is valid 
within the experimental ranges of the observations. Therefore, it is 
encouraged to check its validity outside the experimental ranges of this 
study. Also, it is recommended to extend the application of this type of 
probabilistic models to other coastal structures to directly account for 
the uncertainty of overtopping in the design phase.

The proposed BN is shown in Fig.  4. Empirical cumulative distribu-
tion functions are used to quantify the nodes of the BN. One of the main 
assumptions of the proposed model is the use of Gaussian copula to 
model the dependence between the random variables. Gaussian copulas 
are adequate if the shape of the dependence is symmetric, so tail 
dependence is not significant. Here, the Gaussian copula assumption 
is validated in statistical terms using Cramer–von–Mises statistic and 
the training subset. No significant tail dependence was observed for 
80% of the variables pairs, so the assumption of the Gaussian copula 
was deemed reasonable. However, if in light of new data and/or a 
wider range of application, tail dependence becomes significant in 
most of the variable pairs, different copula families should be used 
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Fig. 7. Comparison of the observed 𝑄 and the estimated 5%, 50% and 95% percentiles of Q by the BN.
Fig. 8. Example of application of the proposed model to estimate 𝑄.

to model the dependence between the variables and more complex 
models such as vine-copulas can be employed (e.g.: Pouliasis et al., 
2021; Mares-Nasarre et al., 2024a).

The proposed model is evaluated using the testing subset in both 
statistical and performance terms. In statistical terms, the proposed 
model seems to satisfactorily capture the dependence structure be-
tween the studied variables (𝑑(𝐸𝑅𝑡𝑒𝑠𝑡, 𝐵𝑅) = 0.71, see Section 5.3). 
In performance terms, the predicted mean of the distribution of 𝑄
is compared to the observations obtaining a reasonable performance 
(𝑅2

𝑡𝑒𝑠𝑡 = 0.78). Note that the purpose of the proposed model is to 
estimate the distribution of 𝑄 and not to be used as a deterministic 
8 
Fig. 9. P-values associated with the empirical rank correlations.

estimator. Also, the percentage of the observations that lay within 
the predicted 90% confidence intervals is quantified, being close to 
the expected 90%. Overall, the accuracy of the model is adequate, 
being able to accurately capture the dependence between the studied 
variables.

Finally, the use of the model for the probabilistic design of the 
crest elevation of mound breakwaters is also illustrated through one 
example. It should be noted that the less information provided to the 
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Fig. 10. Cramer von Mises statistic computed between the empirical copula defined with each pair of variables and the Clayton, Frank, Gaussian and Gumbel copula fitted to that 
pair.

Fig. 11. Conditional distribution of 𝑄 for three study cases and the realizations of the estimation and the 90%confidence intervals for a selection of methods in the literature.
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model, the wider the estimated distribution of 𝑄 as the uncertainty is 
higher. Consequently, the BN can be used in early stages condition-
alizing on a few explanatory variables as an exploration. However, it 
is recommended to conditionalize as many variables as possible when 
information is available.
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Appendix A. Empirical P-values

Fig.  9 shows the significance of the individual rank correlations 
computed in the empirical rank correlation 𝐸𝑅 in Fig.  3. Assuming a 
significance 𝛼 = 0.05, 𝑃 −𝑣𝑎𝑙𝑢𝑒𝑠 < 0.05 indicate a significant correlation 
between the two random variables.

Appendix B. Cramer–von–mises statistic

Fig.  10 reports the values of Cramer–von–Mises statistic calculated 
between the empirical copula defined with each pair of variables and 
the Clayton, Frank, Gaussian and Gumbel copula fitted to that pair. The 
lower the value of the statistic, the better model the copula is.

Appendix C. Comparison with methods in the literature

In this section, the predictions of the estimators in the literature 
for 𝑞 (EurOtop, 2007; van Gent et al., 2007; EurOtop, 2018; den 
Bieman et al., 2021) are put into the distribution of 𝑞 provided by 
the probabilistic model proposed in this study. To do so, three cases 
are randomly selected from the testing subset. The three cases are as 
follows:

• ID 10193: ℎ = 0.262 m, 𝐻𝑚0 = 0.093 m, 𝑇−1,0 = 2.13 s, ℎ𝑡 =
0.262 m, 𝐵𝑡 = 0, ℎ𝑏 = 0, 𝐵 = 0, 𝑅𝑐 = 0.118 m, 𝐴𝑐 = 0.083 m, 
𝐺𝑐 = 0, 𝑐𝑜𝑡𝛼𝑑 = 𝑐𝑜𝑡𝛼𝑢 = 2.7, 𝛾𝑓 = 1, 𝛽 = 0, 𝑡𝑎𝑛𝛼𝑏𝑜𝑡𝑡𝑜𝑚 = 0.171, 
𝑄 = 1.78 ⋅ 10−2.

• ID 7893. ℎ = 0.485 m, 𝐻𝑚0 = 0.112 m, 𝑇−1,0 = 1.228 s, ℎ𝑡 =
0.455 m, 𝐵𝑡 = 0, ℎ𝑏 = 0, 𝐵 = 0, 𝑅𝑐 = 0.13 m, 𝐴𝑐 = 0.13 m, 𝐺𝑐 =
0.13 m, 𝑐𝑜𝑡𝛼𝑑 = 𝑐𝑜𝑡𝛼𝑢 = 2, 𝛾𝑓 = 0.47, 𝛽 = 25◦, 𝑡𝑎𝑛𝛼𝑏𝑜𝑡𝑡𝑜𝑚 = 0.001, 
𝑄 = 9.3 ⋅ 10−5.

• ID 4556. ℎ = 0.353 m, 𝐻𝑚0 = 0.145 m, 𝑇−1,0 = 2.19 s, ℎ𝑡 = 0.353 m, 
𝐵𝑡 = 0, ℎ𝑏 = 0, 𝐵 = 0, 𝑅𝑐 = 0.4 m, 𝐴𝑐 = 0.4 m, 𝐺𝑐 = 0, 
𝑐𝑜𝑡𝛼𝑑 = 𝑐𝑜𝑡𝛼𝑢 = 4, 𝛾𝑓 = 1, 𝛽 = 0, 𝑡𝑎𝑛𝛼𝑏𝑜𝑡𝑡𝑜𝑚 = 0.01, 𝑄 = 5.7 ⋅ 10−5.

Fig.  11 shows the computed conditional distributions of 𝑄 for the 
three selected cases using the proposed model in this study, as well as 
the predicted 𝑄 and confidence intervals given by the aforementioned 
methods in the literature.

In general, it can be seen that the uncertainty predicted by van Gent 
et al. (2007) and den Bieman et al. (2021) is much lower than the other 
methods. As a result, the actual observation of 𝑄 can be far from those 
uncertainty bounds. The confidence interval given by EurOtop (2007) 
is usually the widest, although still narrower than that provided by the 
BN. Regarding the uncertainty given by EurOtop (2018), it is usually 
in between those given by EurOtop (2007) and van Gent et al. (2007) 
in terms of width. It should be noted that the predictions of EurOtop 
(2007) are not shown in Fig.  11(b) since they are on the order of 10−10, 
far from the actual observation.
10 
Data availability

The data and model in this research is publicly available in https:
//doi.org/10.5281/zenodo.15790655.
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