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Abstract
Given the fundamental profit gained by renew-
able energy assets in climate control, existing
control algorithms are urged to be improved
to match power supply and demand optimally.
This paper explores various designed cases that
lead toward an enhanced definition of a con-
trol algorithm with optimized behaviour. The
core of improvement is exploiting future knowl-
edge, which can be realized by current state-
of-the-art forecasting techniques, to effectively
store and trade energy. Based on several thou-
sands of simulations of energy communities in
the UK, the proposed smart control algorithm
has demonstrated a robust performance and
gained notable additional profit in theoretical
and practical scenarios using probable data.

1 Introduction
Currently, the renewable energy market is growing at
an incredible pace and its development is fundamental
for climate control (BP, 2021; Bilgen et al., 2004). It
is paramount to recognize that advancement is not
solely made by persisting to expand the deployment
of renewable energy assets but also by thoroughly
understanding existing models in order to optimize
the efficiency and ultimately gain both climate benefit
and prosumer1 benefit, which is also emerged by the
European Commission (2015) and Gielen et al. (2019).

Considering a household or a community with ei-
ther individual or shared renewable energy assets, e.g.
solar panels or wind turbines, and potentially a battery
storage of unknown size, a control algorithm should
handle the matching of demand and supply of energy
optimally, i.e. maximizing renewable energy usage
and minimizing energy imports (and costs) from the
central grid. Besides this control problem, there are
many potential key factors in the setup of the renewable
energy assets, e.g. battery type or size and individual

1Small-scale consumer with microgeneration and/or stor-
age.

versus shared assets, that play a role in the overall
efficiency and profit gained by a control algorithm.

Based on the aforementioned urge to advance in
the climate crisis using renewable energy assets and the
wide solution space for optimizing control algorithms
that play a fundamental role in climate control, this
paper will research the following question:
How can the efficiency of renewable energy assets be
improved by optimizing the matching of supply and
demand using a smart control algorithm?

The discovered improvements will contribute to widen-
ing the theoretical foundation behind the efficiency of
renewable energy assets and help advance toward the
practical deployment of smarter control algorithms to
ultimately directly impact the current climate crisis.

The outline of this paper is as follows. Section 2
documents the model and heuristic-based control algo-
rithm which are used as a foundation for studying and
optimizing. Section 3 precisely describes a potentially
smarter control algorithm. Then, an assessment of the
proposed smart control algorithm by conducting various
experiments will be demonstrated in section 4 and
discussed in section 6. In between, section 5 elaborates
on why the performed research is deemed responsible.
Finally, section 7 concludes and touches upon possible
future work.

2 Methodology
To be able to adequately explore any possibilities within
the solution space, it is trivial to first set a basis for the
model and current state-of-the-art approaches regard-
ing control algorithms for renewable energy assets. This
section describes the model and the heuristic-based con-
trol algorithm based on related research efforts by Norbu
et al. (2021) which poses as the basis of this research.

2.1 Model overview
The model of the energy management system used for
this research primarily consists of or is linked to the fol-
lowing components:



Nomenclature

Abbreviations
BESS Battery Energy Storage System
CES Community Energy Storage
DoD Depth of Discharge
HES Household Energy Storage
RES Renewable Energy System
RMSE Root Mean Squared Error
RtC Room to Charge
SoC State of Charge
Parameters
ηc Battery charging efficiency
ηd Battery discharging efficiency
κ Size of lookahead window [timestamps]
ω Battery capacity [kWh]
τ b(t) Import tariff at t [pence/kWh]
τs(t) Export tariff at t [pence/kWh]
pmax Maximum power that battery can

charge/discharge [kW]
SoCinit Initial battery SoC [%]
SoCmax Maximum battery SoC [%]
SoCmin Minimum battery SoC [%]

Subscripts and Sets
N Number of households in energy community
T Number of time periods
t Particular timestamp
Variables
∆t Duration of time period t [h]
δc(t) pmax - pbat

c (t), charging boundary at t [kW]
δd(t) pmax - pbat

d (t), discharging boundary at t
[kW]

Π(T ) Savings on annual bill, where T = 1 year [£]
b(T ) Annual bill, where T = 1 year [£]
b0(T ) Baseline annual bill, where T = 1 year [£]
d(t) Demand at t [kW]
eb(t) Imported energy at t [kWh]
es(t) Exported energy at t [kWh]
g(t) Generated power at t [kW]
pbat

c (t) Charging power of the battery at t [kW]
pbat

d (t) Discharging power of the battery at t [kW]
RtC(t) Room to charge in battery at t [kWh]
SoC(t) State of charge of battery at t [%]

• Solar photovoltaic(s) or wind turbine(s) encapsu-
lated as generated power

• BESS (with attached HES or CES)
• Household or community represented as prosumer

demand
• Central grid attachment via some energy plan

The flow of the power is modelled as follows:
• Prosumer demand can be covered by power coming

from the grid, generator or battery.
• The battery can export energy to the grid and

charge via generated power. Some battery setups
can also charge via imported energy from the grid,
however, this is not simulated within this research.

• Generated power can be sold directly to the grid.
To get an intuitive sense of the aforementioned model
and flow, see Figure 1.

2.2 Heuristic-based control algorithm
The heuristic-based battery control algorithm, proposed
by Norbu et al. (2021), which will be used as the baseline
for improvement in this paper, is a concise decision tree
that determines whether to interact with the battery, i.e.
charge or discharge, or interact with the central grid, i.e.
sell or buy energy, based on the current residual power
and battery state. Figure 2 depicts the aforementioned
in the form of a flowchart.

Figure 1: Power flow diagram by Norbu et al. (2021, p. 5)
depicting the prosumer model.

3 Optimizing the control algorithm
The results during the process of optimizing the control
algorithm have been summarized in this section. Log-
ical actions and properties are defined and translated
into the definition of an enhanced control algorithm that
possesses the characteristics of the designed optimal be-
haviour.

3.1 Case Analysis
By manually designing and processing ostensibly intrigu-
ing scenarios, insights that are believed to lead to im-



provement have been summarized into cases with a de-
scription and analysis below.
Order of covering demand
The heuristic-based algorithm by Norbu et al. (2021)
first subtracts demand from power (resulting in the resid-
ual power), then attempts to discharge the battery and
ultimately decides to buy energy. Is this the optimal or-
der of covering demand and why?
The first step essentially is directly covering demand
with generated power, which is more efficient than dis-
charging the battery given its stored energy dealt with
loss due to ηc · ηd and other factors (e.g. self-discharging
batteries). This loss factor is less than or equal to one
(basic law of conservation of energy), however, realisti-
cally, this ratio is always lower than 1 thus less efficient
(and certainly not more efficient) than directly covering
with generated power.
The other option is importing energy from the central
grid. Looking only at any current timestamp, denoted
by t, it follows from intuition that generated power is
“free”, thus, importing energy is the least optimal ac-
tion for {t ∈ T | τ b(t) ≥ 0} and most optimal for
{t ∈ T | τ b(t) < 0}. However, when looking ahead, cov-
ering demand using imported energy might be tactful to
do at possibly non-trivial seeming timestamps compared
to the heuristic-based algorithm, as explored below.
Matching demand with battery capacity
The heuristic-based algorithm by Norbu et al. (2021)
charges at any opportunity it gets, however, while safe
it is simply not optimal, as it can miss out on selling
opportunities. For example, given some excess power α
at t, i.e. g(t) − d(t) > 0, and some (forecasted) future
excess demand β at t + 1, i.e. g(t + 1) − d(t + 1) < 0,
where α > |β|

ηc·ηd , α ≤ δc(t)
ηc ≤ ω, |β| ≤ δd(t + 1) · ηd and

T = 2, the heuristic approach (charging α) misses out
on exporting (α + β) · ∆t. In essence, the battery should
never be filled more than needed with the knowledge of
perfect future data.

Figure 2: Flowchart of heuristic-based battery control algo-
rithm strategy by Norbu et al. (2021, p. 7).

Expensive future excess demand
Given some usable capacity in a battery at some t,
i.e. SoC(t) > SoCmin and δd(t) > 0, and consecu-
tive negative residual power, i.e. excess demand, in
the (forecasted) future that is more than the battery
can cover, i.e. g(x) − d(x) < 0 for x ∈ X where
X = {t, t + 1, ..., t + n} and min(SoC(t),

∑
x∈X δd(x) ·

∆t) −
∑

x∈X
g(x)−d(x)

ηd/∆t
< 0, where future import tariffs

are higher than the current import tariff, i.e. ∀x ∈ Y
where Y = X \ {t} it holds that τ b(t) < τ b(x), it is intu-
itively smarter to buy energy currently at t and discharge
the battery at a later moment (when import tariffs are
the highest) as this reduces the total cost for covering
excess demand in X.
Maximizing profit exported energy
Given some (forecasted) future where we currently are
in a timespan with excess power, i.e. g(x) − d(x) ≥ 0 for
x ∈ X where X = {t, t + 1, ..., t + m}, and as far as we
can look in the future (denoted as timestamp n), excess
demand timespans, i.e. g(i) − d(i) < 0 for i ∈ Y where
Y = {m + 1, m + 2, ..., n}, do not exist or are already
known to be covered maximally by current excess power
from X while still resulting in leftover energy to export,
it is optimal to calculate the amount of energy that needs
to be charged for possible future coverage of Y and then
charge the battery at times when selling prices are as low
as possible until the desired SoC is reached to ultimately
export any leftover energy at the highest export prices.
Out of control costs
Given any α = g(t) − d(t), β = α − δc(t) for α ≥ 0 and
γ = |α| − δd(t) for α < 0, then, if β > 0 or γ > 0,
the battery cannot handle charging or discharging this
amount of residual power (α) and thus β needs to be
exported or γ needs to be imported. No smart algorithm
can go beyond these battery constraints, these profits or
losses must occur.
Expensive charging exploit
In addition to figuring out the ratio of charging/ex-
porting and discharging/importing based on generated
power, charging the battery with imported energy should
be considered at any t if this is possible from a technical
standpoint. Intuitively, it is similar to using your phone
while it charges. Besides this battery setup unlocking the
world of energy trading (e.g. importing energy at tariffs
that make exporting it later on profitable), which is out
of scope for this paper as it does not focus on the effi-
ciency of renewable energy assets in essence, it is needed
to cover all demand truly as cheap as possible whenever
the battery, given perfect knowledge, is not able to. Any
excess demand that needs imported energy should have,
if and only if there was room to charge up until the cur-
rent t, charged previously at some timestamp tprev with
imported energy if τ b(tprev)·ηc ·ηd > τ b(t), capped at the
maximum throughput for the RtC in the period [tprev, t)
and of course any other constraints within this process
such as δd(t).



3.2 Improved Control Algorithm
This section defines the optimized control algorithm in
its entirety while simultaneously elaborating on the im-
plementation of the beneficial insights and derived prop-
erties from the case analysis in subsection 3.1. Addition-
ally, the correctness of the algorithm is highlighted and
an example scenario is processed expressively to possibly
increase the intuitiveness behind the functioning of the
algorithm.
Looking back while looking ahead
For each timestamp t ∈ T , actions will be decided by
looking ahead at estimated forecasts (which should yield
optimal results with high accuracy and otherwise still be
relatively robust) and operate similarly to the ideas pre-
sented in the case analysis in subsection 3.1. However, if
we merely look ahead within this lookahead window, e.g.
calculate for the current timestamp how much residual
power is present in the future to decide whether we can
export energy now, we already need to know the optimal
residual power for that future timestamp as well, which is
essentially the problem we are trying to solve already. A
possibly counter-intuitive way (and hence mentioned) of
implementing the case analysis of subsection 3.1, which
denotes optimal actions in a future-oriented manner, is
by attempting to satisfy the same idea while approaching
it by looking at previously processed timestamps when
looking in the future (which may seem like the past but
are still the future with respect to the actual timestamp
that is being processed), as these timestamps are cer-
tain to already have taken optimal decisions in earlier
iterations within the lookahead window. Thus, please
be aware of this way of thinking when reading the up-
coming paragraphs that describe the steps taken by the
algorithm within the lookahead window.
Step 1: Skipping excess power
Any excess power within the lookahead window, i.e.
g(t) − d(t) ≥ 0, is skipped by the algorithm (meaning
no decisions are made immediately), as then its left-
over residual power can be used in future timestamps
within the lookahead window which look back respec-
tively. If no future timestamp needed or was able to use
this residual power (completely), all leftover power will
be exported to the central grid. This falls back on the
idea of matching demand with battery capacity (in this
case skipped excess power is potential battery capacity)
optimally as presented in the case analysis in section 3.1.
Step 2: Using battery power
As analysed in section 3.1, unless τ b(t) < 0, using bat-
tery power is the first action in the optimal order of
covering demand. Thus, any excess demand will be cov-
ered as much as possible or needed using the battery, i.e.
min(δd(t) · ∆t, SoC(t) · ω, g(t)−d(t)

ηd/∆t
). Do note that such

actions require changes to be made for RtC, SoC, pbat
d

and other variables the algorithm keeps track of. Also,
it might seem like this step will yield suboptimal results
given the possibility of expensive future excess demand

as illustrated in section 3.1, however, step 4 in this sec-
tion 3.2 will satisfy said case.
Step 3: Using past excess power
If excess demand is still not fully covered by the pre-
vious step (2) and δd(t) > 0, the algorithm continues
to look for available excess power that can be used to
charge the battery between the starting timestamp of
the lookahead window and the current future timestamp
that is being looked at. To maximize the profit of ex-
ported energy as discussed in section 3.1, the algorithm
will sort any previous timestamps with g(t) − d(t) > 0
and δc(t) > 0 based on ascending export tariffs, such
that the revenue remains as large as possible. Before
that, the algorithm also should know how much energy
at such timestamps can be discharged and should not
consider any timestamps before other timestamps that
have no room to charge, as the energy cannot reach the
current timestamp due to said bottleneck. Thus, iterat-
ing back until, for some timestamp x, RtC(x) = 0 or the
starting timestamp of the lookahead window is reached,
a list to keep track of throughput values is generated by
calculating min(RtC(t), minglobal) where minglobal is a
variable, initially set to ∞, to keep track of the mini-
mal global throughput and t the respective timestamp.
Then, based on the aforementioned pricing strategy and
(dis)charging boundaries at the respective timestamps,
excess power will be charged into the battery as much
as possible and needed at the available timestamps.
Step 4: Using previously discharged energy
If excess demand is still not fully covered by the previous
steps (2 and 3), it can only be covered by importing
energy. However, instead of directly importing, the first
thing to consider is the case in section 3.1 that depicts
a scenario with expensive future demand, which could
be the case for the current timestamp (i.e. import tariff
is currently higher than previous timestamps). If any
previous timestamp, let us refer to such a timestamp by
x, had a lower import tariff and discharged energy from
the battery, it is possible to swap the discharged energy
at x for imported energy and use the newly available
energy in the battery, if δd(t) > 0, at the timestamp t
which is currently being looked at. Additionally, it needs
to be checked whether enough room to store energy is
available during the period of [x, t). Then, sorted on
ascending import tariffs, discharged energy is swapped
as much as possible and needed to cover the demand at t.
Step 5: Using previously imported energy
Besides the previous step (4), there is another possibil-
ity for additional benefit regarding the need to import
energy, if the RES is set up accordingly, by preventively
charging using substantially cheaper imported energy as
discussed in section 3.1. The algorithm should compare
the benefit compared to the previous step and also, sim-
ilarly to step 3, calculate how much room to charge is
available and needed.



Step 6: Directly importing energy
If excess demand is still not fully covered by the previous
steps, which would be the case if it is out of control as
illustrated in section 3.1 or simply since buying energy
at the current timestamp is the best option (left), energy
needs to be imported from the grid. Similar to the first
step of skipping excess power, the excess demand can be
skipped and any leftover excess demand will be imported
from the grid by the algorithm.
Output of the algorithm
After processing the steps taken by the algorithm as de-
scribed above, the algorithm should return the actions
for the current timestamp t (= 0 within the lookahead
window, referred to as 0la) which are as follows:

• g(0la) · ∆t, denoting the leftover energy that will be
exported (values in g have been altered to reflect ac-
tions taken within the lookahead window), referred
to as optexport(t)

• d(0la) · ∆t, denoting the leftover energy that will be
imported (values in d have been altered to reflect ac-
tions taken within the lookahead window), referred
to as optimport(t)

• pbat
c (0la)·∆t, denoting the optimal amount to charge

at t, referred to as optcharge(t) (which is the energy
change in the battery, not the actual input)

• pbat
d (0la) · ∆t, denoting the optimal amount to dis-

charge at t, referred to as optdischarge(t) (which is
the energy change in the battery, not the actual out-
put)

It can then be deduced that:
• SoC(t + 1) = SoC(t) + optcharge(t) − optdischarge(t)
• Cost at t = optimport(t) · τ b(t) − optexport(t) · τs(t)

Correctness of the algorithm
When running the algorithm, at each t ∈ T , the follow-
ing asserts are made to check if the algorithm satisfies
properties that classify the algorithm as working prop-
erly:

• 0 ≤ SoC(t) · ω ≤ ω (capacity boundaries)
• pbat

c (t) ≤ pmax
c ∧ pbat

d (t) ≤ pmax
d (power boundaries)

• (g(t) − d(t)) · ∆t = es(t) − eb(t) + optcharge(t)
ηc −

optdischarge(t) · ηd, checks that not more or less out-
put is created from some input, i.e. the residual
energy at t equals the leftover energy (which will
be exported or needs to be covered using imports)
combined with the energy going into the battery to
charge (part of the original residual energy) minus
the energy coming out the battery by discharging
(not part of original residual energy) based on a
supposedly optimal decision at t

4 Assessment of proposed algorithm
In order to assess the newly introduced smart control al-
gorithm, several experiments have been conducted and

are described in this section in addition to the environ-
ment in which they operated.

4.1 Experimental Setup
Norbu et al. (2021) carefully studied energy projects and
the resulting work provides a definition of a heuristic-
based control algorithm that can be used as a baseline
algorithm for comparison. Access has been granted to
repositories containing an assemblage of code produced
by Sho Cremers, Sonam Norbu and Peter Zhang for
computing the cost of an energy community given
demand and generation profiles of several consumers,
as specified in the work of Norbu et al. (2021). This
code, after meticulous examination, is used to run the
baseline control algorithm and as a starting point for
implementing the algorithm described in subsection 3.2.
When computing the cost of a community, this paper
considers b(T ) to be the bill of the total operational
costs for the whole community, which is the sum of
eb

i (t) · τ b(t) − es
i (t) · τs(t) for all t ∈ T for all prosumers

i ∈ N .

Regarding data available for simulation, a collection of
recorded energy demands of households connected to a
smart grid during two trials, i.e. Thames Valley Vision
and Low Carbon London, and dynamic tariffs from an
Octopus Agile energy plan are utilisable. The Thames
dataset by Scottish Southern Electricity Networks
(2018) contains 200 households over a timespan of
a year (from January 2017 to December 2017) with
intervals of 30 minutes. The London dataset by UK
Power Networks (2015) contains 5567 households over a
timespan of 2.5 years (from November 2011 to February
2014) with intervals of 30 minutes. Historical data of
the Octopus API has been recorded by EnergyStat-
sUK (2022) and provide Octopus Agile import and
export tariffs for London from roughly 2018 to 2022
with intervals of 30 minutes (∆t = 0.5). Given the
similarity in interval frequency, all data can adequately
be matched on a month-day basis. As for matching the
years, unfortunately, no proper overlap is achievable in
the data, thus the best remaining option for simulation
is using complete years. Tariff data used is from 2020
to 2021, whereas the London and Thames data is
the first complete year available, i.e. 2012 and 2017,
ultimately resulting in T = 365 · 24 · 2 = 17520 time
periods. To be able to put any output of experiments
into perspective, the following annual energy bills for
the average prosumer have been calculated for the
datasets:

• No generated power and no battery:
– Thames dataset: b(T )/N = £15.51
– London dataset: b(T )/N = £349.93

• Generated power but no battery:
– Thames dataset: b(T )/N = −£4.10
– London dataset: b(T )/N = −£44.02



As for simulating the battery, based on the research of
May et al. (2018), a lead-acid battery is a remarkably
well-established option for energy storage and is the only
BESS that is nearly entirely recycled (99% in Europe and
the USA) which supports the ultimate goals of improving
renewable energy assets: climate control and sustainabil-
ity. Lithium-ion batteries have a troubling low rate of
recyclability (less than 1%), yet as a result of rapidly
developing technologies are deemed as the future of bat-
teries due to a longer life cycle and higher energy den-
sity (Yanamandra et al., 2022). Additionally, based on
the research of Kebede et al. (2021), lithium-ion batter-
ies are also considered to be more techno-economically
viable than lead-acid batteries. Given the mentioned
advantages of lithium-ion batteries and the future po-
tential of proper recycling as comes with battery ma-
turity according to Yanamandra et al. (2022), lithium-
ion batteries have been selected to be simulated. The
technological downsides that need to be accounted for
when simulating a BESS using a lithium-ion battery are
a depth of discharge of 80% and practical efficiencies of
around 85% for (dis)charging the battery, according to
performance tests carried out by Bila et al. (2016). The
aforementioned translates into the following attributes:
ηc = ηd = 85%, SoCmin = 20%.

4.2 Performance Perfect Forecasts
To get an initial grasp on the performance of the newly
introduced control algorithm, the baseline algorithm and
the smart control algorithm are both simulated within
the environment as described in subsection 4.1 in combi-
nation with perfect future knowledge (i.e. original data).
Battery size and how far we look into the future are
not specific, thus, various values have been considered
to gather a complete overview:

• ω/N ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 7.5, 10,
15, 30, 50}

• κ ∈ {2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96}
The results of the 450 simulations are carefully summa-
rized in Figure 3 by showing for the average prosumer the
operational profit gained by the smart control algorithm
as a boxplot (based on outcomes for the various κ) per
battery size. Operational profit per prosumer is defined
as −b(T )/N (note: a negative bill is counter-intuitive for
profit thus the sign is flipped), not considering the cost
of assets. For the baseline control algorithm, the oper-
ational profit per prosumer, i.e. −b0(T )/N , has been
plotted per battery size as well to compare the algo-
rithms easily. All the details per κ per battery size can
be seen in Appendix B and Appendix C for the London
and Thames dataset respectively. These details reveal
that a lookahead window of 8-12 hours is outperforming
the baseline control algorithm nearly always and looking
ahead 24 hours was always more profitable compared
to the baseline control algorithm. Additionally, based
on the annual bills when having generated power yet no
battery, the smart control algorithm is able to achieve

between 10% to 70% more operational profit at times
compared to the heuristic-based control algorithm.

Figure 3: High-level comparison between operational profits
of the baseline algorithm and smart algorithm for the average
prosumer using various battery sizes and lookahead amounts
represented in boxplots, following the experiment described
in subsection 4.2.

4.3 Robustness of smart control algorithm
In order to be more certain that the smart control al-
gorithm works adequately, the robustness is tested by
experimenting with erroneous future forecasts for power
and demand predictions in addition to tariff predictions.
All experiments performed in this subsection consider
κ ∈ {6, 8, 16, 24, 32, 40, 48, 64, 72, 96}. As there are vari-
ous techniques used to estimate the future - some more
accurate or costly than others - which all deserve to be
considered, a broad range of functions that alter the data
uniquely have been experimented with and are clarified
below.
Constant functions
The simplest function to quickly assess the robustness of
the algorithm is a constant margin of the form y±c·σdata

in which uniformly a random value is picked for x ∈
(0, κ]. Note that the standard deviation is not within
the lookahead window but the complete data. As for c,
values ranging from 0.5 up to a hundred thousand have
been considered and the results of 3080 experiments have
been summarized in Figure 4. The operational profit
per prosumer is averaged over various lookahead win-
dow sizes of κ ∈ {6, 8, 16, 24, 32, 40, 48, 64, 72, 96}.
Based on these experiments, the smart algorithm out-
performs the baseline algorithm each time with complete
future tariff knowledge, however, when tariff uncertainty
is introduced next to power and demand uncertainty, the
smart control algorithm only always beats the baseline
control algorithm for a margin of less than or equal to
one standard deviation.
Linear functions
Future estimations often become more inaccurate as time
passes, as patterns are often not that clear for longer pe-



Figure 4: High-level comparison between operational profits
of the baseline algorithm and smart algorithm for the average
prosumer using various battery sizes and lookahead amounts
with uncertain forecasts based on constant margins.

riods. To illustrate the robustness of the smart control
algorithm with uncertainty following said characteristics,
a linear function of the form y±c·x·σdata where x ∈ (0, κ]
is considered as margins to uniformly pick a random
value. Figure 5 summarizes 1400 experiments using var-
ious linear margin functions in combination with various
sizes for the lookahead window (κ) and various sizes for
the battery per prosumer (ω/N). Interestingly, c ≤ 0.05
outperforms even the smart control algorithm using per-
fect forecasts, also with tariff uncertainty. Moreover, all
functions outperform the baseline control algorithm with
only power and demand uncertainty.
Converging and diverging functions
Usually, uncertainty boundaries are not constant or lin-
ear, thus, a more complicated type of experiment is also
contemplated where up until a point in the lookahead
window the uncertainty converges and then starts di-
verging. This led to creating the following function for
setting the margins to uniformly pick a random value:

y ±
{

s1 ·
√

x, for x < ⌊r · κ⌋ = d

s1 ·
√

d + (s2/w) · (x − d)n, else
Here, s denotes a scalar, where s1 scales the converging
function and s2 scales the diverging function with ex-
ponent n. Another scalar is w, which can be seen as a
control for the width. In the performed experiments w is
commonly defined as κ − d (= ⌈(1 − r) · κ⌉). The d is the
timestamp within the lookahead window where the con-
verging function is continued by the diverging function,
which can also be defined as a ratio r of the lookahead
window multiplied by its size κ.

Figure 5: High-level comparison between operational profits
of the baseline algorithm and smart algorithm for the average
prosumer using various battery sizes and lookahead amounts
with uncertain forecasts based on linear margins.

This function aims to be a more naturalistic margin for
the picked random values where the beginning can be
fairly accurate and then shift into larger misconceptions.
An example of such a function can be seen in Figure 6
and on actual power data in Figure 7.
Figure 8 summarizes 1400 experiments using various
converging and diverging margin functions in combina-
tion with various sizes for the lookahead window (κ) and
various sizes for the battery per prosumer (ω/N). The
results show similar (profitable) results compared to the
smart control algorithm using perfect forecasts and re-
markably tolerable tariff uncertainty compared to previ-
ous experiment types.

5 Responsible Research
To be able to faithfully consider the output of the
research in this paper, this section will elaborate on
the reproducibility and feasibility of the findings in
the paper and elaborate on any other aspects that
were considered to ultimately contribute to responsible
research.

Reproducing research is a challenge that many re-
searchers fail to tackle, even as much as 70% according
to Baker (2016), which should and could easily be
prevented. To preclude said issue, the conceptual
description of the proposed control algorithm in sec-
tion 3 contains all details needed to develop the smart
control algorithm, which is also available on request,
and additionally, the design choices and correctness
of the proposed control algorithm have been carefully
denoted in subsection 3.1 and section 3.2 respectively.



Figure 6: Example of the shape of a converging and diverging
margin function on flat original data.

Figure 7: Example of the shape of a converging and diverging
margin function on actual community power data of a day in
the London dataset.

Then, section 4 attempts to provide a comprehensive
understanding of how to recreate the experiments by
illustrating and denoting the exact methods that were
pursued in the conducted simulations, which are plotted
using a color palette that is colorblind-safe.

There is no guaranteed stability, as endeavoured
in section 4, without feasibility. Therefore, it is critical
to justify the feasibility of various uncertainties and
κ used in the experiments by denoting the ability of
several techniques (with different complexities) used to
forecast certain types of data, such as wind predictions.
Values that are not yet justifiable aim to be indicative
of what future progress could achieve.
Related research efforts regarding wind predictions are
as follows. O’Brien and Ralph (2015) found an error of
25-30% in true wind speeds for forecasts of 30 hours by
evaluating the performance of a wind-forecasting system
that utilised a Numerical Weather Prediction (NWP)
model and is operating in a similar environment as the
data used in this paper. Forbes and Zampelli (2020)
describe the accuracy of wind energy forecasts in the
UK and found an energy weighted RMSE of 31.98% for
forecasting a day ahead. The energy trading market is
leading (also in complexity) and can accurately forecast
36 hours ahead at high frequencies using ensemble
learning as described by Suárez-Cetrulo et al. (2022),
which shows several techniques obtaining a scaled
RMSE and scaled mean absolute error of less than
1e-3. Another promising long-term prediction model is

Figure 8: High-level comparison between operational profits
of the baseline algorithm and smart algorithm for the average
prosumer using various battery sizes and lookahead amounts
with uncertain forecasts based on converging and diverging
margins.

demonstrated by Torabi et al. (2018), a cascade neural
network is able to improve one day ahead forecasts by
84% and one week ahead predictions by 73% based
on the RMSE of other already progressive prediction
models.
Forecasting energy consumption based on electricity con-
sumption provides promising forecasts, presumably due
to the nature of repetitive and alike human behaviour
causing stable patterns in the data, of 62.5 hours ahead
with a prediction error of around 10% using the TBATS
model (which forecasts timeseries based on multiple sea-
sonalities) according to Gellert et al. (2022).
While tariffs can and are often known for various types
of contracts, some agile contracts or energy markets call
for predicting electricity prices. The energy trading sec-
tor has led to the proper development of forecasting
tools in this area, even though a decade review by Lu
et al. (2021) shows the serious challenge of predicting
electricity prices due to many variables: economic fac-
tors, trade factors such as cross-border energy flow, pol-
icy factors, environmental factors, calendar factors such
as holidays and lastly general consumption, production,
supply, storage, and capacity play a role in energy prices.
Using artificial neural networks, day-ahead predictions
with a mean absolute percentage error of 7.8 have been
achieved (Pavićević and Popović, 2022).
All in all, the various values for κ and the range of uncer-
tainties in the experiments in section 4 should be reason-
ably elucidative for the stability of the performance of
the proposed smart control algorithm when taking into
account the current state-of-the-art technologies of fore-



casting supply, demand and tariffs.

6 Discussion
After introducing a smart control algorithm defined
in section 3 and putting it to the test in section 4
by simulating a manifold of scenarios, this section
will reflect on particularities present in the conducted
experiments.

Firstly, a conceivably anomalous sight of more prof-
itable simulations with respect to the simulations using
perfect forecasts can be seen in the outcomes of some
experiments testing the robustness of the algorithm
in subsection 4.3. A probable justification for this
occurrence could be that the lack of knowledge after
the lookahead window causes a suboptimal decision no
matter the accuracy of the forecast, as the lookahead
window does not span the range of timestamps that
would influence the perfect decision in retrospective.
From all the detailed results of simulations for var-
ious sizes of κ with perfect forecasts, presented in
Appendix B and Appendix C, the total operational
cost, i.e. b(T ), with respect to κ follows the shape of
a positive-indexed reciprocal function, i.e. y = 1/x for
x > 0, and Π(T ) does not decrease, which confirms that
more (accurate) knowledge guides the smart algorithm
to make more profitable decisions. Based on said
beliefs and findings, it seems that some of the imperfect
forecasts accidentally directed the decision unknowingly
towards a decision that matched the supply and demand
of energy more or most optimally.

Secondly, it is essential to denote limitations regarding
the experiments to critically assess the proposed smart
control algorithm appropriately. Computationally
speaking, the available equipment used to run simula-
tions had an inferior level of performance to calculate
the ‘most optimal’ profit possible where κ = |T |, which
would provide even finer insight into the level of perfor-
mance of the simulations carried out in subsection 4.3
where randomness was introduced to sample the robust-
ness of the smart control algorithm. Moreover, due to a
lack of available data, the simulations were run on real
data yet originating from different years, thus, it merely
provided a sound environment to evaluate the behaviour
of the proposed algorithm, whereas true-to-life data
could have supplied more relatable insights into actual
cost and profit differences, especially for the energy
communities that were considered in this paper. From
weather to demand, all variables in the setup have a
sensitive correlation, as confirmed by Hernández et al.
(2012), thus, any output cannot be truly considered
genuine or useful for any recommendations besides
performance testing. For this reason, it is decided to
not provide practical recommendations for the size of a
battery storage unit for a particular prosumer as well.

7 Conclusions and Future Work
In this paper, reputable modifications for a heuristic-
based control algorithm are discovered to ultimately im-
prove the efficiency of renewable energy assets by match-
ing the energy supply and demand more optimally. A
heuristic-based control algorithm determines whether to
interact with the battery, i.e. charge or discharge, or
interact with the central grid, i.e. sell or buy energy,
based on the current residual power and battery state.
For a theoretically optimal decision, the future should be
taken into account, which realistically can be forecasted
with the current state of technology. Based on the idea
of having perfect knowledge in the complete range of
time, the following broad principles should be taken into
account:

• A battery should never be filled more than needed
as otherwise the surplus of energy could have been
sold.

• If battery power is considered to be utilised while
in the future excess demand requires to be covered
by buying energy for a higher price than the current
price, it would be beneficial to buy energy now and
use battery power in the future.

• If energy can be sold to the central grid on multiple
occasions, it should be sold at times when the selling
price is as high as possible.

• If the battery is able to charge using imported en-
ergy from the grid, charging the battery with bought
energy should have been considered if it were more
profitable than having to buy energy later at a sub-
stantially higher price.

• If the available generated power and battery power
cannot cover the demand, there is no other option
than to buy energy. Similarly, if the battery cannot
be charged more or at a higher rate, energy needs
to be sold to the central grid.

Based on several thousands of simulations on areas in
the UK with various probable ranges of forecasts and
battery sizes, the smart control algorithm has demon-
strated to gain additional profit for both theoretically
perfect forecasts and plenty more realistic forecasts by
exploiting the aforementioned characteristics. There-
fore, the proposed smart control algorithm can be
considered as a theoretical and presumably a practical
improvement for the efficiency of renewable energy
assets.

For future work, it would be worth investigating
uncommon actions or trends in lookahead windows of
unusual computationally large size in order to assess
whether using these actions based on the estimation of
some machine learning technique in small lookahead
window sizes would benefit the overall efficiency of the
smart control algorithm. In addition, various types of
tariffs could be considered to gain a perspective of the
usefulness of adapting to the proposed smart control
algorithm for a particular prosumer. Additionally,



actual forecasting models and more real data should be
explored using the proposed control algorithm in order
to advance towards practical deployment and directly
improve the efficiency of renewable energy assets.
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A Processing an example scenario for the proposed smart control algorithm
To possibly increase the intuitiveness behind the functioning of the algorithm beyond the power of words, this
appendix will provide a figurative systematic walkthrough of the improved control algorithm for an example scenario
with expensive future demand which has been presented in Figure 9. In this scenario, as can also be deduced from
looking at Figure 9 carefully, initially T = 3 and SoCinit = 0 (ω = 1). To simplify, ηc = ηd = 1, ∆t = 1 and forecasts
remain constant. The algorithm will look ahead maximally for each t ∈ T (note that with T = 3 there is a decreasing
lookahead window size, as opposed to a real-time functioning system). Each iteration in Figure 9 for some t starts
with showing the current state of variables and other details (for example, see subfigure t = 0), to then continue with
processing each future timestamp in the lookahead window denoted by iteration i, e.g. subfigure t = 0 and i = 1,
and showing the output of the iteration. The bottleneck of this scenario is the substantially higher import tariff at
t = 2, i.e. 5, and the lack of generated power to cover future demand, thus, it would be optimal to import energy at
t = 1, which a heuristic-based algorithm does not consider as it discharges immediately. For example, in the figures
of t = 0 where i = 1 and i = 2 the algorithm already decides that importing energy earlier is the more optimal, as
here the tariff is only 1. This action is realized in t = 1 at iteration i = 1.

Figure 9: Systematic walkthrough of improved control algorithm for an example scenario with expensive future demand.



B Detailed results of perfect forecasts on London dataset
This appendix shows the details of the experiments carried out in subsection 4.2 using the London dataset to give
more insight regarding how far the smart control algorithm needed to look ahead (κ) in order to be more profitable
than the baseline control algorithm for a broad range of battery sizes. The results can be seen in Figure 10 and
Figure 11. The operational profit per prosumer is defined as −b(T )/N , which has a flipped sign to make the plot
intuitively look like profit given a negative bill actually means getting money back (= profit). Thus, the increasing
trendlines indicate more profit for larger values of κ. It is also worth mentioning that −b0(T ) in the legend represents
the operational profit of the baseline control algorithm per prosumer, so actually divided by N , similarly to the
y-axis. Furthermore, BA stands for ‘baseline control algorithm’ and SA stands for ‘smart control algorithm’ in the
legend.

Figure 10: Overview of operational profits per prosumer for the baseline- and smart control algorithm using various sizes for
the lookahead window (κ) and various sizes for the battery per prosumer (ω/N) on original historical data of London (part 1).



Figure 11: Overview of operational profits per prosumer for the baseline- and smart control algorithm using various sizes for
the lookahead window (κ) and various sizes for the battery per prosumer (ω/N) on original historical data of London (part 2).



C Detailed results of perfect forecasts on Thames dataset
This appendix shows the details of the experiments carried out in subsection 4.2 using the Thames dataset to give
more insight regarding how far the smart control algorithm needed to look ahead (κ) in order to be more profitable
than the baseline control algorithm for a broad range of battery sizes. The results can be seen in Figure 12 and
Figure 13. The operational profit per prosumer is defined as −b(T )/N , which has a flipped sign to make the plot
intuitively look like profit given a negative bill actually means getting money back (= profit). Thus, the increasing
trendlines indicate more profit for larger values of κ. It is also worth mentioning that −b0(T ) in the legend represents
the operational profit of the baseline control algorithm per prosumer, so actually divided by N , similarly to the
y-axis. Furthermore, BA stands for ‘baseline control algorithm’ and SA stands for ‘smart control algorithm’ in the
legend.

Figure 12: Overview of operational profits per prosumer for the baseline- and smart control algorithm using various sizes for
the lookahead window (κ) and various sizes for the battery per prosumer (ω/N) on original historical data of Thames (part 1).



Figure 13: Overview of operational profits per prosumer for the baseline- and smart control algorithm using various sizes for
the lookahead window (κ) and various sizes for the battery per prosumer (ω/N) on original historical data of Thames (part 2).
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