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Abstract

Operation and maintenance of the built environment have a major effect on socioeconomic

stability and sustainability. A significant part of our built world approaches or has

well exceeded its designated structural life. As engineers, we need to find efficient ways

to extend this life while maintaining acceptable levels of safety and performance. In

this direction, smart and adaptive life-cycle inspection and maintenance planning are

of paramount importance to reduce costs, increase structural reliability, and minimize

resource-intensive interventions. Deep reinforcement learning provides a novel approach

to strategize these decisions for systems subject to uncertainties and deterioration.

The goal of this project is to determine optimal life-cycle inspection and maintenance

policies for road networks. Road maintenance and inspection planning is a complex task,

involving a multitude of different objectives, such as the minimization of lifecycle cost

and CO2 emissions (both from the maintenance works and vehicle emissions). However,

current literature has underestimated the importance of optimizing for multiple objectives,

and doesn’t consider the environmental impact during planning. In the current project,

we aim to optimize the maintenance and inspection schedule with respect to minimizing

the maintenance costs, carbon emissions and vehicle owners costs at the same time. To

achieve that, a multi-objective road network environment will be modelled and multiple

multi-objective Deep Reinforcement learning approaches will be applied and compared to

traditional life-cycle management policies.

Keywords – Deep Reinforcement Learning, Multi-objective optimization, Road

maintenance planning
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1

1 Introduction

1.1 Motivation

Timely and efficient road maintenance is crucial to ensure the safety and functionality

of global transportation systems. As a result, road maintenance planning is an essential

aspect of the overall transportation management strategy. Weather conditions, natural

deterioration over time, and traffic volume are just a few examples of factors that can

cause damage and create hazards on roads.

Road maintenance is a complex and multi-faceted issue that requires consideration of

multiple actors and objectives (Table 1.1). From governmental decision-makers to private

contractors and road users, each stakeholder brings their priorities and concerns to the

table either directly or indirectly. At the highest level, government officials must balance

competing priorities and make strategic decisions about how to allocate resources to

maintain the nation’s roads. Most importantly, they need to reach specific sustainability

goals. For example, based on the Climate Act of May 28, 2019, the Dutch government

has committed to reducing the Netherlands’ greenhouse gas emissions by 49% by 2030

compared to the 1990 levels (Ministerie van Economische Zaken, 2020). Meanwhile, public

authorities tasked with designing maintenance schedules must prioritize safety above all

else, working to ensure that roads are kept in a safe and adequate condition to avoid

accidents, while at the same time reduce the maintenance costs as much as possible.

Private contractors, on the other hand, are focused on cost efficiency and competitiveness,

seeking to maximize their profit margins while delivering high-quality results. Finally,

road users themselves have their own set of concerns, including minimizing their traffic

delays and their cost for operating and maintaining their vehicle. By considering the needs

and objectives of each stakeholder group, a comprehensive road maintenance strategy can

be developed that balances the interests of all parties involved.



2 1.1 Motivation

Actor Objectives

Government regulators 1. Reach sustainability goals
2. Maintain political stability

Public decision-makers 1. Maximize road safety
2. Minimize maintenance costs

Private contractors 1. Maximize profit margin

Road network users 1. Minimize traffic disruptions
2. Minimize vehicle costs

Table 1.1: The different actors involved in the road maintenance problem. The objectives
that will be of concern for the present study are displayed in bold.

Hence, trading-off between the different maintenance strategies, such as routine

maintenance works and heavy restoration works, is not an easy task. While routine

maintenance tasks are cost-effective in the short term, they do not address underlying

structural issues. Conversely, heavy restoration tasks can enhance road quality, but at the

same time, they come at a high cost and cause significant traffic disruption and carbon

emissions.

To achieve efficient and effective road maintenance planning, it is essential to carefully

evaluate different objectives, such as the monetary cost of maintenance, the environmental

impact, the safety, and the convenience of passengers. Deep Reinforcement Learning

(DRL) is a promising tool in the field of asset maintenance scheduling. This revolutionary

technology has been effective in finding optimized Maintenance and Inspection (M&I)

strategies for various assets, including road networks. For instance, recent studies have

shown that DRL approaches can reduce maintenance costs by up to 40% compared to

standardized maintenance strategies (Saifullah et al., 2022).

1.1.1 Why we need to plan for multiple situations

The task of road maintenance scheduling is inherently complex, as it involves balancing

multiple objectives. However, a significant challenge arises from the uncertainty

surrounding the preferences associated with these objectives during the initial planning

stages. Various external factors, such as budget allocations and political dynamics, can

significantly influence the final maintenance schedule. In this thesis, we aim to delve into

the complexities of multi-objective road maintenance scheduling and propose an approach

that allows for greater adaptability in response to the dynamic nature of these external



1.1 Motivation 3

factors.

In order to better understand why this research is important, one needs to be aware of the

decision process that takes place within the planning departments of the Municipalities

and Provinces, which are responsible for maintaining our roads. This is presented on

a high-level in Figure 1.1. A key challenge in road maintenance scheduling is the lack

of upfront knowledge regarding the budget to-be-allocated. The planning departments

typically have only a rough estimate of the available budget. Consequently, they must

plan maintenance activities based on empirical knowledge and assumptions. Once the

initial maintenance plan is constructed, a budget proposal is submitted to the respective

financial department, which may either approve the proposed budget or deny it. In the

case of a denial, asset managers are required to re-plan the road maintenance schedule in

accordance with a smaller budget. In this scenario, prioritization becomes crucial, with

a focus on the most impactful and urgent maintenance tasks. The iterative process of

developing and submitting a maintenance part for approval stops when the proposed

budget is approved in its entirety. Based on personal discussions with asset managers of

dutch Provinces, it can take more than a year to complete this budget approval process.
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Figure 1.1: Indicative flow chart of how road maintenance planning is performed within a
public organization. The black dashed box includes the iterative process of re-constructing
the road maintenance plan and requesting budget approval.

In addition to budget uncertainties, preferences in multi-objective road maintenance

planning can be heavily influenced by changes in the political system. When a new

governing party takes office, it may decide to allocate more resources toward maintaining

the road network. Conversely, another party may choose to reduce the road maintenance

budget in favor of other sectors. Furthermore, as discussed in the Motivation section, EU

regulations now impose stringent climate goals on member countries (Ministerie van

Economische Zaken, 2020). These compliance guidelines are expected to shift the

maintenance sector’s focus towards more eco-friendly solutions in the near future, leading

to an increased preference for sustainable road maintenance plans.

Considering the multifaceted factors discussed above, it becomes evident that relying on

a fixed maintenance schedule is impractical for effectively addressing the complexities of

our problem. Instead, our approach will focus on computing a diverse set of solutions that
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cover various combinations of preferences for the studied objectives. By doing so, asset

managers will gain the ability to better adapt their work to the dynamic changes in the

environment. This flexibility not only ensures that maintenance plans remain relevant and

efficient but also enables the effective allocation of resources based on changing priorities.

In conclusion, the multi-objective road maintenance scheduling problem is beset by

various challenges due to the unknown preferences associated with objectives and the

influence of external factors. Budget uncertainties, political dynamics, and environmental

regulations necessitate an adaptable approach that can accommodate evolving preferences

and priorities. By computing a diverse set of solutions, our proposed methodology

empowers asset managers to navigate the complexity of road maintenance scheduling and

make informed decisions that align with the ever-changing circumstances. This flexibility

enables the optimization of resource allocation and enhances the ability to adapt to the

dynamic nature of the road maintenance environment.

1.1.2 Our proposed approach

As discussed above, road maintenance planning is a complex issue with significant societal

impact, and as such, it is crucial that the maintenance and inspection policy is as flexible

and adaptable as possible. In a system containing multiple stakeholders with varying

priorities and preferences, it is essential to develop a set of policies that can cater to all

possible preference combinations. To address this challenge, our study aims to develop a

multi-objective Deep Reinforcement Learning (DRL) framework for the road maintenance

scheduling problem.

We will begin by creating a realistic multi-objective road network environment and compare

the effectiveness of various Multi-Objective DRL algorithms. The algorithms will be

evaluated based on their ability to generate a diverse set of policies that can adapt to

all possible combinations of preferences for three objectives: the minimization of cost of

maintenance, carbon emissions due to traffic disruption, road condition and maintenance

actions, and cost for vehicle owners.

By developing a comprehensive set of policies that considers the diverse needs and

preferences of all stakeholders, our study will contribute to a better understanding of

the potential of Multi-Objective DRL algorithms in the context of road maintenance
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planning. This will enable policy-makers to make informed decisions that are in line

with the interests of all stakeholders, resulting in more efficient, effective, and sustainable

maintenance and inspection policies.
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1.2 Research Questions

The research questions for this study can be formulated as follows:

1. How a Road Network digital twin environment can be enhanced to include, the

lifecycle carbon emissions?

2. How a Road Network digital twin environment can be enhanced to include the lifecycle

cost for vehicle owners?

3. How efficient are outer-loop multi-objective Reinforcement Learning algorithms in

solving the multi-objective road network maintenance scheduling problem?

The two first research questions are essentially prerequisites for the third one, since in

order to evaluate multi-objective reinforcement-learning algorithms, a multi-objective

environment is needed.
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2 Background

2.1 Markov Decision Process (MDP)

MDPs provide a mathematical framework for modelling sequential decision-making

problems, making them a foundational concept in the field of reinforcement learning.

In an MDP, an agent interacts with an environment over time by choosing actions at

each time step and receiving rewards based on those actions. The environment changes

based on the current state and the action done, and the agent’s goal is to maximize its

cumulative reward over time. (Sutton and Barto, 2018)

The Markov property, which asserts that the current state contains all relevant information

about the past and future, is the fundamental assumption underlying MDPs. In other

words, given the current state, the future is conditionally independent of the past. This

property enables the agent to make decisions based solely on the current state, without

explicitly considering the history of previous states and actions.

Figure 2.1: The agent–environment interaction in a Markov decision process. (Sutton
and Barto, 2018)

Typically, MDPs are represented by the tuple (S,A, P,R, γ), where:

• S is the set of conceivable environmental states.

• A is the set of possible actions the agent can take.

• P is the state transition function, which specifies the probability of transitioning to

a new state s′ given the agent’s current state s and action a : P (s′|s, a).

• R is the reward function, which specifies the agent’s instantaneous reward for

performing action a in state s : R(s, a).
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• γ is the discount factor that determines the relative value of instantaneous rewards

versus future rewards. A discount factor of 1 indicates that all prospective rewards

are of equal importance, whereas a discount factor of 0 indicates that only immediate

rewards are significant.

Once an Markov Decision Process (MDP) has been defined, the agent’s objective is to

discover the action for each state so that the sum of the discounted rewards it receives

over the future is maximized. In particular, it chooses actions at to maximize the expected

discounted return Gt, over a horizon T :

Gt = Rt+1 + γRt+2 + ... =
T∑
k=0

γkRt+k+1 (2.1)

The action-value function Qπ(s, a), with s ∈ S and a ∈ A, is defined as the maximum

expected return achievable by following a particular policy π : S −→ A , after observing

some state s and then taking some action a:

Qπ(st, at) = E[Gt | st = s, at = a, π] (2.2)

Combining Equations 2.1 and 2.2, the following recursive form of the action-value function

is retrieved:

Qπ(st, at) = R(st, at) + γEst+1,at+1 [Qπ(st+1, at+1)| st, at] (2.3)

Moreover, the value function Vπ(st) from state st and for policy π is the expected value of

the action-value function over all the possible actions at step t:

Vπ(st) = Eat∼π[Qπ(st, at)] (2.4)

The optimal policy π∗ is the one that maximized the value functions V ∗π and Q∗π, and can

be found by using the Bellman Equation:

V ∗π (st) = max
at∈A
{R(st, at) + γ

∑
st+1∈S

P (st+1| st, at)V ∗(st+1)} (2.5)
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Hence, the Bellman Equation is a dynamic formulation of the value function and it can be

used to find its optimal V ∗, and hence the optimal policy π∗. However, as the state-action

space grows, then the number of samples needed, and hence the computational time, grow

exponentially (Bellman, 1961).

2.2 Partially Observable MDPs (POMDPs)

POMDPs (Kaelbling et al., 1998) are an extension of MDPs that enable the modeling

of decision-making problems in which the agent lacks access to the complete state of

the environment. At each time step in a POMDP, the agent only has access to a noisy

or fragmentary observation of the environment, as opposed to the full state. This adds

uncertainty to the decision-making procedure because the agent must reason about the

fundamental state of the environment based on its observations.

Formally, a Partially Observable Markov Decision Process (POMDP) with a finite horizon is

represented by the tuple (S,A, P,Ω, O,R, γ), where S, A, P , and R represent the state

set, action set, reward function, and transition function, just as in the case of the MDP.

Additionally:

• Ω is the observation set.

• O is the probabilistic observation model, where O(o0, s0, a) := P (o0| s0, a) is the

probability that observation o0 will be perceived if state s0 was reached after

executing action a on the previous time step.

To manage partial observability, the agent employs Bayesian filtering to maintain a

estimate on the system state b. The estimate is a probability mass function (PMF) over

the system state and is a sufficient statistic for the history of prior actions and observations.

The POMDP literature refers to these estimations as belief states. Given the history

of prior actions and observations, the belief state at any given time step is defined as

the conditional probability distribution over the state. b0 is the initial belief state before

taking any actions or perceiving any observations. Given the current belief state b, the

action a, and the resulting observation o′, Bayes’ rule yields the updated belief state b′:

b′(s′) =
P (o′ | s′, a)

∑
s P (s′ | a, s)b(s)

η(o′ | b, a)
(2.6)
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where the denominator is the prior probability of observing o′:

η(o′ | b, a) =
∑
s′

P (o′ | s′, a)
∑
s

P (s′ | a, s)b(s) (2.7)

2.3 Reinforcement Learning (RL)

In contrast to MDPs and POMDPs, which require specific probabilistic models (state

transition function, reward function and observations model) for the environment of the

entire system, RL methods directly interact with the environment, eliminating this need

(Moerland et al., 2020). A common technique to learn the action-value function, Q, is by

implementing temporal difference updates, while collecting samples from the environment

(Sutton and Barto, 2018) :

Q(st, at)←− Qst,at + η(Q(st, at)− yt) (2.8)

where yt is the estimate of future return:

yt = R(st, at) + γ max
at+1∈A

Q(st+1, a+ t+ 1) (2.9)

and η is the problem learning rate. Temporal difference learning is just one example

of a model-free RL algorithm. Model-free RL algorithms directly learn a policy or

value function without explicitly learning the dynamics of the environment (Calisir and

Kurt Pehlivanoğlu, 2019). The policy or value function is learned through trial and error,

by repeatedly choosing actions and observing their consequences. Other model-free RL

algorithms include Q-learning (Watkins, 1989) and SARSA (Rummery and Niranjan,

1994). In situations where the environment is complex and building a model of the

environment is challenging or impossible, model-free RL is often preferred. Moreover,

instead of trying to find the value of every point in the state-action space, the learning

problem in RL can be also approached by directly updating the policy. (Sutton and Barto,

2018).

In contrast, model-based RL is a category of RL algorithms that builds an environment

model and then utilize it to make decisions. In other terms, the agent constructs an
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environment representation by learning the transition dynamics and reward function (Luo

et al., 2022). This representation is then used to simulate the environment and plan

for the future while optimizing some objective function. Some examples of model-based

RL algorithms are Model Predictive Control (MPC) (Camacho et al., 2003) and Dyna

(Sutton, 1991). Model-based RL is more sample-efficient and in principle works better

in situations where the environment is straightforward enough to be accurately modeled

and where optimal decision making requires careful planning (Luo et al., 2022) . However,

since this is not usually the case with real-life environments, model-based methods are

usually not preferred.

2.3.1 Deep Reinforcement Learning (DRL)

While RL methods have proven very effective in solving relatively simple environments,

when the action-state space grows to extreme values, it becomes difficult to find the

optimal policy π∗.

For instance, Montezuma’s Revenge is a well-known Atari game that requires the player to

traverse a maze-like environment while avoiding enemies and traps and gathering rewards.

Modelled as an MDP (Brockman et al., 2016), the game features a high-dimensional

observation space consisting of a 210x160 pixel screen image, as well as a large action

space with 18 possible actions. Due to the complexity of the observation space and the size

of the action space, traditional RL methods such as Q-learning or SARSA may struggle

to learn an effective policy in this environment.

To tackle the problem with complex environment, DRL was introduced (Mnih et al.,

2015). The key idea is to substitute the value and action-value functions with deep neural

networks, which are global function approximators such as:

F ' F ′(·|θF ) (2.10)

where F is one of the value or action-value functions, and F ′ is a deep network

approximation, with parameters θF ∈ Θ. Therefore, the problem of determining the values

for every point of the state-action space, reduces to determining the parameters in Θ,

which in principle will be much less than the size of a highly-complex state-action space.
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Figure 2.2: The well known Montezuma’s Revenge game of Atari console. Due to the
very large action-state space, it becomes difficult for traditional RL algorithms to find the
optimal policy. (Brockman et al., 2016)

2.3.2 Deep Policy Gradients

Policy gradient methods are a widely used category of DRL algorithms, which rather

than trying to find the optimal policy by finding the state-action pairs for each the

value function is optimized, directly optimize the policy πθ(at|st). They achieve that

by initializing a policy πθ with a parameter vector θ, and then update it by applying

stochastic gradient descent on the returns (Equation 2.1), with respect to θ. In Deep

Policy Gradients, the policy πθ is approximated by a neural network with parameters θ.

Then the gradient of policy πθ is given by the Policy Gradient Theorem (Sutton et al.,

1999):

∇θJθ = ∇θEτ∼πθ [G(τ)] = Eτ∼πθ [
∑

(st,at)∈τ

∇θ log(πθ(at|st))Gt] (2.11)

where τ ∼ πθ corresponds to a trajectory sampled from the distribution of policy πθ.

However, because the sampled returns Gt can have a high variance, they can be substituted

with the advantage function, Aπt , (Schulman et al., 2018), a bias-free measure which is the

difference between the action-value and the value function (Equation 2.12). It expresses
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how advantageous an action is, compared to the expected value of the state.

Aπt (st, at) = Qπ(st, at)− V π(st) (2.12)

2.3.3 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a state-of-the-art Actor-Critic RL algorithm that

has showcased a great capacity to learn effective policies with high sample efficiency and

stability (Schulman et al., 2017). PPO is a policy gradient algorithm that operates on a

stochastic policy and generates a probability distribution for the agent’s actions.

Instead of trying to optimize for the return like other Policy Gradient methods, PPO is a

Trust Region method, optimizing a surrogate objective. The same technique is followed

by other Trust Region methods, such as Trust Region Policy Optimization (TRPO)

(Schulman et al., 2015). However, the addition of PPO is that it clips the surrogate

objective to a region surrounding the current policy, thereby preventing large updates

that could lead to instability or divergence (Equation 2.13). This constraint is met by

introducing a truncated substitute objective function that limits the gap between the new

and old policies.

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] (2.13)

where rt(θ) = πθ(at,st)
πθold (at,st)

is the probability ratio between the current and old policy.

The clipping trick limits the policy from making very large updates. If the advantage At

is positive (Figure 2.3, right), meaning that the trajectory had a better than expected

return, clipping doesn’t allow the new probability of selecting this trajectory πθ(at, st) to

be a lot higher than the previous probability πθold(at, st) (Figure 2.3, left). Conversely,

when the advantage is negative, and the trajectory had a worse than expected return,

clipping doesn’t allow the probability ratio to be less than 1− ε (Figure 2.3, right).

As an Actor-Critic algorithm, it employs two neural networks; an actor network, which

calculates the probability distribution over the actions for a state πθ(at| st), and the Critic

network, that calculates the expected value V (st) of the current state, which is used in

the advantage calculation.
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Figure 2.3: Visualization of the clipped surrogate objective of PPO (Schulman et al.,
2017).

2.4 Multi-objective Reinforcement Learning (MORL)

2.4.1 Multi-objective MDPs (MOMDPs

A MOMDP is an MDP in which the reward function R(st, at) = rt ∈ Rd is a vector of size

d the number of objectives. The value function has the same form with single-objective

MDPs (Equation 2.4) , but is also a vector Vπ ∈ Rd. This makes the comparison of the

value vectors of different state-action pairs non-trivial.

Having access to a utility function (or scalarization function) that can map the value

vector to a single value Rd −→ R can make the ordering of value vectors possible, and thus

reduce the MOMDP to a single-objective problem.

V π
u = u(V π) (2.14)

where V π
u is a scalarized value of the vector value V π

However, it is not always the case that a utility function is available. In this case, it is

possible to encounter a situation in which V π
i > V π′

i for objective i but V π
j < V π′

j for

objective j. Therefore, only partial ordering of value functions if allowed, and determining

the optimal policy is only possible with additional information on the prioritization of the

objectives (Hayes et al., 2021).

As a result, an MOMDP decision problem with no additional information for the objectives
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can have multiple optimal policies. The solution set that contains all possible policies Π

and the corresponding value vectors, for which there is a possible utility function u with a

maximal scalarized value is called the Undominated Set:

U(Π) = {π ∈ Π | ∃u,∀π′ ∈ Π : u(V π) ≥ u(V π′
)}) (2.15)

The solution set that contains exactly one optimal policy π for every utility function u,

is called the Coverage Set (CS), and is a subset of the Undominated Set. In order to

keep the MORL solution simple, it is desirable to have a CS that is as small as possible.

Of course, the CS set is not always unique for a given problem, as one utility function can

have multiple optimal policies.

CS(Π) ⊆ U(Π) ∩ {∀u,∃π ∈ CS(Π),∀π′ ∈ Π : u(V π) ≥ u(V π′
)} (2.16)

In simple words, the above relation is not an equation, but rather tells us that the coverage

is a subset of U, containing one policy π for every utility function u that maximizes this

utility function.

A minimal assumption that is made in MORL problems is that the utility function (even

if it is unknown) is monotonically increasing, which corresponds to "always wanting

more value in any of the objectives". More formally, a monotonically increasing utility

function u is defined as follows:

(∀i : V π
i ≥ V π′

i ) ∩ (∃i : V π
i > V π′

i ) =⇒ u(V π) ≥ u(V π′
) (2.17)

Moreover, several research works have assumed that the utility function has a positively-

weighted linear sum shape u(V π) = wTV π , where the weight vector w ∈ Rd specifies

the preference for each objective. The solution set that contains all possible policies Π

and the corresponding value vectors, for which there exists a w for which the linearly

scalarized utility function u with takes its maximal value, is called a Convex Hull (CH).

Formally, it is formulated as follows:

CH(Π) = {π ∈ Π | ∃w,∀π′ ∈ Π : wTV π ≥ wTV π′} (2.18)
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Finally, in the same fashion as the Undominated Set, the Convex Hull can contain multiple

policies that optimize the same utility function. In order to get a set with as few policies

as possible, we define the Convex Coverage Set (CCS) which is a subset of the CH

and contains one optimized policy with respect to every w:

CCS(Π) ⊆ CH(Π) ∩ {∀w,∃π ∈ CCS(Π),∀π′ ∈ Π : wTV π ≥ wTV π′} (2.19)

2.4.2 Problem Taxonomy

Depending on the problem characteristics a different solution set is needed to describe the

optimal solution. Roijers et al. (2014) proposed the problem taxonomy shown in Table 1,

that categorizes MOMDPs according to three factors:

• Whether the utility function is known or not.

• Whether the utility function is a linear scalarization of the objective preferences or

simply monotonically increasing.

• Whether the produced policies are stochastic or deterministic.

The taxonomy is based on the "Utility-based approach" which implies the use of a

scalarization function that derives the scalar utility of the decision problem based on the

defined preferences.

Single policy
(known weights)

Multiple policies
(unknown weigths of decision support)

Deterministic Stochastic Deterministic Stochastic
Linear
scalarization

One deterministic stationary
policy

Convex coverage set of
deterministic stationary policies

Monotonically
increasing
scalarization

One
deterministic
non-stationary
policy

One mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set of
deterministic
non-stationary
policies

Convex
coverage set of
deterministic
stationary
policies

Table 2.1: Problem taxonomy of MOMDP’s (Roijers et al., 2014)

2.4.2.1 Single vs Multiple policies

The choice of requesting a single policy or multiple policies as the solution to the decision

problem lies on whether the utility function and preferences are known at the time of the
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execution. For instance, in the example of Wind Farm Control in Hayes et al. (2021), if

the user already knows what is power demand and what is the budget for the maintenance

of the wind turbines, a single policy should be enough to solve the decision problem of

when to power each wind turbine. On the other hand, if the exact power demand is

unknown, then learning a coverage set of solutions is required.

2.4.2.2 Linear vs Monotonically increasing

When the utility function is linear, the final utility is calculated as a weighted average of

the objective values. Then, depending on whether the utility function (hence the user

preferences) are known, the solution to the problem can be one deterministic policy, or a

convex coverage set that should cover all the different preference combinations between

the objectives. The choice of a linear utility function is the one most usually employed

due to its simplicity, as used in Guo et al. (2009) who modelled the problem of Energy

Demand Management with respect to price and system stability.

However, in principle, linear utility functions can’t be applied effectively when the

objectives are related to user’s preferences (Vamplew et al., 2008). In such cases, non-linear

scalarization functions should be applied, to capture the complex relationship between

the objectives. In any case, it is assumed that the scalarization function is monotonically

increasing (as per Equation 2.17). This is a rather minimal constraint, as it requires only

that, when all other objective values are equal, getting more reward for one objective is

always better. Intuitively, it is difficult to think of any function that doesn’t have this

property (Roijers et al., 2014).

An example of a non-linear utility function is the Threshold Lexicographic Ordering (TLO)

(Gábor et al., 1998), where the MORL agent selects actions that prioritize objectives in a

lexicographic order, subject to a minimum acceptable threshold for d− 1 objective, and

trying to optimize for the last objective. Due to its nature, TLO requires some knowledge

about the problem (Issabekov and Vamplew, 2012).

2.4.2.3 Deterministic vs Stochastic policies

The third factor defining the problem taxonomy of an MOMDP is whether is allows

stochastic policies instead of just deterministic ones. Stochastic policies correspond to
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policies that are represented as a family of conditional probability distributions π(a|s) s ∈

S, where S is the state space. In other words, instead of every state corresponding to

one action, the conditioned state only is now mapped to a probability distribution over

actions. As a result, an agent following a stochastic policy may not always make the same

decisions when in a certain state.

Most of the Policy Gradient RL algorithms, like PPO (discussed in Section 2.3.3),

produce stochastic policies.While in most applications there is no reason to limit to

only deterministic policies, there are some cases in which stochasticity is unpreferable, or

even unethical, like in the work of Lizotte et al. (2012), discussing the clinical decision

support.

2.4.3 Categorization of multi-policy algorithms

The multi-policy algorithms family is designed to produce a solution set containing multiple

policies as the solution of an RL problem. This is because the utility function is not known

a priori, and we want to account for all its different forms. Most multi-policy algorithms

are based on model-free RL methods, and are divided into two main categories, the inner

loop and outer loop methods.

Outer loop methods execute a single objective problem multiple times, trying to construct

an approximation of the CS. In every iteration, different objective preferences are applied,

in an effort to capture all the different objective combinations. Multiple such algorithms

having proposed in the literature. For instance, Parisi et al. (2014) developed the Radial

Algorithm, which for a fixed amount of iterations, tries to optimize approximate the CS

by following a weighted sum of the gradients with respect to the problem objectives. In

the same work, the proposed Pareto Following algorithm searches for a CS approximation

by individually optimizing for each objective in a serial manner. Since performing a series

of single-objective executions is an intensive task on each own, multiple works tried to

limit the execution time by reusing information between the different iterations. (Parisi

et al. (2017) used Importance Sampling to enable sample reuse, while Roijers et al. (2015)

developed the Optimistic Linear Support with Alpha Reuse (OLSAR), a method that was

based on the Optimistic Linear Support (OLS) algorithm (Roijers, 2016) and could reuse

value functions produced when solving single-objective POMDPs in earlier iterations to
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more quickly solve scalarized POMDPs in later ones by limiting the solution space. Later,

the OLS algorithm was integrated with DRL to produce Deep Optimistic Linear Support

(DOL) (Mossalam et al., 2016) that allowed computation of the CCS in high-dimensional

problems.

Inner loop methods can produce multiple policies of the CS approximation in one

algorithmic execution. Pareto-Q-Learning (PQL) (Moffaert and Nowé, 2014) and MPQ-

Learning (Ruiz-Montiel et al., 2017) are methods constructed enhanced versions of Q-

learning, where the Q values update of Equation 2.8 takes places for multiple Q-value

vectors simultaneously. Afterwards, Mandow and Pérez-de-la Cruz (2018) presented a

modification of MPQ-learning algorithm that could approximate the Pareto-optimal set

of deterministic policies with an improved number of training steps by pruning dominated

values. Finally, the first effort to merge inner loop MORL with DRL was done in Reymond

and Nowe (2019), who enhance the PQL algorithm so that the value estimator is a neural

network, and update all non-dominated vectors accordingly.

In terms of model-based approaches, Wiering et al. (2014) developed an approach to

compute the Pareto front of deterministic policies. After learning the environment

dynamics from experience, Pareto-optimal deterministic policies were computed using

dynamic programming through CON-MDP (Wiering and de Jong, 2007). Then Yamaguchi

et al. (2019) proposed a model-based method for solving stochastic environments using

reward occurrence probability (ROP) with unknown weights. With ROP, the average

reward of a policy is defined by inner product of the ROP vector and the weight vector.

However, there still has been surprisingly little research so far in model-based MORL

(Hayes et al., 2021).

Finally, several methods have been proposed for environments with continuous or very

large state spaces. In such cases, the use of policy search or actor-critic methods is

preferred (Deisenroth et al., 2013). Interestingly, Abdolmaleki et al. (2020) proposed an

approach that learns an action distribution for each objective using policy-iteration, and

then uses supervised learning to combine the distributions to fit a parametric policy. On

the other side, Chen et al. (2018) viewed the MORL as a Meta-learning problem with

the task distribution given by a distribution over the preferences. In other words, they

tried to find a meta policy that could easily approximate any point of the Pareto front
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with few-shot adaptation. However, because different policies can be concentrated in

different regions of the CS, Xu et al. (2020) argued that a meta-policy may not be able to

approximate all points of the CS. Then, they proposed an evolutionary MORL approach

(PGMORL), using a multi-objective extension of PPO, together with an evolutionary

algorithm to guide learning towards the most advantageous direction. In each generation of

evolution, a prediction model is fitted based on the previous MORL iteration to determine

the pairs of policies and preferences that will have the greatest impact on the overall

solution. The selected policy-preference pairs are then solved with MORL to generate

offspring policies, which are utilized to generate a new generation of policies. By clustering,

the final generation is divided into policy families that represent distinct regions of the

Pareto Front. At the end, a continuous approximation of the Pareto front is attained by

interpolating the policy parameters across the various families. The overview of the full

process is presented in Figure 2.4.

Figure 2.4: Overview of the PGMORL Algorithm for a 2-objective problem. (Xu et al.,
2020)

2.4.4 Optimistic Linear Support (OLS)

OLS (Roijers, 2016) is an outer loop MORL approach that incrementally constructs the

CCS of a multi-objective decision problem by iteratively solving a single-objective problem,

with known preferences over the objectives. The key contribution of OLS is that the

preference vector w ∈ Rd that suggests to be used by the single-objective optimizer is

selected so that the possible improvement in the value of the specified weight is maximized

(Equation 2.20).

w = argmaxw∈Rd [V
∗
CCS

(w)− V ∗S (w)] (2.20)

where V ∗CCS(w) is the optimal scalarized value of the true CCS in point w, and V ∗S (w) is

the current value in point w using the currently obtained solution set S. The preference
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vectors that are suggested by OLS are called corner weights. OLS execution starts with

an empty partial CCS S. After every single-objective iteration, a new value vector V ∗S (w)

is added to S. During execution, OLS identifies new corner weights, and adds them in

a queue, together with their expected improvement. It then selects the weight with the

maximum expected improvement, based on Equation 2.20. The OLS process is described

into more detail below.

Initialization OLS process begins by initializing the partial CCS S which will contain

the value vectors that will be computed by the single-objective algorithm. It then initializes

a set of visited weights W to keep the preferences that have been visited in previous

iterations, and a priority queue Q, to keep the preferences that need to be visited in

later equations, together with their priority (i.e. the expected improvement of the value

function). For the initialization of the priority queue, the extrema preferences simplex

(the preferences for which the value of one objective is 1 and the values for the rest is 0)

are added with an infinity priority, to ensure that these preferences will be explored first.

Corner weights After having evaluated the extrema preferences, the partial CCS S

consists of d value vectors, one for each objective. For the next iterations, OLS needs to

determine which preference vectors need to be added to the priority queue Q and with

what priority. They will be the ones for which the scalarized values V ∗S (w) surface (Figure

2.5.b) changes slope. V ∗S (w) is a piecewise linear and convex (PWLC) function, defined

as the maximum scalarized value for each w, for all value vectors in S. As presented in

Figure 2.5.b, every grey line corresponds to a point in S. So, for point i with value vector

Vi ∈ Rd , the scalarization function is Vi(wi) = Vi,1 ∗ w1 + Vi,2 ∗ w2, where w1 ∈ [0, 1] and

w2 = 1− w1.

The corner weights are incrementally recomputed every time a new value vector is added

to the partial CCS S. The computation process is seen in Algorithm 1.

First, the newCornerWeights algorithm computes the set of relevant value vectors Vrel.

This corresponds value vectors for which the preferences in Wdel get their maximum

scalarization value V ∗S (w). Preferences Wdel are the preferences for which their maximum

scalarization value is achieved with the new policy, V π
new(w) (Line 2). The boundaries

refer to the extrema preferences. Then, for every d− 1 subset of the relevant value vectors
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Figure 2.5: (a) The Partial CSS S of an arbitrary 2-objective problem, containing 9
points. (b) The scalarization function V ∗S (w).

Algorithm 1 newCornerWeights(V π
new,Wdel,S)

Require: A new value vector, V π
new, a set of obsolete corner weights, wdel, and the current

partial CCS, S
1: Vrel ←

⋃
w∈Wdel

mathcalVS(w)
2: Brel ← the set of boundaries of the weight simplex involved in any w ∈ Wdel

3: Wnew ← ∅
4: for each subset X of d− 1 elements from Vrel ∪ Brel do
5: wc ← compute weight where the vectors/boundaries in X to intersect with V π

new

6: if wc is inside the weights complex then
7: if wc · V π

new = V ∗S (wc) then
8: Wnew ← Wnew ∪ wc
9: end if

10: end if
11: end for
12: return Wnew

and boundaries, the preferences of their intersection point are calculated (Line 5). Finally.

all the intersection preferences (corner weights) are returned and added to the Priority

queue Q.

Prioritization Because for every corner weight added to the priority queue. a new

execution of the single-objective problem should be run, it is important for the efficiency

of OLS to ensure that the single objective executions run for the preferences with the

highest potential impact first. For that reason, OLS prioritizes each corner weight with

respect to its maximal possible improvement (Equation 2.20). The value V ∗
CCS

(w) is the

optimistic value at point w, based on the partial CCS S, which is depicted with dashed

line in Figure 2.6.
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Figure 2.6: (a) The Partial CSS S of an arbitrary 2-objective problem after solving for
the extrema preferences. (b) The scalarization function V ∗S (w). The CCS is shown with
dotted black line. With the red dotted line, the possible improvement of solving corner
weight [0.375, 0.625] is shown.

The scalarization value of preference w in the CCS is computed by solving the Linear

Programming system of Equation 2.21

max w · v

subject to W · v ≤ V ∗S,W

(2.21)

where V ∗S,W is a vector containing the maximum scalarization values for all w′ ∈ W .

The final priority is computed as the relative possible improvement, given by Equation

2.22, and ranges from 0 to 1.

∆(w) =
V ∗
CCS

(w)− V ∗S (w)

V ∗
CCS

(w)
(2.22)

It should be noted that for performance reasons, the algorithm accepts a threshold

parameter ε, which specifies the minimum relative possible improvement for which a

corner weight will be stored in the Q set, and therefore get solved with the single-objective

optimizer. In that way, we avoid running single-objective executions for corner weights

with a very small expected improvements.

Time & space complexity Based on Theorem 4 from Roijers (2016), the runtime of

OLS is
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O((|ε− CCS|+ |Wε−CCS|)(RSO +RPE +Rnw +Rheur)) (2.23)

where:

• |ε− CCS| is the size of the CCS approximation with priority threshold ε.

• |Wε−CCS| is the number of corner weights of the scalarized value of the ε− CCS.

• RSO is the runtime of the single-objective optimizer.

• RPE is the runtime of the policy evaluation, after computing the value vector for a

specific preference vector.

• Rnw is the runtime of the newCornerWeights function (Algorithm 1).

• Rheur is the runtime of the prioritization value calculation (Equation 2.21).

The total number of iterations of the single-objective optimizer is |ε− CCS|+ |Wε−CCS|,

coming from the fact that after each single-objective iteration, the resulted value vector

will either enter the partial CCS or it will not enter it because it is dominated by

another preexisting value vector. The first case corresponds to the number of point in the

approximate CCS, while the latter is at most the number of the corner weights of the

CCS approximation.

Accordingly, the space complexity is given by Theorem 6 of Roijers (2016):

O(d|ε− CCS|+ d|Wε−CCS|+MSO +MPE) (2.24)

where:

• d is the number of objectives.

• MSO is the memory requirement of the single-objective optimizer.

• MPE is the memory requirement of the policy evaluation.

As OLS only keeps track of the CCS points and the visited corner weights, it is almost

as memory efficient as the single-objective optimizer itself, giving it a huge advantage

compared to inner-loop algorithms which need to keep multiple sets of value-vectors and

partial policies (Roijers, 2016).
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2.5 Predictive Maintenance Planning in road networks

2.5.1 Predictive Maintenance of road networks

Predictive maintenance refers to forecasting when and where it is best to perform

each Maintenance or Inspection action, in order to optimize specific objectives. The

current industry standard in predictive maintenance in road networks is condition-based

maintenance (CBM) (Ayalew et al., 2022). CBM is a simple, yet effective approach to

optimize road maintenance operations. It firstly assigns a condition threshold to each

of maintenance actions. This threshold specifies the condition after which the specific

maintenance action should be applied to the road segment. The assessment of the condition

of the road segments is achieved by periodic inspections. As a result, effective maintenance

scheduling of the road network can be achieved by defining the rights condition thresholds

for maintenance actions, and time thresholds for inspection actions.

2.5.2 Multi-objective approaches

Predictive maintenance planning is a complex problem, involving multiple stakeholders,

and a large potential negative impact in case of a disaster. Therefore, the fact that

multiple efforts have been made to model it as a multi-objective problem, doesn’t come as

a surprise. Namely, most studies have been conducted in the field of Genetic Algorithms

(GA), trying to approximate the Pareto front (Hamdi et al., 2017), (Yang et al., 2015)

(Guan et al., 2022).

On the other side, there have been many attempts to tackle the Predictive Maintenance

planning problem as a (PO)MDP with the help of DRL. However, all approaches so far

have resulted in a single optimal policy, either because there was only one objective in the

study, or because the utility function was linear and known before the execution. Notably,

Andriotis and Papakonstantinou (2021) developed a framework for applying objectives

in terms of constraints instead of a utility function, which was also applied in Saifullah

et al. (2022). This was achieved through state augmentation and Lagrangian relaxation.

An overview of the DRL studies, together with the multi-objective GA studies that were

traced in the literature is presented in Table 2.2



2.6 Research Gap 27

Author(s) Method Objectives Solution(s)

Hamdi et al. (2017) GA Maintenance cost,
Road serviceability Multiple

Yang et al. (2015) GA Maintenance cost,
Road serviceability Multiple

Guan et al. (2022) GA
Maintenance cost,
Carbon Emissions,
Users cost

Multiple

Ramachandran et al. (2017)
Mixed Integer
Linear Programming
(MILP)

Road roughness, road deflection Multiple

Chen and Wang (2023) DRL Maintenance cost Single
Rabbanian et al. (2021) DRL Maintenance cost Single

Andriotis and Papakonstantinou (2021) DRL Maintenance cost,
Structural risk Single(scalarized)

Yao et al. (2020) DRL Maintenance cost Single

Wei et al. (2020) DRL Maintenance cost,
Structural risk Single(scalarized)

Han et al. (2021) DRL Maintenance cost,
Structural risk Single(scalarized)

Latifi et al. (2021) DRL Maintenance cost,
Carbon emissions Single (scalarized)

Saifullah et al. (2022) DRL Maintenance cost,
Structural risk Single (scalarized)

Table 2.2: Overview of works involving either multi-objective optimization or DRL in
road maintenance planning.

2.6 Research Gap

As per Table 2.2, it becomes clear that all efforts utilizing DRL for Road maintenance

planning result to single-policy solutions, meaning that they implicitly or explicitly infer

the preferences over the different modelled objectives. As a result, there has been no

study to model the Road Maintenance scheduling problem as a multi-objective problem

with a multi-policy solution. To the best of our knowledge, the present study will be the

first effort to model a road network with multiple objectives and apply MORL algorithm

to approximate the CS instead of just one scalarized solution.

Moreover, most DRL studies have focused on finding an optimal planning with respect to

the maintenance cost and the structural risk of road failure. The environmental aspect of

road maintenance has largely been understudied, with only one study Latifi et al. (2021)

including it. We believe that accounting for the environmental impact of road maintenance

is a really important for sustainable operations, and hence we decided to include it in our

study.

Finally, inspired by the study of Guan et al. (2022), we decided to include the "Users’

Cost" objective to our multi-objective study. This is especially essential from a societal
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standpoint, as roads are a public good should be accessible by anyone, regardless of their

economical status. In addition, higher user costs due to bad road condition can result in

higher fuel costs and in turn higher carbon emissions (Zaabar and Chatti, 2010).

As this is the first effort to model a road environment with Multi-objective DRL, we will

use a linear utility function. As a result, based on the problem taxonomy of Table 2.2,

the solution set that we will be looking for will be the Convex Coverage Set (CCS) of

deterministic stationary policies.
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3 Environment Description

The realistic modelling of the environment is a crucial component of any Reinforcement

Learning analysis. In the context of road inspection and maintenance (I&M) optimization

it refers to the physical and structural characteristics of the road network, including the

topology of the network, the condition of the pavement, the volume of traffic. To develop

an effective maintenance schedule for a road network, an in-depth understanding of the

road environment and its effect on road deterioration is essential.

This chapter offers a comprehensive description of the road environment utilized in

the present study. The chapter begins with a description of the physical road network

characteristics, including its topology, the number of road segments, the traffic volume

information, and the condition of the pavement. Next, the formulation of the environment

as a Markov Decision Process is discussed. The chapter concludes with some preliminary

evaluation of the environment.

3.1 Overview

3.2 The physical problem

The environment for this work is based on a subset of the Sioux Falls road network

(LeBlanc et al., 1975). It is one of the most widely studied networks for traffic assignment

problems, as it has been used as a case study in multiple works (Chakirov and Fourie,

2014), (Wang et al., 2013).

The Sioux Falls network has a total length of almost 505 km, and it consists of 24 nodes

and 76 links. The original network is presented in Figure 3.1.

Because our research involves multi-objective experiments, it was decided that only a

subset of the Sioux falls network will be utilized in an effort to limit the required execution

time. The selected subset consists of 10 road segments, and corresponds to the nodes

3, 4, 11, 12 of the original network. The final subset can be seen in Figure 3.2
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(a) The Sioux Falls network on the map.
(Chakirov and Fourie, 2014)

(b) The Sioux Falls network as a bidirectional
graph. (Long et al., 2015)

Figure 3.1: The Sioux Falls network.

Figure 3.2: The Sioux Falls network subset that will be used for the multi-objective
experiments.

It is worth noting that two extra road segments (77 and 78) have been added to the

original Sioux Falls network. This addition was to encourage vehicle rerouting when a

road segment is under maintenance, and therefore has limited capacity.

For every node, the traffic demand to each of the other nodes (average daily trips) is given

in Table 3.1. For every link, its length, start and end node and its traffic capacity are

given in Table 3.2.
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Network node 3 4 11 12
3 0 2 3 2
4 2 0 15 6
11 3 15 0 14
12 2 6 14 0

Table 3.1: Matrix of trips between each node pair(thousands of vehicles/day). The
matrix is symmetric.

Segment Length (km) Start node End node Nr of lanes Capacity (vehicles/day)
6 6.44 3 4 2 855.53
7 6.44 3 12 2 585.09
8 6.44 4 3 2 427.76
10 9.66 4 11 2 122.72
31 9.66 11 4 2 245.44
33 9.66 11 12 2 245.44
35 6.44 12 3 2 1170.17
36 9.66 12 11 2 122.72
77 9.66 3 11 2 1295.01
78 9.66 11 3 2 1295.01

Table 3.2: Attributes for every link of the network

We assume that each of the 10 road segments deteriorates independently. Asphalt

deterioration is measured using the International Roughness Index (IRI) (Gillespie et al.,

1986) in m/km. The IRI is used as a benchmark by highway experts worldwide to assess

road surface roughness. A continuous profile is measured and evaluated throughout the

route to characterize the attributes of pavement surface irregularities that affect vehicle

suspension movement. The IRI, measured in inches per mile or meters per kilometer,

represents how much total vertical movement a conventional passenger vehicle’s body

would experience if driven at 50 mph over a 1-mile portion of the subject pavement. IRI

is important for determining the overall ride quality of a pavement; a higher IRI value

implies a rougher road surface.

In order to keep the road network in a good condition, the asset managers can decide

upon performing a maintenance or/and an inspection actions in any of the road segments

once a year. The project horizon is 20 years.
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3.3 Belief Space

The belief space models the agent’s uncertainty over the state of the environment.

It represents all the possible probability distributions over states. For the present

environment, we consider a 10-dimensional discrete belief space, where each dimension

represents the belief over one of the road segments. The value ranges of the belief space

are based on the International Roughness Index (IRI) and were retrieved from Saifullah

et al. (2022). More specifically, five discrete conditions were identified, ranging from intact

state to damaged state. The value ranges for each of the conditions are shown in Figure

3.3. The condition of each segment is independent of the rest.

Figure 3.3: The discretization of IRI to 5 discrete states.

It is assumed that at the beginning of the maintenance life cycle, all road segments are in

intact state. However, due to different traffic loads, and stochasticity, they may deteriorate

in a different way. Hence, at every time step, every segment can have a different belief.

The total size of the belief space is 510.

3.4 Action Space

The ultimate goal of efficient road maintenance is to select the appropriate maintenance

and inspection actions such that the road segments remain in a adequate condition.

Maintenance actions improve the condition of a road segment, but may come at a great

cost. On the other hand, inspection actions are relatively cheap, and give an estimation

of the condition of the road segment.

In this environment we assume that the project managers can select between 5 actions for

each road segment:

• Do Nothing: No action is performed - Asphalt continues deteriorating

• Repair: Asphalt is partially restored, through crack filling and moderate patching.
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This action improves the IRI score of the road segment, even though the uncertainty

upon the true state is preserved

• Inspect: An inspection crew goes to the road to inspect its true state. This action

reduces the uncertainty of the belief over the states.

• Repair & Inspect: A combination of the two actions above. IRI score improves,

and the uncertainty of the belief reduces.

• Replace: The asphalt of the road segment is fully replaced. After applying this

action, the road segment is in intact state, with a full certainty.

Since the road segments deteriorate individually, different actions can be selected each of

them. As a result, the action space has a size of 510.

Every action comes with its corresponding negative rewards. These are the monetary

cost and the carbon emissions of the repair, and are relative to the length of the segment.

Moreover, if a maintenance action (repair or replace) is performed in a road segment, this

road segment will have its capacity reduced by 50% while the action is performed. We

assume that maintenance actions start at the beginning of the year an have a certain

duration, while inspection actions are performed at the end of the year, with zero traffic

disruption.

Finally, if a road segment is found to be in damaged condition, then an urgent replacement

action must be performed. This costs 50% more than the original replacement action, due

to its urgency.

Table 3.3 shows an overview of the monetary cost, carbon emissions and traffic disruption

of every action.

Actions Duration
(days)

Monetary Cost
($/m2)

Carbon Emissions
(g/m2)

Traffic capacity
reduction (%)

Do Nothing 0 0 0 0%
Repair 168 52 6000 50%
Inspect 0 0.2 0 0%
Repair + Inspect 168 52.2 6000 50%
Replace 365 250 22500 50%

Table 3.3: Overview of the negative rewards after every action, together with its effect
to traffic.
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3.5 Transition Probabilities

Transition probabilities describe the likelihood of transitioning from one state to another

in the environment, given an action taken by the agent. In the context of this thesis

project, transition probabilities will model the probability of moving from one IRI state to

another. We will consider the stationary model for IRI from (Saifullah et al., 2022). The

transition probabilities matrix has a size of (A, S, S), where A is the number of actions,

while S is the number of beliefs. The full transition probabilities and are presented in

Appendix A1.

3.6 Observation Probabilities

To decrease the uncertainty of the belief, the asset managers can decide to perform a visual

inspection, which will help them infer the true condition of a road segments. However, this

is not a perfect observation, as it is possible that a wrong state will be infered. Observation

probabilities are a core concept in Belief MDPs as they describe the likelihood of observing

a particular outcome given a state of the environment and an action taken by the agent.

The observation probabilities will be in the form of Equation 3.1, where i is the true state

of the road segment and j is the observed one. We assume that inspectors will infer the

correct state of the road segment with a probability of p = 0.8. The final observation

matrix has a size of (S, S), where S is the number of beliefs.

O(ot+1 = j|st+1 = i, at) =



p 1− p
1−p
2

p 1−p
2

1−p
2

p 1−p
2

1−p
2

p 1−p
2

1− p p


(3.1)

3.7 Reward function

The reward function for the environment will be a 3-dimensional vector, where its dimension

represents a different objective.
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3.7.1 Maintenance cost objective

The first objective of the road network environment is related to the maintenance cost

minimization. It includes all the monetary costs related to the maintenance and inspection

of the road network. These are:

• Cost of maintenance actions: Cost related to performing a maintenance action to a

road segment, as described in Table 3.3

• Cost of inspection actions: Cost related to performing an inspection action to a

road segment

• Cost of mobilization of the equipment: Fixed cost to be applied if an action has

been picked at least once in the network for the current time step. It relates to the

mobilization of the maintenance equipment and crew, and it serves as a motive for

grouping same actions in the same time step.

• Cost of urgent actions: When a road segment has reached a damaged condition,

then an urgent replacement of the asphalt is mandatory. This costs 50% more than

the original replacement action

The reward function for the maintenance cost is seen in 3.2, where δi is 0 if the road

segment is not in a damaged condition, and is 1 otherwise. ci(at) is the cost of performing

action a to component i. Finally ci(replacement) is the cost of replacing the asphalt in

road segment i, and cmob is the mobilization cost for all actions performed in time step t.

rt,1(at) = −
10∑
i

[(1− δi)ci(at) + δi1.50ci(replacement)]− cmob (3.2)

3.7.2 Carbon emissions reward

The second objective of the road network environment is the minimization of the carbon

emissions. This includes:

• The emissions from the maintenance actions, as described in Table 3.3

• The added vehicle emissions due to traffic disruption from Inspection and

Maintenance (IM) actions. When a maintenance work is carried out in a road
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segment, the capacity of this segment is reduced. This may force vehicles to select

other routes to their destination which will longer than the initial one. The increased

travel distances will result in more carbon emissions per travel.

• The extra vehicle emissions due to high road roughness. It has been measured that

high road roughness levels lead to increased vehicle fuel consumption, and carbon

emissions.

The reward function for the carbon emissions is shown in Equation 3.3, where li and

flowi(at) are the length and traffic flow in road segment i, extraConsumptioni(st) is

the (%) of extra carbon emissions due to the road segment condition, and avgco2e is the

weighted average carbon emissions per km of road, calculated from Table 3.4. ei(at) is the

carbon emissions in road segment i from performing action at. Finally, Einit corresponds to

the total network carbon emissions when no maintenance or inspection action is performed.

rt,2(at, st) = −(
10∑
i

li ∗ flowi(at) ∗ (1 + extraConsumptioni(st)) ∗ avgco2e + ei(at)−Einit)

(3.3)

Vehicle Type % in traffic Average CO2e(g/km) Weighted CO2e(g/km)
Medium Car 78 143.16 111.66
Van 13 246.2 32.01
Truck 5 649.73 32.49
Motorcycle 3 116.80 3.50
Bus 1 1294.13 12.94
Total 100 avgco2e=192.60

Table 3.4: The average carbon emissions per km of road is calculated as a weighted sum
of the carbon emissions from the different vehicle types in the road network. The traffic
composition in the current table have been retrieved from the Transport and Mobility
Report (Statistics Netherlands, 2016), who suggest an average traffic composition for the
dutch road. Moreover, the information about the average carbon emissions per vehicle
type were retrieved from environmental reports from the UK Government (Department of
Transport, 2021), (Department of Business Energy and Industrial Strategy, 2020).

At the same time, the asphalt condition plays an important role in the carbon emissions

of the travelling vehicles. According to Zaabar and Chatti (2010), a medium car travelling

in a damaged road segment (IRI > 3.47m/km) consumes almost 2.5% more fuel, and

hence emits proportionally more carbon in the environment. The model for the five main
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vehicle types can be seen in Figure 3.4

Figure 3.4: Percentage change in fuel consumption with IRI progression. (Zaabar and
Chatti, 2010)

Finally, the values for the carbon emissions from maintenance actions were retrieved from

Jiang et al. (2020) who performed a life cycle assessment for the use, maintenance and

rehabilitation phases of a road network, focusing on a real-life network in Australia. For

our analyses, we assume that the "Repair" action corresponds to the Slurry maintenance

program, while the replacement action corresponds to the ASOG program. The respective

descriptions of each program are presented in Table 3.5.

Action Maintenance Program Description

Repair Slurry
Cold mixed surface treatments, including application of 3–20 mm in-situ
mixture of aggregate, cement/lime, polymer modified bitumen emulsion,
adhesive, and water

Replacement ASOG Asphalt replacement (Asphalt mixing plant, paver and compactor) (30 mm)

Table 3.5: Mapping of the case study actions with maintenance programs, and their
descriptions. (Wu and Wang, 2016)

3.7.3 Users cost objective

The third objective is the minimization of the users’ cost. This corresponds to all the costs

incurred during the operation and maintenance of the road vehicles, for which the vehicle

owners are responsible. For instance it includes the fuel cost, lubricants and maintenance

material and vehicle degradation. Vehicle owners spend more on the maintenance and

operation of their vehicles when the road roughness is high. In the The Highway Design
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and Maintenance Standard Model (HDM4) (World Bank Group, 2018), the relation

between the user costs and IRI is fitted with a polynomial model. The resulting curves

are presented in Figure 3.5

Figure 3.5: User costs per km of road with IRI progression. (Zaabar and Chatti, 2010)

The reward function for the user cost is shown in Equation 3.4, where li and flowi(at)

are the length and traffic flow in road segment i, while userCosti(st) is the user cost per

km of road for segment i.

rt,3(st, at) = −
10∑
i

li ∗ flowi(at) ∗ userCosti(st) (3.4)

3.8 The traffic assignment problem

The Traffic Assignment Problem (TAP) is a transportation engineering mathematical

optimization problem that tries to arrange cars throughout the network in order to reduce

overall trip time or cost for all users while respecting network restrictions. It entails

determining the best distribution of demand across available routes in a transportation

network while accounting for characteristics such as road capacity, congestion, and trip

time. TAP is a valuable resource for transportation planners and engineers in the design

and management of efficient and sustainable transportation networks.

In our study, we use the traffic assignment calculation to estimate the traffic disruption
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that will be caused by maintenance actions. Since our goal is to study the traffic disruption

in yearly time intervals, we can rightfully assume that our traffic assignment model is

static, meaning that the traffic flow from a network node to another is fixed.

When a road segment is closed for maintenance, its traffic capacity decreases by 50%. This

will result in extended travel times and different traffic rearrangement. We want to know

which are the updated flows (number of vehicles travelling across each road segment) and

total travel time in the network, in order to assess the efficiency of a certain IM plan. If

the plan includes many simultaneous road maintenance actions, it will cause major traffic

congestion, negatively impacting the "Carbon Emissions" objective, due to rerouting.

Conversely, if no maintenance actions are planned, many segments will reach damaged

condition, and this will negatively impact the "Users Cost" objective.

In order to solve the static traffic assignment problem, we will use the User Equilibrium

model (Wardrop and Whitehead, 1952), which is based on on Wardrop’s first principle,

stating that "no driver can unilaterally reduce his/her travel costs by shifting to another

route". This means that the decision of a driver to change their route will influence the

decisions of other drivers with shared routes.

The mathematical formulation of the static traffic assignment problem with user

equilibrium is as follows:

MinimizeZ =
∑
α

∫
0
xαtα(xα)dx

s.t.
∑
k

f rsk = qrs∀r, s

xα =
∑
r

∑
s

∑
k

δrsα,kf
rs
k : ∀α

f rsk ≥ 0 : ∀r, s, k

xα ≥ 0 : ∀α ∈ A

(3.5)

where:

• k is a path connecting nodes r − s

• xα are the equilibrium flows in road segment α

• tα is the travel time in the road segment α given by the selected cost function
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• f rsk is the flow on path k connecting nodes r − s

• δrsα,k =
1 if road network belows to path k

0 otherwise
is a definitional constraint

The selected cost function to minimize is the BPR (Bureau of Public Roads) function

(U.S. Department of Commerce, 1964). It is a mathematical model used in transportation

planning and engineering to predict travel time and delay on a road network. It is

frequently used to predict the impacts of traffic congestion on travel time and expenses.

The BPR cost function considers free-flow travel time, road capacity, and traffic volume,

and forecasts travel time and delay as a function of these factors. The BPR function

is given in Equation 3.6, where fftα is the free-flow travel time, capacityα is the road

capacity and xα is the actual traffic flow in road segment α. a and b are model coefficients

with values of 4 and 0.15 respectively.

txα = fftα ∗ [1 + a(
xα

capacityα
)b] (3.6)

The traffic determination through the traffic assignment problem will take the following

inputs:

• Road network graph (nodes, road segments)

• Information about road segments (capacity, length, free flow speed)

• Origin-Destination (ODij) matrices, denoting the traffic demand from node i to

node j

The outputs of the optimization will be:

• The total travel time in the network

• The traffic flow in each road segment

An overview of the road network with the calculated flows-to-capacity ratios per road

segment is presented in Figure 3.6.
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Figure 3.6: Overview of traffic flow to capacity ratio after the traffic assignment
calculation, when no maintenance action is performed.

3.9 Timing performance

Time performance of the environment is an important concern in Deep Reinforcement

learning, since a large number of environment executions is usually needed in order to

converge to optimality. In Figure 3.7 we can see that the time performance of one episode

takes on average 0.022 seconds for random policies, when executed on a computer with

an Intel Core i-7 processor running at 2.30 GHz using 16 GB of RAM. It is deemed that

the time performance is adequate in order to move to the multi-objective executions.
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Figure 3.7: Histogram with the time performance of 500 episodes using a random policy.
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4 Methodology

In the realm of MORL, various techniques have emerged, as described in the Background

section. However, when it comes to addressing the Road maintenance scheduling problem,

certain limitations impede the exploration of multiple approaches. The huge size of the

state/action space naturally narrows our focus to policy-gradient-based MORL methods.

Moreover, as our ultimate aim is to create a practical tool for future researchers in the

predictive maintenance of roads, we have chosen to concentrate on outer-loop approaches,

which are the most intuitive and straightforward techniques proposed in the field of

MORL.

Figure 4.1: A stacked Venn diagram showcasing the category of MORL approaches, on
which the present research is focusing.

This section presents the algorithms investigated in our research, as well as the overall

framework and experimental setup employed to conduct our study. By delving into

these details, we lay the foundation for our work and establish the groundwork for future

advancements in road maintenance.

4.1 General Framework

The general framework of the present study corresponds to the execution of an outer-loop

MORL algorithm, and is comprised of two main components, presented in Figure 4.2.

The first is the selection of preferences for the objectives, while the second one is is the

single-objective execution and optimization of the problem with the previously specified
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preferences. Iterating over these two components gradually constructs the CS of the

problem.

Figure 4.2: The general framework of the study consists of an iterative scheme between
a preferences selection mechanism and the single objective optimizer.

In the following sections the specific algorithms that will be used are described. It is

worth noticing that two of the approaches that will be discussed (Radial algorithm and

Pareto Following algorithm) don’t directly proposing a preferences vector for every single-

objective execution. Instead, they modify the inner policy gradient of every training

update, using a convex combination of the policy gradients over the different objectives.

This is essentially an indirect way of proposing a preferences trade-off, and that is why

they are still considered as outer-loop MORL approaches.

4.2 Single-objective optimizer

The basis for the MORL experiments is a modified version of PPO. The modifications in

the algorithm compared to the vanilla PPO implementation (Schulman et al., 2017) are

described below.

The first modification regarding the Actor network output is related to the nature of the

road network environment. The second update, regarding the critic network output was

performed to expand PPO functionality to handle multiple objectives.
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4.2.1 Actor network output

In the traditional PPO implementation, the output of the Actor network is a probability

distribution over all potential actions, for the given belief vector bt. In the modified

implementation, we have assumed conditional independence in the deterioration of every

road segment, and hence the the policy of each road segment is considered independent

as well. In other words:

π(bt|at) =
n∏
i=1

πi(a
(i)
t |bt) (4.1)

where n is the total number of road segments. In our problem n = 10.

Because of the conditional independence assumption, we can compute the policy for each

road segment independently. This greatly reduces the size of the output layer of the Actor

network to n× A << nA, which is the permutation of all action combinations. Then, a

Softmax activation function is applied for each pair of A outputs, to compute the policy

in each road segment as a probability distribution over the A actions.

The above notion of independent policies between the different components of an assets

network was firstly introduced in the context of the Deep Centralized Multi-agent Actor

Critic (DCMAC) (Andriotis and Papakonstantinou, 2019), an architecture that utilized

the independence assumption to reduce the number of action combinations, and produce

separate policies for each road segment.

Figure 4.3: Overview of actor architecture for a multi-segment system. The output of
the network is a set of n probability distributions, each one describing the policy for a
road segment.
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4.2.2 Critic network output

In the PPO standard implementation (Schulman et al., 2017), the critic network output

is a single value, indicating the expected value of the specified belief (i.e. what is the best

possible return that the agent can get from the current state belief). In the modified PPO

version of this study, the critic network output is a vector of size d, where d is the number

of objectives. This update is required in order to keep all values of the different objectives

individually, and use the utility function and current preferences to compute the global

value. This implementation was retrieved from Felten and Alegre (2022).

Figure 4.4: Overview of critic architecture for a multi-objective system . The output of
the network is a vector of d values, each one corresponding to a different objective.

4.2.3 Modified-PPO training process

The execution process of the Modified-PPO algorithm that will be used is presented in

Figure 4.5

For each single-objective execution (an execution of modified PPO with specifiec preferences

w), a predefined number of episodes will be executed. Every episode starts with spawning

8 sub-processes, each executing the road environment once. After all subprocesses are

complete, we merge the 8 trajectories that have been collected to a batch trajectory,

and train the actor and critic network using this. Training is performed for train_iters

training iterations per episode. It is worth noting that there is early stopping mechanism

for the training, when the policy before training and the one after training are very

different, based on their KL divergence. The full modified PPO parameters with their

values are presented in Appendix A2.
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Figure 4.5: Overview of the modified-PPO execution.

4.3 Multi-objective algorithms

In this section, the outer-loop MORL algorithms that have been examined in the context

of this work are presented.

4.3.1 Deep Optimistic Linear Support (DOL)

4.3.1.1 Overview

Deep Optimistic Linear Support Learning (DOL) (Mossalam et al., 2016) is a MODRL

algorithm that can solve high-dimensional multi-objective decision problems, when the

objective preferences are unknown at the time of execution. DOL is a general multi-

objective decision framework consisting of two components, analogous to the one in

Figure 4.2; the Preference selection mechanism, which in this case is OLS (Roijers, 2016)

(illustrated in the Background section), and a single-objective learning algorithm that

is OLS-compliant. The only update that is needed to make a learning algorithm OLS-

compliant is for it to output vector-valued Q-value Q(st, at) at the size of the number of

objectives. This is a condition that our adjusted PPO algorithm described in section 4.2

already satisfied, hence it can be used in the DOL framework.
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4.3.1.2 Reuse of model parameters

After experimenting with OLS, it becomes clear that the fact that information from the

different single-objective executions can be exploited to increase the result and/or runtime

performance of future executions. For instance, it is reasonable to think that the policy

for a 2-objective problem with preferences [0.72, 0.28] is not very different to the policy of

preferences [0.68, 0.32]. For this reason, Mossalam et al. (2016) experimented on reusing

the model parameters from previous single-objective runs to enhance the performance of

the next ones.

Firstly, they proposed DOL with full reuse (DOL-FR), a DOL variation that initializes the

single-objective model parameters for a scalarization preference w using the parameters

of a previously solved model with scalarization preference w′, where w′ is the visited

preference that is closest to the current preference w.

Moreover, they proposed DOL with partial reuse (DOL-PR). DOL-PR initializes the

single-objective model parameters in the same way as DOL-FR, but reinitializes the last

layer of the model randomly, in order to escape from local optima.

As a result, Mossalam et al. (2016) proposed three different OLS-based approaches; DOL,

with no parameters reuse, DOL-FR with full parameters reuse, and DOR-PR with partial

parameters reuse. However, based on experimental evaluation, the authors concluded

that partial reuse is more effective than full reuse, as it prevents the model from getting

stuck in a policy that was previously optimal. Therefore, for our evaluation we decided to

explore DOL and DOL-PR methods.

4.3.1.3 The DOL Algorithm

The pseudocode with DOL algorithm is presented in Algorithm 2.
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Algorithm 2 Deep OLS Learning (with different types of reuse)
Require: The number of objectives m, the OLS improvement threshold ε, and OLS-

compliant DRL architecture, template, the type of reuse, reuse taking values "none",
"partial" and "full".

1: S ← ∅ # empty partial CCS
2: W ← ∅ # empty list of explored corner weights
3: Q ← ∅ # Priority queue initializes with the extrema preferences simplex, having

infinite priority
4: DRL_models← ∅ # Empty set to keep the single-objective models executed.
5: while Q is not empty ∩ iteration ≤ max_it do
6: w ← Q.pop()
7: if reuse =′ none′ ∪DRL_models = ∅ then
8: model ← a random initialization of the template model
9: else

10: model← copyNearestModel(w, DRL_models)
11: if reuse =′ partial′ then
12: Reinitialize the last layer of model with random weights
13: end if
14: end if
15: V, new_model = scalarizedDRL(m,w,model) # Single-objective solver execution
16: W ← W ∪ w
17: if (∃w′) w′ · V > maxU∈Sw

′ · U then
18: Wdel ← Wdel∪ corner weights made obsolete by V from Q
19: Wdel ← Wdel ∪ {w}
20: Remove Wdel from Q
21: Remove vectors from S that are no longer optimal for any w after adding V
22: WV ← newCornerWeights(S, V) (Algorithm 1)
23: S ← S ∪ {V }
24: DRL_models[w] = new_model
25: for each w′ ∈ WV do
26: if estimateImprovement(w’,W,S) > ε then (Equation 2.21)
27: Q.add(w′)
28: end if
29: end for
30: end if
31: iteration+ +
32: end while
33: return S, DRL_models

It can be easily observed that the largest share of the algorithm has to do with OLS

execution. Again, the algorithm starts by initializing the partial CCS S (Line 1), the list

of visited corner weights W (Line 2) and the priority queue Q containing the extrema

preferences (Line 3). Additionally, DOL initializes a list to keep all the executed single-

objective DRL models (Line 4).
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DOL execution continues with solving the extrema preferences with the selected DRL

model. The initialization of the single-objective DRL model depends on the reuse

mode (Lines 7-14). The subroutine copyNearestModel(w, DRL_models) (Line 10) finds

the model that is closest to the one that is about to be executed, by comparing

the preference of the previously solved models and the current one. The subroutine

scalarizedDRL(m,w,model) (Line 15) refers to the execution of a single-objective, OLS-

compliant DRL algorithm using the preferences w. After solving the single-objective

problem, the iteration continues exactly in the same way as OLS.

The obsolete corner weights are removed from the priority queue (Line 20), while

value vectors that are dominated are also removed from the partial CCS (Line 21).

Afterwards, the subroutine newCornerWeights(S, V) computes the new corner weights

in the scalarization function V ∗S (w) and described in Paragraph 2.4.4. Finally, subroutine

estimateImprovement(w′,W,S) computes the estimated improvement in the scalarization

value V ∗S (w) for the current weight w, by solving the Equation 2.21. This subroutine is

descibed into more detail in Paragraph 2.4.4. The execution continues by selecting the

preference vector with the highest priority from the priority queue. Execution stops when

there are no more preference vectors to explore in the priority queue.

4.3.1.4 DOL experiments parameters

In Table 4.1 the parameters that were used for DOL experiments are defined.

Parameter Description Value
m Number of objectives 3
ε Priority threshold 0.05

reuse
Reuse mode, determines the
DRL models initialization "none"

template Single-objective DRL model Modified PPO
(Section 4.2)

Table 4.1: Parameters used for DOL experiments.

Respectively, Table 4.2 contains the parameters that were used for the DOL-PR

experiments.
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Parameter Description Value
m Number of objectives 3
ε Priority threshold 0.05

reuse
Reuse mode, determines the
DRL models initialization "partial"

template Single-objective DRL model Modified PPO
(Section 4.2)

Table 4.2: Parameters used for DOL-PR experiments.

4.3.2 Radial Algorithm (RA)

4.3.2.1 Overview

Radial Algorithm (RA) (Parisi et al., 2014) is an outer-loop MORL algorithm that performs

a series of single-objective policy iterations to incrementally construct a uniformly spaced

CCS. It starts by defining p the number of points that are required to approximate

CCS, and then performs single-objective optimization for each point, following a different

ascent direction within the ascent simplex. The ascent simplex is defined by the convex

combination of the single-objective gradients.

4.3.2.2 Ascent Directions

RA extends the concept of policy gradients defined in 2.11, so that the policy gradient is

a vector ∇θJθ ∈ Rd of gradients, where d is the number of objectives.

The ascent simplex is the convex combination of the gradient vectors:

S(w, θ) =
d∑
i=1

wi∇θJi(θ) subject to
d∑
i=1

wi = 1∀i, wi ≥ 0 (4.2)

Intuitively, we know that any direction (i.e. combination of values λi) will allow us to

approach the Pareto Frontier. However, only a subset of them allows us to improve all

objectives at the same time.

In order to better understand the concept of objectives improvement, we will first focus

on a single-objective problem with two parameters. When we try to optimize for our toy

problem, a line that is perpendicular to the gradient divides the parameter space into

two sub-spaces, the dominated area, which is opposite to the direction of the gradient,

and the non-dominated area, which is at the direction of the gradient. In principle, any
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point within the non-dominated sub-space can improve the objective. In the same way,

in multi-objective problems, the parameter space is divided into, at most 2d mutually

exclusive directional cones. One of the cones simultaneously increases all the objectives,

and is called the Ascent cone. Another cone simultaneously decreases all the objectives

and is called the descent cone, while all the rest decrease at least one of the objectives.

Ascent directions l = [l1, l2, ..., ld]
T ∈ Rd are the directions within the Ascent cone, and

increase all objectives at the same time, i.e. have a positive gradient for all objectives

(Equation 4.3).

l · ∇θJi(θ) ≥ 0 ∀i = 1, ..., d (4.3)

When the solution of the multi-objective problem is far from the CCS, then the Ascent

simplex lies within the Ascent cone (Point θA in Figure 4.6). However, when the solution

approaches the CCS, gradients of the different objectives become increasingly conflicting,

and the width of the Ascent cone decreases (Point θB in Figure 4.6). In this case, the

Ascent simplex contains directions that are outside the Ascent cone.

Figure 4.6: (a): Illustration of the ascent simplex (in red), ascent cone (in yellow) and
Pareto ascent cone (in gradient fill), for a two-parameter, two-objective problem, for
three different parameter vectors θA, θB and θC . The green contour lines correspond to
the values of the first objective J1, while the blue lines correspond to objective J2. The
dashed lines for each objective are perpendicular to the objective gradient, and divide
the parameter space to a dominated and non-dominated subspace. (b): The respective
value vectors of the models with parameters θA, θB and θC together with their relative
placement with respect to the Pareto front. The closest a point is to the Pareto front, the
more conflicting its gradients will be.
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4.3.2.3 Stopping condition

For every single-objective problem, RA follows a convex combination of the objective

gradients. However, as in the case of point C in Figure 4.6, when the directions of the

different objective gradients become too conflicting, a point in the CCS has been reached,

and therefore, execution can stop. In order to understand when this condition has been

reached, the optimization problem of Equation 4.4 can be solved:

minβ,l β + 1
2
||l||22

subject to (G · l)i ≥ β ∀i = 1, ..., q
(4.4)

where Gi,j = ∂Ji
∂θj

(θ) is the Jacobian matric containing the gradient for every model

parameter, for every objective, and q is the number of model parameters. In other words,

we try to find the Ascent direction l ∈ Rd such that the minimum improvement among all

the individual objectives is maximized. The L2-norm in the objective function is added

as a regularization term. If β = 0, then the current model parametrization produces a

Pareto optimal point, and therefore the equation can stop. In β > 0, then solution l of

the quadratic problem corresponds to the best Pareto directions.

4.3.2.4 The RA Algorithm

The pseudocode for RA algorithm is presented in Algorithm 3.

At first, the number of points p to approximate the CCS are defined. Afterwards, an

empty set S to keep the value (Line 1), and an empty set DRL_models to keep the

single-objective models (Line 2) are initialized. The preference vectors wi, i ∈ 1, ..., p are

defined, so that they uniformly cover the whole objective space (Line 3). Then, for each

point individually, a single-objective optimizer initialized (Line 5), and iteratively trained

using the Ascent simplex with respect to the preferences wi of point i. (Line 9). The

single-objective optimizer runs for every point i until either Pareto optimality is reached

through Equation 4.4, or after the maximum number of episodes gets exceeded (Line 8).

In practice, Pareto optimality is reached when there is no gradient direction that can

improve all objectives at the same time. A parameter vector θ(t)i is considered Pareto

optimal when the norm of its Ascent direction l ∈ Rd is smaller than ε. After the end

of a single-objective execution, the value vector is computed with policy evaluation (line
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Algorithm 3 RadialAlgorithm(d, p, ε, template)

Require: the number of objectives, d, the number of points to explore, p, pareto optimality
threshold ε, single-objective model template, template.

1: S ← ∅ # an empty set to keep the value vectors for every point.
2: DRL_models← ∅ # Empty set to keep the single-objective models executed.
3: {wi}pi=1 ← uniform sampling of Rd

4: for i = 1, ..., p do
5: θ

(0)
i ← random initialized parameters for model template

6: d
(0)
i ← S(wi, θ

(0)
i )

7: t← 1
8: while (not isParetoOptimal(θt−1i , ε))∪ maximum iterations reached do
9: θ

(t)
i ← θ

(t−1)
i + ad

(t−1)
i # Train the policy using the convex combination of

objective gradients
10: d

(t)
i ← S(wi, θ

(t))
11: t← t+ 1
12: end while
13: V, new_model = policyEvaluation(θti)
14: S ← S ∪ {V }
15: DRL_models[w] = new_model
16: end for
17: return S, DRL_models

15). Finally, the CCS-approximation points, and the single-objectives models what were

executed are returned (Line 17).

4.3.2.5 RA experiments parameters

In Table 4.3 the parameters that were used for RA experiments are defined.

Parameter Description Value
p Number of point to explore 66 (step=0.1)
m Number of objectives 3
ε Optimality threshold for ascent directions 0.1

template Single-objective DRL model Modified PPO
(Section 4.2)

Table 4.3: Parameters used for RA experiments.

By setting p to 66, we ensure that the tested preferences will form a grid with step = 0.1.

In other words, the generated preferences for our 3-objective problem will be in the form

of [1.0, 0.0, 0.0], [0.9, 0.1, 0.0], [0.9, 0.0, 0.1], [0.8, 0.2, 0.0], [0.8, 0.1, 0.1], ..., [0.0, 0.0, 0.1]. A

visual overview of the preferences grid is shown in Figure 4.7. Naturally, the surface

defined by the preferences is the described by the function x+ y + z = 1.
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Figure 4.7: The grid of preferences used in RA experiments.

4.3.3 Pareto Following Algorithm (PFA)

4.3.3.1 Overview

Pareto Following Algorithm (PFA) (Parisi et al., 2014) is an outer-loop MORL algorithm

that uses the notion of directed optimization on the Pareto front. In other words, PFA

begins from a point in the Pareto front, and gradually moves to other points by improving

some objectives, and decreasing some others.

The main concept revolves around optimizing one objective at a time. Therefore, in
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the 2-objective case, where the Pareto front is a line, PFA starts by optimizing with

respect to one of the objectives, and then gradually moves towards points in the Pareto

front that have an increased preference over the other objective. However, starting from

a point in the Pareto front and optimizing towards one objective potential produces

dominated solutions. To emerge to the Pareto front again, a Pareto ascent direction can

be followed (as described in Paragraph 4.3.2.2). A visual explanation of how PFA works

for a 2-objective problem is presented in Figure 4.8

Figure 4.8: The behavior of PFA in a 2-objective problem. First, the single-objective
problem is solved with respect to the 1st objective (blue line). Afterwards, the problem is
incrementally solved with respect to the second gradient (green lines). In order to ensure
that intermediate points in the CCS will be found, optimization iterations (red lines) are
executed in specific intervals.

As a result, movement from one Pareto point to another involves the serial execution of

an optimization step (solve the single-objective problem with respect to one objective),

and a correction step (solve the single-objective problem using the best Ascent direction)

using the Quadratic Programming Equation 4.4.
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The same notion is followed when running PFA for 3-objective problems. Again, the

single-objective problem is firstly solved for the 1st objective. Afterwards, incremental

iterations towards the 2nd objective are executed. During this phase, all intermediate

points on the Pareto front are kept. After the 2nd objective has been completely optimized,

and after having collected a set of Pareto front points, we begin single-objective executions

starting from all collected points. In that way, the whole Pareto surface is covered in a

grid-like manner. A visual explanation of PFA in 3-d problems is presented in Figure 4.9.

Figure 4.9: The behavior of PFA in a 3-objective problem. First, the single-objective
problem is solved with respect to the 1st objective (blue line). Afterwards, the problem
is incrementally solved with respect to the second gradient (green lines), in combination
with optimization steps using the Pareto directions. After p steps, the single-objective
problem is solved with respect to the 3rd objective, starting from all previously-computed
Pareto points, for q steps.
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4.3.3.2 PFA algorithm

The pseudocode for PFA algorithm is presented in Algorithm 5.

Algorithm 4 ParetoFollowingAlgorithm(d, p, ncorr, nopt, ε, template)

Require: the number of objectives, d, the number of points to explore per direction, p,
the number of correction episodes, ncorr, the number of optimization episodes, nopt,
pareto optimality threshold ε, the single-objective model template, template.

1: S ← ∅ # an empty set to keep the value vectors for every point.
2: DRL_models← ∅ # Empty set to keep the single-objective models executed.
3: c← 1 # The number of objective to optimize. Start with the 1st one.
4: model← random initialized parameters for model template
5: new_model = scalarizedDRL(c,model) # Single-objective solver execution w.r.t

to objective c
6: V = policyEvaluation(new_model)
7: S ← S ∪ {V } #Add value vector to CCS
8: DRL_models← DRL_models ∪ new_model #Add model to DRL models
9: while c < d do

10: c← c+ 1 # Go to the next objective
11: DRL_models_prev ← DRL_models # Get the models solved up until the

previous objective
12: for each model in DRL_models_prev do
13: for i in 1..p do
14: V, new_model = scalarizedDRL(c, nopt,model) # Single-objective solver

execution w.r.t to objective c for nopt episodes
15: new_model = correctionDRL(ncorr, new_model, ε) # Perform correction

by following the Pareto directions for ncorr episodes
16: V = policyEvaluation(new_model)
17: S ← S ∪ {V } #Add value vector to CCS
18: DRL_models← DRL_models∪new_model #Add model to DRL models
19: end for
20: end for
21: end while
22: return S, DRL_models

The algorithm begins by initializing the empty set S to keep the value vectors (Line 1),

and an empty set DRL_models to keep the single-objective models (Line 2). Afterwards,

the multi-objective problem is solved with respect to only the first objective (Lines 3-6).

After having calculated the Pareto point with respect to the first objective, we move to

the next objective (Line 10). There, we perform p single-objective executions with respect

to the new objective. More specifically, starting from the previous Pareto point we first

execute a series of optimization episodes with respect to the new objective (Line 14). Then,

correction episodes are performed (function correctionDRL), so that we again emerge to
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a Pareto point (Line 15). During these episodes, the optimization problem of equation 4.4

is solved, and the optimized gradients’ combination is used. The execution stops either

after ncor episodes have passed, or when a Pareto optimal parameter vector has been

reached (based on 4.4 and optimality threshold ε). Finally, the value vector for the specific

preferences is calculated from the PolicyEcaluation function, which evaluates a given

policy. After completing all single-objective executions for the 2nd objective, we move

to the next one. There, we iterate over all previously collected Pareto points (Line 12).

Starting from them, we perform additional optimization-correction pair executions with

respect to the 3rd objective. After completing all the steps for the third objective, PFA

execution terminates. The value vectors of the CCS S are returned, together with the

solved single-objective models DRL_models.

4.3.3.3 PFA experiments parameters

In Table 4.4 the parameters that were used for PFA experiments are defined.

Parameter Description Value
d Number of objectives 3
p Number of point to explore per direction 10
ncor Number of correction episodes 5000
nopt Number of optimization episodes 100
ε Optimality threshold for ascent directions 0.1

template Single-objective DRL model Modified PPO
(Section 4.2)

Table 4.4: Parameters used for PFA experiments.

4.4 Benchmarking

Since the multi-objective road network maintenance scheduling problem doesn’t have

a true Pareto Front as a ground truth, it is useful to compare the solutions generated

from the MORL algorithms with a theoretical industry-standard. For that reason, we

have added Multi-objective CBM in the evaluation. Multi-objective CBM is a naive

implementation of a MORL algorithm using the CBM approach, discussed in Section 2.5.1.

The multi-objective benchmark works as follows. At first, we define a set of preferences

for which we want to execute CBM. We use the same set of preferences as the one used by

RA for comparability (Figure 4.7). Afterwards, we treat CBM as an outer-loop approach,
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and iteratively solve the single-objective problem for every set of preferences. In this way

we gradually construct the CS for our benchmark. The pseudocode of the multi-objective

CBM is presented in Algorithm 0.

Algorithm 5 MultiObjectiveCBM(d, p, T )

Require: the number of objectives, d, the number of points to explore, p, the time
horizon, T .

1: S ← ∅ # an empty set to keep the value vectors for every point.
2: {wi}pi=1 ← uniform sampling of Rd

3: for wi, i = 1, ..., p do # Iterate over the preference vectors
4: repair_thresopt ← −1 # Initialize the optimal IRI condition for repair action
5: replace_thresopt ← −1 # Initialize the optimal IRI condition for replace action
6: insp_intvopt ← −1 # Initialize the best time interval to perform inspection
7: Vopt, Vscal,opt ← −∞,−∞ # Initialize the value of the best return so far
8: for inspect_intv in T do # Try all different inspection intervals within time

horizon to find for the optimal one
9: for repair_cond in IRI_conditions do # Try all different IRI values for the

optimal repair condition
10: for replace_cond in IRI_conditions do # Try all different IRI values for

the optimal replace condition
11: V = execute_environment(inspect_intv, repair_cond, replace_cond)
12: Vscal = wTi · V # Compute the scalarized value
13: if Vscal > Vopt then
14: Vscal,opt = Vscal
15: Vopt = V
16: repair_thresopt, replace_thresopt, insp_intvopt ←

repair_cond, replace_cond, inspect_intv
17: end if
18: end for
19: end for
20: end for
21: S ← S ∪ Vopt
22: end for
23: return S

Given the number of objectives, number of points to explore and the time horizon, multi-

objective CBM finds the best IRI condition to perform repair and replacement, and the

best timestep to perform inspection for a several different preferences. Namely, function

execute_environment(inspect_intv, repair_cond, replace_cond) calculates the value

vector of a policy where an inspection takes place every inspect_intv timesteps, a repair

is performed when a road segment reaches repair_cond condition, and a replacement is

performed whenever a segment reaches repair_cond condition (Line 11). Afterwards, the

scalarized value is computed based on the given preferences (Line 12). The optimal value
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vector for every preference is the one for which the scalarized value is maximized (Lines

13-16). Finally, the algorithm returns the optimal value vectors for all the explored points

p (Line 23).

4.5 Evaluation metrics

At this point, it is important to remind the reader that the multi-objective road

maintenance scheduling problem that we are trying to tackle doesn’t have a known

Pareto front. For that reason, error-based evaluation metrics like the ε-metric (Zitzler

et al., 2008), the Coverage ratio (Yang et al., 2019) and the Maximum Utility Loss (MUL)

(Zintgraf et al., 2015) can’t be used in our study.

Moreover, an interesting evaluation metric, that doesn’t require a ground-truth to the

Pareto front, is the Expected Utility Metric (EUM), again developed by Zintgraf et al.

(2015). EUM computes the expected average utility of a solution set S for a family of

scalarisation functions V ∗π (w) = f(Vπ, w) and given a probability distribution P (w) over

the preferences w. It is a utility-based metric, meaning that instead of evaluating the

abstract Pareto front shape, it reasons based on the true user utility. However, to do that,

it requires some prior knowledge about the user preferences in order to determine the

probability distribution P (w). Since we have no prior knowledge of user preferences in

our problem, we avoid using EUM as well.

The only metrics found in the literature that do not require a ground-truth for the Pareto

front, neither a prior knowledge about user preferences are the Hypervolume metric and

the Sparsity metric.

The Hypervolume metric (HV) (Zitzler and Thiele, 1999) is the most widely used metric in

the MORL literature. It measures the hypervolume of the value vectors of an approximate

coverage set with respect to a given reference point (Figure 4.10). It can be used to

compare the sets of solutions produced by different multi-policy algorithms, as the larger

hypervolume corresponds to a better quality of the CCS.

The HV formula is given in Equation 4.5
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HV (CS, Vref ) =
⋃
π∈CS

V olume(Vref , V
π) (4.5)

where Vref is the reference value vector, and V olume(Vref , V
π) is the volume of the

hypercube with one corner in vector Vref and another one in vector Vπ. For our analyses,

we chose point (−100,−100,−100) as the reference for the Hypervolume calculation.

Figure 4.10: Hypervolume visualization for a 2-objective problem. The red marks are
the non-dominated value-value vectors that construct the CS, while the blue mark is the
reference point . The hypervolume corresponds to the grey area (Hayes et al., 2021).

If we have two CS sets with (approximately) equal size, then intuitively we should select

the one, the value vectors of which are more spread over the value space. For this reason

Xu et al. (2020) proposed a Sparsity metric that calculates the average distance between

the sorted value vectors of a CS set S:

Sp(S) =
1

|S| − 1

m∑
j=1

|S|−1∑
i=1

(S̃j(i)− S̃j(i+ 1))2 (4.6)

where S̃j(i) is the i-th value in the sorted list of the j-th objective value vectors and m is

the number of objectives.

It is however not trivial to evaluate the sparsity metric. One could argue that between two

CS with the same number of value vectors, the one with the lowest sparsity has a better

spread of the value vectors over the value space. On the other side, when comparing CS
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with different sizes, its intuitive to think that the one with the most points has a lower

sparsity. However, as discussed in the Background section, we try to keep the CS as small

as possible. Because of this ambiguity, it is deemed that sparsity comparisons are only

meaningful when the CS size between two solution sets is comparable.

4.6 Experimental setting

The experiments with the previously described MORL algorithms were executed in

DelftBlue compute cluster (Delft High Performance Computing Centre , DHPC), using 9

CPU cores of 20GB each, in every experiment. Every MORL algorithm was executed 3

times with different seeds, to ensure reproducibility. The results of the experiment are

reported in the respective Results section.

4.7 Initial reflection on the MORL approaches

Before performing any experiments, we can make some educated assumptions on how each

algorithm is expected to work. Firstly, concerning the DOL and DOL-PR approaches,

we expect that DOL-PR will perform better due to the model parameters reuse. On the

other hand, DOL may perform better than DOL-PR in the first single-objective iterations

because the initial preference vectors will not be close enough for DOL-PR to reuse the

parameters effectively.

Moreover, RA is expected to achieve reasonable results since the algorithm will uniformly

pick preference vectors over the value space. This will allow for a thorough exploration of

the value space.

Finally, PFA optimizes with respect to each objective individually for a certain number of

weights. This raises a concern about its effectiveness since we don’t know the exact shape

of the Pareto front a priori and it is difficult to finely tune the parameter nopt.
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5 Results

The present chapter contains the results from the evaluation of the developed multi-

objective environment, as well and the results from the multi-objective experiments.

5.1 Environment evaluation

To gain a deeper understanding of the multi-objective road maintenance environment,

we conducted a series of experiments to evaluate its performance. Our first experiment

involved optimizing for each of the three objectives individually using the modified PPO

algorithm described in Section 4.2, followed by visualizing the resulting policies. This

allowed us to gauge the level of conflict between the objectives and gain insight into their

respective importance.

In the second experiment, we examined the individual components that contribute to each

objective, providing valuable information on the impact of each component on the final

policy.

Finally, we compared the action sequences generated by the optimized policies, enabling

us to evaluate their effectiveness and make informed decisions on the best maintenance

strategies to implement. Through these experiments, we gained a more comprehensive

understanding of the multi-objective road network environment.

5.1.1 Single-objective policies comparison

After optimizing with respect to a single objective each time, we can see that modified

PPO manages to surpass the CBM benchmark within the the first 5,000 episodes for all

benchmarks, as shown in Figure 5.1.

It is interesting to understand why the user cost benchmark is very easily surpassed by

the algorithm. A main disadvantage of the CBM algorithm, is that it applies the same

policy to all road segments. On the other side, the policy generated by modified PPO is

in principle different per road segment, giving more combinations of actions to explore.

In the case of the "User cost", we will see that the optimal single-objective PPO policy

results in a very diverse maintenance actions sequence for the different road segment,
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Figure 5.1: Comparison of the single-objective executions with the CBM benchmark,
for the maintenance cost (top left), carbon emissions (top right) and user cost objectives
(bottom). The training curves have resulted as the average of 5 executions, while the
confidence interval with confidence 95% is visualized.
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which is something that CBM can’t achieve, and thus results in sub-optimal returns.

Moreover, by comparing the value vectors returned from each policy, we can get an idea

of how conflicting the three problem objectives are. The three value vectors generated

from the three single objectives policies are visualized in the value space in Figure 5.2.

We realize that the value vectors of the maintenance cost-optimized and the carbon

emissions-optimized policies appear to be in the same region, where the scalarized values

for both these objectives are relatively small. This gives us a first indication that the two

objectives have some correlation.

Figure 5.2: Comparison of the normalized value vectors for three extreme preferences
policies.

To get a better idea of the degree of correlation between the different objectives, and how

this is expressed in real-life metrics, Table 5.1 displays the difference in the maintenance

costs between the three policies and the benchmark in relative and absolute metrics. The

modified PPO execution that was optimized w.r.t the maintenance cost results in 7.13%

less maintenance costs compared to he CBM benchmark. Moreover, we observe that the

PPO policies optimized for the other objectives (and especially the user cost) result to
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substantially higher maintenance costs.

Maintenance Cost (Million USD)

Policy Return Difference
with CBM (%)

Difference
with CBM
(absolute)

PPO w.r.t.
Maintenance cost 83.4 -7.13% -6.4

PPO w.r.t.
Carbon emissions 331.8 +269.60% +242.1

PPO w.r.t
User cost 1955.1 +2077.17% +1865.3

CBM 89.8 0.00% 0.00

Table 5.1: Comparison of single-objective policies in terms of maintenance cost objective.

Next, the respective information for the Carbon emissions objective are displayed in Table

5.2. Here we observe that the policy that is optimized with respect to the carbon emissions

objective emits 0.13% less greenhouse gases than the benchmark. It is interesting to

understand that for a road network of roughly 85km, even such a difference equals to

2, 530 tons of CO2e emissions, which corresponds to powering almost 300 houses for one

year (Environmental Protection Agency, 2023)!

Total Carbon Emissions (Tons CO2e)

Policy Return Difference
with CBM (%)

Difference
with CBM
(absolute)

PPO w.r.t.
Maintenance cost 1.88E+07 -0.03% -6.29E+03

PPO w.r.t.
Carbon emissions 1.87E+07 -0.13% -2.53E+04

PPO w.r.t
User cost 2.03E+07 8.26% 1.55E+06

CBM 1.88E+07 0.00% 0.00

Table 5.2: Comparison of single-objective policies in terms of carbon emissions objective.

Finally, the comparisons for the user cost objective are presented in table 5.3. We observe

that the modified PPO policies that are not optimized with respect to the user cost

objectives lead to substantially higher costs for the vehicle owners.
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User costs (Million USD)

Policy Return Difference
with CBM (%)

Difference
with CBM
(absolute)

PPO w.r.t.
Maintenance cost 1.13E+04 0.11% 1.26E+01

PPO w.r.t.
Carbon emissions 1.15E+04 1.89% 2.13E+02

PPO w.r.t
User cost 1.10E+04 -2.80% -3.05E+02

CBM 1.13E+04 0.00% 0.00

Table 5.3: Comparison of single-objective policies in terms of user cost objective.

5.1.2 Reward components analysis

As previously stated, the "Maintenance Cost" and "Carbon Emissions" reward functions

contain multiple components.

Namely, the "Maintenance Cost" reward function contains the following negative rewards:

• Cost of maintenance actions

• Cost of inspection actions

• Cost of mobilization of the equipment

• Cost of urgent actions

On the other hand, the "Carbon Emissions" function includes:

• The emissions from the maintenance actions

• The added vehicle emissions from rerouting due to maintenance actions.

• The extra vehicle emissions due to high road roughness.

In order to estimate the impact of each component in the objective functions, we visualize

the realization of the policy that is optimized with respect to the maintenance cost and

the one with respect to the carbon emissions, and view the negative rewards breakdown.

The cumulative return of the maintenance cost-optimized policy is presented in Figure 5.3.

One can observe that the dominant component is the cost of the maintenance actions.

Moreover, the cost of urgent actions is zero, indicating that in this policy, no component
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ever reaches the damaged condition.

Figure 5.3: Cumulative negative rewards of the policy that was optimized with respect
to the "Maintenance Cost" objective.

Moreover, the optimized policy with respect to the "Carbon Emissions" objective is

presented in Figure 5.4. It is interesting to notice that the "rerouting" cumulative reward

value is positive for the first 8 years, meaning that due to rerouting, less carbon is emitted

from the vehicles. This happens because the traffic assignment optimizer chooses the

optimal traffic assignment with respect to the travel time, while the carbon emissions are

relative to the travel distance. To what is more, the most dominant components are the

ones related to the condition of the asphalt and the rerouting.

Figure 5.4: Cumulative negative rewards of the policy that was optimized with respect
to the "Carbon Emissions" objective.

5.1.3 Policy realizations

Next, we visualize the realizations for each of the three single-objective policies. The

realization of the policy that is optimized with respect to the maintenance cost is presented

in Figure 5.5.
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Figure 5.5: Policy realization for all road segments when following a policy that is
optimized with respect to maintenance cost minimization. On the x-axes is the timestep,
while on the y-axes is the IRI rating. The action for every timestep is depicted with a
yellow mark. No mark means "Do nothing" action was picked.

We can see that no segment reaches the "damaged state" (IRI = 4), hence avoiding the

extra urgent action cost. Also, we see that no replacement action is performed. This

is logical, as the cost of a replacement is very high, and the algorithm cleverly opts to

substituting it with several repair actions. Finally, inspection actions are executed almost

in every timestep. This is done to minimize the uncertainty over the belief, and hence

avoid the risk not maintaining segment that approaches the damaged condition.

The realization of the policy that is optimized with respect to the carbon emissions is

presented in Figure 5.6.

In this case, we observe that there exist multiple segments (1, 2, 4, 7, 10) that at some

point reach the damaged state and get replaced afterwards. Moreover, we observe that

road segment 5 and 8, connecting nodes 12 −→ 11 −→ 4 are preserved in an almost intact
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Figure 5.6: Policy realization for all road segments when following a policy that is
optimized with respect to carbon emissions minimization. On the x-axes is the timestep,
while on the y-axes is the IRI rating. The action for every timestep is depicted with a
yellow mark. No mark means "Do nothing" action was picked.

condition throughout their lifecycle. This is chosen because by performing multiple repair

actions on segments 5 and 8, their traffic capacity decreases, and therefore traffic from

node 12 to node 4 needs to reroute. The alternative route 12 −→ 3 −→ 4 may be slower,

but has a lower total length, and hence it results in fewer CO2e emissions.

The realization of the policy that is optimized with respect to the user cost is presented

in Figure 5.7.

Here, it is first observed that the agent has picked a yearly replacement schedule for

all segments from-and-to node 3. A possible explanation for this behavior lies on the

fact that for the user cost objective, the agent needs to search for a trade-off solution

between having a nearly intact road condition, and avoiding to travel extra km, as the

cost for vehicle owners increases with the distance. Therefore, because the traffic demand
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Figure 5.7: Policy realization for all road segments when following a policy that is
optimized with respect to user cost minimization. On the x-axes is the timestep, while on
the y-axes is the IRI rating. The action for every timestep is depicted with a yellow mark.
No mark means "Do nothing" action was picked.

from-and-to node 3 is small (as illustrated in Figure 3.6), the limited capacity due to

road replacement is enough to accommodate the traffic load. For the rest of the segments,

a conservative maintenance and inspection schedule is selected as the best combination

between traffic disruption and condition improvement.

5.2 Multi-objective experiments

In this section, we evaluate the results for the experiments with the MORL algorithms.

Firstly, we visually compare the Coverage sets generated, while afterwards we compare

the MORL approaches in terms of the hypervolume and sparsity metrics, and sample

efficiency.
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5.2.1 Coverage sets visualization

Since the problem we attempt to solve is a 3-objective one, it is not trivial to visually

compare the generated Coverage sets on paper. Therefore, it was deemed that visual

comparison should be performed in pairs of objectives. The 3-dimensional visualizations

of the Coverage set for the best experiment of each MORL algorithm are presented in

Appendix A3. The Coverage sets comparison in paired objectives are presented in Figure

5.8

Figure 5.8: Comparison of multi-objective experiment for the MORL algorithms in
paired objectives. The results presented are the best output out of 3 experiments per
MORL algorithm.

The first thing that we can notice from Figure 5.8.a is that the "Maintenance cost"

and "Carbon emissions" objectives are positively correlated for all MORL algorithms .

However, the "User cost" objective is conflicting with the former two, as the 2-dimensional

coverage sets containing the value vectors between the "User cost" objective and one of

the other two have a clear convex shape.

Moreover, we observe that PFA results in a poorer approximation compared to the other
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algorithms. There are regions where no PFA value vectors are present, while there are

other regions where the PFA vectors are dominated from other solution vectors.

Finally, the CBM benchmark seems to have produced very few points. On the other side

of things, it looks like the DOL approaches produced many value vectors that are well

distributed across the values space.

5.2.2 Comparison of MORL algorithms

In this section we perform numerical evaluation of the examined algorithms with respect

to the metrics defined in Section 4.5. The numerical results for all MORL algorithms and

the benchmark are presented in Table 5.4.

MORL Algorithm # CS Points # Iterations Hypervolume Sparsity Runtime/iteration
(minutes)

DOL 70 96 784450.14 7.96 46.73 ± 0.96
DOL-PR 97 119 792041.05 4.02 67.58 ± 3.37
RA 22 66 757946.92 95.15 144.02 ± 98.05
PFA 29 121 626173.16 8.5 48.74 ± 64.38
CBM 3 66 664089.01 27.72 10.02 ± 0.11

Table 5.4: Numerical comparison between the different MORL algorithms. The margins
in the runtime correspond to one standard deviation, using a sample of 3 experiments per
MORL algorithm. Reminding the reader that sparsity comparisons can only be conducted
between Coverage sets with (roughly) the same size. In this case, the lower sparsity equals
a betters spread across the value space.

We observe that three out of four MORL algorithms perform better than the multi-

objective CBM benchmark in terms of hypervolume. Comparing the sparsity is not

applicable because of the large difference in the number of CS points between multi-

objective CBM and MORL algorithms. DOL-PR achieves the best hypervolume, followed

by the DOL with no reuse. DOL-PR also results in the most CS points, even though the

number of iterations (i.e. the number of different preferences explored) is roughly the same

as DOL. Moreover, in terms of runtime, one DOL-PR iteration takes approximately 50%

more than a DOL iteration. This has to do with the KL divergence stopping mechanism

of the modified PPO training. KL divergence is used as a mechanism to stop training for

an episode where the actor parameters change more than a threshold. Therefore, during

the first episodes of modified PPO in DOL experiments, training is terminated early due

to high KL divergence. On the other hand, during the DOL-PR experiments, the policy

is already near-optimal from the first episodes, and training does not terminate early,
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hence adding more computational time.

To what is more, we observe that PFA shows the worst performance in terms of

hypervolume, and sample efficiency, as it generated only 29 CS points from 121 single-

objective iterations.

RA has a better sample efficiency and resulted to a higher hypervolume compared to

PFA. However, its really large sparsity suggests that the points in the CS are not evenly

distributed. This can be further validated from Figure 5.8, where the RA value vectors

are mostly concentrated in the low-maintenance cost, low-carbon emissions, high-user

costs region.

Finally, another thing to notice is the high variability in the runtime for RA and PFA.

This is attributed to the stopping mechanism that has been applied to both algorithms

(described in Paragraph 4.3.2.3), that terminates a single-objective execution when the

norm of the Ascent directions is close to 0.

Visual comparison of hypervolume and sparsity metrics over iterations is presented in

Figure 5.9. It’s important to note that for RA and for the CBM benchmark, by design,

the order of iterations has no effect in the resulting hypervolume.

Figure 5.9: Comparison of the MORL algorithm results with respect to the hypervolume
and sparsity metrics over inner-loop iterations. Comparison is performed for the best
experiment of each algorithm in terms of hypervolume.

One can observe that from the first single-objective iterations, DOL-PR and DOL result

in higher hypervolumes, indicating that they consistently produce value vectors that are

closer to the (unknown) true Pareto front, compared to the other MORL approaches.
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6 Discussion - Conclusion

6.1 Discussion of results

In this study, we modelled a multi-objective road network environment and tried to find the

optimal inspection and maintenance policy with respect to maintenance cost minimization,

carbon emissions reduction and users cost minimization. In this section are discussing

the results of the project. We will first analyze the results retrieved by the environment

evaluation, and then review our key finding concerning the MORL experiments.

6.1.1 Environment evaluation

We developed a realistic model of a road network environment, containing 10 road segments,

with a total length of roughly 84km.

By performing single-objective optimization for each one of the three objectives, we

realized that there is correlation between the Maintenance cost and Carbon emissions

objectives, while the User cost objective is conflicting with the rest. Moreover, we were

able to surpass the CBM benchmark in all single-objective executions.

To what is more, by reviewing the different reward components 5.1.2, we understood

that the monetary cost of maintenance actions themselves accounts for most of the cost

incurred within the IM operations of the road (78%). At the same time, we observed

that because of the heavy traffic in the road network, the large majority (98%) of the

carbon emissions comes from the vehicle emissions, while the smallest part comes from

the emissions due to the IM actions.

Additionally, based on Tables 5.1, 5.2 & 5.3, optimization with respect to the maintenance

cost objective can have the highest relative impact, as we were able to save 76.5$/km

of road (-7.21%) compared to the benchmark. On the other hand, the relative impact

by optimizing with respect to carbon emissions and user cost objectives is lower (0.14%

and 2.78% respectively). This is due to the fact that carbon emissions and user costs

are indirectly related to maintenance and inspection of the road network. Even so, our

optimization still results in large absolute savings.
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Finally, from the policy realizations in Figures 5.5, 5.6 & 5.7, we observed that the agent

was able to find policies that intuitively are reasonable, and in the case of the User

cost-optimized execution, apply different policies per road segment to radically improve

the resulted return.

All above observations show that developed the road network environment accurately

models the three objectives under examination, producing reasonable policies.

6.1.2 Multi-objective experiments

For the MORL experiments, we observed that DOL-PR achieves the best results in terms

of hypervolume in all experiments. Employing partial reuse of the model parameters,

the agent can transfer information from a single-objective execution to another, and

hence improve in terms of sample-efficiency and performance. The above result comes in

alignment with Mossalam et al. (2016), who also observed superior behavior of DOL-PR

over DOL without reuse.

The multi-objective CBM benchmark was able to produce a CS of only three points, and

was surpassed by 3 out of the 4 examined MORL approaches in terms of Hypervolume.

This tells us that CBM isn’t adequate to provide a solution for varying preferences.

Moreover, as CBM assigns the same maintenance and inspection thresholds for all the

road segments, it results in very rigid and limited policies, that are unable to treat

road segments individually. This weakness was especially observed in the case of the

single-objective optimization with respect to the "User cost" objective, where PPO was

able to find a policy where some of the road segments were repaired very often, while

others were not, resulting in much lower user costs. The results of this experiment are

presented in Table 5.3.

Moreover RA was proven to be sample inefficient, having run 66 inner-loop iterations

and resulting to just 29 CS points. The stopping mechanism that computes the Ascent

direction based on Equation 4.4 produces sub-optimal solutions for many of the preferences

that were tested. Moreover the spread of the CS points over the value space is far from

uniform (due to the very high sparsity), with most of the CS points residing in the

region with high values for the "Maintenance cost" and "Carbon emissions" objectives.

Nevertheless, RA-generated CS still beats the benchmark. Finally, as discussed in the
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Results chapter, the high variability in the runtime per iteration is explained by the

stopping mechanism.

Finally, the CS generated from PFA is the one producing the most sub-optimal

hypervolume, staying below the benchmark. Based on these results, we conclude that

PFA isn’t able to approximate the solution for the multi-objective problem of the road

network. This comes in alignment with Xu et al. (2020), who reported that PFA is hard

to implement in environments with more than 2 objectives. This happens because PFA

blindly shifts from a preference vector to another, making it difficult to properly tune the

nopt and ncor parameters, such that the true Pareto front is approximated. Parisi (2020)

also reports PFA can’t properly scale to multiple objectives, and hence achieve worse

hypervolume than RA in the 3-objective Linear Quadratic Regulator (LQR) problem.

Overall, DOL-PR is the most effective MORL approach to tackle to multi-objective road

maintenance scheduling problem, between the algorithms tested, achieving the best results

in terms of CS quality.

In practice, the application of a MORL approach, such as the DOL-PR algorithm, holds

great promise for solving the complex maintenance scheduling problem in road networks.

By utilizing MORL, it becomes possible to construct a comprehensive Coverage set in the

value space, providing asset managers with a range of potential policies to consider.

Building upon the discussion in the Motivation section, where the need for multiple

re-evaluations of the maintenance plan due to budget updates was highlighted, MORL

offers a valuable solution. Asset managers can fine-tune the preferences of the MORL

model to align with the specific requirements of each situation. This adaptability allows

for efficient and effective adjustments to the maintenance schedule, significantly reducing

the duration of planning iterations. The utilization of an automated tool like MORL in

generating the maintenance schedule brings numerous benefits. First and foremost, it

provides asset managers with the ability to experiment with different preferences over

objectives, enabling them to explore various trade-offs and make informed decisions.

The MORL approach produces a diverse set of maintenance policies, covering a wide

range of possible solutions, thereby expanding the decision-making options available to

asset managers. Moreover, the incorporation of MORL into the maintenance scheduling

process leads to a substantial reduction in planning iteration duration. By automating
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the generation of maintenance schedules, MORL eliminates the need for time-consuming

manual adjustments and iterations. The ability to quickly generate and evaluate multiple

maintenance schedules significantly streamlines the planning process, allowing asset

managers to allocate their time and resources more efficiently.

6.2 Limitations

When interpreting the results of this study, it is important to consider its limitations.

Firstly, the learning model used assumes that each segment of the road network deteriorates

independently, whereas there may be some correlation between the deterioration of

different segments. Additionally, the study assumes that carbon emissions from vehicle

fuel consumption are proportional to travel time when in reality this relationship is more

complex. Furthermore, the study assumes that traffic patterns, traffic composition, vehicle

emissions, and maintenance action emissions are fixed within the time horizon. Lastly,

the International Roughness Index (IRI) is just one of the metrics used to capture the

condition of asphalt effectively.

Secondly, the study’s purview is limited as it only explores outer-loop MORL algorithms.

A more comprehensive investigation should include inner-loop approaches as well.

Additionally, the study only considers three objectives: maintenance cost minimization,

carbon emission reduction, and user cost minimization. Other significant objectives, such

as safety maximization and travel time minimization, are not considered.

Thirdly, computational limitations restrict the number of experiments that can be

conducted due to the high time complexity of the calculations. As a result, for each

MORL algorithm, only three multi-objective experiments were conducted.

Lastly, because time complexity of multi-objective approaches scales exponentially with

the number of objectives, we limited our work to three objectives, even though a real-life

road network scheduling problem includes much more (f.i. travel safety, traffic disruptions).

Outer-loop MORL algorithms typically require many more inner-loop iterations to reach

a Coverage set. Therefore, scalability is an important constraint in a complex problem

with many stakeholders and, that should be noted.

To conclude, this study provides valuable insights into the application of MORL algorithms
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to road network maintenance planning. However, it is important to acknowledge the

aforementioned limitations when interpreting the results.

6.3 Future research

The present project can become the basis of multiple interesting future research ideas.

First, related to the road network environment, it can be enhanced to include other

objectives that are important for the road maintenance stakeholders, such as travel safety

and travel time. Also, to better understand the environment dynamics, it would be

interesting to perform sensitivity analyses of several environment parameters (f.i. traffic

data, road segments capacity) and assess their impact in the resulting policies. Finally,

it would be interesting to explore the use of a surrogate model as the traffic assignment

optimizer, as the one in the work of Yuan et al. (2022).

Secondly, related to the MORL approaches, extending the scope of the study to include

other state-of-the-art outer-loop MORL approaches like Chen et al. (2018) and Xu et al.

(2020), or inner-loop approaches would possibly result in better approximations of the

problem’s true Pareto front. Finally, as previously stated, the partial model parameter

reuse employed by DOL-PR results in faster learning for the single-objective runs. However,

with a fixed number of episodes per single-objective execution, the execution time can

be even greater compared to the no-reuse experiments. Implementing an early stopping

mechanism for DOL-PR, could improve the sample efficiency and at the same time preserve

its superior performance. This update is also suggested as a future research from the

authors of DOL-PR (Mossalam et al., 2016).
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Appendix

A1 Road network environment dynamics

A1.1 Transition probabilities

Below, the transition probabilities for the actions retrieved by Saifullah et al. (2022) are

presented.

P (s′|s, {”Do nothing”, ”Inspect”}) =



0.839 0.121 0.039 0. 0.

0. 0.787 0.142 0.07 0.

0. 0. 0.708 0.192 0.099

0. 0. 0. 0.578 0.421

0. 0. 0. 0. 1.


(.1)

P (s′|s, {”Repair”, ”Repair + Inspect”}) =



1. 0. 0. 0. 0.

0.95 0.05 0. 0. 0.

0.8 0.2 0. 0. 0.

0.7 0.25 0.05 0. 0.

0.45 0.35 0.2 0. 0.


(.2)

P (s′|s, {”Replace”}) =



1. 0. 0. 0. 0.

1. 0. 0. 0. 0.

1. 0. 0. 0. 0.

1. 0. 0. 0. 0.

1. 0. 0. 0. 0.


(.3)

A1.2 Observation probabilities

Below, the observation probabilities to update the belief when an inspection action is

selected are presented. Transition probabilies were retrieved from Saifullah et al. (2022).
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O(o|s′, {”Do nothing”, ”Repair”, ”Replace”}) =



0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2


(.4)

O(o|s′, {”Inspect”, ”Repair + Inspect”}) =



0.9 0.1 0. 0. 0.

0.05 0.9 0.05 0. 0.

0. 0.05 0.9 0.05 0.

0. 0. 0.05 0.9 0.05

0. 0. 0. 0.1 0.9


(.5)
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A2 Modified-PPO experiments parameters

In Table A2.1 the parameters that were used for PPO single-objective executions are

defined.

Parameter Description Value
processes Number of parallel environment runners 8

n_epochs Number of episodes per
single-objective execution 15000

actor_architecture Architecture of actor network MLP
actor_hidden_layers Hidden layers of actor network [80, 80]

actor_activation_fn Activation function after every hidden
layer of the actor network relu

lr_act Initial actor learning rate 1.00E-03
lr_act_min Minimum actor learning rate 1.00E-06
optimizer_act Actor optimizer Adam

critic_architecture Architecture of critic network MLP
critic_hidden_layers Hidden layers of critic network [80, 80]

critic_activation_fn Activation function after every hidden
layer of the critic network relu

lr_crit Initial critic learning rate 1.00E-02
lr_crit_min Minimum critic learning rate 1.00E-05
optimizer_crit Critic optimizer Adam

lr_decay_step Decay step for the learning rate of
actor and critic networks 200

lr_decay_episode_perc Percentage of episodes in which the learning
rate will reach its min value 0.8

batch_size Number of samples used in every
training iteration 40

train_iters Number of training iterations
per episode 50

clip_range PPO clip 0.2
normalize_advantage Standard normalization of advantages TRUE

ent_coef Entropy coefficient for actor loss 0.03
vf_coef Value coefficient for actor loss 0.01
target_kl Target KL coefficient for training pruning 0.025

lam GAE λ 0.95

Table A2.1: Modified PPO parameters used for the experiments.
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A3 MORL Coverage sets

The CS from all MORL algorithms are presented in the following figures. The best

experiment is shown for each algorithm

Figure A3.1: CS generated using the multi-objective CBM.

Figure A3.2: CS generated using DOL.
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Figure A3.3: CS generated using DOL-PR.

Figure A3.4: CS generated using RA.
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Figure A3.5: CS generated using PFA.
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