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Abstract—Occlusion degrades the performance of human pose
estimation. In this paper, we introduce targeted keypoint and
body part occlusion attacks. The effects of the attacks are system-
atically analyzed on the best performing methods. In addition, we
propose occlusion specific data augmentation techniques against
keypoint and part attacks. Our extensive experiments show that
human pose estimation methods are not robust to occlusion and
data augmentation does not solve the occlusion problems. 1

I. INTRODUCTION

Human Pose Estimation is the task of localizing anatomical
keypoints such as eyes, hips, knees and localizing body-parts
like head, limbs, corpus. It has many applications on segmenta-
tion [24], [25], [52], action recognition [28], [30], [40], pose
tracking [14], [54], gait recognition [39], [44], autonomous
driving [12], [32], [50], elderly monitoring [10], [31] and
social behaviour analysis [22], [48]. All these applications
rely on correct and robust pose estimation. In this paper we
investigate the robustness of human pose estimation methods
to a natural and common effect: Occlusions.

Occlusions are common and occur frequently in the wild
as for example by a random object, another person [15],
and self-occlusion [18]. Prior works address the occlusion
problem in a general way and exploits segmentation [32]
or depth information [33]. [36] checks the robustness of the
estimators with image-agnostic and domain-agnostic universal
perturbations. In contrast, we systematically analyze targeted
occlusion attacks not only for keypoints, but also for and body
parts and investigate the sensitivity of pose estimation to the
proposed occlusion attacks.

Data augmentation is now such a common practice that
it has become a default setting for deep learning appli-
cations [37] to improve subtle difference between training
and testing data and leads to better generalization. Flipping,
rotation, scaling are often employed the in computer vision
tasks [6], [37], [45]. Recent works show that the usage of re-
gional dropout and mixup methods improve the generalization
performance of image classification [9], [16], [41], [46], [49],
[55], [59], [60], object localization and detection [7], [11], [38]
and segmentation [13]. In pose estimation, [19] applies region
based augmentation by exchanging a single keypoint patch
with a random background patch. More recent approaches
[42], [53] use half-body augmentation wherewith the presence

1submitted to ICPR 2021 conference.
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Fig. 1: Qualitative example of changes for HRNet-32 in
position prediction of joints after performing keypoint blackout
on nose (first row) and part blurring on the corpus (second
row). With both of the examples we observe change in head
keypoints, nose, eyes and ears.

of more than 8 keypoints, by choosing upper or lower body
keypoints. We implement systematic data augmentation meth-
ods for occlusion for keypoint and body parts to investigate
how data augmentation can remedy occlusion attacks.

We have the following contributions: First, we conduct
a structured investigation on the occlusion problem of pose
estimation and introduce occlusion attacks. Second, we inves-
tigate occlusion-based data augmentation methods. Third, we
show that data augmentation does not provide robustness to
occlusion attacks.

II. RELATED WORK

Human Pose Estimation. Deep learning methods in human
pose estimation can be divided into 2 categories: bottom-up
and top-down. Bottom-up approaches [3], [6], [21], firstly lo-
calize identity-free keypoints and then group them into person
instances. Top-down approaches [5], [29], [42], [53] firstly
detect a person in the image and then perform a single person
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Fig. 2: Visualization of keypoint annotations in COCO dataset
and proposed part mapping.

estimation within the bounding box. The top-down approaches
achieve the state of the art results on various multi-person
benchmarks such as COCO [26], MPII [1]. Within top-down
approaches 2 categories can be distinguished: regressing direct
location of each keypoint [4], [47] and keypoint heatmaps
estimation [8], [29], [42], [51], [53] followed by choosing the
locations with the highest heat values as the keypoints. The
best performing methods on COCO keypoint challenge use
a cascade network [5], [23] to improve keypoint prediction.
The ’Simple Baseline’ [53] proposes simple but effective
improvement by adding few deconvolutional layers to enlarge
the resolution of output features. HRNet [42] which is built
from multiple branches can produce high-resolution feature
maps with rich semantics and performs well on COCO. Some
works advance performance of HRNet via improvement over
standard encoding and decoding of heatmaps [58] and basing
data processing on the unit length instead of pixels [17] with an
additional off-set strategy for encoding and decoding. Because
of their good accuracy and wide adaptation, we focus on top-
down methods: HRNet and Simple Baseline.

Occlusion in pose estimation. Occlusion in pose estimation
is an under-studied problem. In [36] analyses of occlusions are
done for deep pose estimators by domain-agnostic universal
perturbations. More recently, attempts to solve the occlusion
problem in pose estimation are suggested via the usage of
segmentation of occluded parts [32] and depth of in an image
[33]. OcclusionNet [34] predicts occluded keypoints via graph-
neural networks yet it is applied only on vehicles. Different
from these methods, in our paper we introduce keypoint
occlusion attacks and body part occlusion attacks and give
a structured analysis of occlusion on human pose estimation.

Data augmentation. Data augmentation is a strong,
simple and popular approach to increase model robustness.
Removing part of the image improves generalization of image
classification [9], [55], [60] and object localization-detection
[7], [11], [38]. Mixup [16], [46], [59] approaches which
create a combination of two images are often used in image
classification. [13][57] combine regional dropout and MixUp
methods for image segmentation [13] and image classification
[57] task. [19] proposes a cutmix-like approach where a small
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Fig. 3: Robustness comparison of HRNet and Simple Baseline
methods against (a) keypoint and (b) part occlusion attacks.
HRNet is more robust against both attacks, yet both attacks
drop performance, where part attacks deteriorate more.

patch from the background is pasted on the single keypoint
or vice versa. For the human pose estimation methods [4],
[51], [56], scaling, rotation and flipping is commonly used as
data augmentation. Random cropping is also used in bottom-
up approaches [3], [6], [21]. More recent top-down approaches
[5], [42], [53] employ the usage of half body transform by
a probability of 0.3 choosing either upper or lower body
keypoints. We introduce and evaluate new data augmentation
methods for keypoint and for body parts specifically designed
against occlusion attacks for human pose estimation.

III. SENSITIVITY TO OCCLUSION ATTACKS

We investigate the effect of occlusion attacks on MS COCO
dataset [26]. COCO contains challenging images with the
unconstrained environment, different body scales, variety of
human poses and occlusion patterns. The dataset contains over
200k images with 250k person instances labelled with 17
keypoints. Models are trained on COCO train2017 datasets
which includes 57k images and 150k person instances. The
evaluation is done on val2017 set which contains 5k images.

The occlusion attack experiments are conducted with HR-
Net [42] and Simple Baseline [53] for two aspects: (i) keypoint
attacks, where the occlusion area is a centred circle on the
chosen keypoint, (ii) body part attacks, where the occlusion
area is the minimum rectangle covering all keypoints of a
chosen part. The COCO keypoints and the proposed groups
of body parts can be seen in Figure 2. For the analyses,
COCO pretrained HRNet and Simple Baseline are evaluated
by the performance of the network against keypoint and part
occlusion attacks on COCO validation set.

HRNet and SimpleBaseline produce heatmap instead of
predicting direct single location for each keypoint. The ground
truth heatmaps are generated by using 2D Gaussian of size
13x13. Thus, as a default, we choose the size of the occlusion
circle with a radius of 6 pixels for keypoint attacks to cover
the keypoint heatmap. We have 3 different keypoint attacks: (i)
Gaussian Blur (blurring) attack, (ii) attack by filling with black
pixels (blackout), (iii) attack by filling with a mean intensity
value of a given image (meanout).

Body parts occlusion attacks are designed to draw a min-
imum rectangle which covers all the keypoints of a chosen



part. Similar to the keypoint attacks, we have 3 different part
attacks which are applied to the occlusion area: blurring with
the kernel size 31 and sigma 5, blackout and meanout. These
attacks can be applied on both small parts such as head, arms,
hips and larger parts like upper body, lower body, left and
right side (Figure 2 b and c).

We compare HRNet and Simple Baseline according to their
robustness to keypoint and part occlusion attacks. Figure 3
shows that both attacks are quite successful as occlusion
causes the performance to drop. HRNet is more robust against
keypoint and part occlusion attacks. For further analyses, we
only use HRNet as a baseline for our investigations.

A. How sensitive to key point occlusion attacks?

First, we analyze the effect of the occlusion size on the
average performance of the pose estimator on all keypoints.
Figure 4 indicates that pose estimator performance is inversely
proportional to the occlusion size and blurring, blackout, and
meanout attacks on average perform similarly. The size of the
occlusion decreases the average performance of the estimator
by approximately 3% when the radius of the occlusion circle
is 18 pixels.

Second, we show the class-specific performance drops for
each individual keypoints for each attack. In Figure 5, attack-
ing nose causes serious loss in mAP, almost 5% for blackout,
4.4% for meanout and 1.2% for blurring. The empirical results
indicate that the nose is the most important keypoint since
the occlusion of the nose causes notable performance drop.
After the nose, each eye influences the performance of other
keypoints mostly by approximately 1% with each occlusion
attack. Keypoints from less densely annotated places like
ankles or wrists are the least influential.

If we check the analysis of the reduced accuracy per
keypoint for the case of attacking nose (Figure 6a), the most
affected keypoints are the ones within close distance, which
are eyes and ears due to being a part of the head. Interestingly,
occluding nose affects the performance of the left eye estima-
tion more than occluding the left eye itself, respectively by
approximately 10% and 5% (Figure 6a, 6b). If we investigate
per keypoint performance for occluding left ankle, it can be
seen that the deprivation is by several magnitudes smaller than
in case of the nose or left eye occlusions. From the observation
of the analyses, it can be drawn that HRNet [42] is not robust
to keypoint occlusion attacks.

B. How sensitive to part occlusion attacks?

We analyze the effect of the part occlusion attacks on each
body parts given in Figure 2. Attacking the upper body, left and
right sides influence the overall performance the most, by more
than 44%, 24% and 24% with blackout attack respectively
since these three parts include the majority of the keypoints
(Figure 7). When we examine keypoint-specific accuracy drops
for the remaining keypoints of the upper body, it is clear that
blackout is the most influential attack, with a drop of almost
3% for left and right ankle (Figure 8a). If we investigate per-
keypoint behaviour for the corpus (Figure 8b), we observe
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Fig. 4: The relation between occlusion size and average loss
in performance for keypoint level methods. Occlusion size
greatly affects the performance.

significant degradation of the performance on all the keypoints,
with left and right ankle affected the most. Interestingly,
attacking on one side improves performance of the the other
side (Figure 8c). Attacking on left side increases the mAP
score of right side such as shoulder, ear, elbow keypoints. The
analysis demonstrates that the pose estimator is sensitive to
part occlusion attacks.

IV. OCCLUSION AUGMENTATION AGAINST ATTACKS

The experiments are performed on two of the main human
pose estimation datasets: COCO and MPII. The MPII dataset
consists of 40k person instances and each instance is labelled
with 16 joints. The train set and validation sets includes 22k
and 3k person instances respectively. For the evaluation, the
validation set is used.

Training on COCO is done on 3 NVIDIA 1080TI GPUs for
roughly 90 hours. The setup of training procedure was adopted
from the baseline - HRNet[42]. Human detection boxes are
extended to fit 4:3 aspect ratio, and then the boxes are cropped
from the image, which is resized to a fixed size, 256x192.
The pose estimator is trained with the keypoint location of
the joints. The data augmentations that are used in HRNet
training include random rotation ∈ [−45o, 45o], random scale
∈ [0.65, 1.35], random flipping and half-body augmentations.
Adam optimizer [20] is used to train the network with the
learning rate schedule following [53], starting with 1e − 3
and reduced to 1e − 4 and 1e − 5 at 170th and 200th
epochs respectively and the training is completed at the 210th
epoch. For MPII dataset, the training procedure of baseline
is as followed: 256x256 input size is used and half-body
augmentations are discarded. For the evaluation of the models,
Object Keypoint Similarity (OKS) for COCO and Percentage
of Correct Keypoints (PCK) for MPII are used.

During testing, HRNet firstly employs an object detection
algorithm to obtain boxes with a single person. Afterwards the
pose estimator produces the keypoint location of the joints.

A. Occlusion augmentation

To mitigate the occlusion problems in human pose estima-
tion, we investigate the following three methods: (i) Targeted
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Fig. 5: Overall loss in mAP after performing keypoint level occlusion. To note that, the occluded keypoint is included in the
evaluation. Occluding nose causes the highest loss in performance.
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(a) The nose is the most influential keypoint
causes a significant drop in the performance
for the closest keypoints - left eye and right
eye by around 10%.
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(b) When we occlude the left eye, there is
a smaller loss in keypoint-specific perfor-
mance for the left eye than while occluding
nose.
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Fig. 6: Loss in AP for top 5 keypoints with largest deprivation, when an individual key point is occluded.
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Fig. 7: Change in mAP for various parts occluded. Upper body and sides are the parts that cause the highest loss in the
performance.
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(b) Similar loss across remaining keypoints,
indicating that corpus is one of the most
influential parts.
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(c) Occluding the left side of the body
improves the performance of right shoulder,
ear and elbow.

Fig. 8: Change in AP for top 5 keypoints with the largest difference, when chosen part is occluded.

Blurring, (ii) Targeted Cutout, (iii) Targeted PartMix. The
augmentation techniques are called as targeted, because we
apply them on directly the locations of keypoints or parts,
instead of random location in the image. It is important to
state that the proposed augmentation techniques are introduced
during the second step, for a single person instance and it
does not affect the detection method. Unless it is specified, we
remove the word targeted from the name of the techniques.

Targeted Blurring. The method is originated from the
analysis performed in the occlusion attacks. We envision two
types of targeted blurring: keypoint blurring (Figure 9a) and
part blurring (Figure 9d). To blur a keypoint or a part, Gaussian
blur is applied with a kernel size of 9 pixels and 31 pixels
respectively.

Targeted Cutout. The size of the keypoint cutout (Fig-
ure 9b-9c) and part cutout (Figure 9e) are similar to the



(a) Blurring on left
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Fig. 9: Targeted keypoint augmentations: a, b, c and targeted part augmentations: d, e, f.

blurring equivalents. Instead of blurring, the area is colored
with mean value of the image.

Targeted PartMix. The method is designed to mitigate
the occlusions caused by another person (Figure 9f). In this
approach, a different part from a random image is pasted in the
place of a body part area. In this process, the keypoint labels
of newly pasted part are not introduced to heatmap labels.
This augmentation is only performed on body parts. Similar
to the part level blurring and cutout augmentation methods, the
occluded keypoints under the pasted area are still predicted.

B. Analyses of occlusion augmentation

All the following augmentation methods, except baselines,
already include flipping, rotation, scaling and half-body aug-
mentations. Each network obtains the boxes from Cascade
RCNN [2] detector which has ResNet50 backbone. The results
of each method can be seen in Table I.

Baselines. Table I indicates 3 baseline variants. Firstly,
HRNet without any augmentations obtains only 65.3% mAP
score. Secondly, adding flipping, rotation and scaling aug-
mentations improve non-augmented baseline by 8.6%. Last
variant is half body augmentation which adds only 0.4%
improvements on rotation and scaling augmentations.

Single keypoint augmentations. We check the performance
of 3 different augmentations: blurring, cutout and a combina-
tion of two of them which are applied on a single keypoint
with the varying probability of 0.2 and 0.5 (Figure 9a-9b). We
observe the highest improvement for blurring and cutout by
0.2% when the probability is chosen as 0.5 (Table I). Other
single keypoint variants do not improve the performance.

Multi-keypoint augmentations. We applied random multi-
keypoint variant blurring and cutout with a maximum of 5
keypoints with a probability of 0.2 (Figure 9c). The augmen-
tation decreases the model performance by 0.4%.

Part augmentations. 4 different part augmentation methods
are used: part blurring, part cutout, a combination of both
them and PartMix (Figure 9d, 9e and 9f respectively). To
demonstrate the effect of each augmentation, we apply them
with a probability of 0.2 and 0.5. In addition, the effect
of removing the labels of the occluded keypoint is also
investigated as removal column in Table I.

In the bottom part of Table I, cutout and PartMix show
0.2% and 0.1% improvements respectively. In all the variants
of blurring, small degradation or no improvement is observed.
The combination of part level variants of cutout and blurring
indicate some decreases of the performance for the removal
configuration with probability of 0.2 and 0.5 and do not
improve in non-removal configuration.

To conclude to findings from the Table I, flipping, rotation
and scaling augmentations add a huge performance gain to
the HRNet. However, including half-body, the occlusion based
augmentation methods do not improve the performance of the
pose estimator significantly.
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Fig. 10: Performance of chosen augmentations for HRNet-32
on various detection backbones and ground truth boxes. The
ground truth bounding box performs best. Yet, none of the
data augmentation methods help to improve performance over
0.2% for any object detector.

The effect of the object detection algorithms. HRNet,
a Top-Down approach, uses an object detection algorithm to
obtain human instances. Thus, the performance of the pose
estimation considerably depends on the detection performance.

By the evidence of the Table I, we choose keypoint blurring,
part cutout and PartMix methods for further analysis as they
are most promising augmentations.

In this section, we evaluate the pose estimation perfor-
mances of HRNet and HRNet with the chosen augmentation
methods with 2 2-stage detectors, Faster RCNN [35] with
XCeption 101 backbone and Cascade RCNN [2]; 2 single-



Evaluation results

Augmentation level removal p AP AP 50 AP 75 APM APL AR

Baseline (no augments) - - - 65.3 86.4 72.6 62.6 70.7 70.2
Baseline (flip, rot, scale) - - - 73.9 90.0 80.9 70.4 80.3 78.3
Baseline (flip, rot, scale, half-body) - - - 74.3 90.6 81.7 70.7 80.7 78.8

Blurring k 7 0.2 74.3 90.4 81.6 70.8 80.6 78.7
k 7 0.5 74.5 90.4 81.8 70.8 80.8 78.7

Cutout k 7 0.2 74.3 90.4 81.7 71.0 80.3 78.7
k 7 0.5 74.5 90.5 81.7 70.9 80.7 78.8

Cutout + Blurring k 7 0.2 74.0 90.4 81.1 70.4 80.3 78.4
k 7 0.5 74.3 90.5 81.1 70.8 80.6 78.6

Blurring
p X 0.2 74.3 90.5 81.7 70.6 80.8 78.6
p X 0.5 74.0 90.5 81.1 70.5 80.4 78.4
p 7 0.5 74.1 90.3 81.1 70.6 80.2 78.5

Cutout
p X 0.2 74.2 90.5 81.2 70.8 80.4 78.6
p X 0.5 74.2 90.3 81.1 70.6 80.4 78.6
p 7 0.5 74.5 90.5 81.6 70.9 80.7 78.8

Cutout + Blurring
p X 0.2 73.4 90.3 80.8 69.9 79.5 77.8
p X 0.5 73.9 90.4 81.0 70.5 80.0 78.3
p 7 0.5 74.3 90.4 81.2 70.6 80.5 78.6

Multikeypoint (max. 5) - - 0.2 73.9 90.1 80.9 70.5 80.2 78.3

PartMix - X 0.5 74.3 90.5 81.1 70.7 80.6 78.7
- 7 0.5 74.4 90.7 81.5 71.1 80.5 78.8

TABLE I: Comparison of augmentation variants on COCO validation set for HRNet using CascadeRCNN bounding boxes.
Upper-part indicates single-keypoint augmentation and bottom-part shows multiple-keypoint augmentation. k and p in the
level column represent keypoint and part augmentations respectively. Removal column indicates if the occluded keypoints are
removed from prediction. Column p is the probability of augmentation. Keypoint cutout and blurring, and part cutout and
PartMix improve the performance. Other variants obtain results either on a par with baseline or worse than baseline.

Evaluation results
Augmentation level remove p Head Shoulder Elbow Wrist Hip Knee Ankle Total

Baseline - - - 97.1 95.9 90.4 86.4 89.1 87.2 83.3 90.3
Blurring k 7 0.5 97.3 95.9 90.5 86.2 89.2 86.4 83.1 90.3
Cutout p 7 0.5 97.2 96.3 90.7 86.7 89.4 86.7 83.3 90.5
PartMix - 7 0.5 97.4 96.2 91.0 86.8 89.2 86.7 83.0 90.5

TABLE II: Results on MPII dataset. Keypoint blurring obtains on a par with the baseline, yet part cutout and PartMix increase
the performance.

stage detectors, RetinaNet [27] and EfficientDet D7 [43]; and
by using ground truth boxes of human instances (Figure 10).

All the augmentations indicate improvements using ground
truth bounding boxes by 0.2% for keypoint blurring and
PartMix, and 0.4% for part cutout. All the chosen augmen-
tation methods obtain better result with Cascade RCNN and
RetinaNet 0.1 − 0.2% depending on the augmentation. With
EfficientDet D7 detector, keypoint blurring and part cutout
result in similar to baseline except 0.1% improvement by
PartMix. For Faster-RCNN, keypoint blurring shows 0.2%
increase, yet part cutout degrades the performance by 0.1%.

The performances of baseline and the augmentations vary
depending on the object detector. The augmentation methods
improves the results slightly, yet the gain is insignificant.

Performance on MPII. We also test the data augmentation
methods on MPII dataset (Table II). If we check the total
contribution of the proposed augmentations, keypoint blurring
result in on a par with baseline, yet part cutout and PartMix

increase the performance by 0.2% for the metric PCK@0.5.
The largest improvement per keypoint is observed for elbows
by 0.6% and wrists by 0.3%, with the degradation on knees
and ankles by 0.4% and 0.2% respectively.

Similar to analyses on the COCO dataset, the proposed
augmentations can only improve the performance slightly.

How much robustness does data augmentation bring to
the occlusion problem? The analysis of the robustness of
the baseline and the proposed augmentations to the occlusion
attacks can be seen in Figure 11. The analysis is done on
COCO dataset and the results are shown as mAP score of all
keypoints. We can clearly see that training with the keypoint
blurring augmentation makes the network more robust against
blurring attack, but there is no significant improvement for
the other keypoint attacks. In case of part attacks, we observe
an improvement across all augmentation methods over the
baseline. For the part augmentations, there is a significant



improvement against all part level attacks in comparison
to baseline. Specifically, PartMix has almost no advantages
against keypoint attacks, however, it improves part level meth-
ods about more than 5% in comparison to baseline. Part cutout
obtains similar performance with PartMix against part attacks.
Proposed augmentations reduce the performance deprivations
when we apply occlusion attacks, yet data augmentation still
does not solve the occlusion problem.
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Fig. 11: Robustness comparison of proposed methods against
(a) keypoint and (b) part occlusion attacks. Part augmentations
improve the baseline but does not solve occlusion.

V. DISCUSSION AND CONCLUSION

In this study, we investigate the sensitivity of human pose
estimators to occlusion. Firstly, we introduce targeted key-
point and body part occlusion attacks to show how much
occlusion affects the performance. Secondly, keypoint and
part based data augmentation techniques against occlusion are
investigated. The structured analyses indicate that deep pose
estimators are not robust to occlusion. With all the bells and
whistles, the current and proposed data augmentation methods
do not bring significant improvements on the performance
of the top-down pose estimators. Figure 12 also shows small
improvements and failures of baseline and keypoint blurring
augmentation. Our paper is important because it helps data
scientists looking for improvements against occlusions to not
work on data augmentation. Battling occlusions is still an open
problem for human pose estimation.

Part based attacks and augmentation are applied as a rect-
angle shape. This fact can introduce unusual artefacts because
the natural occlusions can have arbitrary shapes. The proposed
occlusion attacks can be also applied to check the occlusion
robustness of bottom-up methods.
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APPENDIX

MORE RESULTS ON COCO VAL SET

More results for HRNet

We provide results for higher (384x256) than default res-
olution (256x192) of input images (Figure 13). The training
process is following the aforementioned scheme for COCO
dataset.

According to our analysis of the performance across a vari-
ety of detection backbones, we notice that PartMix is slightly
improving performance - with the greatest boost of 0.4%
for Cascade R-CNN and 0.3% for Faster RCNN. For both
Blurring (keypoint level) and Cutout (part level) we observe no
significant improvement or even decrease in the performance -
for Cutout using EfficientDet, Faster RCNN and RetinaNet and
for Blurring using ReinaNet. All the presented augmentations
show largest gain for Cascade RCNN as detector providing
person bounding boxes.
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Fig. 13: Higher resolution input for HRNet 32: 384x256
(above) instead of 256x192(previously). The best performance
across detection backbones is observed for PartMix.

Results for SimpleBaseline

The presented augmentations are not only limited to HRNet
but can be used with the various architectures like Simple-
Baseline (results in Figure 14). The training procedure was
following the scheme from [53].

By checking the performance across the various detection
backbones we observe either small or no improvement at
all. PartMix show the most significant improvement across
detection backbones, with 0.4 % boost in the performance for
the Ground truth boxes and the boxes produced by Cascade
RCNN, 0.2 % for EfficientDet and Faster RCNN and 0.1 %
for RetinaNet. Cutout and Blurring give an improvement of at
most 0.2 % across all the detection backbones, apart from 0.4
% for Cutout using Ground truth bounding boxes.

Results for Higher HRNet

Apart from investigating top-down approaches we also
check the performance while applying the augmentations on
bottom-up approach - Higher HRNet [6].

For this approach, we had to adapt our method to bottom-
up approaches as we were operating on full images with
multiple person instances per each image, not on bounding box
with a single person, as in the case of top-down approaches.
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Fig. 14: Performance of chosen augmentations for Simple-
Baseline (ResNet-50) on various detection backbones and
ground truth boxes. The ground truth bounding boxes perform
best.

Evaluation results

Augmentation AP AP 50 AP 75 APM APL

Baseline 67.1 86.2 73.0 61.5 76.1
Blurring (K) 66.5 86.3 72.1 60.6 75.7
Cutout part (no remove) 66.6 86.4 72.9 60.7 75.6
PartMix (no remove) 67.0 86.4 73.0 61.3 75.8

TABLE III: Results for Higher HRNet (512x512 input image
with HRNet-32 backbone). Proposed augmentations degrade
the performance of bottom-up methods, with most significant
for Blurring on keypoint level and Cutout on part level.

For bottom-up approaches per each person instance, there is
a chance of applying augmentation, which simulates similar
behaviour as in top-down approaches. This algorithm produces
highly perturbed images which probably indicate degradation
of performance after applying proposed augmentations.

We provide results for Higher HRNet (Table III), with
HRNet-32 backbone, using 512x512 input images, following
the training scheme from [6]. All the methods degrade the
performance of the network, keypoint level Blurring producing
0.6 % worse results than Baseline, part level Cutout producing
0.5% worse results and PartMix showing small degradation of
0.1%.

Our results indicate that the adapted pipeline is producing
very perturbed images for the bottom-up approach, which
harm the learning process, resulting in worse performance
compared to not using proposed augmentations.
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1
Background about Deep Learning

This section introduces key concepts of Deep Learning.

1.1. Deep Learning
Deep Learning is a branch of machine learning, which learns from a raw representation of multiple examples.
A recent development in hardware, and availability of excellent frameworks, enabled reshaping the State of
the Art in multiple visual tasks [8, 11, 18].

The main advantage of deep learning over previous classical approaches in machine learning is an auto-
mated process of feature engineering, where instead of carefully creating features, the model learns useful
representation from raw data.

As presented in Figure 1.1, input vector is pushed through a cascade of hidden layers of neural network.
Each neuron in hidden layer is fully-connected with all the neurons from the previous layer. Output layer,
which is the last layer of the network, produces either class scores (classification problem), or continuous
value (regression problem).

1.2. Convolution Neural Network
Behind the success of Deep Learning in Computer Vision, stand Convolution Neural Networks. As the name
suggests at its core convolution operation play an important role. CNN’s are a combination of convolutions
(Figure 1.2), pooling operation and non-linear activation with the output of each layer to be input the next one.
Convolution filters slide over an image to extract features. Pooling operation removes inessential information,
by decreasing spatial resolution. Non-linear activation function produces powerful function approximations.

1.2.1. Convolutions
Convolutions are the main building block of CNNs [12], so it is important to understand how they operate.
Convolution layers aim to learn image features using small squares of input data, called kernels or filters.

Figure 1.1: A regular 3-layer Neural Network [1]. Each neuron is connected to every neuron in the consecutive layer.

1



2 1. Background about Deep Learning

Figure 1.2: Network components example from [2]. CNN is cascade of multiple convolution (CONV) and pooling layers (POOL) with
activation functions in between (RELU). At the end output is combined from all the available feature maps via fully-connected layer (FC)
to produce class labels.

(a) Example of single convolution operation from [2]. Element-wise
matrixmultiplication of 3x3 region of the source image by convolution
kernel followed by sum over all the elements of produced matrix.

(b) Example of max pooling operation from [1] - max pool with 2x2 filters and stride
2. Out of each colored area highest number is chosen to be a final product of the
operation.

Figure 1.3: Example of two operation in CNNs: (a) convolution, (b) pooling.

Filters are sliding over the image, where output is the sum of product between convolution filter and the
corresponding area of the image. All the elements of a single feature map use the very same convolution
kernel. Parameters of convolution kernel are learned during training.

We can observe how does sliding of kernel look like in Figure 1.3a, where to 7x7 input data 3x3 filter is
applied. On the part of input data, element-wise multiplication with convolution kernel is applied. After
obtaining 3x3 matrix sum over all values is applied which produces -8 at the output plane for a given feature
map.

1.2.2. Pooling
Pooling layer is a function that reduces the spatial resolution of the featuremap bymax (Figure 1.3b) or average
operation. After performing down-sampling model is more robust against overfitting and is able to focus on
the presence of a feature regardless of its specific location. Every part of an output essentially corresponds to
sub-region of an image, which translates to a reduction of spatial dimension. With compact representation
provided by pooling layer, it is possible to learn a larger selection of featureswith a smaller number of parameter
and computation load. One of the most commonly used pooling layers is Max Pooling, which is offering
robustness via ignoring small change of non-maximum values.

Following the example from Figure 1.3b, we can see that after applying 2x2 MaxPooling filter on 4x4 input
we obtain 2x2 output having only maximal values within the coloured areas.
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(a) Sigmoid activation function (b) ReLU activation function

Figure 1.4: Example of most widely used activation functions: (a) sigmoid, (b) ReLU

Figure 1.5: Example of transposed convolution from [7] with 3x3 kernel over a 4x4 input. Equivalent to 3x3 kernel over 2x2 input padded
with a 2x2 border of zeros.

1.2.3. Activation Functions
The sequence of the only convolution and pooling layers can be represented as a simple weighted sum of input,
regardless of a number of layers. To mitigate this problem, the non-linear activation functions are added at
the end or between the layers.

One of the most widely used activation function is ReLU (Rectified Linear Unit). In essence, this function
is trying to find the maximum between the input value and zero. Due to its simplicity, the computation cost
is quite low and can be performed quite fast. Unfortunately, due to its characteristics for all the negative
values output will be essentially 0, which may result in dead neuron situation and gradient will also be 0,
making it impossible to perform back-propagation. ReLU activation function is vulnerable against parameter
initialization and learning rate.

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (1.1)

Before the success of ReLU, prime was lead by Sigmoid function (Equation 1.2). This function is mapping a
real number into (0,1). Performing exponential operation is quite time-consuming.

𝑓(𝑥) = 1
1 + 𝑒 (1.2)

Another example of a popular activation function is Softmax (Equation 1.3), which can be used for a neuron
that has more than one-dimensional output. For the classification task, the output of fully-connected layer
- logits, are a real number. After using the Softmax function, the logits represent probabilities of different
classes, which all sum to one.

𝑓(�̂�) = 𝑒
∑ 𝑒

(1.3)

1.2.4. Transposed Convolution
Transpose convolution, also known under the inaccurate name deconvolution, is an operation where a low
dimensional feature map is transformed into high dimensional output. This means that the output of this
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Figure 1.6: Example of dilated convolution from [7] with 3x3 convolution kernel over 7x7 input with a dilation factor of 2.

convolution outputs more detailed information than provided on the input. Transposed convolution is often
used in upscaling or mapping features in an overcomplete autoencoder. Transposed Convolution can reverse
dimension reduction applied by original convolution, with the flexibility to truly reverse the effect of convolu-
tion (deconvolution).

To understand the transpose convolution following example will be in order: consider a kernel 𝐾, an input
𝑖, and output 𝑜, with 𝑖 and 𝑜 being vectors. Convolution operation, will then be 𝐾 x 𝑖 = 𝑜. If we multiply both
sides by the transpose of kernel 𝐾 , we would get 𝑖 = 𝐾 x 𝑜. This example shows that translation from a
lower dimension to higher dimension is possible. Visualization of that process can be seen in Figure 1.5. Due
to filter size and the limited input data, padding around the input is necessary.

1.2.5. Dilated Convolution
In dilated convolution [26] operation the kernel that is used is inflated by inserting a predefined spacing
between the kernel values, controlled by a parameter 𝑙, known as dilation rate.

Dilatation rate is used for inserting 𝑙 − 1 empty spaces between kernel values. This concept results in
increasing receptive filed of the model while leaving the number of parameters unchanged. Visualization of
that process can be seen in Figure 1.6.

An interesting fact about dilated convolution is that the receptive field increases exponentially while the
number of parameters grows linearly. Dilated convolutions are often used for image segmentation, where
each pixel is labelled by a corresponding class. To upscale an image, we can apply convolution and then
deconvolution, however, this results in an increased number of parameters. To mitigate that, [26] applied
dilated convolution to maintain the high resolution of the output without having to upsample.

1.2.6. Fully-convolutional Neural Networks
Representation of the input learned by CNN can be used by any conventional ML model. Typically, fully
connected layers were used for the final classification, however, this step resulted in a significant increase in
number parameters, affecting the generalization abilities of the network.

Fully convolutional variants have presented competitive results in object recognition tasks [19, 20], by
replacing fully connected layers with convolutional ones, resulting in a decrease in a number of trainable
parameters, the output format featuresmap, which could be used in themore fine-grained image segmentation
setting [15]. They are really popular in segmentation problems [4, 10, 15] and also in human pose estimation
[16, 22, 25].

1.3. Training a CNN
The training process of neural networks can be broken into 3 main steps: forward pass, loss calculation and
back-propagation pass to update learnable parameters.

1.3.1. Forward pass
The forward pass is simply pushing input data via the network to get the desired output. Consider the following
scenario, where we have weights W and bias b, the output y is:

𝑦 = 𝑊𝑥 + 𝑏 (1.4)

Then the output of the single layer is again used as an input to the next layer, following its way up to the final
output.
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1.3.2. Loss function
Aim of training a neural network is to optimize weights and biases of the filters, to minimize a loss function.
After completing the forward pass, loss between output and provided target label is calculated. The common
choice for loss function in the classification problem is cross-entropy loss (CE) where the output of the network
corresponds to probability and is between 0 and 1.

𝐿 = −(𝑙𝑎𝑏𝑒𝑙 ∗ 𝑙𝑜𝑔(𝑜𝑢𝑡𝑝𝑢𝑡) + (1 − 𝑙𝑎𝑏𝑒𝑙) ∗ 𝑙𝑜𝑔(1 − 𝑜𝑢𝑡𝑝𝑢𝑡)) (1.5)

For regression tasks like object detection or human pose estimation, often used is L2 Loss (mean squared loss).
In essence, it is a sum of squared distance between the predicted output and the ground-truth label.

𝐿 = 1
𝑁 ∑(𝑙𝑎𝑏𝑒𝑙 − 𝑜𝑢𝑡𝑝𝑢𝑡) (1.6)

1.3.3. Backpropagation
After successfully getting an output from the network and calculating chosen loss, now there is a step to
minimize the loss. Backpropagation is an algorithm building on the chain rule of calculus, to easily optimize
learnable parameters of CNN in en-to-end fashion.

Let us consider that concept a bit more in-depth. Considering that our network has weights and biases,
corresponding to𝑤. To update the parameters, gradient descent is applied taking smaller or larger steps along
the negative gradient− . Thanks to chain rule in calculus, it is possible to reuse already calculated gradients
and reduce computation cost. Example of that rule can be found below, where 𝑦 is the output of the network,
𝑡 is target label and 𝑥 is an input:

𝑧 = 𝑤𝑥 + 𝑏, 𝑦 = 𝜎(𝑧), 𝐿 = (𝑦 − 𝑡)

= 𝑦 − 𝑡, = 𝜎 (𝑧), =

�̄� = 𝑦 − 𝑡, �̄� = �̄�𝜎 (𝑧), �̄� = �̄�𝑤, �̄� = �̄�

(1.7)

Following this idea, the calculated loss is backpropagated to every neuron through the corresponding gradients.
Parameters are then updated according to the contribution (gradient) to the output.

1.3.4. Learning rate
Learning rate corresponds to themagnitude of the step taken in updating the parameters during back-propagation.
Using too small learning rate, there is a risk of finishing within the local minimum. On the other hand, too
large learning rate could not allow the network to converge to any minimum, because it will always overshoot.
A common practice is to use an adaptive learning rate, with larger at the beginning, decrease as training
progresses.

1.3.5. Optimizers - Gradient Descent
Deep Learning is an optimization problem which aims to minimize the loss function (𝐽(𝜃), where 𝜃 are the
parameter of the model. The algorithm used to optimize this process is called optimizer.

Gradient Δ 𝐽(𝜃) is derivative of multi-variable function.

Δ 𝐽(𝜃) = 𝑑𝐽(𝜃)
𝑑𝜃 (1.8)

Keeping in mind the definition of the gradient we know that function f(x) decreases the fastest in the direction
of −Δ 𝐽(𝜃). Following that, parameters are updated in the following manner:

𝜃 = 𝜃 − 𝜂 ∗ Δ 𝐽(𝜃) (1.9)

The disadvantage of that approach is speed and memory consumption. For one update, gradient over all
dataset has to be calculated, which makes online training impossible.
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1.3.6. Optimizers - Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is probably one of the most popular optimizers, where updates of the pa-
rameters are calculated for every pair of training sample 𝑥 and corresponding label 𝑦 . Having this behaviour,
SGD is much faster and can be used in online fashion, however, introduces fluctuations for the value of loss
function by updating with high variance.

𝜃 = 𝜃 − 𝜂 ∗ Δ 𝐽(𝜃, 𝑥 , 𝑦 ) (1.10)

1.3.7. Optimizers - Mini-batch Gradient Descent
Instead of using either full dataset (Gradient Descent) or only one sample (SGD), this optimizer is performing
the estimation of the gradient using mini-batch. Thanks to that gradient descent is still fast, with a more
stable learning process.

𝜃 = 𝜃 − 𝜂 ∗ Δ 𝐽(𝜃, 𝑥( ∶ ), 𝑦( ∶ )) (1.11)

1.3.8. Optimizers - Adam
Adaptive Moment Estimation (Adam) is optimizer computing adaptive learning rates. Currently, it is proven
to be best performing across many platforms, including Human Pose Estimation.

Firstly, using exponentially weighted averages of past and past squared gradients𝑚 and 𝑣 are computed
in the following way:

𝑚 = 𝛽 𝑚 + (1 − 𝛽 )𝑔

𝑣 = 𝛽 𝑣 + (1 − 𝛽 )𝑔
(1.12)

where 𝑔 stands for the gradients, 𝛽 , 𝛽 are two hyper-parameters to be tuned. Then bias correction is used
for both𝑚 and 𝑣 :

�̂� =

̂𝑣 =
(1.13)

Finally, the learning parameters of the model are updated in the following manner:

𝜃 = 𝜃 − 𝜂
√ ̂𝑣 + 𝜖

�̂� (1.14)

1.4. Regularization
Similar to classical ML approaches, the goal of the deep neural networks is to generalize well on unseen data.
Models, performing well on training but poorly on held-out data suffer from overfitting. The most straight
forward way to reduce over-fitting is to increase the amount of data, however, in most cases that is not possible.
Another possibility is to reduce the complexity of the model as a simpler model require fewer data to generalize
better, however, at the cost of reduced representational power. In other words, for a simpler model, it is easier
to have similar performance between train and test set, however, their performance may be worse on train
set compared to more complicated alternatives. Regularisation methods punish model complexity, forcing the
model to extract more representation, which generalizes better across the data. Lets now investigate some of
these methods.

1.4.1. Early stopping
Early stopping is quite elegant and simple method exploiting validation loss, which decreases when the model
is still improving. When validation loss is increasing with training loss decreasing indicate that the model is
over-fitting, which is a clear signal to terminate the training process.

1.4.2. Dropout
Dropout [21] (Figure 1.7) is another regularization technique, which during each training step mutes output
of fraction p of all activations. During repeated epochs, it happens that the same examples have a different
part of the activation, which enforce a model to learn more generalizable features.

Different from the training process, during testing all activations are available but the output is scaled by
1 − 𝑝. Rise of Batch normalization, explained in next step, decreased popularity of dropout, as some works
indicate that their simultaneous usage harms model performance [13].
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(a) Standard neural network. (b) After applying dropout.

Figure 1.7: Illustration of dropout [21]

1.4.3. Batch normalization
Vanishing and exploding gradient are common problems in deep learning. When we consider the single layer
in a deep neural network, parameters are always changing during gradient descent, consequently changing
output distribution. The output of that layer is fed to another one, which indicates that input of the next layer
again varies, which makes it a very difficult model to learn good representations. This process of changed
distribution of activations within a certain layer is called Internal Covariate Shift.

To deal with that problem, activations distribution of each layer are scaled to have zero mean value 𝜇 and
unit variance 𝜎 . Then to understand how does the output from batch normalization looks like, let’s look
below:

𝜇 = ∑ 𝑥

𝜎 = 1/𝑚∑ (𝑥 − 𝜇 )

̂𝑥 =
√

𝑦 = 𝛾 ̂𝑥 + 𝛽

(1.15)

Applying batch normalization led to speed-up in the training process, as models using this method can ap-
ply larger learning rates with quicker learning rate decay. Moreover, usage of batch normalization acts as a
regularization method, which reduces the need for using other regularization methods.

1.5. Data augmentations
As stated before, one way to overcome over-fitting is to gather more data. Data augmentations act in that
direction creating perturbed copies of the original sample. Thanks to that, it should be easier for the net-
work to model the distribution of data. Within this topic, we will investigate affine augmentations, channel
transformation and some strong augmentations like Cutout and CutMix.

1.5.1. Affine transforms
This augmentations aim at robustness against examples which have been transformed using affine transforms,
which are geometric transformations preserving line and parallelism. Good examples of that affine transform
augmentations are zooming, flipping and rotation (Figure 1.8 b-d).

1.5.2. Channel transforms
Another branch of augmentations aims at robustness against colour channel perturbations. Apart from tweak-
ing RGB channels, it is also common to perturb image in HSV and HSL colour representation (both in Figure
1.8 e-g). Good examples are shifts in brightness, RGB channels, hue and saturation or contrast.

1.5.3. Cutout
The cutout is another method which is also known under the name, Regional Dropout. The idea of this method
is to cover with a box, certain part of an image to enforce model to learn beyond most discriminative features.
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(a) Original image. (b) Zoom. (c) Fliping. (d) Rotation.

(e) RGB. (f) Brightness. (g) Hue and saturation. (h) Cutout.

Figure 1.8: Example of augmentations - affine transforms (b-d), channel transformations (e-g) and cutout (h)

Figure 1.9: CutMix augmentation. Part of the Doughnut image is pasted on picture of a bird. Target label on final image is combination
of bird and doughnut with confidence score corresponding to the pasted area.

Thanks to that model should be more robust against partial occlusions as with occlusions or missing features
model could still provide good labels. In the original paper, authors are using uniform distribution to choose
position and dimension parameters of a bounding box. Example of Cutout can be observed in Figure 1.8 h.

1.5.4. CutMix
CutMix is an interesting enhancement over Cutout wherein the affected area of Cutout, part of the different
image is pasted. Apart from image changes, it is crucial to produce mixed label: consisting of combination
from two of the images, corresponding to their area.

Having our example (Figure 1.9) we have two images, one of a bird another of a doughnut. After applying
the Cutmix and pasting 0.1 of doughnut picture on the bird picture, our mixed target label is actually: 0.9 bird,
0.1 doughnut. By doing so the network is enforced to recognize both of the classes in the final image.



2
Human Pose Estimation

The task of human pose estimation is a popular branch of Computer Vision for more than 20 years. Aim of this
domain is to localize human joins (also known as keypoints - elbows, wrists, etc) in images or videos. In this
section closer view on this area will be presented, starting with a description of the problem and most famous
deep learning approaches.

Visualization of joint location for two of the most popular human pose estimation is available in Figure 2.1.

2.1. Description of a problem
Main problems in Human Pose Estimation are occlusions, unusual poses, missing key points and changes in
lighting and clothing. Example of failure cases for currently most advanced architecture - HRNet can be seen
in Figure 2.2.

2.2. Metrics
In the premise of human pose estimation and multiple datasets, there is a variety of metrics. For the sake of
this introduction to Human Pose Estimation, the main metrics for currently most popular datasets - MPII [3]
and COCO [14].

2.2.1. PCK - Percentage of Correct Keypoints
A detected joint is considered correct when the distance between the predicted location and true location
is within a certain threshold. The threshold is often defined by a fraction of head bone link. In MPII often
used metric is PCK@0.5, so then joints only within a distance of 0.5 ∗ ℎ𝑒𝑎𝑑_𝑏𝑜𝑛𝑒_𝑙𝑒𝑛𝑔ℎ𝑡 are considered as
correctly detected. Having such a personalized distance definition it is possible to both accommodate larger
and smaller instances.

2.2.2. OKS - Object Keypoint Similarity
OKS is the main metric for COCO dataset. The formula for this metric is:

𝑂𝐾𝑆 =
∑ 𝑒𝑥𝑝(− ∗ ) ∗ 𝛿(𝑣 > 0)

∑ 𝛿(𝑣 > 0) (2.1)

where d is the distance between predicted and the true location of keypoint,𝑣 is visibility flag of keypoint i
and s is an object scale and 𝑘 is a per-keypoint constant that controls falloff, calculated by COCO researchers.

In simple words, OKS acts similarly as IOU in Object Detection or Image Segmentation. Typically metric is
analyzed via Average Precision (AP@50, AP@75, the average across 10 points between 50 and 95, performance
on medium and large instances) and Average Recall (same steps as for AP).

2.3. Deep Learning approaches
Currently, the world of Human Pose Estimation is fully dominated by Deep Learning approaches with inter-
esting architectures often inspired from different domains [5, 9, 17], but also then ones which started Human

9
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(a) COCO annotations, total of 17 keypoints. Detailed
annotation of head with 5 keypoints (nose, ears and
eyes).
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(b) MPII annotations, 16 keypoints. Very similar to
COCO annotations, with fewer keypoints for head an-
notations and additional keypoints for chest and pelvis.

Figure 2.1: Visualization of keypoint mapping in two most common human pose estimation datasets (a) COCO, (b) MPII.

(a) With overlapping person instances net-
work wrongly annotates arm keypoints of
women on the men instance.

(b) Due to self occlusion of left arm, key-
points of that limb are wrongly located in
position of right arm.

(c) Due to unusual pose and self occlusions model fails to localize
keypoints correctly of the frisbee player.

Figure 2.2: Example of failure cases for HRNet-32 for problematic images: (a) overlapping instances, (b) self-occlusions and (c) unusual
pose.

Figure 2.3: Scheme presenting high level view on Hourglass structure - sequence of same structure Hourglass modules, continuously
reducing and then increasing resolution via strided convolutions and nearest neighbor upsampling.
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Figure 2.4: Representation of single Hourglass module. Each box is essentially a residual block consisting of 3 layers (128x1x1, 128x3x3,
256x1x1) and a skip connection. For step increasing resolution nearest neighbour upsampling is used. Element-wise addition is performed
between corresponding upsampled version and the pre-pooled version of a residual block.

Pose Estimation and proved to be robust enough to conquer other domains - like HRNet [22, 24].
In human pose estimation, we can distinguish two branches of approaches: bottom-up and top-down.

First ones are localizing identity-free keypoints and group them into person instances, while the latter is firstly
performing person detection step and then regress keypoints within single person bounding box. Due to
better performance on most of the human pose estimation benchmarks, we will focus primarily on top-down
approaches - Hourglass [16], SimpleBaseline [25], HRNet [22], but also one single Bottom-up approach - Higher
HRNet [6].

Within top-down approaches 2 categories can be distinguished:

1. regressing direct location of each keypoint [23]

2. keypoint heatmap estimation followed by the choosing the location with the highest heat values.

More recently most of the approaches [5, 16, 22, 25] follow heatmap estimation, as it proves to be more robust.

2.3.1. Stacked Hourglass Networks for Human Pose Estimation
Proposed approach (Figure 2.3), called stacked hourglass, is essentially a sequence of blocks which each is doing
pooling and sampling. Process of pooling and up-sampling looks as the hourglass, hence the name. Design of
hourglass is motivated by the need to capture information on all the scales. As the local position of the wrist
or ankle is needed it is also important to capture overall context, like person orientation, the position of other
limbs etc. These properties and more are well extracted by using different scales, where higher resolutions
capture more general features, while smaller resolutions can extract more specific features.

As stated before, the hourglass model is a sequence of modules following the same structure (Figure 2.4).
Convolutional and max-pooling layers are processing features down to low resolution. At each max pooling
step, the network has a fork on which additional convolutions are applied on the pre-pooled resolution. Once
the network reaches the lowest resolution it starts to increase resolution via up-sampling and element-wise
addition of up-sampled output and the aforementioned fork of the matching depth. The topology of the
hourglass is symmetric, so for every layer decreasing resolution, there is a corresponding upsampling step.

To boost learning capabilities, the hourglass is using intermediate supervisions after each hourglass mod-
ule, comparing the prediction of heatmaps to their regressed true position.

2.3.2. Simple Baseline for Human Pose Estimation and Tracking
This approach tries to solve the problem of human pose estimation with as simple as possible architecture
and surprisingly outperforming more complicated previous architectures, including Hourglass. This network
is consisting of ResNet architecture and few deconvolutional layers.

Ilustration of architecture of SimpleBaseline can be found in Figure 2.5b. In contrast to Hourglass (Figure
2.5a) which uses up-sampling to increase the resolution of the feature maps, this architecture uses transposed
convolution layers, which enables to produce high-resolution features. Moreover, SimpleBaseline is not using
skip connections between blocks. Lastly, Hourglass network is using multiple consecutive modules of a very
same structure, while SimpleBaseline does not require to perform repeated decrease and increase in feature
maps resolution.
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(a) Hourglass [16]. Simple arrow is regular convolution, arrow down is strided convolution, dotted arrows correspond to skip connec-
tion between blocks and arrow up is upsampling.

(b) SimpleBaseline [25]. Simple arrow is regular convolution, arrow down is strided convolution and blue arrow corresponds to trans-
posed convolutions.

(c) HRNet [22]. Simple arrow is convolution, arrow down is strided convolution, arrow up is upsampling.

Figure 2.5: Comparison between Hourglass, SimpleBaseline and HRNet from [22]. Legend: simple arrow = regular convolution, arrow
down = downsample corresponds to strided convolution, arrow up = upsample, blue arrow up = transposed convolution, dotted arrow =
skip connection between the blocks.
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Figure 2.6: High-level view on Higher HRNet from [6]. On the left side, there is a visualization of HRNet backbone, producing two outputs
128x128 and 256x256 (on the right). After HRNet backbone additional two residual blocks are added to produce lower resolution output
and deconvolution module with additional 4 residual modules (higher resolution).

2.3.3. HRNet
HRNet(High-resolution Net) outperformed all the previous solutions for Keypoint detection, multi-person pose
estimation and pose estimation task on COCO dataset. Previous solutions were going from high->low-> high
resolution, while this approach maintains high resolution throughout the whole process.

Model (Figure 2.5c) starts from a high-resolution subnetwork as the first stage and adds high to low-
resolution subnetworks one by one to form more stages to connect the multi-resolution subnetworks in par-
allel. Repeated multi-scale fusions are conducted by exchanging information across parallel multi-resolution
subnetworks over and over through the whole process. Then keypoints are estimated over high-resolution
representations output by the presented network.

The architecture consists of a few types of subnetworks:

1. sequential multi-resolution subnetworks: each subnetwork, forming a stage is composed of a sequence
of convolutions with down-sample layer across adjacent subnetworks to halve the resolution.

2. parallelmulti-resolution networks: starting fromhigh-resolution subnetwork as the first stage, by adding
high to low-resolution subnetworks in parallel. This results in resolutions for the parallel subnetworks
of a later stage consisting of the resolutions from the previous stage.

3. repeatedmulti-scale fusion: point of introducing exchange blocks is that subnetworks repeatedly receive
the information from other parallel subnetworks.

4. heatmap estimation: heatmap regression from the high-resolution representation is performed from the
output of the last exchange block.

2.3.4. Higher HRNet
Higher HRNet [6] is one of the best performing bottom-up approaches, which uses HRNet as its backbone
architecture. Bottom-up approaches are said to perform better in estimation human pose within crowd in-
stances. Model is providing 2 outputs - low (128x128) and high (256x256) resolutions.

While interference, both heatmaps are mean aggregated to higher resolution and highest valued points
are chosen ad keypoint location. Deconvolution layer, which is represented as a trapezoid (Figure 2.6), outputs
2 times higher resolution, followed by 4 residual blocks.

For every keypoint, output scalar is calculated, with close values forming a group of keypoints belonging
to single person instance, while distant tag values indicating different instances. Aforementioned tags are



14 2. Human Pose Estimation

calculated using ”Associative Embedding”. Based on empirical experiments, the tag values are only trained for
lower resolution heatmap, as higher resolution do not learn to predict tags well enough.



Bibliography
[1] URL https://cs231n.github.io/convolutional-networks/.

[2] Alexandros Agapitos, Michael O’Neill, Miguel Nicolau, David Fagan, Ahmed Kattan, Anthony Brabazon,
and Kathleen Curran. Deep evolution of image representations for handwritten digit recognition. pages
2452–2459, 05 2015. doi: 10.1109/CEC.2015.7257189.

[3] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human pose estimation: New
benchmark and state of the art analysis. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2014.

[4] Abhishek Chaurasia and Eugenio Culurciello. Linknet: Exploiting encoder representations for efficient se-
mantic segmentation. CoRR, abs/1707.03718, 2017. URLhttp://arxiv.org/abs/1707.03718.

[5] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian Sun. Cascaded pyra-
mid network for multi-person pose estimation. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[6] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S. Huang, and Lei Zhang. Higherhrnet:
Scale-aware representation learning for bottom-up human pose estimation. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020.

[7] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. ArXiv,
abs/1603.07285, 2016.

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. CoRR, abs/1703.06870,
2017. URL http://arxiv.org/abs/1703.06870.

[9] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka, and Bernt Schiele. Deepercut:
A deeper, stronger, and faster multi-person pose estimation model. In ECCV, 2016.

[10] Simon Jégou, Michal Drozdzal, David Vázquez, Adriana Romero, and Yoshua Bengio. The one hundred
layers tiramisu: Fully convolutional densenets for semantic segmentation. CoRR, abs/1611.09326, 2016.
URL http://arxiv.org/abs/1611.09326.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In F Pereira, C J C Burges, L Bottou, and K Q
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[13] X. Li, S. Chen, X. Hu, and J. Yang. Understanding the disharmony between dropout and batch normaliza-
tion by variance shift. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2677–2685, 2019.

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet, Tomas Pajdla,
Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages 740–755, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-10602-1.

[15] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3431–3440, 2015.

15

https://cs231n.github.io/convolutional-networks/
http://arxiv.org/abs/1707.03718
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1611.09326
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


16 Bibliography

[16] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estimation. In
ECCV, 2016.

[17] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, Peter Gehler, and
Bernt Schiele. Deepcut: Joint subset partition and labeling for multi person pose estimation. pages
4929–4937, 06 2016. doi: 10.1109/CVPR.2016.533.

[18] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. CoRR, abs/1506.01497, 2015. URL http://arxiv.org/
abs/1506.01497.

[19] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks for semantic segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(4):640–651, 2017.

[20] Jost Tobias Springenberg, AlexeyDosovitskiy, Thomas Brox, andMartin Riedmiller. Striving for simplicity:
The all convolutional net, 2014.

[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):
1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

[22] Ke Sun, Bin Xiao, Dong Liu, and JingdongWang. Deep high-resolution representation learning for human
pose estimation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
5686–5696, 2019.

[23] Alexander Toshev and Christian Szegedy. Deeppose: Human pose estimation via deep neural networks.
CoRR, abs/1312.4659, 2013. URL http://arxiv.org/abs/1312.4659.

[24] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu,
Mingkui Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep high-resolution representation learning
for visual recognition. TPAMI, 2019.

[25] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking. CoRR,
abs/1804.06208, 2018. URL http://arxiv.org/abs/1804.06208.

[26] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions, 2015.

http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1312.4659
http://arxiv.org/abs/1804.06208

	Background about Deep Learning
	Deep Learning
	Convolution Neural Network
	Convolutions
	Pooling
	Activation Functions
	Transposed Convolution
	Dilated Convolution
	Fully-convolutional Neural Networks

	Training a CNN
	Forward pass
	Loss function
	Backpropagation
	Learning rate
	Optimizers - Gradient Descent
	Optimizers - Stochastic Gradient Descent
	Optimizers - Mini-batch Gradient Descent
	Optimizers - Adam

	Regularization
	Early stopping
	Dropout
	Batch normalization

	Data augmentations
	Affine transforms
	Channel transforms
	Cutout
	CutMix


	Human Pose Estimation
	Description of a problem
	Metrics
	PCK - Percentage of Correct Keypoints
	OKS - Object Keypoint Similarity

	Deep Learning approaches
	Stacked Hourglass Networks for Human Pose Estimation
	Simple Baseline for Human Pose Estimation and Tracking
	HRNet
	Higher HRNet


	Bibliography

