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Preface

As in other physical sciences, empirical data are used in Geodesy and Earth Observation to make
inferences so as to describe the physical reality. Many such problems involve the determination
of a number of unknown parameters which bear a linear (or linearized) relationship to the set of
data. In order to be able to check for errors or to reduce for the effect these errors have on the
final result, the collected data often exceed the minimum necessary for a unique determination
(redundant data). As a consequence of (measurement) uncertainty, redundant data are usually
inconsistent in the sense that each sufficient subset yields different results from another subset.
To obtain a unique solution, consistency needs to be restored by applying corrections to the data.
This computational process of making the data consistent such that the unknown parameters can
be determined uniquely, is referred to as adjustment. This book presents the material for an
introductory course on Adjustment theory. The main goal of this course is to convey the
knowledge necessary to perform an optimal adjustment of redundant data. Knowledge of linear
algebra, statistics and calculus at the undergraduate level is required. Some prerequisites,
repeatedly needed in the book, are summarized in the Appendices A-F.
Following the Introduction, the elementary adjustment principles of ’least-squares’, unbiased
minimum variance’ and ’maximum likelihood’ are discussed and compared in Chapter 1. These
results are generalized to the multivariate case in chapters 2 and 3. In Chapter 2 the model of
observation equations is presented, while the model of condition equations is discussed in
Chapter 3. Observation equations and condition equations are dual to each other in the sense that
the first gives a parametric representation of the model, while the second gives an implicit
representation. Observables that are either stochastically or functionally related to another set of
observables are referred to as yR-variates. Their adjustment is discussed in Chapter 4. In Chapter
5 we consider mixed model representations and in Chapter 6 the partitioned models. Models may
be partitioned in different ways: partitioning of the observation equations, partitioning of the
unknown parameters, partitioning of the condition equations, or all of the above. These different
partitionings are discussed and their relevance is shown for various applications. Up tot this point
all the material is presented on the basis of the assumption that the data are linearly related. In
geodetic applications however, there are only a few cases where this assumption holds true. In
the last chapter, Chapter 7, we therefore start extending the theory from linear to nonlinear
situations. In particular an introduction to the linearization and iteration of nonlinear models is
given.

Many colleagues of the Department of Mathematical Geodesy and Positioning whose assistance
made the completion of this book possible are greatly acknowledged. C.C.J.M. Tiberius took care
of the editing, while the typing was done by Mrs. J. van der Bijl and Mrs. M.P.M. Scholtes, and
the drawings by Mr. A. Smit. Various lecturers have taught the book’s material over the past
years. In particular the feedback and valuable recommendations of the lecturers C.C.J.M.
Tiberius, F. Kenselaar, G.J. Husti and H.M. de Heus are acknowledged.

P.J.G. Teunissen
April, 2003
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Introduction

The calculus of observations (in Dutch: waarnemingsrekening) can be regarded as the part of
mathematical statistics that deals with the results of measurement. Mathematical statistics is often
characterized by saying that it deals with the making of decisions in uncertain situations. In first
instance this does not seem to relate to measurements. After all, we perform measurements in
order to obtain sharp, objective and unambiguous quantitative information, information that is
both correct and precise, in other words accurate information. Ideally we would like to have
’mathematical certainty’. But mathematical certainty pertains to statements like:

if a=b and b=c and c=d, then a=d.

If a, b, c, and d are measured terrain distances however, a surveyor to be sure will first compare
d with a before stating that a=d. Mathematics is a product of our mind, whereas with
measurements one is dealing with humans, instruments, and other materialistic things and
circumstances, which not always follow the laws of logic. From experience we know that
measurements produce results that are only sharp to a certain level. There is a certain vagueness
attached to them and sometimes even, the results are simply wrong and not usable.
In order to eliminate uncertainty, it seems obvious that one seeks to improve the instruments, to
educate people better and to try to control the circumstances better. This has been successfully
pursued throughout the ages, which becomes clear when one considers the very successful
development of geodetic instruments since 1600. However, there are still various reasons why
measurements will always remain uncertain to some level:

1. ’Mathematical certainty’ relates to abstractions and not to physical, technical or social
matters. A mathematical model can often give a useful description of things and relations
known from our world of experience, but still there will always remain an essential
difference between a model and the real world.

2. The circumstances of measurement can be controlled to some level in the laboratory, but
in nature they are uncontrollable and only partly descriptive.

3. When using improved methods and instrumentation, one still, because of the things
mentioned under 1 and 2, will have uncertainty in the results of measurement, be it at
another level.

4. Measurements are done with a purpose. Dependent on that purpose, some uncertainty is
quite acceptable. Since better instruments and methods usually cost more, one will have
to ask oneself the question whether the reduction in uncertainty is worth the extra costs.

Summarizing, it is fundamentally and practically impossible to obtain absolute certainty from
measurements, while at the same time this is also often not needed on practical grounds.
Measurements are executed to obtain quantitative information, information which is accurate
enough for a specific purpose and at the same time cheap enough for that purpose. It is because
of this intrinsic uncertainty in measurements, that we have to consider the calculus of
observations. The calculus of observations deals with:
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1. The description and analysis of measurement processes.
2. Computational methods that take care, in some sense, of the uncertainty in measurements.
3. The description of the quality of measurement and of the results derived therefrom.
4. Guidelines for the design of measurement set-ups, so as to reach optimal working

procedures.

The calculus of observations is essential for a geodesist, its meaning comparable to what
mechanics means for the civil-engineer or mechanical-engineer. In order to shed some more light
on the type of problems the calculus of observations deals with, we take some surveying
examples as illustration. Some experience in surveying will for instance already lead to questions
such as:

1. Repeating a measurement does usually not give the same answer. How to describe this
phenomenon?

2. Results of measurement can be corrupted by systematic or gross errors. Can these errors
be traced and if so, how?

3. Geometric figures (e.g. a triangle) are, because of 2, usually measured with redundant
(overtallig) observations (e.g. instead of two, all three angles of a triangle are measured).
These redundant observations will usually not obey the mathematical rules that hold true
for these geometric figures (e.g. the three angular measurements will usually not sum up
to p). An adjustment (vereffening) is therefore needed to obtain consistent results again.
What is the best way to perform such an adjustment?

4. How to describe the effect of 1 on the final result? Is it possible that the final result is
still corrupted with non-detected gross errors?

Once we are able to answer questions like these, we will be able to determine the required
measurement set-up from the given desired quality of the end product. In this book we mainly
will deal with points 1 and 3, the elementary aspects of adjustment theory.

Functional and stochastic model

In order to analyze scientific or practical problems and/or make them accessible for a quantitative
treatment, one usually tries to rid the problem from its unnecessary frills and describes its
essential aspects by means of notions from an applicable mathematical theory. This is referred
to as the making of a mathematical model. On the one hand the model should give a proper
description of the situation, while, on the other hand, the model should not be needlessly
complicated and difficult to apply. The determination of a proper model can be considered the
’art’ of the discipline. Well-tried and well-tested experience, new experience from experiments,
intuition and creativity, they all play a role in formulating the model.
Here we will restrict ourselves to an example from surveying. Assume that we want to determine
the relative position of terrain-’points’, whereby their differences in height are of no interest to
us. If the distances between the ’points’ are not too large, we are allowed, as experience tells us,
to describe the situation by projecting the ’points’ onto a level surface (niveauvlak) and by
treating this surface as if it was a plane. For the description of the relative position of the points,
we are then allowed to make use of the two-dimensional Euclidean geometry (vlakke
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meetkunde), the theory of which goes back some two thousand years. This theory came into
being as an abstraction from how our world was seen and experienced. But for us the theory is
readily available, thus making it possible to anticipate on its use, for instance by using sharp and
clear markings for the terrain-’points’ such that they can be treated as if they were
mathematically defined points. In this example, the two-dimensional Euclidean geometry acts as
our functional model. That is, notions and rules from this theory (such as the sine- and cosine
rule) are used to describe the relative position of the terrain-’points’.
Although the two-dimensional Euclidean geometry serves its purpose well for many surveying
tasks, it is pointed out that the gratuitously use of a ’standard’ model can be full of risks. Just
like the laws of nature (natuurwetten), a model can only be declared ’valid’ on the basis of
experiments. We will come back to this important issue in some of our other courses.
When one measures some of the geometric elements of the above mentioned set of points, it
means that one assigns a number (the observation) according to certain rules (the measurement
procedure) to for instance an angle a (a mathematical notion). From experience we know that
a measurement of a certain quantity does not necessarily give the same answer when repeated.
In order to describe this phenomenon, one could repeat the measurements a great many times
(e.g. 100). And on its turn the experiment itself could also be repeated. If it then turns out that
the histograms of each experiment are sufficiently alike, that is, their shapes are sufficiently
similar and their locations do not differ too much, one can describe the measurement variability
by means of a stochastic variable. In this way notions from mathematical statistics are used in
order to describe the inherent variability of measurement processes. This is referred to as the
stochastic model.
In practice not every measurement will be repeated of course. In that case one will have to rely
on the extrapolation of past experience. When measuring, not only the measurement result as a
number is of interest, but also additional information such as the type of instrument used, the
measurement procedure followed, the observer, the weather, etc. Taken together this information
is referred to as the registration (registratie). The purpose of the registration is to establish a link
with past experience or experiments such that a justifiable choice for the stochastic model can
be made.
In surveying and geodesy one often may assume as stochastic model that the results of
measurement (the observations) of a certain measurement method can be described as being an
independent sample drawn (aselecte trekking) from a normal (Gaussian) distribution with a
certain standard deviation. The mathematical expectation (verwachting) of the normally
distributed stochastic variable (the observable, in Dutch: de waarnemingsgrootheid), is then
assumed to equal the unknown angle etc. From this it follows, if the three angles a, b and g of
a triangle are measured, that the expectations of the three angular stochastic variables obey the
following relation of the functional model:
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For the individual observations themselves this is usually not the case. A sketch of the relation
between terrain situation, functional model, measurement, experiment and stochastic model is
given in figure 0.1. The functional and stochastic model together from the mathematical model.

Figure 0.1: Diagram of the fundamental relations in adjustment theory



1 Linear estimation theory: an introduction

1.1 Introduction

Before stating the general problem, let us define a simple example that contains most of the 
elements that will require our consideration.

Suppose that an unknown distance, which we denote as x, has been measured twice. The two 
measurements are denoted as y1 and y2, respectively. Due to all sorts of influences (e.g. 
instrumental effects, human effects, etc.) the two measurements will differ in general. That is y1

y2 or y1 - y2 0. One of the two measurements, but probably both, will therefore also differ 
from the true but unknown distance x. Thus, y1 x and y2 x. Let us denote the two differences 
y1 - x and y2 - x, the so-called measurement errors, as e1 and e2 respectively. We can then write:

or in vector notation:

(1)

with:

( * denotes the operation of transposition; thus y* is the transpose of y).

Our problem is now, how to estimate the unknown x from the given measurement or observation
vector y. It is to this and related questions that we address our attention. In this introductory
chapter we will restrict ourselves to the case of two observations and one unknown. In the next
section we will introduce the least-squares principle. Least-squares can be regarded as a
deterministic approach to the estimation problem. In the sections following we will introduce
additional assumptions regarding the probabilistic nature of the observations and measurement
errors. This leads then to the so-called best linear unbiased estimators and the maximum
likelihood estimators.

1.2 Least-squares estimation (orthogonal projection)

The equation , in which y and a are given, and x and e are unknown, can bey
2x1

a
2x1

x
1x1

e
2x1

visualized as in figure 1.1a.
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Figure 1.1a: x and e unknown Figure 1.1b: x̂ as estimate of x
ê as estimate of e

From the geometry of the figure it seems intuitively appealing to estimate x as , such thatx̂ ax̂

is as close as possible to the given observation vector y. From figure 1.1b follows that hasax̂

minimum distance to y if is orthogonal to a. That is if:ê y ax̂

"orthogonality"
fl

"normal equation"
fl

"LSQ-estimate of x"
fl

(2) "LSQ-estimate of observations"
fl

"LSQ-estimate of measurement errors"
fl

"Sum of squares"

The name "Least-Squares" (LSQ) is given to the estimate of x, sincex̂ (a a) 1a y x̂

minimizes the sum of squares . We will give two different proofs for this:(y ax) (y ax)

First proof: (algebra)

. End of proof.
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Second proof: (calculus)

From calculus we know that x̂ is a solution of the minimization problem if:

With:

and:

the proof follows. End of proof.

Example 1: Let us consider the problem defined in section 1.1:

With a = (1,1)* the normal equation (a*a)x̂ = a*y reads:

Hence the least-squares estimate x̂ = (a*a)-1a*y is:

Thus, to estimate x, one adds the measurements and divides by the number of measurements.
Hence the least-squares estimate equals in this case the arithmetic average. The least-squares
estimates of the observations and observation errors follow from ŷ = ax̂ and ê = y - ŷ as:

and .

Finally the square of the length of ê follows as:

End of example.
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The matrices a(a*a)-1a* and I - a(a*a)-1a* that occur in (2) are known as orthogonal projectors.
They play a central role in estimation theory. We will denote them as:

(3)

The matrix Pa projects onto a line spanned by a and along a line orthogonal to a. To see this,
note that we can write Pay with the help of the cosine rule as (see figure 1.2):

Figure 1.2

In a similar way we can show that Pa
^ projects onto a line orthogonal to a and along a line

spanned by a (see figure 1.3).

Figure 1.3

If we denote the vector that is orthogonal to a as b, thus b*a=0, the projectors Pa and Pa
^ can

alternatively be represented as:

(4)

To see this, consult figure 1.4 and note that with the help of the cosine rule we can write:
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Figure 1.4

With (3) and (4) we have now two different representations of the orthogonal projectors Pa=Pb
^

and Pa
^=Pb. The representations of (3) are used in (2), which followed from solving equation (1)

in a least-squares sense. We will now show that the representations of (4) correspond to solving
the equation:

(5)

in a least-squares sense. Equation (5) follows from pre-multiplying equation (1) with b* and
noting that b*a=0. We know that the least-squares solution of (1) follows from solving the
minimization problem:

We have used the notation . 2 here to denote the square of the length of a vector. The
minimization problem y-ax 2 can also be written as:

subject to

The equation z=ax is the parametric representation of a line through the origin with direction
vector a. From linear algebra we know that this line can also be represented in implicit form with
the help of the normal vector b. Thus we may replace z=ax by b*z=0. This gives:

subject to

With e=y - z, this may also be written as:

subject to

The least-squares estimate ê of the unknown e in (5) thus follows as the vector ê which satisfies
(5) and has minimal length. Figure 1.5 shows that ê is obtained as the orthogonal projection of
y onto the vector b. The least-squares estimates of (5) read therefore:



10 Adjustment theory

(6)

Figure 1.5

Example 2: Let us consider the problem defined in section 1.1:

The form corresponding to (5) is:

This equation expresses the fact that the difference between the two observed distances y1 and
y2 is unequal to zero in general because of the presence of measurement errors e1 and e2.
Since the vector b is given in this case as:

we have:

and
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The least-squares estimates read therefore:

and

which is identical to the results obtained earlier.
End of example.

1.3 Weighted least-squares estimation

Up to now, we have regarded the two observations y1 and y2 as equally accurate, and solved:

by looking for the value x̂ that minimized:

The least-squares principle can however be generalized by introducing a symmetric, positive-
definite weight matrix W so that:

The elements of the 2×2 matrix W can be chosen to emphasize (or de-emphasize) the influence
of specific observations upon the estimate x̂. For instance, if w11>w22, then more importance is
attached to the first observation, and the process of minimizing E(x) tries harder to make (y1-a1x)2

small. This seems reasonable if one believes that the first observation is more trustworthy than
the second; for instance if observation y1 is obtained from a more accurate instrument than
observation y2.

The solution x̂ of:

is called the weighted least-squares (WLSQ) estimate of x. As we know the solution can be
obtained by solving:

and checking whether:
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From:

follows:

and:

Since the weight matrix W is assumed to be positive-definite we have a*Wa>0 (recall from linear
algebra that a matrix M is said to be positive-definite if it is symmetric and z*Mz>0" z 0). From
the first equation we therefore get:

fl

"normal equation"
fl

"WLSQ-estimate of x"
fl

(7) "WLSQ-estimate of y"
fl

"WLSQ-estimate of e"
fl

"weighted sum of squares"

Compare this result with (2).

Example 3: Consider again the problem defined in section 1.1:

As weight matrix we take:

With a=(1 1)* the normal equation (a*Wa)x̂=a*Wy reads:
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Hence, the weighted least-squares estimate x̂=(a*Wa)-1a*Wy is:

Thus instead of the arithmetic average of y1 and y2, as we had with W=I, the above estimate is
a weighted average of the data. This average is closer to y1 than to y2 if w11>w22. The WLSQ-
estimate of the observations, ŷ=ax̂, is:

and the WLSQ-estimate of e, ê=y - ŷ, is:

Note that ê2 > ê1 if w11>w22.

Finally the weighted sum of squares ê*Wê is:

End of example.

In section 1.2 we introduced the least-squares principle by using the intuitively appealing
geometric principle of orthogonal projection. In this section we introduced the weighted least-
squares principle as the problem of minimizing the weighted sum of squares (y-ax)*W(y-ax). An
interesting question is now, whether it is also possible to give a geometric interpretation to the
weighted least-squares principle. This turns out to be the case. First note that the equation:

or:

describes an ellipse. If w11=w22 and w12=0, the ellipse is a circle. If w11 w22 and w12=0, the ellipse
has its major and minor axis parallel to the z1- and z2- axes, respectively. And if w12 0, the
ellipse may have an arbitrary orientation (see figure 1.6).



14 Adjustment theory

Figure 1.6

If we define a function F(z) as F(z)=z*Wz, then we know from calculus that the gradient of F(z)
evaluated at z0 is a vector which is normal to the ellipse F(z)=c at z0. The gradient of F(z)
evaluated at z0 is:

This vector is thus normal or orthogonal to the ellipse at z0 (see figure 1.7).

Figure 1.7

From this follows that the tangent line of the ellipse z*Wz=c at z0 is given by:
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Comparing this evaluation with the first equation of (7) shows that the WLSQ-estimate of x is
given by that x̂ for which y-ax̂ is orthogonal to the normal Wa at a of the ellipse z*Wz=a*Wa.
Hence, y-ax̂ is parallel to the tangent line of the ellipse z*Wz=a*Wa at a (see figure 1.8). Note
that if W=I, the ellipse becomes a circle and the unweighted least-squares estimate is obtained
through orthogonal projection (see figure 1.9).

Figure 1.8

Figure 1.9

The matrices a(a*Wa)-1a*W and I-a(a*Wa)-1a*W that occur in (7) are known as oblique projectors.

We will denote them as:

(8)
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The matrix projects onto a line spanned by a and along a line orthogonal to Wa.

To see this, note that we can write Pa,(Wa)^y with the help of the cosine rule as (see figure 1.10):

Figure 1.10

In a similar way we can show that projects onto a line orthogonal to Wa and along a line

spanned by a (see figure 1.11).

Figure 1.11

Above we have denoted the vector orthogonal to Wa as (Wa)^ ; thus ((Wa)^)*(Wa)=0. With the
help of the vector b, which is defined in section 1.2 as being orthogonal to a, thus b*a=0, we can
write instead of (Wa)^ also W -1b, because (W -1b)*(Wa)=0 (the inverse W -1 of W exists, since
we assumed W to be positive-definite). With the help of W -1b we can now represent the two
projectors of (8) alternatively as:
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(9)

To see this, consult figure 1.12 and note that with the help of the cosine rule we can write:

or:

Figure 1.12

Note that if W=I, then W -1=I and equations (8) and (9) reduce to equations (3) and (4)
respectively. In section 1.2 we showed that for W=I the representations of (9) correspond to
solving equation (5) in an unweighted least-squares sense. We will now show that the
representations of (9) correspond to solving (5) in a weighted least-squares sense. From the
equivalence of the following minimization problems:

subject to

subject to

subject to

follows that the weighted least-squares estimate of e is given by that ê on the line b*y=b*e for
which e*We is minimal. We know that e*We = constant = c is the equation of an ellipse. For
different values of c we get different ellipses and the larger the value of c is, the larger the
ellipse (see figure 1.13).
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Figure 1.13 c3>c2>c1

The solution ê is therefore given by the point of tangency of the line b*y=b*e with one of the
ellipses e*We=c (see figure 1.14).

Figure 1.14

At this point of tangency the normal of the ellipse is parallel to the normal of the line b*e=b*y.
But since the normal of the line b*e=b*y is given by b, it follows that the normal of the ellipse
at ê is also given by b. From this we can conclude that ê has to be parallel to W -1b. Hence we
may write:

The unknown scalar a may now be determined from the fact that ê has to lie on the line
b*e=b*y. Pre-multiplying ê=W -1ba with b* gives for a
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Substituting this in the equation ê=W -1ba shows that the weighted least-squares estimates of
equation (5) read:

Compare this result with equation (6).

(10)

Example 4: Consider again the problem defined in section 1.1:

The form corresponding to (5) is:

thus the vector b is given as:

As weight matrix we take:

Its inverse reads therefore:

The two projectors and can now be computed as:

and
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The weighted least-squares estimates ê and ŷ read therefore:

and

These results are identical to the results obtained in example 3. End of example.

1.4 Weighted least-squares is also orthogonal projection

In the previous two sections we have seen that unweighted and weighted least-squares estimation
could be interpreted as orthogonal and oblique projection respectively (see figure 1.15).

Figure 1.15

It is important to realize however that these geometric interpretations are very much dependent
on the choice of base vectors with the help of which the vectors y, a and e are constructed. In
all the cases considered so far we have implicitly assumed to be dealing with the orthogonal base
vectors (1,0)* and (0,1)*. That is, the vectors y, a and e of the equation:

were constructed from the scalars y1, y2, a1, a2, e1 and e2 as:
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(11)

Let us now investigate what happens if instead of the orthonormal set (1,0)* and (0,1)*, a
different set, i.e. a non-orthonormal set, of base vectors is chosen. Let us denote these new base
vectors as d1 and d2. With the help of the base vectors d1 and d2, the vectors y, a and e can then
be constructed from the scalars y1, y2, a1, a2, e1 and e2 as:

,

(12) ,

.

Again the equation y=ax+e holds. This is shown in figure 1.16a. Note that the vectors of (12)
are not the same as those of (11). They do however have the same components.

Figure 1.16a Figure 1.16b

Looking at figure 1.16 it seems again, like in section 1.2, intuitively appealing to estimate x as
x̂ such that ax̂ is as close as possible to given vector y. This is the case if the vector y-ax̂ is
orthogonal to the vector a; that is, if:

(13) "orthogonality"

With (12) this gives:

or

or
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(14)

with

The matrix D*D of (14) is symmetric, since (D*D)*=D*D, and it is positive-definite, since z*D*Dz
= (Dz)*(Dz)>0 for all z 0. Hence, the matrix D*D may be interpreted as a weight matrix. By
interpreting the matrix D*D of (14) as a weight matrix we see that the solution of (13) can in fact
be interpreted as a weighted least-squares solution, i.e. a solution of the minimization problem:

We have thus shown that if in a weighted least-squares problem the weight matrix W can be
written as the product of a matrix D* and its transpose D, then the weighted least-squares
estimate ŷ=ax̂ can be interpreted as being obtained through orthogonal projection of y=y1d1+y2d2

onto the line with direction vector a=a1d1+a2d2, where d1 and d2 are the column vectors of matrix
D (see figure 1.17).

Figure 1.17

The crucial question is now whether every weight matrix W, i.e. every symmetric and positive-
definite matrix, can be written as a product of a matrix and its transpose, i.e. as W=D*D. If this
is the case, then every weighted least-squares problem can be interpreted as a problem of
orthogonal projection! The answer is: yes, every weight matrix W can be written as W=D*D. For
a proof, see the intermezzo at the end of this section.
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The weight matrix W=D*D can be interpreted as defining an inner product (Strang, 1988). In the
unweighted case, W=I, the inner product of two vectors u and v with components u1,u2 and v1,v2

respectively, is given as:

This is the so-called standard inner product, where the inner product is represented by the unit
matrix I. The square of the length of the vector u reads then:

In the weighted case, W=D*D, the inner product of u and v is given as:

The square of the length of the vector u reads then:

(15)

Note that the two ways in which (u,v)W is written in (15) correspond with the two figures 1.17a
and 1.17b respectively. In figure 1.17a orthonormal base vectors are used and the metric is
visualized by the ellipse:

In figure 1.17b however, the ellipse is replaced by a circle:

and the metric is visualized by the non-orthonormal base vectors d1 and d2.

Now that we have established the fact that weighted least-squares estimation can be interpreted
as orthogonal projection, it must also be possible to interpret the oblique projectors of equation
(8) as orthogonal projectors. We will show that the matrix Pa,(Wa)^ of (8) can be interpreted as the
matrix which projects orthogonally onto a line spanned by the vector a, where orthogonality is
measured with respect to the inner product defining weight matrix W. From figure 1.18 follows
that:

or
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or

and in this expression we recognize indeed the matrix of equation (8). From now on we
will assume that it is clear from the context which inner-product is taken and therefore also
denote the matrix as Pa.

Figure 1.18

Intermezzo: Cholesky decomposition:

If W is an n×n symmetric positive definite matrix, there is a nonsingular lower triangular matrix
L with positive diagonal elements such that W=LL*.

Proof: The proof is by induction. Clearly, the result is true for n=1 and the induction hypothesis
is that it is true for any (n-1)×(n-1) symmetric positive definite matrix.

Let

where A is a (n-1)×(n-1) matrix. Since W is symmetric positive definite, it will be clear that A
is also symmetric positive definite. Thus, by the induction hypothesis, there is a nonsingular
lower triangular matrix Ln-1 with positive diagonal elements such that A=Ln-1L

*
n-1.

Let

where l and b are to be obtained by equating LL* to W:
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This implies that l and b must satisfy:

Since Ln-1 is nonsingular, the first equation determines l as l=L-1
n-1 a. The second equation allows

a positive b provided that bnn - l*l>0. In order to proof that bnn - l*l>0 we make use of the fact
that W is positive definite, i.e.:

Substitution of and x2=1 shows that bnn - l*l >0.

End of proof.

A simple example of a Cholesky decomposition is:

1.5 The mean and covariance matrix of least-squares estimators

From now on we shall make no distinction between unweighted and weighted least-squares
estimation, and just speak of least-squares estimation. From the context will be clear whether
W=I or not.

In our discussions so far no assumptions regarding the probabilistic nature of the observations
or measurement errors were made. We started by writing the two equations:

in vector notation as:

and showed that the least-squares estimates of x, y and e follow from solving the minimization
problem:
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as:

(16)

Vector ê contains the least-squares residuals. Since functions of random variables are again
random variables, it follows that if the observation vector is assumed to be a random vector y
(note: the underscore indicates that we are dealing with random variables) and substituted for y
in (16), the left-hand sides of (16) also become random variables:

(17)

These random variables are called least-squares estimators, whereas if y is replaced by its sample
value y one speaks of least-squares estimates.

From your lecture notes in statistics you know how to derive the probability density functions
of the estimators of (17) from the probability density function of y. You also know that
if the probability density function of y is "normal" or "Gaussian", then also x̂, ŷ and ê are
normally distributed. This follows, since x̂, ŷ and ê are linear functions of y. You know
furthermore how to compute the means and covariance matrices of y. This is particularly straight-
forward in case of linear functions (see also appendix E and F).

Application of the "propagation law of means" to (17) gives:

(18)

where E{.} denotes mathematical expectation. The result (18) holds true irrespective the type of
probability distribution one assumes for y. Let us now, without assuming anything about the type
of the probability distribution of y, be a bit more specific about the mean E{y} of y. We will
assume that the randomness of the observation vector y is a consequence of the random nature
of the measurement errors. Thus we assume that y can be written as the sum of a deterministic,
i.e. non-random, component ax and a random component e:

(19)

Furthermore we assume that the mean E{e} of e is zero. This assumption seems acceptable if
the measurement errors are zero "on the average".
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With (19) the assumption E{e}=0 implies that:

(20)

Substitution of (20) into (18) gives then:

(21)

This important result shows that if (19) with (20) holds, the least-squares estimators x̂, ŷ and ê
are unbiased estimators. Note that this unbiasedness property of least-squares estimators is
independent of the choice for the weight matrix W ! Let us now derive the covariance matrices
of the estimators x̂, ŷ and ê. We will denote the covariance matrix of y as Qy, the variance of x̂
as sx̂

2 and the covariance matrices of ŷ and ê as Qŷ and Qê respectively. Application of the
"propagation law of covariances" to (17) gives:

(22)

As you know from your lecture notes in Statistics, the variance of a random variable is a
measure for the spread of the probability density function around the mean value of the random
variable. It is a measure of the variability one can expect to see when independent samples are
drawn from the probability distribution. It is therefore in general desirable to have estimators
with small variances. This is particularly true for our least-squares estimators. Together with the
property of unbiasedness, a small variance would namely imply that there is a high probability
that a sample from the distribution of x̂ will be close to the true, but unknown, value x. Since
we left the choice for the weight matrix W open up till now, let us investigate what particular
weight matrix makes sx̂

2 minimal. Using the decomposition Qy=D*D, it follows from (22) that
sx̂

2 can be written as:

where a is the angle between the two vectors DWa and (D *)-1a. From this result follows that
the variance sx̂

2 is minimal when the angle a is zero; that is, when the two vectors DWa and
(D*)-1a are parallel. The variance sx̂

2 is therefore minimal when DWa=(D*)-1a or D*DWa=a or
QyWa=a. Hence, the variance is minimal when we choose the weight matrix W as:
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(23)

With this choice for the weight matrix, the variance sx̂
2 becomes:

(24)

1.6 Best Linear Unbiased Estimators (BLUE’s)

Up till now we have been dealing with least-squares estimation. The least-squares estimates were
derived from the deterministic principles of "orthogonality" and "minimum distance". That is,
no probabilistic considerations were taken into account in the derivation of least-squares
estimates.
Nevertheless, it was established in the previous section that least-squares estimators do have
some "optimal properties" in a probabilistic sense. They are unbiased estimators independent of
the choice for the weight matrix W, and their variance can be minimized by choosing the weight
matrix as the inverse of the covariance matrix of the observations. Moreover, they are linear
estimators, i.e. linear functions of the observations.

Estimators which are linear, unbiased and have minimum variance are called best linear unbiased
estimators or simply BLUE’s. "Best" in this case means minimum variance. Thus least-squares
estimators are BLUE’s in case the weight matrix equals the inverse of the covariance matrix of
the observations. In order to find out how large the class of best linear unbiased estimators is (is
there only one? or are there more than one?), we will now derive this class. Thus instead of
starting from the least-squares principle of "orthogonality" we start from the conditions of
linearity, unbiasedness and best. Again we assume that the mean of y satisfies:
(25)

Our problem is to find an estimator x̂ of the unknown parameter x, where x̂ is a function of y.
Since we want the estimator x̂ to be a linear function of y, x̂ must be of the form:

(26) "L-property"

Furthermore, we want x̂ to be an unbiased estimator of x for all the values x may take. This
means that:

(27) "U-property"

And finally, we want to find those estimators x̂, which in the class of estimators that satisfy (26)
and (27), have minimum variance:

(28) minimal in the class of LU-estimators "B-property"

It will be clear that the class of linear estimators is infinite. Let us therefore look at the class of
linear and unbiased estimators.
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From taking the expectation of (26) follows, with (25) and (27) that:

or

(29)

Thus for LU-estimators the vector l has to satisfy (29) (see figure 1.19).

Figure 1.19:

It will be clear that, although the class of permissable vectors l has been narrowed down to the
line l*a=1, the class of LU-estimators is still infinite. For instance, every vector l of the form:

where c is arbitrary, is permitted.

Let us now include the "B-property". The variance of the estimator x̂ follows from applying the
"propagation law of variances" to (26). This gives:

(30)

The "B-property" implies now that we have to find the vectors l, let us denote them by l̂, that
minimize sx̂

2 of (30) and at the same time satisfy (29). We thus have the minimization problem:

(31)

With the decomposition Qy=D*D, this can also be written as:

or as:
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(32)

where:

(33)

Geometrically, the minimization problem (32) boils down to finding those vectors
ˆ

whose
endpoints lie along the line l̄*(D*)-1a=1 and who have minimum length (see figure 1.20).

Figure 1.20: l̄*(D*)-1a = l̄ (D*)-1a cos a=1

From figure 1.20 it is clear that there is only one such vector
ˆ

. This vector lies along vector
D*-1a and has length (D*)-1a -1. Thus:

(34)
ˆ

where the positive scalar b follows from:
ˆ * ˆ

as:
(35)

Substitution of (35) into (34) gives with (33):

or:

(36)

The best linear unbiased estimator x̂ of x follows therefore with (26) as:

(37)
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From this result we can draw the important conclusion that the best linear unbiased estimator is
unique and equal to the least-squares estimator if W=Qy

-1 !

We will now give an alternative derivation of the solution (37). Equation (29) is the equation
of a line with a direction vector orthogonal to a (see figure 1.20a). Since the vector b

Figure 1.20a: l*a=1 is equivalent to l=lo+ba

was defined as being orthogonal to a, b*a=0, the line a*l=1 can be represented parametrically
as:

(37a)

where lo is a particular solution of (29). Hence, the condition a*l=1 in (31) may be replaced by
l=lo+ba:

This may also be written as:

The solution of this minimization problem is:

(37b)

This is easily verified by using an algebraic proof like the one given in section 1.2. Substitution
of (37b) into (37a) gives:
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The best linear unbiased estimator x̂ of x follows therefore with (26) as:

(37c)

From equations (8) and (9) in section 1.3 we know that:

Substitution in (37c) gives therefore:

or:

since lo
*a=1. This concludes our alternative derivation of (37).

1.7 The Maximum Likelihood (ML) method

In the previous sections we have seen the two principles of least-squares estimation and best
linear unbiased estimation at work. The least-squares principle is a deterministic principle where
no probability assumptions concerning the vector of observations is made. In case y=ax+e, the
least-squares principle is based on minimizing the quadratic form (y-ax)* W(y-ax), with the
weight matrix W.

In contrast with the least-squares principle, the principle of best linear unbiased estimation does
make use of some probability assumptions. In particular it is based on assumptions concerning
the mean and covariance matrix of the random vector of observables y. However, only the mean
and covariance matrix of y need to be specified, not its complete probability distribution. We will
now present a method of estimation that in contrast with the BLUE’s method needs the complete
probability distribution of y.

Let p(y;x) denote the probability density function of y. For a fixed value of x the function p(y;x)
is a function of y and for different values of x the function p(y;x) may take different forms (see
figure 1.21).
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Figure 1.21: Two one-dimensional probability density functions p(y;x1), p(y;x2)

Our objective is now to determine or estimate the parameter x on the basis of the observation
vector y. That is, we wish to determine the correct value of x that produced the observed y. This
suggests considering for each possible x how probable the observed y would be if x were the true
value. The higher this probability, the more one is attracted to the explanation that the x in
question produced y, and the more likely the value of x appears. Therefore, the expression p(y;x)
considered for fixed y as a function of x has been called the likelihood of x. Note that the
likelihood of x is a probability density or a differential probability. The estimation principle is
now to maximize the likelihood of x, given the observed value of y:

(38)

Thus in the method of maximum likelihood we choose as an estimate of x the value which
maximizes p(y;x) for the given observed y. Note that in the ML-method one needs to know the
complete mathematical expression for the probability density function p(y;x) of y. Thus it does
not suffice, as is the case with the BLUE’s method, to specify only the mean and covariance
matrix of y.

As an important example we consider the case that p(y;x) is the probability density function of
the normal distribution. Let us therefore assume that y is normally distributed with mean
E{y}=ax and covariance matrix Qy. The probability density function of y reads then in case it
is a two-dimensional vector:

(39)

As it is often more convenient to work with ln p(y;x) then with p(y;x) itself, the required value
for x is found by solving:
(40)
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this is permitted since ln p(y;x) and p(y;x) have their maxima at the same values of x. Taking
the logarithm of (39) gives:

(41)

Since the first two terms on the right-hand side of (41) are constant, it follows that maximization
of ln p(y;x) amounts to maximization of -1/2(y-ax)*Qy

-1(y-ax). But this is equivalent to
minimization of (y-ax)*Qy

-1(y-ax). Hence we have obtained the important conclusion that
maximum likelihood estimators, in case p(y;x) is the normal distribution, are identical to least-
squares estimators for which the weight matrix is W=Qy

-1 !

Let us now exemplify the above discussion geometrically. From (39) follows that the contours
of constant probability density are ellipses:

For different values of c we get different ellipses. The smaller the probability density, the larger
the value of c and the larger the ellipses are (see figure 1.22).

Figure 1.22: Contours of p(y;x) = constant

By varying the values of x the family of contour lines centred at ax translate along the line with
direction vector a (see figure 1.23).

Figure 1.23

From the figure it is clear that the likelihood of x obtains its maximum there where the
observation point y is a point of tangency of one of the ellipses (see figure 1.24).
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Figure 1.24: The ML-estimate x̂

Hence, after translating the family of ellipses along the line with direction vector a such that y
becomes a point of tangency, the corresponding centre ax̂ of the ellipses gives the maximum
likelihood estimate x̂. At the point of tangency y, the normal to the ellipse is Qy

-1(y-ax̂) (see
figure 1.25).

Figure 1.25: The normal Qy
-1(y-ax̂)

The normal Qy
-1(y-ax̂) is orthogonal to the tangent line at y. But this tangent line is parallel to

the line with direction vector a. Thus we have a*Qy
-1(y-ax̂)=0, which shows once again that in

case of the normal distribution, ML-estimators and LSQ-estimators with W=Qy
-1 are identical!

1.8 Summary

In this chapter we have discussed three different methods of estimation: the LSQ-method, the
BLUE-method and the ML-method. For an overview of the results see table 1. The LSQ-method,
being a deterministic method, was applied to the model:

(42)
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In case the measurement errors are considered to be random, e , the observables also become
random, y , and (42) has to be written as:
(43)

With the assumptions that E{e}=0 and E{ee*}=Qy , we get with (43) the model:

(44)

These two assumption were the starting point of the BLUE-method. If in addition to (44), it is
also assumed that y is normally distributed then the model becomes:
(45)

It was shown that for this model the ML-estimator is identical to the BLU-estimator and the
LSQ-estimator if W=Qy

-1.

We have restricted ourselves in this introductory chapter to the case of two observations y1, y2

and one unknown x. In the next chapter we will start to generalize the theory to higher
dimensions. That is, in the next chapter we will start developing the theory for m observations
y1, y2,...,ym and n unknowns x1, x2,...,xn. In that case model (45) generalizes to:

(46)

where A is an matrix, i.e. it has m rows and n columns.
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2 The model with observation equations

2.1 Introduction

As an introduction consider the following example: Figure 2.1 shows a levelling network. The 
points 0,1,2,3,4 and 5 are connected with levelled height differences. The total number of 
levelled height differences is 9. The height of point 0 is assumed to be known in the NAP-
reference system (NAP= Normaal Amsterdams Peil). The heights of the remaining points are 
unknown. Our objective is to determine their heights from the measured height differences.

Figure 2.1: Levelling network

One way to determine their heights is to use the configuration of figure 2.2. One starts at the
reference point 0 of which the height is known, and then determines the heights of the points
4,5,3,2 and 1 as shown in figure 2.2. In this case only 5 out of the 9 available levelled height
differences are used, namely y1, y6, y8, y9 and y4.

Figure 2.2
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An alternative way to determine the heights of the points is to use the configuration of figure 2.3.
One starts again at the reference point 0, and then determines the heights of the points 1,2,5,3
and 4 as shown in figure 2.3. In this case again 5 out of the 9 available levelled height
differences are used. Note however that the height differences used differ from the ones used in
the previous case.

Figure 2.3

It will be clear that the two solutions of figure 2.2 and figure 2.3 are identical in case the height
differences were perfectly levelled. However, perfect measurements do not exist! Hence, since
one relies in the two cases considered on different observations with different measurement
errors, the computed heights will also differ. Therefore, if one wants to make use of all the 9
levelled height differences, one has to take care in one way or another of the resulting
inconsistencies or discrepancies.

One could also argue that in the case of figure 2.1 too many height differences are measured.
This is true as far as the construction of the levelling network is concerned. That is, strictly
speaking only 5 out of the 9 available height differences are needed to determine the 5 unknown
heights. However, with 5 measured height differences one will never be able to detect blunders
or outliers in the measurements. This is one of the reasons why always more measurements are
taken than strictly necessary for determining the geometric figure of the network. In the course
of your studies in Mathematical Geodesy you will learn to answer questions as: how many
measurements are needed, how should they be distributed over the network etc. That is, in the
course of your studies you will learn, given the purpose of a network, how to design a network
with a certain quality.

In the above example of figure 2.1 we have 9 measured height differences and 5 unknown
heights. As we did in the introductory section of chapter 1, we can write down the 9 equations
that relate the measurements to the unknowns. If we denote the unknown heights as x1, x2,...,x5

and the known height of point 0 as x0, we obtain with the help of figure 2.1:
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(1)

where the ei, i=1,...,9, are the unknown random measurements errors.The above 9 equations can
be written in matrix notation as:

(2)

For simplicity we will assume that the known height x0 of the reference point 0 is equal to zero.
The matrix equation of (2) is then of the form:

(3)

with m=9 and n=5. Matrix A thus has 9 rows and 5 columns. If the known height x0 is unequal
to zero, then (2) can still be brought into the form of (3) by bringing the known vector
containing x0 in (2) to the left-hand side.

Equation (3) is the multi dimensional generalization of equation (19) in section 1.5. In this
chapter we will generalize the theory of chapter 1 for multi dimensional cases.
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2.2 Least-squares estimation

The equations of the linear system:

(4)

are known as observation equations (waarnemingsvergelijkingen). Let us assume that an
observation vector y is given, and that we want to solve for the unknown vectors x and e in the
system:

(5)

If we denote the column vectors of the matrix A by ai, i=1,...,n, then A=(a1, a2,....,an), and (5)
may be written as:

(6)

In chapter 1 we solved equation (6) in a least-squares sense for the case n=1. We will now
consider the general case that n may be arbitrary, provided that n£m. That is, the restriction is
that the number of observations, m, has to be larger than or equal to the number of unknown
parameters, n. For m=3 and n=2 we may visualize equation (6) as in figure 2.4.

Figure 2.4: x and e unknown in y=Ax+e.

From the geometry of the figure it seems intuitively appealing to estimate x as x̂, such that
or Ax̂ is as close as possible to the given observation vector y. This is the case if

n

i 1
aix̂ i

is orthogonal to the "plane" spanned by the column vectors ai, i=1,...,n, of A.ê y
n

i 1
aix̂ i

That is, if:
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or if:

or if:

or if:

(7)

This is a system of n linear equations with n unknowns. If the matrix A*A is invertible, the
solution of (7) is unique and reads:
(8)

Compare this result with equation (2) in section 1.2. The n×n matrix A*A is invertible if and only
if rank A*A=n. And since rank A*A = rank A (for a proof see the end of this section), it follows
that A*A is invertible if rank A=n. We will therefore assume that matrix A has full rank n. Verify
that the matrix of equation (2) has full rank; its rank is 5. Verify also that if the height of the
reference point 0 is unknown, the matrix which follows from including xo in the vector of
unknowns has a rankdefect of 1. The reason is of course that "absolute heights" cannot be
determined from height differences only. The derivation of the estimate x̂ of (8) was based on
the principle of orthogonality. The estimate x̂ however also minimizes the sum of squares (y-
Ax)*(y-Ax). That is, x̂ of (8) is the solution of:

(9)

This is easily shown, by using the same algebraic derivation as was used in section 1.2. Along
the same lines one can show that the solution of:

(10) .

where W is an m×m symmetric and positive definite weight matrix, is:
(11)
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Proof: (algebra)

(y-Ax)*W(y-Ax) = [y-Ax̂-A(x-x̂)]*W[y-Ax-A(x-x̂)]
= (y-Ax̂)*W(y-Ax̂) - 2(y-Ax̂)*WA(x-x̂) + (x-x̂)*A*WA(x-x̂).

But A*W(y-Ax̂) = A*W[(y-A(A*WA)-1A*Wy)] = 0, hence,

(y-Ax)*W(y-Ax) = (y-Ax̂)*W(y-Ax̂)+(x-x̂)*A*WA(x-x̂)
= minimal for x=x̂

End of proof.

The estimate x̂ of (11) is the weighted least-squares estimate of x. As a generalization of
equation (7) in section 1.3, the weighted least-squares estimators read therefore for the multi
dimensional case:

(12)

Intermezzo:
(13) rank A = rank A*A

From theory in Linear Algebra we know that:

where N(A) denotes the nullspace (kern) of the m×n matrix A. For A*A we have:

Hence, rank A = rank A*A is equivalent to:
(14)

The nullspace of A is defined as the set of vectors x that satisfy:

Since A*Ax=0 if Ax=0, it follows that:
(15)
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But also:
(16)

holds. Because if xŒN(A*A) then A*Ax=0, and this implies that Ax=0 or xŒN(A). A*Ax=0 can
never imply that Ax 0. From (15) and (16) follows that N(A)=N(A*A) and thus that dim. N(A)
= dim N(A*A) or rank A = rank A*A.

End of proof.

2.3 The mean and covariance matrix of least-squares estimators

In section 5 of chapter 1 we derived the means and covariance matrices of the least-squares
estimators of the model y=ax+e. This was done through application of the propagation laws for
means and variances to (17) in section 1.5. In the present section we want to generalize these
results. That is, we want to derive the mean and covariance matrix of the estimators of (12). This
is again done through application of the propagation laws for means and variances. For
completeness sake we first state and prove three laws for the general multi-dimensional case.

Let v be a p×1 dimensional random vector and let u be a q×1 dimensional random vector.
Furthermore let u and v be functionally related by:

where F(.) is a vector function.

(17)

The mean of v, E{v}, is then defined as (see also appendices E and F):

(18)

where is the probability density function of u. Equation (18) shows that the mean of v can
be computed once the vector function F(.) and probability density function are known.
We will now use (18) to derive the two propagation laws of means and variances for the case
of linear functions.

The propagation law of means

Let the two random vectors u and v be related as:

(19)
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where M is a constant p×q matrix and m is a constant p×1 vector. Using (18) we get for the
mean of v:

(20)

According to (18), equals the mean of u, E{u}. Furthermore, since the "area" or
"volume" of a probability density function equals 1, we have that . Hence, (20)
reduces to:

(21)

This result shows that in case u and v are linearly related, the mean of v, E{v}, can be computed
once the mean of u, E{u}, is known! This is generally not the case for nonlinear functions.

The propagation law of variances and covariances

The covariance matrix of the random vector v is defined as:

If u and v are related as (19), it follows with (21) that:

Using (18) this gives:

(22)

But E{(u-E{u})(u-E{u})*} is by definition the covariance matrix of u, Qu. Hence, (22) reduces
to:
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(23)

This result shows that in case u and v are linearly related, the covariance matrix of v, Qv, can
be computed once the covariance matrix of u, Qu, is known! Thus in case of linear functions one
does not need to know the complete probability density function of u.

If we denote the covariance between u and v as Quv, then by definition:

With a derivation similar to the one given above folllows then that:

(24)

Prove this yourself!

It will now be clear since the first three estimators of (12) are all linear functions of y, and thus
of the form (19), that their means and covariance matrices can be derived from the results of
(21), (23) and (24).

The model used for deriving the estimators of (12) was:

(25)

We will now assume that E{e}=0 and E{e e*}=Qy. With (25) this gives:

(26)

With the first equation of (26), application of the propagation law for means, (21), to (12) gives:

(27)

Compare this result with equation (21) in section 1.5. This important result shows that if (26)
holds, the least-squares estimators are unbiased estimators. And this property of unbiasedness is
independent of the choice for W.
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With the second equation of (26), application of the propagation law for variances, (23), to (12)
gives:

(28)

In a similar way, application of the propagation law of covariances, (24), to (12) gives:

(29)

In order to derive the mean of the random variable ê*Wê of (12), we cannot make use of (21)
directly. The random variable ê*Wê is namely not a linear function of y. It is possible however
to write ê*Wê as a linear combination of products of the elements of ê, in which case (21) can
be applied again. If we denote the ith-element of ê by êi, and the (i,j)th-element of the matrix
W by (W)ij, then:

This shows that ê*Wê is a linear combination of the products êiêj. Hence:

where E{êiêj} is the covariance between êi and êj. But the covariance between êi and êj is the
(i,j)th-element of the covariance matrix Qê. Thus:

But since the covariance matrix Qê is symmetric and thus (Qê)ij=(Qê)ji, we may write:

For fixed i, the term equals the product of the ith-row of W with the ith-column

of Qê:
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Thus E{ê*Wê} is the sum of these m products:

This shows that E{ê*Wê} equals the trace (spoor) of the matrix product WQê:

(30)

For a definition of the trace of a square matrix consult your lecture notes on Linear Algebra.

It should be noted that all the results concerning the means, variances and covariances of the
least-squares estimators, were derived without making any assumptions on the probability
distribution of y! This is in principle also possible for the variance of ê*Wê. The derivation is
however rather complicated and therefore ommitted. Even for the case that y is normally
distributed, the derivation of the variance of ê*Wê is complex. We therefore state without proof
that if y is normally distributed with mean and covariance matrix as given in (26), the variance
of ê*Wê reads:

(31)

2.4 Best Linear Unbiased Estimation

We consider again the model:

Let us assume that we are interested in estimating a parameter q, which is a linear function of

(32)

x:

(33)

For instance, in case of the levelling network of figure 2.1 we could be interested in estimating
the height difference between the points 1 and 5. Then q of (33) plays the role of the height
difference between the points 1 and 5, and the vector f of (33) takes the form:

Let q̂ be the estimator of q. Then according to the criteria of best linear unbiased estimation, we
want the estimator q̂ to be a linear function of y:
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(34) "L-property"

such that

(35) "U-property"

and:

(36) "B-property"

Our objective is now to find a vector l such that with (34), the conditions (35) and (36) are
fulfilled. Substitution of (34) into (35) gives:

and with (32) and (33) this gives:

Since we want this condition to hold for all x, it follows that:

(37)

Compare this with equation (29) in section 1.6. Equation (37) is a system of n linear equations
with m unknowns. The unknowns are the elements of the vector l. Every vector l that satisfies
(37) gives with (34) a linear unbiased estimator of q. If C is an m×n matrix such that (A*C)-1

exists, then:
(38)

is a solution of (37). This means that:

(39)

is an unbiased estimator of q. That this is indeed the case, follows if we take the expectation of:
(39)

The m×n matrix C of (38) is not unique. One choice for matrix C would be:

Substitution into (39) gives:
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This shows once again that the weighted least-squares estimator is an unbiased estimator.
From your lecture notes in Linear Algebra (Strang, 1988) you know that the general solution of
the inhomogeneous system (37) is given by the sum of a particular solution of (37) and the
solution of the homogeneous system:

(40)

The solution of this homogeneous system is the nullspace, N(A*), of the matrix A*:

The dimension of this space follows from the dimension theorem (Strang, 1988) as:

where R(A*) is the range space or column space (beeldruimte of kolomruimte) of A*. Since
dim. R(A*)= rank A*= rank A and since we assumed that rank A=n, it follows that:

Since the dimension of the solution space of (40) equals m-n, there exist m-n linearly
independent vectors bi, i=1,..., m-n, that form a basis of N(A*). Each of these vectors satisfy:

(41)

If we collect the m-n vectors bi in a matrix B:

then matrix B is of order m×(m-n) with full rank, rank B=m-n, and satisfies because of (41):

(42)

This shows that every solution of (40) can be represented as:

Hence, if lo is a particular solution of (37), the general solution of (37) takes the form:

(43)
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Compare this result with equation (37a) in section 1.6. Equation (43) shows that all vectors l that
satisfy (37) lie on a linear variety or linear manifold (lineaire variëteit) parallel to the range
space of matrix B.

Let us now continue our derivation of the best linear unbiased estimator of (33). With (37) or
(43) we have found the class of linear unbiased estimators. We now want to find within this
class, the estimator that has minimum variance. Application of the propagation law of variances
to (34) gives with (32):

Hence, our minimization problem reads:

(44)

Compare this with equation (31) in section 1.6. Since (43) is the solution of (37), (44) may also
be written as:

subject to

or as:

(45)

The solution of this minimization problem is:

(46)

This is easily verified by using an algebraic proof like the one given in section 1.2. Substitution
of (46) into (43) gives:

(47)

The best linear unbiased estimator q̂ of q follows therefore with (34) as:

(48)

This solution is expressed in terms of the matrix B, which is related to matrix A of (32) through
(42). Since our starting point was the model of (32), it would be nice if we could express the
solution (48) in terms of the matrix A. In chapter 1 (see section 1.6) this was possible by making
use of the identity:
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Compare with equation (8) and (9) in section 1.3. For the multi-dimensional case, this suggests
the identity:

(49)

We will prove this identity, by proving that:

(50)

Since Ix=x, "x, we have proved (50) once we can show that:

(51)

If R is a square and invertible matrix, then (51) is equivalent to:

(52)

If we take for R the m×m partitioned matrix:

then:

(53)

(54)

where we have made use of the fact that A*B=0, see (42). Equation (54) shows that with the
choice (53) for R, the equation (52) holds. What remains to be shown is that matrix R of (53)
is invertible. This square matrix is invertible if it has full rank m, and it has full rank only if the
solution of the system:

is the trivial solution (a* b*)*=0.

(55)

Since B*A=0, premultiplication of (55) with B* gives:

(56)
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But matrix B has full rank m-n and therefore b=0 is the only solution of (56). With b=0 equation
(55) reduces to:

(57)

But matrix A has full rank n and therefore a=0 is the only solution of (57). Hence (a* b*)*=0
is the only solution of (55), which shows that (A QyB) is invertible. This concludes the proof
of the identity (49).

Substitution of (49) into (48) gives:

or since lo is a particular solution of (37):

(58)

This important result tells us two things. First of all it tells us that the best linear unbiased
estimator of x is given by:

(59)

This follows from (58) if we take for the vector f respectively (1,0,..,0)*, (0,1,0,...,0)*....,
(0,0,...,1)*. Compare (59) with equation (37) in section 1.6. Equation (59) shows that the BLUE
of x is identical to the weighted least-squares estimator of x if W=Qy

-1. The result (58) tells us
also that the BLUE of q=f*x is:

(60)

where x̂ is the BLUE of x.

Now that we know that the best linear unbiased estimators are identical to the least-squares
estimators if W=Qy

-1, we can use the results of the previous section 2.3 to obtain the covariance
matrices of the BLUE’s. Substitution of W=Qy

-1 into equation (28) gives:

(61)

Substitution of W=Qy
-1 into equation (29) gives:

(62)
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This shows that in case of best linear unbiased estimation, the estimator ê is not correlated with
either x̂ or ŷ.

Substitution of W=Qy
-1 into (30) and (31) gives:

Since trace (Qy
-1Qŷ) = trace (QŷQy

-1)=n if rank A=n (for a proof see end of next section) we get:

(63)

To conclude this section let us investigate what happens with our results if we assume that the
number of observations, m, equals the number of unknowns, n. If m=n, then matrix A is a square
matrix. We assumed that rank A=n. This implies that if m=n, the matrix A is invertible. That is,
A-1 exists. If A-1 exists, the matrix (A*Qy

-1A)-1 can be written as:

(64)

Substitution into (59) gives then:

and from this follows that:

and

Similarly we find from substituting (64) into (61) that:

These results show that if m=n (there is no redundancy), the estimate x̂ is simply the unique
solution of the system y=Ax and the best linear unbiased estimator of E{y}=Ax, ŷ, is simply y.
Thus if m=n we have just enough observations available to determine the unknown parameter
vector x uniquely, but not enough observations to get a better estimator for E{y}=Ax than y.

2.5 The orthogonal projector

As a generalization of the theory developed in chapter 1 we will prove in this section that the
matrix A(A*Qy

-1A)-1A*Qy
-1 is an orthogonal projector that projects onto the rangespace of A and

along its orthogonal complement.
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Let the m-dimensional linear vectorspace m have the inner product:

Matrix Qy
-1 is thus the matrix representation of the inner product (65).

(65)

The range space of the m×n matrix A is defined as:
(66)

The range space R(A) is a linear subspace of m, R(A) Ã m, and its dimension equals the rank
of A, which in our case is n:
(67)

The orthogonal complement of R(A) is defined as the set of vectors that are orthogonal to R(A)
(Strang, 1988):

(68)

According to your lecture notes in Linear Algebra, dim. R(A)+dim. R(A)^= dim m. With dim.
R(A)=n and dim. m=m this gives:
(69)

In section 2.4 a full rank matrix B of order m×(m-n) was introduced that satisfied:

(70)

With this matrix B we can represent the orthogonal complement R(A)^ of (68) as:

(71)

According to theory in Linear Algebra, the space m is the direct sum of R(A) and R(A)^:
(72)

This means that R(A) « R(A)^={0}, i.e. the two subspaces R(A) and R(A)^ only have the null
vector in common, and that a basis of R(A) together with a basis of R(A)^ forms a basis of m.
Since the m×n matrix A has full rank n, its column vectors form a basis of R(A). Similarly, since
the m×(m-n) matrix B has full rank m-n and the m×m matrix Qy has full rank m, the m×(m-n)
matrix QyB has full rank m-n and its column vectors form a basis of R(A)^. From this follows
that the column vectors of the m×m matrix:
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(73)

form a basis of m. This implies that the m×m matrix of (73) is square and invertible (this was
already shown in the previous section). If we write equation (50) of the previous section as:

it follows that the inverse of (73) is given as:

(74)

According to theory in Linear Algebra, a vector z Œ m can be decomposed in only one way
along R(A) and R(A)^. If:

(75) and

then u is called the orthogonal projection of z on R(A). The matrix PA, defined as:
(76)

is called the orthogonal projector on R(A). We now want to find the matrix representation of PA.
Since the column vectors of the matrix of (73) form a basis of m, every z Œ m can be
represented as:

In this representation u=Aa is the component of z along R(A). With (76) this gives:

or:

(77)

Since (76) holds for all z Œ m, (77) holds for all a and b:
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Post-multiplication with (A QyB)-1 gives:

And substitution of (74) gives then finally:

(78)

According to theory in Linear Algebra, PA has the following properties:

From Linear Algebra we know that I-PA is also an orthogonal projector. I-PA projects onto R(A)^

(79)

and along R(A). I-PA has the properties:

Instead of I-PA we will sometimes use the notation PA
^. It follows from equation (49) that:

(80)

(81)

To conclude this section we will prove that:

(82)

Substitution of Qŷ=A(A*Qy
-1A)-1A* (see (61)) gives:

or with (78):
(83)

Since the trace of a matrix is the sum of its eigenvalues (Strang, 1988 and Lay, 1997), we need
the eigenvalues of PA in order to prove (83). The eigenvalue problem for PA reads:
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(84)

with PAPAz=lPAz=l2z and PAPAz=PAz=lz follows that l2z=lz or for z 0:

(85)

This shows that the eigenvalues of PA are 1 or 0. In order to prove (83) we thus need to show
that PA has n-number of eigenvalues equal to 1. This corresponds to showing that for l=1 the
solution space of (84) has dimension n. For l=1 the solution space of (84) is the solution space
of (I-PA) z=0 and thus the nullspace of I-PA. According to (80) the nullspace of I-PA is the
rangespace of A. Hence, dim. N(I-PA)=dim. R(A)= rank A=n. This concludes the proof.

2.6 Summary

In the table on the next page an overview is given of the results of Best Linear Unbiased
Estimation.
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Best Linear Unbiased Estimation

Model

Estimators

Mean

Variances and covariances

Orthogonal projectors



3 The model with condition equations

3.1 Introduction

Figure 3.1 shows the levelling network of section 2.1.

Figure 3.1: Levelling network

In section 2.1 it was shown that the observation equations of the levelling network of figure 3.1
take the form:

For simplicity it is assumed here that the known height of the reference point 0 is equal to zero.

(1)

The matrix equation of (1) is of the form:

(2)

with m=9 and n=5. Thus since rank A=n=5, the number of redundant observations is m-n=4.
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Instead of writing the observed height differences as functions of the unknown heights, as is done
in (1), it is also possible to write down condition equations (voorwaarde vergelijkingen) which
the height differences have to fulfill. In figure 3.1 four loops (kringen) are shown. With perfect
measurements the height differences of each loop would sum up to zero. Due however to the
presence of measurement errors these sums will differ from zero. That is, misclosures will exist.
If we denote these four misclosures (tegenspraken) by respectively t1, t2, t3 and t4, the four
condition equations become (see figure 3.1):

These four condition equations can be written in matrix notation as:

(3)

This matrix equation is of the form:

(4)

(5)

with b=4 and m=9. Thus matrix B has m=9 rows and b=4 columns.

Note that in the above example of the levelling network the number of redundant observations,
m-n=4, equals the number of condition equations, b=4. This is generally true, because each
additional observation on top of the n-number of observations which are needed for the unique
determination of x in (2), gives rise to an extra condition equation. Thus:

(6)
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Also note that if the matrix of (1) is pre-multiplied with the matrix of (4), the result equals the
zero-matrix. In terms of the matrices A and B this means that:

(7)

Also this relation between the two matrices A and B is generally true. This can be seen as
follows. Let us start from equation (2). If we pre-multiply equation (2) with a b×m matrix B* we
get:

Our objective is now to investigate whether a full rank matrix B*, with rank B*=b=m-n, exists

(8)

such that B*A=0. If such a matrix exists, then the unknown parameter vector x gets eliminated
from (8), and (8) reduces to the form of (5) with:

(9)

If we denote the b-number of columnvectors of matrix B by bi, i=1,...,b, then B*A=0 is equivalent
to:

The question is thus if and how many linearly independent vectors exist that satisfy (10). From

(10)

Linear Algebra we know that for an n×m matrix A*:

(11)

Since rank A=n, it follows from (11) that:

(12)

Thus the dimension of the nullspace of A* is m-n. This shows that indeed m-n linearly
independent vectors bi exist that satisfy (10). Note that if there are no redundant observations
m=n and (10) has only the trivial zero vector as solution. Thus if m=n, no matrix B exists for
which (7) holds and no condition equations exist.

With (2) and (5) we now have two equivalent representations of the same model. Equation (2)
is a parametric representation. The equations of (2) are known as observation equations. Equation
(5) is an implicit representation. The equations of (5) are known as condition equations. In
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chapter 2 we developed the theory of linear estimation for (2). In this chapter we will develop
the theory for the model with condition equations (5).

3.2 Best Linear Unbiased Estimation

From equations (5) and (9) follows that:

This shows that the misclosure vector t is due to the random measurement error vector e.

(13)

We will assume, like we did in chapter 2, that:

(14)

This, together with (13) gives:

(15)

This model will be our starting point for best linear unbiased estimation. Let us assume that we
are interested in estimating a parameter j, which is a linear function of E{y}:

For instance, in case of the levelling network of figure 3.1 we could be interested in estimating

(16)

the height difference between the points 1 and 5. Then j of (16) plays the role of the height
difference between the points 1 and 5, and the vector g of (16) takes the form:

Let ĵ be the estimator of j. Then according to the criteria of best linear unbiased estimation, we
want the estimator ĵ to be a linear function of y:

(17) "L-property"

such that

(18) "U-property"

and

(19) "B-property"
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Our objective is now to find a vector l such that with (17), the conditions (18) and (19) are
fulfilled.

Substitution of (17) into (18) gives:
(20)

If we subtract (16) from (20) we get:

This equation states that the vector l-g is orthogonal to the mean E{y}. From the first equation

(21)

of (15) we learn that the subspace orthogonal to E{y} is spanned by the b linearly independent
column vectors of matrix B. This, together with (21) shows that the vector l-g is an element of
the range space of the matrix B:

This means that a b×1 vector a exists such that:

or:

(22)

The meaning of this result is that every vector l that can be represented as (22), gives with (17)
an unbiased estimator of (16). To verify this, we substitute (22) into (17):

If we take the expectation we get:

and with (15):

which according to (16) is equal to j.

Let us now introduce condition (19), the condition of minimum variance. Application of the
propagation law of variances to (17) gives with (15):
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Hence, our minimization problem reads:

(23)

This minimization problem may also be written as:

The solution of this minimization problem is:

(24)

This is easily verified by using an algebraic proof like the one given in section 1.2. Substitution
of (24) into (22) gives:

(25)

The best linear unbiased estimator ĵ of j follows therefore with (17) as:

(26)

If we take for the vector g respectively (1,0,...,0)*, (0,1,0,...,0)*, ...., (0,...,0,1)*, the BLUE of E{y}
follows as:

(27)

This, together with (26) shows that:

(28)

If we pre-multiply (27) with B*, we get:
(29)

which shows that the estimator ŷ satisfies the condition equations. Since t=B*y (see (13)),
application of the propagation law of variances gives Qt=B*QyB. This shows that (27) can also
be written as:

(30)

This equation shows perhaps more clearly than (27), that the estimator ŷ is obtained from y by
subtracting a part which depends on the misclosure vector t such that ŷ satisfies (29). Since:
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(31)

(see equation (49) in section 2.2), the estimator of (27) is identical to the estimator of E{y}
which was derived in the previous chapter (see for instance the summary in section 2.6). This
is of course understandable, because we used the same principle of estimation, namely BLUE,
and the same model. Model (15) is namely equivalent to the model in section 2.6. The two
models only differ in their representation.

The results of estimation for model (15) are therefore identical to the results of the previous
chapter. The results only differ in their appearance. In chapter 2 everything was expressed in
terms of the matrix A, whereas in this chapter everything is expressed in terms of the matrix B.

3.3 The case

The model of condition equations (4) was based on the fact that the observed height difference
of each levelling loop in figure 3.1 should sum up to zero. Now consider the triangulation
network of figure 3.2.

Figure 3.2: Small triangulation network

From the figure it is clear that the six angle observables should fulfill two conditions: in each
triangle the expectation of the three observed angles sums up to p. Due however to the presence
of measurement errors these condition equations will result in small misclosures. The two
condition equations become in matrix notation:

(32)
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Compared to (5) this matrix equation is of the form:

with b=2, m=6 and

(33)

For a non-zero vector b0 straightforward application of the estimation formulae of the previous
section is no longer possible. At first sight we can rewrite (32) e.g. as:

so that a model of the form of (5) is obtained. However, in general it is difficult to redefine the
vector of observables so that it is of the form of (5). Therefore we will adapt the estimation
formulae so that the non-zero vector b0 can be taken into account. From (33) the vector of
misclosures and its variance matrix are obtained as:

Then with (30) the estimators

(34)

ŷ and ê become:

(35)

Comparing this result with (27) shows that the non-zero vector b0 results in an additional term
for the least-squares estimators. Since b0 is a vector of constants the extension of the model of
condition equations with a non-zero b0-vector does not affect the variance matrices Qt, Qŷ and
Qê.

3.4 Summary

Since the results of estimation for model (15) are identical to the results of the previous chapter,
we merely need to represent the results of section 2.6 in terms of the matrix B to obtain a
summary of the results for model (15). This is done on the next page, there upon the main results
of this and the previous chapter are compared.



The model with condition equations 69

Best Linear Unbiased Estimation

Model

Estimators

Mean

Variances and covariances

Orthogonal projectors
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Best Linear Unbiased Estimation

observation equations condition equations



4 yR -Variates

4.1 Introduction

For the case that m=2 and n=1 the model with observation equations reads:

(1)

The corresponding model with condition equations reads:

(2)

In chapter 1 (see figure 1.8 or figure 1.14 in section 1.3) it was shown that the estimator ŷ 
of E{y} is the oblique projection of y onto the line with direction vector a. The direction of 
projection is parallel to the tangent line of the ellipse z*Qy

-1z = a*Qy
-1a at a (see figure 4.1).

Figure 4.1: Oblique projection of y

If we rotate the direction vector a so that it becomes parallel to the 1-axis, figure 4.1
transforms into figure 4.2.

Figure 4.2: Oblique projection of y in case a= (a1 0)*
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In this case the second component a2 of the vector a is zero, and the first component b1 of
the vector b is zero. The corresponding two models (1) and (2) then take the form:

(3)

and:

(4)

Equation (4) shows that the coefficient of E{y1} equals zero. This implies that the observable
y1 does not appear in the condition equation. Observables that do not appear in the condition
equations are called free variates. Thus E{y1} is a free variate. If one writes (4) as:

(5)

one might be inclined to conclude, since E{y1} does not appear in (5), that the estimator ŷ1

of E{y1} equals y1 and thus that ê1=y1-ŷ1 is zero. This however is not true. Figure 4.2 shows
namely clearly that both ê1 and ê2 are unequal to zero. The reason for this is that the major
and minor axes of the ellipse of figure 4.2 make a non-zero angle with the 1-axis and 2-axis.
If the major and minor axes of the ellipse are parallel to the 1-axis and the 2-axis, then figure
4.2 transforms into figure 4.3.

Figure 4.3: The covariance matrix Qy is diagonal

In this case s12=0, Qy is diagonal and ê1=0. It thus seems that the covariance, s12, between
y1 and y2 determines to what extent ê1=y1 - ŷ1 differs from zero. If s12=0 then ê1=0, and if
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s12 0 then also ê1 0. In order to find out how ê1 depends on s12 consult figure 4.4. Figure
4.4 shows that:

(6) ,

and that b is the angle between the vector and the 1-axis.

Figure 4.4: tanb
ê1

ê2

Since the inverse of Qy is:

it follows with a=(a1 0)* that:

From this it follows that:

(7)

which with (6) gives that:

(8)

This result shows how ê1=y1 - ŷ1, and thus the estimator ŷ1=y1 - ê1 of free variates, can be
determined from ê2=y2 - ŷ2. In the next section we will generalize (8) to the multi-dimensional
case.
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Free variates are examples of so-called yR-variates. The definition of yR-variates reads as
follows:

yR-variates are observables that are either stochastically or
functionally Related to another set of observables y.

There are three types of yR-variates:

1. yR-variates that correlate with y-variates. These are the free variates (vrije grootheden);
2. yR-variates that are functions of y-variates. These are the derived variates (afgeleide

grootheden);
3. yR-variates of which the y-variates are functions. These are the constituent variates

(samenstellende grootheden).

ad 1. These variates occur for instance when new measurements need to be included in
existing geodetic networks. Consider for instance the levelling network of figure 3.1
of Chapter 3. Assume that the five heights have been estimated with the available nine
levelled height differences. This gives the five estimators of the heights, x̂1, x̂2, x̂3, x̂4,
x̂5. Now assume that a new height difference has been measured, say between the
points 1 and 5. If we denote this height difference by y10, we can write the condition
equation as:

(9)

On the basis of this condition equation we can compute ŷ10 and ˆ ˆ , the improved
estimators for the heights of the points 1 and 5. However, since the estimators x̂2, x̂3

and x̂4 are correlated with x̂1 and x̂5, also the estimators x̂2, x̂3 and x̂4 can be improved.
The variates x̂2, x̂3 and x̂4 are in this case the free variates since they do not appear in
condition equation (9).

ad 2. Examples of derived variates in the case of the levelling network are height
differences which are not directly measured, but which can be computed as functions
of the estimated heights.

ad 3. Consider the levelling network of figure 4.5. Assume that the height difference
between the points 1 and 2 has not been measured directly, but that instead it equals
the sum of a number of measured height differences.

Figure 4.5: Levelling network
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One can now include either the individual measured height differences in the condition
equation or their sum y1. In the last case the individual measured height differences
are the constituent variates.

In the following sections it will be shown that formula (8) holds for all three types of yR-
variates.

4.2 Free variates

In this section we will generalize formula (8) to the multi-dimensional case. We will give two
derivations. One based on the model with condition equations, and one based on the model
with observation equations.

We know that the solution of the model with condition equations
(10)

reads:
(11)

Now let us assume that instead of (10) we have the model:

(12)

In this case the coefficients of yR are zero; thus yR is a vector of free variates. When we
compare (12) with (10) we see that B* of (10) is replaced by (B* 0) and Qy of (10) by:

Using the second equation of (11), we therefore get for model (12):

or:

(13)

From the first equation of (13) it follows that:

If we substitute this into the second equation of (13) we finally get:
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(14)

This is the multi-dimensional generalization of equation (8) of section 4.1.

We will now derive formula (14) using the model with observation equations. The equivalent
of model (12) in terms of observation equations reads:

(15)

Note that:

holds.

If we denote the inverse of the covariance matrix of the observables by:

(16)

the normal equations for model (15) take the form:

(17)

From the last equation of (17) it follows that:

or:

or:

(18)

This results looks already very similar to (14). However, equation (14) is expressed in terms
of covariance matrices, whereas (18) is expressed in terms of weight matrices.
Since:
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(see (16)), it follows that GRy Qy + GR QRy = 0 and thus that:

(19)

This, together with (18) proves (14).

4.3 Derived variates

In this section we will prove that formula (14) also holds for derived variates. yR-variates are
derived variates if they are functions of the observables y. Let us assume that this functional
relationship takes the form:

(20)

Then also:

(21)

Subtraction of (21) from (20) gives:

(22)

What remains to be shown is now that L equals QRy Qy
-1. Application of the propagation law

of covariances to (20) gives:

or:

This, together with (22) shows that formula (14) also holds for derived variates.

4.4 Constituent variates

In this section we will prove that formula (14) holds for constituent variates. Constituent
variates are yR-variates of which the y-variates are functions. Let us assume that this
functional relationship takes the form:

(23)

Application of the propagation law of variances gives:

(24)

and application of the propagation law of covariances gives:
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(25)

As we know ê= y - ŷ follows from solving the model:

(26)

as:

(27)

With (23) we may formulate the model with condition equations also as:

(28)

When compared with (26) this means that B of (26) is replaced by L*B, that y is replaced by
yR and that Qy is replaced by QR. Instead of (27) we therefore get for model (28):

(29)

With (23), (24) and (25) this can also be written as:

or with (27) as:

which is identical to (14).

Let us, as an example of the above, "rederive" the solution of the model with condition
equations. The model with condition equations reads:

(30)

If we define the misclosure vector as:

(31)

then (30) can also be written as:

(32)

This model is also in the form of condition equations. The coefficient matrix of the condition
equations is in this case the unit matrix I. If we solve for model (32) we get for êt = t - t̂:

(33)
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We can now use our formula (14) in order to derive ê = y - ŷ. This is done by interpreting
y of (31) as an yR-variate and t of (31) as an y-variate. Application of formula (14) gives then:

(34)

Application of the propagation law of variances to (31) gives:

(35)

and application of the propagation law of covariances to (31) gives:

(36)

Substitution of (33), (35) and (36) into (34) gives with (31) then finally:

Hence, we have obtained our well-known and familiar result again.





5 Mixed model representations

5.1 Introduction

In chapter 2 we developed the theory of linear estimation for the model with observation 
equations:

(1)

It was shown in chapter 2 that the estimator x̂ of x follows from solving the system of normal 
equations:

(2)

as:

(3)

From this result the estimators ŷ = Ax̂ and ê = y - ŷ follow as:

(4)

and:

(5)

In chapter 3 we developed the theory of linear estimation for the model with condition equations:

(6)

In this case the estimators ŷ and ê= y - ŷ can be represented in terms of the matrix B as:

(7)

and:

(8)

In the present chapter we will introduce two additional model representations. The first new 
model representation we will consider takes the form:

(9)

In this model representation x is an n×1 vector of unknown parameters and y is an m×1 vector
of observables. Note that (9) is a mixture of (1) and (6). If matrix B of (9) equals the identity
matrix, then (9) reduces to the model with observation equations (1). If on the other hand matrix
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A of (9) equals the zero matrix, then (9) reduces to the model with condition equations (6). In
the next section the solution of (9) will be derived.

The second new model representation that we will consider takes the form:

(10)

This representation is in the form of observation equations with conditions on the parameter
vector x. If B=0 then (10) reduces simply to (1). The solution of (10) will be derived in section
5.3.

5.2 The model representation B*E{y}=Ax

Our starting point is the representation:

(11)

We will assume that both matrices A and B have full column rank. Thus:

(12)

Note that matrix A can only have full column rank if n £ b: the number of unknown parameters
should not exceed the number of conditions on the observations.

There are different derivations possible for deriving the estimators x̂, ŷ and ê for model (11). One
possibility would be to transform (11) into a form with observation equations only. This can be
done as follows. Consider the system:

(13)

as an inhomogeneous system of linear equations with the unknown vector E{y}. Vector E{y} can
then be written as the sum of a particular solution of (13) and the homogeneous solution of:

(14)

If we denote the matrix of which the column vectors are orthogonal to the columnm×(m b)
vectors of matrix B by B^, then:
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From this it follows that the solution of (14) takes the form:

(15)

This is the homogeneous solution. A particular solution of (13) is:

(16) (verify !)

Hence, the solution for E{y} of (13) takes the form of the sum of the particular solution (16) and
the homogeneous solution (15):

(17) .

Note that this representation is in terms of observation equations only. Since (17) is completely
equivalent to the first equation of (11), we can now apply our solution method for observation
equations to (17) in order to get the solution of (11).

Another possibility to solve for (11) would be to transform (11) into a form with condition

equations only. This can be done as follows. Consider again the system (13). If we denote theb×(b n)
matrix of which the column vectors are orthogonal to the column vectors of matrix A by A^, then

From this it follows that pre-multiplication of (13) with A^* gives:

(18) .

Note that this representation is in terms of condition equations only. Since (18) is completely
equivalent to the first equation of (11), we can now apply our solution method for condition
equations to (18) in order to get the solution of (11).

Instead of following the above two mentioned approaches for solving (11), we will make use of
a third approach. This approach makes use of the concept of yR-variates. Define a b×1 vector t
as:

(19)

Substitution into (11) gives the representation:

(20)
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This representation is in the form of observation equations only. Hence, we know how to
compute the estimators x̂, t̂ and êt. The estimator x̂ follows as:

(21)

Application of the propagation law for variances to (19) gives for Qt:

(22)

Substitution of (19) and (22) into (21) gives then for the estimator x̂ of x:

(23)

The estimators t̂ and êt follow simply as:

(24) .

Now, in order to obtain êy = y - ŷ, note that y of (19) can be interpreted as a constituent yR-
variate.

Application of formula (14) of chapter 4 gives then:

(25)

The matrix Qyt follows from application of the propagation law of covariances to (19) as:

(26)

The estimators êy and ŷ = y - êy follow then finally with (22), (23), (24), (25), and (26) as:

(27)

5.3 The model representation E{y}=Ax , B*x=0

Our starting point is the representation:

(29)

This representation is in the form of observation equations with conditions on the parameter
vector x. In order to derive the estimators x̂, ŷ and ê we will first transform (29) into a form
with observation equations only. This is done by finding the parametric representation for:
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(30)

Let us denote the n×(n-b) matrix of which the column vectors are orthogonal to the column
vectors of matrix B by B^. Then:

(31)

With (31) the parametric representation of the homogeneous system, (30) becomes:

(32)

Thus (32) is completely equivalent to (30). It is remarked that we assume that both the matrices
A and B are of full column rank; thus rank A = n and rank B = b. Note that matrix B can only
have full column rank if b £ n: one cannot impose more than n independent conditions on the
n unknown parameters.

If we substitute (32) into the first equation of (29) we get:

(33)

This representation is completely equivalent to (29) and it is in the form of observation equations
only. Thus we know how to compute the estimator of . This estimator reads:l̂ l

(34)

Now let us consider the solution of (29) without the conditions on the parameter vector. This is
our standard model representation with observation equations. As you know the solution of (29)
without the conditions on the parameter vector satisfies the normal equations:

(35)

We have given x̂A of (35) the subscript A to emphasize that x̂A is not the solution of (29) but of:

(36)

The covariance matrix of x̂A reads:
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(37)

With (35) and (37) we can now write (34) as:

(38)

This result together with (32) gives the estimator of x for model (29):

(39)

If we look at the two formulae (38) and (39) we note that they take a very familiar form. And
indeed, (38) and (39) are the solution of the model:

(40)

This model representation is in terms of observation equations. The equivalent of (40) in terms
of condition equations follows with (31) as:

(41)

As you know the solution of (41) is:

(42) ˆ

But since (41) is equivalent to (40) and (39) is the solution to (40), (42) must be identical to
(39). This implies that the estimator x̂ of x for model (29) can be written as:

(43)

We thus have now found an expression for the estimator x̂ of x for model (29), which is in terms
of the matrices A and B of (29). It follows then with (35), (37) and (43) that we can compute
the estimators for model (29) as:

(44)
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This result shows that the solution of (29) can be obtained in two steps. In the first step one
considers (29) without the conditions on the parameters. That is, one solves for the model with
observation equations (36). This gives the estimator x̂A. Then in a second step one includes the
conditions on the parameters. That is, one solves for the model with condition equations (41).
This then finally gives the estimator x̂.

It follows from (44) that:

or that:

Since this may also be written as:

This gives finally:

(45) .

Note that the first term on the right hand side of (45) corresponds with the squared norm of the
least-squares residual vector of the model E{y}=Ax, whereas the second term on the right hand
side of (45) corresponds with the squared norm of the least-squares residual vector of the model
B E x̂

A
0.





6 Partitioned model representations

6.1 Introduction

In chapters 2 and 3 the theory of linear estimation was developed for the model with observation 
equations and for the model with condition equations. Recall from chapter 2 that the estimators 
of the model:
(1) 1)

are given as:

(2)

And recall from chapter 3 that the estimators of the model:

(3)

are given as:

(4)

In this chapter we will partition the matrices A and B of (1) and (3) respectively, columnwise and 
rowwise. The following four cases will therefore be considered in this chapter:

1o

1) The notation "D{y}" will be used instead of the notation "E{(y-Ax)(y-Ax)*}". The
kernel "D" stands for "Dispersion".
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2o

3o

4o 2)

In this chapter it will be shown how the above partitioning of A and B can be carried through
to the estimators of (2) and (4) respectively.

6.2 The partitioned model

Let us consider the partitioned model:

(5)

The corresponding partitioned system of normal equations reads:

(6)

Now let us assume that for a particular application we are only interested in the estimator x̂1.
There are two ways for finding x̂1. Either we solve the complete system of normal equations (6)
and then look at the first n1-elements of the estimator x̂. Or, we eliminate x̂2 from the first n1

equations of (6) and solve for x̂1. This second approach is more efficient since it gets round the
necessity of solving the complete system of normal equations. The estimator x̂2 gets eliminated
from the first n1 equations of (6), if we premultiply (6) with the square and full rank matrix:

(7)

Premultiplication of (6) with (7) gives:

2) This case will not be dealt with explicitely in this chapter.
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(8)

In the first n1 equations of (8) we recognize the expression for the orthogonal projector:

(9)

Using the properties:

(10)

and the abbreviation:

(11)

we may therefore write (8) also as:

(12) 3)

The solution for x̂1 follows therefore as:

(13)

Application of the propagation law of variances gives:

(14)

Once x̂1 is known, x̂2 can be found from the last n2 equations of (12). This gives:

(15)

Application of the propagation law of variances gives with (13) and (14):

Since this reduces to:

(16)

Summarizing, we thus have shown that:

3) The normal matrix of this system is called a "reduced normal matrix". It is said to be
reduced for x2.
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(17)

Instead of eliminating the estimator x̂2 from the first n1 equations of (6), one may also
eliminate the estimator x̂1 from the last n2 equations of (6). This is achieved by premultiplying
(6) with the square and full rank matrix:

(18)

This gives analogous to (12) the equations:

(19)

with

(20)

From (19) the estimators x̂1 and x̂2 and their variance matrices follow as:

(21)

Compare (21) with (17) and note that (21) follows from (17) by interchanging the role of x1

and x2. The above results can now be used to investigate what happens to the precision of the
estimators when a model with observation equations is enlarged with additional parameters.
Let us assume that our original model is given as:

(22)

The corresponding estimator and its variance matrix will be denoted by and
respectively. Then:

(23)
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Suppose now that model (22) is enlarged to :

(24)

Then according to (17):

(25)

Note the resemblance between (23) and (25). The two estimators and are identical if

and only if , that is if:A1 A1

(26)

This is the case if the range space of A1 is orthogonal to the range space of A2, that is if
R(A1)^R(A2) or A1

*Qy
-1A2=0. Note that in this case the partitioned normal matrix of (6)

becomes blockdiagonal. We may thus conclude that the estimator of x1 is not affected by an
enlargement of the model if and only if R(A1) is orthogonal to R(A2). In order to find out what
happens when R(A1) and R(A2) are not orthogonal to each other, we take instead of the
expression , the following expression from (21):Qx̂1

(A1Q
1

y A1)
1

With (23) this can be written as:

(27)

Now suppose we are interested in a particular linear function, . With model
(22) the estimator of reads and with model (24) we get as estimator of ,

Their variances read:

With (27) this gives:

Since the second term on the right hand side is always non-negative, it follows that:

(28)

This important result shows that the precision of the estimators generally gets poorer if more
parameters are added to the linear model.
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Let us now investigate the variance matrix of the estimator of the added parameter vector x2.
According to (21), is the inverse of the matrix ; see also (19). With ,Qx̂2

A2Q
1

y A2 A2 P ^
A1

A2

we may write:

(29)

Since if and only if R(A2)ÃR(A1), it follows that if the columnPA1

A2 A2 A2 Q 1
y A2 0

vectors of A2 are linear dependent of the column vectors of A1. Thus, does not exist andQx̂2

x2 is not estimable if R(A2)ÃR(A1). In this case matrix (A1 A2) also fails to be of full rank.
Now assume that x2 is a scalar. Then n2=1 and A2 is a vector. With the cosine rule it follows
then that:

(30)

see figure 6.1. But we also have that:

(31)

From (30) and (31) it follows that:

(32)

This together with (29) shows that:

(33)

Figure 6.1: A2 Q 1
y PA1

A2 A2 PA1

A2 cosa

From this it follows that:

(34)

The angle a measures the degree of dependence between A2 and A1. If a= p, then A2 is1

2
orthogonal to R(A1) and If a=0, then A2ŒR(A1) and If a is small,s2

x̂2
(A2 Q 1

y A2)
1 . s2

x̂2
• .

then is large and x2 is poorly estimable. Since (see(33)):s2
x̂2

(35)
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the degree of dependence between A2 and A1 can be computed in a rather straight forward
manner from the ratio of the diagonal elements of the normal matrix after and before
reduction. Compare (19) and (6). The computation of the scalar sin2a is usually included in
the software in order to diagnose and detect possible singularities or rankdefects in the normal
matrix.

So far we have been concerned with the estimators x̂1 and x̂2. Let us now consider the

estimator ŷ. Since it follows from (17) that:ŷ A1x̂1
A2x̂2

,

or:

(36)

Since ŷ=PAy, with A=(A1 A2), we have with (36) the following orthogonal decomposition of
the orthogonal projector PA:

(37)

In a completely analogous way it follows from (21) that:

(38)

and:

(39)

The above orthogonal decomposition is shown in figure 6.2.
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Figure 6.2:

Since it follows with (39) that:ê (I PA)y P ^
A y ,

(40)

where ê1 is the least-squares residual vector of model (22). From (40) it follows that:

(41)

But:

Hence, (41) can be written as:

or as:

(42)

This important results shows that the length of the residual vector generally gets smaller if
more paremeters are added to the linear model. In the extreme case that the number of
parameters equals the number of observations, that is m=n1+n2, matrix A=(A1 A2) becomes
square and regular, and PA reduces to the identity matrix I. In this case (see(39))

or and therefore With (42) this gives ThusI PA1

PA2

PA2

P ^
A1

, ê1 P ^
A1

y PA2

y . ê 2 0 .
the least-squares residual vector is identically zero if the redundancy is zero.

The results of this section will play an important role and are used repeatedly in testing
theory.

Example 1:
The model that will be considered first is given as:
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(43)

Since the observation equations are of the form they describe the equation ofE y
i

ai x 1
1 ,

a straight line through the origin with slope . This is shown in figure 6.3.x 1
1

Figure 6.3: The line with slopeE y ax 1
1 x 1

1 tanf

The least-squares estimate of follows from the minimization problem:x 1
1

Since is the vertical distance from the point (ai, yi) to the straight lineyi ai x
1

1

the least-squares estimate follows from a minimization of the sum of theE y ax 1
1 ,

squares of these vertical distances. The least-squares estimator reads:

(44)

Its variance is given as:

(45)

Let us now consider the enlarged linear model:
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(46)

In this case the observation equations E{yi}=aix1+x2 describe a straight line with intercept x2

and slope x1. This is shown in figure 6.4.

Figure 6.4: The line with slope and intercept x2E y ax1 x2 x1 tanf

With the definitions and it follows that:A1 (a1,a2, ,am ) A2 (1 1)

(47)

In order to simplify the expression for somewhat, we define:A

(48)

We now may write as:A

(49)

Using (17) and (49) the least-squares estimator x̂1 becomes:
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(50)

Compare (50) with (44). The variance of x̂1 is given as:

(51)

According to the theory of this section or:

(52)

should hold. This is easily verified. From (52) it follows that:

or:

or:

or:

or:

or:

Hence, inequality (52) holds indeed. Since and A2=(1...1)*, it follows withA1 (a1,a2, ,am )

(50) from (17) that the least-squares estimator x̂2 is given as:

or as:

(53)

The variance of x̂2 follows from (17) as:
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With (48) and (51) this gives:

(54)

6.3 The partitioned model

Recursive estimation

Consider the partitioned model:

(55)

Note that it is assumed that y1 and y2 are uncorrelated. This is usually the case in practical

applications. The least-squares estimator of x of model (55) will be denoted as . It reads:x̂
(2)

(56)

Let us now consider the partial model:

(57)

Its solution will be denoted as . It reads:x̂
(1)

(58)

Using this result, we may write (56) as:

(59)

But this is also the solution of:

(60)

Hence we have proven that the solution of the partitioned model (55) can be found in two
steps: First one solves for the partial model (57). This gives and . Then in the secondx̂

(1)
Qx̂(1)

step one uses this result together with y2 to find via model (60). This two step procedurex̂
(2)
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has an important practical implication. It implies that if new observables, say y2, become
available one does not need to save the old observables y1 to compute . One can computex̂

(2)
x̂

(2)
from the solution of the first step and the new observables y2. In this way one canx̂

(1)
recursively determine from and yk. This is shown in table 6.1. Expression (59) forx̂

(k)
x̂

(k 1)
x̂

(2)
shows that a matrix of the order n needs to be inverted. One can however also derive an
expression for in which a matrix of the order m2 needs to be inverted. This expressionx̂

(2)
is found if we solve (60) via the model of condition equations. Model (60) in terms of
condition equations reads:

(61)

Its solution reads:

Hence for we get:x̂
(2)

(62)

Application of the propagation law of variances gives:

(63)

Both the expressions (59) and (62) give identical results. But expression (62) is more
advantageous if m2 is small compared to n. In particular if m2=1, only a scalar needs to be
inverted in (62), whereas in (59) all three matrices , Q2 and need to beQx̂(1)

(Q 1
x̂(1)

A2 Q 1
2 A2)

inverted.

The equations (59) and (62) are called measurement update equations. Expression (62) clearly
shows how x̂(2) is found from updating x̂(1). The correction to x̂(1) depends on the difference

. Since can be interpreted as the prediction of E{y2} based on y1, they
2

A2x̂(1)
A2x̂(1)

difference is called the predicted residual of E{y2}. Note that the predicted residualy
2

A2x̂(1)
is not equal to the least-squares residual of E{y2}. This least-squares residual reads namely
y2 - ŷ2 = y2 - A2x̂(2).

Expression (62) shows that the correction to x̂(1) is small if the predicted residual is small, and
that the correction to x̂(1) is large if also the predicted residual is large. This is also what one
would expect. Also note that the correction to x̂(1) is small if the variance of x̂(1) is small. This
is also understandable, because if the variance of x̂(1) is small one has more confidence in x̂(1)

and therefore would like to give more weight to x̂(1) than to y2.
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Partitioned model

Recursive estimation

Table 6.1: Recursive estimation (A-form)
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Expression (63) shows how the variance of the estimator gets updated. Because of the minus
sign in (63) the precision of the estimator gets better. This is understandable, because by
including the additional observable y2 more information is available to estimate x. Table 6.2
shows the recursive estimation scheme based on (62) and (63).

Apart from the recursive scheme for the estimator of x, it is also possible to derive a recursive
scheme for ê*Qy

-1ê. Consider again the partitioned model:

Then:

(64)

If we use the abbreviation:

(65)

we may write the measurements update equation (62) as:

(66)

Substitution of (66) into the first term on the right-hand side of (64) gives:

(67)

Since and , equation (67) can be written as:A1 Q 1
1 (y1 A1x̂(1)

) 0 Q 1
x̂(1)

A1 Q 1
1 A1

(68)

Since is the least-squares residual vector of the partial model:y
1

A1x̂(1)

(69)

we have:

(70)

Substitution of (70) into (68) gives:

(71)
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Partitioned model

Recursive estimation

Table 6.2: Recursive estimation (B-form)
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Substitution of (66) into the second term on the right-hand side of (64) gives together with
(65):

(72)

Substitution of (71) and (72) into (64) shows finally that:

(73)

This equation shows how the norm of the least-squares residual vector should be updated
when the observable y2 becomes available. The update depends on the predicted residual.
Expression (73) can be generalized to more steps. This is shown in table 6.3.

Partitioned model

Recursive update

Table 6.3: Recursive update of

So far it was assumed that the observables y1 and y2 are uncorrelated. Let us now assume that
they are correlated. Hence, we consider the partitioned model:
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(74)

With Q12 0, Q21 0. In this case it is not possible to apply the above derived recursive
schemes directly. In order to be able to apply the above derived recursive schemes, the
observables y1 and y2 first need to be de-correlated. This is possible if we transform model
(74) such that the transformed observables are uncorrelated. For instance, if we define new
observables as:

(75)

then it follows with (74) that:

(76)

with:

(77)

Similarly, if we define new observables as:

(78)

we get with (74) that:

(79)

with:

(80)

With (76) or (79) it is now possible again to apply the recursive schemes. In this case
however the recursive schemes lose their practical implication. The transformed observable

of (76) reads namely:y
2

This shows that one still needs to save the old observable y1 for computing from andx̂
(2)

x̂
(1)

y2. The conclusion reads therefore that the recursive schemes of this section are only of
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practical value if the observables are uncorrelated. Fortunately this is the case in most
practical applications.

The theory as developed in this section plays an important role in the estimation theory of
dynamic systems and in the theory of Kalman filtering.

Example 2

Consider the linear model:

(81)

Its solution reads:

(82)

The solution of the partial model:

(83)

reads:

(84)

According to table 6.2, the solution of (81) can also be written as:

(85)
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We will now show that (85) is indeed identical to (82). We will first consider the first
equation of (85). This equation can be written as:

or as:

or with (84) as:

or as:

which indeed is identical to the first equation of (82). Now consider the second equation of
(85). This can be written as:

or as:

or with (84) as:

or as:

which is indeed identical to the second equation of (82).
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6.4 The partitioned model

Block estimation I

Consider again the partitioned model:

(86)

Its system of normal equations reads:

(87)

Now consider the two partial models:

(88)

Their systems of normal equations read: 4)

(89)

Comparison of (89) with (87) shows that the normal matrix of model (86) can be found from
the sum of the two normalmatrices of the two partial models in (88), and that the righthand
side of (87) can be found from the sum of the two right hand sides of the normal equations
in (89).

Let us now generalize model (86) to:

(90)

The corresponding partitioned system of normal equations reads:

4) Do not confuse of (89) with of the previous section.x̂
(2)

x̂
(2)
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(91)

The estimator x̂1 gets eliminated from the second set of normal equations if we premultiply
(91) with the square and full rank matrix:

(92)

This gives:

(93)

where we have used the abbreviation:

(94) (see also section 6.2)

The estimator x̂3 gets eliminated from the second set of normal equations if we premultiply
(93) with the square and full rank matrix:

(95)

This gives:

(96)

where we have used the abbreviation:

(97)
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The partially reduced system of normal equations (96) can now be solved in the following
way. First one uses the second set of normal equations in (96) to solve for x̂2. Once x̂2 is
known, it can be substituted into the first and third set of normal equations in (96) to solve
for x̂1 and x̂3 respectively. Thus the solution of (96) is found as:

(98)

What is the practial implication of the above solution method? Let us assume that two
countries, say the Netherlands and Germany, are covered with a large geodetic network. (See
figure 6.5.)

Figure 6.5: Geodetic network covering the Netherlands and Germany

The Dutch part of the network (full lines in figure 6.5) has been measured by the Dutch
Triangulation Department (Rijksdriehoeksmeting), and the German part of the network
(dashed lines in figure 6.5) has been measured by the German Triangulation Department. We
will assume that the vector x1 contains the unknown coordinates of the network points in the
Netherlands, that the vector x2 contains the unknown coordinates of the network points on the
border, and that the vector x3 contains the unknown coordinates of the network points in
Germany.

The partial model of the Dutch part of the network reads then:

(99)

Similarly, the partial model of the German part of the network reads:

(100)
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There are now two ways in which a Computing Centre can perform the adjustment of the
geodetic network. The first method consists of the following: Both the Dutch and the
Germans send their partial models, (99) and (100), together with the measured data to the
Computing Centre. The Computing Centre merges the two partial models to get (90), the
complete model. This model is then solved by the Computing Centre for x̂1, x̂2 and x̂3. The
solution x̂1, x̂2 is then sent by the Computing Centre back to the Dutch, and similarly the
solution x̂2, x̂3 is sent back to the Germans. The second method consists of the following:
based on their partial model, the Dutch form their partial system of normal equations and
reduce it for x1. This gives:

(101)

Similarly, the Germans form, on the basis of their partial model, their partial system of
normal equations and reduce it for x3. This gives:

(102)

The Dutch then sent their reduced normal block and the reduced right-hand sideA12Q
1

1 A12

to the Computing Centre. And the Germans do the same for their reduced normal
block and their reduced right-hand side . The reduced normal blocks andA22Q

1
2 A22 A22Q

1
2 y

2
the reduced right-hand sides are then added by the Computing Centre to form the system:

(103)

This system is solved by the Computing Centre for x̂2 (see(98a)). The solution x̂2 is then sent
back to both the Dutch and the Germans. With x̂2 and (101) the Dutch form the system:

(104)

This system is solved by the Dutch for x̂1 (see (98b)). In a similar way the Germans use x̂2

and (102) to form the system:

(105)

This system is solved by the Germans for x̂3 (see (98c)).

When we compare the above two methods we note that:

1o. The computational load for the Computing Centre is less with the second method than
with the first method. With the second method some of the computational load stays
namely at the two national Triangulation Departments. The order of the system to be
solved by the Computing Centre is then equal to the dimension of x2 (see (103)).
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2o. With the second method the Computing Centre never gets to know the original
measured data, since is provided and not yi, i=1,2. Hence, theAi2Q

1
i y

i
, i 1,2,

Computing Centre will never be able to compute the complete network. This may be
an advantage in case secrecy of data and coordinates is asked for.

The above developed second method was orginally introduced by the famous German
geodesist F.R. Helmert (1843-1917). The method is known as Helmert’s Block method. The
method has been used with great success for the readjustment of the European triangulation
network (RETrig: Réseau Européen Trigonometrique).

6.5 The partitioned model

Block estimation II

Consider again the partioned model:

(106)

Its solution reads:

(107)

Now consider the two partial models:

(108)

Their solutions read:

(109)

Using this results we may write (107) also as:

(110)

But this is also the solution of:

(111)
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This model is in terms of observation equations. Its equivalent form in terms of condition
equations reads:

(112)

And its solution reads:

(113)

Hence we have the following two equivalent expressions for the solution of (112):

(114)

and:

(115)

Note that (115) follows from (114) by interchanging the role of and . The estimatorsx̂(1) x̂(2)

of (114) and (115) are identical to (110) and therefore also identical to (107). Hence, we have
shown how the solution of the partitioned model (106) can be obtained in three separate steps.
This is shown in table 6.4.
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Partitioned model

Block estimation

1o.

2o.

3o.

or

Table 6.4: Block estimation
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We will now generalize the above results. Consider therefore the partitioned model:

(116)

Its solution reads:

(117)

Now consider the two partial models:

(118)

Their solutions read:

(119)

If we use the notation:

and a similar notation for , it follows with (119) that (117) may also be written as:Qx̂(2)
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(120)

But this is also the solution of:

(121)

This model is in terms of observation equations. Its equivalent form in terms of condition
equations reads:

(122)

Note that in this model, and are free yR-variates. The solution of (122) reads:

(123)

Note that the solution (123) generalizes solution (113). The above results are summarized in
table 6.5.
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(1)

Solving the partial model

(2)

gives:

(3)

Solving the partial model

gives:

(4)

With (3) and (4) we formulate the model of condition equations:

(5)

Its solution reads:

(6)

This is also the solution of (1).

Table 6.5: Block estimation
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Example 3

Consider the levelling network of figure 6.6. Point 0 is taken as reference point.

Figure 6.6: Levelling network

Its height is assumed to be known and equal to zero, that is x0=0. The corresponding model
of observation equations reads then:

(124)

The normal equations read:

(125)

In order to solve (125), we first eliminate x̂1 from the second normal equation. This is
achieved if we premultiply (125) with the square and regular matrix:
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This gives:

(126)

The estimators x̂2 and x̂3 follow then from:

as

(127)

Substitution of x̂2 into the first equation of (126) gives for x̂1:

(128)

With (127) and (128) we have found the solution of (124). Let us now try to solve (124)
using the block estimation scheme of table 6.6. The two partial models read:

(129)

and:

(130)

The system of normal equations for partial model (129) reads:

(131)

From this it follows that:

(132)
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The system of normal equations for partial model (130) reads:

(133)

From this it follows that:

(134)

It will be clear that (132) is the solution of the partial levelling network shown in figure 6.7a,
and that (134) is the solution of the partial levelling network shown in figure 6.7b.

(a) (b)

Figure 6.7: Two partial levelling networks

Now that the solutions of the two partial networks have been found, we can connect the two
networks by formulating the model of condition equations:

(135)

Note that the number of condition equations in (135) equals one. Thus the redundancy equals
one. The redundancy in partial model (130) equals zero and the redundancy of partial model
(129) equals one. Hence the total redundancy equals 1+0+1=2. And this is of course equal
to the number of linear independent condition equations that can be found in the levelling
network of figure 6.6.

The solution of (135) follows as (see also (123)):



122 Adjustment theory

(136)

We will now verify that solution (136) is indeed identical to (127) and (128). Substitution of
and from (132) and (134) into the first equation of (136) gives:x̂

1

(1) , x̂
2

(1) x̂
2

(2)

(137)

And this is indeed identical to (128). The verification of the remaining equations in (136) is
left to the reader.

The block estimation scheme of table 6.5 that has been developed in this section, can also be
derived from the mixed model representation of section 5.3. To see this, note that (116) is
equivalent to:

(138)

But this representation is of the form:

(139)

Show for yourself that the block estimation scheme of table 6.5 follows when the results of
section 5.3 are applied to model (138). According to (45) of section 5.3 we have

If we "translate" this result to model (138) we get with and
:
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(140)

This shows that the squared norm of the residuals of model (138) and thus of model (116),
can be found from the sum of the squared norm of the residuals of the three models in (118)
and (122).

6.6 The partitioned model

Estimation in phases

In this section we consider the partitioned model of condition equations:

(141)

It will be shown that the solution of this model, which will be denoted by ŷB, can be found
by first solving the partial model:

(142)

which gives and , and then solving for the model:ŷ
B1

QŷB1

(143)

This solution method is known as the method of estimation in phases (fase vereffening). This
method was originally introduced by the famous Dutch geodesist J.M. Tienstra (1895-1951).
Tienstra was appointed professor in Mathematical Geodesy in 1935 at the Delft University
of Technology.

With B=(B1 B2), the solution of (141) reads:

(144)

If we define the vector random variable ẑ as:

(145)

then is the solution of the partitioned system of these "normal equations":

(146)
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The estimator ẑ1 can be eliminated from the second set of normal equations if we premultiply
(146) with the square and full rank matrix:

This gives:

(147)

In (147) we recognize the orthogonal projector:

Since:

(148)

we may write (147), using the abbreviation:

(149)

also as:

(150)

The solution of this reduced system of normal equations follows then as:

(151)

With B=(B1 B2) it follows from (144) and (145) that ŷB can be written as:

Substitution of (151) gives:

or:

or, with (149):

or:

(152)
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Clearly:

(153)

is the solution of (142). The variance matrix of reads:

(154)

Substitution of (153) and (154) into (152) gives:

(155)

And this is clearly the solution of (143). Hence we have shown that the solution of the
partitioned model of condition equations (141) can indeed be found by first solving for the
partial model (142) and then solving for the model (143).

Let us now consider the least-squares residual vector êB=y-ŷB. From (155) it follows that:

(156)

With:

and:

this shows that:

(157) .

Hence, the least-squares residual vector of the partitioned model (141) can be found from the
sum of the least-squares residual vectors of the two separate models (142) and (143). From
(157) it follows that:

(158) .

Since:

because:

it follows that (158) reduces to:
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(159)

From the result it seems that one needs Qy for computing the scalar . If this wouldê
B2

Q 1
y ê

B2be the case, it would disrupt the method of estimation in phases, because it would imply that
Qy is also needed in the second phase, that is, when model (143) is solved for. Fortunately
one can show that Qy is not required for computing the scalar . In order to show thisê

B2

Q 1
y ê

B2we define the vectors of misclosures:

(160)

With (160) we have:

From this it follows that:

(161)

With (160) we also have:

(162)

Since:

(see (154)),

it follows from (162) that:

(163)

Substitution of (161) and (163) into (159) finally gives:

(164)

A summary of the above results is given in table 6.6.
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Partitioned model

1.

2.

Table 6.6: Estimation in phases
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Example 4

Consider the levelling network of figure 6.8.

Figure 6.8: A one loop levelling network

The corresponding model of condition equations reads:

(165)

Its solution reads:

or:

(166)

The variance matrix of (166) reads:

(167)

Now let us assume that the levelling network of figure 6.8 is enlarged with two additional
height difference observables, such that the two loop levelling network of figure 6.9 results.
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Figure 6.9: A two loop levelling network

The corresponding model of condition equations reads:

(168)

According to table 6.6, this model can be solved in two phases. The first phase would then
correspond to solving the partial model:

(169)

Its solution reads:
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or:

(170)

The variance matrix of (170) reads:

(171)

Comparison of (170) and (171) with (166) and (167) shows that the results of the first phase
for the first three observables is identical to the solution of (165). Also note that the last two
observables do not get a correction in the first phase. Hence, they do not play a role in the
first phase. It should be recognized however that this is a consequence of the assumption that
y4 and y5 are not correlated with y1, y2 and y3. This is fortunately the case in most practical
applications.

In order to obtain the final solution of (168) we have to solve in the second phase the partial
model:

(172)
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With (170) and (171) the solution of (172) reads:

or:

(173)

It will be clear that if point 0 in figure 6.9 is taken as reference point with a height equal to
zero, then Compare now (173) with (127), (128) and also (137).x̂

1
ŷ

1
, x̂

2
ŷ

3
and x̂

3
ŷ

4
.

There exists a close correspondence between the results of this section and the results of
section 6.2. In section 6.2 we considered the partitioned model:

(174)

and the partial model:

(175)

In the present section we considered the partitioned model:

(176)

and the partial model:

(177)
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Since model (175) follows from model (174) by setting x2 equal to zero, the redundancy of
model (175) is higher than that of (174). In fact the redundancy of (174) is m-n1-n2, whereas
the redundancy of (175) is m-n1. Since the redundancy of model (175) is higher than that of
(174), more condition equations can be formed for model (175) than for model (174). Hence,
one may consider (176) to be the equivalent of model (175), and model (177) to be the
equivalent of model (174). With A=(A1 A2) and B=(B1 B2) this gives:

(178)

This implies that the solution of (176) is identical to the solution of (175), and that the
solution of (177) is identical to the solution of (174). For the two models (174) and (175) we
have the orthogonal decomposition:

(179) (see (39))

In a similar way we have for the two models (176) and (177) the orthogonal decomposition:

(180)

With (179) and (180) it is now possible to relate the various orthogonal projectors to each
other. Clearly:

(181)

And with (179) and (180) this shows that:

(182)

The above results can now be used to show the correspondence between the solutions of the
four models (174), (175), (176) and (177). An overview of this correspondence is given in
table 6.7.

With the results of table 6.7 we can now also give an alternative proof of the method of
estimation in phases. Since:

it follows that:
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Table 6.7: Correspondence between partitioned condition
equations and partitioned observation equations
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Substitution of in the right-hand side gives:PA1

PA PA2

But Hence:P ^
A PA 0 .

(183)

With:

equation (183) becomes:

(184)

The geometry of this relation is shown in figure 6.10.

Figure 6.10: Geometry of P ^
QyB

P ^
QyB2

P ^
QyB1

Relation (184) already shows the two phases of the method of estimation in phases.
Substitution of:

(see (180)),

into:

using:

and:

gives:

(185)
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Since the variance matrix of is given by:ŷ
B1

P ^
QyB1

y

it follows that (185) may be written as:

And this shows that:

(186)

This concludes the proof of the method of estimation in phases.





7 Nonlinear models, linearization, iteration

7.1. The nonlinear A-model

7.1.1 Nonlinear observation  equations

Up to this point the theoretical development was based on the assumption that the m-vector 
E{_y} is  linearly related to the n-vector of unknown parameters x. In geodetic applications 
there are however only a few cases where this assumption truly holds. A typical example is 
levelling. In the majority of applications however the m-vector E{_y} is  nonlinearly related to 
the n-vector of unknown parameters x. This implies that instead of the linear A-model (1) of 
section 6.1, we are generally dealing with a nonlinear model of observation equations:

(1)

where A(.) is a nonlinear vector function from n into m. The following definition makes
clear when a vector function A(.) : n Æ m is linear or nonlinear.

Definition: The vector function A(.) : n Æ m is linear if and only if:

(2) .

The vector function A(.) is said to be nonlinear if it does not satisfy (2).

Example 1

Verify yourself that the vector function:

is linear and from 2 into 3.

Example 2

Verify yourself that the vector function:
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is nonlinear and from 2 into 3.

Example 3

Consider the levelling network of figure 7.1.

Figure 7.1: Levelling network

Point 0 is taken as reference point. Its height is assumed to be known and equal to zero, that
is, x0=0. The observed height differences are assumed to be uncorrelated and to have equal
variances s2. The corresponding model of observation equations reads then:

(3)

Verify yourself that the vector function A(x) of (3) is linear and from 3 into 5.
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Example 4

Consider the configuration of figure 7.2a. The Cartesian x,y coordinates of the three points
1, 2 and 3 are known and the two Cartesian coordinates x4 and y4 of point 4 are unknown.
The observables consist of the three distance variates l_14, l_24 and l_34 . These observables are
assumed to be uncorrelated and to have equal variances s2. Since distance and coordinates
are related as (see figure 7.2b):

the model of observation equations for the configuration of figure 7.2a reads:

(4)

This model consists of 3 nonlinear observation equations in the 2 unknown parameters x4 and
y4. Hence, the vector function A(x) of (4) is nonlinear and from 2 into 3.

(a) (b)

Figure 7.2: Distance resection

Example 5

Consider the parabola of figure 7.3a.
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(a) (b) (c)

(a) The parabola y=ax2+b
Figure 7.3 (b) The points (o) on the parabola that need to be digitized.

(c) The sample values ( ) of the digitized points

We are asked to determine the values of the parameters a and b of the parabola y=ax2+b.
In order to solve this problem we decide to measure the x,y coordinates of an n-number of
points on the parabola. The coordinates of the points 1,2, .., n (see figure 7.3b) are measured
with a digitizer. These coordinate observables are assumed to be uncorrelated(x

i
, y

i
), i 1, ,n,

and to have equal variances s2. The observed or sample values of the coordinates are shown
in figure 7.3c. The model of observation equations for this problem reads:

(5)

This model consists of 2n observation equations in (n+2) unknown parameters, namely x1,...,
xn and a,b. Note that the first n observation equations are linear, but that the second set of n
observation equations are nonlinear. Hence, the vector function A(x), with x=(x1, ,xn,a,b)*, of
(5) is nonlinear and from n+2 into 2n.
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Example 6

Consider figure 7.4. It shows an equilateral triangle. The position, orientation and size of this
triangle are unknown. In order to determine these parameters, the x, y coordinates of the three
points 1, 2 and 3 are observed.

Figure 7.4: An equilateral triangle

The coordinate observables (xi, yi), i = 1, 2, 3, are assumed to be uncorrelated and to have
equal variances s2. The corresponding model of observation equations reads:

(6)

This model consists of 6 observation equations in 4 unknown parameters, namely x1, y1, a anda.
The vector function A(x) of (6), with x=(x1, y1,a,a)*, is nonlinear and from 4 into 6.
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7.1.2 Linearization: Taylor’s theorem

In the previous section a number of examples were given of nonlinear A-models. We do
know how to compute least-squares estimators in case of a linear A-model. But what about
a nonlinear A-model? How should we compute the least-squares estimators if the model of
observation equations is nonlinear? For the majority of non-linear problems the solution is to
approximate the originally nonlinear A-model with a linear(ized) one. This approximation is
made possible with the theorem of Taylor (see also appendix A). This section is therefore
devoted to a discussion of Taylor’s theorem.

Taylor’s theorem for f: Æ
Let f: Æ be a function of which all its qth-order derivatives exist and for which

is continuous. Then a scalar q between x and exists such that:d q

dx q
f (x) x 0

(7)

with and with the remainder:Dx x x o

(8)

It follows from (7) and (8) that for q = 2 we have:

Note that the second term within the brackets can be made arbitrarily small with respect to

(9)

the first term within the brackets, by letting x0 approach x. If this second term is negligible
with respect to the first term, we may decide to ignore it, and approximate (9) as:

(10)

In this case we speak of a linear approximation of f(x) or a linearization of f(x) at x0. A
geometric interpretation of (10) is given in figure 7.5.
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Figure 7.5: The curve and its tangent liney f(x) y f(x 0) d
dx

f(x 0)(x x 0)
at the point (x 0, f(x 0))

Example 7

The linearization of reads:f (x) tan x at x 0

.

Example 8

The linearization of at x0 reads:f (x) ax 2 b

.

We will now consider functions of more than one variable. A function ƒ(x1, ,xn) of the
variables x1, ,xn will be denoted as f(x) with the n-vector x=(x1, ,xn)

*. The first-order partial
derivatives of will be denoted as Similarly, wef(x) ,

xa

f(x) ,a 1, ,n, a f(x), a 1, ,n.
denote the second-order partial derivatives of And sof(x),

2

xa xb

f(x), as 2
abf(x), a, b 1, ,n.

on.

Taylor’s Theorem for f: n Æ :

Let f: n Æ be a function of which all its qth-order partial derivatives exist and for which
is continuous. Let with . Then a scalarDx x x 0 andq x 0 t (x x 0) tŒ tŒ(0,1)

exists such that:
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(11)

with the remainder:

(12)

See appendix A for a proof of this theorem. Note that (11) and (12) reduce to (7) and (8) for
n = 1.

For the case q = 2, it follows from (11) and (12) that:

If we introduce the gradient vector and Hessian matrix of f(x) respectively as:

(13)

and ,

then equation (13) may be written in the more compact matrix-vector form as:

or as:

(14)

Note that this equation reduces to (9) in case n = 1. Equation (14) shows that a nonlinear
function f: n Æ can be written as the sum of three terms. The first term in this sum is the
zero-order term f(x0). The zero-order term depends on x0 but is independent of x. The second
term in the sum of (14) is the first-order term xƒ(x0)*Dx. It depends on x0 and is linearly
dependent on x. Finally, the third term in the sum is the second-order remainder R2(q,Dx).
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An important consequence of Taylor’s theorem is that the remainder R2(q,Dx) can be made
arbitrarily small by choosing x0 close enough to x. Now assume that x0 is indeed chosen close
enough to x, such that the second-order remainder can be neglected. Then, instead of (14) we
may write to a sufficient approximation:

(15)

Hence, if x0 is sufficiently close to x, the nonlinear function f: n Æ can be approximated
to a sufficient degree by the function ƒ(x0)+ xƒ(x0)*Dx which is linear in x. This function is
called the linearization of f(x) at x0. Note that (15) is the n-dimensional generalization of (10).

Example 9

The linearization of reads:f(x1, x2) (x 2
1 x 2

2 )½ at (x 0
1 , x 0

2 )

Example 10

The linearization of ƒ(x1,x2) = x1
2 + sin x2 at (x1

0,x2
0) reads:
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7.1.3 The linearized A-model

In the previous section we have seen how Taylor’s theorem can be applied to obtain a linear 
approximation of a nonlinear function. In this section we will see how the results of the 
previous section can be used to approximate the originally nonlinear A-model:

(16)

with its linearized version. Consider the nonlinear vector function A(.): n Æ m:

(17)

Each function ai(x), i=1, ,m, of (17) is a function from n into . Hence, each function ai(x),
i=1, ,m may be linearized according to (15). This gives:

(18) .

If we denote the m × n matrix of (18) by xA(x0) and substitute (18) into (16) we get:

(19)

If we bring the constant m-vector A(x0) of (19) to the left hand side of the equation and define
Dy_=y_ - A(x0) we finally obtain our linearized model of observation equations:

(20)

This is the linearized A-model. Compare (20) with (16) and with (1) of subsection 7.1.1. Note
when comparing (20) with (1) that in the linearized A-model Dy_ takes the place of y_, xA(x0)

takes the place of A and Dx takes the place of x. Since the linearized A-model is linear in
Dx=x-x0, our standard formulae for least-squares estimation can be applied again. This gives
for the least-squares estimator x̂ x 0 D x̂

(21)
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And application of the propagation law of variances to (21) gives:

(22)

It will be clear that the above results, (21) and (22), are approximate in the sense that the
second-order remainder has been neglected in (20). But these approximations are good enough
if the second-order remainder can be neglected to a sufficient degree. In this case also the
optimality conditions of least-squares (e.g. unbiasedness, minimal variance) hold to a
sufficient degree. A summary of the linearized least-squares estimators is given in table 7.1:

The non linear A-model

The linearized A-model

Least-squares estimators

Variances

Table 7.1: Linearized least-squares estimation
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Example 11

Consider the nonlinear A-model (4) of example 4:

(23)

The corresponding linearized A-model reads:

with

(24)

Up to this point nothing has been said about how one can obtain the approximate values of
the parameters, which are needed to perform the linearization. In the majority of geodetic
applications one can compute these approximate values of the parameters directly from the
observations. In the above problem for instance, the approximate coordinates of point 4, x4

0

and y4
0, can be computed from the two observed distances l14, l24 and the known coordinates

of the two points 1 and 2, x1, y1, x2 and y2.

Figure 7.6: Computation of the approximate coordinates x 0
4 and y 0

4
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The approximate angle ao (see figure 7.6) satisfies the cosine-rule:

Hence:

(25)

With this result the approximate coordinates of point 4 can be computed as:

(26)

These approximate values x4
0, y4

0 can now be used to linearize (23) to obtain (24). Of course,
there is still an ambiguity in the above computation. It is namely not clear whether the angle
a0 should be counted clockwise or counter clockwise. In expression (26) it has been assumed
that a0 should be counted counter clockwise. In practical applications this ambiguity usually
does not occur, since one usually knows whether point 4 lies left or right from the line
connecting the two points 1 and 2.

Example 12

Consider the nonlinear A-model (6) of example 6:

(27)

The corresponding linearized A-model reads:
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(28)

The approximate values x1
0, y1

0, a0 and a0 of the four parameters can be computed from the
observed coordinates as follows:

(29) .

7.1.4 Least-squares iteration

Up to this point it was assumed that x0 was a good enough approximation such that the
second-order remainder could be neglected. If this is not the case however, then x̂_ as compu-
ted by (21) is not the least-squares estimator and hence an unacceptable error is made. In
order to repair this situation, we need to improve upon the approximation x0. It seems reaso-
nable to expect that the estimate:

is a better approximation than x0. That is, it seems reasonable to expect that x1 is closer to the
true least-squares estimate than x0. In fact one can show that this is indeed the case for most
practical applications. But if x1 is a better approximation than x0, a further improvement can
be expected if we replace x0 by x1 in the linearization of the nonlinear A-model. The recom-
puted linearized least-squares estimate reads then:

Now x2 can be expected to be a better approximation than x1. But this implies that a further
improvement can be expected if we replace x1 by x2 in the linearization of the nonlinear A-
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model. The recomputed linearized least-squares estimate, based on the approximation x2 reads
then:

.

By repeating this process a number of times, one can expect that finally the solution
converges to the actual least-squares estimate x̂. This process is called the least-squares
iteration process. The iteration is usually terminated if the difference between successive
solutions is negligible. A flow diagram of the least-squares iteration process is shown in the
table on the following page.
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Table 7.2: Least-squares iteration
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Example 13

Consider the nonlinear A-model:

(30)

It consists of two observation equations in one unknown parameter. Hence, A(.): Æ 2.
The corresponding linearized A-model reads:

(31)

Let us assume that we are asked to solve model (30). The two observations are given as:

In order to find the least-squares estimate x̂ of x, we need the linearized model (31), a first

(32)

approximation x0, and the iteration scheme:

(33) for i=0,1,2,... .

In our case, expression (33) becomes:

(34)

As a first approximation x0 we take y2. Thus:

With (32), (35) and (34) we are now able to compute xi+1 for i = 0,1,2, ... . The results of this

(35)

least squares iteration process are given in the following table:
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iteration step i solution xi

0 1.9

1 2.0205959

2 2.0176464

3 2.0176324

4 2.0176344

5 2.0176344

Note that the solution does not change much after iteration step i = 2. Hence, depending on
the required numerical precision, any of these solutions can be taken as the least-squares
estimate x̂. For instance, if the solution is required to have 5 significant digits, then the least-
squares solution can be taken as x̂= 2.01763.

7.2 The nonlinear B-model and its linearization

Just like in case of the A-model, there are very few geodetic applications for which the model
of condition equations is linear. In most cases the model of condition equations is nonlinear.
The nonlinear B-model reads:

(36) ,

where B*(.) is a nonlinear vector function from m into m-n. The relation between the
nonlinear B-model and the nonlinear A-model is given by:

(37) .

This is the nonlinear generalization of (7) of section 3.1. If we take the partial derivative with
respect to x of (37) and apply the chain rule (kettingregel), we get:

(38)

This is the linearized version of (37). Compare (38) with (7) of section 3.1. With (38) we are
now in the position to construct the linearized B-model from the linearized A-model (20). Pre-
multiplication of (20) with the matrix gives together with (38) the result:( yB(y o))
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(39)

This is the linearized B-model. With (39) we are now in the position again to apply our
standard least-squares estimation formulae.

As with the nonlinear A-model, also the solution of the nonlinear B-model needs an iteration
process. But since the iteration process needed for solving the nonlinear B-model is quite
involved, it will not be discussed here.

Example 14

Consider the nonlinear A-model (5) of example 5:

This model consists of 2n observation equations in (n+2) unknowns. Hence, the redundancy

(40)

equals 2n-(n+2) = n-2. Therefore, (n-2) independent condition equations can be formulated.
These (n-2) independent nonlinear condition equations are:

or:

(41)

In order to obtain the linearized B-model, we need to linearize (41). Linearization of (41)
gives:
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(42)

with . This is the linearized B-model. The linearized A-modely 0
i2 y 0

2 y 0
i , y 0

i1 y 0
1 y 0

i , i 3, ,n
follows from linearizing (40) as:

(43)

Verify yourself that indeed holds, ify B(y 0) xA(x 0) 0 y 0
i a 0(x 0

i )2 b 0
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Example 15

Consider the nonlinear A-model (27) of example 12:

This model consists of 6 observation equations in the four unknown parameters x1, y1, a, and a. Hence,

(44)

the redundancy equals 6-4 = 2. Therefore two independent condition equations can be formulated.
These two nonlinear condition equations read:

(45)

Note that these condition equations state that the sides of the equilateral triangle should be equal.

Linearization of (45) gives:

(46)

Verify yourself that indeed holds (see (28) of subsection 7.1.3), if theyB(y 0) xA(x 0) 0
approximate values used in (46) satisfy the nonlinear condition equations.
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Appendix A
Taylor’s theorem with remainder

In this appendix we review the basic theorem of Taylor for functions of one or more variables. 
We will start with functions of one variable.

Definition: Let f: DÃ Æ  be a function whose domain D is an open set of . If all of the qth-
order derivatives of f(x) exist at every xŒD and each d q

q 
f(x)is a continuous function on D, then

dx

f(x) is said to be a function of class C(q) on D.

Taylor’s Theorem

Let f(x) be a  function of class C(q) on DÃ , x, x0 ŒD, and Dx =  x-x0. Then a scalar q between 
x and x0 exists such that:

(1)

with the remainder:

(2)

If we ignore the remainder Rq(q,Dx), the right-hand side of (1) is a polynomial in Dx of degree
q-1. If the remainder is small this polynomial furnishes an approximation to f(x). We speak of
a linear approximation or a linearization of f(x) at x0 if f(x) is approximated as:

(3)

This approximation is acceptable if the second term within the square brackets of:

is negligible with respect to the first term. Note that this second term can be made arbitrarily
small by letting x0 approach x. A geometric interpretation of (3) is given in figure A.1.
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Figure A.1: The curve y=f(x) and its tangentline at f(x0)y f(x 0) d
dx

f(x 0)(x x 0)

Examples

1. The linearization of f(x)=cos x at x0 reads:

2. The linearization of f(x)=(x2+a2)1/2 at xo reads:

3. The linearization of f(x)=x3 at x0 reads:

We will now consider functions of more than one variable. A function f(x1, x2,...,xn) of the
variables x1, x2,....,xn will be denoted as f(x) with the n-vector x=(x1, x2,...,xn)

*. The first-order
partial derivatives of f(x), , will be denoted as Similarly,

xa

f(x) , a 1,...,n a f(x) , a 1, ,n.
we denote the second order partial derivatives of asf (x),

2

xa xb

f(x), a,b 1,...,n,
And so on.2

ab f(x), a ,b 1, ,n.

Definition: Let be a function whose domain D is an open set off(x): DÃ nÆ n.

If all of the qth-order partial derivatives of f(x) exist at every and eachx (x1,x2, ,xn) ŒD
is a continuous function on D, then f(x) is said to be a function of class C(q) on D.

Taylor’s Theorem: Let f(x) be a function of class C(q) on DÃ n and x, x0ŒD such that the line
segment joining x and x0 is contained in D. In particular, if D is convex then x and x0 can be any
pair of points in D. Let and . Then a scalar tŒ (0,1) existsDx x x 0 q x 0 t(x x 0) with tŒ .
such that:
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(4)

with the remainder:

(5)

Proof: Define the functions and by:q (t) f (t)

The domain of which is an open set of containing the closedf (t) is t x 0 t (x x 0)ŒD
interval [0,1]. By repeated application of the chain rule we find that:

(6)

By Taylor’s theorem for functions of one variable there exists a tŒ(0,1) such that:

(7)

But , and we have, by substitution of (6) into (7), Taylor’s formula withf (1) f (x), f (0) f (x 0)
remainder.

If we use the vector and matrix notation:
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(8)

Taylor’s formula with third-order remainder becomes:

(9)

The vector is known as the gradient of . The matrix is known asx f(x 0) f (x) at x 0 2
xx f (x 0)

the Hessian matrix of .f (x) at x 0

Examples:

1. The linearization of reads:f (x ,y) xcosy at x 0,y 0

2. The quadratic approximation of reads:f (x ,y) xcosy at x 0,y 0

3. The quadratic approximation of f (x,y)=(x2+y2)1/2 at x0y0 reads:
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It is possible to give an explicit estimate of the remainder in Taylor’s formula, in terms of bounds
for the qth-order partial derivatives of f(x).

Theorem: Suppose that K is a convex subset of D, such that x,x0ŒK. Then also
Moreover, suppose that all qth-order partial derivatives of f(x)q x 0 t (x x 0)ŒK for tŒ [0,1].

satisfy:

(10)

Then the remainder in Taylor’s formula satisfies:

(11)

Proof: From (5) and (10) it follows that:

or that:

(12)

For the inner product of two vectors x and y we have:

From this expression the Cauchy-Schwarz inequality follows:

This gives for y=(1,1,...,1)*:

(13)

If we use this inequality in (12) we obtain the estimate of (11).
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Appendix B

Unconstrained optimization: optimality conditions

In this appendix we will formulate necessary and sufficient conditions for finding (local or 
global) solutions to the minimization problem:

(1)

In the investigation of the minimization problem (1) we distinguish two kinds of solution points: 
local minimizers and global minimizers.

Definition: The vector x̂ is said to be a local minimum of F(x) if  F(x̂) £ F(x) " x Œ B(x̂ ,e). 
The e -ball, B(x̂,e) , is defined as B(x̂,e) xŒ x x̂ <e . The local minimimum is said to be 
isolated if F(x̂)<F(x) "xŒB(x̂,e).

Definition: The vector x̂ is said to be a global minimum of F(x) if F(x̂) £ F(x)"xŒ n. The 
global minimum is unique if F(x̂)<F(x) "xŒ n .

In the following we will assume that a (local or global) minimum of F(x) exists. The problem 
of computing the minimum of F(x) can be facilitated by deriving certain properties that must be 
satisfied by the minimizing vector x̂. The following theorem states necessary conditions for x̂ to 
be a minimum of F(x) .

Theorem (necessary conditions):
Let F(x) be a class C(3). If  x̂ is a (local or global) minimum of F(x), then:

(2)

Proof:

First we shall prove (2.1). Consider the vector where t is a scalar and d an n-vector.x x̂ td
Expansion of F(x) in a Taylor series at x̂ gives:

(3)

The order term O(t) indicates the remainder in Taylor’s formula. It has the property:

(4)

Since x̂ is a (local or global) minimum of F(x) by assumption, it follows that for sufficiently
small t:

(5)
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This, together with (3) gives after dividing by t:

Taking the limit as tÆ0 and using (4) shows that (2.1) must be true.

Next we shall prove (2.2). Expanding F(x) in a Taylor series at x̂, but now retaining the quadratic
terms, gives with (2.1):

(6)

where O(t2) has the property:

(7)

Equations (5) and (6) imply that:

Taking the limit as tÆ0 and using (7) shows that:

(8)

Since the n-vector d is arbitrary, (8) must hold for all . This means by definition that thedŒ n

Hessian matrix xx
2F(x̂) is positive semi-definite. Positive semi-definite matrices A are denoted as

"A 0". This proves (2.2).

Examples

1. The function has a minimum at (x̂,ŷ)=(0,0). According to the theorem,
the gradient of must be identical to the zero-vector at this point, and the HessianF (x,y)
matrix of must be positive semi-definite at this point. This is easily verified, since:F (x,y)
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2. Let the matrix Q be positive definite. A matrix Q is said to be positive definite if:n×n

(9)

Since Q is positive definite it follows that the function F: nÆ :

(10)

has a minimum at x̂=0. According to the theorem it must hold that xF(x̂)=0 and
. This is easily verified, since it follows from (10) that:2

xxF(x̂) 0

The above theorem gives necessary conditions for x̂ to be a minimum of F(x). The stated
conditions are however not sufficient. This is easily illustrated by the following simple example.
Consider the function F1(x)=x4. Clearly it has a (global) minimum x̂=0 and xF1(0)=0 and

xx
2F1(0)=0 hold. Consider now the function F2(x)=-x4. Then once again xF2(0)=0 and xx

2F2(0)=0
hold. But now, however, x̂=0 is a (global) maximum of F2(x). The following theorem gives
sufficient conditions for x̂ to be a minimum of f(x).

Theorem (sufficient conditions):
Let F(x) be of class C(3). If:

(11)

then x̂ is a (local or global) minimum of F(x).

Proof:
A Taylor expansion of F(x) at x̂ gives with x=x̂+td and (11.1):

(12)

Since xx
2F(x̂) is positive definite by assumption, the first term in the bracket on the right hand

side of (12) is strictly positive. Hence, in view of (7), we can conclude that the bracketed term
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of (12) is strictly positive for sufficiently small t. Thus from (12) follows that F(x)>F(x̂) for all
x near x̂, that is, for t small.

It should be noted that x̂ can be a minimum of F(x) and still violate the sufficient conditions of
the above theorem (for example F(x)=x4). Nevertheless the above two theorems facilitate the
problem of computing the minimum of F(x). The idea is that one first solves the system of
equations xF(x)=0. The solutions of xF(x)=0 are called stationary or critical points of F(x).
Once the stationary points of F(x) are found, one can check whether xx

2F(x̂) > 0 holds in order
to show that the corresponding stationary point must be a local minimum.

If xx
2F(x̂) 0, one first computes the vectors d that satisfy xx

2F(x̂)d=0 and then checks whether
F(x̂) £ F(x) for all those x that lie on the ray x=x̂+td that emanates from x̂ with direction vector
d. After the local minima are found, the global minima follow from comparison of the function
values at the local minima.

Example (least-squares)

The function F: nÆ is given as:

(13)

From this it follows that:

(14)

and:

(15)

If we assume that the matrix A has full rank n, then A*A has full rank and (A*A)-1 exists.m×n
The solution of xF(x)=0 follows from (14) as:

(16)

Thus the function F(x) has only one stationary point. Since itx A Ax > 0 "x Œ n\ 0
follows that the Hessian matrix of (15) is positive-definite. Hence, x̂ of (16) is the unique global
minimum of F(x).
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Appendix C

Linearly constrained optimization: optimality conditions

In the following appendix we consider general minimization problems. However, there are 
special classes of constrained minima which are important and can be studied with the help of the 
theory of appendix B. These are the linearly constrained minima. In problems of this type we 
restrict our points yŒ m to lie in an n-plane in m. An  n-plane can be considered to be an
n-dimensional Euclidean space embedded in m. It  need not pass through the origin of m. If
y0 is a point in the n-plane and a1, a2,...,an are n linearly independent vectors in this plane,
every point y in the n-plane is expressible in the form:

(1)

with suitably chosen constants Equation (1) is sketched in figure C.1 for the casexiŒ , i 1, ,n.

m=3 and n=2.

Figure C.1: A 2-plane embedded in 3

An n-plane is uniquely determined by a point y0 and a set of n linearly independent vectors
a1,a2,...,an. If n=1, we have a line; if n=2, we have a two-dimensional plane; and so on. To relate
the ideas here presented to those given for more general constrained minima on arbitrary
surfaces, it will be convenient to introduce the concept of the tangent space and the normal space
to an n-plane. A tangent vector a is a vector parallel to the n-plane. If the n-plane is represented
in the parametric form (1), a tangent vector a is any vector expressible as a linear combination:

(2)

of the vectors a1,...,an. The tangent space of the n-plane is the set of all vectors that can be
written as (2). It is the n-plane through the origin that is parallel to the set {a1,...,an}. Any vector
b that is orthogonal to the n-plane and hence to the tangent space will be called a normal vector
to the n-plane. The set of all normal vectors to the n-plane is the orthogonal complement of the
tangent space and will be called normal space. It is of dimension m-n. If b1,b2,...,bm-n form a basis
for the normal space, every normal vector b is uniquely expressible as a linear combination:
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(3)

We may use the normal vectors b1,...,bm-n to express the n-plane as:

(4)

This representation of the n-plane is in contrast to the parametric form (1), known as the implicit
form. Equation (4) is sketched in figure C.2 for the case m=3 and n=2.

Figure C.2: A 2-plane embedded in 3 with normal vector b

If we collect the vectors a1,...,an into an m×n matrix A=(a1,a2,...,an) and define the n-vector x as
x=(x1,...,xn)

*, we may write (1) in matrix form as:

(5)

Similarly, if we collect the vectors b1,...,bm-n into an m×(m-n) matrix B=(b1,...,bm-n), we may write
(4) in matrix form as:

(6)

Observe that the two matrices A and B satisfy the relation:

(7)

We now turn to the characterization of the minimum ŷ of a function F(y) on an n-plane. The
following theorem gives necessary conditions for ŷ to be a solution to the linearly constrained
minimization problem:



170 Adjustment theory

(8)

Theorem (necessary conditions):
Let F(y) be of class C(3). If ŷ is a point on the n-plane that affords a (local or global) minimum
of F(y) on the n-plane, then:

(9)

where A is an m×n matrix of which the column vectors form a basis of the tangent space of the
n-plane.

Proof:
The vector x̂=0 minimizes:

Hence, it follows from the first theorem of appendix B that:

and:

The following theorem gives sufficient conditions for ŷ to be a solution to (8).

Theorem (sufficient conditions):
Let F(y) be of class C(3). If:

(10)

where A is an m×n matrix of which the column vectors form a basis of the tangent space of the
n-plane, then ŷ is a (local or global) minimum of F(y) on this n-plane.

Proof:

The proof follows with f(x)=F(ŷ+Ax), xf(x)*= yF(ŷ+Ax)*A and from the2
xx f(x) A 2

yy F(ŷ Ax)A
second theorem of appendix B.
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The above two theorems can be used if the n-plane is given in the parametric form (5). In case
the n-plane is defined by the implicit form (6), the results of the above two theorems can be
restated as in the following theorem.

Theorem (Lagrange multiplier rule):
Let ŷ be a point satisfying the linear constraints:

(11)

If ŷ minimizes F(y) subject to these constraints, there exists a multiplier vector , suchlŒ m n

that, if we set:

(12)

then:

(13)

for all vectors a that satisfy:

(14)

Conversely, if there exists for ŷ a function L(y) of form (12) such that:

(15)

for solutions a 0 of (14), then ŷ affords a (local or global) minimum to F(y) subject to the
constraints (11).

The result here given is known as the Lagrange multiplier rule. The function L(y) of (12) is
known as the Lagrangian and the vector l as the Lagrange multiplier vector.

Proof:

We first prove (13.1). Condition (9.1) states that the gradient yF(ŷ) is orthogonal to the range
space of A. This implies that yF(ŷ) can be written as a linear combination of the base vectors
of the normal space of the n-plane. Hence, there exists a vector such that:lŒ m n
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But this implies that the gradient of L(y) must vanish at ŷ. Condition (13.2) follows simply from
(9.2) by noting that 2

yy L(ŷ) 2
yy F(ŷ).

The sufficient conditions (15) follow in a similar way from (10).

Example 1 (observation equations)

Let y0 be a fixed given vector in m, and let F: mÆ be defined as:

(16)

Note that the function F(y) measures the square of the distance between y and the fixed vector
y0. Hence, the (m-1)-dimensional surface F(y)=constant is an hypersphere embedded in m (see
figure C.3).

Figure C.3: F(y)= yo-y
2= constant

Our objective is to minimize the function F(y) of (16) subject to the linear restrictions:

(17)

Those vectors that satisfy (17) lie on an n-plane through the origin with tangent vectors given
by the column vectors of the matrix A (see figure C.4). The problem of minimizing F(y) subject
to (17) can now be visualized as the problem of finding the proper radius of the hypersphere of
figure C.3 such that the sphere just touches the n-plane of figure C.4. This is shown in figure
C.5. The point of contact between sphere and n-plane is the solution ŷ.
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Figure C.4: The n-plane: y=Ax, rank A=n

Figure C.5: Hypersphere y0-y 2= constant, and n-plane y=Ax

The solution ŷ can be found using (10). Since yF(y)=-2(y0-y), it follows that:

.

Substitution of (17) and setting the results equal to zero gives:

This system of equations has the unique solution x̂=(A*A)-1A*y0. Hence:

(18)

Since and A*A is positive definite it follows that:2
yy F(y) 2 Im

Hence, ŷ is a minimum of F(y) subject to (17).

Example 2 (condition equations)

Let y0 be a fixed given vector in m, and let F: mÆ be defined as:

(19)
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Our objective is to minimize the function F(y) of (19) subject to the linear restrictions.

(20)

Since these restrictions are in implicit form, we have to make use of the Lagrange multiplier rule.
We construct the Lagrangian:

(21)

The factor 2 in the multiplier vector has merely been introduced for convenience. The stationary
points of the Lagrangian have to satisfy:

(22)

This shows that:

(23)

In order to determine ŷ, we first have to determine l. Pre-multiplication of (22) with B* gives
together with (20):

(24)

Since matrix B has full rank, the inverse of B*B exists. Hence l follows from (24) as:

(25)

Substitution of this result into (23) gives:

(26)

Thus the Lagrangian (21) has only one stationary point. Since 2
yyL(y) = 2 Im, it follows that

condition (15.2) is satisfied. Hence, ŷ of (26) is the solution of our linearly constrained
minimization problem.

Example 3 (Best Linear Unbiased Estimation)

In Chapter 2, section 4 the principle of "Best Linear Unbiased Estimation" has been discussed.
This principle leads to the following linearly constrained minimization problem:

(27) subject to

This problem may be solved by the Lagrange multiplier rule. We consider the following
Lagrangian:

(28)

The stationary points of the Lagrangian have to satisfy:

(29)
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This shows that:

(30)

In order to determine we first have to determine l. Pre-multiplication of (29) withl̂ A Q 1
y

gives together with the constraints A*l=f :

(31)

Since A is of full rank and Qy is positive definite, also is of full rank and positiveA Q 1
y A

definite. Hence, the inverse of exists and l follows from (31) as:A Q 1
y A

(32)

Substitution into (30) gives:

(33)

Since and Qy is positive definite, it follows that of (33) is the unique solution2
ll L(l ) 2Qy l̂

of (27).
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Appendix D
Constrained optimization: optimality conditions

In the previous appendix we were concerned with the problem of minimizing a function F(y) 
with linear equality constraints. In this appendix we seek to minimize a function F(y) with 
nonlinear equality constraints. Hence, we want to solve the constrained minimization problem:

(1)

The constraints in (1) are in implicit form and they are nonlinear if the vector function B: mÆ
m-n is nonlinear. Except in abnormal situations, the constraints of (1) describe an n-dimensional

surface (or manifold) embedded in m. Examples of B(y) = 0 are:

The first equation describes the surface of a sphere with radius R embedded in 3. The last two
equations together describe a circle embedded in 3.

By virtue of the implicit function theorem the constraints:

(2)

are expressible locally in parametric form as:

(3)

For instance, example 1 is expressible in parametric form as:

1.

And the equations of example 2 as:

2.
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Since (3) puts the same restrictions on y as (2) we may write the minimization problem (1) also
as:

(4)

Consequently, the problem of minimizing F(y) subject to B(y) = 0 is equivalent to the
unconstrained problem of minimizing F(A(x)). In some cases when it is simple to transform (2)
into (3) this is a suitable procedure. However, in many cases it is easier to use the Lagrange
multiplier rule. The following two theorems, which will be given without proof, give necessary
and sufficient conditions for ŷ to be a (local or global) solution to (1).

Theorem (necessary conditions):
Suppose that ŷ affords a (local or global) minimum to:

subject to the constraints:

.

Suppose further that the m×(m-n) matrix of partial derivatives yB(ŷ) has full rank m-n. Then
there exists a unique multiplier vector such that, if we set:lŒ m n

then:

(5)

for all vectors a that satisfy:

Theorem (sufficient conditions):

Suppose that for a point ŷ satisfying B(y) = 0 there is a Lagrangian such that:L(y) F(y) l B(y)

(6)

for all vectors a 0 satisfying yB(ŷ)*a = 0, then ŷ is a (local or global) minimum of F(y)
subject to B(y) = 0.



178 Adjustment theory

Appendix E

Mean and variance of scalar random variables

Mean of a scalar random variable

Let x be a continuous scalar random variable with probability density function px(x). The 
expectation or mean of x is by definition the integral:

(1) .

This number will also be denoted by mx.

Mean of a function of a scalar random variable

Given a scalar random variable x and a function f(x), we form the random variable y =f(x).
As we see from (1), the mean of y is given by:

(2)

It appears, therefore, that to determine the mean of y, we must first find its probability density
function py (y). This, however, is not necessary. As the next theorem shows, E{y} can be
expressed directly in terms of the function f(x) and the density of x.px(x)

Theorem:

(3) .

Proof:
We shall sketch a proof using the curve f(x) of figure E.1. With y = f(x1) = f(x2) = f(x3) as in
the figure, we see that:

or:

.

Multiplying by y, we obtain:
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.

Thus, to each differential in (2) there corresponds one or more differentials in (3). As dy
covers the y-axis, the corresponding dx’s are nonoverlapping and they cover the entire x-axis.
Hence, the integrals in (2) and (3) are equal.

Figure E.1: The curve y = f(x)

It appears from (3) that to determine the mean of y, we must know the probability density
function px(x). In general this is true. However, in the special case that the function f(x) is
linear not the complete density of x needs to be known but only the mean mx of x.

Theorem (propagation law of the mean):
Given a scalar random variable x and a function f(x), we form the random variable y = f(x).
If the function f(x) is linear:

(4)

then:

(5)

Proof:
Substitution of (4) into (3) gives:

If the function f(x) is nonlinear we need strictly speaking the density of x in order topx(x)
compute the mean of y = f(x). However, by using Taylor’s formula an approximation to the
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mean of y can be derived that gets around the difficulty of having to know the density px(x)
of x.

Theorem (linearized propagation law of the mean):
Given a scalar random variable x and a nonlinear function f(x), we form the random variable
y = f(x). Let x0 be an approximation to a sample of x and define Dy = y-f(x0) and Dx = x-x0.
Then a first-order approximation to the mean of Dy is:

(6) .

Proof:
Application of Taylor’s formula gives:

If we take the expectation we get:

This may be written with:

and:

as:

If we neglect the second and higher order terms, the result (6) follows.
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Examples

1. With f(x) = cos x, we define the random variable y = f(x). Since , we
find to a first order:

2. With f(x) = x3, we define the random variable y = f(x). Since we find
to a first order:

Variance of a scalar random variable

The variance of a scalar random variable is by definition the integral:

(7) .

This number will also be denoted by sx
2. The positive constant sx is called the standard

deviation of x. From the definition it follows that:

or

(8)

Variance of a function of a scalar random variable

Theorem (propagation law of the variance):
Given a scalar random variable x and a function f(x), we form the random variable y = f(x).
If the function f(x) is linear:

(9)

then:

(10)
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Proof:
According to definition (7) we have:

With (3) this gives:

.

Substitution of (5) and (9) gives:

The above result shows that if f(x) is linear, knowledge of sx
2 is sufficient for computing the

variance of y = f(x). For nonlinear functions f(x) this is generally not true. If the function f(x)
is nonlinear one will generally need to know the complete density of x. However, bypx(x)
using Taylor’s formula an approximation to the variance of y can be derived that gets around
the difficulty of having to know .px(x)

Theorem (linearized propagation law of the variance):
Given a scalar random variable x and a nonlinear function f(x), we form the random variable
y = f(x). Let x0 be an approximation to a sample of x. Then a first-order approximation to the
variance of y is:

(11)

Proof:
Substitution of:

into:
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gives after neglecting second and higher order terms:

Examples

1. A first order approximation to the variance of y = cos x is:

2. A first order approximation to the variance of y = x3 is:
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Appendix F

Mean and variance of vector random variables

Mean of a vector random variable

Let xi, i = 1, 2,  ,n be n continuous scalar random variables with joint probability density function 
px (x1, x2, ,xn). The expectation or mean of the random n-vector (x1, x2, ,xn)

* is by definition the 
integral:

(1)

If we use the notation:

we may write (1) in the compact form:

(2) .

From (1) it follows that:

(3)

This result seems to contradict definition (1) of appendix E. Note however that (3) reduces to
(1) of appendix E, since:

Hence, (1) may also be written as:
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(4)

Thus in order to compute E{xi} one only needs the marginal density .px
i

(xi)

Mean of a vector function of a random vector

Given a random n-vector x and a vector function F(x), F: n Æ m, we form the random m-
vector . As we see from (4) the mean of yi is given by:y F(x)

(5)

It appears, therefore, that to determine the mean of yi, we must first find its marginal probability
density function pyi

(yi). This, however, is not necessary. As the next theorem shows, canE y
i

be expressed directly in terms of the vector function F(x) and the joint density of x.

Theorem:

(6)

or:

(7)

Proof:
The proof is similar to the proof given in appendix E.

The following theorem is an extremely important one, and it is used frequently.

Theorem (propagation law of the mean):
Given a random n-vector x and a vector function F(x), F: n Æ m, we form the random m-
vector y = F(x). If the vector function F(x) is linear:

(8)
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then:

(9) .

Proof:
If we denote the n column vectors of matrix A by ai, i=1, .., n, we may write (8) as:

.

If we substitute this into (6) we get:

or:

Without proof we also give the linearized version of the propagation law of the mean.

Theorem (linearized propagation law of the mean):
Given a random n-vector x and a nonlinear vector function F(x), F: n Æ m we form the random
m-vector y = F(x). Let x0 Œ n be an approximation to a sample of x and define Dy = y - F(x0)
and = x - x0. Then we have to a first-order:Dx

(10)

Example 1
Let the two random variables y1 and y2 be defined as:

Then:
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Example 2
Let the two random variables y1 and y2 be defined as:

With the approximate values x1
0 x2

0 and x3
0 we have to a first-order:

.

Variance matrix of a random vector

Let x_, i=1,2, ,n be n continuous scalar random variables with joint probability density function
px (x1, ,xn). The variance matrix of the random n-vector (x1,x2, ,xn)

* is by definition the integral:

(11) .

This variance matrix will be denoted by Qx. Using vector notation we may write (11) in the
compact form:

(12)

From (11) it follows that:
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Integration gives:

(13)

in which is the joint density function of the two random variables xi and xj. The scalarpx(xi,xj)
(13) is called the covariance of the two random variables xi and xj. This covariance will be
denoted as . Note that the off-diagonal elements of the variance matrix Qx consist of thesxixj

covariances between the elements of the random vector x. If i=j it follows from (13) that:

.

Integration gives:

This is the variance of xi. Note that the variance of is the ith-diagonal element of the
variance matrix Qx. Hence, the variance matrix Qx can be written as:

(14) .

Note that the variance matrix is a symmetric matrix.

Variance matrix of a vector function of a random vector

Theorem (propagation law of variances):
Given a random n-vector x and a vector function F(x), F: n Æ m, we form the random m-vector
y = F(x). If the vector function F(x) is linear:

(15)

then:
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(16)

Proof:
If we denote the n column vectors of matrix A by ai, i=1,...,n, we may write (15) as:

(17) .

In a similar way we may write (9) as:

(18) .

Substitution of (17) and (18) into:

gives:

This can be written as:

or as:

Without proof we also give the linearized version of the propagation law of variances.
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Theorem (linearized propagation law of variances):
Given a random n-vector x and a nonlinear vector function F(x), F: n Æ m, we form the random
m-vector y = F(x). Let x0 Œ n be an approximation to a sample of x. Then we have to a first-
order:

(19) .

Example 1
Let the two random variables y1 and y2 be defined as:

The variance matrix of x = (x1, x2, x3)
* is given as:

Then:

Example 2
Let the two random variables y1 and y2 be defined as:

(20)

The variance matrix of x = (x1, x2, x3)
* is given as:



Appendix F 191

The 2-by-3 matrix of partial derivatives xF(x0) follows from (20) as:

(22)

If we take as approximate values x1
0=1, x2

0=0, x3
0=0, (22) becomes:

(23)

The variance matrix Qy follows now from (21) and (23) to a first-order as:
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A BRIEF ACCOUNT ON THE EARLY HISTORY OF ADJUSTING GEODETIC 
AND ASTRONOMICAL OBSERVATIONS1 

Prof. dr ir P.J.G. Teunissen, Netherlands Geodetic Commission (KNAW) 

I. Introduc�on

Adjustment theory can be regarded as the part of mathema�cal geodesy2 that deals with the op�mal 
combina�on of redundant observa�ons for the purpose of determining values for parameters of 
interest. It is essen�al for a geodesist, its meaning comparable to what mechanics means to a civil 
engineer or a mechanical engineer. The two main reasons for performing redundant measurements 
are the wish to increase the accuracy of the results computed and the requirement to be able to check 
for errors. Due to the intrinsic uncertainty in observa�ons, redundancy generally leads to an 
inconsistent system of equa�ons. Without addi�onal criteria, such a system is not uniquely solvable.  

The problem of solving an inconsistent system of equa�ons has atracted the aten�on of leading 
scien�sts in the middle of the 18th century. Historically, the first methods of combining redundant 
observa�ons originate from studies in geodesy and astronomy, namely from the problem of 
determining the size and shape of the Earth, and the problem of finding a mathema�cal representa�on 
of the mo�ons of the moon. Since its discovery almost 200 years ago, least-squares has been the most 
popular method of adjustment. Although the method of least squares may seem ‘natural’ for a modern 
student of adjustment theory, its discovery evolved only slowly from earlier methods of combining 
redundant observa�ons3. In this contribu�on we sketch the historical line of development of these 
adjustment methods in the second half of the 18th century.  

II. The method of selected points

It is convenient to cast the problem of combining redundant observa�ons in terms of vectors and 
matrices. Suppose we are given a set of linear equa�on of the form 

𝑦𝑦⏟
𝑚𝑚×1

= 𝐴𝐴⏟
𝑚𝑚×𝑛𝑛

𝑥𝑥⏟
𝑛𝑛×1

where 𝑦𝑦 is a vector of observa�ons, 𝐴𝐴 is a given matrix of full rank and 𝑥𝑥 is the vector of unknown 
parameters. This set of linear equa�ons is said to be overdetermined when there are more 
observa�ons than unknowns, 𝑚𝑚 > 𝑛𝑛. The problem is to combine the 𝑚𝑚 observa�ons so that one can 

1 Based on a presenta�on given at the occasion of the official opening of the Geode�c-Astronomical Observatory Westerbork, 
24 September 1999. 
2 Mathema�cal geodesy covers the development of theory and its implementa�on as is needed in order to process, analyse, 
integrate and validate the various geode�c data. It concerns itself with the calculus of observa�ons (adjustment and 
es�ma�on theory), with the valida�on of mathema�cal models (tes�ng and reliability theory) and with the analysis for spa�al 
and temporal phenomena (interpola�on and predic�on theory), Founders of the Dutch School of Mathema�cal Geodesy, 
interna�onally known as the ‘Del� School’, are the professors J.M. Tienstra (1895-1951) and W. Baarda (1917-2005).  
3 S�gler, S.M. (1986): The History of Statistics, Belknap, Harvard. Hald, A. (1998): A History of Mathematical Statistics, Wiley-
Interscience. 
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solve for the 𝑛𝑛 unknown parameters. If we restrict ourselves to linear combina�ons of the 
observa�ons, we can write the general solu�on in the following form 

𝑥𝑥⏟
𝑛𝑛×1

= 𝐵𝐵⏟
𝑛𝑛×𝑚𝑚

𝑦𝑦⏟
𝑚𝑚×1

with     𝐵𝐵⏟
𝑛𝑛×𝑚𝑚

= (𝐿𝐿𝐴𝐴)−1�����
𝑛𝑛×𝑛𝑛

𝐿𝐿⏟
𝑛𝑛×𝑚𝑚

and where matrix 𝐿𝐿 is a suitably chosen matrix defining the linear combina�ons. Different choices of 
𝐿𝐿 give different linear combina�ons and therefore different solu�ons. In modern terminology, matrix 
𝐵𝐵 is called a le�-inverse of 𝐴𝐴, since 𝐵𝐵 �mes 𝐴𝐴 equals the iden�ty matrix. Before 1750 a popular, albeit 
subjec�ve, method of solving an overdetermined set of linear equa�ons was the method of selected 
points. It consists of choosing 𝑛𝑛 out of 𝑚𝑚 observa�ons (referred to as the selected points) and using 
their equa�ons to solve for 𝑥𝑥. If the choice falls on the first 𝑛𝑛 observa�ons, the corresponding 𝐿𝐿 matrix 
takes the form 

𝐿𝐿 = � 𝐼𝐼⏟
𝑛𝑛×𝑛𝑛

0⏟
𝑛𝑛×(𝑚𝑚−𝑛𝑛)

� 

where 𝐼𝐼 is the iden�ty matrix. For the method of selected points, 𝑛𝑛 residuals (the difference between 
the observed and adjusted observa�ons) are by defini�on equal to zero. Many scien�sts using this 
method calculated the remaining 𝑚𝑚− 𝑛𝑛 residuals and studied their sign and size to get an impression 
of the goodness of fit between observa�ons and the proposed law. The method is subjec�ve because 
no clear rule is given which observa�ons to select and which to throw out. Selec�ng another set of 𝑛𝑛 
observa�ons leads to a different solu�on for 𝑥𝑥. Although the disadvantage of not using all observa�ons 
was recognized, no simple method existed to tackle this shortcoming. Some�mes all possible 
combina�ons of 𝑛𝑛 observa�ons were considered and then averaged to obtain the final result. But since 
this approach requires handling 𝑚𝑚 over 𝑛𝑛 combina�ons, it was only prac�cal for problems of low 
dimensions.  

III. The method of averages

Tobias Mayer (1723-1762), professor of mathema�cs and head of the Gö�ngen observatory, made 
numerous observa�ons of the Moon with the purpose of determining the characteris�cs of the Moon’s 
orbit. In 17504 Mayer proposed a new method for adjus�ng his Moon data, a method which solved 
the above-men�oned pi�all of the method of selected points. Apart from his adjustment method, 
Mayer is also known for his other contribu�ons to surveying and naviga�on. In 1752 he invented the 
Repea�ng or Reflec�ng Circle, an instrument for observing the angle between two celes�al bodies. 
The accuracy of Mayer’s instrument was comparable to John Hadley’s reflec�ng octant (1731), but had 
the advantage that it could be used to measure angles of over 90 degrees5. Mayer also contributed to 
solving the mariner’s ‘longitude problem’. It was the Bri�sh Parliament, which in 1714, offered the 
‘Longitude Prize’ to those who could find a ‘useful and prac�cal’ method for determining longitude at 
sea. To determine longitude of a ship at sea, the mariner needs to know both his local �me and the 
�me at some standard loca�on. Local �me was readily determined, but the determina�on of standard 
�me at sea was more complicated. Mayer’s detailed lunar tables (1755) made it possible to translate 
the instrument readings into longitude posi�ons. The use of Mayer’s lunar tables was later superseded 

4 Mayer, T. (1750): Abhandlung ueber die Umwalzung des Monds um seine Axe und die scheinbare Bewegung der 
Mondsflecten, Kosmogr. Nachr. Samml. Auf das Jahr 1748, 1, 52-183. 
5 Forbes, E.G. (1974): The Birth of Scientific Navigation, Mari�me Monographs and Reports, No. 10, Na�onal Mari�me 
Museum, Greenwich, London.  
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by John Harrison’s marine chronometer H-4 (1759). In recogni�on of their contribu�ons, both men 
were awarded part of the ‘Longitude Prize’, with the larger sum going to Harrison6.  

Mayer studied the libera�on of the Moon by observing the changing posi�on of the crater Manilius as 
seen from the Earth. Using spherical geometry, he found a linearized rela�onship between his 
observables and some loca�on parameters of Manilius and the Moon’s pole. This gave him an 
inconsistent system of 𝑚𝑚 = 27 linear equa�ons in 3 unknown parameters 

�
𝑦𝑦1
⋮
𝑦𝑦𝑚𝑚
�

�
𝑦𝑦

= �
1 𝑎𝑎12 𝑎𝑎13
⋮ ⋮ ⋮
1 𝑎𝑎𝑚𝑚2 𝑎𝑎𝑚𝑚3

�
�����������

𝐴𝐴

�
𝑥𝑥1
⋮
𝑥𝑥3
�

�
𝑥𝑥

 

Mayer proposed to divide the 27 equa�ons into 3 groups of 9 each, to sum the equa�ons within each 
group, and to solve the resul�ng 3 equa�ons in 3 unknowns. For a general set of  𝑚𝑚 equa�ons in 𝑛𝑛 
unknowns, this approach amounts to a separa�on of the 𝑚𝑚 equa�ons into 𝑛𝑛 groups, followed by a 
groupwise summa�on. For example, in case 𝑛𝑛 = 2, the corresponding 𝐿𝐿 matrix takes the form 

𝐿𝐿 = �𝑒𝑒1 0
0 𝑒𝑒2

�

where the 𝑒𝑒1 and 𝑒𝑒2 are row vectors having only 1’s as their entries. Since one may use averages 
instead of sums, the method became later known as the method of averages. Mayer’s method of 
averages soon became popular. It used all observa�ons and it was very simple to apply. However, due 
to the lack of an objec�ve criterion on how to group the observa�ons, the method was s�ll a subjec�ve 
one.  

IV. The method of least absolute devia�ons

To determine the Earth’s flatening as predicted by Newton’s theory of gravita�on (Principia7, 1687), 
the French Academy of Sciences organized arc-measurement expedi�ons to Peru, Lapland and the 
Cape of Good Hope in the period 1735-1754. These expedi�ons aroused the interest in other countries 
and in 1750 Pope Benedict XIV commissioned the Jesuit and professor of mathema�cs Roger Joseph 
Boscovich (1711-1787) to perform a similar geode�c survey near Rome, the results of which were 
published in 1755. In a summary of this report, published in 17578, Boscovich formulated his new 
method, now known as the method of least absolute deviations, and applied it to the data of the 

French and Italian arc measurements. 

In order to understand the equa�ons used by Boscovich, we first 
need to introduce some elements from ellipsoidal geodesy. For 
short meridian arcs, the arc length 𝑠𝑠 (see figure 1) can be writen 
as 𝑠𝑠 = 𝑀𝑀(𝜑𝜑)∆𝜑𝜑, with 𝑀𝑀(𝜑𝜑) the meridian radius of curvature, 𝜑𝜑 
the geode�c la�tude of the midpoint of the arc and ∆𝜑𝜑 the 
la�tude difference of the two arc endpoints.  

Figure 1: La�tude arc measurements along a meridian. 

6 Sobel, D. (1995): Longitude. Walker, New York, Dutch transla�on by E. van Altena (1997): Dava Sobel: Lengtegraad, Ambo.  
7 Newton, I. (1687): Philosophiae Naturalis Principia Mathematica.  
8 Boscovich, R.J., Maire, C. (1770): Voyage astronomique et géographique dans l’etat de l’église. French transla�on of original 
1755 publica�on. For Boscovich’ contribu�ons, see also Sheynin, O.B. (1973): Arch. History Exact Sci., 9: 306-324. 
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The meridian curvature and its expansion are given as 

𝑀𝑀 =
𝑎𝑎(1 − 𝑒𝑒2)

(1 − 𝑒𝑒2𝑠𝑠𝑠𝑠𝑛𝑛2𝜑𝜑)
3
2

= 𝑎𝑎(1 − 𝑒𝑒2) �1 +
3
2
𝑒𝑒2𝑠𝑠𝑠𝑠𝑛𝑛2𝜑𝜑 +⋯� 

with 𝑒𝑒2 = (𝑎𝑎2 − 𝑏𝑏2)/𝑎𝑎2 the eccentricity, 𝑎𝑎 and 𝑏𝑏 the half lengths of the major and minor axis and 
𝑎𝑎(1 − 𝑒𝑒2)∆𝜑𝜑 the length of an arc at the equator. Using only the first two terms in the expansion, the 
lengths of an ∆𝜑𝜑-arc can be writen as 

𝑠𝑠 = 𝑥𝑥1 + 𝑠𝑠𝑠𝑠𝑛𝑛2𝜑𝜑 𝑥𝑥2        with       𝑥𝑥1 = 𝑎𝑎(1 − 𝑒𝑒2)∆𝜑𝜑     and     𝑥𝑥2 = 3
2
𝑎𝑎𝑒𝑒2(1 − 𝑒𝑒2)∆𝜑𝜑 

This is one equa�on in two unknowns, 𝑥𝑥1 and 𝑥𝑥2. The arc length 𝑠𝑠 and geode�c la�tude 𝜑𝜑 are 
determined from astronomical and geode�c measurements, while 𝑥𝑥1 and 𝑥𝑥2 contain the unknown 
dimensions of the ellipsoid of revolu�on. Although a minimum of two arcs is needed to solve for the 
unknowns, it is preferable to use more than two ∆𝜑𝜑-arcs. As a result, one obtains the following system 
of linear equa�ons 

�
𝑠𝑠1
⋮
𝑠𝑠𝑚𝑚
�

�
𝑦𝑦

= �
1 𝑠𝑠𝑠𝑠𝑛𝑛2 φ1
⋮ ⋮
1 𝑠𝑠𝑠𝑠𝑛𝑛2 φ𝑚𝑚
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���������

𝐴𝐴

�
𝑥𝑥1
𝑥𝑥2��
𝑥𝑥

This is the system of equa�ons which formed the start of Boscovich’ analysis. Note that he 𝐴𝐴-matrix 
becomes near rank defect, when all arcs are chosen to the same la�tude. For an accurate 
determina�on of the two unknowns, it is therefore preferable to choose arcs at widely different 
la�tudes. From the data available, Boscovich chose five such arcs (𝑚𝑚 = 5). In his first analyses, 
Boscovich used the method of selected points. He chose the two arcs with the largest difference in 
la�tude. Not sa�sfied with the result obtained (the 3 residuals were considered too large), he considers 
all possible pairs of measured arcs. This gave him 10 selected points to solve, but again he is not 
sa�sfied with the results obtained. A�er having struggled for some �me on how to proceed, Boscovich 
finally formulates his new method of solu�on in 1757. He states that the parameters 𝑥𝑥1 and 𝑥𝑥2 should 
be chosen in such a way that the residuals sum up to zero and have minimum absolute sum. In formula 
form these two condi�ons read 

�(𝑠𝑠𝑖𝑖 − 𝑥𝑥1 − 𝑥𝑥2𝑠𝑠𝑠𝑠𝑛𝑛2𝜑𝜑𝑖𝑖) = 0  and  �|𝑠𝑠𝑖𝑖 − 𝑥𝑥1 − 𝑥𝑥2𝑠𝑠𝑠𝑠𝑛𝑛2𝜑𝜑𝑖𝑖| = 𝑚𝑚𝑠𝑠𝑛𝑛
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 

The first condi�on (although not essen�al) was mo�vated by the assumed symmetry in the error 
distribu�on, while the second was chosen to get the adjusted values ‘as close as possible’ to the 
observed ones. Boscovich gave the graphical algorithm for solving his problem, but no analy�cal one. 
The analy�cal proof of the solu�on was first given by Laplace in 1793. Using his principle, Boscovich 
first determined the two parameters 𝑥𝑥1 and 𝑥𝑥2 and from them the flatening as 𝑓𝑓 = 𝑥𝑥2/3𝑥𝑥1. Here he 
only used the first term of the expansion 

𝑓𝑓 =
(𝑎𝑎 − 𝑏𝑏)

𝑎𝑎
=

1
2
𝑒𝑒2 +

1
8
𝑒𝑒4 + 

1
16

𝑒𝑒6 + ⋯ 

The value obtained by Boscovich equals 𝑓𝑓 = 1/246, which was smaller than the flatening predicted 
by Newton. Based on the rota�onal ellipsoid as an equilibrium figure for a homogeneous, fluid, 
rota�ng Earth, Newton obtained the value 𝑓𝑓 = 1/230. Boscovich value is however larger than the 
value known today (Interna�onal Associa�on of Geodesy (1980): 𝑓𝑓 = 1/298.257). Boscovich’ method 
was the first adjustment method that started from the principle of minimizing a func�on of the 
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residuals. However, although the method is objec�ve and uses all the observa�ons, it did not reach 
the same level of popularity as Mayer’s method. The method, being nonlinear, was difficult to apply, 
while the at that �me available algorithm could only handle a system of equa�ons with a maximum of 
two unknowns. In the second half of the 20th century the method gained in popularity due to its 
property of being resistant (robust) against outliers. Nowadays Boscovich adjustment method is 
usually referred to as an 𝐿𝐿1adjustment, since the 𝐿𝐿1-norm of a vector is the sum of absolute values of 
its entries.  

V. The method of least squares

Adrien-Marie Legendre (1752-1833), a professor of mathema�cs at the École Militaire in Paris, was 
appointed by the French Academy of Sciences as a member of various commitees on astronomical 
and geode�c projects, among them the commitee on the standardiza�on of weights and measures. 
The commitee proposed to define the meter as 10−7 �mes the length of the terrestrial meridian 
quadrant through Paris at mean sea-level. The arc-measurements took place in the period 1792-1795 
and were analysed, among others9, by both Laplace and Legendre. Legendre’s 180510 publica�on on 
the determina�on of the orbits of comets, contains a nine-page appendix in which for the first �me 
the method of least-squares11 is described, together with an applica�on of the method to the arc 
measurements. Legendre used a different equa�on than Boscovich. Boscovich used the equa�on 

𝑠𝑠 = �𝑎𝑎(1 − 𝑒𝑒2) +
3
2
𝑎𝑎𝑒𝑒2(1− 𝑒𝑒2)𝑠𝑠𝑠𝑠𝑛𝑛2𝜑𝜑�∆𝜑𝜑 

while Legendre, having the determina�on of the meter in mind, used a parametriza�on which differed 
from the one used by Boscovich. With sin2 𝜑𝜑 = 1

2
(1 − cos 2𝜑𝜑), 𝑑𝑑 = 𝑎𝑎(1 − 𝑒𝑒2) + 1

2
3
2
𝑎𝑎𝑒𝑒2(1− 𝑒𝑒2) , 

 sin∆𝜑𝜑 ≈ ∆𝜑𝜑, and 𝑓𝑓𝑑𝑑 ≈ 1
2𝑎𝑎(1 − 𝑒𝑒2)𝑒𝑒2, the above equa�on can be writen as 𝑠𝑠 = 𝑑𝑑∆𝜑𝜑 −

3
2𝑓𝑓𝑑𝑑sin∆𝜑𝜑 cos 2𝜑𝜑 . As a result, we may write for the two endpoints of an arc, 

𝜑𝜑12 = 𝑠𝑠12𝑑𝑑−1 + 3
2
𝑓𝑓𝑠𝑠𝑠𝑠𝑛𝑛𝜑𝜑12𝑐𝑐𝑐𝑐𝑠𝑠(𝜑𝜑1 + 𝜑𝜑2). 

This is one equa�on in two unknowns, 𝑑𝑑 and 𝑓𝑓. Note that 𝑑𝑑 𝜋𝜋
180 is the length of a 1-degree arc at 45 

degree la�tude. 

Legendre understood that the observed la�tude differences would correlate in case the arcs were 
connected. He therefore transformed the above equa�on of differences into an equivalent 
undifferenced form. This can be achieved by introducing an appropriate addi�onal equa�on with an 
addi�onal unknown. As a result, we obtain Legendre’s linear system of equa�ons as 

9 In 1795 the French government invited other European governments to delegate scien�sts to Paris for comple�ng and 
checking the computa�ons for the standardiza�on of weights and measures. The Dutch delegates were professor Jan Hendrik 
van Swinden and the navy officer Henricus Aeneae. The European scien�sts met in Paris in 1798 and reported on their findings 
in 1799. The report on the meter was given by van Swinden, the standard meter, a bar of pla�num with rectangular sec�on 
of 254 millimetres, was placed in the French State Archives, Mètre et Kilogramme des Archives. In 1983 the standard meter 
was defined as the length travelled by light in vacuum in 1/299.792.458 seconds.  
10 Legendre, A.M. (1805): Nouvelles méthodes pour la determination des orbits des comètes. (Appendix: Sur la méthode des 
moindre carrés). 
11 When Carl Friedrich Gauss published his first probabilis�c version of the method of least-squares in 1809, he claimed that 
he had been using the method (‘our principle’) already since 1795. This claim resulted in a priority dispute between Legendre 
and Gauss, for a discussion see e.g. Placket, R.L. (1972): The discovery of the method of least-squares. Biometrica 59: 239-
251.
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Since Legendre had four connected arcs (𝑚𝑚 = 5) at his disposal, he had to solve 5 equa�ons in 3 
unknowns. In order to solve this overdetermined linear system of equa�ons, Legendre proposed to 
determine 𝑥𝑥 such that the sum of the squares of the residuals is minimized. In a vector-matrix form 
(𝑦𝑦 − 𝐴𝐴𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝐴𝐴𝑥𝑥) = 𝑚𝑚𝑠𝑠𝑛𝑛.  

By se�ng the deriva�ves of this quadra�c form equal to zero, he shows that the solu�on sa�sfies the 
consistent system of linear equa�ons (nowadays referred to as ‘the normal equa�ons’) 𝐴𝐴𝑇𝑇𝑦𝑦 =  𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥. 
Note that this result corresponds to the following choice of the 𝐿𝐿 matrix: 𝐿𝐿 = 𝐴𝐴𝑇𝑇. 

A�er solving his set of equa�ons for the three unknowns, 𝜑𝜑3, 𝑑𝑑 and 𝑓𝑓, Legendre obtained for the 
flatening the value 𝑓𝑓 = 1/148, which he recognizes as being too large. He therefore recomputed his 
least-squares adjustment, but now with 𝑓𝑓 constrained to the at that �me adopted value for the Earth’s 
flatening. As a result, he obtained a value for 𝑑𝑑, which was now close to the value obtained earlier by 
Laplace and on which the actual defini�on of the meter was based. The reason for Legendre having to 
constrain 𝑓𝑓 lies in the poor resolu�on of his data. The total arc length of his data covered only about 
10 degrees.  

Although Legendre did not give a clear mo�va�on for his ‘least-squares’ criterion, he did realize its 
poten�al. His method used all the observa�ons, had an objec�ve criterion and most importantly, 
resulted – as opposed to Boscovich’ method – in a solvable linear system of equa�ons. The method 
met with almost immediate success. Within ten years a�er Legendre’s publica�on, the method of 
least-squares became a standard tool in astronomy and geodesy in various European countries. And 
within twenty years, also the probabilis�c founda�ons of the method were largely completed, the 
main contributors being Laplace and Gauss.  
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Adjustment theory can be regarded as the part of mathematical geodesy that deals 
with the optimal combination of redundant measurements together with the estimation 
of unknown parameters. It is essential for a geodesist, its meaning comparable to 
what mechanics means to a civil engineer or a mechanical engineer. Historically, the 
first methods of combining redundant measurements originate from the study of three 
problems in geodesy and astronomy, namely to determine the size and shape of the 
Earth, to explain the long-term inequality in the motions of Jupiter and Saturn, and to find 
a mathematical representation of the motions of the Moon. Nowadays, the methods of 
adjustment are used for a much greater variety of geodetic applications, ranging from, for 
instance, surveying and navigation to remote sensing and global positioning. 

The two main reasons for performing redundant measurements are the wish to increase 
the accuracy of the results computed and the requirement to be able to check for errors. 
Due to the intrinsic uncertainty in measurements, measurement redundancy generally 
leads to an inconsistent system of equations. Without additional criteria, such a system 
of equations is not uniquely solvable. In this introductory course on adjustment theory, 
methods are developed and presented for solving inconsistent systems of equations. The 
leading principle is that of least-squares adjustment together with its statistical properties. 

The inconsistent systems of equations can come in many different guises. They could 
be given in parametric form, in implicit form, or as a combination of these two forms. In 
each case the same principle of least-squares applies. The algorithmic realizations of the 
solution will differ however. Depending on the application at hand, one could also wish to 
choose between obtaining the solution in one single step or in a step-wise manner. This 
leads to the need of formulating the system of equations in partitioned form. Different 
partitions exist, measurement partitioning, parameter partitioning, or a partitioning of both 
measurements and parameters. The choice of partitioning also affects the algorithmic 
realization of the solution. In this introductory text the methodology of adjustment is 
emphasized, although various samples are given to illustrate the theory. The methods 
discussed form the basis for solving different adjustment problems in geodesy. 
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