
 

 

  

A Multi-Scale Approach to 
Implications of the Preferred 

Vertebral Trabecular Orientation 
on Spine Biomechanics 

Aksel Gudde 



 
 

  



 
 

by 

to obtain the degree of Master of Science in Biomedical Engineering  
at Delft University of Technology 

 
 
 
 
 
 
 
 
Studentnumber:  4470389 
Project duration: August 1, 2017 – April 23, 2018 

Thesis committee: Prof. dr. ir. H.H. Weinans, TU Delft and UMC Utrecht 
   Dr. ir. B. Pouran,  TU Delft and UMC Utrecht 
   Dr. ir. E.L. Fratila-Apachitei, TU Delft 
   Dr. J.J. van den Dobbelsteen, TU Delft 

Project supervisors: Dr. ir. B. Pouran 
Dr. ir. V. Arbabi,  TU Delft and UMC Utrecht 
Prof. dr. ir. H.H. Weinans



  

Acknowledgement 

In this short, though sincere, statement I would like to formulate my appreciation for the involvement 
of my supervisors, Harrie Weinans, Vahid Arbabi and Behdad Pouran, in my graduation project.  
I am also thankful for the help given by Bert van Rietbergen, who shared his algorithm and 
corresponding code “the direct mechanics method”.  
The enthusiasm of Harrie Weinans on mechanical fundaments of bone adaptation and the abstract 
nature of trabecular quantifications has triggered a deep personal interest to the topic and inspired me 
to make the best out of this project.  
I would like to thank Vahid Arbabi for his involvement and insights on finite element modelling. 
Furthermore, being pleasant company while doing the research. 
Especially I would like to thank my direct supervisor Behdad Pouran, who has supported and 
motivated me continuously and shown me the relevance of my work. Working together was a truly fun 
and rewarding experience.  

 

 



  

Abstract 

Knowledge of the influence of loading directions on trabecular bone remodeling in spine is of 
significant value in understanding the development of spine deformities and vertebral bone quality 
across different scales.  
Information on the constitution of a preferred trabecular orientation and mechanical properties of 
trabecular bone are important indicators in this respect. The current thesis aimed at exploring these 
aspects across multiple length scales in the spine. The thesis is divided in two parts. The influence of 
loadings less dominant than compression, i.e. shear, on the constitution of a preferred trabecular 
orientation in the spine on the macro-tissue level (>10 mm) was investigated in the first part (Part I). 
This influence was related to mechanical characteristics of trabecular structures on the micro-tissue 
scale (1-10 mm) in the second part (Part II).  
In Part I, primary trabecular orientations (PTOsmacro) near the superior and inferior vertebral endplates 
of L1 and L5 of 6 human spine cadavers were determined on the macro level using micro computed 

tomography imaging (voxel size = 120 m3), by calculating the dominant fabric principal vector. Their 
relative deviations to the axial compression vectors in the spines, quantified by the normals to the 
endplate (NEs), were determined afterwards. The average deviation between the PTOmacro and NEs 
was 6.24⁰ (±4.34⁰). The PTOsmacro did not show a preference towards the anterior or posterior direction 
relative to the NE. From the deviations, it was concluded that trabecular bone in the spine 
predominantly adapts to compression loads. However, secondary loading directions, such as shear, are 
of additional influence. 
In Part II, 13 small cubes (6.0x6.0 mm) from the volumes of interest in Part I were analysed on the 
micro level with regard to elasticity. Components, component ratios and primary elastic orientations 
(PEOmicro) of elasticity tensors, computed by the simulation of mechanical tests in finite element (FE) 
models, were calculated. PTOs of the cubes (PTOsmicro) were compared to the PEOsmicro and related to 
the PTOsmacro and NEs (Part I) qualitatively. Elasticity tensor components were within a reasonable 
range (approximately 1-250 MPa, excluding outliers) and no material symmetry was found, i.e. the 
structures were mechanically anisotropic. PTOsmicro deviated 13.90⁰ (±8.04⁰) with respect to the 
PEOsmicro on average. 10 out of 13 PEOsmicro had similar anterior or posterior tendencies as the 
PTOsmacro with respect to the NEs. 11 out of 13 PTOsmicro had similar anterior or posterior tendencies 
as PTOsmacro with respect to the NEs. 
Elastic properties of typical trabecular structures in the vertebral bodies were successfully determined. 
Due to a relatively low resolution, PEOsmicro deviated strongly with the PTOsmicro. Such deviations 
could function as indicators for bone quality in skeletal disease diagnostics using low resolution 
imaging. PTOsmicro and PEOsmicro agreed relatively well to the PTOsmacro on the macro-tissue level, in 
terms of anteriorly or posterior tendencies relative to axial loading in the spine. This outcome shows 
promise for multi-scalar biomechanical analysis of trabecular bone. 
   



  

Abbreviations 

3D Three-dimensional 
BMD Bone mineral density 
BS/TV Relative bone surface 
BV Bone volume 
BV/TV Bone volume fraction 
DA Degree of anisotropy 
DSO Design space optimization 
EPD Elastic principal directions 
FE  Finite element  
FEM Finite element method 
FOV Field of view 
M-CSF Macrophage colony stimulating factor 
MIL Mean intercept length 
NE Normal to endplate 
OPG Osteoprotegerin 
PCM Pericellular matrix  
PEOmacro Primary elastic orientation on the macro-tissue level (>10 mm) 
PEOmicro Primary elastic orientation on the micro-tissue level (1-10 mm) 
PGE2 Prostaglandin E2  
PTH Intermittent parathyroid hormone 
PTO Primary trabecular orientation 
PTOmacro Primary trabecular orientation on the macro-tissue level (>10 mm) 
PTOmicro Primary trabecular orientation on the micro-tissue level (1-10 mm) 
RANK Receptor activator of nuclear factor κB  
RANK-L "  "   ligand 
S1L1sup In the superior region of the L1 vertebra in spine number 1 
SE Strain energy 
SED Strain energy density 
SLD Secondary loading direction 
TGF-β Transforming growth factor β 
TPD Trabecular principal directions 
Tr. N Trabecular number 
Tr. Sp Trabecular spacing 
Tr. Th Trabecular thickness 
TV Total volume 
VOI Volume of interest 
μCT Micro-computed tomography  
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1 Introduction  

In the field of bone mechanics, it is well-known that the dynamic feature of bone micro is created at an 
intersection where biological and mechanical factors meet. Although the impact of mechanics on the bone 
remodeling - the formation and resorption of the micro - has been extensively investigated, the role of the 
mechanical stimuli on the sustainability of cancellous bone architecture is not fully understood1.  A 
distortion of trabecular structure is involved in high prevalence bone diseases, as discussed shortly. Gaining 
knowledge on the origin and function of these changes is essential for understanding, diagnostics and 
treatment of bone disorders. 
First of all, architectural abnormalities of cancellous bone may lead to diseases that have a local impact at 
the microscale (30-1000 µm*) and micro level (1-10 mm)2, such as an increased fracture risk in 
osteoporosis. Homminga et al.3 found an increased trabecular longitudinal orientation of osteoporotic 
vertebral bodies compared to healthy ones. This difference makes the osteoporotic structure more 
susceptible to infrequent collateral loadings. Similarly, this occurs in osteogenesis imperfecta bones - 
decreased bone volume fraction and trabecular number and an increased inhomogeneity of the trabecular 
network - elevating the fracture risk4.  
In contrast, irregularities in microstructure can also strongly affect the skeleton on the macro-level (≥ 10 
mm). In fact, the most common form of osteoporotic diseases, age-related osteoporosis, can lead to a 
progressive spinal deformity5.  Here, as a consequence of an accumulation of compression fractures in 
spine, the height of spine decreases and a progressive thoracic kyphosis develops. Furthermore, Paget’s 
disease, the second most common bone disorder after osteoporosis, is associated with architectural 
disarrangements of trabecular bone6. The effect of this ailment is again apparent on a larger scale, 
considering the possible evolvement of skeletal deformities or osteoarthritis at joints adjacent to the affected 
trabecular micro5. Moreover, idiopathic scoliosis, a three-dimensional deformity of the spine, is believed to 
be connected to abnormalities of trabecular microarchitecture. As such, Wang et al.7 found a reduced 
trabecular number and connectivity and, consequently, a slightly reduced apparent modulus in the iliac crest 
of adolescent idiopathic scoliosis patients. 
Beside intrinsic processes of the body, architectural organization of trabeculae is of influence when external 
factors come into play. At implantation sites of orthopaedic devices, the trabecular arrangement can be 
heavily disturbed. Eventually, this may lead to repeated numbers of revisions and discomfort for patients8.  
By better predicting how trabecular architecture is influenced by the external mechanical cues, it is possible 
to reduce the risk of implant failure. Furthermore, understanding the growth patterns of trabeculae as a 
response to scaffolds and grafts, aids in mechanical design approaches in bone micro engineering9,10. 
Finally, the reaction of bone micro and its mechanosensing cells, osteocytes, to stimuli can reveal insights 
on how cells behave under mechanical stress10,11. 
As the first examples above imply, microarchitectural and the accompanying mechanical malfunctioning is 
often defined by a combination of unusual quantities of bone material and disorders in trabecular 
orientation. Structural parameters  of  cancellous bone have been reportedly investigated on their 
mechanical meaning12–16. However, a lot of unknowns still remain, in particular, the development of a 
preferred trabecular orientation, i.e. the primary trabecular orientation (PTO), as a result of mechanical cues. 

                                                           
* The scales in this study are based on literature and defined such that there is a consistency throughout the report. 

The terms micro-tissue and micro-scale in this report both refer to the tissue scale ranging from 1-10 mm. For the 
macro-tissue scale and macro-scale, both terms refer to a range >10 mm. 
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The position of these orientational factors in the mechanical equilibrium of bony structures is clearly 
remarkable in the field of bone mechanics and mechanobiology.   
The trajectorial theory of Wolff17 has served as a foundation for a better understanding of the relation 
between trabecular growth patterns and mechanics over the years. A profound number of findings strongly 
supports this theory13,18–21, which states that trabeculae follow the direction of compression and tension 
lines, leading to an orthogonally arranged structure. However, alternative ideas and contradicting research 
outcomes21–24 raise the need for nuance in Wolff’s concept. It is suggested that in some situations, complex 
loadings cause secondary loading directions (SLDs), oblique directed22,25 and shear forces23, to impact bone 
adaptation next to the more dominant compression and tension. Most studies on the development and 
directions of trabecular trajectories in relation to loading patterns, have focused on the cancellous 
architecture of the femur. However, other skeletal parts may be more strongly subjected to SLDs. Vertebral 
bodies make an interesting candidate, since the presence of shear can be easily identified26.  For example, in 
certain spinal deformities, vertebrae are shifted anteriorly27 or posteriorly28 with respect to their superior or 
inferior neighbors, indicating that shear forces are present. Studying the trabecular main orientations of 
vertebral bodies in relation to the mechanical environment of the bone signifies the influence of loading 
types other than compression and tension on trabecular bone adaptation. 
Trabecular bone mechanics is not only defined by the adaptation of trabecular bone in response to loading, 
but also by the mechanical function of the resulting cancellous architecture. Namely, trabecular bone adapts 
to daily forces in order to resist them. The trabecular primary direction can be viewed as being a contributor 
to the mechanical integrity of cancellous bone. The mechanical character of the main orientation of the 
trabecular architecture expresses itself through the elasticity of the structure. It has been shown by Odgaard 
et al.13 that trabecular principal directions (TPDs) closely correspond to the elastic principal directions 
(EPDs), directions along which the material stiffness reaches its maximum and minimum. EPDs align with 
principal stresses. Thus, the trabeculae analyzed in the study additionally followed principal stress 
directions consistent with Wolff’s law. Moreover, the finding of the closely related TPDs and EPDs 
indicates that trabecular orientation measurements can be used as a tool to predict loading directions in the 
skeleton’s mechanical environment13. However, results of more recent work to this relation in human 
elderly vertebrae29, showed less agreement between TPDs and EPDs. Little research has been done on 
TPDs-EPDs and no study has related the alignment to the mechanical environment of vertebrae to our 
knowledge. Further research on TPD-EPD alignments in vertebrae is therefore demanding. Such 
investigation can further verify the influence of SLDs to trabecular bone adaptation. Moreover, in case of 
close TPD-EPD alignments in vertebrae, dominant loading vectors present in the spine can be identified. 
Thus, for this particular situation, the alignments help researchers and clinicians to better comprehend the 
complex biomechanics of the spine.  
This thesis focusses on vertebral trabecular mechanics to explore the presence of shear-dependent trabecular 
bone adaptation on the macro- and micro- tissue level. As such, the project aims at clarifying uncertainties 
of trajectory theories and dominant force directions in the vertebral mechanical environment. This is done in 
two parts. Part I focusses on the primary direction of trabecular bone depending on the mechanical 
environment of vertebrae on the macro level. Trabecular structures are mechanically characterized in Part II 
in the context of their elastic orientation on the micro level. The latter part consequently contains an 
analysis of the trabecular and elastic directions across the two scales.  

PART I 
Vertebral trabecular orientation 

 
 

Background Methods & 
Results 

Discussion 

PART II 
Vertebral trabecular elastic orientation 

 
 

Background Methods & 
Results 

Discussion 
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Part I 

The Preferred Orientation of 
Trabecular Bone in the Vertebral 
Mechanical Environment 
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2 Background 

2.1 Mechanical signalling on the cellular level 

The development of the arrangement of trabeculae is ultimately a result of the bone homeostasis that is 
maintained at a cellular level. This process, called bone remodeling, consists of 5 stages of activation, bone 
breakdown, i.e. resorption, formation and quiescence (termination). The teamwork between bone resorbing 
osteoclasts, bone forming osteoblasts and mechanosensing osteocytes, is believed to be potently driven by 
the mechanical stimuli. Other involved factors are cytokines and hormones30, as will be elaborated shortly. 
Osteoclast and osteoblasts execute their tasks and move in close proximity together with a group of 
mononuclear cells, responsible for the removal of collagen debris remaining from the resorption phase31. 
These dense functional packets total of the cells mentioned above goes by the name of the basic 
multicellular unit (BMU)32.The constitution of a mechanically stable architecture by BMU-activity is 
reflected in two ways.  
Firstly, the BMU has a protective function, by designing the bone architecture such that it can resist daily 
external forces and body mass. Furthermore, remodeling offers repair of damaged bone in order to maintain 
structural integrity. Microdamage induces the assemblage of osteoclasts that remove damaged micro and 
osteoblasts follow to regain bone material. This form of the process is frequently named targeted 
remodeling33.  
Both mechanisms are eventually realized by mechanotransduction, the conversion of a mechanical stimulus 
in the secretion of molecules by the cells. In bone, this function is primarily executed by the osteocytes34,35. 

2.1.1 Bone remodeling cycle and mechanical points of action 
From a mechanical perspective, the remodeling cycle is initiated by strain or fatigue sensed in the osteocyte 
environment31,36. 
For the microdamage-induced remodeling (targeted remodeling), research has indicated that the cycle starts 
with the apoptosis of osteocytes adjacent to a microcrack37. Under living conditions, osteocytes secrete 
transforming growth factor β (TGF-β), which has been shown to inhibit osteoclastogenesis38. After 
apoptosis, the osteocytes cease to produce TGF-β, allowing the formation of osteoclasts31.  
Osteoclastogenesis starts with the generation of mononuclear cells (preosteoclasts) from hematopoetic stem 
cells after being stimulated by macrophage colony stimulating factor (M-CSF)30. When preosteoclasts enter 
the bloodstream, they fuse to form immature osteoclasts as a result of the binding of receptor activator of 
nuclear factor κB ligand (RANK-L) to its receptor RANK39 and the presence of M-CSF30. Due to 
osteoclastic gene expression and continuous presence of RANK-L, osteoclasts mature. After reaching the 
damaged bone site, osteoclasts use ανβ-integrin receptor to form an adhesion with the bone matrix40. 
Osteoclasts transfer acids (H+ and HCl) into the extracellular environment to demineralize the bone41, after 
which the resorption phase is concluded. 
In the wake of the osteoclasts, some collagen is leftover, which is digested by mononuclear reversal cells31. 
Over the course of this so-called reversal phase, these cells mature into the bone forming osteoblasts42. 
Alternatively, osteoblasts can evolve from bone lining cells that are located at a bone region in rest. These 
quiescent cells are stimulated mechanically or by intermittent parathyroid hormone (PTH).  
Mature osteoblasts produce unmineralized bone matrix composed of collagen I and osteocalcin. 
Mineralization takes place under the activity of alkaline phosphatase afterwards, which is additionally 
secreted by the osteoblasts30. During the activity of bone formation, osteoclastogenesis is prevented due to 
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the production of the soluble decoy receptor osteoprotegerin (OPG) by the osteoblasts. OPG binds to 
RANK-L as a competitor for RANK, thus blocking the RANK/RANK-L binding necessary for bone 
resorption30,43.  
While a line of active osteoblasts moves away from the bone surface, a part of the cells is left behind in the 
newly produced matrix. These cells develop long processes that function as communicators with the 
neighboring cells.  Research suggests that the dendrite elongation is a result of mechanical loading44,45. As 
the matrix mineralizes the precursors start to mature to become osteocytes30, ending the remodeling cycle. 
In Figure 1 an overview of the remodeling cycle is shown. 

2.1.2 Mechanics in the osteocyte environment  
Beside microdamaging bone, mechanical loading can trigger osteocytes by causing a pressure differential in 
the fluidic interstitial spaces between bone matrix and the osteocyte body and processes, named lacunae and 
canaliculi, respectively34. Weinbaum et al.46 proposed that the lacunar-canalicular network consists of 
pericellular matrix (PCM) of the monomeric heparin sulphate proteoglycan perlecan47 with pores through 
which fluid flows due to the pressure gradient. 
Wang et al.48 proposed a model to explain how the flow of the interstitial fluid could possibly initiate 
intracellular processes. The perlecan proteins function as transverse tethering elements47, that connect the 
canalicular wall to cross-filaments via transmembrane proteins. Intracellularly, the cross-filaments are 
bonded to an actin filament bundle. When fluid flows, the tethering elements get stretched. Since the 
transmembrane proteins are intracellularly coupled to the actin filaments49, the strain in the tethering 
elements gets transmitted to the cytoskeleton of the osteocyte. As a result, the actin filaments slide and 
deform. Deformation of the actin filament bundle is sensed by integrins in the process membrane. The 
integrins get mechanically activated, inducing a cascade of intracellular processes. These processes include 
the spread of Ca2+ from the osteocyte process to the osteocyte body50 and increased expression of the lipid 
prostaglandin E2 (PGE2)51. PGE2 recruits precursor cells and promotes them to differentiate into 
osteoblasts52. Furthermore, studies have indicated that cytoskeletal deformation of osteocyte-like cells leads 
to an increased Wnt gene expression11, of which the signalling inhibits osteoclast differentiation53. 
These findings support the reasoning that bone remodeling, thus the development of trabecular trajectories 
is orchestrated by osteocytes under the influence of mechanical loading via deformations on the substrate 
level.  

Figure 1: Basic multicellular unit (BMU) activated to execute the bone remodeling cycle as a result of microdamage. 
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2.2 Trabecular trajectory models 

Extensive research has been carried out on stimulated trabecular bone adaptation as a consequence of 
mechanical loading. The theoretical basis for this relation started more than a century ago with the idea of 
Julius Wolff that trabeculae grow directionally such that they can resist the principal stresses most 
efficiently, known as Wolff’s law or trajectorial hypothesis17. Herein, efficiency was defined by Wolff as 
the minimum mass necessary to obtain mechanical reliability17,54. This aspect of bone remodeling has 
frequently been simulated with the finite element method (FEM), especially to model femoral 
components54–59.  
As principal stresses follow compression and tension vectors, the trabeculae are in general believed to align 
accordingly18,24,60. Adachi and co-workers58,59 simulated bone remodeling at the surface of trabeculae 
following a variety loading patterns. It was found that their models are capable of predicting the functional 
adaptation of trabecular bone from the microscale up to the micro level in accordance to Wolff’s law. Jang 
et al.54 constructed a similar adaptation model by using topology optimization, a simulation that iteratively 
distributes material to certain regions of an object – in this case trabecular bone – such that it leads to an 
optimal material arrangement. For example, regions of relatively high strain energies gain material, whereas 
low strain energy-regions lose material.  
Although these models showed supporting findings for the trajectorial hypothesis, some doubt still exists 
regarding skeletal regions where more complicated loading patterns and shear play a role10,23,24,60,61, which 
will be elaborated in sections 2.3.2 and 2.3.3. 

2.2.1 The trajectorial theory 
The development of trabecular orientation in response to mechanical stimuli that support the trajectorial 
hypothesis has been frequently simulated. For example, Mullender and Huiskes62 set up a model that took 
the function of mechanically sensitive osteocytes to modulate bone mass adaptation through osteoclast- and 
osteoblast-activity. During simulation, a structure was created that showed close resemblance with a typical 
trabecular architecture. In fact, when altering loading patterns, the strut’s orientation changed such that it 
aligned with the principal stress directions. Huiskes et al.55 have quantified bone formation and resorption in 
terms of changes in shape and density. They considered the strain energy density (SED) – by definition the 
strain energy per unit bone volume in MPa – to be the stimulus. 
Although the SED-model of Huiskes and co-workers55,56 has been adopted in different simulations54,57,63,64,  
Adachi et al.58 considered an alternative stimulus. A model was developed that simulated bone remodeling 
at the surface of trabecular struts to predict changes in the structure’s architecture. Here, the remodeling was 
assumed to be driven by local stress nonuniformities in the trabeculae in order to eventually establish a 
uniform stress state. 
Based on the non-uniformity remodeling approach of Adachi et al.58, co-authors18 simulated a 3D FE-model 
of the femur that mapped changes in trabecular orientation following different loading situations. An initial 
isotropic (material properties are equal in all directions) and uniform porous trabecular structure was 
assumed. Three loading cases – one legged stance, abduction and adduction – were applied afterwards. 
Following the selective apposition and resorption of bone by the non-uniformity-model, the trabecular 
structure responded to the loadings. The trabeculae of the femoral head were found to align with the 
direction of the different loadings, as shown in Figure 2.  The trabecular structure within the femoral neck 
was orthogonally patterned for the one legged stance and abduction (Figure 2a and b). This finding was 
explained by the presence of a clockwise bending moment due to the loading at the articular surface. The 
adduction loading aligned with the orientation of the femoral neck, thereby preventing a bending moment. 
As a result, a unidirectional trabecular orientation was seen (Figure 2c). In addition, results showed close 
correspondence between the principal trabecular directions and stresses. Thereby, the non-uniformity model 
supports the trajectory theory of Wolff17.  



 
 

 
7 

Boyle and Kim further reinforced Wolff’s law in a FE-model of the proximal femur19, using a specialized 
technique of topology optimization, named design space optimization (DSO)65. Topology optimization 
drives changes in a solid architecture by adding mass at locations where loadings are largest66. In this way, 
the method tries to obtain maximum stiffness and a uniform strain energy (SE) over a domain of the 
structure. DSO is a form of topology optimization where material is added and removed at high and low 
loading regions, respectively, following recorded SE values. The uniqueness of DSO lies in its ability to 
map the adaptation progress over time19. The trabecular remodeling simulation of Boyle and Kim strives for 
the ideal combination of maximum strength and minimum weight. To secure this feature, the DSO bone 
adaptation simulation was initiated in an isotropic state under physiological loading conditions and run until 
the smallest global SE value was reached19. Results of the study showed alignment of the trabecular 
structure with the principal stresses. Furthermore, using topology optimization, Wolff’s law was supported 
from the perspective that bone is an optimum material; The orientation is developed in such a way that 
minimum bone micro was needed to satisfy the mechanical demands. 
Trabecular bone has experimentally been accepted to have its anisotropy most closely resembled by 
orthotropy (material properties differ along three orthogonal axes)67–69. Nevertheless, in trabecular trajectory 
simulations, many bone adaptation models assume isotropic material properties to lower the 
computational  time55,70,71.  Fernandes  et  al.72  already  modeled   cancellous  bone  as  an   orthotropic 
material in an early topology optimization model of the femoral head to support Wolff’s trajectory theory. 
However, not for all applied loading cases, an alignment of principal strains and orthogonal directed 
trabeculae were found. Therefore, it was suggested that an optimal orientation of trabeculae is not 
completely bounded to an orthotropic microstructure. Still, Geraldes et al.73 argued bone adaptation models 
that assume an initial non-orthotropic state of trabecular bone.  In their FE study of the complete femur, an 
alternative adaptation algorithm was developed that started with an orthotropic trabecular structure and an 
orientation already aligned with the principal stresses following Wolff’s law. In comparison to an isotropic 
approach, the orthotropic model provided better bone density predictions and new information on material 
orientation.  

Figure 2: The FE trajectory adaptation model in one-legged stance (a), abduction (b) and adduction (c). The arrows represent the 
main loading directions applied to the femoral head. The circles circumvent the trabeculae of the femoral neck. Here, the structure 
shows an orthogonal pattern for situation (a) and (b) (notice higher stress region around the femoral neck due to the bending 
moment) and a unidirectional pattern for situation (c).18 

(a) (b) (c) 
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In summary, the described simulation models gave advanced directional adaptation predictions of trabecular 
responses to mechanical loadings. Furthermore, they accurately agreed with the Wolff’s law, implying a 
step forward to a general consensus regarding the relation between mechanical stimuli and preferential 
trabecular orientation. Finally, taking anisotropic factors into account, allows researchers to better refine 
trajectory simulations. 

2.2.2 Hert’s model 
Although the models mentioned in the previous section indeed strongly support Wolff’s law, some findings 
have failed to clearly imply the same. Firstly, the early observation that non-orthogonal directed trabeculae 
appear at sharp and obtuse angles, contradict the 90° trabecular alignment of Wolff’s trajectory74. Likewise, 
a non-orthogonal microstructure in the frequently modeled femoral neck is observed18,23–25,54,74,75. Studies 
suggest that trabecular orientation develops due to multidirectional joint loads, rather than a unidirectional 
loading as proposed by Wolff74.  
First of all, following Hert23,25, oblique loading from the extreme positions on a joint are dominant over 
axial loading. As a result, secondary trabeculae that arise from the primary spongiosa (trabecular structure 
that forms as replacement for cartilage during early skeletal development76) are more stimulated in the 
oblique directions, hence create a non-orthogonal structure22. Hert’s model is displayed in the form of a 
fictional joint in Figure 3. Moreover, Skedros and Baucom24 evaluated the trajectory hypothesis by 
analyzing the cancellous architecture of relatively simply loaded skeletal parts (sheep and deer calcanei) and 
cantilevered beams (compressive and tensile stress trajectories were drawn from earlier studies) and more 
complex loaded skeletal parts (human and chimpanzee proximal femur). The results showed orthogonal 
structures for the straightforward loaded samples and non-orthogonal alignments in the neck region of the 
complex loaded femurs. The topology optimization model of the human proximal femur by Jang and Kim 
confirmed these findings54. Measured trabecular intersection angles at the femoral neck and trochanter 
indicated non-orthogonal and orthogonal alignments, respectively, and were in close correspondence with 
those predicted by Skedros and Baucom. 

2.2.3 Shear coupling 
Furthermore, multi-directional loading is thought to cause non-orthogonal patterns in certain skeletal 
regions due to shear-dependent bone adaptation24.  This belief is based on the finding that trabecular bone is 
weaker when subjected to shear than subjected to compression and tension in failure tests61,77. Since bone 
ideally adapts in a way that its weakest portions grant priority, bone matrix should be produced in a way to 
strengthen the micro in the shear direction, which is accommodated by the formation of a non-orthogonal 

Figure 3: Hert’s model of oblique dominant loading stimuli. a Bone is subjected to alternating directed loadings. b Oblique 
loadings cause more strain in oblique directed trabeculae than compressive loadings do on axial trabeculae. c Therefore bone is 
dominantly formed in the oblique directions, ultimately leading to a structure of oblique struts.  d In this manner Hert accounted 
for the non-orthogonal pattern in the femoral neck. 24 

(d) (a) (b) (c) 
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structure24. This idea was later supported in a study where differences were found in micro-damage buildup 
in cancellous bone between compressive and shear loadings78. 
Moreover, a recent study reinforced the involvement of shear in trabecular alignment after finding peak 
shear moduli in a FE-model of the femur at regions that are associated with non-orthogonal trabecular 
patterns79. 
Finally, Pidaparti and Turner23 proposed a model that predicts non-orthogonal alignments resulting from 
shear coupling caused by multidirectional loading. In this explanation, anisotropic materials such as 
trabecular bone are subjected to shear coupling when the principal stress direction is not aligned with the 
material symmetry axis. Cancellous bone homeostasis should find a way to limit the impact of the large 
strains that may follow shear coupling. The model showed that a non-orthogonal alignment of trabeculae 
under multi-directional loading reduced the shear coupling effect 33-75% as opposed to the orthogonal 
alignment of Wolff. Thus, following this model, trabecular bone adapts its structure to multi-directional 
loadings in a non-orthogonal fashion so that it reduces a shear coupling effect to obtain more mechanical 
integrity.  
Although Wolff’s trajectory hypothesis has been widely recognized over the years, more recent studies 
show that the theory does not always completely hold. Especially with regard to Wolff’s view that 
orthogonality results from compression and tension lines, contradicting studies have implied that multi-
directional loadings may cause shear stresses to alter trabecular orientation. 

2.3 An image-based tool for quantifying trabecular orientation 

Several measurement tools are available to study the micro-architectural arrangement of the trabecular 
bone. To perform analysis on the bone quantity in a cancellous structure, indices namely, bone mineral 
density (BMD), porosity, relative bone surface (BS/TV), bone volume fraction (BV/TV), trabecular 
thickness (Tr. Th), trabecular separation (Tr. Sp) and trabecular number (Tr. N) are used3,15,16,80. BS/TV and 
BV/TV here are defined as the trabecular bone surface and volume, respectively, normalized over the total 
volume of a sample15. Structural indices are relevant for the diagnosis and understanding of bone diseases81. 
They are useful tools when assessing the mechanical quality of bone. For example, it has been shown that 
BV/TV is a good predictor of strength and elastic modulus15,82. However, it is necessary to know the 
orientation of the trabecular structure for a better prediction of the mechanical properties of the cancellous 
bone. Trabecular orientation is determined in terms of the structure’s principal directions. 
The most common method to quantify these directions, is to calculate the fabric of the trabecular bone. 
Fabric was firstly defined by Cowin to characterize the microstructural arrangement of a porous or 
multiphase material83. The tool is denoted by a second order tensor, which can be plotted as an ellipsoid. 
The orthogonal axes of the ellipsoid correspond to the material’s principal directions. Furthermore, fabric 
allows for the determination of anisotropic features of a structure. Anisotropy is defined by the difference in 
quantity of a material property per orthogonal direction. Since anisotropy is a different property of 
cancellous bone than trabecular orientation, these features are described by different aspects of the fabric 
tensor (section 2.3.2).  

2.3.1 Imaging 
Micro-computed tomography (μCT) is a relatively new imaging technique, that has been shown to be very 
effective when used to quantify structural parameters of trabecular bone84. μCT is capable of segregating 
hard from soft micro with a resolution up to a few microns85 in three dimensions (3D) non-destructively86. 
Quantifying the desired parameters using μCT-imaging requires the three steps, sample preparation and 
scanning (1), image pre-processing (2) and post-processing (3). Sample preparation and scanning, as it 
implies, involves setting up the materials such that scanning of the appropriate part of the specimen is 
possible87. The scanning settings, such as scanning time, field of view and resolution need to be specified. 



 
 

 
10 

The images are often binarized during pre-processing to make the output of a μCT-scan useful for structural 
analysis88. An accurate binary representation of the sample is obtained by adjusting the brightness and 
contrast of the images, thresholding them and removing noise. Choosing regions of interest and 
segmentation is also part of pre-processing. Commercial software89 is available, that offer in-built 
algorithms allowing for executing the pre-processing tasks. Finally, post-processing is the actual calculation 
of the parameter values based on the pre-processed images90. Different methods and algorithms are used to 
acquire the quantities. The most common one for obtaining fabric based trabecular orientation is described 
in the subsequent section. 

2.3.2 Fabric/Mean intercept length 
The mean intercept length (MIL) is the gold standard for quantifying the orientation of anisotropic materials 
by means of fabric. Furthermore, this fabric tensor has often been used in relation to mechanical properties 
of trabecular bone13–16,80,91. This technique is therefore focused on in this study. In order to do so, firstly, the 
MIL is used as an example to explain how the trabecular principal direction can be determined from fabric 
tensor calculation.  
The MIL is defined as the total length L of the linear grid placed on the microstructure (Figure 4a), divided 
by the number of bone/marrow intersects I. Mathematically this is simply expressed by 

MIL( )
( )

L

I



            (1) 

where ω is the 3D orientation of the grid13,92,93. This grid-angle means the measurement is performed in a 
specific direction. This direction can be projected in a Cartesian coordinate system in the form of a unit 
vector n. The MIL is plotted by relating n to the Cartesian coordinates as follows94 

1 1

2 2

3 3
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x n





            (2) 

where   T
1 2  3,  ,n n n  n . An ellipsoid serves as a suitable approximation to graphically summarize the MIL 

measurements. In general an ellipsoid is mathematically described by the following formula95 

2 2 3
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 (3with Eq. (2) then gives94 

2 2 2 2
11 1 22 2 33 33 12 1 2 13 1 3 23 2 3MIL ( 2 2 2 ) 1m n m n m n m n n m n n m n n           (4) 

Alternatively, this could be summarized as 

21 MIL [ ]  n M n            (5) 

where [M] represents the second order MIL fabric tensor, fully written as 

11 12 13

21 22 23

31 32 33

[ ]

m m m

m m m

m m m

 
   
  

M          (6) 



 
 

 
11 

The ellipsoid representation is a general graphical way of visualizing the fabric tensor. The principal axes of 
the ellipsoid are found by decomposing the fabric tensor into its characteristic eigenvalues and eigenvectors, 
which determine the magnitude and orientation, respectively, of the ellipsoid’s radii92,96. The primary 
principal axis of the material (trabecular structure) corresponds to the orientation of the largest radius and 
thus largest eigenvector of the ellipsoid. Since the radius Ri of the ellipsoid is related to the eigenvalue λi as 

2(1 / )i iR              (7) 

the largest eigenvector belongs to the smallest eigenvalue92,94. Theoretically this relation is explained by a 
small eigenvalue indicating a long MIL and less boundaries per unit of length. In Figure 4 an overview of 
the steps to obtain the ellipsoid representation with the trabecular principal directions from a single MIL 
calculation is given.  
Although trabecular orientation and structural anisotropy are both determined by fabric factors, they do not 
influence each other mathematically. Where the microstructure’s principal trajectories are defined by the 
direction of the fabric eigenvectors, anisotropy is quantified by the ratio between their minimum and 
maximum magnitudes, depicted by the maximum and minimum eigenvalues, respectively97. The latter 
description makes sense considering that the degree of anisotropy (DA) is the extent to which a material 
property differs per direction. Mathematically the DA is given by 

min

max

DA 1



             (8) 

 where λmin and λmax are the minimum and maximum eigenvalues of the fabric tensor, respectively98 and DA 
< 1. It can be easily seen that the larger the DA, the less isotropic is the material. In ellipsoid representation, 
it shows that a smaller DA, thus more similar magnitudes of the principal directions, leads to a more 
spherical geometry. 

2.4 Trabecular orientation in vertebrae  

Thus, as Lanyon60 already mentioned in an early study to the trabecular orientations in sheep calcanei, the 
bone’s internal structure may not adapt so straightforwardly to its environment as suggested by the 

Figure 4: The steps required for obtaining the fabric ellipsoid from a mean intercept length (MIL measurement. a One MIL 
calculation of vertebral trabecular bone imaged using micro computed tomography at a grid angle ω. b MIL fabric tensor 
calculation. c Eigendecomposition providing eigenvectors m and eigenvalues λid Ellipsoid with corresponding eigenvectors 
representation.  
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trajectorial hypothesis, especially in complex loading cases. The alternative ideas by Pidaparti and Turner23 
and Hert22, reinforced by the work of Skedros and Baucom24 (sections 2.2.2 and 2.2.3), raise the need for 
exploring the influence of shear on trabecular orientation. Given that most of the studies reported in this 
work have focussed on the trabecular architecture of femurs, expanding the range of skeletal sites could 
substantiate the understanding of trabecular bone adaptation to this respect. 
Vertebral bodies are an interesting candidate since the degrees of freedom of the spine allows for multi-
directed loadings. Flexion and extension, lateral bending and axial rotation cause vertebrae to be subjected 
to a variety of shears throughout one’s lifespan. Moreover, in the sagittal plane, the spine curvature creates a 
difference in orientations between vertebrae. The inclinations of vertebrae due to the curve result in anterior 
and posterior shear26, as presented in Figure 5. In some cases of spinal deformities, vertebrae are shifted 
anteriorly or posteriorly with respect to their superior or inferior neighbours, indicating an increase of shear 
forces compared to a healthy alignment of vertebrae in the spine.  

2.4.1 Knowns and unknowns in vertebral trabecular orientation 
The influence of loadings different from compression on trabecular adaptation in vertebrae was brought to 
the attention in a study by Smit et al.99 An x-ray image taken from the sagittal plane showed that trabeculae 
were densely concentrated at the pedicles and diverged towards the superior and inferior endplate as if they 
formed a fan-shaped structure. After quantifying trabecular orientations in different regions of a vertebra in 
terms of MIL fabric eigenvectors, the trabeculae were found to predominantly follow axial compression. A 
later investigation by Smit and co-workers100 found a dominance of compression lining trabeculae in the 
spine of a sheep, although it was emphasized that the spine biomechanics of quadruped cannot be directly 
reflected on the human situation. Furthermore, Homminga et al.3 found a preferred trabecular orientation in 
the longitudinal direction in a osteoporotic vertebra in comparison to a healthy vertebra. As a response to 
loss of bone, the micro was encouraged to adapt itself to dominant axial loadings. With their findings these 
studies were able to reinforce the applicability of the trajectorial theory in vertebral trabecular bone 
adaptation.  

Figure 5: The vertebral inclinations cause vertebrae to be subjected to shear loads. 
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However, some calculations performed by Smit et al.99 indicated misalignment of trabecular trajectories 
with respect to the compression line, which could be due to bone adaptation to shear forces.  
Although trabecular orientation in vertebral bodies using fabric has been quantified in a number of studies, 
the relation between the dominant orientation of the trabeculae in relation to spine mechanics has barely 
been investigated. A clear view of the influence of shear forces to bone adaptation in vertebrae thus remains 
unclear.  

2.4.2 Research aim 
The aim was to point out whether there is an influence of anterior and posterior shear forces in the spinal 
column on vertebral primary trabecular orientation (PTO) on the macro level (>10 mm). Since the 
inclination differences and the shifts are likely to be a continuous source of anterior and posterior directed 
shear in the spine, an analysis of vertebral PTO in relation to the loadings in the spine, could provide 
insights in the influence of shear on trabecular bone adaptation. 
Therefore, the aim could be tackled by fulfilling the combination of the following three main tasks: 

1. Determining the angle between the primary fabric direction of trabecular bone, i.e. PTO, in human 
vertebrae to the axial compression line in the spine in the sagittal plane.  

2. Determining the average tendency of a part of the structure to be anteriorly or posteriorly oriented 
with respect to the axial compression line. 

3. Relating these aspects to shear directions predicted from the configuration of the vertebrae in spine. 
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3 Methods 
 

3.1 Micro computed tomography  

Two vertebral bodies that show a relatively large orientation difference in a healthy spine, L1 and L5, were 
chosen for the analysis. The L1 and L5 belonged to 6 cadaveric human spines with ages approximately 
between 75 and 90 years and sex unknown.  
All samples were scanned using a μCT system (Quantum FX, PerkinElmer, Waltham, MA, USA) at the 
using a tube voltage of 90 kV and tube current of 180 μA. Spines were ideally placed in the cylindrical 
sample holder as a whole. A field of view (FOV) was set to 60 mm so that a scan could capture the entire 
vertebral body101. In case a spine did not fit the μCT entirely, it was cut between L2 and L3 and between 
T12 and T11. The spatial resolution of the scans was 120 μm3, which was the highest resolution for the size 
of the samples and 3600 projections were made during a scan time of 2 minutes.  
 
Image processing 
The images were binarized using Fiji (ImageJ)89 after brightness and contrast adjustments. Next, Phansalkar 
was chosen as the standard auto local threshold method. If necessary, noise was removed. The volumes of 
interest (VOIs) for analysis on trabecular structures were selected according to the portions of the vertebrae 
where shear is most likely of influence. It was assumed that, when there is a shift between vertebrae in the 
spine, the resulting shear is largest nearby the endplates. In this line of reasoning, the superior and inferior 
one-thirds of each vertebral body were chosen as VOIs. Calculations of trabecular parameters based on 
these VOIs were on the macro level (section 1), as they comprised the entire width of a human vertebra 
(>10 mm).   
The trabecular structures defined by the VOI domains were named S1L1sup, S1L1inf, S1L5sup, S2L1sup, etc., 
where the subscript refers to the superior or inferior region of the vertebra, L1 depicts the anatomical name 
of the vertebra and S1 is an abbreviation for spine number 1.  
Only trabecular bone was included in the VOIs for these analyses. Finally, VOIs of the superior and inferior 
endplates were taken for the normal to endplate (NE) calculation, as further explained in the subsequent 
paragraph. 

3.1.1 Trabecular bone parameters 
For each VOI of trabecular micro the BV/TV, Tb. Th, Tb. Sp, were calculated and compared with previous 
work as a rough indicator of the quality of the bone structures. All structural parameters were calculated 
using the BoneJ102 plugin provided by Fiji (ImageJ). DA was calculated in Fiji based on the ratio between 
the minimum and maximum eigenvalues, λmin and λmax, respectively, of the MIL fabric tensor as DA=1-
(λmin/λmax)

94. 
BoneJ allows for the option to record eigenvectors and eigenvalues of the MIL fabric tensor during the 
calculation of DA. The eigenvectors and eigenvalues were given by Fiji in the following form 

11 12 13

21 22 23

31 32 33

v v v

v v v

v v v

 
 
 
  

 and 
1

2

3

0 0

0 0

0 0






 
 
 
  

 



 
 

 
15 

respectively, where each column of the eigenvector matrix represented the coordinates of one fabric 
principal direction. The vector-column corresponding to the column of λmin contained the coordinates of the 
primary fabric direction, thus the PTOmacro. As the PTOs and NEs in the current part were based on VOIs 
and endplate regions on the macro level, they are depicted by PTOmacro and NEmacro, respectively. A small 
error tolerance (errormax = 0.0005) was specified before running the DA and fabric eigenvector computation. 
The DA showed a clear convergence over the number of iterations towards the solution. The validation by 

convergence is shown in Appendix A. Note that orientations of individual trabeculae vary throughout a 
VOI103. Thus, a PTOmacro quantified with the fabric eigenvectors, based on an entire VOI, represents the 
average primary principal direction of the trabecular structure. 
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Figure 6: The trabecular primary principal directions of the superior and inferior one-thirds in the L1 (above) and L5 (below) 
vertebral bodies. L1 and L5 belong to the spine, captured by X-Ray imaging, on the right. L1 and L5 are visualized using μCT. L1 
is presented by a cut half-way through the vertebra in 3D. L5 is presented by a cut half-way through the vertebra in 2D to give a 
clearer impression of the internal structure. Zooming in on the superior one-third of L5 (bottom-left) reveals the angle (θ) between 
the trabecular primary orientation (PTO) and the normal to the endplate’s (NE) averaged surface (dotted line). In this example, all 
trabecular primary directions were oriented posteriorly with respect to the NEmacro. It is relevant here to notice for Part II the 
coordinate system, which is defined by ImageJ. 
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The NEmacro was quantified using the Moments of Inertia plugin in BoneJ. This plugin calculates the 
moments of inertia around the principal axes of an object, in this case the endplate. Note that only the 
principal axes of the endplates, which are actually an accessory to the Moments of Inertia function, were 
analysed. The eigenvectors representing the principal directions of the endplates were given in a similar 
form as the basis matrix of fabric. The smallest principal direction corresponded to the endplate normal. 
Thus, the NE was visualized by the eigenvector corresponding to the maximum eigenvalue of the moments 
of inertia.  
PTOmacro of a superior or inferior one-third was compared with the NE of the corresponding endplate. The 
orientation of PTOmacro relative to the NEmacro could be visually assessed by overlapping their origins. Since 
the PTOmacro and NEmacro were calculated in the same coordinate system, coordinate transformation of the 
directions was not necessary for comparison. Since shear is only considered in the sagittal plane in this 
study, its influence on trabecular bone is evaluated in one plane. Therefore, the PTOmacro-NEmacro deviations 
(θ) in this paper are calculated in the two dimensions of the sagittal plane. Figure 6  presents an example of 
the visualization of θ for one spine. The PTO- and NE-vectors were visualized based on their coordinates 
using a simple Python-code. 

3.2 Shear dependent adaptation model 

It was assumed that the configuration of the vertebrae provided sufficient information to assess the vertebral 
mechanical environment in terms of the axial and shear loading directions they were subjected to in the 
sagittal plane, as shown in Figure 7. The mechanical environment of the vertebral bodies was described in 
the following manner.  
The axial force component throughout the spine was assumed to exactly follow the spine curvature. 
Therefore, the compression force at each vertebra aligned with NEmacro (Figure 7d and e).  
The direction of the shear depended on the vertebral orientations, where L1 and L5 of a healthy spine have 
their anterior sides inclined in the cranial and caudal directions, respectively (Figure 2a). As a result, L1 and 
L5 are subjected to posterior and anterior directed forces, respectively26, in this study referred to as the shear 
loading components. At the endplates, counter-acting shear forces appear in the opposite direction to the 
shear loading components to reassure mechanical equilibrium104. The magnitude of the counter-acting shear 
forces at the endplate is equal to the difference between the shear loading component of one vertebra and its 
neighbour. Note that these vector magnitudes are not drawn accordingly in Figure 7d and e in order to 
maintain good visibility for the reader. It is proposed in the model that if shear indeed influences trabecular 
orientation adaptation, the trajectories reorient to slightly deviate from NEmacro, thus from the axial 
compression line, equivalent to the magnitude and direction of the counter-acting shear forces at the 
endplates. Since the shear stress at the endplates of L5 is posteriorly oriented, the PTOsmacro move away 
from the endplate normal accordingly (Figure 7d). For L1, a force component points to the posterior 
direction, therefore leading to a counter-acting shear at the endplate surfaces in the opposite direction. 
Trabeculae deviate slightly towards the anterior direction. Since Smit et al.99 found that trabeculae tend to 
grow to the load bearing pedicles of vertebrae and thereby form a fan-shaped structure, the trabeculae in this 
model do so as well. Figure 7d and e show how the structure should look like under the influence of shear in 
the sagittal plane. Note that deviations of the PTOmacro with respect to the NEmacro are exaggerated in this 
figure to make the deviation visible.  
An anterior shift, which is more likely to occur at L5 than at L1, or a posterior shift, which is more likely to 
occur at L1 than at L5, leads to a larger shear force component on the vertebra in the shift direction (Figure 
7b). Following the shear adaptation theory, such a shift should lead to larger PTOmacro-NEmacro deviations. 



 
 

 
17 

A decreased height of the intervertebral discs was associated with an increase in axial directed loading 
(Figure 7c)105,106. In this case, the trabecular structure is thus more dominantly subjected to the axial 
loading, causing the trabeculae to deviate less from NEmacro.  

Figure 7: Loading components in the human spine following the shear dependent adaptation model. a The spine in healthy 
configuration. The shear load components are largest at L1 and L5 since they are most inclined. The adjacent vertebrae are 
more horizontal, leading to smaller shear load components. To create equilibrium, shear stresses at the endplate surfaces should 
be oppositely directed relative to the shear loading components. The shear stresses should have a magnitude equal to the 
difference between the shear load components of L1 or L5 and their respective neighbors. b The spine containing an anterior 
shift at L5 and a posterior shift at L1, causing increased load shear loading components. c The spine with decreased 
intervertebral disc heights, which is a sign of an increased axial load (larger arrow). d The anteriorly directed counter-
actingshear components at L1 lead to an adaptation of trabeculae in a similar direction near the endplates with respect to the 
endplate normal or axial loading component. e For L5, trabeculae are oriented posterior to the axial loading component to 
maintain mechanical integrity of the vertebra. In both L1 and L5 the trabeculae ultimately are directed towards the pedicles, to 
support these load bearing regions. 
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3.3 Data analysis 

3.3.1 Quantitative analysis 
L1 and L5 were compared based on their structural parameters (BV/TV, Tb. Th, Tb. Sp, DA and θ). The 
superior and inferior VOIs of each vertebra were additionally compared based on these measurements. 
Differences between L1 and L5 and between the superior and inferior VOIs of each parameter were tested 
on their significance (p<0.05).  
The deviation angle (θ) and orientation (anterior or posterior) of PTOsmacro with respect to NEsmacro were 
related to the predicted mechanical environment of each VOI based on the vertebral configurations as 
presented in Figure 7. It was assumed that the larger the deviation, the larger the influence of shear. The 
PTOmacro considered to align with the NEmacro if θ < 0.5⁰.  

3.3.2 Qualitative analysis 
The orientation of PTOsmacro relative to the corresponding NEsmacro were analysed on their agreement with 
the proposed shear dependent adaptation model (Figure 7d and e). 
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4 Results 

4.1 Vertebral configurations 

X-ray images of the spines and μCT images of the vertebrae in the sagittal plane are listed in Appendix C. 
S1L1, S1L5, S2L1 and S2L5 showed no anterior or posterior shift with respect to their neighbouring 
vertebrae. The intervertebral discs showed a relatively healthy height (larger intervertebral heights than 
most of the other studied spines107), thus the vertebrae could be classified as having a healthy configuration 
(Figure 7a). S2L1 showed a degenerated superior endplate. S3L1 had a healthy configuration. S3L5 aligned 
with the spine curvature and showed healthy intervertebral height, apart from the posterior part of the 
intervertebral disc, which was relatively thin. S4L1 was in posterior shift and showed a deformed superior 
endplate in the anterior region, leading to a decreased vertebral height in this area. S4L5 aligned with the 
spine curvature. The intervertebral discs superior and inferior of S4L5 had a lower height. The inferior-
posterior region of S5L1 was posteriorly positioned with respect to S5L2, leading to a counter clockwise-
inclination of the vertebra with respect to the spine curvature. The superior endplate was deformed. S5L5 
showed a healthy configuration. The intervertebral discs superior and inferior to S6L1 had a lower height. 
The superior endplate of L1 was deformed. The intervertebral discs superior and inferior to S6L5 were of 
healthy height. The inferior-posterior region of L4 was posteriorly positioned with respect to L5, causing a 
counter-clockwise inclination of L5 with respect to the spine curvature. Additionally, the vertebral body 
aligned more with L1 than with L4. 

4.2 Structural parameters 

L1 and L5 differed in terms of their structural indices on average (Table 1), although insignificantly 
(p>0.05). The same was true for the difference in structural indices between the inferior and superior ROIs 
of the vertebral bodies (Figure 8).  
The PTO-NE deviation differed the most between the two vertebral orientations (29% larger for L5 than for 
L1) of all parameters. From the same orientation perspective, Tb. Th differed the least (1.4% larger for L5 
than for L1) of all structural indices. Regarding the comparison between the superior and inferior VOIs 
within the vertebrae, the BV/TV differed the most (15% and 18% increase for the inferior with respect to 
the superior VOI of L1 and L5 on average, respectively) and the DA (0.18% and 3.5% larger for the 
superior VOI than for the inferior ROI of L1 and of L5 on average, respectively) differed the least of all. 

The parameters per ROI per vertebral body are listed in Appendix B. Structural indices. 

Table 1: The means of each structural parameter for L1 and L5 without taking into account differences between superior and 
inferior one-thirds. 

Vertebra BV/TV (-) Tb. Th. (mm) Tb. Sp. (mm) DA (-) |θ|(⁰) 

L1 0.126 ± 0.037 0.343 ± 0.035 1.151 ± 0.113 0.561 ± 0.085 5.444 ± 3.484 
L5 0.135 ± 0.049 0.348 ± 0.033 1.169 ± 0.206 0.607 ± 0.089 7.028 ± 5.087 

Values are mean ± SD.  

BV/TV = bone volume fraction; Tb. Th. = trabecular thickness; Tb. Sp. = trabecular spacing; DA = 
degree of architectural anisotropy 
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4.3 Primary trabecular orientations 

PTOmacro-NEmacro deviations of S1L1sup and S1L1inf were 0.883⁰ and 7.19⁰, respectively, and 7.80⁰ and 4.15⁰ 
for S1L5sup and S1L5inf, respectively. S1L1sup, S1L1inf, S1L5sup and S1L5inf all showed posterior oriented 
PTOsmacro with respect to NEsmacro.  
PTOs of S2L1sup and S2L1inf deviated 3.11⁰ in the posterior and 1.44 in the anterior direction for the 
superior and inferior regions, respectively, and 0.526⁰ and 1.78⁰ in the posterior direction for both of the 
respective VOIs of S2L5.  
For S3L1sup of spine 3, the PTOmacro aligned with the NEmacro, since the deviation was 0.474⁰ (< 0.5⁰). The 
PTOmacro-NEmacro deviation of S3L1inf was 1.98 with an anterior relative orientation of PTOmacro. S3L5sup 
showed an anterior deviation of 2.02⁰ of the PTOmacro with respect to NEmacro. A posterior deviation of 8.66⁰ 
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Figure 8: A graphical outline of the comparisons of each structural parameter between the superior and inferior one thirds and 
between the L1’s and L5’s. 
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of the PTOmacro with respect to NEmacro was found for S3L5inf.   
S4L1sup PTOmacro was anteriorly oriented with respect to NEmacro with a deviation of 17.32⁰, whereas the 
S4L1inf PTOmacro aligned with the NEmacro (θ = 0.282⁰). The S4L5 showed an anteriorly oriented PTO for the 
superior VOI of 1.34⁰ and a posterior oriented PTO for the inferior VOI of 9.72⁰ with respect to their 
corresponding NE’s. 
The trabeculae in S5L1sup showed a general tendency towards the anterior direction having a PTOmacro-
NEmacro deviation of 9.12⁰. S5L1inf showed a posteriorly oriented PTOmacro with respect to the corresponding 
NEmacro with a deviation of 13.18⁰. PTOsmacro of S5L5 were posteriorly oriented for both superior and 
inferior VOIs under an angle of 3.57⁰ and 7.98⁰, respectively, with respect to their corresponding NEsmacro. 
The trabecular structure of S6L1 showed an average anterior orientation of 3.62⁰ and 2.62⁰ for both superior 
and inferior one-thirds, respectively, relative to their corresponding NEsmacro. As for S6L5, its superior 
PTOmacro aligned with the associated NEmacro (θ = 0.255⁰) and the inferior PTOmacro deviated from its NEmacro 
in the anterior direction under an angle of 4.076⁰. 
Table 2 presents a summary of the results for each VOI analysed in this study. Three out of twenty-four 
VOIs, the S3L1sup, S4L1inf and S6L5sup showed a close alignment between their PTOmacro and NEmacro (θ < 
0.5⁰). Twenty-one out of twenty-four VOIs showed a clear deviation between PTOmacro and NEmacro (θ > 
0.5⁰). Out of these deviations, fourteen, 6 anterior PTOsmacro for L1 and 8 posterior PTOsmacro for L5, were 
directed in the shear dependent directions as suggested in the shear dependent adaptation model of Figure 
7d and e. The measurements related to solid quantities in trabecular bone fell within the range of those 
reported in the studies by Homminga et al.3, Yeni et al.108 (BV/TV) and Majumdar et al.109 (Tb. Th. and Tb. 
Sp.). 
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Spine Ver. Sup/Infer Config. /comments |θ| (⁰) Direction Agreement with theory 

1 L1 Superior  

Healthy 

3D: 0.989 

2D: 0.883 

Posterior None 

  Inferior  3D: 7.20 
2D: 7.19 

Posterior None 

 L5 Superior  
Healthy 

3D: 8.22 
2D: 7.80 

Posterior Shear dependent theory 

  Inferior  3D: 4.54 (-) 
2D: 4.15 (-) 

Posterior Shear dependent theory 

2 L1 Superior Degenerated endplate 3D: 8.00 (-) 
2D: 3.11 (-) 

Posterior None 

  Inferior Healthy 3D: 1.49 (-) 
2D: 1.44 (-) 

Anterior Shear dependent theory 

2 L5 Superior  
Healthy 

3D: 3.50 
2D: 0.526 

Posterior Shear dependent theory 

  Inferior  3D: 2.15 (-) 
2D: 1.78 (-) 

Posterior Shear dependent theory 

3 L1 Superior  

Healthy 

3D: 6.95 (-) 
2D: 0.474 (-)  

Alignment Trajectorial theory 

  Inferior  3D: 2.07 
2D: 1.98 

Anterior Shear dependent theory 

3 L5 Superior  
Healthy 

3D: 4.74 
2D: 2.02 

Anterior None 

  Inferior  3D: 9.30 (-) 
2D: 8.66 (-) 

Posterior Shear dependent theory 

4 L1 Superior Deformed endplate 

Posterior shift 

3D: 19.07 
2D: 17.32 

Anterior Shear dependent theory 

  Inferior 3D: 1.96 
2D: 0.282 

Alignment Trajectorial theory 

4 L5 Superior  
Decreased intervert. 
height 

3D: 7.24 (-) 
2D: 1.34 (-) 

Anterior None 

  Inferior  3D: 11.57 
2D: 9.72 

Posterior Shear dependent theory 

5 L1 Superior  

Counter-clockwise 
rotation and   
deformed endplates 

3D: 10.20 (-) 
2D: 9.12 (-) 

Anterior Shear dependent theory 

  Inferior 3D: 13.53 (-) 
2D: 13.18 (-) 

Posterior None 

5 L5 Superior  
Healthy 

3D: 4.18 
2D: 3.57 

Posterior Shear dependent theory 

  Inferior  3D: 7.97 
2D: 7.98 

Posterior Shear dependent theory 

6 L1 Superior  

Decreased intervert. 
height 

3D: 5.15 (-) 
2D: 3.62 (-) 

Anterior Shear dependent theory 

  Inferior  3D: 2.96 
2D: 2.62 

Anterior Shear dependent theory 

6 L5 Superior  
Counter-clockwise 
rotation 

3D: 2.53 
2D: 0.255 

Alignment Trajectorial theory 

  Inferior  3D: 4.15 
2D: 4.08 

Anterior None 

Table 2: Overview of the agreement of the combination of vertebral configuration, PTO-NE deviations (θ) and the relative 
PTO orientation with one of the trabecular trajectory adaptation models. 
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5 Discussion 

This part presents, to our knowledge, the first analysis on trabecular bone orientation in vertebrae in relation 
to mechanics depending on the vertebral configuration. Sensitivity of bone adaptation to loading patterns 
different from the axial force component throughout the spine, such as shear, was successfully addressed 
based on the number of strongly deviating averaged trabecular trajectories with respect to the NEs (21 out 
of 24). Still, all PTOsmacro deviated much less with respect to the axial loading component than to the shear 
force component. That all PTOsmacro preferably aligned with the axial loading component, supports Wolff’s 
law from the perspective that trabecular bone orients predominantly to the compression line. 
Regarding bone quantity measurements, the related structural indices did not differ significantly between 
VOIs and vertebral bodies. However, there was a large variation of the indices between VOIs, especially of 
BV/TV. Standard deviations pointed out that the BV/TV of the L1sup and L1inf varied ±29% and ±31% with 
respect to the averages, respectively, and the BV/TV of the L5sup and L5inf varied ±42% and ±34% with 
respect to the averages, respectively. As this parameter is an indicator for trabecular porosity and vertebrae 
were mainly retrieved from elderly, their variance most likely indicate that the specimens included 
osteoporotic vertebrae. This variance could have an effect on the DA and PTO, since studies have shown 
that an osteoporotic trabecular structure leads to a stronger apposition of bone in the PTO than the 
secondary and tertiary trabecular orientations and a stronger alignment of the PTO with the compression 
line3. This study is in line with the latter finding since the VOIs containing the smallest BV/TV showed a 
relatively close alignment of PTOmacro with the NEmacro, thus with the compression line. In fact, three of 
those PTOsmacro were the ones deviating less than 0.5⁰ from the NEmacro, in this study considered to be 
completely in line with the trajectorial theory of Wolff.  
In this study it was reasoned that when an anterior or posterior shift was present, there should be a larger 
PTO-NE deviation due to the increased shear at the endplates. The only vertebra where a clear shift was 
seen, was spine 4 L1, in the posterior direction. The resulting deviation of the PTO near the superior 
endplate was largest of all (17.32⁰), supporting the model of shear dependent trabecular orientation. It 
should be noted that the large deviation could also be due to a locally increased compressive load in the 
anterior region. Namely, the superior endplate was deformed as if it were indented by T12 at its anterior 
part. As a result, trabeculae might be directed towards the corresponding region to support the vertebra 
mechanically110, on average creating a strong preferential orientation in the anterior direction. Moreover, the 
next largest deviation was seen in spine 5 L1, where also deformed endplates were seen, likely the result of 
locally pressurizing adjacent vertebrae onto the anterior superior and posterior inferior endplate regions, 
causing a counterclockwise rotation with respect to the spine curvature as specified in Table 2. The 
deformations were visible at the anterior and posterior regions of the superior and inferior endplates, 
respectively. Similar to spine 4 L1, trabecular trajectories were oriented towards the deformed regions, so a 
strong anterior (9.12⁰) and posterior (13.18⁰) directed deviation for the PTOs of the superior and inferior 
VOI. 
As for the argument that decreased intervertebral heights should indicate a relatively close PTO-NE 
alignment, this logic was not supported by the results. The vertebral bodies in between decreased 
intervertebral heights showed PTOmacro-NEmacro deviations of 1.34⁰ and 9.72⁰ (S4L5sup and S4L5inf, 
respectively) and 3.62⁰ and 2.62⁰ (S6L1sup and S6L1inf, respectively). Although three of those were well 
below the average (6.236⁰), the deviation for S4L5inf was relatively large. This study thereby does not 
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support the idea, that trabeculae nearby decreased intervertebral disc heights align more strongly with the 
axial force vector as a consequence of increased compression105.  
However, as a response to the other PTOsmacro that did not fit one of the proposed theories as well (Table 2), 
loading patterns mapped in three dimensions may reveal explanations of unexpected results. Torsion in the 
spine could play a role in amplifying or overruling the shear in the sagittal plane. For example, scoliosis has 
been associated with increased torsions in the spine. As a consequence, trabeculae could align more 
dominantly to the shear stresses caused by torsion, rather than the shear stresses in the sagittal plane as 
suggested here. When comparing the 3D- to the 2D-deviation angles in Table 2, large differences can be 
seen, implying the influence of forces in the z-dimension additional to the loadings in the x-y-plane (Figure 
7) as focused on in this study. 
Therefore, future research should include analysis of the three-dimensional configuration of vertebral 
bodies to describe their mechanical environments. Using mathematical models of the vertebral 
configurations, could aid in understanding the biomechanical situation of the vertebra111.  
In addition, trabecular bone adaptation simulations or in vivo time-lapsed μCT images, where shear forces 
are applied to the specimen, should be analysed on changes in primary trabecular orientations over time to 
better quantify the influence of shear with respect to compression and tension on bone adaptation. 
Moreover, to get an estimation of the overall tendency of trabeculae to adapt to shear stresses near the 
endplates, the entire superior and inferior one-thirds were chosen as VOI in this study. However, the 
trabecular orientation varies within these VOIs along the posterior-anterior direction. A more complete view 
of regional differences of the trabecular orientation and the role of shear in vertebral trabecular bone 
adaptation would be obtained if the VOIs would also be divided in an anterior, medial and posterior 
segment. 
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6 Conclusion 

In short, trabecular trajectories predominantly adapt to compression in the spine. Still, the trabecular 
primary orientation deviated strongly with respect to the dominant, vertical force component acting on the 
vertebral endplates, being 6.24⁰(±4.34⁰) on average. This suggests that shear forces are of substantial 
influence on the constitution of the primary trabecular orientation in vertebrae. The impact of shear on 
trabecular remodeling should be further investigated and be taken into account in future studies to 
investigate bone adaptation with potential applications in the improvement of orthopaedic implants and 
biomaterials. 
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Part II 

The Relation between the 
Preferred Trabecular Orientation 
and Elasticity on the Vertebral 
Trabecular Micro-Tissue Level  
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7 Background 

7.1 Elasticity in trabecular bone 

The mechanical character of trabecular bone can be effectively described by defining its elastic properties. 
From the elasticity, it is possible for biomedical engineers to assess stiffness magnitudes, mechanical 
anisotropy29 and orientations of the structures in which they are stiffest and least stiff112. 
These aspects of elasticity can be directly or indirectly drawn from the elasticity tensor. The elasticity 
relates the stress to the strain of a material by  

σ = C ε             (9) 

where σ and ε are the second order stress and strain tensors, respectively, and C is the fourth order elasticity 
tensor and in case of Eq. (9) also called the stiffness tensor. The inverse of C is called the compliance 
matrix.  
Elasticity is described by the stiffness tensor in this report, thus both terms are used to describe the same 
physical quantity. For trabecular bone, which is considered to be an orthotropic structure, the stiffness 
tensor can be depicted by 
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showing nine independent components. The components of this matrix firstly indicate how stiff the 
structure is. The larger the components, the stiffer the material.  
Secondly, the material symmetry can be drawn from the ratio between two of the smaller diagonal, or 
principal, elastic constants that describe the stiffness as a result of the material in compression/tension (c11, 
c22, c33). For instance, in their investigation of anisotropic elastic properties, Unnikrishnan et al.29 found that 
elderly vertebral bodies contain an anisotropic trabecular structure and no transverse isotropy, for which 
must be true that the ratio between two of the smaller principal stiffness components approximately equals 
one. They also found that as the bone volume fraction increased (BV/TV), this ratio had a mild tendency to 
get closer to unity. 

7.2 Principal directions of elasticity 

The direction wherein struts of cancellous bone grow, is such that the structure does not fail under the 
mechanical demands in daily life. Considering that the resistance of a material in structural mechanics to 
deform as a result of the forces that are exerted on it, presents itself in the form of elasticity, a relation 
should exist between the latter and trabecular orientation. The relation seems apparent already, taking into 
account that the directional growth of bone leads to more bone deposition and thus an increased stiffness in 
certain directions compared to others. The directions of a structure along which there are minima and 
maxima of stiffness, are called the principal elastic directions. Just like the principal directions of fabric are 
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derived from the fabric tensor, the principal directions of elasticity can be extracted from the elasticity or 
stiffness tensor.  
Finding the visual approximation of the stiffness tensor is substantially more complicated than of the fabric 
tensor as a result of its high rank nature. Nevertheless, Gross et al.112 displayed the stiffness tensor of 
trabecular bone graphically by visualizing the distribution of the Young’s moduli over the structure of 
interest in colour and geometry. The resulting peanut shaped geometry is presented in Figure 9. Similar to 
the fabric visualization, principal directions are shown which depict the directions in which there are 
minima (secondary and tertiary) and maxima (primary) of stiffness. 
A thorough understanding of the relation between trabecular orientation and elasticity allows us to 
understand the mechanical function of directional properties of trabecular bone. Knowing how the desired 
state of elasticity is constituted from trabecular orientation, may provide specialists in the field of 
orthopaedics with novel approaches to predict the mechanical quality of bone13. 
Odgaard et al.13 found a close relation between directionality of the cancellous structure quantified by fabric 
and elasticity as a way of expressing trabecular orientation in its mechanical role. From this perspective, 
trabecular orientation functions as a way to strengthen trabecular bone in terms of stiffness. Namely, elastic 
principal directions align with the principal stress directions. Thus, when trabeculae are equally oriented to 
the elastic principal axes, they additionally align with the principal stress directions. Hence, the trabecular 
structure is in this case oriented to support the skeleton in the directions where the largest (principal) 
stresses appear. This finding implies that fabric can be used not only to estimate elastic principal directions, 
but also to predict loading directions in the skeleton’s mechanical environment. Odgaard et al.13 thereby 
found a new method to predict loading directions in biomechanics of the skeleton. Determining the elastic 
principal directions combined with the fabric in vertebrae gives a firmer view of the direction which the 
trabeculae have been adapting to. Fabric and elastic orientations deviating from the axial direction in the 
spine strongly suggest the influence of alternative directed loadings on the bone adaptation. 

7.3 Trabecular elastic principal directions in vertebrae 

A recent study to human vertebral bodies in elderly by Unnikrishnan et al.29 however, has not shown the 
close relation between elastic and trabecular principal directions that one would expect from the findings of 
Odgaard et al.13 The primary elastic orientation (PEO) aligned much more with the primary fabric 
orientation (5.61º) than the secondary and tertiary elastic orientations did with the secondary and tertiary 
fabric orientations, respectively (20.40º and 23.00º). Still, all deviations were larger than the close 
alignments found by Odgaard et al.13 (0.55º, 3.10º and 3.10º, respectively). The inaccurate outcomes of the 

m3 
m2 

m1 

Figure 9: Graphical representation of an anisotropic elasticity tensor and elastic principal directions of an arbitrary bone cube. m1, 
m2 and m3 correspond to the primary secondary and tertiary   This figure is re-used with permission of the publisher112 
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former study were ascribed to the size of the VOIs (cubes with a side length of 5.0 mm) in combination 
with a low bone volume fraction. This issue is especially relevant when analysing elderly samples, such as 
the ones in the current study, as they often exhibit relatively porous trabecular regions.  

7.4 Research aim 

Investigating elastic properties per direction of the structures elucidates the mechanical function of 
trabecular orientation. The goal of the current part is to present elastic properties of trabecular bone within 
the regions analysed in Part I on a smaller scale, the micro-tissue level (1-10 mm). The motivation for this 
aim was two-fold: 

1. To assess whether the primary elastic orientation was able to predict the primary trabecular 
orientation on the micro-scale. The extent to which these directions were related should give 
insights on the quality of the samples and reveal challenges or opportunities in mechanical analysis 
of elderly vertebrae. 

2. To find relations between the elastic and fabric orientations found in Part I and the fabric 
orientations found in Part II. As the orientations calculated in Part I and II were determined on 
different scales, relations between the two should show how mechanics and trabecular directions 
depends on the scale in which they are analysed. 
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8 Methods 
The elasticity tensor should be calculated first in order for the PEO to be determined. To calculate the 
components of the elasticity tensor, finite element (FE) modelling of the VOI was performed. This 
paragraph describes the selection of VOIs for the FE models in the range of the micro-tissue level (1-10 
mm), the FE model specifics, how PEOs on the micro-tissue level (PEOsmicro) were found from the stiffness 
tensors and finally how all data was analysed quantitatively and qualitatively. 

8.1 Segmentation 

Firstly, cubic VOIs were selected from the binarized μCT-images constructed in Part I. The FE-models 
should be representative for the structures analysed in Part I, however on the micro-tissue level. The cubes 
should therefore fit one-third of the height of a vertebral body maximally, as this was the portion of the 
vertebral height used for the quantifications in Part I. Since the height between vertebrae is different and the 
height within a vertebra varies and a constant cube size should be chosen, the VOI size was limited to side 
lengths of 6.0 mm, which was just less than one-third of the minimum height of the smallest vertebra. 
Which such side lengths the cubes automatically met the requirement of being within the micro-tissue level 
(1-10 mm). 
The cubes were selected in the superior and inferior centres of the vertebrae with exactly the same x and z 
coordinates (Figure 10).  

8.2 FE simulations 

Finding the PEOs involves the calculation of the full anisotropic stiffness tensor using FE modelling. The 
tensor components were calculated by applying 6 mechanical tests in total, three compressive and three 
shear tests. One plate was placed on one side of the cube with another one on the opposite side. 
Displacement of one of the plates with respect to the other resulted in deformation of the trabecular bone. 
The components of the elasticity matrix could be determined one by one through the constitutive equation, 
the known (applied) strain and calculated average stress112 by the FE model. 
 

x 
y 

z 

6 

6 6 

Figure 10: The superior and inferior cubic VOIs (yellow) of side length 6.0 mm visualized in one of the vertebrae. The red 
dotted lines show that the VOIs were defined as having the same x- and z-coordinates. 
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8.2.1 Mesh generation 
The commercial software Mimics (V14.01, Materialise, Leuven, Belgium) was used to convert the stacks of 
VOIs into three dimensional objects. The portion of trabecular bone within the VOIs was selected that 
formed a continuous structure of interconnected struts. Singularities were thus removed. 11 of 24 cubes had 
to be excluded from analysis. The remaining of these cubes after choosing the continuous portion of the 
cube was too small to use for the FE-modelling. This exclusion was based on the initial positions of the 
plates at all mechanical tests, which should be at a 6.0 mm distance with respect to each other. The regions 
and vertebral bodies that did not meet this exclusion criterion, are listed in Table 3. Mimics automatically 
meshed the remaining of the cubes with triangular surface elements. To remove sharp edges, the surface 
mesh was smoothed. The result was exported as an STL-file to be remeshed in 3-matic (V5.1, Materialise, 
Leuven, Belgium) for FE-analysis. An element size that should lead to accurate stress values was chosen 
after a validation model was made. The elements were divided by the minimum factor that would lead to 
convergence of the stress over the number of elements to minimize computational costs. Abaqus (V16.4) 
was used as the FE modelling software. According to the validation model, the elements were divided by 2 
to obtain sufficient convergence. This validation model is shown in Appendix D. The surface mesh was 
converted in Abaqus to a volume mesh of linear tetrahedral elements. The resulting number of elements for 
the trabecular bone structures varied between 133400 – 700900 depending on the relative bone volume 
(BV/TV). The plates were designed in Abaqus, had a side length of 6.5 mm and were 0.5 mm thick. To 
prevent problems related to the algorithm for the contact between the plates and the bone structure, the plate 
elements were larger than the bone elements. The plates counted 3072 linear hexahedral elements each. 

Spine Vertebra Region 
1 L1 

 
L5 

Superior 
Inferior 
Superior 
Inferior 

2 L5 Superior 
5 L1 

 
L5 

Superior 
Inferior 
Superior 
Inferior 

6 L1 
 
L5 

Superior 
Inferior 
Superior 
Inferior 

Table 3: Cubes from these sample regions were used for analysis.  

8.2.2 Material properties 
The bone part of the model was the deformable object and the plate was assumed to be non-deformable, in 
Abaqus referred to as the slave and master, respectively. The bone structures were assumed to be isotropic 
and to deform linear elastically. A Young’s modulus of 1 GPa15 was assigned to the elements and the 
Poisson’s ratio was 0.3. The master plates had a Young’s modulus of 1x103 GPa to ensure negligible 
deformation of the plates. The Poisson’s ratio again was 0.3. 

8.2.3 Contact 
A frictionless surface-surface contact was defined between the plates and the bone. The tolerance 
adjustment zone was set to 0.06 to make sure that all elements of the slave surface within this region 
initially were in contact with the master surface without penetrating the master surface. Settings were 
changed such that the slave surface automatically adapted to the displacement of the plate so that no 
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penetration during the step took place. Adjusted slave surfaces during simulation were tied to the master to 
ensure displacement of the bone in one direction at the surface. 

8.2.4 Steps 
One static, general step was defined. An algorithm (NLgeom) provided by Abaqus was applied, which 
functions to let the simulation take nonlinear effects of the complex structure geometries into account 
during analysis of the deformation.  

8.2.5 Boundary conditions 
One moving plate was assigned a non-zero Dirichlet boundary condition of a displacement corresponding to 
a strain of 0.016 for all mechanical tests. If a compression in the 11-direction was applied, the 
corresponding displacement δ could simply be calculated by solving 

11
1L

   ,           (10) 

where ε11 was the strain in the 11-(x-) direction and L1 was the original side-length of the cube, considering 
that the material was assumed to behave linear elastically. The oppositely placed plate was assigned a zero 
Dirichlet boundary condition, preventing any movement of this plate. Displacements in the other directions 
were prevented by additionally tying the plates to the bone. An overview of the FE-models and the applied 
boundary conditions is shown in Figure 11.  

8.2.6 Field Output Request 
Stresses in all directions were requested as output of the simulation since the averages were used to solve 
the constitutive equation. Contact forces were requested and checked after each simulation to verify that 
contact algorithms actually worked. 

x 

y 

z 

ε22 

ε 12 ε 23 

ε 11 

ε 33 ε 13 

Figure 11: A FE-model of one of the trabecular cubes. The strains corresponding to the applied plate displacements of the six 
mechanical tests are shown. Note that the strains 11-, 22-, 33-, 23-, 13-, 12-directions corresponded to x-, y-, z-, yz-, xz- and xy-
displacements in the given coordinate system (bottom-left), respectively. 
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8.3 Elasticity parameters 

Finding the components of the full anisotropic elasticity tensor involved solving the constitutive equation at 
each mechanical test. Displacements in the directions other than the one in which the movable plate was 
translated were prevented. All strains could therefore be set to zero, except the one corresponding to the 

translation, such that ε = [ε11 0 0 0 0 0]T if there is a compression in the 11-direction. The first component 
c11 could therefore be calculated by dividing the average stress value σ11 by the compressive strain ε11 by 
c11 = σ11/ε11

113. The other elasticity components of the first column (green vertical rectangle) were 
calculated based on this strain and stresses calculated by the FE-simulation in the other directions. Since the 
stiffness matrix can be assumed to be symmetric114, the symmetric counterpart of the first column (green 
dashed horizontal rectangle) could be filled as well 
 
 
 
 
 
 
 
 
Applying compression in the 22-direction lead to the elasticity components of the second column and row 
 
 

 
 

 

All columns in the elasticity matrix were filled in this way according to the six mechanical tests. 

8.3.1 The direct mechanics method 
The PEOs were calculated via the transformation matrix that converted the full anisotropic stiffness tensor 
CANISO in its most orthotropic representation COPT. This method of calculating the PEOs of a structure is 
called the direct mechanics method12,29. An objective function was used to minimize the components of 
CANISO that should be zero in order for the stiffness tensor to depict orthotropy. The objective function was 
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where δ’ij were the stiffness components which were minimized and cij all other stiffness components. The 
coordinates of the PEOs were derived from the columns of the transformation matrix that related CANISO to 
COPT 

ANISO OPT
ijkl i j k l    C R R R R C ,         (12) 

where R is a second order tensor that rotates the stiffness tensor until its most orthotropic representation is 
found. R is given in the form of 
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R ,  

where α, β and χ are the angles of rotation around the z-, x- and y-axis, respectively. Following van 
Rietbergen et al.12, the columns of R are equivalent to the orthonormal basis and thus principal directions of 
the orthotropic stiffness tensor. For an overview, the steps to calculate the PEOs are schematically 
summarized in Figure 12. 

8.4 Data analysis 

Firstly, the principal components cii (diagonal) of the orthotropic representation of the elasticity tensor were 
evaluated by means of their median, minimum and maximum. By presenting these values, the results are 
comparable to an earlier study29 to elasticity of vertebral trabecular bone, which will be elaborated in 
section 10 (Discussion). These elastic constants gave an impression which mechanical test gave the largest 
stresses, thus along which coordinate axis stiffness was dominant. For the sake of clarity, the components 
c11, c22 and c33 were the stiffness constants relating stresses and strains in compressions along the x-, y- and 
z-axes, respectively, and components c32, c13 and c12 related the shear stresses and strains in the zy-, xz- and 
xy-directions, respectively (Figure 11). Additionally, ratios between the principal compressive stiffness 
constants were calculated, as well as their relation to the bone volume fraction were not reported since the 
sample size (n = 13) and correlation coefficient (R2 = 0.18) were too small. 

(a) 

Figure 12: The steps required to get the orthotropic stiffness tensor using FEM. a Cubes of trabecular bone are extracted from a 3D 
μCT image of a vertebral body. b Six different displacements are applied to each cube delivers the full anisotropic stiffness matrix. 
c The optimized stiffness matrix is obtained by applying an algorithm involving the coordinate transformation of CANISO to the 
fabric coordinate system. d At last, residual stiffness components are set to zero, leaving the orthotropic stiffness tensor.29 
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Next, the PTOs were determined based on the fabric principal directions, just as in Part I, only now applied 
to the cubic VOIs, representative for the micro-tissue level. The measurements of the PTOsmicro were again 
validated by checking the convergence of the DA calculation, as was elaborated in Part I. The solution 
converged successfully (Appendix A.). The PEOmicro was read from the column of the rotation matrix 
representing the longest, thus dominant, principal axis. This column corresponded to the column with 
coordinates closest to the dominant fabric eigenvector.  
All PTOsmicro and PEOsmicro were visualized in one coordinate system in the x-y plane, equivalent to the 
sagittal plane in the spine. Viewing the vectors from this perspective was convenient for relating findings on 
the micro-tissue level to those on the macro level (Part I), where PTO-analysis was also done in the sagittal 
plane. Furthermore, the coordinate system of the PEOsmicro was rotated to coincide with that of the 
PTOsmicro, since the PTOsmicro and PEOsmicro initially existed in their own coordinate systems. Both 
coordinate systems and the rotation necessary for the correspondence in coordinate systems is shown in 
Figure 13. After system rotation was applied, a comparison between the PEOsmicro and PTOsmicro could be 
made. First the vectors were visualized, where the centre of the trabecular structures was considered as the 
point of origin. In words, the visualization was described with respect to this origin in the superior half of 
the structure. Laterally, the vectors were described as being oriented left and right for pointing in the 
negative and positive z-direction, respectively.  
Deviations between the PEOsmicro and PTOsmicro were finally calculated in the three-dimensional angle 
(degrees). They were summarized by means of a box-plot, such that the variation in deviations could be 
easily assessed29. Small deviations and a small variation implied accurate determination of the PEOmicro for 
the used bone samples and/or methodology. Large deviations and a large variation indicated that the 
PEOsmicro were inaccurate following the samples and approach used in this study. 
Finally, the directional properties calculated on the micro-tissue level were compared to those on the macro 
level (Part I). An attempt was made to describe the impact of spine biomechanics on the macro scale (>10 
mm) to trabecular structures on the micro-tissue level (1-10 mm) in this way. The PEOsmicro and PTOsmicro 
were related to the axial loading direction, determined by the NEsmacro of adjacent endplates (Part I). Their 
direction with respect to the NEsmacro were qualitatively determined, in terms of anterior or posterior 
tendency in the sagittal plane. The outcome thereof was compared to the tendencies of the PTOsmacro (Part I) 
with respect to the NEsmacro. In addition, the PTOsmicro and PTOsmacro were quantitatively compared by 
calculating their alignment in the sagittal plane (2D). The idea behind this analysis was to determine 
whether the PTOsmicro could well predict the PTOsmacro. 

Figure 13: a The coordinate system of the PTOs and PEOs in red and green, respectively. The coordinate system of the PEO had 
its z-axis originally opposite directed with respect to the z-axis of the coordinate system of the PTO. Rotation of the PEO 
coordinate system to coincide with that of the PTO therefore required the y- and z-coordinate of the PEO vector to be multiplied 
with -1. The vectors were in 2D visualized in the resulting coordinate system. b The centre of the cube represented the coordinate 
system origin. The vectors were drawn in the top half of the system. The vectors were posteriorly oriented with respect to the 
origin in this example. 
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9 Results 

9.1 Principal elastic components 

The medians, minima and maxima of principal elastic constants, or the diagonal components, in MPa of the 
orthotropic elasticity tensor are shown in Table 4. Regarding the structure stiffness in compression, the 
largest median was that of c22, which thus corresponded to the principal stress-strain relation the y-direction. 
The same component also had the smallest minimum and the largest maximum. c11 was smallest based on 
its median value. However, this component was relatively close to the c33 median with a difference of 1.721 
MPa. These two constants also had a similar minimum, although the maximum of c11 was much larger than 
that of c33 (difference: 110.9 MPa).  
As for the elastic constants in shear, on median based, c66, which corresponded to shear in the 12-direction, 
was largest, slightly bigger that c44 (difference: 0.299 MPa), corresponding to the principal shear stiffness at 
a mechanical test applied in the 32-direction. However, c44 contained the largest minimum, followed by c66. 
The maximum of c66 was again largest and that of c44 the smallest. c55, relating the shear stress and strain in 
the 13-direction, was the smallest in median and also contained the smallest minimum, although its 
maximum was in between that of c44 and c66. 
Ratios between the compression stiffness components clearly showed a dominance of stiffness in the y-
direction. Looking at the medians of the ratios c22/c11 and c22/c33, both were well above unity as shown in 
Table 4. The ratio between the less dominant stiffness components c33/c11 showed a median of close to 
unity.  

9.2 Trabecular and elastic orientations 

The deviations of the PEOsmicro and PTOsmicro are shown in the xy-plane in Figure 14. The PEOmicro of 
S1L1sup was right postero-laterally oriented with respect to the axial direction, whereas the PTOmicro was left 
postero-laterally oriented. The vectors deviated with angle of 17.13⁰. For S1L1inf the PTOmicro and PEOmicro 
were both oriented in the postero-lateral direction and approximately aligned in the sagittal plane (2D). 

 Elastic constant Median (MPa) Minimum (MPa) Maximum (MPa)  

 c11 6.743 1.419 168.771  

 c22 38.693 0.672 254.939  

 c33 8.464 1.329 57.828  

 c44 3.186 0.727 7.19  

 c55 1.913 0.062 9.364  

 c66 3.485 0.274 12.826  

 c33/c11 0.960 0.010 8.576  

 c22/c11 13.352 0.009 46.518  

 c22/c33 4.746 0.045 48.477  

Table 4: A summary of the values found for the diagonal components of the elasticity tensor by 
means of ther median, minimum and maximum. Note that the minima also include outliers. Ratio’s 
between the principal compressive stiffness components are also given. 
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However, here, the PTOmicro pointed far to the right and the PEOmicro slightly to the left anatomical direction 
of the body, causing a 3D deviation of 15.83⁰. S1L5sup again showed a close relation between the PEOmicro 
and PTOmicro in the sagittal plane and both approximately aligned with the axial axis of the cube. The 
PEOmicro was slightly oriented to the right and the PTOmicro to the left of the cube. The orientations deviated 
mildly with 2.50⁰. The PEOmicro and PTOmicro of S1L5inf were left and right antero-laterally directed with 
respect to the axial line of the cube, respectively. The deviation angle was 18.19⁰. The deviation of the 
PEOmicro and PTOmicro of S2L5sup was again small, viewed from the 2D sagittal view as Figure 14 suggests, 
although much larger in 3D being 17.15⁰. The PEOmicro was oriented towards the left antero-lateral 
direction, whereas the PTOmicro was oriented towards the right antero-lateral direction. The trabeculae of 
S5L1sup on the micro-tissue level were oriented in the left postero-lateral direction according to the PTOmicro. 
However, the PEOmicro was very slightly oriented in the right antero-lateral direction. The difference 
resulted in a deviation of 18.04⁰. The deviation for the cube in S5L1inf was 10.15⁰. In the lateral direction, 
the PEOmicro very slightly oriented to the right, while the PTOmicro did more so. Both were posteriorly 
directed although the PTOmicro did more so than the PEOmicro. S5L5sup showed a PTOmicro-PEOmicro deviation 
of 17.21⁰. Both PTOmicro and PEOmicro were more horizontally oriented than vertically as opposed to most of 
the other structures. They were anteriorly directed with respect to the defined origin. The PTOmicro deviated 
to the left and the PEOmicro to the right laterally. The deviation between the PTOmicro and PEOmicro of S5L5inf 
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Figure 14: The visualizations of the PTOs (red) and PEOs (green) in the sagittal, xy-, plane. The cubes of side length 6.0 mm are 
ordered in the caudal direction from top to bottom.  
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was 33.70⁰. The PEOmicro indicated almost an horizontal dominant anterior elastic direction. The PTOmicro 
was also anteriorly directed, although less horizontally. Laterally, the PEOmicro and PTOmicro both directed 
very slightly to the right. The PTOmicro and PEOmicro of S6L1sup both mildly oriented to the posterior side 
with a small lateral deviation to the right, which was slightly larger for the PTOmicro than for the PEOmicro. 
The angle between the vectors was 4.68⁰. For S6L1inf the deviation was 9.52⁰. Again, both vectors were 
mildly posteriorly oriented, the PTOmicro more than the PEOmicro. From a coronal view, the PTOmicro was 
right laterally and the PEOmicro left laterally oriented. The PTOmicro and PEOmicro of the S6L5sup cube 
followed an anterior right and left lateral direction, respectively. The PTOmicro again had a stronger anterior 
tendency than the PEOmicro. The deviation was 9.46⁰. For S6L5inf, the vectors were oriented in the anterior 
direction, again with the PTOmicro doing more so than the PEOmicro. However, here, both vectors deviated 
laterally to the right side. The vectors deviated with an angle of 7.20⁰.  
11 out of 13 PEOsmicro were more vertically inclined than their corresponding PTOsmicro. The other 2 cubes, 
of the S5L5sup and S5L5inf regions, showed a more horizontally oriented structure in general, i.e. the 
PTOmicro deviated more than 45⁰ with the vertical (y-) axis.  
The deviations are summarized in the form of a boxplot in Figure 15. The angles were within the range of 
2.50⁰ and 18.19⁰, although there was one outlier of 33.70⁰. The interquartile range (IQR) was 7.76⁰. The 
median was 15.83⁰. Six deviation angles were relatively close to each other, varying in between 15.83⁰ and 
18.19⁰. Apart from the outlier, the other angles were smaller, in between 2.50⁰ and 10.15⁰. 
In general, PTOsmicro and PEOsmicro showed consistency when comparing the superior to the inferior region 
within each individual vertebral body. The struts as well as the preferred elastic orientations were equally 
oriented, anteriorly or posteriorly, for each vertebra in the sagittal plane.  
 

9.3 Trabecular and elastic orientations from micro to macro level 

11 out of 13 PTOsmicro agreed relatively well on sight with the PTOsmacro (Part I), representing the trabecular 
orientation of the entire vertebral one-thirds, in the sagittal plane, which can be seen by comparing Figure 
14 to the PTOmacro-NEmacro visualizations presented in Appendix C. To be more specific, a calculation of the 
PTOsmicro would lead to a similar relative orientation to the NEmacro in terms of posterior and anterior 
direction. The two other PTOsmicro, those of the cubes within S1L5inf and S5L5inf, were differently oriented 
with respect to the NEmacro than the PTOsmacro. The PTOsmicro of S1L5inf and S5L5inf were both anteriorly 
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Figure 15: A boxplot showing the distribution of the deviations between the primary trabecular and primary elastic orientations.
There was one outlier of 33.70⁰. 
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directed with respect to the NEmacro as opposed to the corresponding respective PTOsmacro, which were 
posteriorly oriented (Figure 16).  
Since most PEOsmicro deviated from the PTOsmicro and PTOsmicro were comparable to PTOsmacro, the 
PEOsmicro consequently deviated from the PTOsmacro. Only the PEOsmicro in S1L5sup and S6L1sup deviated 
relatively little from the PTOsmacro, with angles of 5.93⁰ and 4.29⁰, respectively. 
However, the PEOsmicro had a very similar tendency toward anterior and posterior directions relative to the 
NEsmacro in the sagittal plane. Just like for the PTOmicro, the PEOsmicro in S1L5inf and S5L5inf did not agree 
with the PTOsmacro relative to the NEsmacro in these regions. One other disagreement was found. In the 
superior region of S5L1, the PTOmacro was oriented in the anterior direction with respect to the NEmacro, 
whereas the PEOmicro of the cube would have been posteriorly oriented relative to the NEmacro. Just like with 
their PTOs, all other cubes had PEOs in agreement with the PTOsmacro regarding the relative anterior or 
posterior direction to the NEmacro. The agreements between orientational relative to the NEmacro on the micro- 
level and macro-tissue level are summarized in Table 5. 
The PTOcubes and PTOPart I deviated with 4.61⁰ (±4.40⁰) on average in the sagittal plane. 

Region PTOmicro-PTOmacro agreement PEOmicro-PTOmacro agreement PTOmicro-PEOmicro agreement 
S1L1sup Yes Yes   
S1L1inf Yes Yes   
S1L5sup Yes Yes   
S1L5sup No No   
S2L5sup Yes Yes   
S5L1sup Yes No       X 
S5L1inf Yes Yes   
S5L5sup Yes No   
S5L5inf No No   
S6L1sup Yes Yes   
S6L1inf Yes Yes   
S6L5sup Yes Yes   
S6L5inf No No   

Table 5: An outline of the agreements between the primary trabecular orientation (PTOmicro) on the micro scale and macro scale 
(PTOmacro) and between the primary elastic orientation on the micro scale (PEOmicro) and PTOmacro with regard to their anterior or 
posterior tendency relative to the normal to the endplate (NEmacro). The outmost right column depicts whether the PTOmicro and the 
PEOsmicro agreed regarding their anterior or posterior tendency relative to the NEmacro. 

Volume of interest vertebral one third 
x 

y 

z 
Normal to endplate Primary trabecular orientation micro level 

Primary trabecular orientation macro level 

Figure 16: The S1L1inf (left) and S5L5inf (right) cubes showed a primary trabecular orientation in another direction with respect to 
the normals to the endplate than the PTOs of these entire inferior one thirds 
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10 Discussion 
The novelty of this work lies in the abstraction of the elastic and fabric orientation computations on a micro-
level to loading directions as a part of spine biomechanics on the macro scale (> 10 mm). 
The selection of trabeculae was limited to certain criteria since cubic models of the trabeculae allow for 
easy elastic assessment via FE simulations, they should be within the VOIs of Part I, and the chosen 
trabecular pieces should be approximately at similar central regions of each vertebra for consistency. 
Combined with the fact that samples were taken from elderly and were thus likely to contain highly porous 
structures, obtaining sufficiently homogeneous and continuous bone models was strongly hindered. It was 
emphasized in an earlier recent study by Unnikrishnan et al.29 on orthotropy of vertebral trabecular bone in 
elderly, that in such cases, the size of VOI is of substantial influence on the agreement between elastic and 
fabric principal directions. The similarity of the study by Unnikrishnan et al. and the current one, makes the 
former useful for comparison. 

10.1 Implications for mechanical anisotropy 

Regarding the principal elastic constants (section 9.1), the largest compressive elastic constant was clearly 
c22, which corresponded to the principal compressive stiffness in the y-direction. Looking at the cubes 
(Figure 14), this large relative stiffness was sensible considering that the structures predominantly follow 
the vertical direction. They are thus more directed along the y-axis than the x- and z-axis. The finding that 
c22 was dominant is validated, as stiffness should be largest along the axis along which the most bone 
appears, the 2-/y-axis. 
Regarding the compressive principal elastic constants (Table 4, c11, c22, c33), medians were within the range 
defined by the minima and maxima reported in the study by Unnikrishnan et al. The values were in the 
same order of magnitude. Two shear principal elastic constants (Table 4, c55, c66) were smaller and one was 
within the given range in the former study (c44). The minimum of c55 (0.062) was unusually small and 
actually represented an outlier. Although all other elastic constants were roughly in a similar order of 
magnitude, the medians, minima and maxima of the current study were considerably and consistently 
smaller than the ones found by Unnikrishnan et al. A reason for the inequality of stiffness magnitudes lies in 
the assignment of different Young’s moduli to the FE-models, which was 13 GPa in the work of 
Unnikrishnan et al. and 1 GPa in the current study. Increasing the Young’s modulus to 13 GPa would result 
in closer stiffness levels.  
The ratios between compressive stiffness constants found in this study indicate a preference of vertebral 
trabecular bone to form an orthotropic above a transversely anisotropic structure. Anisotropy was thus 
defined through mechanical characteristics of the trabecular cubes. Transverse anisotropy would result in a 
ratio of the less dominant stiffness constants (c33/c11) to be close to unity. Although the median did so, the 
range between the minimum and maximum and an IQR of 2.59 MPa proves a too big variation to show 
transverse anisotropy. This finding supports the idea of trabecular bone being orthotropic rather than 
transversely isotropic.  
Following Unnikrishnan et al., an increase in BV/TV would lead to increased material symmetry, thus a 
tendency of the ratio between the less dominant compressive principal elastic constants (c11/c33) towards 
unity. The relation between BV/TV and c11/c33 was not reported here, since the combination of a small 
sample size (n = 13) and correlation factor (R2 = 0.18) were insufficient for a statement regarding this 
aspect. 
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10.2 Relation between trabecular and elastic orientations 

There was a strong deviation in general (avg.=13.90⁰ ± 8.04⁰) between the PEOs and PTOs on the micro 
level, considering that they should closely align. This outcome was most likely due to the removal of 
unconnected struts before performing FE-analysis but after determining the PTOs. The unconnected 
trabeculae would act as singularities in FE simulations. Solutions would not converge as a result.  
To prevent divergence, singularities were deleted. Some trabeculae were therefore included during the 
calculation of the PTOsmicro whilst being absent in the FE-computations. The removed struts could be of 
substantial influence on principal directions, hence probably lead to different fabric than elastic orientations.  
Unnikrisnan et al. found a median deviation between elastic and trabecular primary orientations of 5.61⁰, 
which is much smaller than the deviation reported here. In their study, elderly vertebral samples were used 
as well and relative bone volumes were in a similar range as reported here, indicating that bone quality 
should be comparable. Thus, the problem of the removal of disconnected structures should apply to their 
study as well. A logical reason for the difference between the findings is the high resolution used by 
Unnikrishnan et al. relative to the resolution in the current study, which were 37 and 120 µm, respectively. 
Since it was needed to capture the complete vertebral cancellous structures, FOVs had to be sufficiently 
large, resulting lower resolutions. The lower resolution led to less accurate thresholding, which probably 
caused the imaged structures to be less connected than they are in vivo. Although low resolutions hinder 
quantifications of trabecular microstructures, they remain relevant in clinical context, as voxel sizes of 
clinical CT-scans are normally maximally 250 µm3115. There are improvements being made to increase 
clinical CT-scan resolution to 82 microns/voxel115. 
In general, non-alignments could be additionally due to the advanced age of the samples29. As a result, they 
exhibited less homogeneous and more sparse structures. It is therefore recommended that future 
fundamental studies use denser trabecular specimens. From a clinical perspective, the use of the current 
samples remain relevant, as increased porosity and fragility of internal vertebral structures is a major issue 
for elderly. In fact, deviations between elastic principal directions and fabric principal directions might be 
used as an indicator for the mechanical integrity of osteoporotic vertebrae. Mechanical analysis of 
trabecular bone could be done in a more medical context in the future. It is advised to explore the use of 
fabric and elastic quantifications, such as their components and principal directions, as parameters in 
optimizations of diagnostics strategies, orthopaedic implants and micro engineering technology. 
Although PEOmicro-PTOmicro angles were large, the average deviation (13.90⁰) was smaller than a deviation 
found by Odgaard et al. in a whale vertebral specimen, which was 18.40⁰. Furthermore, looking at the 
structures from the sagittal plane (xy-plane), as presented in Figure 14, all PEOsmicro have an approximate 
similar deviation with respect to the coordinate system’s axes. To elaborate, the direction of the PEOsmicro 
are equal to the PTOsmicro in the sense that they are both anteriorly or posteriorly oriented relative to the y-
axis for all the cubes.  
Apparently, deviations were less related in the coronal view, since almost all PEOsmicro and PTOsmicro were 
oppositely directed relative to the y-axis in the coronal plane (zy-plane). Taking into account that the 
removal of trabecular singularities probably was the biggest contributor to the deviations, more singularities 
could be of larger influence on the trabecular orientation in the coronal plane than in the sagittal plane.  

10.3 Relation between trabecular micro mechanics and spine biomechanics 

Although the PEOsmicro and PTOsmicro did not closely align in 3D, their tendency to both follow the anterior 
or posterior direction relative to the NEmacro were similar on the micro scal. An exception was the PEOmicro 
and PTOmicro of S5L1sup, which were posteriorly and anteriorly oriented with respect to the NEmacro, 
respectively. The inaccuracy of the PEOmicro determination apparently lead to a change in orientation 
relative to the NEmacro in this particular case. 
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It was also noticeable from the sagittal point of view, as visualized in Figure 14, that the PTOsmicro and 
PEOsmicro of the superior region within each vertebra were similar to the PTOsmicro and PEOsmicro in the 
inferior region in relation to the y-axes. This insight reveals that inconsistencies of the differences in the 
PTOs relative to the NE for superior and inferior regions between the vertebrae are more due to differing 
NEsmacro per vertebra than PTOs. Thus, the axial force vector in the spines used in this study changed due to 
the curve, while the primary trabecular directions remained relatively constant per vertebral body. 
Furthermore, in comparison to the PTOsmacro, the relative orientations agreed arguably well, with 11 out of 
13 agreements between the PTOmicro and PTOsmacro and 10 out of 13 agreements between the PEOsmicro and 
PTOsmacro. The cubes were able to predict orientations on a larger scale well from this view. However, 
deviations between the PTOsmicro and PTOsmacro still was 4.61⁰ with a relatively large standard deviation of 
4.40⁰. From these findings it can thus be drawn that most, but not all, cubes on the micro level were typical 
for the regions on the macro level.  
The fact that tendencies between the PTOsmacro and NEsmacro and between the PEOsmicro and NEsmicro were 
similar and deviated with respect to the NEsmacro, indicates that adaptation to secondary loading directions in 
addition to the dominant compressive force direction is apparent on both the macro- (Part I) and micro-
tissue level (Part II). However, note that the deviation between the PTO on the micro-tissue level and the 
PTO on the macro-tissue level of 4.61⁰ means that measurements on the micro-tissue level are still not 
sufficiently accurate to predict structural parameters on the macro-tissue level. Furthermore, it is 
emphasised here that future applicative research should focus on the extent to which trabecular bone adapts 
to primary (compression) and secondary (shear) loading directions along the different anatomic scales. As 
mentioned in the discussion of Part I (section 5), an advised approach is in vivo time-lapsed imaging. 
Applying shear forces on trabecular bone samples and recording and analysing changes in trabecular bone 
orientation over time would provide information on the extent to which trabecular bone adapts to shear. 
Understanding how trabecular bone in vertebrae relates to biomechanics of the spine may be of significant 
value in diagnostics. For instance, if increased shear in the spine could be read from patterns in vertebrae at 
a young age, clinicians can predict whether it is likely if a person will develop a scoliotic spine. Treatment 
could be appropriately adjusted to ensure a life for the patient without limited mobility or worse. 
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11 Conclusion 
 

Trabecular structures within the superior and inferior regions of earlier investigated vertebral trabecular 
bone were successfully analysed on different elastic characteristics. The magnitude of the stiffness constants 
was within a reasonable range (1-250 MPa approximately, excluding outliers). Regressions between bone 
volume fraction and material symmetry were hindered due to a limited sample size (n = 13). Regarding 
primary fabric and elastic orientations, close alignment between the two was not found as the average 
deviation was 13.90⁰ (±8.04⁰). The reason for this outcome was a combination of poor bone quality related 
to the advanced sample ages and a low μCT resolution (voxel size = 120 µm3 ). The clinical relevance of 
such deviations could be found by relating them to bone quality indicators as an approach to assess the 
health of the bone. Finally, overall tendencies of primary fabric and elastic orientations on the micro-tissue 
level (1-10 mm) agreed well with those on the macro-tissue scale (>10 mm), both suggesting that, besides 
compression, secondary loading directions such as shear are of influence on trabecular bone adaptation. 
This finding implies that research to bone adaptation across scales could provide suggestions on how to use 
trabecular bone analyses on a small scale to predict unhealthy skeletal growth of patients at an early stage. 
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Appendix 

A. Degree of Anisotropy 

The convergences of a calculation of a degree of anisotropy (DA) with an error tolerance of 0.0005, on 
which fabric principal directions were based, on the macro level (Part I): 

The convergence of a calculation of a DA with an error tolerance of 0.0005 on the micro level (Part II): 
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B. Structural indices 

Structural indices of 12 vertebral bodies, scanned with a resolution of 120 micron (= 0.12 mm) from 6 
different spines: 

   

Spine Vertebra Sup./Infer. BV/TV Tb. Th. mean (pixels) Tb. Sp. mean (pixels) DA 
1 L1 Superior 0.175 3.328 9.192 0.620 
1 L1 Inferior 0.204 3.218 8.494 0.642 
1 L5 Superior 0.191 3.284 8.619 0.607 
1 L5 Inferior 0.214 3.027 7.756 0.648 
2 L1 Superior 0.112 3.230 11.253 0.583 
2 L1 Inferior 0.129 2.778 9.704 0.598 
2 L5 Superior 0.102 2.915 12.197 0.634 
2 L5 Inferior 0.111 3.059 11.746 0.512 
2.1 L1 Superior 0.088 2.648 10.807 0.591 
2.1 L1 Inferior 0.116 2.631 8.771 0.519 
2.1 L5 Superior 0.133 2.890 8.971 0.619 
2.1 L5 Inferior 0.130 2.726 8.971 0.590 
3 L1 Superior 0.091 2.471 9.609 0.414 
3 L1 Inferior 0.080 2.500 10.184 0.550 
3 L5 Superior 0.058 2.441 12.563 0.522 
3 L5 Inferior 0.132 2.483 8.055 0.408 
5 L1 Superior 0.098 2.763 10.385 0.500 
5 L1 Inferior 0.157 2.766 8.108 0.407 
5 L5 Superior 0.176 3.195 8.295 0.684 
5 L5 Inferior 0.196 3.251 8.492 0.707 
6 L1 Superior 0.136 3.001 9.425 0.659 
6 L1 Inferior 0.125 2.932 9.171 0.645 
6 L5 Superior 0.086 2.781 10.748 0.644 
6 L5 Inferior 0.091 2.749 10.493 0.714 
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C. Trabecular primary orientation-normal to endplate visualizations  
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Ver. Sup/Infer |θ|(⁰) Direction BV/TV DA 
L1 Superior 0.883 Posterior 0.175 0.620 
L1 Inferior 7.19 Posterior 0.204 0.642 
L5 Superior 7.80 Posterior 0.191 0.607 

L5 Inferior 4.15 Posterior 0.214 0.648 
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Spine 2  

  Ver. Sup/Infer |θ|(⁰) Direction BV/TV DA 
L1 Superior 3.11 Posterior 0.112 0.583 
L1 Inferior 1.44  Anterior 0.129 0.598 
L5 Superior 0.526 Posterior 0.102 0.634 

L5 Inferior 1.78  Posterior 0.111 0.512 

1 1

3
 

1

3
 

1

3
 

Tr. orientation 

Normal to endplate 

ROI 

Coordinate system 
x y 

z 

1

3
 

1

3
 

1

3
 



 
 

 
53 

Spine 3  

 

 

  

Ver. Sup/Infer |θ|(⁰) Direction BV/TV DA 
L1 Superior 0.474   Equal (Ant) 0.088 0.591 
L1 Inferior 1.98 Anterior 0.116 0.519 
L5 Superior 2.02 Anterior 0.133 0.619 

L5 Inferior 8.66  Posterior 0.130 0.590 
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Spine 4 

 

 

 

 

  

Ver. Sup/Infer |θ|(⁰) Direction BV/TV DA 
L1 Superior 17.32 Anterior 0.091 0.414 
L1 Inferior 0.282 Equal 0.080 0.550 
L5 Superior 1.34  Anterior 0.058 0.522 

L5 Inferior 9.72 Posterior 0.132 0.408 
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Spine 5 

 

 

 

 

  

Ver. Sup/Infer |θ|(⁰) Direction BV/TV DA 
L1 Superior 9.12  Anterior 0.098 0.500 
L1 Inferior 13.18  Posterior 0.157 0.407 
L5 Superior 3.57 Posterior 0.176 0.684 

L5 Inferior 7.98 Posterior 0.196 0.707 

Tr. orientation 

Normal to endplate 

ROI 

Coordinate system 
x y 
z 

1

3
 

1

3
 

1

3
 

1

3
 

1

3
 

1

3
 



 
 

 
56 

Spine 6 

 

  

Ver. Sup/Infer |θ|(⁰) Direction BV/TV DA 
L1 Superior 3.62  Anterior 0.136 0.659 
L1 Inferior 2.62 Anterior 0.125 0.645 
L5 Superior 0.255 Equal (Ant) 0.086 0.644 
L5 Inferior 4.076 Anterior 0.091 0.714 
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1. N elements = 55354; Runtime = 27s 
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2. N elements = 205462; Runtime = 75s 

3. N elements = 370525; Runtime = 132s Figure 17: a A polynomial with an accuracy of 
R2=0.9976 showing convergence of the average stress 
in the negative y (22)-direction at an increasing number 
of elements. b FE-models displaying the negative stress 
contributions over a cube of trabecular bone in 
compression at three refinements of element meshes 
corresponding to the circled points in the graph. The 
number of elements and runtime of the simulations are 
also given. Although colours of mesh 2 and 3 differ, 
stress values are in the same region, as the graph and 
stress legends indicate. x 

y 

z 

a 

b 

D. Finite element model validation 

The FE-models were validated by evaluating the convergence of the solution of the FE-models as a result of 
mesh refinement. The stress levels of a trabecular bone cube in compression were calculated in relation to 
the element number. Figure 17 shows a clear convergence of the stress level of the cube as a consequence of 
an increase of element number. An element number of the mesh for the calculation of stiffness components 
was chosen at a point where convergence was apparent, corresponding to a division of the original element 
sizes, as pre-defined by Mimics, by 2. Although a larger element number would lead to more accurate 
outcomes, dividing the original element sizes by 2 was assumed sufficient for accurate FE-simulations 
without demanding too much computational costs. 
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E. Algorithm rotation to orthotropic elasticity 

Program getmaindir in Fortran, retrieved from van Rietbergen et al.114 
 
c*********************************************************************** 
c     Calculates the stiffness matrix in the best orthogonal 
c     coordinate system 
c*********************************************************************** 
      implicit none 
      character(130) Ematfile 
      integer 
     1   i, 
     1   j 
      real(8)  
     1   E2(6,6), 
     1   E2r(6,6), 
     1   Q(3,3) 
      common/matmatr/E2,E2r,Q 
 
c**** start 
 
      write(6,*) 'Specify filename of matrixfile:' 
      read(5,1000) Ematfile 
1000  format(a) 
 
      open(unit   =10, 
     1     file   = Ematfile, 
     1     form   ='FORMATTED', 
     1     status ='OLD', 
     1     action ='READ', 
     1     err    =900) 
 
      read(10,*,err=910) ((E2(i,j),j=1,6),i=1,6) 
 
      write(6,*) 'Ematrix as read from file:' 
      write(6,2000) ((E2(i,j),j=1,6),i=1,6) 
2000  format(6f10.3) 
    
      call maindir 
 
      write(6,*) 'Ematrix after rotation:' 
      write(6,2000) ((E2r(i,j),j=1,6),i=1,6) 
 
      write(6,*) 
      write(6,*) 'Rotation matrix:' 
      write(6,2010) ((Q(i,j),j=1,3),i=1,3) 
2010  format(3f10.3) 
      goto 999 
 
c**** error messages 
 
900   write(6,*) ' ERROR: cannot open file: ',Ematfile 
      goto 999 
910   write(6,*) ' ERROR: format error in file: ',Ematfile 
      goto 999 
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999   end 
       
 
c*********************************************************************** 
c     MAINDIR.FOR Subroutine 
c 
c     Calculates the mechanical main directions 
c*********************************************************************** 
      subroutine maindir 
c     ================================================================== 
      implicit none 
      integer(4) nmax 
      parameter (nmax=3) 
c common 
      real(8)  
     1   E2(6,6), 
     1   E2r(6,6), 
     1   Q(3,3) 
      common/matmatr/E2,E2r,Q 
c local 
      integer(4) 
     1   iter, 
     1   n 
      real(8) 
     1   fret, 
     1   ftol, 
     1   p(nmax), 
     1   pi, 
     1   xi(nmax*nmax), 
     1   R(3,3)                ! rotation matrix for sorting 
ccor      
      real(8),external :: OrthogError 
ccor       
c start 
 
      pi= 2.0*asin(1.0) 
 
      n= 3 
      if (n.gt.nmax) then 
         write(6,*) '!% Error in maindir; n>nmax' 
         stop 
      endif 
 
      ftol= 1.0e-4 
 
      call initpowell(n, 
     2                p, 
     3                xi) 
 
      call powell(n, 
     2            p, 
     3            xi, 
     4            ftol, 
     5            iter, 
     6            fret, 
     7            OrthogError) 
 
      return 
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      end 
 
c*********************************************************************** 
c     ORTHOGERROR.FOR Function 
c 
c     Calculates the error if the matrix is considered as orthotropic 
c*********************************************************************** 
      real(8) function OrthogError(x) 
c     ================================================================== 
      implicit none 
c arguments 
      real(8) 
     1   x(3) 
c common 
      real(8)  
     1   E2(6,6), 
     1   E2r(6,6), 
     1   Q(3,3) 
      common/matmatr/E2,E2r,Q 
c local 
      real(8) 
     1   error, 
     1   eta, 
     1   fi, 
     1   teta 
c start 
 
c     write(6,*) '   OrthogError' 
 
      fi  = x(1) 
      teta= x(2) 
      eta = x(3) 
 
c**** determine rotation matrix Q 
 
      Q(1,1)=  cos(fi)*cos(eta)+sin(fi)*sin(teta)*sin(eta) 
      Q(2,1)= -sin(fi)*cos(eta)+cos(fi)*sin(teta)*sin(eta) 
      Q(3,1)=  cos(teta)*sin(eta) 
      Q(1,2)=  sin(fi)*cos(teta) 
      Q(2,2)=  cos(fi)*cos(teta) 
      Q(3,2)= -sin(teta) 
      Q(1,3)= -cos(fi)*sin(eta)+sin(fi)*sin(teta)*cos(eta) 
      Q(2,3)=  sin(fi)*sin(eta)+cos(fi)*sin(teta)*cos(eta) 
      Q(3,3)=  cos(teta)*cos(eta) 
 
c**** rotate the stiffness matrix E2 to E2r 
 
      call rotate4(E2,E2r,Q) 
 
c**** calculate 'error' for orthogonal properties: 
 
      error= E2r(1,4)*E2r(1,4) + 
     +       E2r(1,5)*E2r(1,5) + 
     +       E2r(1,6)*E2r(1,6) + 
     +       E2r(2,4)*E2r(2,4) + 
     +       E2r(2,5)*E2r(2,5) + 
     +       E2r(2,6)*E2r(2,6) + 
     +       E2r(3,4)*E2r(3,4) + 



 
 

 
61 

     +       E2r(3,5)*E2r(3,5) + 
     +       E2r(3,6)*E2r(3,6) + 
     +       E2r(4,5)*E2r(4,5) + 
     +       E2r(4,6)*E2r(4,6) + 
     +       E2r(5,6)*E2r(5,6)  
 
      OrthogError= error 
      return 
      end 
 
c*********************************************************************** 
c     Rotate4.FOR Function 
c 
c     Rotates a 4th rank tensor  
c*********************************************************************** 
      subroutine rotate4(E2,E2r,Q) 
c arguments 
      real(8) 
     1   E2(6,6), 
     1   E2r(6,6), 
     1   Q(3,3) 
c local 
      integer(4) 
     1   i1, 
     1   i2, 
     1   ind(3,3), 
     1   j1, 
     1   j2, 
     1   k1, 
     1   k2, 
     1   l1, 
     1   l2 
      real(8) 
     1   E4(3,3,3,3), 
     1   E4r(3,3,3,3) 
 
c**** set indices for rotation to 4th order tensor 
 
      ind(1,1)= 1 
      ind(1,2)= 6 
      ind(1,3)= 5 
      ind(2,1)= 6 
      ind(2,2)= 2 
      ind(2,3)= 4 
      ind(3,1)= 5 
      ind(3,2)= 4 
      ind(3,3)= 3 
 
c**** translation matrix E2 to fourth-order tensor E4 
 
      do i1=1,3 
         do j1=1,3 
            do k1=1,3 
               do l1=1,3 
                  E4(i1,j1,k1,l1)= E2(ind(i1,j1),ind(k1,l1)) 
               enddo 
            enddo 
         enddo 
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      enddo      
 
c**** rotation of fourth-order tensor E4 to E4r 
 
      do i1=1,3 
         do j1=1,3 
            do k1=1,3 
               do l1=1,3 
                  E4r(i1,j1,k1,l1)= 0.0d0 
                  do i2=1,3 
                     do j2=1,3 
                        do k2=1,3 
                           do l2=1,3 
                             E4r(i1,j1,k1,l1)= E4r(i1,j1,k1,l1) +  
     +        Q(i1,i2)*Q(j1,j2)*Q(k1,k2)*Q(l1,l2)*E4(i2,j2,k2,l2) 
                           enddo 
                        enddo 
                     enddo 
                  enddo      
               enddo 
            enddo 
         enddo 
      enddo      
 
c**** translation of E4r to second-order matrix E2r 
 
      do i1=1,3 
         do j1=1,3 
            do k1=1,3 
               do l1=1,3 
                  E2r(ind(i1,j1),ind(k1,l1))= E4r(i1,j1,k1,l1) 
               enddo 
            enddo 
         enddo 
      enddo 
      return 
      end   
 
 
c*********************************************************************** 
c     INITPOWELL.FOR Subroutine 
c 
c     From Numerical Recipies  
c*********************************************************************** 
      subroutine initpowell(n, 
     2                      p, 
     3                      xi) 
c     ================================================================== 
      implicit none 
c arguments 
      integer(4) 
     1   n 
      real(8) 
     1   p(n), 
     1   xi(n,n) 
c local 
      integer(4) 
     1   i, 
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     1   j 
c start 
 
c**** initial starting point 
 
      do i=1,n 
         p(i)= 0.0 
      enddo 
  
c**** initial direction vectors 
 
      do i=1,n 
         do j=1,n 
            xi(i,j)= 0.0 
            if (i.eq.j) xi(i,j)= 1.0d0 
         enddo 
      enddo 
  
      return 
      end 
 
c*********************************************************************** 
c     POWELL.FOR Subroutine 
c 
c     From Numerical Recipies  
c*********************************************************************** 
      subroutine powell(n, 
     2                  p, 
     3                  xi, 
     4                  ftol, 
     5                  iter, 
     6                  fret, 
     7                  functie) 
c     ================================================================== 
      implicit none 
      integer(4) nmax 
      parameter (nmax=3) 
c arguments 
      integer(4) 
     1   iter, 
     1   n 
      real(8) 
     1   ftol, 
     1   fret, 
     1   functie, 
     1   p(n), 
     1   xi(n,n) 
      external functie 
c local 
      integer(4)  
     1   i, 
     1   ibig, 
     1   itmax, 
     1   j 
      real(8)  
     1   crit, 
     1   del, 
     1   errorcrit, 
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     1   fp, 
     1   fptt, 
     1   t, 
     1   pt(nmax), 
     1   ptt(nmax), 
     1   xit(nmax) 
c start 
 
      if (n.gt.nmax) then 
         write(6,*) '!% Program error in powell; n>nmax' 
         stop 
      endif 
  
      itmax= 200 
  
      fret= functie(p) 
      do j=1,n 
         pt(j)= p(j) 
      enddo 
  
      iter= 0 
 
1     iter= iter+1 
      fp  = fret 
      ibig= 0 
      del = 0.0 
      do i=1,n 
         do j=1,n 
            xit(j)= xi(j,i) 
         enddo 
         fptt= fret 
         call linmin(n,p,xit,fret) 
 
         if (abs(fptt-fret).gt.del) then 
            del= abs(fptt-fret) 
            ibig= i 
         endif 
      enddo 
 
      errorcrit= 2.0*abs(fp-fret) 
      crit= ftol*(abs(fp)+abs(fret)) 
      if (2.0*abs(fp-fret).le.ftol*(abs(fp)+abs(fret))) then 
         return 
      endif 
  
      if (iter.eq.itmax) write(6,*) '!% Powell exceeding max. # iterat.', 
      do j=1,n 
         ptt(j)= 2.0*p(j)-pt(j) 
         xit(j)= p(j)-pt(j) 
         pt(j)= p(j) 
      enddo 
      fptt= functie(ptt) 
      if (fptt.ge.fp) goto 1 
      t= 2.0*(fp-2.0*fret+fptt)*(fp-fret-del)**2-del*(fp-fptt)**2 
      if (t.ge.0) goto 1 
 
      call linmin(n, 
     2            p, 
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     3            xit, 
     4            fret) 
 
      do j=1,n 
         xi(j,ibig)= xi(j,n) 
         xi(j,n)= xit(j) 
      enddo 
      goto 1 
      end 
  
c*********************************************************************** 
c     LINMIN.FOR Subroutine 
c 
c     From Numerical Recipies  
c*********************************************************************** 
      subroutine linmin(n, 
     2                  p, 
     3                  xi, 
     4                  fret) 
c     ================================================================== 
      implicit none 
      integer(4) nmax 
      parameter (nmax=3) 
c arguments 
      integer(4) 
     1   n 
      real(8) 
     1   fret, 
     1   p(n), 
     1   xi(n), 
     1   tol 
c local 
      integer(4) 
     1   j, 
     1   ncom, 
     1   nmaxcom 
      real(8)  
     1   ax, 
     1   bx, 
     1   fa, 
     1   fb, 
     1   fx, 
     1   xmin, 
     1   xx, 
     1   pcom(nmax), 
     1   xicom(nmax), 
     1   brent 
ccor      
      real(8),external :: f1dim 
ccor       
c commmon 
      common/f1com/pcom,xicom,ncom,nmaxcom 
c start 
      tol    = 1.0d-4 
      nmaxcom= nmax 
      ncom   = n 
      if (n.gt.nmax) then 
         write(6,*) '!% Program error in linmin: n>nmax' 
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         stop 
      endif 
  
      do j=1,n 
         pcom(j)= p(j) 
         xicom(j)= xi(j) 
      enddo 
      ax= 0.0 
      xx= 1.0 
 
      call mnbrak(ax, 
     2            xx, 
     3            bx, 
     4            fa, 
     5            fx, 
     6            fb, 
     7            f1dim) 
 
      fret= brent(ax, 
     2            xx, 
     3            bx, 
     4            f1dim, 
     5            tol, 
     6            xmin) 
      do j=1,n 
         xi(j)= xmin*xi(j) 
         p(j)= p(j)+xi(j) 
      enddo 
      return 
      end 
  
c*********************************************************************** 
c     F1DIM.FOR Subroutine 
c 
c     From Numerical Recipies  
c*********************************************************************** 
      real(8) function f1dim(x) 
c     ================================================================== 
      implicit none 
      integer(4) nmax 
      parameter (nmax=3) 
c arguments 
      real(8) 
     1   x 
c local 
      integer(4) 
     1   j, 
     1   n, 
     1   nmaxcom 
      real(8)  
     1   orthogerror, 
     1   p(nmax), 
     1   xi(nmax), 
     1   xt(nmax) 
c common 
      common/f1com/p,xi,n,nmaxcom 
c start 
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      if (n.gt.nmax .or. nmaxcom.ne.nmax) then 
         write(6,*) '!% n,nmax,nmaxcom=',n,nmax,nmaxcom 
         write(6,*) '!% Program error in f1dim; n>nmax or ncom<>nmax' 
         stop 
      endif 
  
      do j=1,n 
         xt(j)= p(j)+x*xi(j) 
      enddo 
      f1dim= OrthogError(xt) 
      return 
      end 
  
c*********************************************************************** 
c     BRENT.FOR Subroutine 
c 
c     From Numerical Recipies  
c*********************************************************************** 
      real(8) function brent(ax, 
     2                      bx, 
     3                      cx, 
     4                      f, 
     5                      tol, 
     6                      xmin) 
c     ================================================================== 
      implicit none 
      real(8) 
     1   cgold, 
     1   zeps 
      parameter (cgold= 0.3819660, 
     1           zeps = 1.0e-10) 
c arguments 
      real(8) 
     1   ax, 
     1   bx, 
     1   cx, 
     1   tol, 
     1   xmin 
ccor    
c     removed f from arguments declaration     
      real(8),external :: f 
ccor       
c local 
      integer(4) 
     1   iter, 
     1    itmax 
      real(8) 
     1   a, 
     1   b, 
     1   d, 
     1   e, 
     1   etemp, 
     1   fu, 
     1   fv, 
     1   fw, 
     1   fx, 
     1   p, 
     1   q, 
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     1   r, 
     1   tol1, 
     1   tol2, 
     1   u, 
     1   v, 
     1   w, 
     1   x, 
     1   xm 
c start 
 
      itmax= 500 
  
      a= min(ax,cx) 
      b= max(ax,cx) 
      v= bx 
      w= v 
      x= v 
      e= 0.0 
      fx= f(x) 
      fv= fx 
      fw= fx 
      do iter=1,itmax 
         xm= 0.5*(a+b) 
         tol1= tol*abs(x)+zeps 
         tol2= 2.0*tol1 
         if (abs(x-xm).le.(tol2-0.5*(b-a))) goto 3 
         if (abs(e).gt.tol1) then 
            r= (x-w)*(fx-fv) 
            q= (x-v)*(fx-fw) 
            p= (x-v)*q-(x-w)*r 
            q= 2.0*(q-r) 
            if (q.gt.0) p= -p 
            q= abs(q) 
            etemp= e 
            e= d 
            if (abs(p).ge.abs(0.5*q*etemp).or.p.le.q*(a-x).or. 
     +         p.ge.q*(b-x)) goto 1 
            d= p/q 
            u= x+d 
            if (u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(tol1,xm-x) 
            goto 2 
         endif 
1        if (x.ge.xm) then 
            e= a-x 
         else 
            e= b-x 
         endif 
         d= cgold*e 
2        if (abs(d).ge.tol1) then 
            u= x+d 
         else 
            u= x+sign(tol1,d) 
         endif 
         fu= f(u) 
         if (fu.le.fx) then 
            if (u.ge.x) then 
               a= x 
            else 
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               b= x 
            endif 
            v= w 
            fv= fw 
            w= x 
            fw= fx 
            x= u 
            fx= fu 
         else 
            if (u.lt.x) then 
               a= u 
            else 
               b= u 
            endif 
            if (fu.le.fw .or. w.eq.x) then 
               v= w 
               fv= fw 
               w= u 
               fw= fu 
            else if (fu.le.fv .or. v.eq.x .or. v.eq.w) then 
                   v= u 
                   fv= fu 
            endif 
         endif 
      enddo 
c     pause 'brent exceed max. # iterations' 
      write(6,*)  '!% brent exceed max. # iterations (',itmax,')' 
3     xmin= x 
      brent= fx 
      return 
      end 
  
c*********************************************************************** 
c     MNBRAK.FOR Subroutine 
c 
c     From Numerical Recipies  
c*********************************************************************** 
      subroutine mnbrak(ax, 
     2                  bx, 
     3                  cx, 
     4                  fa, 
     5                  fb, 
     6                  fc, 
     7                  func) 
c     ================================================================== 
      implicit none 
      real(8) 
     1   gold, 
     1   glimit, 
     1   tiny 
      parameter (gold  = 1.618034,  
     1           glimit= 100.0,  
     1           tiny  = 1.0e-20) 
c arguments 
      real(8) 
     1   ax, 
     1   bx, 
     1   cx, 
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     1   fa, 
     1   fb, 
     1   fc, 
     1   func  
      external func 
c local 
      real(8) 
     1   dum, 
     1   fu, 
     1   q, 
     1   r, 
     1   u, 
     1   ulim 
c start 
 
      fa= func(ax) 
      fb= func(bx) 
      if (fb.gt.fa) then 
         dum= ax 
         ax= bx 
         bx= dum 
         dum= fb 
         fb= fa 
         fa= dum 
      endif 
      cx= bx+gold*(bx-ax) 
      fc= func(cx) 
1     if (fb.ge.fc) then 
         r= (bx-ax)*(fb-fc) 
         q= (bx-cx)*(fb-fa) 
         u= bx-((bx-cx)*q-(bx-ax)*r)/(2.0*sign(max(abs(q-r),tiny),q-r)) 
         ulim= bx+glimit*(cx-bx) 
         if ((bx-u)*(u-cx).gt.0) then 
            fu= func(u) 
            if (fu.lt.fc) then 
               ax= bx 
               fa= fb 
               bx= u 
               fb= fu 
               return 
            else if (fu.gt.fb) then 
               cx= u 
               fc= fu 
               return 
            endif 
            u= cx+gold*(cx-bx) 
            fu= func(u) 
         else if ((cx-u)*(u-ulim).gt.0) then 
            fu= func(u) 
            if (fu.lt.fc) then 
               bx= cx 
               cx= u 
               u= cx+gold*(cx-bx) 
               fb= fc 
               fc= fu 
               fu= func(u) 
            endif 
         else if ((u-ulim)*(ulim-cx).ge.0.0) then 
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            u= ulim 
            fu= func(u) 
         else 
            u= cx+gold*(cx-bx) 
            fu= func(u) 
         endif 
         ax= bx 
         bx= cx 
         cx= u 
         fa= fb 
         fb= fc 
         fc= fu 
         goto 1 
      endif 
      return 
      end 


