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Multi-SpacePhish: Extending the Evasion-space of Adversarial

Attacks against Phishing Website Detectors Using Machine Learning

YING YUAN, University of Padua, Italy

GIOVANNI APRUZZESE, University of Liechtenstein, Liechtenstein

MAURO CONTI, University of Padua, Italy and Delft University of Technology, Netherlands

Existing literature on adversarial Machine Learning (ML) focuses either on showing attacks that break every ML model or
defenses that withstand most attacks. Unfortunately, little consideration is given to the actual feasibility of the attack or
the defense. Moreover, adversarial samples are often crafted in the “feature-space,” making the corresponding evaluations of
questionable value. Simply put, the current situation does not allow one to estimate the actual threat posed by adversarial
attacks, leading to a lack of secure ML systems.

We aim to clarify such confusion in this article. By considering the application of ML for Phishing Website Detection
(PWD), we formalize the “evasion-space,” in which an adversarial perturbation can be introduced to fool an ML-PWD—
demonstrating that even perturbations in the “feature-space” are useful. Then, we propose a realistic threat model describing
evasion attacks against ML-PWD that are cheap to stage, and hence intrinsically more attractive for real phishers. After that,
we perform the first statistically validated assessment of state-of-the-art ML-PWD against 12 evasion attacks. Our evaluation
shows (i) the true efficacy of evasion attempts that are more likely to occur; and (ii) the impact of perturbations crafted in
different evasion-spaces; our realistic evasion attempts induce a statistically significant degradation (3–10% at p < 0.05), and
their cheap cost makes them a subtle threat. Notably, however, some ML-PWD are immune to our most realistic attacks
(p = 0.22).

Finally, as an additional contribution of this journal publication, we are the first to propose and empirically evaluate the
intriguing case wherein an attacker introduces perturbations in multiple evasion-spaces at the same time. These new results
show that simultaneously applying perturbations in the problem- and feature-space can cause a drop in the detection rate
from 0.95 to 0.

Our contribution paves the way for a much-needed re-assessment of adversarial attacks against ML systems for
cybersecurity.
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1 INTRODUCTION

After more than a decade of research [24] and thousands of papers [5], it is well-known that Machine Learning

(ML) methods are vulnerable to “adversarial attacks.”1 Specifically, by introducing imperceptible perturbations
(down to a single pixel or byte [15, 88]) in the input data, it is possible to compromise the predictions made by
an ML model. Such vulnerability, however, is more dangerous in settings that implicitly assume the presence of
adversaries. A cat will not try to fool an ML model. An attacker, in contrast, will actively try to evade an ML
detector—the focus of this article.

On the surface, the situation portrayed in research is vexing. The confirmed successes of ML [52] are
leading to large-scale deployment of ML in production settings (e.g., References [34, 81, 90]). At the same
time, however, dozens of papers showcase adversarial attacks that can crack “any” ML-based detector (e.g.,
References [16, 61]). Although some papers propose countermeasures (e.g., Reference [77]), they are quickly
defeated (e.g., Reference [31]), and typically decrease the baseline performance (e.g., References [16, 35]). As a
result, recent reports [38, 57] focusing on the integration of ML in practice reveal that: “I Never Thought About
Securing My Machine Learning Systems” [26]. This is not surprising: If ML can be so easily broken, then why
invest resources in increasing its security through—unreliable—defenses?

Sovereign entities (e.g., References [3, 4]) are endorsing the development of “trustworthy” ML systems; yet, any
enhancement should be economically justified. No system is foolproof (ML-based or not [29]), and guaranteeing
protection against omnipotent attackers is an enticing but unattainable objective. In our case, a security system
should increase the cost incurred by an attacker to achieve their goal [66]. Real attackers have a cost/benefit
mindset [99]: they may try to evade a detector, but only if doing so yields positive returns. In reality, worst-case
scenarios are an exception—not the norm.

Our article is inspired by several recent works that pointed out some “inconsistencies” in the adversarial
attacks carried out by prior studies. Pierazzi et al. [78] observe that real attackers operate in the “problem-space,”
i.e., the perturbations they can introduce are subject to physical constraints. If such constraints are not met,
and hence the perturbation is introduced in the “feature-space” (e.g., References [68]), then there is a risk of
generating an adversarial example that is not physically realizable [92]. Apruzzese et al. [14], however, highlight
that even “impossible” perturbations can be applied, but only if the attacker has internal access to the data-
processing pipeline of the target system. Nonetheless, Biggio and Roli suggest that ML security should focus on
“anticipating the most likely threats” [24]. Only after proactively assessing the impact of such threats a suitable
countermeasure can be developed—if required.

We aim to promote the development of secure ML systems. However, meeting Biggio and Roli’s recommen-
dation presents two tough challenges for research papers. First, it is necessary to devise a realistic threat model,
which portrays adversarial attacks that are not only physically realizable but also economically viable. Devising
such a threat model, however, requires a detailed security analysis of the specific cyberthreat addressed by the
detector—while factoring the resources that attackers are willing to invest. Second, it is necessary to evaluate
the impact of the attack by crafting the corresponding perturbations. Doing so is difficult if the threat model
assumes an attacker operating in the problem-space, because such perturbations must be applied on raw-data, i.e.,
before any preprocessing occurs—which is hard to find.

1To embrace a recommendation of a recent work [13], we use the term “adversarial attacks” to denote “attacks reliant on adversarial
perturbations.”
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In this article, we tackle both of these challenges. In particular, we focus on ML-systems for Phishing Website

Detection (PWD). Countering phishing – still a major threat today [8, 53]—is an endless struggle. Blocklists
can be easily evaded [91] and, to cope against adaptive attackers, some detectors are equipped with ML (e.g.,
Reference [90]). Yet, as shown by Liang et al. [61], even such ML-PWD can be “cracked” by oblivious attackers—
if they invest enough effort to reverse engineer the entire ML-PWD. Indeed, we address ML-PWD because prior
work (e.g., References [23, 40, 59, 85]) assumed threat models that hardly resemble a real scenario. Phishing,
by nature, is meant to be cheap [54] and most attempts end up in failure [71]. It is unlikely2 that a phisher
invests many resources just to evade ML-PWD: even if a website is not detected, the user may be “hooked,” but
is not “phished” yet. As a result, the state of the art on adversarial ML for PWD is immature—from a pragmatic
perspective.

Contribution and Organization. Let us explain how we aim to spearhead the security enhancements to
ML-PWD. We begin by introducing the fundamental concepts (PWD, ML, and adversarial ML) at the base of our
article in Section 2, which also serves as a motivation. Then, we make the following five contributions.

— We formalize the evasion-space of adversarial attacks against ML-PWD (Section 3), rooted in exhaustive
analyses of a generic ML-PWD. Such evasion-space explains “where” a perturbation can be introduced
to fool an ML-PWD. Our formalization highlights that even adversarial samples created by direct feature
manipulation can be realistic, validating all the attacks performed by past work.

— By using our formalization as a stepping stone, we propose a realistic threat model for evasion attacks
against ML-PWD (Section 4). Our threat model is grounded on detailed security considerations from the
viewpoint of a typical phisher, who is confined in the “website-space.” Nevertheless, our model can be
relaxed by assuming attackers with greater capabilities (which leads to higher cost).

— We combine and practically demonstrate the two previous contributions. We perform an extensive, repro-
ducible, and statistically validated evaluation of adversarial attacks against state-of-the-art ML-PWD. By
using diverse datasets, ML algorithms and features, we develop 18 ML-PWD (Section 5), each of which is
assessed against 12 different evasion attacks built upon our threat model (Section 6).

— By analyzing the results (Section 7) of our evaluation: (i) We show the impact of attacks that are very likely
to occur against both baseline and adversarially robust ML-PWD, and (ii) we are the first to fairly compare
the effectiveness of evasion attacks in the problem-space with those in the feature-space.

— As an additional contribution of this journal article, we propose and empirically assess 6 new URL-related
perturbations, as well as 37 new HTML-related perturbations that envision an attacker who can operate in
multiple spaces (Section 8).

Our results highlight that more realistic attacks are not as disruptive as claimed by past works

(Section 9) but their low-cost makes them a threat that induces statistically significant degradation. Intrigu-
ingly, however, some “cheap” perturbations can lead to devastating impacts.

Finally, our evaluation serves as a “benchmark” for future studies: we provide the complete results in the
Appendix, whereas the source-code and additional resources are publicly available at a dedicated website: https:
//spacephish.github.io.

2 BACKGROUND AND MOTIVATION

Our article lies at the intersection of PWD and ML security. To set up the stage for our contribution and motivate
its necessity, we first summarize PWD (Section 2.1), and then we explain the role of ML in PWD (Section 2.2).
Finally, we provide an overview of the adversarial ML domain (Section 2.3).

2It is unlikely, but not impossible. Hence, as recommended by Arp et al. [20], it is positive that such cases have also been studied by prior
work.
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Fig. 1. Exemplary PWD. After preliminary preprocessing, a website is analyzed by a detector to determine its legitimacy.

2.1 Phishing Website Detection

Although having been studied for nearly two decades [55], phishing attacks are still a rampant menace [53]: ac-
cording to the FBI [2], the number of reported phishing attempts has increased by 900% from 2018 to 2020 (26K
up to 240K). Aside from the well-known risks to single users (e.g., fraud, credential theft [41]), phishing is still
one of the most common vectors to penetrate an organization’s perimeter. Intuitively, the best countermeasure
to phishing is its prevention through proper education [100]. Despite recent positive trends, however, such educa-
tion is far from comprehensive: the latest “State of the Phish” report [8] states that more than 33% of companies
do not have any training program for their employees, and more than 50% only evaluate such education through
simulations. As a result, there is still a need of IT solutions that mitigate the phishing threat by its early detection.
In our case, this entails identifying a phishing website before a user lands on its webpage, therefore defusing
the risk of falling victim to a phishing attack. We provide in Figure 1 an exemplary architecture of a Phishing
Website Detector.

Despite extensive efforts, PWD remains an open issue. This is due to the intrinsic limitations of the most com-
mon detection approaches reliant on blocklisting (e.g., References [70, 79]). Such techniques have been improved
and nowadays they even involve automatic updates with recent feeds (e.g., PhishTank [7]). However, blocklists
are a double-edged sword: on the good side, they are very precise and are hence favored due to the low rate of
false alarms; on the bad side, they are only effective against known phishing websites [10]. The latter is a problem:
expert attackers are aware of blocklists and hence move their phishing “hooks” from site to site, bypassing most
PWD. As shown by Tian et al. [91], such strategies can elude over 90% of popular blocklists for more than one
month. To counter such adaptive attackers, much attention has been given to data-driven detection schemes—
including those within the ML paradigm [90]. Indeed, ML allows to greatly enhance the detection capabilities of
PWD. Let us explain why.

2.2 Machine Learning for PWD

The cornerstone of ML is having “machines that automatically learn from experience” [52], and such experience
comes in the form of data. By applying a given ML algorithm A, e.g., Random Forest (RF), to analyze a given
dataset D, it is possible to train an ML model M that is able to “predict” previously unseen data. We provide a
schematic of such workflow in Figure 2. In the case of PWD, an ML modelM can be deployed in a detector (e.g.,
in the hexagon in Figure 1) to infer whether a given webpage is benign or phishing.

The main advantage of ML models is their intrinsic ability of noticing weak patterns in the data that are
overlooked by a human, and then leveraging such patterns to devise “flexible” detectors that can counter even
adaptive attackers. As a matter of fact, Tian et al. [91] show that an ML model based on RF is effective even
against “squatting” phishing websites—while retaining a low-rate of false alarms (only 3%). Moreover, acquiring
suitable data (i.e., recent and labelled) for ML-PWD is not difficult—compared to other cyber-detection problems
for which ML has been proposed [19].

Such advantages have been successfully leveraged by many research efforts (e.g., References [69, 89]). Existing
ML-empowered PWD can leverage different types of information (i.e., features) to perform their detection. Such
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Fig. 2. Machine Learning workflow. By training A on D, an ML modelM is developed, which can be used to predict future
data.

information can pertain either to a website’s URL [97] or to its representation, e.g., by analyzing the actual image of
a webpage as rendered by the browser [45], or by inspecting the HTML [50]. For example, Mohammad et al. [64]
observed that phishing websites usually have long URLs; and often contain many “external” links (pointing to,
e.g., the legitimate “branded” website, or the server for storing the phished data), which can be inferred from the
underlying HTML. Although some works use only URL-related features (e.g., Reference [27])—which can also be
integrated into phishing email filters (e.g., Reference [42])—more recent proposals use combinations of features
(e.g., References [33, 95]); potentially, such features can be derived by querying third-party services (e.g., DNS
servers [49]).

The cost-effectiveness of ML-PWD increased their adoption: even commercial browsers (e.g., Google
Chrome [61]) integrate ML models in their phishing filters (which can be further enhanced via customized add-
ons [90]); moreover, ML-PWD can also be deployed in corporate SIEM [47]. However, it is well-known that no
security solution is foolproof: in our case, ML models can be thwarted by exploiting the so-called adversarial
attacks [16].

2.3 Adversarial Attacks Against ML

The increasing diffusion of ML led to question its security in adversarial environments, giving birth to “ad-
versarial machine learning” research [24, 32]. Attacks against ML exploit adversarial samples, which leverage
perturbations to the input data of an ML model that induce predictions favorable to the attacker. Even imper-
ceptible perturbations can mislead proficient ML models: for instance, Su et al. [88] modify a single pixel of an
image to fool an object detector; whereas Apruzzese et al. [15] evade botnet detectors by extending the network
communications with few junk bytes.

An adversarial attack is described with a threat model, which explains the relationship of a given attacker with
the defender’s system. The attacker has a goal and, by leveraging their knowledge and capabilities, they will adopt
a specific strategy [24]. Common terms associated with the attacker’s knowledge are white-box and black-box:
the former denotes attackers who know everything about the defender; whereas the latter denotes attackers who
know nothing [75, 103]. The capabilities describe how the attacker can interact with the target system, e.g., they
can influence only the inference or also the training stage of the ML model; they can use the ML model as an
“oracle” by inspecting the output to a given input; and they can be subject to constraints on the creation of the
adversarial perturbation (e.g., a limited amount of queries).

Despite thousands of papers focusing on this topic, a universal and pragmatic solution has not been found
yet. Promising defenses are invalidated within the timespan of a few months (e.g., distillation was proposed
in Reference [77] and broken in Reference [31]). Even “certified” defenses [51] can only work by assuming that
the perturbation is bounded within some magnitude—which is not a constraint to which real attackers must
abide (as pointed out by Carlini et al. [30]). From a pragmatic perspective, any defense has a cost: first, because
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Fig. 3. A website, x , is preprocessed into Fx . an ML model M analyzes such feature representation and predicts its ground
truth asM (Fx ) = yx .

it must be developed; second, because it can induce additional overhead. The latter is particularly relevant in
cybersecurity, because it may decrease the performance of the ML model when no adversarial attack occurs. For
instance, a well-known defense is feature removal [86], which entails developing ML models that do not analyze
the features expected to be targeted by a perturbation. Doing this, however, leads to less information provided
to the ML model, hence inducing performance degradation (e.g., Reference [16]). Even when countermeasures
have a small impact (e.g., Reference [35]), this is not negligible in cyber-detection: attacks are a “needle in a
haystack” [91], and even a 1% increase in false positives is detrimental [96]. Therefore, ML engineers will not
devise any protection mechanism unless the corresponding threat is shown to be dangerous in reality [57].

The Problem. Unfortunately, research papers intrinsically impair the development of secure ML systems,
because the aim is often to “outperform the state of the art.” In adversarial ML, this leads to papers that either
showcase devastating attacks stemming from extremely powerful adversaries (i.e., white-box [88]); or vice versa,
i.e., show that even oblivious attackers can thwart ML systems [75]. However, real “adaptive” attackers (i.e., those
that ML methods should be protected against) do not conform to these two extremes. Indeed, having complete
knowledge of the target system requires a huge resource investment (especially if the system is devoted to
cybersecurity), which may be better spent elsewhere; conversely, it is unlikely that opponents will launch attacks
while knowing nothing of the defender. Hence, to provide valuable research, efforts on adversarial ML should
start focusing on the gray area within these two extremes—which implicitly are more likely to occur [14]. In the
context of ML-PWD, our article is a first step in this direction: as we will show, evasion attempts evaluated in
literature (Section 9), despite being devastating, are costly to launch—even in black-box settings.

3 THE EVASION-SPACE OF ADVERSARIAL ATTACKS AGAINST ML-PWD

We aim to spearhead valuable research in adversarial attacks against ML-PWD. To this purpose, we first elucidate
the internal functionalities of an ML-PWD (Section 3.1). Then, we propose our original formalization of the
evasion-space of adversarial perturbations (Section 3.2). Finally, we explain why our contribution validates all
prior work (Section 3.3).

3.1 Analysis of an ML-PWD

We connect the previously introduced concepts (Section 2.1 and Section 2.2) and provide an overview of a generic
ML-PWD in Figure 3.

A sample (i.e., a website), x , “enters” the ML-PWD and is subject to some preprocessing aimed at transforming
any input into a format accepted by the ML model—according to a given feature set, F . (We assume that x is not
blocklisted.) The result of such preprocessing is the feature representation of the website x , i.e., Fx , which can
now be analyzed by the ML modelM. We consider an ML model focused on binary classification. Hence, training
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M requires: a dataset,D, whose samples are labelled as benign or phishing; and any ML algorithm,A, supporting
classification tasks (e.g., RF).

The ML model M predicts the ground truth of Fx as yx , i.e., M (Fx ) = yx . Hence, we can summarize the
workflow of our ML-PWD through the following Expression:

x → Fx →M (Fx ) = yx . (1)

If x is a phishing (benign) webpage and yx is also phishing (benign), then we have a true positive (true negative);
otherwise, we have an incorrect classification (either a false positive or a false negative). We assume thatM has
been properly trained, so that its deployment performance yields a high true positive rate (tpr ) while maintaining
a low false positive rate (f pr )—under the assumption that no adversarial attack occurs.

3.2 Evasion Attacks Against ML-PWD

Adversarial attacks exploit a perturbation, ε , that induces an ML model M to provide an output favoring the
attacker (Section 2.3). In our case,M is a (binary) classifier that analyzes Fx , hence we can express an adversarial
attack as follows:

find ε s.t.M (Fx ) = yε
x � yx . (2)

In other words, the objective is finding a perturbation ε that induces an ML modelM (that is assumed to work
well) to misclassify a given sample x (i.e.,yε

x � yx ). Because our focus is on evasion attacks, such misclassification
entails having a positive (i.e., phishing) classified as a negative (i.e., benign). It is implicitly assumed that such ε
must: (i) preserve the ground truth; and (ii) preserve the phishing logic of a webpage [74]. Such ε , however, can
lead to different effects on yε

x depending on “where” it is applied during the workflow described by Equation (1).
We describe such occurrence by formalizing the evasion-space of an attacker.

Evasion-Space. Let us observe Figure 3. We can see that the figure is divided into four “spaces,” each allowing
the introduction of a perturbation ε that can affect the output of the ML-PWD. Of course, a perturbation in the
last space, i.e., the output-space, cannot be considered as an “adversarial ML attack,” because it will have no rela-
tionship with the ML modelM. Hence, the evasion-space of an attacker that wants to induce a misclassification
byM is confined to the first three spaces. Let us analyze each of these.

(1) Website-space Perturbations (WsP). The entire detection workflow begins in the “website-space,” in
which the website (i.e., x ) is generated. Such space is accessible by any attacker, because they are in control
of the generation process of their (phishing) website. As an example, the attacker can freely modify the
URL or the representation of a website (subject to physical constraints3). Introducing a perturbation ε in
this space (i.e., a WsP) yields an adversarial sample x = x +ε , and the effects of such ε can affect all the
operations performed by the ML-PWD (cf. Exp 1). We emphasize the word “can”: this is because what
happens after x enters the ML-PWD strictly depends on the implementation of such ML-PWD—which
may, or may not, “notice” the corresponding ε (e.g.,M can analyze an F that is not influenced by ε).

(2) Preprocessing-space Perturbations (PsP). After x is acquired by the ML-PWD, it is first transformed
into Fx . An attacker with write access to the “preprocessing-space” can introduce a PsP ε that affects the
process that yields the feature representation of a website, leading to Fx = Fx +ε . For instance, a website
x with an URL of 40 characters can be turned into a Fx that has the URL_length feature = 20. Intuitively,
attackers able to introduce PsP are powerful, but are still subject to constraints: before any Fx is sent to
the ML model M, such Fx is checked to ensure that it is not corrupted [14]. Indeed, Fx must not violate
any inter-feature dependencies or physical constraints. With respect to WsP, PsP are guaranteed to impact
the feature representation of x ; however, they do not necessarily influence the predictions ofM: making
a URL shorter may not be enough to fool the detection process.

3Which depend on the semantics of websites, e.g., URLs cannot be 1 character long.
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(3) ML-space Perturbations (MsP). After the preprocessing, the feature representation of a website Fx enters
the Machine Learning-space to be analyzed byM. If an attacker has write access to this space, then they
can introduce an MsP, i.e., a perturbation ε that affects Fx immediately before it reachesM. An MsP is the
“strongest” type of perturbation, because it affects the Fx after all integrity checks4 have been performed—
potentially leading to corrupted values, or which have no relationship to any real x . We hence denote MsP
as F x = Fx + ε . As an example, an MsP can yield a F x having an URL_length=0. As such, MsP are very
likely to induce uncanny responses byM (but do not guarantee evasion).

Summary and Cost. From Equation (2), we observe that any perturbation ε should ultimately affect the
feature representation Fx of a given sample x . Hence, the crux is determining “where” such perturbation is
introduced—which can happen in three spaces. We formally define adversarial attacks by means of introducing
a perturbation in each of these spaces (i.e., WsP, PsP and MsP) through the following Expression (which extends
Equation (1)):

find ε s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

x = x + ε ⇒ x → x → Fx →M (Fx ) = yε
x � yx , WsP;

Fx = Fx + ε ⇒ x → Fx →M (Fx ) = yε
x � yx , PsP;

F x = Fx + ε ⇒ x → Fx → F x →M (F x ) = yε
x � yx , MsP.

(3)

We remark that the effects of WsP can match those of PsP—which can also match those of MsP. For instance,
an MsP can yield a sample with an URL_length of 20, which—as long as it does not violate any inter-feature
dependency—can represent a valid website (hence MsP = PsP)5; to obtain an equivalent WsP, the attacker would
have to modify the actual URL and make it of exactly 20 characters (which is doable). Hence, in some cases, Fx =
Fx = F x . As such, although some MsP cannot be crafted in the website-space, it is also unfair to consider all MsP
(or PsP) as being not physically realizable. Finally, from a cost viewpoint, WsP � PsP < MsP, because realizing
MsP requires the attacker to have more control6 on the ML-PWD (i.e., they must obtain write-access to deeper
segments of the ML-PWD).

3.3 Validation of Previous Work

An important contribution of our evasion-space is that it validates all past research that considers perturbations
in the “feature-space” (i.e., PsP or MsP). Let us explain why.

Context. By using Pierazzi et al. [78] notation, our definition of WsP can be seen as perturbations in the
“problem-space”; whereas PsP and MsP are perturbations in the “feature-space.” The main thesis of Pierazzi
et al. [78] is that evaluations carried out in the feature space are unreliable due to the “inverse mapping prob-
lem”: some changes in the feature representation of a sample (i.e., Fx ) may not be physically realizable when
manipulating the original sample (i.e., x )—therefore exposing the “weakness of previous evasion approaches.”

Intuition. Our original formalization elucidates that the “weaknesses” of past work are not necessarily
weaknesses—therefore overturning some of the claims of Pierazzi et al. [78] in some cases, as their work as-
sumes an implicit limitation of attacker capabilities that may not hold in practice. Indeed, our thesis is rooted
in the following observation: the “inverse mapping problem” is irrelevant if the attacker has write access to the
ML-PWD.

4Indeed, an ML modelM is agnostic to the generation process of a given input.
5Of course MsP = PsP if there is no “integrity check.”
6Our formalization is orthogonal to the one by Šrndic and Laskov. [105]: while [105] focus on the attacker’s knowledge (“What does the
attacker know about the ML system?”), we focus on the capabilities (i.e., “Where can the attacker introduce a perturbation affecting the ML
system?”). Moreover, our PsP are semantically different than the “adversarial preprocessing” by Quiring et al. [80]: while Reference [80]
affect the preprocessing phase from outside the ML system, our PsP affect such phase from the inside. Put simply, our formalization is the
first of its kind in adversarial ML research.
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Practical Explanation. Any attacker is able to craft WsP by manipulating their own phishing webpages (to
some degree). In contrast, reliably realizing PsP and MsP can only be done by assuming an attacker that can
manipulate the corresponding space (i.e., either the preprocessing- or the ML-space). Achieving this in practice
presents a high barrier of entry—but it is not impossible. For instance, consider the case of an attacker who has
compromised a given device integrating a client-side ML-PWD: such an attacker can interfere with any of the
ML-PWD operations—especially if it is open-source (e.g., Reference [48]). Of course, realizing PsP or MsP if the
ML-PWD is deployed in an organization-wide intrusion detection system is harder, but not unfeasible (as pointed
out by Reference [14]).

Takeaway: Our formalization validates all evasion attacks previously evaluated through perturbations in
any internal “space” of an ML-PWD. This requires to revise the attacker’s capabilities, implicitly increasing the
attack’s cost.

Consequences. Simply put, we restore the value (partially “lost” after the publication of Reference [78]) of
the evaluations performed by prior work (Section 9). By assuming that the considered attacker can access a
given space of the ML-PWD (either for PsP or MsP), then there is no risk of falling into the “inverse mapping
problem”—because it is a constraint that such an attacker is not subject to. Such different assumptions, however,
implicitly raise the cost of the corresponding attack. For example. Corona et al. [33] craft perturbations in the
ML-space: according to [78], the resulting perturbations are, hence, unreliable. However, by assuming that the
attacker can manipulate the ML-space, then such adversarial examples (deemed unreliable by Reference [78])
would become realistic (thanks to our contribution).

4 PROPOSED REALISTIC THREAT MODEL

We use our evasion-space formalization to devise our proposed adversarial ML threat model—describing attrac-
tive strategies for real phishers. We first provide its definition (Section 4.1), and then support its realisticness
via security analyses (Section 4.2). Next, we provide some considerations (Section 4.3) that set-up the stage for
the additional contribution of this article (Section 4.4). Finally, we show how to apply WsP on real phishing
webpages (Section 4.5).

4.1 Formal Definition

We define our threat model according to the following four criteria (well-known in adversarial ML [24]):

— Goal. The adversary wants to evade an ML-PWD that uses M (i.e., the attacker wants to satisfy
Equation (2)).

— Knowledge. The adversary has limited knowledge of the target system, the ML-PWD. They know nothing
about: the ML modelM, its training data D, and its underlying ML algorithm A (except that it supports
binary classification). However, the adversary knows a subset of the feature set F analyzed by M. Let
K ⊆ F be such a subset. The adversary is also aware that the ML-PWD will likely detect phishing websites
if no evasion attempt is made (otherwise, there would be no reason to do so). Finally, the adversary implic-
itly knows that no blocklist includes their phishing webpages (otherwise, the attacker would be forced to
manipulate the URL).

— Capability. The adversary has no access to the ML-PWD. They cannot use the ML-PWD as an “oracle” (i.e.,
inspect the output to a given input); and they are hence limited to perturbations in the website-space (i.e.,
WsP).

— Strategy. The adversary uses their knowledge of K to craft WsP that may lead to evasion (at the inference
stage).

We observe that our threat model is general, because no specific set of features (F ) or ML modelM (and hence
D and A) is provided. Therefore, our threat model can cover any ML-PWD that resembles the one in Figure 3.
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Potentially, it can even be an ML-PWD used by email filters if the correspondingM analyzes URL-related infor-
mation (e.g., References [37, 42]).

4.2 Security Analysis

Let us analyze our threat model and explain why it portrays a realistic attacker—especially if compared to typical
“white-/black-box” adversarial scenarios (cf. Section 2.3). We intend to justify that our threat model describes
attacks that are interesting to investigate, and hence valuable for the security of ML-PWD.

Phishing in a nutshell. We start by focusing the attention on the intrinsic nature of phishing. Indeed, phish-
ing attempts—and especially those involving phishing websites—are “cheap” in nature [54]. Considering that real
attackers operate with a cost-benefit mindset, it is unlikely that such attackers will invest extensive resources
just to have their webpages evade an ML-PWD. First, because such evasion will be temporary (as soon as the web-
page is reported in a blocklist, any adversarial attack will be useless); second, because, even if a website evades
an ML-PWD, the phishing attempt is not guaranteed to succeed (a user still has to input its sensitive data). In-
deed, despite the exponential proliferation of phishing [8], most phishing attempts are prone to failure [71]—and
the attackers are well aware of this fact. Of course, attackers can opt for more expensive spear-phishing cam-
paigns [28] (which still have a success rate of barely 10% [46]); but, in this case, they will likely design entirely
new phishing webpages—and not rely on cheap perturbations on pre-existing samples.

Limited Knowledge. Our attacker knows something (i.e., K ) about the ML-PWD, but they are not
omniscient—hence, our threat model can be considered as a gray-box scenario. Such “box,” however, is the entire
ML-PWD, i.e., the blue rectangle in Figure 3. Our scenario is more interesting to investigate than white-box scenar-
ios. The reason is simple: ours is more likely to occur, because “phishers” with complete knowledge of the entire
ML-PWD are extremely unlikely. Furthermore, extensive adversarial ML literature [24] has ably demonstrated
that white-box attacks can break most systems—including ML-PWD (e.g., References [9, 40, 63, 87]).

Realistic Capabilities. Our “standard” attacker has no access to the ML-PWD, which is a realistic assumption.
For instance, the attacker can share a phishing website via social media, but without knowing which device (and,
hence, ML-PWD) is being used by potential victims to open such website. Therefore, the attacker cannot reliably
useM as an oracle. They could opt for querying a surrogate ML-PWD to reverse-engineer its functionalities and
then leverage the transferability of adversarial attacks [36]. However, such “black-box” scenario is both (i) un-
likely to occur and (ii) ultimately not interesting to consider for a research paper. Unlikely, because it would defeat
the purpose of phishing attacks: reverse-engineering operations require a huge resource investment—which can
be invalidated via a simple re-training ofM (a common cybersecurity practice [18]). Not interesting, because such
attacks have been investigated before [11, 82]. For instance, Liang et al. [61] demonstrated that attackers with ac-
cess to client-side detectors can crack and evade the corresponding ML-PWD; doing this, however, required more
than 24 h of queries [61].

Takeaway: Phishing attempts have an intrinsic low rate of success. Attackers that aim to evade an ML-PWD
will favor “cheap” tactics—which can be represented by our proposed threat model.

4.3 Technical Considerations

Let us enhance our threat model with four considerations:

(1) The attacker can easily acquire a rough idea of the feature set F analyzed by the ML-PWD. For instance,
the descriptions of many state-of-the-art solutions are openly accessible. However, it is unlikely that the
attacker knows the exact feature set F : the actual implementation of an ML-PWD (including the feature
extractor) can—or, rather, should!—differ from the publicly available information. This is why we consider
an attacker that only knows K ⊆ F .
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(2) We note that it is also possible that K = ∅. In this case, the attacker expects the ML-PWD to analyze some
features that are not actually analyzed byM (for instance, the attacker can modify the URL, but nothing
about the URL is analyzed byM). This can happen, e.g., against an “adversarially robust” ML-PWD that
leverages the well-known feature removal strategy (cf. Section 2.3). As a result, WsP targeting such K will
likely result in a negligible impact. Furthermore, it is also possible that some features inK simply cannot be
influenced by an attacker operating in the website-space (e.g., features that depend on third-party sources,
such as DNS logs).

(3) Since our attacker cannot access the ML-PWD, they cannot observe the output-space and, thus, cannot
optimize their perturbations to find the best WsP that guarantees evasion; and cannot even verify whether
their WsP evade the ML-PWD or not. The attacker is, however, not subject to strict boundaries on WsP
(Section 3.2).

(4) Our threat model considers attacks at inference-time (i.e., after M has been deployed in the PWD). This
is because the dataset used to devise ML-based security systems is typically well-protected [14]. Com-
promising such dataset would significantly raise the cost of the offensive campaign (as also highlighted
in Reference [62]). Therefore, phishers are unlikely to launch attacks at training-time.

The last two are significant: lack of access (and, hence, knowledge) on the training set prevents from achieving
the no-box attacks of Reference [60]; furthermore, the impossibility of witnessing the output of M prevents
enacting typical black-box strategies (e.g., References [67]). Finally, as pointed out also by References [13, 30, 104],
achieving “minimal” perturbations may be an unrealistic objective.

4.4 Extensions

Our threat model can be extended by relaxing some of its assumptions. Indeed, in its current formulation, our
threat model envisions an attacker that is “weak” (and, hence, very likely to appear in reality). However, some
adversaries may be willing to invest more resources to ensure that their attacks come to fruition (i.e., increasing
the chances that their phishing webpages are misclassified by the ML-PWD, and hence displayed to the end-user).
Abundant prior work in the adversarial ML domain considers attacks having different levels of knowledge (i.e.,
the so-called “black-box” and “white-box” [13]). However, given that our original formalization focuses on the
attacker’s capabilities (Section 3), we identify two types of extensions that portray a stronger attacker. Namely:

— Deeper spaces. An attacker who manages to obtain write-access to the ML-PWD (or part of its elements)
can tamper with its internal functionalities, thereby realizing either PsP or MsP.

— Mixed spaces. If the attacker can obtain some control on either the Preprocessing- or Machine Learning-
space, then—alongside being able to apply PsP or MsP—they are also able to apply WsP. Indeed, the attacker
will always be able to manipulate the phishing webpage, since it is (by definition) under their complete
control. Hence, an attacker who can inject PsP can also inject a WsP; furthermore, an attacker who can
inject a MsP can also inject a PsP (since they can overlap), and can, of course, also inject a WsP.

We will empirically evaluate all the abovementioned cases in our evaluation (Section 7) in which we compare the
effects of attacks using WsP against those entailing PsP and MsP (by assuming the same knowledge, i.e., limited
to K ). Moreover, we will also assess attacks entailing perturbations in different spaces (Section 8).

4.5 Pragmatic Use-case

Let us showcase how an attacker can physically realize WsP leading to adversarial samples. We intend to demon-
strate that WsP “can be done,” and hence represent a (likely) threat that must be considered in a proactive devel-
opment lifecycle of ML-PWD.

Target System. We consider the ML-PWD proposed in Reference [49], whose architecture aligns with the
one in Figure 3. The correspondingM is a RF classifier trained on a dataset created ad-hoc through public feeds.
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Table 1. Features F of the Considered ML-PWD

# Feature Name # Feature Name # Feature Name

1 URL_length 20 URL_shrtWordPath 39 HTML_commPage
2 URL_hasIPaddr 21 URL_lngWordURL 40 HTML_commPageFoot
3 URL_redirect 22 URL_DNS 41 HTML_SFH
4 URL_short 23 URL_domAge 42 HTML_popUp
5 URL_subdomains 24 URL_abnormal 43 HTML_rightClick
6 URL_atSymbol 25 URL_ports 44 HTML_domCopyright
7 URL_fakeHTTPS 26 URL_SSL 45 HTML_nullLnkWeb
8 URL_dash 27 URL_statisticRe 46 HTML_nullLnkFooter
9 URL_dataURI 28 URL_pageRank 47 HTML_brokenLnk
10 URL_commonTerms 29 URL_regLen 48 HTML_loginForm
11 URL_numerical 30 URL_checkGI 49 HTML_hiddenDiv
12 URL_pathExtend 31 URL_avgWordPath 50 HTML_hiddenButton
13 URL_punyCode 32 URL_avgWordHost 51 HTML_hiddenInput
14 URL_sensitiveWrd 33 URL_avgWordURL 52 HTML_URLBrand
15 URL_TLDinPath 34 URL_lngWordPath 53 HTML_iframe
16 URL_TLDinSub 35 URL_lngWordHost 54 HTML_favicon
17 URL_totalWords 36 HTML_freqDom 55 HTML_statBar
18 URL_shrtWordURL 37 HTML_objectRatio 56 HTML_css
19 URL_shrtWordHost 38 HTML_metaScripts 57 HTML_anchors

The complete feature set F analyzed byM is reported in Table 1, which includes features related to both the URL
and the representation of the website (based on the HTML). The ML-PWD extracts such features by inspecting
the raw webpage according to the thresholds proposed in Reference [64] (and also used in Reference [49]). We
observe that such methodology (and, hence, F ) is also adopted by very recent works (e.g., References [44, 84]).
We provide more details in the next section (Section 5.1.3).

Attacker. The attacker expects the usage of an ML-PWD, but they are agnostic of anything about the ML
modelM, i.e., they are oblivious of the ML algorithm (i.e., RF ) and its training data. The attacker, however, follows
the state of the art and hence knows the most popular feature sets used by ML-PWD (e.g., Reference [84]). In
particular, the attacker correctly guesses that the ML-PWD analyzes features related to both the URL and the
representation of the webpage, and specifically the URL length and the objects embedded in the HTML. Formally:
K=(URL_length, HTML_objectRatio). The attacker, however, does not know the exact functionality of the feature
extractor, the complete feature set F , and which features are more important for the final classification (the latter
requires knowledge of M). To provide a concrete example, we assume that the attacker owns the phishing7

webpage shown in Figure 4, whose URL is “https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/”.
Real Perturbations. To craft perturbations in the website-space (i.e., WsP) that affect K ⊂ F , the attacker

can:

— Modify the HTML. The attacker knows that phishing websites have many links that point to external
domains8 with respect to internal resources (which would require to invest more into webhosting). Hence,
the attacker can introduce (in the HTML) a high number of “fake links” that point to non-existent internal
resources, which will affect the ratio of internal-to-external objects (making it more even). Such fake links,
however, are can be made invisible (by exploiting some CSS properties) to users, who will not notice any
difference.9 We provide a visual representation of such WsP in Figure 5, showing a snippet of the HTML

7PhishTank reports such webpage to be a true and verified phishing (March 2022).
8For example, phishing associated with AT&T will have many links pointing to the real AT&T.
9N.b.: complete “invisibility” is not a strict requirement. Some WsP can be “spotted” by a detailed analysis, but users may not notice them
while still being phished. For example, a link can be deleted, or a WsP can wrap: <a href=‘link’> into <a onclick=“this.href=‘link’ ”>.
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Fig. 4. An exemplary (and true) Phishing website, whose URL is https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/.

of the original phishing webpage (cf. Figure 4); the red rectangles denote two exemplary “perturbations,”
i.e., the introduction of (hidden) links pointing to an internal resource (which may not exist). Note that
such WsP does not break the website’s functionality, and can be cheaply introduced anywhere (and many
times) in the source HTML. Similar WsP are feasible and will10 influence the HTML_objectRatio (included
in K ).

— Modify the URL. The attacker knows that long URLs are suspicious. So the attacker can, e.g., use a URL-
shortening service (e.g., bit.ly) to alter the length of the phishing URL. In our case, the original URL (of
52 characters) can be shrunk to “https://bit.ly/3MZHjt7” (of 14 characters), thereby resulting in a completely
different URL. Such a WsP will affect many features analyzed by M (cf. Table 1). Such features are not
included in K , and hence their modifications are beyond the attacker’s knowledge. The shrunk URL can
then be shared in the wild.11

— Both of the above. The attacker can perturb both the URL and HTML to induce perturbations of higher
impact.

We observe that none of these WsP are guaranteed to evade the ML-PWD. Indeed, a short URL is not necessarily
benign, and having a non-suspicious ratio of internal-to-external objects is also not a strict requirement for
being a benign webpage. The WsP could even be useless in the first place, e.g., the original URL could be already
“short.” Indeed, our attacker is not aware of what happens inside the ML-PWD. The problem, however, is that
such uncertainty is shared by both the attacker (who cannot observe the ML-PWD) and the defender (who

10In theory, similar WsP could be detected by analyzing whether a given link is valid or not. Doing so, however, would pose an extremely
high overhead: it requires checking every single link for every webpage that is analyzed by the ML-PWD.
11The ML-PWD will be fooled if it does not visit all the redirections of the shortening service. Nevertheless, there are many ways to reduce
the URL_length.
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Fig. 5. A perturbation ε in the website-space (WsP). The original HTML (related to the website in Figure 4) is modified by
introducing hidden link(s). Such WsP will not be noticed by a user.

cannot exactly pinpoint what the attacker does). To reveal12 the uncanny effects of such WsP, we assess them in
Section 7.

5 EVALUATION: EXPERIMENTAL SETUP AND TECHNICAL IMPLEMENTATION

As a constructive step forward, we assess the robustness of 18 ML-PWD against 12 evasion attacks—all based on
our threat model, but performed in different evasion spaces. We have three goals:

— assess state-of-the-art ML-PWD against feasible attacks,
— compare perturbations introduced in distinct evasion-spaces,
— provide a statistically validated benchmark for future studies.

Achieving all such goals is challenging in research. Indeed, crafting perturbations in the three distinct spaces
(i.e., WsP, PsP, MsP) requires: (i) datasets containing raw-data (for WsP), which are difficult to find; (ii) devis-
ing custom feature extractors (for developing the ML-PWD); as well as (iii) foreseeing the effects of WsP on
such extractor (for PsP). Furthermore, to derive statistically sound conclusions, we must repeat our experiments
multiple times [19].

We present our experimental testbed (Section 5.1), and then describe our technical implementation
(Section 5.2). Finally, we measure the baseline performance of our ML-PWD (Section 5.3).

12Remark. Attacking ML-PWD through (potentially unreliable) WsP is not the only way to “realistically” evade ML-PWD. This is clearly
evidenced by prior work—whose validity is restored thanks to our evasion-space formalization. However, our proposed “cheap” attacks
(through WsP) have never been investigated before in adversarial ML literature on PWD (Section 9). We hence set out to proactively assess
the impact of feasible WsP on state-of-the-art ML-PWD; and comparing such impact to “less realistic” (hence, less likely to occur) attacks
performed through PsP and MsP. Therefore, our evaluation will also consider such worst-case scenarios. We stress, however, that our threat
model shall not envision attackers who: (i) can observe or manipulateD (for poisoning attacks); (ii) can observe the output-space (for black-
box attacks); (iii) have full knowledge of the ML-PWD (for white-box attacks): all of these scenarios have already been investigated by past
work (Section 9) and are hence outside our scope.
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Table 2. Statistics and State of the Art of Our Datasets

Dataset #Benign #Phish fpr tpr

δPhish [33] 5511 1012 0.01 0.98
Zenodo [95] 2000 2000 0.08 0.99

5.1 Testbed

We consider 18 ML-PWD, which vary depending on the source dataset (2), the ML algorithm (3), and the feature
set (3) used to develop the corresponding ML model. Such a wide array allows one to draw more generalizable
conclusions.

5.1.1 Source Datasets. We rely on two datasets for ML-PWD: δPhish and Zenodo [33, 95]. The reason is
threefold.

— Both datasets include raw information of each sample (specifically, its URL and its HTML). This is necessary,
because most of our attacks leverage WsP, for which we must modify the raw webpage, i.e., before its
features are extracted.

— Both datasets have been used by the state of the art. Prior research [33, 95] has demonstrated the utility of
both datasets for ML-PWD, allowing for fair and significant comparisons.

— They enable experimental reproducibility. Indeed, collecting ad-hoc data through public feeds (e.g., Alex-
aTop/PhishTank) prevents fair future comparisons: phishing webpages are taken down quickly, and it is
not possible to retrieve the full information of webpages “blocklisted” years before.

We provide an overview of our datasets in Table 2, which shows the number of samples (benign and phish) and
the performance (tpr and f pr ) achieved by their creators (in the absence of evasion).

We mention that the original Zenodo contains 100K phishing, and almost 4M benign webpages. To make our
evaluation “humanly feasible,” we randomly sample 4,000 webpages from Zenodo, equally split between benign
and phishing. In such a way, we can analyze the response of ML-PWD having diverse balancing: while Zenodo

is perfectly balanced, δPhish has significantly more benign samples.

5.1.2 ML Algorithms. We consider ML-PWD based on shallow and deep learning algorithms [16]. Our selec-
tion aims to provide a meaningful assessment of ML-PWD based on exemplary ML methods. We consider:

— Logistic Regression (LR). One of the simplest ML algorithms, we consider LR because it was (assumed to
be) used by the ML-PWD embedded in Google Chrome [61].

— Random Forests (RF ). An ensemble technique, RF often outperforms other contenders for ML-PWD [91].
— Convolutional neural Network (CN ). We consider this well-known deep learning technique [58] due to its

demonstrated proficiency also in ML-PWD (e.g., Reference [98]).

All of these algorithms support binary classification, making them appropriate for our ML-PWD.

5.1.3 Feature Sets. We consider ML-PWD that use three feature sets (F ), all resembling the one described in
our use-case (Section 4.5). Specifically, our ML-PWD analyze one of the following:

— URL-only (Fu ), i.e., the first 35 features in Table 1.
— Representation-only (F r ), i.e., the last 22 features in Table 1.
— Combined (F c ), corresponding to all features in Table 1.

Rationale. Analyzing more information (i.e., larger feature sets, such as F c ) leads to superior detection
performance—as shown, e.g., in Reference [33]. However, in some cases this may not be possible: for instance,
phishing email filters may make their decisions only by analyzing the URL (cf. Section 2.2). Nevertheless, modify-
ing the URL is one of the easiest ways to trick an ML-PWD [72]: hence, a defender may develop an “adversarially
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Fig. 6. Experimental workflow. Each dataset (containing benign, B, and phishing, P , samples) is randomly split into the
training (Bt and Pt ) and inference (Bi and Pi ) partitions, used to train and test each ML-PWD. We use Pi as basis for our
adversarial samples.

robust” detector that analyzes only the representation of a webpage. Such a detector will have a lower perfor-
mance (w.r.t. F c ) in non-adversarial scenarios, but will counter evasion attacks that manipulate the URL (cf.
Section 2.3).

Observation. Our feature sets are not only popular in research (e.g., References [44, 49, 64, 84]) but also used
in practice. Indeed, several leading security companies yearly organize MLSEC, an ML evasion competition [6]. In
2021 and 2022, MLSEC also involved evading ML-PWD, which specifically analyzed the HTML [39] representation
of a webpage—i.e., our F r . We will also refer to MLSEC in our evaluation.

5.2 Technical Implementation

Let us describe how we combined all the elements described insofar to devise our “baseline” ML-PWD. We
provide a schematic of our workflow in Figure 6. Each source dataset (Zenodo and δPhish) represents a different
setting—which we use to extract the corresponding training and inference partitions for our ML-PWD. Such ML-
PWD are based on one among three ML algorithms, encompassing either shallow (LR and RF ) or deep learning
(CN ) classifiers. Each of these classifiers presents three variants, depending on the analyzed features (Fu , F r , or
F c ), yielding a total of nine “baseline” ML-PWD per source dataset. Finally, we ensure that such nine ML-PWD
maximize their performance (high tpr and low f pr , at least for F c ).

We now describe the implementation of our feature extractor (Section 5.2.1) and the development of our ML-
PWD (Section 5.2.2).

5.2.1 Feature Extractor. An important part of our evaluation is represented by the feature extractor, for which
we rely on the established guidelines provided in References [64, 65] and still widely employed in recent literature
(e.g., Reference [49]). The underlying principle of such guidelines is to analyze several elements of a webpage
(e.g., the length of its URL), and then use threshold-based mechanisms to determine whether such element is
“benign” or “phishing” (e.g., a short URL is likely benign, whereas a long one is likely phishing). Any feature can
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have a value within [−1, 1], where −1 is “benign” and 1 is “phishing.” Our extractor generates all the features
reported in Table 1. We explain some of them.

— (#1) URL_length. We compute the amount of character composing the entire URL. Strings shorter than
53 characters correspond to −1 (likely “benign”), whereas longer strings correspond to +1 (likely “phish-
ing”).

— (#28) URL_pageRank. We use OpenPageRank API to query the URL domain. The response shows the page
ranks from 0 to 10: the corresponding feature is normalized between −1 (if the rank is 10) and +1 (if the
rank is 0).

— (#4) URL_short. If the URL starts13 with keywords related to popular shortening services (bit.ly, goo.gl,
tinyurl, ad.fly), then this feature is set to +1, and to −1 otherwise.

— (#37) HTML_objectRatio. We capture all the objects embedded in the webpage, and compute the ratio of
internal-to-external objects. An internal object either has its link starting with ../ or with the same “root”
as the website’s URL. If the ratio is less than 0.15, then this feature is -1 (likely benign), and +1 otherwise
(likely phishing).

— (#38) HTML_metaScripts. Same as #37, but for scripts, links and metas. If the ratio is more than 0.61, then
the feature value is +1 (likely phishing); if the ratio is less than 0.52, then the feature value is −1 (likely
benign); and 0 otherwise.

— (#45) HTML_nullLnkWeb. We check how many links are useless, i.e., they point to the exact same page
(e.g., href=#). The count can be normalized between +1 (high number of useless links) and −1 (no useless
links).

— (#51) HTML_hiddenInput. We check if there are any hidden input tags in the webpage. If there are, then
the feature value is +1 (likely phishing), and −1 otherwise (likely benign).

— (#52) HTML_URLBrand. We check (in the HTML) if the webpage title includes the brand name in the URL.
If included, then the feature value is −1 (benign); otherwise, it is +1 (phishing).

(Our repository includes the source-code of our feature extractor.)
We use similar thresholds as those by Mohammad et al. [64, 65], and are the same used to create the popular
UCI dataset [1]. To validate our choice of using the same thresholds (which play a crucial role in our evaluation),
we find instructive to report the length of URLs contained in our chosen datasets, i.e., Zenodo and δPhish. The
results are as follows: for Zenodo, there are 1,500 URLs (of 4,000) that are longer than 54 characters; for δPhish,
there are 1,909 URLs (of 6,523) that are longer than 54 characters. Hence, such a threshold is still sensible for
more recent datasets.

5.2.2 Development of the ML-PWD. We follow three phases (i.e., the three dotted squares in Figure 6). Namely:

(1) Setup. The first phase is choosing a given source dataset (i.e., Zenodo or δPhish) and partition its samples
into benign and phishing (B and P , respectively). Then, we perform a random split (to avoid bias) on each of
these partitions by using a 80:20 ratio (common in related literature [11, 21]). In other words, we randomly
select 80% of the samples in both B and P (i.e., Bt and Pt , respectively), which will be used to train the ML
model. The leftout samples, Bi and Pi (corresponding to 20% of B and P , respectively), are used to assess
the inference performance of the resulting ML model. We will also use Pi as basis to craft our adversarial
samples.

13Our feature extractor is “stateless.” Once it receives a sample, the only queries performed are those to some third-party services (e.g.,
PageRank API, DNS servers), which can be cached to save time. Our extractor, however, does not “update” a sample: if, e.g., a URL uses a
shortening service, then the extractor uses such “shortened” URL as a basis, and if the HTML changes (due to some automatic script) then
such change will not be captured. Such a choice makes sense, because ML-PWD must be fast: a user does not want to wait seconds before
visiting each website just because a phishing check is made. Moreover, our decision makes our extractor suitable also to ML-PWD that
analyze only the URL, because the webpage will not be opened in the first place (which is common for phishing email filters) due to the high
overhead.

Digital Threats: Research and Practice, Vol. 5, No. 2, Article 16. Publication date: June 2024.



16:18 • Y. Yuan et al.

(2) Training. To trainM, we recall that the source data is in raw format. Hence, before obtaining the training
datasetD, the corresponding training partitions Bt and Pt must be transformed into their feature represen-
tation. Hence, we develop a feature extractor (described in Section 5.1.3) that is based on a given feature
set F (either Fu , F r , or F c ). Then, we preprocess both Bt and Pt to obtain the actual training data D. At
this point, we apply a given ML algorithm A (either RF , LR or CN ) to such D; the resulting ML modelM
(a binary classifier, which we fine tune via grid-search) will be the detection component of the considered
ML-PWD.

(3) Testing. The last phase is measuring the performance of M. In our case, an ML-PWD must exhibit both
a high detection rate and a low false positive rate: indeed, no one is interested in detectors that block
legitimate websites due to excessive false alarms. Hence, we preprocess the inference partitions Bi and Pi

(by considering the proper F ) and measure the f pr and tpr—in the absence of adversarial attacks.

The topmost priority is ensuring thatM analyzing F c achieve optimal performance: indeed, models using either
Fu or F r are expected to exhibit a lower performance as they are provided with less information; however, using
Fu or F r is expected to yield superior robustness in the presence of evasion attacks. (Our repository includes the
best parameter configurations of each ML algorithm.)

Statistical Validation. To provide results that are devoid of experimental bias and also to serve as a reliable
benchmark for future research, we repeat all the abovementioned operations 50 times. This means that each source
dataset is randomly sampled 50 times, each resulting in a different training partition D and, hence, a different
M. SuchM is, in turn, assessed on different data (i.e., different inference partitions), yielding different f pr and
tpr . Furthermore, all14 suchM are also assessed against all our considered attacks (which we will discuss in the
next section). Such a large evaluation allows one to perform statistically validated comparisons by leveraging
well-known techniques [19]. We will do this to infer whether some attacks induce a performance degradation
that is statistically significant. To the best of our knowledge, we are the first to use statistical tests to validate
the impact of adversarial attacks against ML-PWD.

5.3 Baseline Performance

We report the performance of our ML-PWD (in the absence of adversarial attacks) in Table 3. This table shows
that the best ML-PWD on both datasets use RF . We appreciate that the “true” baseline ML-PWD (using F c ) exhibit
similar results as the state of the art (cf. Table 2). In contrast, the “robust” baselines (using either F r or Fu ) are
slightly inferior.15 For instance, on Zenodo, the RF using Fu has almost the same performance as F c , but the one
using F r has 5% less tpr and 2% more f pr ; whereas on δPhish, the RF using Fu has 50% less tpr (but similar f pr ),
while the one using F r has 0.5% more f pr , but only 3% less tpr . Such degradation is the cost of using defenses
based on feature removal on the considered ML-PWD. The expected benefit, however, is a superior resilience to
evasion attempts.

Finally, by comparing Table 3 with Table 2, we appreciate that our ML-PWD using F c achieve comparable
performance as prior work (even after our subsampling on Zenodo), confirming their relevance as baseline. Our
repository includes the 4K pages we used for Zenodo.

6 EVALUATION: ATTACKS (RATIONALE AND IMPLEMENTATION)

We now focus on our considered attacks. We begin by providing an extensive overview (Section 6.1), and then
summarize the workflow for their empirical evaluation (Section 6.2). Finally, we describe their technical imple-
mentation (Section 6.3)

14Overall, for our experiments, we develop 900M (given by: two source datasets * 50 random draws * 3 F * 3 A).
15Focusing on the ML-PWD using F r (which are similar to the real ML-PWD in MLSEC [6]), we appreciate that RF achieves a remarkable
0.935 tpr and 0.01 f pr (averaged on both datasets), making such ML-PWD a valid baseline.
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Table 3. Performance in Non-adversarial Settings, Reported as the
average (and std. dev.) tpr and f pr over the 50 trials

A F
Zenodo δPhish

tpr f pr tpr f pr

CN

Fu 0.96±0.008 0.021±0.0077 0.55±0.030 0.037±0.0076

F r 0.88±0.018 0.155±0.0165 0.81±0.019 0.008±0.0020

F c 0.97±0.006 0.018±0.0088 0.93±0.013 0.005±0.0025

RF

Fu 0.98±0.004 0.007±0.0055 0.45±0.022 0.003±0.0014

F r 0.93±0.013 0.025±0.0118 0.94±0.016 0.006±0.0025

F c
0.98±0.006 0.007±0.0046 0.97±0.007 0.001±0.0011

LR

Fu 0.95±0.009 0.037±0.0100 0.24±0.017 0.011±0.0026

F r 0.82±0.017 0.144±0.0171 0.74±0.025 0.018±0.0036

F c 0.96±0.007 0.025±0.0077 0.81±0.020 0.013±0.0037

6.1 Considered Attacks

In our article, we consider a total of 12 evasion attacks, divided in four families. One of these families is an exact
replica of our “standard” threat model. The remaining three families, however, are extensions of our threat model,
which assume more “advanced” adversaries who have superior knowledge and/or capabilities.

Two of our families involve WsP (WA and ŴA), but assume attackers with different knowledge; whereas the
remaining two families involve either PsP or MsP (PA and MA). Each family has three variants depending on the
features “targeted” by the attacker, i.e., either those related to the URL, the HTML, or a combination of both (u,
r , or c). For WsP, the underlying “attacked” features are always the same for all variants, which are assumed to
be known by the attacker: u is always the URL_length; for r is the HTML_objectRatio; and for c they are both of
these. (Do note that our WsP will also affect features beyond the attacker’s knowledge.)

— Cheap Website Attacks (WA) perfectly align with our threat model (and resemble the use-cases in
Section 4.5). The perturbations are created in the website-space (WsP), realizing either WAu , WAr , or WAc .
Specifically, for r (and c), we consider two semantically equivalent WsP: “add fake link” for δPhish, and
“link wrapping” for Zenodo. Such WsP attempt to balance the object ratio: the former by adding (invisi-
ble) links to (fake) internal objects, whereas the latter by eluding the preprocessing mechanism—thereby
having a link not being counted among the total links shown in a webpage.

— Advanced Website Attacks (ŴA), which envision a more knowledgeable attacker than WA. The attacker
knows how the feature extractor within the ML-PWD operates (i.e., they know the specific thresholds
used to compute some features). The attacker—who is still confined in the website-space—will hence craft
more sophisticated WsP, because they know how to generate an adversarial sample that is more likely to

influence the ML-PWD. Thus, the attacker will modify either the URL, the HTML, or both (i.e., �WAu , ŴAr ,

ŴAc ), but in more elaborate ways—e.g., by ensuring that the HTML_objectRatio exactly resembles the one
of a “benign” sample; or by making an URL to be “long enough” to be considered short.

— Preprocessing Attacks (PA), which are an extension of our threat model, and assume an even stronger at-
tacker that is able to access the preprocessing stage of the ML-PWD, and hence introduce PsP. Such an
attacker is capable of direct feature manipulation—subject to integrity checks (i.e., the result must reflect
a “physically realizable” webpage). Since the attacker does not know anything about the actual M, the
attacker must still guess their PsP. Such PsP will target features based on either u, r , c (i.e., PAu , PAr , PAc )
by accounting for inter-dependencies between other features.

— ML-space attacks (MA), representing a worst-case scenario. The attacker can access the ML-space of the
ML-PWD, and can hence freely manipulate the entire feature representation of their webpage through
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MsP. However, the attacker is still oblivious of M, and must hence still guess their WsP. Thus, the MsP
applied by the attacker completely “flip” many features related to u, r , c (i.e., MAu , MAr , MAc ).

Motivation. We consider these 12 attacks for three reasons. First, to assess the effects of diverse evasion attacks
at increasing “cost.” For instance, the simplicity of WA makes them the most likely to occur; whereas MA can be
disruptive, but are very expensive (from the attacker’s viewpoint). Second, to study the response of ML-PWD to
WsP targeting the same features (WAr ), but in different ways (one per dataset), leading to alterations of different
features beyond the attacker’s knowledge. Third, to highlight the effects of potential “pitfalls” of related research.

Indeed, we observe that all three remaining families (ŴA, PA, MA) envision attackers with similar knowledge,
which they use to target similar features. Such peculiarity allows comparing attacks carried out in different
“spaces.” A particular focus is on PA, for which we apply PsP by anticipating how a WsP can yield a physically
realizable [92] PsP. Put differently, our evaluation shows what happens if the perturbations are applied without
taking into account all preprocessing operations that transform a given x into the Fx analyzed byM.

Effectiveness and Affordability. In terms of effectiveness, assuming the same targeted features, WA < ŴA
< PA�MA (as confirmed by our results in Section 7.2). This is justified by the higher investment required by the
attacker, who must either perform extensive intelligence gathering campaigns (to understand the exact feature

extractor for ŴA) or gain write-access to the ML-PWD (for PA and MA). Let us provide a high-level summary of
the requirements to implement all our attacks—all of which are query-less and rely on blind perturbations.

— WA: they require as little as a dozen lines of elementary code, and a very rough understanding of how
ML-PWD operate (which can be done, e.g., by reading research papers).

— ŴA: they also require a few lines of code to implement. However, determining the exact thresholds requires
a detailed intelligence gathering campaign (or many queries to reverse-engineer the ML-PWD, if it is client-
side).

— PA: they require a compromise of the ML-PWD. For example, introducing a special “backdoor” rule that
“if a given URL is visited, then do not compute its length and return that the URL is short.” Doing this is
costly, but it is not unfeasible if the feature extractor is open-source (e.g., Reference [22]).

— MA: they also require a compromise of the ML-PWD. In this case, the “backdoor” is introduced after all
features have been computed—and irrespective of their relationships. Hence. the cost is very high: the ML
model is likely to be tailored for a specific environment, thereby increasing the difficulty of successfully
introducing such backdoors in one of the deepest segments of the ML-PWD.

Hence, in terms of affordability: WA� ŴA� PA > MA (i.e., the relationship is the reverse of the effectiveness).
For this reason, in our evaluation, we will put a greater emphasis on WA, because “cheaper” attacks are more
likely to occur in the wild: while WA can be associated with “horizontal phishing” (the majority), the others are
tailored for “spear phishing” (the minority).

6.2 Evaluation Workflow

The procedure to assess the adversarial attacks involves three steps:

(1) Isolate. Our threat model envisions evasion attacks that occur during inference, hence our adversarial
samples are generated from those in Pi . Furthermore, we recall that the attacker expects the ML-PWD
to be effective against “regular” malicious samples. To meet such condition, we isolate 100 samples from
Pi that are detected successfully by the best16 ML-PWD (typically using F c ) during one of our runs. Such
samples are then used as a basis to craft the adversarial samples corresponding to each of the 12 considered
types of evasion attacks.

16This ensures that all ML-PWD are assessed against the same adversarial samples. We provide such samples in the source-code.
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(2) Perturb. We apply the perturbations as follows. For WA and ŴA, we craft the corresponding WsP, apply
them to each of the 100 samples from Pi , and then preprocess such samples by using the feature extractor.
For PA and MA, we first preprocess the 100 samples with the feature extractor, and then apply the corre-
sponding PsP or MsP. Overall, these operations result in 1,200 adversarial samples (given by 12 attacks,
each using 100 samples).

(3) Evade. The 1,200 adversarial samples are sent to the 9 ML-PWD (for each dataset), and we measure the tpr
again.

The expected result is that the tpr obtained on the adversarial samples (generated as a result of any of the
12 considered attacks) will be lower than the tpr on the original 100 phishing samples.

6.3 Attacks Implementation

Let us discuss how we implement our perturbations, and provide some insight as to which features are influenced
as a result of our attacks. We recall that each attack family presents three variants, depending on which features
the attacker is “consciously” trying to affect. Namely,u, r , and c, i.e., features involving the URL, the representation
(HTML) or a combination thereof. All attacks are created by manipulating (phishing) samples taken from Pi . In
particular, during our first trial, we isolate 100 samples from Pi that are correctly detected by the best ML-PWD:
such samples are then used as the basis for all their adversarial variants (to ensure consistency). We will denote
any of such samples as p.

We start by describing MA, which are the easiest to implement. Then, we describe WA and ŴA. Finally, we
describe PA, which are the most complex to implement, because they must consider several implications (e.g.,
inter-feature dependencies). (Our repository includes the exact implementation of MA and PA, and also all the

pre-processed variants of the samples generated via WA and ŴA.)

6.3.1 ML-space attacks. The attacks (i.e., MA) are the easiest to implement. Indeed, we simply follow the
same procedure as done by most prior works (e.g., References [33, 59]) that directly manipulate the feature
representation Fp of a sample p right before it is analyzed by the ML-PWD. We do this without taking into
account any inter-dependency between features and/or any physical property that the actual webpage must
preserve: this is compliant with our assumption that the attacker has access to the ML-space. Specifically, for
each MA, we apply the following MsP:

— MAu : The attacker targets URL-related features. Hence, we manipulate Fp by setting features based on Fu

equal to −1, which denotes a value that is more likely associated with a benign sample. In particular, we
set to −1 the features in Table 1 with the following numbers: (1–17, 19–21, 27, 30–35)

— MAr : Same as above, but the targeted features are within F r . Hence, we set to −1 the features in Table 1
with the following numbers: (36–40, 42–52, 54–57)

— MAc : We set to −1 all features involved in MAu and MAr .

We remark that the attacker is not aware of the feature importance (because it would require knowledge ofM).
Hence, although some manipulations will likely “move” Fp toward a benign webpage, it is not guaranteed that
M will actually classify such Fp as benign: if the manipulated features are not important, then even MsP may
have no effect (and such phenomenon does happen in our evaluation, e.g., the ML-PWD using RF with F c on
Zenodo against MAr ).

Of course, we could set all features to −1 (e.g., all Fu and F r ). Doing this, however, would obviously result in
a perfect misclassification (and hence not interesting to show). Moreover, it would not be sensible even for the
attacker. Indeed, MA assume no knowledge ofM and of D, meaning that an attacker may suspect the existence
of a honeypot [83]. For instance, D may contain some samples with all features set to −1 (i.e., benign) that are
labelled as phishing—for the sole purpose of defeating similar attacks in the ML-space. Hence, it is realistic to
assume that even an attacker capable of MA would not exaggerate with their perturbations.
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6.3.2 Website attacks. We recall that we performed two families of attacks in the website-space: WA and ŴA.
The peculiarity of both of these attacks (both relying on WsP) is that the attacker does not have access to the
ML-PWD. Hence, they are not able to manipulate Fp , and they are not even able to observe Fp .

• WA: These attacks resemble the pragmatic example (discussed in Section 4.5). Let us elaborate:
— WAu : We set the URL to a random string starting with “www.bit.ly/,” followed by seven randomly chosen

characters (which what this popular URL shortener does).
— WAr : For δPhish, we change the HTML by adding 50 invisible internal links (i.e., having the same root

domain of the website)17; for Zenodo, we wrap all links within an “onclick,” i.e., we change: <a href=‘link’>
into <a onclick=“this.href=‘link’ ”>.18

— WAc : We do both of the above for each dataset.
• ŴA: These attacks envision an attacker that knows how the feature extractor within the ML-PWD operates

(see Section 5.1.3). Such knowledge can be acquired, e.g., if the attacker has (or is) an insider that provided
them with such intelligence. However, the attacker is still confined in the website-space, and hence can
only apply WsP (to generate p). For a meaningful comparison, we assume an attacker who is aware of how

the features targeted in WA are “extracted” within the ML-PWD. Hence, we craft each ŴA as follows:

— �WAu : The attacker, having knowledge of the extractor, knows that by using an URL shortener they will
affect all features related to the URL (i.e., Fu ); furthermore, they know the threshold (53) that makes an
URL to be considered as “benign.” Such length is well above that of an URL generated via any shortening

service. As such, these attacks are an exact replica as �WAu (the only difference is that the attacker of
�WAu is more confident than the one in WAu ).

— ŴAr : The attacker manipulates the HTML in the same was as in WAc . However, the attacker also knows
the threshold (0.15) of internal-to-external links that yields a benign value of the HTML_objectRatio
feature. Hence, the WsP manipulate the HTML of each p by introducing as many links (or wrappings)
as necessary to meet such threshold.

— ŴAc : The attacker does both of the above.
We stress that the attacker cannot observe Fp . Indeed, doing this would require the attacker to completely
replicate the feature extractor, which is costly, and may not even be possible (some third-party services
may require subscriptions to be used). As such, the attacker is aware of how to craft WsP that are more
likely noticed by the ML-PWD, but evasion is not guaranteed.

6.3.3 Preprocessing attacks. These attacks are the hardest to realize from a research perspective and in a fair
way.

Challenges. The underlying principle of PsP (the backbone of PA) is affecting the preprocessing space of the
ML-PWD. Technically, since we are the developers of our own feature-extractor (i.e., the component of the ML-
PWD devoted to data preprocessing), we could simply directly manipulate our own extractor, i.e., by introducing
a “backdoor.” However, doing this would prevent a fair generalization of our results: for instance, it is possible to
develop another feature extractor, having the same functionality but whose operations are executed in a different
order. Hence, to ensure a more fair evaluation, we apply the perturbations at the end of the preprocessing phase,
but we do so by anticipating how a perturbation in the website-space (a WsP) could affect the preprocessing-
space, thereby turning a WsP into a “physically realizable” PsP. To this purpose, we assume the viewpoint of an

17The exact string we inject is: “<a href=‘#’ style=‘display:none’> cannot see</a>,” which is the second string shown in our pragmatic example
(Section 4.5).
18This WsP, if applied to textual link, would remove the underline of such a link, therefore being visible to a user; however, it is possible to
make it invisible by editing the CSS properties. Our feature extractor is agnostic of such properties, so we do not do this: the results would
be equivalent.
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attacker. For instance, we ask ourselves: “If an attacker wants to affect URL features by using an URL shortener,
how would the feature extractor react?”

Scenario. In PA the attacker knows and can interfere (through PsP) with the feature extraction process of the
targeted ML-PWD. However, the attacker is not aware of what happens next: the ML-space and the output-
space are both inaccessible by the attacker (from both a read and write perspective). Hence, once the PsP
has been applied and Fp is generated, the attacker cannot influence Fp any longer. For each PA, we do the
following:

— PAu : we anticipate an attack that targets URL features, and specifically URL_length, by using an URL short-
ener. Hence, we can foresee that operations (in the website-space) can lead to alterations of all the features
involved with the URL (i.e., Fu ). For instance, doing this would make weird characters (if present) disap-
pear from the URL. However, doing this would induce alterations also to F r . For instance, some objects
originally considered to be “internal” would become “external.” Hence, we implement PAu by setting the
following features (from Table 1) to −1: (1–3, 5, 6, 8, 10–16, 22, 23, 25, 26, 28–30), whereas the following
features are set to +1: (4, 27, 36–38, 41, 44, 48, 52, 54, 56).

— PAr : we anticipate an attack that targets features related to the representation of a website—in our case
the HTML, and specifically the HTML_objectRatio feature. We foresee that an attacker can interfere with
such a feature in many ways, for instance by removing links, adding new ones, or changing those already
contained in the webpage. All such changes will affect many features, such as the HTML_freqDom: because
populating the HTML with (fake) internal links would change the “frequent domains” included in the
HTML. Such changes can also affect the links in the footer of the webpage (HTML_nullLnkFooter), or
the anchors (HTML_anchors), but also others. We implement PAr by setting the following features (from
Table 1) to −1: (36–38, 41, 51, 54, 56, 57), whereas we set (39, 40) to 1 and 46 to 0.

— PAc : they are a combination of the two above. We expect the attacker to use a URL shortener, and also
interfere with the HTML_objectRatio. However, we cannot simply set the features to the same values as
PAr and PAu , because one of the two will prevail. In our case, shortening the URL will be “stronger,” because
the URL will change (to that of the URL shortener) and hence the internal objects will become “external.”
Hence, we implement PAc by setting the following features (from Table 1) to −1: (1–3, 5, 6, 8, 10–16, 22, 23,
25, 26, 28–30), whereas the following features are set to +1: (4, 27, 36–38, 41, 44, 48, 52, 54, 56).

We remark that our PsP may not yield an Fp that is a perfect match with a Fp generated via WsP (i.e., those

of ŴA). Indeed, some inconsistencies may be present—likely due to “inaccurate” anticipations from our (i.e.,
the attacker’s) side. Such inconsistencies are sensible. An attacker with access to the preprocessing-space can
theoretically replicate the entire feature extractor, and use it to exactly pinpoint how to generate PsP that are an
exact match with WsP (i.e., Fp=Fp ). However, doing this would be very expensive. Furthermore, it would defeat the

purpose of using PsP: the attacker does not want that Fp=Fp , rather, they want a PsP that is “stronger”; otherwise,
why use PsP in the first place?

7 RESULTS AND DISCUSSION

We present the results of our evaluation. We aim at answering two questions:

— (Section 7.1) how dangerous are the most likely attacks (i.e., WA)?

— (Section 7.2) what is the effectiveness of attacks carried out in different evasion spaces (i.e., ŴA, PA, MA)?

We also perform a proof-of-concept experiment on a competition-grade ML-PWD (Section 7.4). Finally, we dis-
cuss our evaluation and potential for future work in Section 7.3. We report our full “benchmark” results in
Appendix A.
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Fig. 7. Effectiveness of the most likely attacks (WA). The three plots in each subfigure represent the algorithm used by a
specific ML-PWD. Each plot has bars divided in three groups, each denoting a specific F used by the ML-PWD. The green
bars show the tpr on the original samples, while the others show the tpr against a specific variant of WA.

7.1 Effectiveness of the Most Likely Attacks (WA)

Let us focus our attention on the most likely attacks. We report in Figures 7 the tpr achieved by all our ML-PWD
against all our WA attacks (red bars), and compare it with the tpr (no-atk, shown in green bars) achieved by the
same ML-PWD on the original set of samples used as basis for WA. Some intriguing phenomena occur.

True Baseline (F c ). We first consider the ML-PWD using F c (leftmost group of bars in each plot), since they
are the ML-PWD with the best performance in the absence of attacks (cf. Table 3).

— On δPhish (Figure 7(b)), all ML-PWD are affected by the “strongest” cheap attack, i.e., WAc . Specifically,
the ML-PWD using LR is completely defeated (from 0.86 tpr down to 0.36); in contrast, those using CN or
RF suffer a smaller, but still significant drop (from nearly 0.95 down to ∼0.8). Notably, theCN despite being
worse than the RF in non-adversarial settings (cf. Table 3), appears to be slightly more robust.

— The situation is different on Zenodo (Figure 7(a)). Here, while the LR is still defeated, the CN and RF appear
not to be very affected by WAc . However, considering that both CN and RF exhibit very high performance
in non-adversarial settings (cf. Table 3), it is crucial to determine whether WAc poses a real threat to such
ML-PWD. To this purpose, we carry out a Welch t-test, which we can do thanks to our large amount of
trials. We set our null hypothesis as “WAc and no-atk are equal.” The findings are valuable: against RF ,
the p-value is 0.221; whereas against CN , the p-value is 0.002. By using the common statistical significance
threshold of 0.05, we can hence provide the following answer: the RF is not affected by WAc , whereas the
CN is affected by WAc .

The latter finding is intriguing, because it suggests that shallow learning methods can be more resilient than deep
learning ones for PWD—against our proposed attacks. Finally, we also observe that WAr clearly defeat LR on
both datasets, whereas the impact on RF and CN is significant on δPhish, but small on Zenodo.

Robust Baselines (Fu , F r ). The robust baselines are, in general, reliable against WA. The ML-PWD using Fu

counter WAr (and viceversa), because the tpr is exactly the same as the original one. Notably, however, ML-PWD
using F r (similar to the ML-PWD of19 MLSEC [6]) are affected by WAr : the LR is clearly defeated on both datasets,
whereas RF suffers a 10% and 3% drop on δPhish and Zenodo, respectively. Nevertheless, we observe a fascinating
phenomenon: in some cases, the tpr under attack is higher than in no-atk; e.g., on δPhish the RF analyzing Fu

has its tpr to increase from 0.56 to ∼0.84 against both WAu and WAc . Such phenomenon occurs because the
attacker (in any variant of WA) does not know “what to do” to reliably evade the ML-PWD: the attacker guesses
some WsP, which can have no impact, or even make the website closer to a “malicious” one (from the viewpoint
ofM).

19We also successfully attacked the competition-grade ML-PWD of 7.4 with WAr , achieving similar results than the one shown in our
custom-built ML-PWD. A demonstrative video (of 140 s) can be found at the homepage of our website.
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Fig. 8. Comparison of attacks carried out in different evasion-spaces. Each subfigure refers to a specific dataset, and presents
nine plots. Such plots are organized in three rows and three columns. Rows denote a specific ML algorithm (LR, RF , CN ).
Columns denote a specific feature set: the “true” baseline (using Fc ) is on the left; the others are the “robust” baselines (using
Fu or F r ).

Takeaway: Our realistic attacks in the website-space (WAc ) can evade 5 (of 6) ML-PWD. The performance
degradation is small, but statistically significant. Due to their cheap cost, WAc are a threat to state-of-the-art
ML-PWD.

7.2 Comparing the Evasion-Space (ŴA, PA, MA)

We now focus on comparing the effectiveness of attacks that aim at influencing the same features (i.e., either u,
r , c), but whose perturbations are introduced in different spaces (i.e., either WsP, PsP, or MsP). We visualize such
results in Figure 8.

The “true” baselines (using F c , i.e., the leftmost plots in Figure 8) are defeated by MA. However, there are
some notable exceptions: on Zenodo, the RF and CN are resilient to MAr (this is because the HTML features
have little importance for F c ). In contrast, on δPhish, RF can withstand MAu . The “robust” baselines counter the
corresponding MA, but unsurprisingly suffer against the others.

In general, PA tend to have a larger impact than ŴA against the “true” baselines. However, this is not always

true: we find enlightening that theCN on Zenodo is more robust to PA than to ŴA. What is even more surprising
is that such CN significantly outperforms the RF against PA but also against MA. Such finding could inspire
deployment of ML-PWD using deep learning on Zenodo—despite being inferior to RF in the no-atk (Table 3) and
against WAc (Section 7.1).

We note that �WAu perfectly match WAu , which makes sense as they involve exactly the same WsP (cf.

Section 6). We can also see some discrepancies between ŴA and PA: as a matter of fact, our anticipation of the
preprocessing-space (i.e., the PsP of PA) did not exactly match what truly happened in the website-space . How-
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ever, in some cases (e.g., the RF using F c and F r on δPhish), we observe that the effectiveness of ŴA and PA tend
to be similar. Such a crucial finding demonstrates that perturbations applied directly to Fx (which we use for PA)

can induce the same effects as those applied to x (which we use for ŴA). In other words: if properly crafted, then
even perturbations in the “feature-space” can resemble adversarial examples that are physically realizable [92].

Let us compare our attacks with those considered by δPhish creators. Specifically, the attacks in
Reference [33] manipulate increasingly higher amounts of features (up to 10), and all ultimately evade target
ML-PWD (which analyzes the HTML). Such a finding is confirmed by our results on the ML-PWD analyzing F r

on δPhish against MAr , which all misclassify the adversarial samples. However, if the perturbations are applied
in different spaces (i.e., PsP or WsP), then the ML-PWD is significantly less affected.

7.3 Discussion

Our evaluation is a proof-of-concept, and we do not claim that all ML-PWD will respond in the same way as ours,
and neither we claim novelty in the “generic” method used to to evade PWD (attackers have been manipulating
the HTML or URL for decades [24]). Indeed, our goal was to validate our primary contribution (whose focus
is on machine learning) by performing a fair comparison of attacks (each having a different cost) in diverse
evasion-spaces.

Warning on WA. A legitimate observation is that our cheap attacks, despite affecting most ML-PWD, have
a small impact—even if statistically significant (Section 7.1). Such results, however, must not induce conclusions
such as “these attacks are not interesting” or (worse) “these attacks can be overlooked in the security lifecycle.”
Indeed, the main threat of WA is represented by the cheap cost: thousands of phishing websites are created ev-
ery day [8], and in such big numbers even a 1% difference can be the separation between a compromised and
secure system [18]. Our goal is not to propose devastating attacks that bypass any ML-PWD; rather, we focus
on those attacks that are more likely to occur in reality. As a matter of fact, WAs can be automatized and imple-
mented within seconds and few lines of code; in contrast, the advanced attacks (including those of past work, e.g.,
References [33, 61]) require to compromise or reverse-engineer the ML-PWD (Section 3.1). The cost of an attack
should also account for the effort required for its implementation. Most related literature focuses on measuring
“queries” (e.g., Reference [36]): our WA do not require any query. Nonetheless, we invite future work to explore
metrics to estimate the cost of attacks in terms of human effort.

Future Work. The main purpose of our evaluation is to highlight how state-of-the-art ML-PWD respond
to diverse evasion attacks. There are, however, millions of ways to do the above. For instance, the attacks can
target different features (and in different ways) than the ones considered in our evaluation (i.e., u, r , c); the
ML-PWD can analyze different features, which can be generated via different preprocessing mechanisms (e.g.,
Reference [56]). Additional defenses can also be considered (e.g., adversarial training [73, 94]). For instance,
we did not consider ML-PWD that analyze the visual representation of a webpage (e.g., Reference [9, 63]): such
attacks would resemble those conducted in computer vision, which are well-known to be effective (e.g., Reference
[76, 93]). Nevertheless, our threat model is agnostic of the data-type, so we endorse future work to also consider
ML-PWD analyzing images. Finally, our evasion-space formalization can be applied even to settings beyond
phishing (e.g., malware), which may entail attackers more likely to use PsP or MsP.

7.4 Proof-of-Concept: Attacks Against a Competition-Grade ML-PWD

To further prove the impact of our “cheap” attacks (i.e., WA), we tested them on a real ML-PWD that is used
in a well-known Machine Learning Security Evasion Competition (MLSEC) [6]. Such competition is held
yearly, and is organized by leading tech-companies that provide cybersecurity services reliant on ML methods.
The 2022 edition of MLSEC envisions a challenge in which participants are asked to evade ML-PWD. We took this
opportunity to assess whether our attacks had any impact against such “competition-grade” ML-PWD. (Short
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Fig. 9. MLSEC results. Effectiveness of the most likely attacks (WAr on δPhish) against the ML-PWD of MLSEC [6].

story: they do. A demonstrative video can be found in the homepage of our website—which also includes the
source-code.)

7.4.1 Challenge. Participants of the phishing evasion challenge are given 10 “phishing” webpages, which are
provided in their raw HTML form. The purpose of the challenge is to manipulate such webpages so that (i) they
render exactly as the originals, and (ii) they evade an ML-PWD. Specifically, the organizers provide 8 different ML-
PWD, which the participants can use as a black-box: by sending an input (i.e., the HTML of a phishing webpage),
they are given an output (i.e., the probability that such webpage is malicious—according to the specific ML-PWD).
Such ML-PWDs only analyze the HTML of the webpage (which must render exactly as the original). Put simply:
the objective of the challenge is to tweak the HTML of the 10 webpages with imperceptible modifications that
decrease the confidence of the 8 ML-PWD.

7.4.2 Method. Of course, the setting described above perfectly describes the black-box scenarios envisioned
in adversarial ML papers: query the detector, and use the response as a guide to craft a more evasive phishing
webpage. Our primary attacks (WA), however, are query-less. Because we are aware that the target ML-PWD an-
alyzes the HTML (recall that this is an assumption of our threat model), we then craft our “adversarial” phishing
webpages by using exactly the same WAr used in our article for δPhish: we add 50 invisible internal links. We
apply these WsP to all the 10 webpages provided by the organizers of the challenge, and then test whether they
had any impact to the real ML-PWD involved in the challenge.

7.4.3 Results. By taking into account all webpages against all ML-PWD, our attacks induced a drop of 3.4% in
the confidence of the ML-PWD, indicating that our WsP had some effect. However, while some ML-PWD were
not very affected, others incurred a significant drop. Specifically, we focus our attention on the first and third
ML-PWD provided by the organizers of MLSEC. The results of our proof-of-concept experiments are shown in
Figure 9. These graphs show phishing probability (y-axis) given as output by the corresponding ML-PWD for
each of the 10 webpages of the challenge (x-axis). We report two bars: the blue bar are the results of the original
webpages, whereas the red bars are the results after applying our WsP.

7.4.4 Analysis. These two detectors were significantly less certain after our WsP, with an average confidence
drop of 17.5%. We observe that in most cases, the confidences were still above 0.5 (i.e., the webpages would still be
classified as “phishing”). A more detailed look, however, reveals that these detectors were completely fooled

by some webpages (i.e., their confidence dropped to below 0.5). We report:

— Page #3: from 0.90 down to 0.43 for the first and third detectors.
— Page #6: from 0.90 down to 0.49 for the first detector.
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We also attempted the same WAr by changing the number of fake links, and also by considering a different
string.20 When applied to, e.g., webpage #3, adding 280 links dropped the confidence to below 0.2; whereas adding
a slightly different string (the first one shown in our pragmatic example in Section 4.5) 280 times, the confidence
dropped to 0.2 for the first and third detector, and to 0.49 for the seventh detector. The seventh detector was
also fooled by adding such alternative string 50 times to webpage #4, causing a confidence of 0.46 (down from
0.68). The source-code is available in our repository, and the experiments are entirely reproducible. Interestingly,
these results align with those shown in our primary evaluation: our query-less WA attacks cannot bypass any
ML-PWD, but in some cases they can induce a miss-classification.

8 ADDITIONAL EXPERIMENTS: SAME-SPACE AND MIXED-SPACE

We expand the evaluation carried out for our ACSAC’22 paper [17] with additional experiments. Our goal is
twofold:

— assessing other types of perturbations (either WsP, PsP or MsP) in the same space;
— consider a “stronger” attacker that applies multiple perturbations also in different spaces (cf. Section 4.4).

We first describe (Section 8.1) and empirically evaluate (Section 8.2) the attacks entailing perturbations in the
“same-space.” Then, we describe (Section 8.3) and evaluate (Section 8.4) the “multi-space” attacks.

8.1 Same-Space Attacks: Description

In this section, we elaborate on new attacks in the same evasion space involving our WsP, PsP, and MsP. Build-
ing upon the attacks considered in the main evaluation (Section 6), we introduce additional perturbations. The
motivation behind this extension is to present a more comprehensive range of use cases—all of which are likely
to happen, since they are well within the attacker’s capabilities (who will never have complete knowledge of the
target PWD). Therefore, we explore novel perturbations of the HTML (Section 8.1.1) and URL (Section 8.1.2), as
well as introduce new variations of MsP, PsP, and WsP. Altogether, the details of the new specific attacks are
provided in Table 4.

8.1.1 HTML. As we know (Section 2), the HTML reflects the visual appearance of a webpage—therefore,
changes to the HTML can lead to differences in the way the webpage is presented to its users.21 Some of them
may be noticed by users (e.g., alterations of the background), while others may not change the appearance at
all (e.g., the hidden links considered in our pragmatic use-case Section 4.5). Here, we consider a wide-array of
HTML-related perturbations, and scrutinize which are more likely to evade the detection of PWD. Practically,
we propose a total of 37 new HTML-related perturbations—of which, 24 are WsP (i.e., new WAr ), which can be
divided into the three following categories:

(1) iWsP (invisible WsP), which denote perturbations that are inserted into the webpages but remain in-
visible to users. This means that the webpage appears unchanged before and after the perturbation
insertion.

(2) eWsP (elusive WsP), which introduces slight changes to the appearance of the webpage. While these
changes may require some effort to be noticed by users, they are still discernible upon careful
observation.

(3) rWsP (recognizable WsP), which result in changes that are clearly visible to users. These modifications
have a more pronounced impact on the webpage’s appearance, making them readily noticeable.

20We also considered the “wrapping” WsP for Zenodo: the effects were negligible—probably because these ML-PWD factored such links
into their “count” (i.e., the attacker made a wrong guess). See Appendix B.
21We recall that our threat model does not assume that the perturbations are “imperceptible” to humans. This is because, in a real scenario,
phishing is effective because humans are distracted. Hence, even if the webpage changes, the phishing attack can still be successful.
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Table 4. Same-Space Attacks Details

Category Perturbation Description

iWAr addInLnk insert internal links
replOnc 〈a hre f = ‘link ’〉 to 〈a onclick = “this .hre f = ‘link’ ”〉
delHidIt delete hidden items from HTML
addHidP add hidden large page

replJS replace 〈a hre f = ‘#’〉 with 〈a hre f = ‘javascript : void (0)’〉
replRet replace ‘\n’ with whitespace
htEsc escape the whole body content, and write “document.write(unescape(‘ ’))” to HTML

htEncd encode HTML with base64
replPass replace 〈input type = ‘password’〉 with 〈input type = ‘text ’ 〉

replOnfoc replace 〈input type = ‘password’/‘email ’〉 with 〈input onf ocus = “this .type = ‘password’/‘email ’ ”〉
addSusLnk add suspicious links 〈a〉, e.g., 〈a hre f = ‘#skip’〉

eWAr addImgBot insert 20 small local images to the webpage bottom
modFntTyp modify the font type italic

addTps randomly insert few typos into HTML text
modCpy modify copyright
addIcn add local icon

delSusLnk delete suspicious links
delSusFrm delete suspicious form (i.e., with empty or external ‘action’ links)

modTtl randomly modify the title
delCpy delete copyright information from HTML

rWAr modBgimg change the background image
modBgClr randomly change the background color
modFntClr randomly modify the font color
modFntSiz modify the body font size to 0

PAr delTxt delete all text from HTML
delFrm remove forms
delSpn remove all span
delTtl remove title

addLngTxt add long visible text to HTML
delFtr remove footer

replSusFtrLnk replace suspicious links of footer with internal links

MAr brTg break the tag 〈html〉
delHt remove the whole html
delHd delete the whole 〈head〉 except style
delBdy delete the whole

〈
body
〉

brTgs break tags
hmg replace characters with homographic letters

uWAu replChar replace the characters in the domain with visually similar characters
sepWrd randomly insert whitespaces within the domain to separate the individual word
delChar delete one character from the domain
swpChar randomly swap two adjacent characters in domain
addChar randomly insert an additional character into the domain
atkPth also conducted operations of swap, delete, or insert randomly within the path of the URL

We show the low-level implementation of the (new) attacks entailing multiple perturbations in the same evasion space. The last group
focuses on perturbations affecting the URL (i.e., u); the others focus on the HTML (i.e., r ).

The remaining 13 HTML-related perturbations are PsP and MsP (i.e., new PAr and MAr ). Both of which require
write-access to the ML-PWD. PAr can bypass some of the checks of ML-PWD. Moreover, in MAr , attackers may
solely focus on evading ML-PWD: as a result, some MAr might violate the fundamental rules of HTML.

8.1.2 URL. Domain and path are two essential components of URL, and most of our URL features in Table 1
are extracted from them. In this section, we implemented six types of perturbations that specifically target the
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Fig. 10. Effectiveness of the most likely (new) “same-space” attacks WAr . The three plots in each subfigure represent the
algorithm used by a specific ML-PWD. Each plot has bars divided in three groups, each bar denotes a specific F used by the
ML-PWD. The green bars show the tpr on the original samples, while the others show the tpr against a specific variant of
WA.

URL. The low-level implementation of these attacks, referred to as uWAu , are discussed in Table 4. We do not
consider URL-related perturbations that affect other spaces (i.e., PsP or MsP).

8.2 Same-Space Attacks: Evaluation

We now assess the impact of the abovementioned perturbations. For HTML perturbations (Section 8.2.1), we
consider the effects both on the ML-PWD we developed by using the δPhish and Zenodo datasets, as well as by
those provided by MLSEC (we carried out these experiments in December 2022, when the MLSEC API was still
open for research purposes). For the URL perturbations (Section 8.2.2), we consider only the ML-PWD trained
on δPhish and Zenodo, because those provided by MLSEC do not consider the URL in their analyses.

8.2.1 Impact of HTML Perturbations. We begin by considering δPhish, Zenodo, and then focus on MLSEC.
δPhish and Zenodo. In Figures 10, we present the tpr achieved by ML-PWD trained on δPhish and Zenodo.

We evaluate the performance of these ML-PWD against iWAr , eWAr , and rWAr (represented by yellow and red
bars).22 To provide a comparison, we also include the tpr achieved by the same ML-PWD on the original set of
samples, depicted by the leftmost green bar labelled as “no-atk.” These results aim to address two key questions:

— Will different WsP have different impacts on ML-PWD and how?
— What kind of WA is more likely to evade the ML-PWD trained on δPhish and Zenodo?

As shown in Figure 10(a), the iWAr perturbation emerges as the most impactful attack, leading to a significant
reduction (reduced by 0.68–0.95) in the tpr of F r - and F c -based ML-PWD trained on δPhish. Specifically, the
tpr of RF-PWD trained on F c drops from 0.945 to 0.037, and the tpr of RF-PWD trained on F r decreases from
0.947 to 0. In comparison, the influence of eWAr and rWAr is relatively smaller. However, eWAr still causes a
notable drop in the tpr of F r -based LR-PWD, reducing it from 0.78 to 0.47. However, rWsP has minimal impact
on PWD (only F c -based LR-PWD’s tpr decreased by 0.12). A similar trend is observed in Figure 10(b) for the
influence on Zenodo, where iWAr remains the most effective attack. Additionally, eWAr affects ML-PWD to a
greater extent (except for F r -based LR-PWD) compared to rWAr . These findings demonstrate that iWAr poses
the greatest challenge to ML-PWD of δPhish and Zenodo, significantly reducing their detection performance.
eWAr also has a notable impact, while rWAr has a relatively minor effect on most ML-PWD (except for the
ML-PWD using LR to analyze F r ).

22Our figures only present the most effective WsP, i.e., iWAr

denotes addHidP, eWAr

stands for addImgBot, and rWAr

represent
modFntClr.
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Fig. 11. Effectiveness of new attacks PAr and MAr . The three plots in each subfigure represent the algorithm used by a
specific ML-PWD. Each plot has bars divided into three groups, each denoting a specific F used by the ML-PWD. The green
bars show the tpr on the original samples, the blue bars represent tpr against PAr and the red bars in the rightmost show
the tpr against MAr .

Figures 11 represents the impact of new PAr and MAr on ML-PWD trained on δPhish and Zenodo. In this
context, PAr refers to delFrm (i.e., remove forms from the webpage), while MAr denotes applying perturbation
hmg to HTML (i.e., inserting typos to the HTML, both tags and text). Comparing with the tpr of ‘no-atk’, it
is evident that both PAr and MAr have negative impact on the tpr of ML-PWD trained on δPhish and Z enodo.
Specifally, PAr reduced the tpr of all F c - and F r -based ML-PWD on δPhish, with small decreases ranging from
0.01 to 0.08. However, MAr had a more pronounced effect compared to PAr , successfully reducing the tpr of
F r -based ML-PWD by 0.1–0.17. Nevertheless, WAr is still the most effective attack compared with them.

MLSEC. We have summarized the impact of the new HTML attacks on MLSEC in Table 5. These attacks are
the same HTML attacks used in δPhish and Zenodo. Our findings reveal several interesting phenomena in the
evaluation:

— Among the attacks evaluated, iWAr emerges as the most potent attack, significantly degrading the perfor-
mance of PWD of MLSEC. The confidence of models m0 and m2 drop from nearly 0.9 to 0.02, indicating
a stark decrease in their ability to accurately detect malicious webpages. However, it is worth noting that
other attacks also have a substantial impact on degrading the detection capability of PWD. For instance,
PAr reduce the confidence ofm2 from 0.9 to 0.61, while MAr results in a decrease of 0.76 in the confidence
ofm6.

— Comparing to eWAr and rWAr , iWAr has a greater influence on m0–m3, leading to a decrease in their
confidence by 0.35–0.89. However, for PWDm4–m7, iWAr does not decrease their confidence but slightly
increases them by 0.01. However, rWAr reduces their confidence by 0.1 (from nearly 0.8 to 0.7), while
eWAr results in a confidence reduction of 0.2 for PWD m4 and m6. This phenomenon can be considered
reasonable, since PWD employed in MLSEC are black-box models, which may consist of multiple types of
PWD. It implies that the impact of perturbations may vary depending on the specific model characteristics
and vulnerabilities. Hence, it is important to note that the goal of this study is not to propose a generalized
perturbation set that works for all PWD, but rather to investigate the impact and effectiveness of cheap
perturbations on PWD in practice.

— It is observed that rWAr has a more widespread impact as it influences all seven PWD on MLSEC, resulting
in a reduction of confidence by 0.1 across the board.

— Both PAr and MAr are effective attacks that successfully evade the detection of PWD in MLSEC. In par-
ticular, MAr proves to be a potent attack, as it evades five (of eight) PWD, causing their confidence score
to drop below 0.5. Additionally, the confidence scores of seven PWD decrease to approximately 0.65 from
initial values of around 0.85. These findings highlight the impact of PAr and MAr on the performance of
PWD on MLSEC.
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Table 5. New Attack’s Impact on MLSEC (HTML Perturbations)

A no-atk iWAr eWAr rWAr PAr MAr

m0 0.91±0.052 0.02±0.011 0.65±0.185 0.81±0.116 0.91±0.052 0.90±0.062

m1 0.87±0.071 0.52±0.161 0.87±0.085 0.78±0.100 0.67±0.262 0.31±0.051

m2 0.90±0.051 0.02±0.011 0.65±0.185 0.85±0.087 0.61±0.390 0.88±0.096

m3 0.88±0.070 0.51±0.172 0.87±0.079 0.81±0.091 0.66±0.271 0.26±0.080

m4 0.82±0.106 0.83±0.123 0.64±0.199 0.73±0.112 0.57±0.372 0.80±0.121

m5 0.81±0.120 0.82±0.136 0.85±0.107 0.70±0.103 0.64±0.280 0.39±0.166

m6 0.83±0.108 0.84±0.116 0.64±0.198 0.73±0.111 0.56±0.373 0.07±0.076

m7 0.82±0.121 0.83±0.127 0.85±0.106 0.70±0.097 0.64±0.279 0.36±0.129

Fig. 12. Effectiveness of new attacks uWAu . The three plots in each subfigure represent the algorithm used by a specific
ML-PWD. Each plot has box divided into three groups, each denoting a specific F used by the ML-PWD. The green box
shows the tpr on the original samples, while the orange box show the tpr against uWAu .

Takeaway: Applying iWsP does not change the webpage’s appearance but yields highly evasive samples. In
contrast, the application of rWsP results in obvious changes to the webpage’s appearance but it has a relatively
minor impact on the detection. MAr has a more pronounced effect compared to PAr . Intriguingly, some WAr

are more evasive than MAr and PAr .

8.2.2 Impact of URL Perturbations. The impact of uWAu is illustrated in Figures 12. Figure 12(a) reveal the
changes when performing atkPth on ML-PWD trained on δPhish. Green boxes represent the tpr of “no-atk”
(i.e., baseline), while the orange boxes indicate the impact of uWAu . Comparing the medians of each box plot,
the median line of orange boxes is lower than Green boxes for Fu -based ML-PWD, indicating that uWAu can
degrade ML-PWD’s tpr . In contrast, this type of uWAu does not decrease tpr of Fu -based CN-PWD trained on
Zenodo (as shown in Table 21 in Appendix C). However, it is significantly reduces the performance of F r -based
ML-PWD. This is because some HTML features require extracting information from both URL and HTML (e.g.,
HTML_URLBrand: which checks (in the HTML) if the webpage title includes the brand name that appeared
in the URL). Therefore, either URL perturbations or HTML perturbations can possibly affect the F r -based ML-
PWD. Furthermore, as shown in Figure 12(b), another uWAu , sepWrd, also clearly decreases the tpr of F r -based
ML-PWD. Simply put, uWAu affect the ML-PWD’s performance.

8.3 Multi-space Attacks: Description

Insofar, we have always considered perturbations applied in a single space. However, as mentioned in Section 4.4,
an attacker who can apply PsP or MsP (which require write-access to the ML-PWD) can also apply WsP (which
only require access to the phishing webpage—which the attacker owns). These “multi-space” attacks are worth
considering, because they are trivial to implement for an attacker—assuming that such an attacker can already
apply PsP and/or MsP (we recall that, from a cost viewpoint, WsPllPsP<MsP). Therefore, we introduce 66 types
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of multi-space attacks (the complete details are in Appendix C). These attacks span across all the defined evasion
spaces (Section 3): Website space, Preprocessing space, and Machine Learning space. In particular, we consider
“accessible” attacks (which combine WA and PA), as well as stronger ones (which entail MA and PA). We also
consider “double” attacks, entailing multiple perturbations in the same space (e.g., WsP+WsP). We expect that
multi-space attacks, which exploit vulnerabilities/weaknesses in different stages of the detection process, lead to
more evasive samples (at least w.r.t. corresponding single-space attacks).

8.4 Multi-space Attacks: Evaluation

We evaluate the evasion capabilities of our new mixed-space attacks on the ML-PWD trained on the δPhish,
Zenodo, as well as those provided by MLSEC.23 We begin by considering attacks entailing two perturbations in
the same space, i.e., PsP+PsP (Section 8.4.1) and WsP+WsP (Section 8.4.2); then, we consider attacks entailing two
perturbations in different spaces, i.e., PsP+WsP (Section 8.4.3) and PsP+MsP (Section 8.4.4).

8.4.1 Double-PsP.

— δPhish and Zenodo. Tables 15 and 25 demonstrate the impact of eight kinds of PAr +PAr on ML-PWD
trained on δPhish and Zenodo. Even though not all of them significantly impact the PWD of δPhish. While
not all combinations significantly affect the PWD, there are notable influences observed. For instance, when
the combination attack occurs (specifically, the perturbation delSpn_delTtl), the tpr of LR-PWD based on
F c and F r drops by 0.1 and 0.16, respectively. Additionally, the tpr of F r -based LR-PWD down from 0.8 to
0.58, and CN-PWD’s drops from 0.86 to 0.64 after being subjected to PAr +PAr . In contrast, Fu -based PWD
is not affected, and most of F c -based PWD remain unchanged. That is because our PAr +PAr combinations
specifically target HTML, and Fu is the core component when crafting the F c -based ML-PWD.

— MLSEC. In the case of MLSEC’s PWD, Table 31 indicates that all cheap PAr +PAr combination attacks
proposed can decrease the performance of PWD, resulting in the confidence score dropped by [0.01–0.32].

8.4.2 Double-WsP.

— δPhish and Zenodo. As shown in Table 17, the combination attack WAr +WAr did not reduce the tpr of
ML-PWD trained on δPhish. In fact, in some cases, the tpr increased to 1.0, such as the tpr of F r -based
CN-PWD increased from 0.79 to 1. Similarly, “replOnf oc_replRet” did not affect the ML-PWD of Zenodo,
as shown in Table 23). However, it is importance to note that under the influence of “htEsc_replRet ,” the
tpr of F r -based LR-PWD reduced to 0.55 from 0.8. Moreover, “htEncd_replRet” reduced tpr of F r -based
CN-, LR-, and RF-PWD to 0. These findings suggest that while some combinations of WAr +WAr attacks
may not result in a significant reduction in the tpr of ML-PWD, specific combinations can still have an
impact on the detection performance, leading to a decrease in the tpr . The effectiveness and impact of
these combinations may vary depending on the specific ML-PWD and the nature of the attacks employed.

— MLSEC. On the contrary, WAr +WAr proves to be a powerful weapon for disrupting PWD of MLSEC. As
indicated in Table 30, the combination attack “replOnf oc_replRet” defeated all detectors, leading to a sig-
nificant decrease in their confidence scores by [0.12–0.58]. Moreover, four PWD have their confidence
scores reduced below 0.5, indicating a successful evasion. Furthermore, the attack “htEsc_replRet” evades
four detectors, resulting in a substantial reduction in their confidence scores to 0.03 or near 0.15. Addi-
tionally, the attack “htEncd_replRet” successfully bypasses four detectors and notably decreases the con-
fidence score of modelm0 from 0.91 to 0.08. These findings demonstrate the effectiveness and potency of
WAr +WAr combination attacks in evading detection and undermining the confidence of PWD in MLSEC.
The combination of multiple WAr proves to be highly disruptive, highlighting the need for robust defense
mechanisms against such attacks.

23Since MLSEC only analyzes the HTML, we do not consider mixed-space attacks entailing perturbations of the URL.
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Takeaway: The simplest “Double-WsP” can evade PWD, but their effectiveness varies against different PWD.

8.4.3 Mixed: PsP and WsP.

— δPhish and Zenodo. As presented in Tables 18, we analyze the impact of 52 attacks across the Pre-
processing space and Website space of δPhish. These attacks have a detrimental effect on the detection
performance of ML-PWD, particularly those based on F r . Among these attacks, the combination attacks
involving “addHidP” demonstrate the most significant impact on the ML-PWD. For instance, the attack
“addLnдTxt_addHidP” mentioned in Table 18(a) reduce the tpr of F r -based ML-PWD from 0.79, 0.95
and 0.78 to 0.03, 0, and 0, respectively. This indicates a drastic reduction in the ability of the ML-PWD
to detect and classify phishing instances. Similar situation is observed in ML-PWD of Zenodo, as illus-
trated in Table 26, the combination attack of PAr +WAr demonstrates a decrease in the tpr of ML-PWD
trained on Zenodo. Notably, the attack “delFtr_addHidP” leads to a significant reduction in the tpr of
F r -based RF-PWD, dropping from 0.9 to 0.15. Furthermore, when encountering attack “delSpn_addHidP ,”
the tpr decreases to 0.03. Other PAr +WAr combination attacks also prove effective in bypassing the de-
tection of ML-PWD of Zenodo. For example, the attack “delFtr_replPass” results in a similar drop, and
“delFtr_addSusLnk” reduces the tpr by 0.4–0.65. These findings highlight the susceptibility of ML-PWD
trained on Zenodo to PAr +WAr attacks.

— MLSEC. We executed 53 kinds of PAr +WAr on MLSEC’s PWD and evaluated their impact, which is re-
ported in Tables 33. All of these combination attacks affected the decision of PWD, with 51 (i.e., except
“delSpn_modBдClr” and “delFtr_modBдClr”) of 53 attacks noticeably degrading the confidence of at least
one PWD. One particular attack, “delFrm_addHidP” minimizes the confidence of all PWD. Specifically,
the confidence of m0 and m2 dropped from 0.9 to 0.01, while the confidence of other PWDs decreased by
0.16–0.5. This substantial reduction caused by this cheap attack is both shocking and expected, as this com-
bination attack simultaneously considers the “feature space” and “problem space,” i.e., both the high-level
definitions of adversarial perturbations [78].

Takeaway: Compared to other attacks mixing evasion spaces, it is evident that PAr +WAr possess greater
destructive power and have a substantial impact on the tpr of ML-PWD. These attacks are particularly potent,
because they traverse both the “feature-space” (e.g., Preprocessing space) and “problem-space” (e.g., Website
space).

8.4.4 Mixed: PsP and MsP.

— δPhish and Zenodo. We showcase three combination PAr +MAr attacks target ML-PWD trained on δPhish

and Zenodo in Tables 16 and 22, respectively. It is worth noting that these combination attacks are difficult
to achieve and require high costs, as attackers must obtain write-access to deeper segments of the ML-PWD.
Interestingly, despite the high cost associated with these attacks, they do not consistently and effectively
disrupt ML-PWD, except for the attack “delFtr_brTдs ,” which reduces the tpr of F r -based CN-PWD from
0.86 to 0.64.

— MLSEC. As depicted in Table 32, the combination attack PAr +MAr decreases the performance of all con-
sidered ML-PWD, but the impact is relatively minor. The largest impact is observed with “delSpn_brTдs”
and “delFtr_brTдs .” These attacks lead to a decrease in the confidence ofm0 by 0.16 and 0.13, respectively.

Takeaway: Costly attacks (which require both MsP and PsP) do not always possess formidable evasion capa-
bilities. Intriguingly, they may only slightly affect certain detectors or have no impact on others.
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Table 6. Adversarial Attacks against ML-PWD

Paper
(first author)

Year
Evasion
space

ML-PWD
types (F )

ML
Algorithms

Defense
Datasets
(reprod.)

Stat.
Val.

Liang [61] 2016 Problem F c SL ✗ 1 (✗) ✗
Corona [33] 2017 Feature F r , F c SL ✓ 1 (✓) ✗
Bahnsen [23] 2018 Problem Fu DL ✗ 1 (✗) ✗
Shirazi [85] 2019 Feature F c SL ✗ 4 (✓) ✓*
Sabir [82] 2020 Problem Fu SL, DL ✓ 1 (✗) ✗
Lee [59] 2020 Feature F c SL ✓ 1 (✓) ✗
Abdelnabi [9] 2020 Problem F r DL ✓ 1 (✓) ✗
Aleroud [12] 2020 Both Fu SL ✗ 2 (✓) ✗
Song [87] 2021 Problem F c SL ✓ 1 (✓*) ✗
Bac [21] 2021 Feature Fu SL, DL ✗ 1 (✗) ✗
Lin [63] 2021 Feature F c DL ✓ 1 (✓) ✗
O’Mara [72] 2021 Feature F r SL ✗ 1 (✓) ✗
Al-Qurashi [11] 2021 Feature Fu , F c SL, DL ✗ 4 (✓) ✗
Gressel [40] 2021 Feature F c SL, DL ✓ 1 (✗) ✗

Ours Both Fu , F r , F c DL, SL ✓ 2 (✓) ✓

For each paper, we report: the evasion space (for simplicity, we consider problem and feature-space);
which features (F ) are analyzed by the ML-PWD; the ML algorithms used by the ML-PWD (SL or DL); if
some defense is evaluated; how many datasets are used (and if they are reproducible); and if the
experiments are repeated for statistical validation.

9 RELATED WORK

Countering phishing is a long-standing security problem, which can be considered as a subfield of cyberthreat
detection—a research area that is being increasingly investigated also by adversarial ML literature [16]. We focus
on the detection of phishing websites. Papers that consider phishing in social networks [25], darkweb [101], phone
calls [43], or emails [37] are complementary to our work—although our findings can also apply to phishing email
filters if they analyze the URLs included in the body text (e.g., Reference [42]). Our focus is on attacks against
ML-PWD. For instance, Tian et al. [91] evade PWD that use common blacklists, and their main proposal is to use
ML as a detection engine to counter such “squatting” phishing websites. Hence, non-ML-PWD (e.g., Reference
[102]) are outside our scope.

Let us compare our article with existing works on evasion attacks against ML-PWD. We provide an overview in
Table 6, highlighting the main differences of our article with the state of the art. Only half of related papers craft
their attacks in the problem-space—which requires modifying the raw webpage. Unfortunately, most publicly
available datasets do not allow similar procedures. A viable alternative is composing ad-hoc dataset through
public feeds as done, e.g., by References [40] and [82] (the latter only for URL-based ML-PWD). All these papers,
however, do not release the actual dataset, preventing reproducibility and hence introducing experimental bias.
The authors of Reference [87] share their dataset, but while the malicious websites are provided with complete
information (i.e., URL and HTML), the benign websites are provided only with their URL—hence preventing
complete reproducibility of attacks in the problem-space against ML-PWD inspecting the HTML. The latter is
a well-known issue in related literature [74], which does not affect our article, because our entire evaluation is
reproducible. Notably, Aleroud et al. [12] evaluate attacks both in the problem and feature-space, but on different
datasets, preventing a fair comparison. Indeed, they evade one ML-PWD trained on PhishStorm (which only
includes raw URLs) with attacks in the problem space; and another ML-PWD trained on UCI (which is provided
as pre-computed features) through feature space attacks. Hence, it is not possible to compare these two settings.
A similar issue affects also Reference [11], which considers four datasets, each having a different F . Therefore, no
prior work compared the impact of attacks carried out in distinct evasion-spaces—to the best of our knowledge.
Not many papers consider adversarially robust ML-PWD, and only half consider both SL and DL algorithms—
which our evaluation shows to respond differently against adversarial examples (cf. Section 7.2). It is concerning
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that few papers overlook the importance of statistically significant comparisons. The most remarkable effort
is Reference [85], which only performs 10 trials (we do 50), which are not enough to compute precise statistical
tests.

Most prior work assume stronger attackers than those envisioned in our threat model (cf. Section 4). Indeed,
past threat models portray black-box attackers who can freely inspect the output-space and query the ML-PWD
(e.g., References [11, 61, 82]); or white-box attackers who perfectly know the target ML modelM, such as its con-
figuration, its training dataD, or the feature importance (e.g., References [9, 40, 63]). The only papers considering
attackers that are closer to our threat model are References [59, 72] and Reference [9]. However, the ML-PWD
considered in Reference [9] is specific for images, which are tough to implement (cf. Section 7.3) and also implic-
itly resembles an ML system for computer vision—a task well-investigated in adversarial ML literature [24]. In
contrast, the ML-PWD considered in References [59] and [72] is similar to ours, but the adversarial samples are
randomly created in the feature space, hence requiring an attacker with write-access to the internal ML-PWD
workflow. Such an assumption is not unrealistic, but very unlikely in the context of phishing (cf. Section 4.3).

10 CONCLUSIONS

We aim to provide a constructive step toward developing ML systems that are secure against adversarial attacks.
Specifically, we focus on the detection of phishing websites, which represent a widespread menace to informa-

tion systems. Such context entails attackers that actively try to evade “static” detection mechanisms via crafty,
but ultimately simple tactics. Machine learning is a reliable tool to catch such phishers, but ML is also prone
to evasion. However, realizing the evasion attempts considered by most past work requires a huge resource
investment—which contradicts the very nature of phishing. To provide valuable research for ML security, the
emphasis should be on attacks that are more likely to occur in the wild. We set this goal as our primary objective.

After dissecting the architecture of ML-PWD, we propose an original interpretation of attacks against ML
systems by formalizing the evasion-space of adversarial perturbations. We then carry out a large evaluation of
evasion attacks exploiting diverse “spaces,” focusing on those requiring less resources to be staged in reality.

Takeaway: The findings of our article are useful to both research and practice in the adversarial ML domain.

— Our evasion-space formalization allows researchers to evaluate adversarial ML attacks without the risk
of falling into the “unrealizable” perturbation trap (as long as the cost is factored in).

— Our results raise an alarm for practitioners: some ML-PWD can be evaded with simple tactics that do
not rely on gradient computations, days of bruteforcing, or extensive intelligence gathering campaigns.

Our evaluation can also inspire future work (not necessarily on phishing detection) to explore the impact of
attackers that apply multiple “adversarial perturbations” in different spaces of the ML pipeline.

APPENDICES

A COMPLETE BENCHMARK TABLES

The source-code of our experiments is written in Python3 by leveraging well-known libraries (e.g., scikit-learn,
Tensorflow). The ML-PWD using RF and LR are assessed on an Intel Xeon W-2223@3.6 GHz with 32 GB RAM. For
the CN , we use an nVidia P100 GPU. (Our results have been reproduced during the ACSAC artifact evaluation.)

Evasion Performance. We report the complete results of all the 12 considered evasion attacks against all
the 18 considered ML-PWD in Table 7 (for Zenodo) and Table 8 (for δPhish). These tables also include the
performance in non-adversarial settings computed on the 100 phishing samples (drawn from Pi that are used as a
base for the adversarial samples). We remark that we chose such 100 samples by randomly selecting 100 samples
that were correctly detected by the best ML-PWD on each dataset. As such, the tpr reported in the no-atk column
can slightly differ from the one in Table 3 (which is computed on the entire Pi ).

Digital Threats: Research and Practice, Vol. 5, No. 2, Article 16. Publication date: June 2024.



Multi-SpacePhish • 16:37

Table 7. Evasion Robustness of the ML-PWD on the Zenodo Dataset

A F no-atk WAu WAr WAc �WAu ŴAr ŴAc PAu PAr PAc MAu MAr MAc

CN

Fu 0.96±0.007 1.00±0.000 0.93±0.020 1.00±0.000 1.00±0.000 0.95±0.018 1.00±0.000 1.00±0.017 0.95±0.018 1.00±0.017 0.18±0.222 0.95±0.018 0.18±0.222

F r 0.86±0.013 0.88±0.013 0.87±0.056 0.87±0.055 0.88±0.013 0.44±0.153 0.83±0.051 0.54±0.108 0.29±0.120 0.31±0.118 0.88±0.013 0.02±0.095 0.02±0.095

F c 0.97±0.009 0.92±0.036 0.93±0.020 0.94±0.063 0.92±0.036 0.92±0.016 0.83±0.115 1.00±0.011 0.90±0.031 0.99±0.017 0.51±0.131 0.92±0.036 0.15±0.211

RF

Fu 0.96±0.007 1.00±0.000 0.96±0.008 1.00±0.000 1.00±0.000 0.96±0.008 1.00±0.000 0.54±0.183 0.96±0.007 0.54±0.183 0.04±0.098 0.96±0.007 0.04±0.098

F r 0.90±0.013 0.90±0.013 0.88±0.024 0.88±0.025 0.90±0.013 0.71±0.053 0.80±0.025 0.59±0.086 0.47±0.082 0.30±0.088 0.90±0.013 0.04±0.155 0.04±0.155

F c 0.97±0.009 0.98±0.064 0.94±0.012 0.94±0.171 0.98±0.063 0.94±0.010 0.94±0.191 0.65±0.101 0.94±0.010 0.21±0.134 0.07±0.115 0.92±0.012 0.03±0.158

LR

Fu 0.97±0.005 1.00±0.000 0.95±0.005 1.00±0.000 1.00±0.000 0.96±0.005 1.00±0.000 0.73±0.071 0.96±0.006 0.73±0.071 0.00±0.000 0.96±0.006 0.00±0.000

F r 0.80±0.013 0.80±0.013 0.65±0.043 0.64±0.040 0.80±0.013 0.54±0.027 0.56±0.022 0.61±0.007 0.08±0.013 0.01±0.010 0.80±0.013 0.00±0.000 0.00±0.000

F c 0.98±0.005 0.82±0.035 0.95±0.015 0.32±0.079 0.80±0.038 0.93±0.014 0.32±0.132 0.46±0.053 0.91±0.032 0.06±0.025 0.00±0.000 0.76±0.036 0.00±0.000

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific attack.

Table 8. Evasion Robustness of the ML-PWD on the δPhishDataset

A F no-atk WAu WAr WAc �WAu ŴAr ŴAc PAu PAr PAc MAu MAr MAc

CN

Fu 0.65±0.028 0.91±0.276 0.65±0.029 0.91±0.275 0.90±0.299 0.65±0.029 0.90±0.300 0.60±0.165 0.65±0.028 0.60±0.165 0.14±0.346 0.65±0.028 0.14±0.346

F r 0.79±0.013 0.80±0.013 0.35±0.018 0.34±0.017 0.80±0.013 0.86±0.033 0.88±0.020 0.46±0.065 0.69±0.038 0.46±0.064 0.81±0.013 0.00±0.000 0.00±0.000

F c 0.95±0.010 0.88±0.066 0.93±0.012 0.84±0.113 0.89±0.046 0.89±0.020 0.87±0.058 0.90±0.107 0.58±0.059 0.82±0.163 0.04±0.198 0.01±0.011 0.04±0.196

RF

Fu 0.56±0.037 0.84±0.330 0.56±0.036 0.84±0.330 0.84±0.330 0.56±0.034 0.84±0.331 0.57±0.238 0.56±0.037 0.57±0.238 0.01±0.053 0.56±0.037 0.01±0.053

F r 0.95±0.008 0.95±0.009 0.84±0.003 0.84±0.043 0.95±0.009 0.80±0.038 0.94±0.009 0.84±0.049 0.55±0.090 0.95±0.055 0.95±0.008 0.00±0.000 0.00±0.000

F c 0.95±0.009 0.90±0.020 0.92±0.006 0.77±0.047 0.90±0.017 0.86±0.018 0.92±0.015 0.90±0.065 0.68±0.013 0.86±0.097 0.88±0.026 0.00±0.001 0.00±0.000

LR

Fu 0.30±0.014 0.21±0.332 0.30±0.015 0.22±0.341 0.26±0.364 0.30±0.015 0.24±0.359 0.64±0.256 0.30±0.014 0.64±0.256 0.00±0.000 0.30±0.014 0.00±0.000

F r 0.78±0.011 0.78±0.011 0.57±0.014 0.56±0.047 0.78±0.011 0.60±0.030 0.63±0.010 0.80±0.029 0.04±0.006 0.45±0.068 0.78±0.011 0.00±0.000 0.00±0.000

F c 0.86±0.014 0.47±0.094 0.81±0.011 0.36±0.102 0.73±0.126 0.73±0.018 0.63±0.150 0.65±0.157 0.23±0.014 0.32±0.109 0.00±0.000 0.00±0.000 0.00±0.000

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific attack.

Runtime. We report in Table 9 the average (and std. dev.) runtime for training and testing all our ML-PWD
in non-adversarial scenarios (averaged across the 50 trials). Training the RF and LR uses all cores/threads of our
CPU.

Table 9. Execution Times. For training (on D) and testing (on both Pi and Bi )
the ML models used by our ML-PWD

A F
Zenodo δPhish

Train (s) Test (ms) Train (s) Test (ms)

CN

Fu 110.88±15.318 178.13±9.661 201.314±21.753 301.91±46.133

F r 76.61±4.562 171.95±10.577 167.74±25.197 273.4±43.99

F c 152.325±13.183 222.696±86.618 165.486±23.367 274.84±47.975

RF

Fu 0.152±0.0052 7.59±0.208 0.583±0.0181 28.09±0.402

F r 0.146±0.0037 7.85±0.07 0.369±0.0181 22.39±0.151

F c 0.179±0.0035 9.39±0.312 0.44±0.0062 23.6±0.205

LR

Fu 0.045±0.019 0.1±0.005 0.185±0.0285 0.45±0.895

F r 0.055±0.0182 0.09±0.003 0.083±0.0509 0.74±1.161

F c 0.063±0.0179 0.17±0.014 0.301±0.0678 0.36±0.678

B COMPLEMENTARY WAr FOR ZENODO AND δPHISH

As we mentioned in Section 6.3.2, we applied two different WAr to the ML-PWD of δPhish and Zenodo (i.e.,
replOnc: swap <a href=‘link’> into <a onclick=“this.href=‘link”’> on Zenodo, and addInLnk: insert <a href=‘#’
style=‘display:none’> can not see</a> to the samples of δPhish), and report their influence in Figures 7. In this
section, we apply the same WAr , but with the datasets swapped to see if the influence will change, i.e., applying
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addInLnk to Zenodo and applying replOnc to δPhish. The new influence on each dataset is depicted in Table 10.
Comparing with the Figures 7, it can be concluded that the δPhish is more vulnerable to addInLnk, whereas their
impact on Zenodo are similar.

Table 10. Impact of “Complementary” WAr , Reported as the Average (and
Standard Deviation) tpr Over 50 Trials

A F
Zenodo δPhish

tpr (no-atk) tpr (addInLnk) tpr (no-atk) tpr (replOnc)

CN

Fu 0.96±0.008 0.95±0.018 0.55±0.030 0.65±0.029

F r 0.88±0.018 0.61±0.034 0.81±0.019 0.89±0.018

F c 0.97±0.006 0.97±0.021 0.93±0.013 0.93±0.012

RF

Fu 0.98±0.004 0.96±0.008 0.45±0.022 0.56±0.036

F r 0.93±0.013 0.94±0.018 0.94±0.016 0.99±0.003

F c 0.98±0.006 0.97±0.008 0.97±0.007 0.98±0.006

LR

Fu 0.95±0.009 0.96±0.002 0.24±0.017 0.3±0.015

F r 0.82±0.017 0.95±0.005 0.74±0.025 0.78±0.014

F c 0.96±0.007 0.98±0.007 0.81±0.020 0.89±0.011

C BENCHMARK: RESULTS OF THE NEW EXPERIMENTS

We now report the complete results of all our new experiments, which we discussed in Section 8.

C.1 Perturbation’s Impact on δPhish

We report new WAr ’s impact on the ML-PWD generated on δPhish in Tables 11 and 12. PsP and WsP’s influ-
ence were depicted in Table 13. And Table 14 describes the tpr of ML-PWD generated on δPhish against uWAu .
Tables 15–18 report the influence of hybrid space attacks on δPhish.

Table 11. Impact of iWAr on δPhish

A F no-atk replOnc delHidIt addHidP replJS replRet htEsc htEncd replPass replOnfoc addSusLnk

CN

Fu 0.65±0.028 0.65±0.029 0.65±0.029 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.035 0.64±0.031

F r 0.79±0.013 0.89±0.018 0.81±0.013 0.03±0.006 0.79±0.011 0.81±0.013 0.94±0.03 1.0±0.0 0.81±0.013 0.81±0.013 0.19±0.012

F c 0.95±0.010 0.93±0.012 0.95±0.016 0.22±0.059 0.89±0.021 0.96±0.011 0.99±0.01 0.99±0.014 0.95±0.011 0.95±0.013 0.79±0.039

RF

Fu 0.56±0.037 0.56±0.036 0.56±0.035 0.56±0.033 0.56±0.034 0.57±0.033 0.57±0.031 0.56±0.033 0.57±0.033 0.56±0.037 0.56±0.032

F r 0.95±0.008 0.99±0.003 0.88±0.011 0.0±0.0 0.81±0.021 0.95±0.008 1.0±0.003 1.0±0.0 0.95±0.008 0.95±0.008 0.44±0.069

F c 0.95±0.009 0.98±0.006 0.93±0.01 0.04±0.017 0.86±0.015 0.95±0.01 1.0±0.007 1.0±0.0 0.95±0.009 0.94±0.009 0.48±0.043

LR

Fu 0.30±0.014 0.3±0.015 0.29±0.015 0.3±0.015 0.3±0.016 0.3±0.014 0.3±0.014 0.3±0.015 0.3±0.014 0.3±0.021 0.3±0.014

F r 0.78±0.011 0.78±0.014 0.68±0.017 0.0±0.0 0.68±0.005 0.78±0.011 0.84±0.006 1.0±0.0 0.78±0.011 0.78±0.011 0.3±0.009

F c 0.86±0.014 0.89±0.011 0.82±0.016 0.17±0.015 0.78±0.01 0.86±0.014 0.92±0.015 1.0±0.005 0.87±0.014 0.74±0.042 0.62±0.025

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific iWsP perturbation.
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Table 12. Impact of eWAr and rWAr on δPhish

A F no-atk
eWAr rWAr

addImgBot modFntTyp modCpy addIcn delSusLnk delSusFrm modTtl delCpy modBgimg modBgClr modFntClr modFntSiz

CN

Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.63±0.036 0.64±0.031

F r 0.79±0.013 0.63±0.063 0.81±0.013 0.77±0.016 0.71±0.024 0.84±0.021 0.75±0.012 0.81±0.013 0.77±0.016 0.81±0.013 0.81±0.013 0.81±0.013 0.81±0.013

F c 0.95±0.010 0.92±0.032 0.95±0.011 0.94±0.014 0.92±0.021 0.93±0.012 0.93±0.016 0.95±0.011 0.94±0.014 0.95±0.011 0.95±0.011 0.94±0.017 0.95±0.011

RF

Fu 0.56±0.037 0.57±0.034 0.56±0.033 0.56±0.033 0.56±0.033 0.56±0.033 0.56±0.032 0.56±0.033 0.56±0.034 0.56±0.034 0.57±0.034 0.56±0.036 0.56±0.033

F r 0.95±0.008 0.88±0.026 0.95±0.008 0.95±0.007 0.89±0.019 0.92±0.011 0.91±0.021 0.95±0.008 0.95±0.007 0.95±0.008 0.95±0.008 0.95±0.008 0.95±0.008

F c 0.95±0.009 0.88±0.015 0.95±0.009 0.94±0.009 0.89±0.015 0.92±0.007 0.91±0.009 0.95±0.009 0.94±0.009 0.95±0.009 0.95±0.009 0.94±0.009 0.95±0.009

LR

Fu 0.30±0.014 0.3±0.014 0.3±0.014 0.3±0.014 0.3±0.015 0.3±0.015 0.3±0.016 0.3±0.015 0.3±0.016 0.3±0.016 0.3±0.014 0.3±0.024 0.3±0.014

F r 0.78±0.011 0.47±0.026 0.78±0.011 0.77±0.011 0.61±0.015 0.83±0.007 0.75±0.025 0.79±0.011 0.77±0.011 0.78±0.011 0.78±0.011 0.78±0.011 0.78±0.011

F c 0.86±0.014 0.66±0.028 0.87±0.014 0.89±0.013 0.82±0.013 0.91±0.009 0.78±0.018 0.87±0.014 0.89±0.013 0.87±0.013 0.87±0.014 0.74±0.044 0.87±0.014

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific eWAr

or rWAr

attack.

Table 13. Impact of PAr and MAr on δPhish

A F no-atk
PsP MsP

delTxt delFrm delSpn delTtl addLngTxt delFtr replSusFtrLnk brTg delHt delHd delBdy brTgs hmg

CN

Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.65±0.032

F r 0.79±0.013 0.78±0.014 0.75±0.012 0.8±0.013 0.81±0.013 0.81±0.013 0.76±0.015 0.79±0.011 0.81±0.013 1.0±0.0 0.79±0.009 0.87±0.018 0.81±0.012 0.76±0.019

F c 0.95±0.010 0.89±0.034 0.93±0.016 0.95±0.012 0.91±0.027 0.95±0.011 0.93±0.013 0.95±0.011 0.95±0.011 0.99±0.014 0.82±0.045 0.98±0.015 0.95±0.011 0.78±0.034

RF

Fu 0.56±0.037 0.56±0.033 0.56±0.032 0.57±0.032 0.57±0.032 0.57±0.033 0.56±0.033 0.56±0.035 0.56±0.035 0.56±0.035 0.56±0.033 0.57±0.033 0.56±0.034 0.56±0.036

F r 0.95±0.008 0.94±0.012 0.91±0.021 0.95±0.007 0.94±0.012 0.95±0.008 0.91±0.01 0.94±0.011 0.95±0.008 1.0±0.0 0.83±0.019 1.0±0.003 0.95±0.008 0.79±0.024

F c 0.95±0.009 0.92±0.012 0.91±0.009 0.94±0.009 0.93±0.011 0.95±0.009 0.94±0.01 0.94±0.009 0.95±0.009 1.0±0.0 0.86±0.015 1.0±0.007 0.94±0.009 0.8±0.017

LR

Fu 0.30±0.014 0.3±0.015 0.3±0.016 0.3±0.015 0.3±0.016 0.3±0.016 0.3±0.015 0.3±0.015 0.3±0.015 0.3±0.014 0.3±0.014 0.3±0.016 0.3±0.016 0.3±0.014

F r 0.78±0.011 0.64±0.024 0.75±0.025 0.75±0.016 0.64±0.025 0.78±0.011 0.79±0.016 0.76±0.011 0.78±0.011 1.0±0.0 0.65±0.01 0.84±0.006 0.78±0.011 0.69±0.01

F c 0.86±0.014 0.78±0.018 0.78±0.018 0.87±0.014 0.76±0.02 0.87±0.014 0.89±0.014 0.85±0.012 0.87±0.013 1.0±0.004 0.76±0.03 0.95±0.008 0.87±0.013 0.76±0.013

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific PsP or MsP attack.

Table 14. Impact of uWAu on ML-PWD of δPhish

A F no-atk replChar sepWrd delChar swpChar addChar atkPth

CN

Fu 0.65±0.028 0.64±0.043 0.64±0.038 0.63±0.033 0.63±0.037 0.64±0.044 0.6±0.029

F r 0.79±0.013 0.81±0.013 0.79±0.016 0.8±0.014 0.81±0.014 0.81±0.014 0.8±0.013

F c 0.95±0.010 0.95±0.009 0.95±0.01 0.94±0.01 0.95±0.011 0.94±0.012 0.94±0.009

RF

Fu 0.56±0.037 0.56±0.03 0.59±0.024 0.56±0.029 0.56±0.032 0.56±0.031 0.52±0.027

F r 0.95±0.008 0.95±0.009 0.95±0.008 0.95±0.009 0.95±0.009 0.95±0.009 0.95±0.008

F c 0.95±0.009 0.94±0.009 0.94±0.009 0.92±0.011 0.94±0.009 0.94±0.009 0.94±0.01

LR

Fu 0.30±0.014 0.3±0.02 0.31±0.024 0.28±0.019 0.28±0.02 0.29±0.019 0.29±0.015

F r 0.78±0.011 0.78±0.011 0.79±0.012 0.77±0.012 0.78±0.012 0.78±0.011 0.78±0.011

F c 0.86±0.014 0.83±0.018 0.85±0.028 0.84±0.016 0.83±0.019 0.83±0.021 0.88±0.01
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Table 15. Impact of PAr +PAr on δPhish

A F no-atk addLngTxt_delTtl delFtr_delTtl delFtr_addLngTxt delSpn_delTtl delSpn_delFtrer delSpn_addLngTxt delFrm_delFtr delFrm_delSpn

CN

Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031

F r 0.79±0.013 0.81±0.013 0.76±0.015 0.76±0.015 0.8±0.013 0.75±0.015 0.8±0.013 1.0±0.0 0.74±0.01

F c 0.95±0.010 0.91±0.027 0.89±0.026 0.93±0.013 0.9±0.03 0.92±0.014 0.95±0.012 0.99±0.014 0.9±0.018

RF

Fu 0.56±0.037 0.56±0.033 0.57±0.033 0.56±0.032 0.56±0.033 0.57±0.033 0.56±0.034 0.56±0.034 0.56±0.032

F r 0.95±0.008 0.94±0.012 0.89±0.014 0.91±0.01 0.94±0.011 0.91±0.011 0.95±0.007 1.0±0.0 0.91±0.01

F c 0.95±0.009 0.93±0.011 0.91±0.016 0.94±0.01 0.92±0.012 0.94±0.01 0.94±0.009 1.0±0.0 0.92±0.008

LR

Fu 0.30±0.014 0.3±0.015 0.3±0.015 0.3±0.014 0.3±0.015 0.3±0.015 0.3±0.014 0.3±0.015 0.3±0.014

F r 0.78±0.011 0.64±0.025 0.64±0.024 0.79±0.016 0.62±0.035 0.76±0.02 0.75±0.016 1.0±0.0 0.74±0.019

F c 0.86±0.014 0.76±0.02 0.79±0.019 0.89±0.014 0.76±0.021 0.89±0.014 0.87±0.014 1.0±0.005 0.81±0.01

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific PsP+PsP perturbation.

Table 16. Impact of PAr +MAr attacks on δPhish

A F no-atk addLngTxt_delBdy delfoot_delBdy delSpn_delBdy

CN

Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031

F r 0.79±0.013 0.81±0.012 0.76±0.015 0.8±0.013

F c 0.95±0.010 0.95±0.011 0.93±0.013 0.95±0.012

RF

Fu 0.56±0.037 0.56±0.031 0.56±0.034 0.56±0.033

F r 0.95±0.008 0.95±0.008 0.91±0.01 0.95±0.006

F c 0.95±0.009 0.94±0.009 0.94±0.01 0.94±0.009

LR

Fu 0.30±0.014 0.3±0.014 0.3±0.014 0.3±0.015

F r 0.78±0.011 0.78±0.011 0.79±0.016 0.75±0.016

F c 0.86±0.014 0.87±0.014 0.89±0.014 0.87±0.014

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the
ML-PWD, while columns correspond to a specific PsP+MsP.

Table 17. Impact of WAr +WAr on δPhish

A F no-atk replOnfoc_replRet htEsc_replRet htEncd_replRet

CN

Fu 0.65±0.028 0.64±0.031 0.63±0.035 0.64±0.031

F r 0.79±0.013 0.81±0.013 1.0±0.0 1.0±0.0

F c 0.95±0.010 0.96±0.011 0.97±0.033 0.99±0.014

RF

Fu 0.56±0.037 0.56±0.034 0.56±0.036 0.56±0.032

F r 0.95±0.008 0.95±0.008 1.0±0.0 1.0±0.0

F c 0.95±0.009 0.95±0.01 1.0±0.0 1.0±0.0

LR

Fu 0.30±0.014 0.3±0.016 0.3±0.023 0.3±0.015

F r 0.78±0.011 0.78±0.011 1.0±0.0 1.0±0.0

F c 0.86±0.014 0.86±0.014 0.91±0.069 1.0±0.004

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the
ML-PWD, while columns correspond to a specific WsP+WsP.
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Table 18. Impact of PAr +WAr on ML-PWD Generated on δPhish

(a) Impact of PAr

+WAr

on ML-PWD Generated on δPhish. PAr

is addLngTxt.

A F no-atk
addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_

addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr

CN

Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.032 0.64±0.031 0.63±0.036 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031

F r 0.79±0.013 0.35±0.017 0.81±0.013 0.81±0.013 0.81±0.013 0.03±0.006 0.79±0.011 0.84±0.021 0.77±0.016 0.81±0.013 0.71±0.024 0.2±0.013 0.63±0.063 0.81±0.013

F c 0.95±0.010 0.92±0.029 0.95±0.016 0.95±0.011 0.95±0.011 0.22±0.059 0.89±0.021 0.92±0.017 0.94±0.014 0.95±0.011 0.92±0.021 0.8±0.033 0.91±0.035 0.95±0.011

RF

Fu 0.56±0.037 0.56±0.035 0.57±0.034 0.56±0.033 0.57±0.031 0.56±0.033 0.56±0.032 0.56±0.035 0.56±0.034 0.56±0.033 0.56±0.034 0.56±0.034 0.56±0.034 0.56±0.034

F r 0.95±0.008 0.84±0.043 0.88±0.011 0.95±0.008 0.95±0.008 0.0±0.0 0.81±0.021 0.92±0.011 0.95±0.007 0.95±0.008 0.89±0.019 0.46±0.045 0.88±0.026 0.95±0.008

F c 0.95±0.009 0.92±0.017 0.93±0.01 0.95±0.009 0.95±0.009 0.04±0.017 0.86±0.015 0.92±0.008 0.94±0.009 0.95±0.009 0.89±0.015 0.58±0.039 0.88±0.015 0.95±0.009

LR

Fu 0.30±0.014 0.3±0.015 0.3±0.014 0.3±0.016 0.3±0.015 0.3±0.016 0.3±0.016 0.3±0.024 0.3±0.014 0.3±0.015 0.3±0.014 0.3±0.016 0.3±0.015 0.3±0.016

F r 0.78±0.011 0.57±0.045 0.68±0.017 0.78±0.011 0.78±0.011 0.0±0.0 0.68±0.005 0.83±0.007 0.77±0.011 0.79±0.011 0.61±0.015 0.38±0.026 0.44±0.026 0.78±0.011

F c 0.86±0.014 0.8±0.017 0.81±0.014 0.87±0.013 0.87±0.014 0.17±0.016 0.78±0.01 0.8±0.043 0.89±0.013 0.87±0.014 0.82±0.012 0.68±0.021 0.66±0.03 0.87±0.015

(b) Impact of PAr

+WAr

on ML-PWD Generated on δPhish. PAr

is delFrm.

A F no-atk
delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_

addInLnk onclick delHidIt addHidP replJS delSusLnk addImgBot modFntSiz modBgimg modBgClr delCpy modTtl modCpy addIcn replRet

CN

Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031

F r 0.79±0.013 0.25±0.021 0.93±0.019 0.76±0.011 0.01±0.004 0.73±0.009 0.87±0.018 0.54±0.081 0.76±0.011 0.76±0.011 0.76±0.011 0.72±0.014 0.76±0.011 0.72±0.014 0.64±0.024 0.76±0.011

F c 0.95±0.010 0.85±0.04 0.97±0.014 0.93±0.017 0.19±0.062 0.81±0.021 0.91±0.013 0.88±0.036 0.91±0.017 0.91±0.017 0.91±0.017 0.89±0.02 0.91±0.017 0.89±0.02 0.86±0.031 0.91±0.017

RF

Fu 0.56±0.037 0.56±0.033 0.56±0.033 0.56±0.034 0.56±0.034 0.57±0.032 0.57±0.033 0.56±0.033 0.56±0.033 0.56±0.034 0.57±0.032 0.56±0.034 0.56±0.033 0.56±0.034 0.57±0.032 0.56±0.036

F r 0.95±0.008 0.85±0.055 0.99±0.007 0.89±0.015 0.0±0.0 0.74±0.015 0.91±0.014 0.85±0.018 0.9±0.011 0.9±0.011 0.9±0.011 0.9±0.01 0.9±0.011 0.9±0.01 0.82±0.02 0.9±0.011

F c 0.95±0.009 0.88±0.023 0.98±0.011 0.92±0.009 0.03±0.016 0.8±0.011 0.91±0.011 0.87±0.017 0.9±0.012 0.9±0.012 0.9±0.012 0.91±0.009 0.9±0.012 0.91±0.009 0.83±0.021 0.9±0.012

LR

Fu 0.30±0.014 0.3±0.015 0.3±0.015 0.3±0.016 0.3±0.015 0.3±0.014 0.3±0.015 0.3±0.016 0.3±0.015 0.3±0.015 0.3±0.015 0.3±0.016 0.3±0.016 0.3±0.014 0.3±0.015 0.3±0.017

F r 0.78±0.011 0.43±0.082 0.79±0.013 0.72±0.024 0.0±0.0 0.68±0.01 0.84±0.008 0.43±0.04 0.74±0.019 0.74±0.019 0.74±0.019 0.73±0.019 0.75±0.019 0.73±0.019 0.57±0.022 0.74±0.019

F c 0.86±0.014 0.7±0.028 0.85±0.019 0.82±0.012 0.16±0.011 0.73±0.01 0.89±0.013 0.57±0.026 0.79±0.012 0.79±0.011 0.79±0.011 0.81±0.016 0.79±0.011 0.81±0.016 0.74±0.013 0.79±0.011

(c) Impact of PAr

+WAr

on ML-PWD Generated on δPhish. PAr

is delFtr.

A F no-atk
delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_

addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk modBgClr

CN

Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031

F r 0.79±0.013 0.26±0.012 0.76±0.014 0.76±0.015 0.76±0.015 0.01±0.01 0.76±0.014 0.83±0.021 0.75±0.017 0.76±0.015 0.64±0.022 0.14±0.015 0.76±0.015

F c 0.95±0.010 0.9±0.031 0.92±0.019 0.93±0.013 0.93±0.013 0.22±0.058 0.87±0.019 0.92±0.011 0.92±0.013 0.93±0.013 0.88±0.019 0.77±0.032 0.93±0.013

RF

Fu 0.56±0.037 0.57±0.032 0.56±0.034 0.56±0.033 0.56±0.034 0.56±0.032 0.56±0.033 0.56±0.034 0.56±0.034 0.56±0.033 0.56±0.033 0.56±0.034 0.56±0.033

F r 0.95±0.008 0.86±0.044 0.86±0.016 0.91±0.01 0.91±0.01 0.0±0.001 0.77±0.021 0.92±0.009 0.91±0.009 0.91±0.01 0.83±0.015 0.44±0.055 0.91±0.01

F c 0.95±0.009 0.91±0.021 0.91±0.009 0.94±0.01 0.94±0.01 0.03±0.016 0.85±0.012 0.92±0.008 0.93±0.012 0.94±0.01 0.86±0.021 0.56±0.045 0.94±0.01

LR

Fu 0.30±0.014 0.3±0.014 0.3±0.016 0.3±0.015 0.3±0.015 0.3±0.016 0.3±0.016 0.3±0.016 0.3±0.016 0.3±0.016 0.3±0.016 0.3±0.016 0.3±0.014

F r 0.78±0.011 0.61±0.053 0.69±0.014 0.79±0.016 0.79±0.016 0.0±0.0 0.71±0.012 0.85±0.003 0.78±0.016 0.8±0.016 0.62±0.016 0.38±0.028 0.79±0.016

F c 0.86±0.014 0.84±0.016 0.82±0.012 0.89±0.014 0.89±0.014 0.19±0.021 0.78±0.01 0.9±0.009 0.89±0.012 0.89±0.014 0.85±0.014 0.72±0.019 0.89±0.014

(d) Impact of PAr

+WAr

on ML-PWD Generated on δPhish. PAr

is delSpn.

A F no-atk
delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_

addInLnk replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr

CN

Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031

F r 0.79±0.013 0.35±0.019 0.8±0.013 0.8±0.013 0.06±0.025 0.78±0.011 0.82±0.019 0.78±0.014 0.8±0.013 0.69±0.022 0.22±0.023 0.61±0.067 0.8±0.013

F c 0.95±0.010 0.92±0.033 0.95±0.012 0.95±0.012 0.22±0.059 0.89±0.021 0.93±0.013 0.94±0.014 0.95±0.012 0.92±0.022 0.8±0.035 0.89±0.042 0.95±0.012

RF

Fu 0.56±0.037 0.57±0.032 0.56±0.032 0.57±0.033 0.56±0.032 0.56±0.034 0.56±0.034 0.56±0.033 0.56±0.032 0.57±0.035 0.56±0.032 0.56±0.032 0.57±0.032

F r 0.95±0.008 0.84±0.042 0.95±0.007 0.95±0.007 0.0±0.0 0.84±0.024 0.92±0.011 0.95±0.006 0.95±0.007 0.89±0.019 0.45±0.045 0.9±0.015 0.95±0.007

F c 0.95±0.009 0.92±0.015 0.94±0.009 0.94±0.009 0.03±0.016 0.85±0.015 0.92±0.007 0.94±0.009 0.94±0.009 0.89±0.015 0.54±0.036 0.88±0.015 0.94±0.009

LR

Fu 0.30±0.014 0.3±0.014 0.3±0.016 0.3±0.015 0.3±0.015 0.3±0.016 0.3±0.015 0.3±0.015 0.3±0.015 0.3±0.015 0.3±0.014 0.3±0.015 0.3±0.014

F r 0.78±0.011 0.55±0.056 0.75±0.016 0.75±0.016 0.0±0.0 0.68±0.009 0.83±0.007 0.74±0.016 0.76±0.016 0.6±0.028 0.32±0.018 0.45±0.028 0.75±0.016

F c 0.86±0.014 0.8±0.019 0.87±0.014 0.87±0.014 0.17±0.014 0.79±0.009 0.91±0.008 0.89±0.014 0.87±0.014 0.82±0.013 0.66±0.024 0.65±0.027 0.87±0.014

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to a
specific PsP+WsP perturbation.
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C.2 Perturbation’s impact on Zenodo

In this section, we present new perturbation’s influence on Zenodo. Single attacks’ influence is shown in
Tables 19, 20, and 24, and hybrid attacks’ impact is shown in Tables 22, 23, 25, and 26.

Table 19. Evasion Robustness of the ML-PWD Against iWAr on Zenodo

A F no-atk addInLnk delHidIt addHidP replJS replRet htEsc htEncd replPass replOnfoc addSusLnk

CN

Fu 0.96±0.007 0.95±0.018 0.95±0.018 0.93±0.017 0.96±0.013 0.96±0.013 0.92±0.023 0.96±0.013 0.96±0.013 0.95±0.018 0.96±0.013

F r 0.86±0.013 0.61±0.034 0.88±0.012 0.28±0.008 0.74±0.05 0.88±0.013 0.87±0.025 0.0±0.0 0.88±0.013 0.88±0.013 0.48±0.022

F c 0.97±0.009 0.97±0.021 0.96±0.016 0.86±0.027 0.95±0.013 0.97±0.012 0.92±0.019 0.9±0.033 0.97±0.012 0.97±0.012 0.97±0.021

RF

Fu 0.96±0.007 0.96±0.008 0.96±0.008 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.96±0.007 0.98±0.005

F r 0.90±0.013 0.94±0.018 0.84±0.01 0.03±0.064 0.71±0.016 0.9±0.013 0.84±0.027 0.0±0.0 0.9±0.013 0.9±0.013 0.64±0.062

F c 0.97±0.009 0.97±0.008 0.97±0.01 0.96±0.006 0.96±0.006 0.98±0.004 0.96±0.007 0.96±0.007 0.98±0.005 0.97±0.01 0.97±0.008

LR

Fu 0.97±0.005 0.96±0.002 0.96±0.005 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.005 0.97±0.009 0.97±0.004 0.95±0.005 0.97±0.004

F r 0.80±0.013 0.95±0.005 0.79±0.014 0.24±0.019 0.46±0.013 0.8±0.013 0.55±0.009 0.0±0.0 0.8±0.013 0.8±0.013 0.72±0.0

F c 0.98±0.005 0.98±0.007 0.97±0.007 0.95±0.007 0.96±0.005 0.98±0.002 0.97±0.007 0.97±0.005 0.98±0.002 0.98±0.003 0.97±0.0

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific iWsP perturbation.

Table 20. Evasion Robustness of the ML-PWD Against eWAr and rWAr on Zenodo

A F no-atk
eWsP rWsP

addImgBot modFntTyp modCpy addIcn delSusLnk delSusFrm modTtl delCpy modBgimg modBgClr modFntClr modFntSiz

CN

Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

F r 0.86±0.013 0.74±0.06 0.88±0.013 0.76±0.045 0.82±0.019 0.91±0.016 0.86±0.036 0.88±0.013 0.76±0.045 0.88±0.013 0.88±0.013 0.88±0.013 0.88±0.013

F c 0.97±0.009 0.97±0.01 0.97±0.012 0.97±0.013 0.96±0.012 0.96±0.012 0.97±0.012 0.97±0.013 0.97±0.013 0.97±0.012 0.97±0.012 0.97±0.012 0.97±0.012

RF

Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005

F r 0.90±0.013 0.8±0.045 0.9±0.013 0.89±0.014 0.84±0.025 0.9±0.015 0.9±0.014 0.9±0.013 0.89±0.014 0.9±0.013 0.9±0.013 0.9±0.013 0.9±0.013

F c 0.97±0.009 0.98±0.006 0.98±0.005 0.98±0.005 0.98±0.005 0.96±0.006 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.004 0.98±0.004 0.98±0.004 0.98±0.005

LR

Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004

F r 0.80±0.013 0.9±0.021 0.8±0.013 0.8±0.013 0.88±0.013 0.74±0.017 0.8±0.012 0.79±0.013 0.8±0.013 0.8±0.013 0.8±0.013 0.8±0.013 0.8±0.013

F c 0.98±0.005 0.97±0.008 0.98±0.001 0.98±0.002 0.97±0.008 0.96±0.002 0.97±0.008 0.98±0.002 0.98±0.001 0.98±0.001 0.98±0.001 0.98±0.002 0.98±0.005

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific eWsP or rWsP perturbation.

Table 21. Impact of uWAu on ML-PWD of Zenodo

A F no-atk replChar sepWrd delChar swpChar addChar atkPth

CN

Fu 0.96±0.007 0.98±0.012 0.95±0.024 0.99±0.009 0.99±0.013 0.99±0.007 0.97±0.017

F r 0.86±0.013 0.5±0.043 0.49±0.04 0.5±0.043 0.49±0.04 0.49±0.038 0.5±0.043

F c 0.97±0.009 0.98±0.017 0.95±0.025 0.99±0.024 0.99±0.019 0.99±0.017 0.97±0.021

RF

Fu 0.96±0.007 1.0±0.004 0.98±0.0 1.0±0.005 1.0±0.004 1.0±0.006 0.99±0.002

F r 0.90±0.013 0.73±0.043 0.73±0.043 0.74±0.043 0.74±0.041 0.75±0.041 0.73±0.043

F c 0.97±0.009 1.0±0.005 0.99±0.001 1.0±0.0 1.0±0.002 1.0±0.003 0.98±0.006

LR

Fu 0.97±0.005 0.99±0.002 0.99±0.003 1.0±0.003 1.0±0.0 0.99±0.001 0.97±0.007

F r 0.80±0.013 0.78±0.0 0.79±0.0 0.79±0.0 0.79±0.0 0.8±0.0 0.78±0.0

F c 0.98±0.005 0.99±0.0 1.0±0.001 1.0±0.0 1.0±0.0 1.0±0.0 0.97±0.004

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD,
while columns correspond to a specific uWAu

perturbation.
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Table 22. Impact of PAr +MAr on Zenodo

A F no-atk addLngTxt_delBdy delFtr_delBdy delSpn_delBdy

CN

Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013

F r 0.86±0.013 0.88±0.013 0.64±0.052 0.88±0.015

F c 0.97±0.009 0.98±0.013 0.96±0.017 0.98±0.012

RF

Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005

F r 0.90±0.013 0.9±0.013 0.86±0.018 0.9±0.012

F c 0.97±0.009 0.98±0.005 0.97±0.006 0.98±0.005

LR

Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004

F r 0.80±0.013 0.8±0.013 0.76±0.008 0.8±0.013

F c 0.98±0.005 0.98±0.002 0.98±0.004 0.98±0.001

Table 23. Impact of WAr +WAr on Zenodo

A F no-atk replOnfoc_replRet htEsc_replRet htEncd_replRet

CN

Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013

F r 0.86±0.013 0.88±0.013 0.87±0.025 0.0±0.0

F c 0.97±0.009 0.98±0.013 0.96±0.007 0.91±0.032

RF

Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005

F r 0.90±0.013 0.9±0.013 0.84±0.027 0.0±0.0

F c 0.97±0.009 0.98±0.005 0.96±0.007 0.96±0.007

LR

Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004

F r 0.80±0.013 0.8±0.013 0.55±0.009 0.0±0.0

F c 0.98±0.005 0.97±0.005 0.97±0.001 0.97±0.004

Table 24. Impact of PAr and MAr on Zenodo

A F no-atk
PsP MsP

delTxt delFrm delSpn delTtl addLngTxt delFtr replSusFtrLnk brTg delHt delHd delBdy brTgs hmg

CN

Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.97±0.014

F r 0.86±0.013 0.78±0.046 0.86±0.036 0.88±0.015 0.88±0.013 0.88±0.013 0.64±0.052 0.74±0.05 0.88±0.013 0.0±0.0 0.82±0.011 0.43±0.049 0.88±0.013 0.4±0.035

F c 0.97±0.009 0.97±0.012 0.97±0.012 0.97±0.012 0.98±0.011 0.97±0.012 0.96±0.017 0.96±0.012 0.97±0.012 0.9±0.033 0.95±0.02 0.93±0.019 0.97±0.012 0.92±0.026

RF

Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.97±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.006

F r 0.90±0.013 0.86±0.032 0.9±0.014 0.9±0.012 0.86±0.032 0.9±0.013 0.86±0.018 0.84±0.012 0.9±0.013 0.0±0.0 0.66±0.083 0.46±0.024 0.9±0.013 0.22±0.066

F c 0.97±0.009 0.98±0.005 0.98±0.005 0.98±0.004 0.98±0.005 0.98±0.004 0.97±0.006 0.97±0.004 0.97±0.006 0.96±0.006 0.98±0.005 0.96±0.006 0.98±0.005 0.97±0.007

LR

Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.009 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.009 0.97±0.004 0.97±0.004 0.97±0.004 0.98±0.005

F r 0.80±0.013 0.66±0.004 0.8±0.012 0.8±0.013 0.66±0.004 0.8±0.013 0.76±0.008 0.73±0.022 0.8±0.013 0.0±0.0 0.74±0.0 0.32±0.006 0.8±0.013 0.24±0.02

F c 0.98±0.005 0.96±0.005 0.97±0.008 0.98±0.002 0.96±0.007 0.98±0.002 0.98±0.001 0.97±0.006 0.97±0.005 0.96±0.006 0.97±0.005 0.97±0.003 0.98±0.001 0.96±0.005

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific PsP or MsP attack.

Table 25. Impact of PAr +PAr on Zenodo

A F no-atk addLngTxt_delTtl delFtr_delTtl delFtr_addLngTxt delSpn_delTtl delSpn_delFtrer delSpn_addLngTxt delFrm_delFtr delFrm_delSpn

CN

Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

F r 0.86±0.013 0.88±0.013 0.64±0.052 0.64±0.052 0.88±0.015 0.64±0.052 0.88±0.015 0.78±0.064 0.83±0.045

F c 0.97±0.009 0.98±0.011 0.96±0.015 0.96±0.017 0.98±0.011 0.96±0.016 0.98±0.012 0.96±0.015 0.97±0.015

RF

Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005

F r 0.90±0.013 0.86±0.032 0.8±0.042 0.86±0.018 0.87±0.025 0.86±0.018 0.9±0.012 0.7±0.052 0.79±0.034

F c 0.97±0.009 0.98±0.004 0.97±0.007 0.97±0.006 0.98±0.005 0.97±0.007 0.98±0.005 0.97±0.007 0.98±0.005

LR

Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004

F r 0.80±0.013 0.66±0.004 0.58±0.005 0.76±0.008 0.65±0.004 0.76±0.008 0.8±0.013 0.7±0.009 0.76±0.005

F c 0.98±0.005 0.96±0.005 0.97±0.01 0.98±0.004 0.96±0.007 0.97±0.005 0.97±0.008 0.98±0.005 0.98±0.005
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Table 26. Impact of PAr +WAr on Zenodo

(a) Impact of PAr

+WAr

on ML-PWD generated on Zenodo. PAr

is addLngTxt.

A F no-atk
addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_

addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr

CN

Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

F r 0.86±0.013 0.61±0.034 0.88±0.012 0.88±0.013 0.88±0.013 0.28±0.008 0.74±0.05 0.91±0.016 0.76±0.045 0.88±0.013 0.82±0.019 0.5±0.043 0.72±0.058 0.88±0.013

F c 0.97±0.009 0.97±0.021 0.97±0.016 0.98±0.013 0.98±0.013 0.92±0.024 0.95±0.015 0.96±0.012 0.98±0.013 0.98±0.013 0.96±0.013 0.97±0.02 0.96±0.013 0.98±0.013

RF

Fu 0.96±0.007 0.97±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005

F r 0.90±0.013 0.95±0.018 0.84±0.01 0.9±0.013 0.9±0.013 0.03±0.064 0.71±0.016 0.9±0.015 0.89±0.014 0.9±0.013 0.84±0.025 0.73±0.043 0.78±0.044 0.9±0.013

F c 0.97±0.009 0.98±0.008 0.98±0.004 0.98±0.005 0.98±0.004 0.96±0.006 0.96±0.007 0.96±0.007 0.98±0.005 0.98±0.004 0.98±0.004 0.97±0.006 0.98±0.006 0.98±0.004

LR

Fu 0.97±0.005 0.97±0.009 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004

F r 0.80±0.013 0.96±0.005 0.79±0.014 0.8±0.013 0.8±0.013 0.24±0.019 0.46±0.013 0.74±0.017 0.8±0.013 0.79±0.013 0.88±0.013 0.78±0.0 0.88±0.021 0.8±0.013

F c 0.98±0.005 0.99±0.004 0.98±0.002 0.98±0.002 0.98±0.001 0.96±0.008 0.95±0.007 0.95±0.005 0.98±0.005 0.98±0.005 0.98±0.001 0.97±0.0 0.97±0.005 0.98±0.005

(b) Impact of PAr

+WAr

on ML-PWD generated on Zenodo. PAr

is delFtr.

A F no-atk
delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_

addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk modBgClr

CN

Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.94±0.03 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

F r 0.86±0.013 0.33±0.053 0.64±0.052 0.64±0.052 0.54±0.049 0.54±0.049 0.64±0.052 0.85±0.057 0.63±0.05 0.64±0.052 0.55±0.055 0.28±0.02 0.64±0.052

F c 0.97±0.009 0.96±0.028 0.96±0.016 0.96±0.017 0.83±0.035 0.91±0.025 0.94±0.012 0.96±0.011 0.96±0.017 0.96±0.017 0.95±0.015 0.96±0.027 0.96±0.017

RF

Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.96±0.007 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.003 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005

F r 0.90±0.013 0.95±0.016 0.8±0.024 0.86±0.018 0.15±0.075 0.15±0.075 0.63±0.054 0.82±0.024 0.86±0.019 0.86±0.018 0.82±0.031 0.59±0.07 0.86±0.018

F c 0.97±0.009 0.98±0.008 0.97±0.006 0.97±0.007 0.94±0.018 0.94±0.018 0.96±0.006 0.96±0.007 0.98±0.006 0.97±0.006 0.97±0.007 0.96±0.006 0.97±0.006

LR

Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.96±0.0 0.96±0.0 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.009 0.97±0.004

F r 0.80±0.013 0.97±0.0 0.75±0.006 0.76±0.008 0.37±0.01 0.37±0.01 0.45±0.008 0.74±0.011 0.76±0.008 0.75±0.008 0.86±0.007 0.72±0.0 0.76±0.008

F c 0.98±0.005 0.98±0.007 0.97±0.007 0.97±0.008 0.96±0.007 0.96±0.007 0.96±0.004 0.95±0.005 0.98±0.004 0.98±0.002 0.98±0.004 0.97±0.004 0.97±0.008

(c) Impact of PAr

+WAr

on ML-PWD generated on Zenodo. PAr

is delFrm.

A F no-atk
delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_

addInLnk onclick delHidIt addHidP replJS delSusLnk addImgBot modFntSiz modBgimg modBgClr delCpy modTtl modCpy addIcn replRet

CN

Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.94±0.018 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

F r 0.86±0.013 0.56±0.043 0.87±0.024 0.84±0.038 0.27±0.008 0.76±0.054 0.87±0.028 0.75±0.052 0.84±0.038 0.84±0.038 0.84±0.038 0.78±0.064 0.84±0.038 0.78±0.064 0.82±0.042 0.84±0.038

F c 0.97±0.009 0.96±0.025 0.96±0.008 0.97±0.015 0.92±0.022 0.91±0.027 0.96±0.011 0.96±0.018 0.97±0.016 0.97±0.016 0.97±0.016 0.97±0.016 0.97±0.016 0.97±0.016 0.96±0.013 0.97±0.016

RF

Fu 0.96±0.007 0.98±0.005 0.98±0.003 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.003 0.98±0.005 0.98±0.005

F r 0.90±0.013 0.9±0.043 0.8±0.031 0.81±0.028 0.01±0.045 0.58±0.05 0.79±0.027 0.69±0.065 0.82±0.023 0.82±0.023 0.82±0.023 0.72±0.041 0.82±0.023 0.72±0.041 0.77±0.035 0.82±0.023

F c 0.97±0.009 0.98±0.007 0.97±0.009 0.98±0.005 0.96±0.005 0.96±0.006 0.96±0.007 0.97±0.006 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.99±0.006 0.98±0.005 0.98±0.005

LR

Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.009 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004

F r 0.80±0.013 0.93±0.009 0.6±0.024 0.76±0.002 0.24±0.019 0.36±0.005 0.69±0.011 0.87±0.027 0.77±0.005 0.77±0.005 0.77±0.005 0.77±0.005 0.76±0.005 0.77±0.005 0.88±0.008 0.77±0.005

F c 0.98±0.005 0.98±0.0 0.97±0.005 0.98±0.005 0.97±0.008 0.96±0.007 0.95±0.005 0.97±0.005 0.97±0.008 0.98±0.002 0.98±0.001 0.98±0.005 0.98±0.005 0.98±0.001 0.97±0.005 0.98±0.005

(d) Impact of PAr

+WAr

on ML-PWD generated on Zenodo. PAr

is delSpn.

A F no-atk
delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_

addInLnk replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr

CN

Fu 0.96±0.007 0.94±0.021 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

F r 0.86±0.013 0.63±0.025 0.88±0.015 0.88±0.014 0.27±0.008 0.74±0.052 0.89±0.019 0.76±0.044 0.88±0.015 0.83±0.02 0.4±0.02 0.75±0.062 0.88±0.015

F c 0.97±0.009 0.95±0.02 0.98±0.012 0.98±0.011 0.92±0.024 0.95±0.015 0.96±0.012 0.98±0.012 0.98±0.012 0.96±0.013 0.95±0.019 0.97±0.011 0.98±0.012

RF

Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005

F r 0.90±0.013 0.95±0.021 0.9±0.012 0.9±0.012 0.03±0.068 0.66±0.016 0.89±0.016 0.9±0.013 0.9±0.012 0.85±0.027 0.58±0.043 0.8±0.051 0.9±0.012

F c 0.97±0.009 0.98±0.007 0.98±0.004 0.98±0.004 0.96±0.006 0.96±0.006 0.96±0.006 0.98±0.004 0.98±0.004 0.98±0.004 0.97±0.007 0.98±0.005 0.98±0.004

LR

Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004

F r 0.80±0.013 0.96±0.005 0.8±0.013 0.8±0.013 0.23±0.017 0.41±0.013 0.74±0.017 0.8±0.013 0.79±0.013 0.88±0.013 0.62±0.0 0.9±0.021 0.8±0.013

F c 0.98±0.005 0.98±0.003 0.98±0.005 0.98±0.005 0.97±0.009 0.96±0.004 0.96±0.002 0.98±0.0 0.98±0.001 0.98±0.001 0.97±0.0 0.98±0.003 0.98±0.0

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific PsP+WsP perturbation.
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C.3 Perturbation’s Impact on MLSEC

We executed 37 kinds of single attacks and report the influence of MLSEC’s PWD in Tables 27, 28, and 29, and
the influence of hybrid space attacks in Tables 30–33.

Table 27. Impact of iWAr on the PWD of MLSEC

A no-atk addInLnk replOnc delHidIt addHidP replJS replRet htEsc htEncd replPass replOnfoc addSusLnk
m0 0.91±0.052 0.73±0.159 0.91±0.052 0.88±0.049 0.02±0.011 0.9±0.059 0.79±0.123 0.06±0.046 0.06±0.036 0.48±0.259 0.5±0.254 0.5±0.203

m1 0.87±0.071 0.86±0.083 0.88±0.07 0.85±0.093 0.52±0.161 0.85±0.088 0.74±0.115 0.37±0.113 0.41±0.126 0.85±0.068 0.84±0.09 0.85±0.1

m2 0.9±0.051 0.73±0.158 0.9±0.052 0.88±0.052 0.02±0.011 0.9±0.058 0.83±0.105 0.85±0.127 0.9±0.051 0.47±0.266 0.51±0.263 0.5±0.202

m3 0.88±0.07 0.86±0.08 0.87±0.07 0.85±0.096 0.51±0.172 0.85±0.087 0.79±0.108 0.86±0.099 0.88±0.07 0.85±0.066 0.85±0.093 0.85±0.1

m4 0.82±0.106 0.83±0.108 0.82±0.111 0.8±0.136 0.83±0.123 0.82±0.126 0.69±0.122 0.09±0.067 0.07±0.045 0.46±0.256 0.46±0.242 0.47±0.171

m5 0.81±0.12 0.82±0.12 0.81±0.124 0.8±0.141 0.82±0.136 0.81±0.136 0.67±0.114 0.43±0.098 0.46±0.139 0.79±0.125 0.79±0.119 0.8±0.157

m6 0.83±0.108 0.83±0.11 0.83±0.112 0.81±0.131 0.84±0.116 0.82±0.127 0.73±0.148 0.84±0.126 0.83±0.108 0.47±0.256 0.49±0.236 0.47±0.174

m7 0.82±0.121 0.82±0.122 0.82±0.126 0.81±0.136 0.83±0.127 0.81±0.138 0.7±0.145 0.84±0.121 0.82±0.121 0.79±0.126 0.81±0.125 0.8±0.157

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific iWsP perturbation.

Table 28. Evasion Robustness of the MLSEC’s PWD against eWAr and rWAr

A no-atk
eWsP rWsP

addImgBot modFntTyp modCpy addIcn delSusLnk delSusFrm modTtl delCpy modBgimg modBgClr modFntClr modFntSiz
m0 0.91±0.052 0.65±0.185 0.92±0.051 0.89±0.061 0.76±0.126 0.86±0.095 0.8±0.253 0.87±0.102 0.89±0.061 0.92±0.053 0.91±0.056 0.81±0.116 0.92±0.051

m1 0.87±0.071 0.87±0.085 0.89±0.063 0.85±0.091 0.77±0.089 0.82±0.146 0.81±0.106 0.84±0.12 0.85±0.089 0.89±0.064 0.88±0.077 0.78±0.1 0.89±0.063

m2 0.9±0.051 0.65±0.185 0.91±0.05 0.89±0.06 0.76±0.122 0.86±0.095 0.79±0.262 0.87±0.101 0.89±0.06 0.91±0.052 0.91±0.055 0.85±0.087 0.91±0.05

m3 0.88±0.07 0.87±0.079 0.89±0.064 0.85±0.09 0.77±0.081 0.82±0.146 0.8±0.124 0.84±0.119 0.85±0.088 0.89±0.066 0.88±0.076 0.81±0.091 0.89±0.064

m4 0.82±0.106 0.64±0.199 0.87±0.065 0.81±0.124 0.83±0.109 0.8±0.156 0.73±0.257 0.8±0.156 0.81±0.127 0.87±0.066 0.86±0.079 0.73±0.112 0.87±0.065

m5 0.81±0.12 0.85±0.107 0.85±0.089 0.8±0.136 0.82±0.122 0.79±0.145 0.78±0.14 0.79±0.167 0.8±0.137 0.85±0.089 0.84±0.096 0.7±0.103 0.85±0.089

m6 0.83±0.108 0.64±0.198 0.87±0.066 0.81±0.126 0.83±0.109 0.8±0.157 0.72±0.261 0.79±0.157 0.81±0.128 0.87±0.066 0.86±0.079 0.73±0.111 0.87±0.065

m7 0.82±0.121 0.85±0.106 0.85±0.089 0.8±0.138 0.82±0.123 0.79±0.146 0.78±0.141 0.79±0.169 0.81±0.138 0.85±0.089 0.84±0.097 0.7±0.097 0.85±0.089

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the PWD, while columns correspond to a
specific eWsP or rWsP attack.

Table 29. Impact of PAr and MAr on PWD of MLSEC

A no-atk
PsP MsP

delTxt delFrm delSpn delTtl addLngTxt delFtr replSusFtrLnk brTg delHt delHd delBdy brTgs hmg
m0 0.91±0.052 0.64±0.272 0.91±0.052 0.85±0.089 0.88±0.062 0.86±0.095 0.87±0.085 0.9±0.059 0.9±0.062 0.9±0.062 0.9±0.062 0.9±0.062 0.9±0.062 0.9±0.062

m1 0.87±0.071 0.83±0.133 0.67±0.262 0.67±0.262 0.82±0.117 0.83±0.133 0.82±0.117 0.67±0.262 0.31±0.051 0.31±0.051 0.31±0.051 0.31±0.051 0.31±0.051 0.31±0.051

m2 0.9±0.051 0.84±0.148 0.61±0.39 0.61±0.39 0.85±0.087 0.84±0.148 0.85±0.087 0.61±0.39 0.88±0.096 0.88±0.096 0.88±0.096 0.88±0.096 0.88±0.096 0.88±0.096

m3 0.88±0.07 0.83±0.131 0.66±0.271 0.66±0.271 0.82±0.115 0.83±0.131 0.82±0.115 0.66±0.271 0.26±0.08 0.26±0.08 0.26±0.08 0.26±0.08 0.26±0.08 0.26±0.08

m4 0.82±0.106 0.8±0.169 0.57±0.372 0.57±0.372 0.79±0.149 0.8±0.169 0.79±0.149 0.57±0.372 0.8±0.121 0.8±0.121 0.8±0.121 0.8±0.121 0.8±0.121 0.8±0.121

m5 0.81±0.12 0.79±0.16 0.64±0.28 0.64±0.28 0.79±0.143 0.79±0.16 0.79±0.143 0.64±0.28 0.39±0.166 0.39±0.166 0.39±0.166 0.39±0.166 0.39±0.166 0.39±0.166

m6 0.83±0.108 0.8±0.17 0.56±0.373 0.56±0.373 0.79±0.144 0.8±0.17 0.79±0.144 0.56±0.373 0.07±0.076 0.07±0.076 0.07±0.076 0.07±0.076 0.07±0.076 0.07±0.076

m7 0.82±0.121 0.79±0.161 0.64±0.279 0.64±0.279 0.79±0.138 0.79±0.161 0.79±0.138 0.64±0.279 0.36±0.129 0.36±0.129 0.36±0.129 0.36±0.129 0.36±0.129 0.36±0.129

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the ML-PWD, while columns correspond to
a specific PsP or MsP attack.
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Table 30. Impact of WAr +WAr on MLSEC

A no-atk replOnfoc_replRet htEsc_replRet htEncd_replRet
m0 0.91±0.052 0.33±0.165 0.03±0.021 0.08±0.04

m1 0.87±0.071 0.63±0.136 0.16±0.065 0.22±0.082

m2 0.9±0.051 0.46±0.229 0.86±0.137 0.9±0.051

m3 0.88±0.07 0.76±0.13 0.86±0.105 0.88±0.07

m4 0.82±0.106 0.31±0.176 0.03±0.017 0.11±0.05

m5 0.81±0.12 0.55±0.124 0.15±0.053 0.28±0.093

m6 0.83±0.108 0.36±0.221 0.85±0.124 0.83±0.108

m7 0.82±0.121 0.62±0.182 0.85±0.109 0.82±0.121

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines
correspond to the ML-PWD, while columns correspond to a specific WsP+WsP.

Table 31. Impact of PAr +PAr on MLSEC

A no-atk addLngTxt_delTtl delFtr_delTtl delFtr_addLngTxt delSpn_delTtl delSpn_delFtrer delSpn_addLngTxt delFrm_delFtr delFrm_delSpn
m0 0.91±0.052 0.82±0.16 0.85±0.092 0.8±0.167 0.84±0.093 0.84±0.096 0.79±0.173 0.59±0.375 0.58±0.375

m1 0.87±0.071 0.81±0.145 0.84±0.089 0.81±0.13 0.81±0.117 0.83±0.105 0.79±0.157 0.66±0.269 0.62±0.28

m2 0.9±0.051 0.81±0.159 0.85±0.094 0.8±0.166 0.83±0.095 0.84±0.096 0.79±0.172 0.59±0.376 0.58±0.376

m3 0.88±0.07 0.81±0.143 0.83±0.093 0.81±0.128 0.81±0.118 0.83±0.106 0.79±0.154 0.65±0.276 0.62±0.288

m4 0.82±0.106 0.77±0.178 0.78±0.146 0.75±0.2 0.78±0.145 0.77±0.156 0.76±0.204 0.57±0.358 0.56±0.367

m5 0.81±0.12 0.77±0.172 0.8±0.111 0.77±0.157 0.78±0.141 0.8±0.124 0.77±0.191 0.66±0.259 0.63±0.275

m6 0.83±0.108 0.77±0.177 0.77±0.155 0.74±0.198 0.77±0.152 0.77±0.154 0.76±0.201 0.56±0.358 0.56±0.367

m7 0.82±0.121 0.77±0.17 0.8±0.12 0.77±0.155 0.78±0.146 0.8±0.122 0.77±0.186 0.67±0.255 0.63±0.273

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the PWD, while columns correspond to a
specific PsP+PsP perturbation.

Table 32. Impact of PAr +MAr on MLSEC

A no-atk addLngTxt_delBdy delfoot_delBdy delSpn_delBdy
m0 0.91±0.052 0.78±0.167 0.79±0.137 0.75±0.156

m1 0.87±0.071 0.8±0.146 0.81±0.115 0.78±0.14

m2 0.9±0.051 0.8±0.161 0.8±0.13 0.77±0.149

m3 0.88±0.07 0.83±0.125 0.82±0.108 0.79±0.133

m4 0.82±0.106 0.79±0.136 0.76±0.154 0.72±0.184

m5 0.81±0.12 0.8±0.139 0.8±0.122 0.77±0.148

m6 0.83±0.108 0.79±0.137 0.76±0.154 0.72±0.183

m7 0.82±0.121 0.8±0.139 0.8±0.123 0.77±0.145

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to
the PWD, while columns correspond to a specific PsP+MsP perturbation.
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Table 33. Impact of PAr +WAr on PWD of MLSEC

(a) Impact of PAr

+WAr

on PWD of MLSEC. PAr

is delFrm.

A no-atk
delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_

addInLnk onclick delHidIt addHidP replJS delSusLnk addImgBot modFntSiz modBgimg modBgClr delCpy modTtl modCpy addIcn replRet combine
m0 0.91±0.052 0.49±0.335 0.61±0.388 0.6±0.384 0.01±0.008 0.61±0.388 0.59±0.379 0.43±0.325 0.63±0.388 0.63±0.388 0.63±0.387 0.61±0.387 0.59±0.383 0.61±0.386 0.49±0.329 0.51±0.341 0.01±0.008

m1 0.87±0.071 0.66±0.268 0.67±0.262 0.63±0.284 0.41±0.181 0.67±0.262 0.62±0.291 0.69±0.243 0.69±0.265 0.69±0.265 0.69±0.265 0.67±0.261 0.65±0.27 0.66±0.261 0.55±0.254 0.53±0.257 0.37±0.196

m2 0.9±0.051 0.49±0.338 0.61±0.39 0.61±0.386 0.01±0.008 0.61±0.39 0.59±0.38 0.43±0.326 0.63±0.388 0.63±0.388 0.63±0.387 0.61±0.389 0.59±0.385 0.61±0.388 0.49±0.33 0.57±0.36 0.01±0.008

m3 0.88±0.07 0.66±0.277 0.66±0.271 0.63±0.289 0.38±0.196 0.66±0.271 0.61±0.299 0.68±0.253 0.69±0.266 0.69±0.266 0.69±0.266 0.66±0.269 0.64±0.278 0.66±0.269 0.55±0.257 0.6±0.253 0.37±0.198

m4 0.82±0.106 0.57±0.372 0.56±0.372 0.55±0.378 0.57±0.379 0.56±0.372 0.56±0.378 0.42±0.324 0.6±0.377 0.6±0.377 0.6±0.377 0.57±0.366 0.55±0.375 0.56±0.371 0.56±0.372 0.47±0.314 0.54±0.388

m5 0.81±0.12 0.64±0.28 0.63±0.28 0.61±0.3 0.65±0.28 0.64±0.28 0.62±0.293 0.68±0.241 0.67±0.277 0.67±0.277 0.67±0.277 0.65±0.261 0.61±0.298 0.63±0.279 0.63±0.281 0.5±0.257 0.6±0.319

m6 0.83±0.108 0.56±0.373 0.56±0.372 0.55±0.378 0.57±0.379 0.56±0.373 0.56±0.377 0.42±0.328 0.6±0.376 0.6±0.376 0.6±0.376 0.57±0.367 0.55±0.376 0.56±0.371 0.56±0.372 0.47±0.314 0.55±0.392

m7 0.82±0.121 0.63±0.28 0.64±0.279 0.62±0.294 0.66±0.267 0.64±0.279 0.63±0.282 0.69±0.237 0.67±0.276 0.67±0.276 0.67±0.276 0.65±0.26 0.62±0.297 0.64±0.277 0.63±0.279 0.51±0.254 0.62±0.303

(b) Impact of PAr

+WAr

on PWD of MLSEC. PAr

is delSpn.

A no-atk
delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_

addInLnk replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr combine
m0 0.91±0.052 0.73±0.137 0.41±0.28 0.39±0.277 0.02±0.007 0.85±0.087 0.84±0.117 0.85±0.091 0.83±0.12 0.7±0.127 0.68±0.195 0.6±0.199 0.88±0.075 0.0±0.004

m1 0.87±0.071 0.83±0.112 0.78±0.129 0.8±0.116 0.52±0.149 0.82±0.115 0.79±0.165 0.82±0.119 0.8±0.14 0.7±0.1 0.83±0.117 0.85±0.097 0.86±0.096 0.55±0.106

m2 0.9±0.051 0.73±0.131 0.42±0.287 0.38±0.282 0.02±0.008 0.85±0.085 0.84±0.117 0.85±0.089 0.83±0.118 0.7±0.125 0.68±0.194 0.59±0.199 0.88±0.073 0.0±0.003

m3 0.88±0.07 0.83±0.104 0.79±0.129 0.79±0.111 0.51±0.17 0.82±0.113 0.79±0.164 0.82±0.117 0.8±0.137 0.7±0.097 0.82±0.114 0.84±0.094 0.86±0.094 0.52±0.125

m4 0.82±0.106 0.79±0.149 0.43±0.248 0.43±0.261 0.8±0.149 0.79±0.141 0.77±0.168 0.78±0.162 0.76±0.179 0.78±0.153 0.65±0.175 0.6±0.215 0.84±0.088 0.5±0.263

m5 0.81±0.12 0.79±0.143 0.77±0.137 0.76±0.151 0.81±0.142 0.8±0.137 0.77±0.142 0.79±0.153 0.77±0.181 0.79±0.149 0.8±0.145 0.84±0.116 0.84±0.097 0.84±0.112

m6 0.83±0.108 0.78±0.152 0.44±0.253 0.43±0.262 0.8±0.15 0.79±0.147 0.77±0.167 0.78±0.162 0.76±0.176 0.79±0.148 0.66±0.178 0.6±0.215 0.84±0.09 0.53±0.275

m7 0.82±0.121 0.79±0.148 0.78±0.136 0.76±0.145 0.81±0.142 0.79±0.14 0.77±0.14 0.78±0.152 0.77±0.177 0.79±0.144 0.79±0.143 0.84±0.113 0.83±0.098 0.83±0.116

(c) Impact of PAr

+WAr

on PWD of MLSEC. PAr

is delFtr.

A no-atk
delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_

addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addicon addSusLnk addImgBot modBgClr combine
m0 0.91±0.052 0.77±0.132 0.77±0.241 0.49±0.197 0.51±0.196 0.02±0.009 0.87±0.085 0.84±0.118 0.87±0.085 0.85±0.099 0.72±0.148 0.71±0.194 0.67±0.187 0.89±0.071 0.0±0.002

m1 0.87±0.071 0.85±0.092 0.78±0.165 0.81±0.086 0.83±0.089 0.53±0.148 0.85±0.086 0.81±0.156 0.85±0.086 0.84±0.092 0.73±0.093 0.85±0.099 0.87±0.077 0.87±0.076 0.36±0.096

m2 0.9±0.051 0.77±0.131 0.77±0.253 0.48±0.214 0.49±0.215 0.02±0.011 0.87±0.084 0.84±0.117 0.87±0.084 0.85±0.098 0.72±0.147 0.71±0.192 0.67±0.187 0.89±0.07 0.0±0.001

m3 0.88±0.07 0.85±0.092 0.78±0.18 0.82±0.094 0.82±0.091 0.51±0.173 0.85±0.085 0.81±0.155 0.85±0.085 0.84±0.09 0.73±0.092 0.85±0.096 0.87±0.076 0.87±0.075 0.33±0.11

m4 0.82±0.106 0.79±0.154 0.71±0.263 0.5±0.187 0.54±0.174 0.81±0.145 0.79±0.143 0.77±0.171 0.79±0.143 0.79±0.15 0.79±0.154 0.67±0.177 0.65±0.191 0.85±0.072 0.57±0.193

m5 0.81±0.12 0.81±0.117 0.78±0.164 0.77±0.137 0.78±0.138 0.83±0.109 0.82±0.107 0.79±0.134 0.82±0.107 0.81±0.115 0.81±0.117 0.8±0.146 0.86±0.084 0.86±0.069 0.84±0.116

m6 0.83±0.108 0.79±0.153 0.71±0.263 0.5±0.206 0.53±0.196 0.81±0.146 0.78±0.153 0.77±0.171 0.78±0.153 0.78±0.147 0.78±0.153 0.67±0.184 0.65±0.194 0.85±0.077 0.59±0.22

m7 0.82±0.121 0.81±0.116 0.78±0.156 0.78±0.142 0.78±0.136 0.84±0.109 0.81±0.116 0.79±0.134 0.81±0.116 0.81±0.112 0.81±0.116 0.8±0.148 0.86±0.084 0.85±0.075 0.84±0.118

(d) Impact of PAr

+WAr

on PWD of MLSEC. PAr

is addLngTxt.

A no-atk
addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_

addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr combine
m0 0.91±0.052 0.69±0.214 0.73±0.277 0.41±0.245 0.42±0.272 0.02±0.011 0.83±0.158 0.68±0.218 0.83±0.158 0.83±0.158 0.67±0.187 0.68±0.218 0.59±0.227 0.84±0.157 0.0±0.004

m1 0.87±0.071 0.85±0.105 0.73±0.216 0.8±0.144 0.82±0.116 0.5±0.189 0.82±0.141 0.86±0.103 0.82±0.141 0.82±0.141 0.69±0.136 0.86±0.103 0.84±0.126 0.84±0.131 0.48±0.139

m2 0.9±0.051 0.69±0.213 0.73±0.281 0.42±0.25 0.41±0.275 0.02±0.011 0.83±0.157 0.68±0.215 0.83±0.157 0.83±0.157 0.66±0.189 0.68±0.215 0.58±0.227 0.84±0.156 0.0±0.004

m3 0.88±0.07 0.86±0.102 0.73±0.228 0.81±0.149 0.82±0.114 0.5±0.186 0.82±0.14 0.86±0.101 0.82±0.14 0.82±0.14 0.69±0.136 0.86±0.101 0.83±0.125 0.84±0.13 0.48±0.152

m4 0.82±0.106 0.8±0.169 0.68±0.3 0.43±0.236 0.46±0.26 0.81±0.166 0.78±0.18 0.72±0.126 0.79±0.179 0.79±0.179 0.8±0.169 0.72±0.126 0.59±0.231 0.84±0.116 0.42±0.252

m5 0.81±0.12 0.79±0.16 0.71±0.252 0.77±0.152 0.77±0.158 0.81±0.156 0.78±0.173 0.82±0.125 0.79±0.17 0.79±0.17 0.79±0.16 0.82±0.125 0.82±0.134 0.82±0.122 0.69±0.251

m6 0.83±0.108 0.8±0.169 0.68±0.3 0.45±0.238 0.46±0.263 0.81±0.167 0.78±0.179 0.72±0.128 0.79±0.178 0.79±0.178 0.8±0.17 0.72±0.128 0.59±0.23 0.83±0.115 0.48±0.259

m7 0.82±0.121 0.79±0.161 0.71±0.248 0.78±0.163 0.77±0.159 0.81±0.159 0.78±0.172 0.82±0.126 0.79±0.169 0.79±0.169 0.8±0.162 0.82±0.126 0.82±0.134 0.82±0.119 0.72±0.245

The cells report the average (and std. dev.) tpr over the 50 reiterations. Lines correspond to the PWD, while columns correspond to a
specific PsP+WsP perturbation.
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