
Neural Radiance Field (NeRF) as a Rendering Primitive
StreamNeRF - Adapting a NeRF Model for Progressive Decoding

Matei Galesanu

Supervisor(s): Prof. Dr. Elmar Eisemann, Petr Kellnhofer, Michael Weinmann

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Matei Galesanu
Final project course: CSE3000 Research Project
Thesis committee: Prof. Dr. Elmar Eisemann, Petr Kellnhofer, Michael Weinmann, Dr. Jan van Gemert

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Neural Radiance Fields (NeRF) and their adapta-
tions are known to be computationally intensive
during both the training and the evaluating stages.
Despite being the end goal, directly rendering a
full-resolution representation of the scene is not
necessary and not very practical for scenarios like
streamed applications. Our goal is to design a
streamable adaptation for a model that can produce
fast, rough estimates of 3D scenes, by only using
a shallow part of the network. The quality is sub-
sequently improved as more parts of the network
are available, such that it can be used in online ap-
plications where the model needs to be transferred.
Separate models can be trained at different reso-
lutions, but this approach results in a large space
overhead and also increases the evaluation time.
This can be mitigated by reducing the depth of low-
resolution models, but redundancy will still be high
as each new model needs to re-evaluate the input
data, rendering previous calculations obsolete. Our
method combines key concepts from previous ap-
proaches to create a progressively trained model
that is able to produce intermediate outputs of in-
creasing quality while attempting to optimize the
trade-off between overhead and quality. Our model
is able to produce a recognizable representation of
the scene with as little as one hidden layer from
the original model. It also allows for division into
streamable chunks which can be sent individually
and, upon reconstruction, provide intermediate out-
puts that bring consistent improvement in quality.
The newly streamed data uses the residual output
from previous computations in order to reduce re-
dundancy. We show that the final quality of our
adaptation is within 2% of the original in terms of
previously used quantitative metrics.

1 Introduction
View synthesis is a concept that focuses on estimating the

appearance of an object or a scene from different viewing po-
sitions and directions, based on a limited number of input
data or images. Extensive work has been done in this field
in recent years, with the goal of achieving realistic represen-
tations efficiently and reliably [1; 2; 3]. NeRF or Neural Ra-
diance Field represents a technique of encoding a 3D scene
into the weights of a neural network, whose input is a 5D
value describing the camera position and its view direction.
The model outputs the estimated, view-dependent, RGB radi-
ance, and volume density at a specified point [4]. The model
became the starting point of many adaptations and implemen-
tations, meant to optimize and improve the performance of
this technique for various uses and scenarios. Instant NGP
[5], Zip-NeRF [6], Mip-NeRF [7] and BungeeNeRF [8] are
only a few of the already-proposed alternatives to the original
model. None, however, focuses on progressive training and
decoding of the model.

As shown by available publications, neural radiance fields
are arguably complex and can therefore be slow in producing
images. Despite the fact that they are optimized to produce
high-fidelity, high-resolution and realistic results, some use
cases like online applications that need to transfer the model
for rendering may benefit from faster, rough estimates that
can give an overall impression about the geometry and tex-
ture of the final output. Models like MipNeRF [7] are al-
ready capable of producing outputs of various resolutions but
obtaining a set of sequentially improved images translates
into multiple independent evaluations of an entire model, in-
creasing the overall time complexity linearly with the number
of desired outputs. Smaller models that can produce lower-
resolution outputs have also been previously proposed [9], but
not in the context of a sequentially improved representation.
Our conclusion was that a dedicated model with applications
in streamed environments can further improve the domain of
neural radiance fields. The main research question this paper
answers is:

How can we divide a single adapted NeRF model
into streamable chunks such that online applica-
tions can render a fast representation with the first
chunk and improve it by progressively decoding ad-
ditionally streamed data?

This was divided into two sub-questions, stated below:

• How can a model be partitioned in order to be streamed
sequentially and reconstructed without compromising
on the quality of the final output (deconstructing and re-
building the model should not affect the results)?

• How can the resolution of an existing scene be improved
by streaming additional data from the same model?

Two more questions were formulated to define the intended
direction of the research:

• What is the lowest depth at which the output is recog-
nizable?

• What is the quality/similarity of each intermediate ren-
der (i.e. what is the information gain for each data chunk
that is streamed)?

To answer these questions, we took inspiration from pre-
vious work, namely Mip-NeRF, which focuses on countering
aliasing effects that appear when rendering at low resolutions
[7], and BungeeNeRF, which proposes a progressive training
technique for rendering large cityscapes at different scales,
with different levels of detail [8]. We want to introduce a
method of streaming NeRF models. To this extent, we en-
code them as a multi-leveled representation, with individu-
ally trained groups of layers, such that it can be easily de-
constructed and reconstructed without loss of data. Smaller
model chunks require less computations to produce an out-
put, and can therefore decrease the time needed to display
a rough estimate of the scene. The high modularity also al-
lows additional parts of the model to be subsequently sent
and used for improving the quality of the output. Sections 2
and 3 explain related work and past innovations in the area of
neural radiance fields. Implementation details are provided
in Section 4, while evaluation metrics, results to support our



claims, and discussions can be inspected in Section 5. Sec-
tion 6 describes responsible research concepts applicable to
our process, while the last (Section 7) includes conclusions,
as well as potential extensions of the project and intended fu-
ture work.

2 Related Work
Progressive decoding is a technique used in scenarios

where streaming large data is necessary and a fast, rough out-
put that acts as a placeholder is more valuable than a slow
render at full resolution. It represents the process of divid-
ing the original data into chunks which can then be sent indi-
vidually and used to reconstruct partial - and ultimately full
- representations of the original information. A straightfor-
ward example is progressive decoding in images [10], as they
are a common resource in streamed applications like web-
sites, but other use cases can benefit from this technique
of efficiently transmitting and interpreting large data [11;
12]. Neural radiance fields are also large in terms of stor-
age, and online applications to which the model has to be
transferred could, therefore, benefit from an adaptation in this
direction to produce faster estimates before the final output.

KiloNeRF achieved real-time rendering by training a set of
small MLPs rather than a single large one [9]. Each network
is optimized to represent a small portion of the entire scene,
and the outputs of each MLP are composed to obtain the fi-
nal render. Despite the low render times, the model does not
compromise on quality because it uses distillation for train-
ing, being supervised by a previously trained NeRF model.
The real-time characteristic of KiloNeRF makes it a viable
alternative to our approach, but the core of our research fo-
cused on adapting a slower model for progressive decoding
rather than increasing the speed of the full-resolution render.

NeRFPlayer proposed an approach for progressively re-
constructing a 4D scene that could be explored using vir-
tual reality, in a streamable environment [13]. Their method
focused on encoding the time dimension along with the 3-
dimensional space coordinate as a method of adapting a
model to account for dynamic scenes. A separate neural field
is used for each category to which a 4D point can be assigned
- ”static, deforming, or new”. This addresses the issue of eval-
uating neural fields in online applications, but our research is
centered around dividing a model and sending it sequentially.
More than this, the goal of NeRFPlayer was to correctly ac-
count for temporal changes in the scene, while we focus on
static, discrete scenes from previously used datasets.

3 Background
NeRF shed new light on MLP-based realistic rendering

by handling scenes with complex geometry and synthesiz-
ing outputs that are comparable with those produced by dis-
crete techniques like voxel grids or triangle meshes [4]. The
model is trained on images sampled around a 3D scene, for
which the camera positions and viewing angles are known.
The input is represented by a 5D coordinate, composed of
a 3D space coordinate and two viewing angles. It outputs
the estimated RGB color and density by integrating multi-
ple sample points along the ray described by the input data.

The 3D position is encoded as a sequence of increasingly
higher-frequency functions since this type of network has
been shown to favor lower frequencies during training [14].
The encoding function γ(p) defined as(

sin(20πp), cos(20πp)...sin(2L−1πp), cos(2L−1πp)
)

(1)
is applied to each coordinate within the 3D position x (L is a
hyperparameter tuned by the original NeRF implementation).

The technique optimizes two networks simultaneously: the
first one is used for stratified sampling and determines op-
timal sampling locations for querying the second, finer net-
work. Mildenhall et al. interpret the volume density σ(x) at
location x as ”the differential probability of a ray terminating
at an infinitesimal particle” at that location. They also define
the expected color of a ray r(t) = o + td as

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (2)

where

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds
)
, (3)

with tn and tf the near and far bounds. This innovation in
the field of view synthesis has provided a strong basis for
subsequent optimizations and adaptations. Our model does
not directly improve on this particular approach since it is
based on a more optimal implementation, but the concepts of
NeRF lie at the core of our research.

MipNeRF extends upon the existing radiance fields ap-
proaches by exploring an anti-aliasing solution for low-
resolution renders, inspired by the mipmapping principle [7].
It proposes sampling within a cone as opposed to the sin-
gle ray that NeRF used and as a more efficient alternative
to supersampling. Their ”Integrated Positional Encoding
(IPE)” represents a method of approximating a conical frus-
tum with the help of a multivariate Gaussian, as an adaptation
of NeRF’s positional encoding that was used for points along
a single ray. It is also faster and smaller than the original
NeRF model, as shown by their results. Our approach takes
advantage of this optimization for anti-aliasing for rendering
smooth images. It also improves it by adapting the training
process to allow intermediate outputs.

BungeeNeRF focuses on multi-scale scenes and optimiz-
ing renders at different distances or zoom levels, with a rel-
evant application in representing real-world scenes, using
satellite imagery as an example [8]. The main concept be-
hind its efficiency is the progressively trained model, which
is supervised at different levels of detail to account for mul-
tiple viewing distances. The network is composed of a base
group of layers, to which other layers are added throughout
the training process, corresponding to more detailed input im-
ages. We adapted this idea for progressive representations at
the same distance from the scene, but at different levels of
detail. The model is trained as if the view zooms in on the
model, but output images are always rendered at the initial
camera position.

4 Method
We identified the strengths of MipNeRF [7] and BungeeN-

eRF [8] and designed an adaptation that combines their con-



cepts to achieve an efficient method of rendering intermedi-
ate outputs while still providing a structure that allows for
seamless partitioning and reconstructing to help in a potential
streaming process. The resulting model is comprised of mul-
tiple blocks (groups of layers) that can be individually stored
and evaluated to produce outputs.

The starting point of our implementation is represented by
the MipNeRF code provided by their repository [15]. This
was chosen because of its publicly available code, as well
as its permissive license. One relevant hyperparameter that
was evaluated during experiments is the batch size (b), which
determines the number of rays cast or each pixel. With the
anti-aliasing logic already in place and training and evalua-
tion pipelines set up, we could direct our focus on adapting
the model to support intermediate outputs.

The first step was to integrate the progressive training prin-
ciple of BungeeNeRF [8] into the existing pipeline. This im-
plied defining an initial group of layers to serve as the start-
ing model, and then adding more blocks as the training pro-
gressed, depending on the number of desired outputs or detail
levels (hyperparameter L, defined as a tuple that specifies the
depth of each block, thus also inferring the total number of
detail levels). Whenever a new group of layers is added, it is
supervised in combination with all previous groups, but this
supervision happens on the same ground truth image, as op-
posed to the different zoom levels that Xiangli et al. proposed
[8]. To achieve this joint supervision, the loss of each output
is computed and their sum is used to update the weights of
the entire network for the following iteration. This ensures
that each intermediate output is trained to converge towards
the same result, with deeper levels achieving higher quality
due to the increased number of parameters that are optimized
before producing an output. Because new blocks are added
at certain checkpoints in the training process, a trade-off is
established between a layer’s depth and the number of train-
ing iterations it benefits from. The first parts of the model
are shallow and are therefore less capable of estimating an
accurate representation of the scene, thus requiring more iter-
ations before converging toward a useful output (without the
need for further processing like downsampling and filtering).
Although receiving less training, deeper blocks have the ad-
vantage of a larger background of optimized parameters and
are thus able to converge much quicker and produce higher-
quality estimations.

Each block corresponds to one detail level and is composed
of one or more 256-wide layers. We decided to fix the depth
of the model’s main structure to 8 layers in order to avoid
extended training times and to keep the model size consis-
tent with the original. As results confirmed (Section 5), the
quality gain of extending the model is not justifiable, espe-
cially considering the added training time. As in the origi-
nal network, the last layer before the output structure is used
to estimate the volume density and is concatenated with the
encoded view direction when that feature is enabled. Every
group is connected to an output structure of a 128-wide layer
and is designed to output an RGB value. Since the resulting
blocks are quite shallow, the original input to the network is
re-appended to the first layer of each group (skipping the first
one in the network), providing additional data for processing

Figure 1: Conceptual representation of a block corresponding to one
level of detail. Red shapes represent hidden layers and green shapes
represent output layers. Yellow and purple blocks represent concate-
nation with the positionally encoded location and view direction, re-
spectively. Dashed arrows represent residual input/output from other
blocks in the network.

and improving the quality of each intermediate output. A vi-
sual representation of such a block is visible in Figure 1.

The modular structure allows each level to independently
estimate an output and simultaneously provide residual in-
put for the next block in the network. This means that each
block can be stored separately and queried in isolation, as
long as the appropriate input is provided. When such a model
is streamed, the first block can be sent and the evaluation can
already begin while the next chunk is being sent. When the
evaluation is completed, the intermediate result can be stored,
and the output can be displayed visually. As soon as the next
group of layers is received, evaluation can restart and the new
output can replace its predecessor as soon as this process is
finished. This can continue until all blocks have been sent,
resulting in a progressive representation of the scene which is
ultimately displayed at full resolution. As expected, the per-
formance and impact of this approach are directly dependent
on the levels of detail, with more levels allowing for quicker
and more efficient parallelization of the network evaluation.

5 Evaluation and Results
The model has been trained and evaluated on 4 scenes from

the Blender dataset used by the original NeRF implementa-
tion [4], as well as MipNeRF [7]. All experiments were run
on an Nvidia RTX 2070 and an Nvidia RTX 3060 OC, as
using two different machines highly increased the time effi-
ciency of the training process. However, the same GPU has
been used for comparisons where computation time was rel-
evant.



5.1 Experimenting with modularity
The first experiment had the goal of determining the extent

to which high modularity affects the relevance of output data.
For this scenario, we trained models in L = (8 × 1)1 con-
figurations, meaning that each layer in the network was con-
nected to an output structure. This allowed us to determine
which layers are the most suitable for producing intermediate
outputs with respect to computation time and model size. To
quantitatively measure the quality of each intermediate out-
put, we used metrics like PSNR (Peak Signal-to-Noise Ratio)
and SSIM (Structural Similarity Index Measure) [16], which
are popular in many other NeRF papers. For this particu-
lar experiment, inspecting the plots for each metric provided
enough information for optimizing the model for the subse-
quent evaluation phase.

Figure 2 clearly shows an upward trend. However, a closer
inspection shows that deeper levels do not provide constant
quality improvement. Certain levels seem to have a simi-
lar output to the next one in the network, so an appropriate
optimization would be to reduce the total number of levels.
The first and last levels were kept to ensure the fastest render
possible and the full-resolution output, respectively. Out of
the remaining 6 levels, only half were kept, since similarly-
performing layers were observed to appear in pairs. Ex-
periments showed that output structures were optimally at-
tached to layers 0, 2, 3, 6, and 7 in the network, leading to
a L = (1, 2, 1, 3, 1) configuration. Optimizing the structure
on a per-scene basis could lead to better results, but a general
architecture was selected as a proof of concept.

Figure 2: PSNR (left) and SSIM (right) for each level in the L =
(8× 1) model.

An unexpected side result of the first experiment was the
quality of the first layer’s output, exemplified in Figure 3.
The scene is recognizable even after a single layer, which is
the fastest representation that could be achieved using this ap-
proach.

5.2 Optimizing the model
Having determined ideal locations for intermediate out-

puts, the structure of the model was adapted and trained on
all four selected scenes. The results matched expectations,
as each output brought a clear improvement over the previ-
ous. Reducing the number of output structures also reduced

1Short notation for (1, 1, 1, 1, 1, 1, 1, 1)

Figure 3: Output of Level 0 for the four scenes in the dataset. The
objects are already recognizable in this state.

the total number of parameters and therefore the time needed
to train the network. Figure 4 shows that performance is not
equal for each scene, but the upward trend is clearly visible.
To emphasize this, Figure 5 displays the same results, but
normalized. This proves that the sequential improvement is
consistent throughout the different scenes, and the difference
in performance is only given by the complexity of the scene
(the ship scene is arguably more complex and therefore has
lower similarity scores).

Another design choice that was validated by experiments
was the number of main layers in the network. Although the
goal was to match the depth of the original model, increas-
ing it could still yield improved results. The 8-layer model
was, therefore, compared to one with two extra layers and
one additional output structure. To measure the efficiency
of the extended model, the quantitative improvement (PSNR
and SSIM) was compared to the increase in runtime and space
needed to complete the training. Table 1 shows the results of
this comparison. We concluded that the increase in size and
especially computation time constitutes a reason to not ex-
pand the model.

Figure 4: PSNR (left) and SSIM (right) measurements for the opti-
mized model. The upward trend is more consistent than previously.



Figure 5: Normalized PSNR and SSIM measurements. Consistency
in improvement throughout the scenes is clearly visible.

8 layers 10 layers Increase
Parameters 1097620 1356568 23.59%

Storage (KB) 12869 15904 23.58%
Training time (m) 560 791 41.25%

Best PSNR 31.4859 31.4866 0.002%
Best SSIM 0.9414 0.9418 0.04%

Table 1: Comparison between standard and extended model. The
trade-off between time and space overhead and information gain
does not justify a model extension.

5.3 Final evaluation
Now that the model was in its optimal configuration (Fig-

ure 6), it was trained on all 4 scenes within the dataset. The
performance of this final model has been measured as PSNR
and SSIM, and also compared with the original (MipNeRF),
in order to highlight the advantages and drawbacks of our
proposed adaptation. Qualitatively, the performance of our
model can be analyzed in Figure 7, while a side-by-side com-
parison with the baseline is present in Table 2. This clearly
shows the increase in model size as well as training time, but
it also proves that our adaptation is capable of a faster initial
output without sacrificing on the final quality. The complete
results can be inspected in the Appendix.

MipNeRF Ours Ratio
Parameters 612740 1097620 79.13%

Storage (KB) 7183 12869 79.16%
Training time (m) 375 560 49.33%

Best PSNR 32.0160 31.4859 -1.66%
Best SSIM 0.9449 0.9414 -0.37%

First output after 612740 127620 -79.17%

Table 2: Side-by-side comparison of performance between the orig-
inal model and our adaptation. First output after refers to the mini-
mum required parameters for estimating an output.

5.4 Discussion
Adapting the NeRF model by inserting more output struc-

ture was expected to increase the model size as well as the

Figure 6: Optimized model architecture corresponding to L =
(1, 2, 1, 3, 1). This diagram has been simplified to avoid unneces-
sary complexity. For an in-depth explanation of the inner logic of
each block, see Section 4 and Figure 1.

Figure 7: Example of progressively improved output quality (left to
right). Only outputs of levels 0, 2, and 4 are displayed for clearer
differences.



training time. This was confirmed by the results in the pre-
vious section and constitutes the main disadvantage of our
proposed method. However, looking from a different per-
spective, our model is capable of producing five individual
outputs with less than double the storage and training time.
More than this, the quality of the final output is within 2%
of the original model, so no compromise is made in that di-
rection. Finally, our approach is 4.8 times faster in render-
ing a preview due to having an output structure after the first
layer. The goal of our adaptation was to provide the option of
progressive decoding, without compromising on the overall
quality and results show that this was achieved.

6 Responsible Research
This study adheres to responsible research guidelines by

allowing the described experiments to be fully replicated. All
used code is publicly available on this project’s GitHub repos-
itory [17] which is an official fork of the MipNeRF repository,
to ensure compliance with their license. The repository con-
tains the original instructions as well as additional informa-
tion for running the adapted version.

All images, plots, and tables contain actual data obtained
through real experiments which can be reproduced for similar
results.

7 Conclusions and Future Work
Our goal was to design an adaptation for an existing NeRF

model, such that it can be separated in individual blocks
which can then be used for streamed applications or similar
use cases.

The structure of a NeRF model can be modified such that
it supports intermediate outputs, using a progressive training
technique. Partitioning the new model is, therefore, trivial, as
the entire network can be fully represented through its param-
eters. Instead of storing them in the same file, the data can be
split between multiple resources and reconstructed without
losing information.

With the new adaptation, a part of the model can be reliably
evaluated even in the absence of the final layers. What this
means is that a small component can be queried faster for a
rough output, while storing the output of its last hidden layer.
As soon as the next component is available, it has access to
that residual data and can be directly evaluated to obtain an
improved representation. Despite some extra computations
for the additional output structures, the total evaluation time
of the network does not increase by much.

As our experiments proved, even a single layer is capable
of producing a recognizable representation of the scene, due
to the modified training procedure. Concretely, evaluating a
single layer as opposed to the full model is expected to take
less time, resulting in a substantial speed-up of the first ren-
der.

Even though the output of the first layer is remarkably
good, each new block further increases the render quality, as
supported by the measurements in the results section. The
information gain does decrease with deeper layers, but it is
prevented from reaching very low values by the structure of
the model, which limits the options for the number of detail

levels. The final quality is, also, very close to the original,
showing that very little information is lost with this adapta-
tion.

The process of adapting a NeRF model for streamed appli-
cations has shown that the updated structure is highly reliant
on the original architecture and is therefore not very specific
to a certain model. The main possible extension of this study
would be adapting other NeRF implementations that can ben-
efit from a streamable representation, by modifying their in-
ner structure in a very similar way as we did for MipNeRF.
Another point of improvement would be experimenting with
different sizes for the hidden layers since our adaptation was
already capable of outputting a qualitative image after the first
one, indicating that further optimizations are possible.

References
[1] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros,

“View synthesis by appearance flow,” in Computer Vi-
sion – ECCV 2016 (B. Leibe, J. Matas, N. Sebe, and
M. Welling, eds.), (Cham), pp. 286–301, Springer Inter-
national Publishing, 2016.

[2] S. Avidan and A. Shashua, “Novel view synthesis in ten-
sor space,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion, pp. 1034–1040, 1997.

[3] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi,
“Learning-based view synthesis for light field cameras,”
ACM Trans. Graph., vol. 35, dec 2016.

[4] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Bar-
ron, R. Ramamoorthi, and R. Ng, “Nerf: Representing
scenes as neural radiance fields for view synthesis,” in
ECCV, 2020.

[5] T. Müller, A. Evans, C. Schied, and A. Keller, “In-
stant neural graphics primitives with a multiresolution
hash encoding,” ACM Trans. Graph., vol. 41, pp. 102:1–
102:15, July 2022.

[6] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan,
and P. Hedman, “Zip-nerf: Anti-aliased grid-based neu-
ral radiance fields,” arXiv, 2023.

[7] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman,
R. Martin-Brualla, and P. P. Srinivasan, “Mip-nerf: A
multiscale representation for anti-aliasing neural radi-
ance fields,” ICCV, 2021.

[8] Y. Xiangli, L. Xu, X. Pan, N. Zhao, A. Rao, C. Theobalt,
B. Dai, and D. Lin, “Bungeenerf: Progressive neural ra-
diance field for extreme multi-scale scene rendering,” in
The European Conference on Computer Vision (ECCV),
2022.

[9] C. Reiser, S. Peng, Y. Liao, and A. Geiger, “Kilonerf:
Speeding up neural radiance fields with thousands of
tiny mlps,” in International Conference on Computer
Vision (ICCV), 2021.

[10] L. Pu, M. W. Marcellin, B. Vasic, and A. Bilgin, “Un-
equal error protection and progressive decoding for
jpeg2000,” Signal Processing: Image Communication,



vol. 22, no. 3, pp. 340–346, 2007. Special issue on Mo-
bile Video.

[11] Y. S. Han, S. Omiwade, and R. Zheng, “Survivable
distributed storage with progressive decoding,” in 2010
Proceedings IEEE INFOCOM, pp. 1–5, 2010.

[12] D. Hoang, H. Bhatia, P. Lindstrom, and V. Pascucci,
“High-quality and low-memory-footprint progressive
decoding of large-scale particle data,” in 2021 IEEE
11th Symposium on Large Data Analysis and Visualiza-
tion (LDAV), pp. 32–42, 2021.

[13] L. Song, A. Chen, Z. Li, Z. Chen, L. Chen, J. Yuan,
Y. Xu, and A. Geiger, “Nerfplayer: A streamable dy-
namic scene representation with decomposed neural ra-
diance fields,” IEEE Transactions on Visualization and
Computer Graphics, vol. 29, no. 5, pp. 2732–2742,
2023.

[14] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin,
F. Hamprecht, Y. Bengio, and A. Courville, “On the
spectral bias of neural networks,” in International Con-
ference on Machine Learning, pp. 5301–5310, PMLR,
2019.

[15] J. Barron and M. Tancik, “mip-nerf.” https://github.com/
google/mipnerf, 2021.

[16] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Im-
age quality assessment: from error visibility to struc-
tural similarity,” IEEE Transactions on Image Process-
ing, vol. 13, no. 4, pp. 600–612, 2004.

[17] M. Galesanu, “Streamnerf.” https://github.com/
janelu44/streamnerf, 2023.

Appendix

Detail level Lego Ship Drums Hotdog
0 23.4100 24.0840 19.3302 29.4661
1 28.0268 26.2884 24.0106 32.7874
2 29.6846 25.8165 24.9565 34.1285
3 30.4682 26.4577 25.5162 34.4935
4 31.4441 27.0672 26.0100 35.0820

Avg gain (%) 7.87 3.04 8.08 4.53

Table 3: PSNR values for each level on all 4 scenes

Detail level Lego Ship Drums Hotdog
0 0.8192 0.6941 0.7889 0.9144
1 0.8937 0.7372 0.8864 0.9462
2 0.9180 0.8136 0.9027 0.9559
3 0.9302 0.8259 0.9129 0.9606
4 0.9412 0.8343 0.9200 0.9643

Avg gain (%) 3.58 4.77 4.03 1.34

Table 4: SSIM values for each level on all 4 scenes

https://github.com/google/mipnerf
https://github.com/google/mipnerf
https://github.com/janelu44/streamnerf
https://github.com/janelu44/streamnerf


Figure 8: Progressive improvement of all four scenes. Detail levels increase from top to bottom.


	Introduction
	Related Work
	Background
	Method
	Evaluation and Results
	Experimenting with modularity
	Optimizing the model
	Final evaluation
	Discussion

	Responsible Research
	Conclusions and Future Work

