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In this paper, we propose the use of Gaussian radial basis functions (GRBFs) to model the generalized pupil
function for phase retrieval. The selection of the GRBF hyper-parameters is analyzed to achieve an increased
accuracy of approximation. The performance of the GRBF-based method is compared in a simulation study with
another modal-based approach considering extended Nijboer—Zernike (ENZ) polynomials. The almost local char-
acter of the GRBFs makes them a much more flexible basis with respect to the pupil geometry. It has been shown
that for aberrations containing higher spatial frequencies, the GRBFs outperform ENZ polynomials significantly,
even on a circular pupil. Moreover, the flexibility has been demonstrated by considering the phase retrieval

problem on an annular pupil.
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1. INTRODUCTION
In the phase retrieval (PR) problem, the phase of a complex-

valued function is recovered from measurements of the magni-
tude of its Fourier transform. This inverse problem has many
different applications in optical imaging; see Ref. [1] for a con-
temporary overview. Algorithmic PR-based optical wavefront
reconstruction offers an attractive means of estimating the com-
plex generalized pupil function (GPF) from a set of measure-
ments of the point-spread functions (PSF) in adaptive optics
due to its experimental simplicity [1,2]. Moreover, other addi-
tional optical components, such as beam splitters and wave-
front sensors, are not necessary, avoiding problems related to
non-common-path errors and a loss in observed light intensity.

PR algorithms can be divided into two subcategories. The
classical and still most implemented class of algorithms is the
alternating projection (AP) methods, pioneered by Gerchberg
and Saxton [3] and Fienup [4]. Recently, optimization-based
algorithms representing PR as a matrix completion problem
have been developed [5-7]. The solution requires solving a
matrix rank minimization problem, which is non-deterministic
polynomial-time (NP)-hard. A convex relaxation was proposed
using the trace norm as a convex surrogate to the rank operator,
approximating the problem with a semi-definite program.
More recently, another optimization-based approach to solve
the PR problem was presented in Ref. [8]. This algorithm is
shown to be superior in terms of computational complexity,
making it more suitable for larger-scale PR problems. Both
classes of algorithms use multiple images at different defocus
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planes in order to resolve non-uniqueness issues. This technique
improves the stability by incorporating extra information in the
intensity measurements [2] and is one possible implementation
of the more general concept of structured illumination (see,
e.g., [5]). A superiority in terms of convergence toward a unique
solution and stability for noisy measurements makes the convex
optimization-based approaches an interesting alternative to the
AP methods [5,9]. Moreover, these algorithms solve the PR
problem by explicitly minimizing a cost function, making it eas-
fer to introduce structures such as sparsity.

The standard approach in both classes of algorithms is to aim
for the recovery of the complete GPF in a pixel basis, such that
the measured PSF is the magnitude of the two-dimensional (2D)
Fourier transform of the signal to be recovered. Exploiting the
computational efficiency of the fast Fourier transform (FFT), AP
methods can be implemented very efficiently. However, the large
number of variables corresponding to the pixel-wise representa-
tion are problematic for the optimization-based algorithms, mak-
ing them only suitable for small-scale applications. In this paper,
we reduce the number of variables by modeling the GPF as a
linear combination of modes as an alternative to the zonal pixel-
by-pixel model. This approach was shown to be promising for the
adaptive optics application [10], allowing the use of optimization-
based PR on a conventional computer. A trade-off between
approximation accuracy of the modal basis and computational
effort defines the required number of modes to be used.

The complex-valued Zernike polynomials introduced as a
consequence of the extended Nijboer—Zernike (ENZ) theory
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[11,12] formed the chosen basis in Ref. [10]. The major limi-
tation of the global ENZ polynomial representation is that each
term extends its influence over a circular pupil, making it in-
flexible with respect to the pupil geometry. The Zernike theory
can be adapted to other pupil geometries. However, this re-
quires a complex reformulation of the basis for every different
pupil. Moreover, they are subject to Runge’s phenomenon,
leading to oscillations on the edges of the domain. Recently,
GPF approximation based on Gaussian radial basis functions
(GRBFs) was used for semi-analytic evaluation of the diffrac-
tion integral as an alternative to ENZ polynomials. An improve-
ment in terms of complexity, accuracy, and execution time was
achieved [13]. An important feature of the GRBF is the almost
local character of each function. Since the width and location
of the GRBF are free to choose for each basis function, it offers
a more intuitive basis to represent the GPF that is easier to
implement for any arbitrary aperture geometry. This creates
an increased flexibility to the geometry of the pupil function
and the possibility to model local details and sharp features
compared to ENZ polynomials.

This paper is concerned with the application of GRBFs as a
modal decomposition of the GPF as an alternative for ENZ
polynomials. The choice of several hyper-parameters that de-
fine the shape and placement of the GRBF are investigated.
The relation between the numerical conditioning and the ac-
curacy of the solution to PR problems is important in practical
implementations [2,14]. When the standard representation is
ill-conditioned, algorithms such as RBF-QR [15] have been
proposed to transform the GRBFs into a well-conditioned basis.
Therefore, this aspect of conditioning is not evaluated in this
paper. To test the performance of the new method, PR simu-
lations are performed. Two types of aberrations are considered.
First, aberration data is generated from a Zernike polynomial
basis with its coefficients sampled from an assumed distribution
based on empirically determined correction capabilities of a de-
formable mirror (DM) [10]. Second, aberrations corresponding
to the correction capabilities of a higher-order DM are derived
experimentally to create a phase disturbance with higher spatial
frequencies. The PSF is simulated at multiple planes along the
optical axis, introducing phase diversity in terms of defocus.
The two different classes of basis functions, GRBFs and ENZ
polynomials, are compared in terms of their theoretical fitting
accuracy and performance in modal-based PR algorithms.

The structure of the paper is as follows. The formulation of
the modal-based PR problem as an optimization problem is
presented in Section 2. An overview of the different basis func-
tions used to approximate the GPF is also contained in this
section. The aberration data generation and simulation experi-
ment design are discussed in Section 3. The theoretical GPF
fitting accuracy for the GRBFs, including the tuning of the
hyper-parameters, is explained in Section 4. The simulation
results for aberration retrieval for a number of different cases
are presented in Section 5. Finally, the conclusions are drawn
in Section 0.

2. MODAL-BASED PHASE RETRIEVAL

A mathematical formulation of the PR problem is briefly
presented in this section. The effects of aberrations on an

optical system can be modeled using the GPF. The GPF is
a complex function [2]:

P(p,0) = Alp, 0) exp(i®(p, 0)), U]
where A(-) and @(-) are real-valued functions that denote the
amplitude apodization function and phase aberration, respec-
tively, and (p, @) are the normalized polar coordinates on the
exit pupil plane. Under the assumption of purely phase aber-
rated systems with circular exit pupils, A(p, €) is modeled as a
characteristic function of unity values inside the pupil and zero
outside. The field in the focal plane is related to that in the exit
pupil by the following integral:

Ur,g, f) = %Al /02” exp(i fp*)P(p, 0)
x exp(i2zrp cos(6 - ¢))pdpdo, (2)

where (7, ¢) are the polar coordinates in the focal region nor-
malized with respect to the axial diffraction unit (1/NA), NA
being the image-side numerical aperture of the optical system.
The defocus parameter f is used to deliberately introduce a
defocus aberration to the GPF and is necessary for the conver-
gence of optimization-based PR algorithms [5]. U(r, ¢, f) is
the complex-valued PSF corresponding to the GPF. Only the
intensity image of U(r, ¢, f), called the PSF, is observed by

the camera:

¥ f) = UG ¢, PI. 3

In this paper, we will define the PR problem as recovering the
phase aberration ®(p,#) from multiple focal-plane intensity
measurements y(7, ¢, f) with different introduced defocus f.
Often, we will adopt a sampled representation in which both the
GPF and (complex) PSF are sampled on an equally spaced square
grid, denoted by P € CVr*N» and U, € CNe*Ne, respectively,
where the subscript 7 indicates the image at focal position /" = f,.
The intensity measurements of U are vectorized into y, € RVz,
The number of diversity images will be denoted by IV .

A more concrete formulation of the PR problem requires
a convenient and systematic parameterization of the GPF.
The most flexible parameterization is a pixilation of the pupil,
as it can be used with any pupil geometry. However, the pixel
basis requires a large number of parameters to be identified
using PR. The large number of variables is problematic for the
optimization-based algorithms, since they cannot exploit the
computational efficiency of the FFT, as is done by AP algo-
rithms. Parameterizations based on approximating the GPF as
a linear superposition of a small number of basis functions
reduces the size of the problem dramatically, since it requires
estimation of just a complex scalar coefficient for each of the
basis functions. The introduction of this modal decomposition
allows the use of the computationally demanding optimization-
based algorithms on a conventional computer [10]. Next, two
different modal representations are presented.

A. Extended Nijboer-Zernike Polynomials

The representation of phase aberration ® in terms of Zernike
polynomials was generalized to represent the GPF under the
ENZ theory [11]. The GPF is approximated as a truncated
series of ENZ polynomials [12],
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Pr(p,0) =Y _BrN7(p,0). &)

n and m denote, respectively, the radial order and azimuthal
frequency of the ENZ polynomial N'7(p, 0) (see Appendix A).
The polynomials are ordered according to their radial order,
such that the coefficients can be collected into a single vector
B € CVs, where Ny = (my + 1)(my + 2)/2, ny being the

maximum radial order considered.

B. Gaussian Radial Basis Functions

Alternatively, the pupil function can be approximated by a
linear combination of GRBFs [13]. The complex GPF is ap-
proximated by a real-valued, radially symmetric GRBF,

NV

Pr(p,0) = A(p,0) > 7 ¥4(p, 0), (5)
k=1

Wi, 0) = el +ei-2pes cost0-80) (6)

where 7, € C, (g;, 9;) are the polar coordinates of the GRBF
nodes on a polar grid and A(p, 0) is the same as in Eq. (1). Also,
A > 0 is the shape parameter inversely proportional to the
width of the GRBF. Numerical conditioning of the basis is
an important issue in RBF approximation. It should be noted
that, in contrast to ENZ polynomials, the GRBFs are not
orthogonal. Severe ill-conditioning can occur in the flat basis
function limit (4, — 0). In the literature, methods have been
proposed that yield a well-conditioned basis, in which the basis
functions are different, but together span the same space as the
original RBF set (see, e.g., Ref. [15]). However, for the appli-
cations in this paper, 1, was chosen to be large enough so that
no problems occurred due to ill-conditioning.

C. Phase Retrieval as an Optimization Problem

Both modal representations in Egs. (4) and (5) can be expressed
in the following form:

No
P(p.0) = > aBi(p.0) Y
k=1

with coefficients @, € C and the basis functions B,(p, 0) re-
present either the ENZ polynomials or GRBFs. By sampling
the GPF on a regular N, x N, grid, such that each pixel
corresponds to a location (p;,6;), i = 1,...,N]2,, the basis
functions and the estimated GPF can both be represented
as a matrix:

Ny
P=> B )
k=1

with B, € CV»Vs and P € CV*Vs. After vectorizing this
representation, the modal decomposition becomes a single
matrix-vector multiplication:

p = Ba, (9)

such that p € C7, @ € CVe, and the kth column of B €
CNi*Ne s a vectorized representation of By.

Due to the linearity property of the diffraction integral in
Eq. (2), the predicted PSF is a linear combination of trans-
formed basis functions weighted by the same coefficients as
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the GPF. This transformation is performed using the 2D dis-
crete Fourier transform (DFT) denoted by F{-}. A sampled
representation of U is represented on an N, x IV, grid, where
N, = DN » D > 1 being a constant related to the diffraction
limit of the optical system. The increase in dimensions /V,, -
N, is computationally realized by zero-padding of the GPF
before taking the 2D-DFT. For an image at a position along
the optical axis corresponding to a defocus parameter of /', the
estimated complex image U, can be written as

No
U, = Za/ecd,k’ (10)
k=1
where C,;, = F{B,0P,} € CV*NVu, © represents the element-
wise product, and P is the defocus function exp(i £ ;p*) sampled
on the same NV, x N, grid as the basis functions extended with
the correct zero-padding. Also, the modal decomposition of the
complex image U, can be represented as a matrix-vector multi-
plication, i.e., we define the vectorization of U, as 4, € CVi,

such that

ﬁd = Cda (11)

with the /th column of C; € CNixNe containing the vectorized
representation of C, ;. Finally, the estimated intensity measure-
ment (PSF) is given by

V. = CLal’. (12)
The PR problem is formulated in this paper as the minimi-

zation of the error between the measurements y,; and the esti-
mated PSF y,, leading to the following optimization problem:

Ny
min Z - |C al? 13
i Iy, - el (13)
where || - || denotes a vector norm of interest. This problem will

be solved using an efficient optimization-based PR algorithm
called convex optimization-based phase retrieval (COPR) [8].
In principle, other optimization-based algorithms such as
PhaseLift can be used. However, they are too computationally
demanding for even medium sized problems. Since the goal of
this paper is to show the advantage of GRBFs for high-order
aberrations, which require a larger number of basis functions,
COPR is chosen because of its superior speed.

3. SIMULATION DESIGN

This section discusses the simulations that will be performed to
analyze the advantage of using GRBFs over ENZ polynomials.
By considering their advantages and disadvantages, as outlined
in the introduction, we expect to show an improvement of
GRBFs over ENZ polynomials for several cases. First of all,
GRBFs are per definition more flexible to different pupil geom-
etries, since ENZ polynomials are defined over the unit disk
only. Moreover, it is expected that the GRBF representation
is more suitable to fit higher spatial frequencies in the GPF.
To validate this, we will test the PR problem on both low-order
and high-order aberrations. The generation of both phase types
is discussed below. Finally, the implementation details for the
performed simulation experiments are presented.
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A. Generation of Low-Order Aberrations

For the generation of aberrations containing only lower spatial
frequencies, the phase is represented in terms of Zernike
polynomials:

D(p,0) = Y LrZ1(p,0), (14)
where the Zernike polynomials Z7’ are defined in Appendix A,
and the coefficients {7 are drawn from an assumed distribution.
The distribution is based on the experimentally derived correc-
tion capabilities of a low-order membrane DM [10], which fol-
lowed approximately an exponential decrease in the values for
{7 for increasing radial orders. The total number of Zernike
terms considered is denoted by N, = (n, + 1)(n, + 2)/2,
where 7, is the maximum radial order considered. In the follow-
ing, V, = 606, i.e., we consider Zernike polynomials up to the
tenth radial order. Moreover, Cg, &L ¢ =0, ie., the piston and
tip—tilt modes are not included. The remaining 63 coefficients
are vectorized after ordering them by increasing the radial order
(Noll’s sequential index) into . The standard deviation of the
normal distribution generating the kth index ), is computed
as ¢; exp(k), where ¢; is a scaling factor to control the amplitude
of the aberration. An example of such a generated wavefront is
shown in Fig. 1(a).

B. Generation of High-Order Aberrations

For the generation of aberrations with higher spatial frequencies,
a similar experiment as in Ref. [10] is repeated for a high-order
DM, having N,, = 952 actuators (Boston Micromachines
KiloDM [16]). The control signal to each of the actuators #;
is collected into the vector u € RV». Because of the large
number of actuators, an accurate Zernike representation of the
wavefront would require too many parameters. Therefore, the
DM influence matrix # € RY*Vo is identified such that it sat-
isfies the relation s = Hu, where s € R": contains all the local
slopes in the wavefront measured with a high-resolution Shack—
Hartmann wavefront sensor (V, = 42632). For the identifica-
tion of matrix /, a set of 2000 random vectors 1, ..., Wy are
drawn from a normal distribution, and corresponding measure-
ments §7, ..., 85009 are collected. The matrix A is identified,
enforcing a sparsity pattern in the matrix, such that the number
of non-zero elements is 14.01% of the total number of elements.
The accuracy of the identification is very sensitive to the mea-
surement noise of the sensor and optical misalignments in the

-
¥

.
=
i .

-

g o,
" -

e '
(a) Low-order aberration (b) High-order aberration

Fig. 1. Example of a low-order and high-order aberration generated
as described in Sections 3.A and 3.B, respectively. The amplitude of
the phase can be scaled to any desired value.

Research Article

experimental setup. After a careful calibration, the identification
of H resulted into an average variance accounted for (VAF) [17],
defined as

20 0Is; - Hﬁ-||2>
VAF = (1 -&==L 00— 702 100% (15)
( S8

of 84.31%. A set of sensor measurements s; is simulated using
random input vectors u; drawn from a normal distribution, such
that s; = ¢,Hu;, ¢, being a scaling parameter to control the
phase amplitude. The corresponding wavefront ®;, sampled on
a regular NV, x IV, grid, is reconstructed from s; using the
method described in Ref. [18]. The resolution NV ) is limited by
the resolution of the Shack-Hartmann sensor at NV, < 146.
In this paper, IV, = 64 is used to simulate the aberration unless
mentioned otherwise. A square of IV, x IV, is cut from the
center of the original 146 x 146 image. An example of a high-
order wavefront aberration is shown in Fig. 1(b).

C. Approximating the Generalized Pupil Function

To quantify the theoretical accuracy for each basis to fit the
GPF, the least-squares error approximating a given GPF is
considered. The aberration @ is generated as discussed in
Sections 3.A and 3.B on an N,xN, grid. Similar to Eq. (9),
a sampled representation of the true GPF can be defined as a
vector p € CV7. By solving the following complex least-squares

problem,

G5 = arg min [|p - Bal[3, (16)

a theoretical best estimate of the GPF using the defined basis
can be computed as p;¢ = Bé;s. The normalized real-valued
root mean square (RMS) of the complex-valued approximation
error p - P, denoted by €, /5, defines the measure of its ability
to fit the GPF, i.e.,

Ip - pus!
=l )
2

Since we are mainly interested in finding the correct phase @,
we define the vectorized phase as ¢ EARN 7 and the phase
corresponding to the estimated GPF as ¢p;5 € RM, such that
the normalized RMS phase error is

- sl
N PR (18)

Because of the dependence on the number of GRBFs N, and
the stochastic nature of the aberration, a Monte Carlo experi-
ment is performed for various values of IV, by using 100 draws
of the simulated GPF.

Besides using this experiment to show the theoretical accu-
racy to fit the GPF, the method in this paragraph is used to tune
the GRBF hyper-parameters in the next section. In principle,
the RMS error of the PSF fit obtained by solving the PR prob-
lem can also be used. However, since this is much more com-
putationally demanding than computing the least-squares fit of
the GPF directly, it would be too time consuming and is there-
fore not considered in this paper.
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D. Phase Retrieval Experiment

The PR problem defined in Eq. (13) is solved using the COPR
algorithm [8]. First, the PSF data is simulated by taking the
2D-FFT of the GPF corresponding to the simulated aberration
® as discussed in Section 2 for D = 2. Four diversity images at
f1=0, fy=-1, f3=2, and f;, = -3 rad are computed
and vectorized into y;, i = 1,2,3,4. A Monte Carlo experi-
ment solving the PR problem for 25 different aberration real-
izations is performed for a certain combination of N, and
aberration type (low-/high-order).

From the solution of the PR problem, we obtain a solution
@. An estimate of the PSF and GPF is obtained via y;, = C,&
and p = B@, respectively. The normalized RMS error (RMSE)
of the PSF and phase will be used as a scalar quantity to express
the accuracy. One major difficulty in comparing the phase is
caused by the fact that the PR solution provides an estimate
up to a constant offset (piston), and each pixel is wrapped on
the range [-7, z]. This is solved by extracting the phase of the
estimated GPF, unwrapping it using a 2D phase unwrapping
algorithm [19], and removing the piston. Similar to Eq. (18),
the real-valued normalized RMSE of the phase is defined as

16—l
== 19
=14l (19)

The cost function in Eq. (13) minimizes the PSF fitting error
rather than the GPF. A measure representing the fit of the PSF
is defined in a similar way:

Ny .
E] — Zi:}VUYi yl’”Z . (20)
Zz’:l Iyl

The results of this experiment are discussed in Section 5.

4. FITTING ACCURACY OF GRBFS
The increased flexibility of the GRBF follows directly from the

introduced freedom in terms of its hyper-parameters. Each sin-
gle GRBF has two parameters: its center location pair (g, 6;)
and shape parameter 4. Together they define the shape and
location of the GRBF in the pupil plane. If they would be
chosen independent from each other, they would introduce
2N, hyper-parameters to the PR problem. Estimating them is
a highly non-linear problem usually solved by cross-validation
[13]. In this section, by using their physical interpretation in
the imaging application, we propose to reduce the number of
parameters to one single shape parameter 4 and a predefined
node distribution.

A. Node Distribution

Instead of choosing the center (g;, 9;) of each basis function
separately, a number of fixed configurations are considered.
In this way, the centers are no longer a hyper-parameter to
be determined. Since we assume to have no specific a priori
knowledge of the GPF, we are looking for a general distribution
that is able to fit any generic GPF realization. There are many
regular and quasi-random grids that can work as a suitable
node distribution. Examples are a rectangular grid with equally
spaced points, a Halton-points-based grid generated from
quasi-random number sequence [20], and a planar Fibonacci

Vol. 35, No. 7 / July 2018 / Journal of the Optical Society of America A 1237

(a) (b)

(c)
Fig. 2. Examples of node distributions on a 2D grid for a unit disk
pupil aperture: (a) rectangular, (b) Halton, and (c) Fibonacci.

grid defined using a spiral represented in polar coordinates,

i.e., for the 4th point [14],

o =0QVk-1/2, 8, =2nk/p, (21)
where @y is an arbitrary scale factor, and ¢ = (1 + +/5)/2 is
the Golden ratio. These distributions are visualized in Fig. 2.
All grids are defined over an area slightly larger than the
unit disk (a disk with radius 1.05) to deal with the Gibbs
phenomenon [13].

The Fibonacci grid has been proved to be a competitive and
robust choice when the shape parameter is optimally chosen
[14]. For completeness, the simulations in this paper have been
implemented for all three different grids in Fig. 2. This showed
a performance that is similar for all grids, but slightly in favor
of the Fibonacci configuration. Therefore, only the Fibonacci
configuration is included in the results of this paper.

B. Shape Parameter

The choice of shape parameter is significant, as it affects
numerical stability, accuracy of fit, and speed of convergence.
The practical design of the shape parameter is data dependent,
in that it depends on the variance of wavefront aberration and
its spatial frequency content as well. As the data of the GPF is
not available beforehand, it is desirable to find a systematic em-
pirical approach of shape parameter selection. To reduce the
number of hyper-parameters, a single constant 4 is assumed for
each GRBF. Moreover, especially for the regular grids (rectan-
gular and Fibonacci), a constant 4 is a reasonable assumption
when there is no a priori knowledge of the GPF.

To determine the value of the parameter 4, we compare the
RMS of the approximation error for different values of 4 with
the method discussed in Section 3.C. First of all, since the
selection of the hyper-parameter is dependent on the chosen
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10° 10"
A

(a) Low-order aberration

0.35
0.3

0.25

0.2

0.1

0.05

10° 10" 102

(b) High-order aberration

Fig. 3. Influence of 1 on the mean value of ¢, ;¢ in a Monte Carlo simulation. The same simulation is performed on both low- and high-order
aberration data discussed in Sections 3.A and 3.B for N, = 64 on a circular aperture with a radius of 1.

node distribution and the total number of nodes, the influence
of A is shown for different values of NV,. Moreover, as it is
shown to depend on the type of aberration, the test is repeated
for both the low-order and high-order aberrations discussed in
Sections 3.A and 3.B. Figure 3 shows ¢,;g, as defined in
Eq. (17), for various combinations of 4 and NN, on the
Fibonacci grid. It is clear that both for the low-order and
high-order aberration, the trend is very similar. Both start with
a steep increase in performance by increasing A up to a value
that is dependent on /V,. At a certain point, which we will
denote by 4%, the steep descend turns into a more constant and
smoother curve. This point, indicated by the asterisks in Fig. 3,
is the same for both the low-order and high-order aberrations
and seems to be depending only on V,. However, where the
low-order aberration €, ;5 starts to increase immediately, it still
slightly decreases for the high-order aberration. As can be seen
in Fig. 3, the optimal value of 4, ﬂopr, is in the range of 1 to 10
for the low-order and between 10 and 40 for the high-order
aberrations.

In practice, the nature of the GPF is unknown, and one does
not have a set of GPF with the same statistical properties as the
one to be estimated. This makes the optimal value of A more
difficult to find. However, A* can be used as a lower bound to
the selection of 4, and it can be derived from knowing only the
GRBF center locations. It is shown that €, ;5 is not very sen-
sitive for choosing 4 larger than A*. Therefore, it is a safe choice
to select 4 > A%, depending on the desired smoothness of the
reconstruction of the wavefront.

As pointed out in Section 2, the basis can become severely
ill-conditioned when 4 — 0. This should be kept in mind when
selecting the value of 4 when the number of the basis function
is small. In this case, it is advised to choose A >> A* to avoid
problems while solving the PR problem. One can use the
RBF-QR algorithm [15] to improve the conditioning and
transform the obtained coefficients back into the original basis.
As the focus of this paper is on the high-order aberrations with
a relatively large amount of basis functions, this has not been
implemented. The value of 4 during the PR simulations was

increased manually when the found A, caused problems
regarding ill-conditioning,.

C. Comparison to ENZ Polynomials

After Ay is selected for the chosen node distribution, the fitting
accuracy can be compared to that of ENZ polynomials. The
mean phase approximation errors &, ;5 for both the low-order
and high-order aberrations are summarized in Table 1. From
Table 1, we can conclude that the mean values of ¢, ;¢ indicate
a higher fitting accuracy of GRBF over ENZ polynomials on
average. It should be mentioned that the variance over the
Monte Carlo draws was found to be approximately within 10%
of the mean values for high-order aberrations, but was much
more significant for low-order aberrations with values of the
same order of magnitude as its mean. A more comprehensive
analysis discussing the importance of this large variance is in-
cluded in Section 5. Moreover, the final value of EpLs for the
high-order aberration is still significant with a minimum of
0.11 for N, = 275. This should be kept in mind when per-
forming the PR simulations. The performance shown here
gives a theoretical minimum of the error for each specific set
of basis functions. Because the PR simulation will use the RMS
of the phase error [, in Eq. (19)] as a measure, we have only
presented the theoretical minimal phase errors &4 is this

Table 1. Mean Values of ¢, ;s Using GRBF and ENZ
Polynomials in the Monte Carlo Simulation®

N, GRBF-LO ENZ-LO GRBF-HO ENZ-HO
65 6.56-1073 9.46- 1073 5.16- 107! 5.74- 107!
90 2.23.1073 3.60-1073 4.09-107! 4.83.107!
119 5.82-1074 8.94 .10 3.18.107! 3.98-107!
152 1.48 .10 290104 2.42.107! 3.21-107!
189 5.04-107 1.01-10 1.89-107" 2.58-107!
230 1.42.107 2.98.107 1.42.107! 2.07-107!
275 5.84.1076 7.06-10° 1.10- 107! 1.65-107!

“For the GRBF, 1 = 4, found using a grid search minimizing the GPF
error €, /.
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Fig. 4. Comparison of the results of the phase retrieval simulation between lower- and higher-order aberrations for varying number of basis
functions N,. The boxplots show the normalized RMSE ¢, and ¢; [see Egs. (19) and (20)] for a circular pupil with N, = 64, and
RMS(®) = 0.75 rad. The boxes indicate the 25th and 75th percentile of the results in the Monte Carlo simulation. Lines are drawn through
the medians of the data. Data outliers due to remaining phase ambiguities are discarded.

section. The obtained errors from the PR simulation will be
compared to the values in this table to validate if the algorithm
has converged to the optimal solution. A similar table can be
made for €, g, but it is not included here since it shows an
equivalent trend.

5. PHASE RETRIEVAL SIMULATION RESULTS

As discussed in Section 3, a simulation is performed to analyze
the performance of the different basis functions to the PR prob-
lem. In this section, a number of cases will be considered that
demonstrate the advantages of using GRBFs in modal-based
PR. For each combination of /V, and aberration type, an ex-
periment, as described in Section 3.D, is performed to find the
value of A that gives the best fit in the least-squares sense. The
scaling constants ¢; and ¢, introduced in Sections 3.A and 3.B
are chosen, such that the average RMS value of @ in the Monte
Carlo simulation RMS(®) = 0.75 is for both low- and high-
order aberrations. The performance of the method for higher
values of RMS(®) will be briefly discussed in the following
paragraph.

A. Low- and High-Order Aberrations

To show the performance of the GRBFs for aberrations con-
taining different spatial frequencies, the PR problem is solved
for both the low- and high-order aberrations. The simulation
results when considering only low-order aberrations are visual-
ized in Figs. 4(a) and 4(c). A clear decrease of the normalized
RMSE is visible for both the PSF and phase, as the number
of used basis functions increase. Both the ENZ polynomials
and GRBFs obtain a very accurate fit, approaching the theo-
retical optimum of Table 1. The variance over the multiple
draws in the Monte Carlo simulation is relatively large, such
that both methods lead to a roughly equivalent performance.

The PR simulation results for the high-order aberrations
are shown in Figs. 4(b) and 4(d). The GRBFs still approxi-
mate the theoretical value of Table 1 quite closely. On the
other hand, the ENZ polynomials fit starts to deviate more
from the theoretical minimum when more basis functions

are considered. This phenomenon together with the much less
significant variance than in the low-order aberration case make
the differences appear much clearer. The decrease in perfor-
mance from the theoretical minimum indicates that the PR
algorithm is less able to converge to the optimal solution when
ENZ polynomials are used.

To investigate the performance of the method for higher
phase amplitudes, the PR simulations for both the low-order
and high-order aberrations are repeated for a higher value of
RMS(®). Figure 5 shows the normalized RMS phase error €
for RMS(®) ~ 1.5 rad. All other conditions are kept the same
as in the experiment above, such that they can be compared to
Figs 4(a) and 4(b), where RMS(®) ~ 0.75. Both errors increase
when RMS(®) increases. The same improving trend in the
performance is visible when using more basis functions.

From this analysis, the GRBFs appear most beneficial when
approximating aberrations containing high spatial frequencies
with a relatively large amount of basis functions. An example
of such an approximation is shown in Fig. 6 for NV, = 128 and
N, = 377. One thing that stands out when comparing the

-

107!
65 119 189 275 65 119 189 275

(@) &y for low-order aberrations  (b) &, for high-order aberrations

Fig. 5. Phase retrieval results for low-order and high-order aberra-
tions for RMS(®) ~ 1.5 rad. The presentation of the results is similar
to Fig. 4.
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Fig. 6. Example of the retrieved phase for a high-order aberration, N, = 128, and N, = 377. From left to right, the first row shows the true
phase aberration, the retrieved phase estimate using GRBF, and the retrieved estimate using ENZ. The second row shows the errors for GRBF
(e = 0.42) and ENZ (g4 = 0.57), respectively. The figures are truncated to the color scale shown.

estimations with GRBFs and ENZ polynomials are the ringing
artifacts that appear when using ENZ polynomials. Since these
rings are a consequence of the PR solution and do not appear in
the least-squares approximation, they cause a gap between the
theoretical value of Table 1 and the obtained PR solution when
using ENZ polynomials.

B. Non-Circular Aperture

An important property of the GRBF is its independence on the
pupil geometry. Since each basis function can be centered
around an arbitrary location on the pupil, it is possible to con-
centrate the information on any specific shape. In contrast,
ENZ polynomials are defined on only the unit circle.
Although the Zernike theory can be adapted for other pupil

geometries, it requires complex theoretical reformulation (see,
e.g., [12]). The GRBFs provide a much more simpler imple-
mentation, in which the user can locate the basis functions. As a
result, the basis can be easily adapted to any arbitrary shape
without needing any complex theory.

To demonstrate the advantage of this locality, an extreme
case is considered, in which an annular pupil is defined with
a unity outer radius and an inner radius of 0.7. The centers
of the GRBFs are located on a ring with an inner radius of
0.65 and an outer radius of 1.05 following the Fibonacci node
distribution. Compared to the circular aperture, the number of
non-zero pixels in the GPF has decreased. Therefore, it would
be expected that when the same number of basis functions are
considered, the normalized error should decrease. The PR

65 119 189 275 65 119 189 275

(a) 4 for low-order aberrations

(b) &4 for high-order aberrations

65 119 189 275

(c) &, for low-order aberrations  (d) ¢, for high-order aberrations

Fig. 7. Comparison of the results of the phase retrieval simulation between lower- and higher-order aberrations for varying number of basis
functions N,. The boxplots show the normalized RMSE € and &, [see Eqs. (19) and (20)] for an annular pupil with N = 64, and
RMS(®) = 0.75 rad. The boxes indicate the 25th and 75th percentile of the results in the Monte Carlo simulation. Lines are drawn through
the medians of the data. Data outliers due to remaining phase ambiguities are discarded.
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Fig. 8. Example of the retrieved phase for a high-order aberration, NV = 128 and N, = 377. From left to right, the first row shows the true
phase aberration, the retrieved phase estimate using GRBF, and the retrieved estimate using ENZ. The second row shows the errors for GRBF
(e = 0.27) and ENZ (g, = 0.68), respectively. The figures are truncated to the color scale shown.

results for this annular aperture are summarized in Fig. 7, show-
ing that the difference in performance between GRBFs and
ENZ polynomials is more significant than in the same situation
with the circular aperture (recall Fig. 4). The normalized error
for the GRBF has indeed decreased compared to the circular
aperture. Because the ENZ polynomials have not been rede-
fined on the new pupil, the error for the ENZ basis has in-
creased significantly. This demonstrates the advantage that
GRBFs have on non-circular apertures. An explanation for this
decrease in performance when using ENZ polynomials be-
comes apparent when looking at an example of the retrieved
phase in Fig. 8. Note how the estimate using GRBFs is more
detailed, but the estimate corresponding to the ENZ polynomial

10-2 L

5 10 20 30 40 50 60
SNR [dB]
Fig. 9. Normalized RMS phase error € [defined in Eq. (19)] as a
function of the SNR for low-order aberrations with an average
RMS(®) = 0.75, using N, = 65 basis functions. The black dotted

line shows the error without noise.

basis shows that the oscillations around the edges have become
more significant due to the thin aperture shape.

C. Gaussian Measurement Noise

Finally, zero-mean white Gaussian noise is added to the sim-
ulation measurements y; to consider the robustness of the
estimation with respect to noise. Since the intensity measure-
ments are per definition positive, negative values in the simu-
lated measurement are truncated to zero. For the conciseness
of this paper, only a single case regarding a low-order aberration
is considered on a circular aperture, and N, = 65 basis func-
tions are used. The results are shown in Fig. 9. The noise is
sampled from a single zero-mean Gaussian distribution, and
the signal-to-noise ratio (SNR) is defined with respect to the
average power of the image y;. The noise affects the estimate
for both the ENZ and GRBF basis similarly for higher SNR.
For an SNR of 5-10 dB, the ENZ polynomials give a normal-
ized error higher than one, implying a completely inaccurate
estimate.

6. CONCLUSION

The problem of reconstructing phase aberrations using a
modal approach for optimization-based PR algorithms has been
considered in this paper. The otherwise too computationally
demanding optimization-based algorithms [5,8] can be imple-
mented on a standard desktop computer in this modal-based
framework [10]. In this paper, the application of GRBFs to
model the GPF has been explored as an alternative to the
existing ENZ polynomials [10,11]. Because of its computa-
tional efficiency, the COPR algorithm [8] is used to solve the
PR problem. One important advantage of GRBFs is the in-
creased flexibility introduced by user-defined hyper-parameters
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determining the location and shape of each basis function. The
number of hyper-parameters is reduced to a single parameter
describing the size of a single GRBF by assuming a predefined
distribution of the centers. Guidelines have been proposed
to find the hyper-parameter that leads to the best fit. It was
shown that the obtained basis using GRBFs is better able to
approximate the GPF than ENZ polynomials. Moreover, the
solution to the PR problem has been considered for both the
GRBF and ENZ polynomial basis. Simulations have shown
that GRBFs are significantly better to approximate aberrations
that contain higher spatial frequencies. The increased flexibility
of GRBFs has been demonstrated by solving the PR problem
for an annular pupil. Finally, the robustness to Gaussian mea-
surement noise was also in favor of GRBFs, showing a lower
noise sensitivity.

APPENDIX A: REAL AND COMPLEX-VALUED
ZERNIKE POLYNOMIALS

The phase aberration @ can be analyzed by the orthogonal
set of basis functions formed by the circle polynomials 27
introduced by Zernike,

D(p,0) = > LrZr(p,0), (A1)

where indices 7 € Ny and m € Z, respectively, denote the
radial order and the azimuthal frequency of the Zernike poly-
nomial Z7, such that 7 - [m| > 0 and even. The polynomials
are given by the product of a radial polynomial R (p) and
a trigonometric function ©7’(0) with suitable normalization ¢}/,

Z7(p,0) = "R (0), (A2)
where
" Vn+1 m=20
v { V2 ED) m#0

{ cos(mb) m>0

—sin(mf) m<0’

(n-m)/2
. D=9t
Rip) = S!(”Em_j);f(é_s)!p % (A3)

s=0 2

07(0) =

The GPF can be analyzed using a truncated series of ENZ
polynomials [12],

N7(p,0) = /n+ 1R (p) exp(imb). (A4)

Again, the coefficients can be collected in a single vector
using Noll’s indexing. The normalization used here is as given
in Ref. [10].
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