Floor slab optimization

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

4385896 Kees Leemeijer

Building Technology Master of Science at the Delft University of Technology,

Supervisor: Dr. S. (Serdar) Asut, Dr.ir. H.R. (Roel) Schipper Graduation committee: G. Coumans

Floor slab optimization
Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

Research methodology

11

Fabrication methods

SECTION III EVALUATION

Fabrication methods

Structural optimization

Fabrication methods

Structural optimization

Concrete manufacturing

Hypothesis driven design

Hypothesis driven design

Evaluated with a Life Cycle Assessment

THE BODY OF THE RESEARCH

"Although reinforced concrete has been used for over a hundred years and with increasing interest during the last decades, few of its properties and potentialities have been fully exploited so far. Apart from the unconquerable inertia of our own minds, which do not seem to be able to adapt freely any new ideas, the main cause of this delay is a trivial technicality: The need to prepare wooden frames." – Nervi, 1956

"Although reinforced concrete has been used for over a hundred years and with increasing interest during the last decades, few of its properties and potentialities have been fully exploited so far. Apart from the unconquerable inertia of our own minds, which do not seem to be able to adapt freely any new ideas, the main cause of this delay is a trivial technicality: The need to prepare wooden frames." – Nervi, 1956

Main research question

In what manner can we use additive manufacturing and structural optimization in the building sector to address the environmental impact of concrete construction?

Why structural optimization and AM

Structural optimization provides a powerful method for generating the optimized models, while AM enables a cost-effective fabrication of geometrically complex shapes (J. Wu, Aage, N., Lefebvre, S., & Wang, C., 2017).

SECTION I RESEARCH AS A BASIS FOR DESIGN

Fabrication methods (AM)

Structural optimization (S0)

Concrete manufacturing (CM)

Focus on the hypothesis

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

SECTION III EVALUATION

Fabrication methods (AM)

Process, material requirements Sustainability of the material

Fabrication methods (AM) Sustainability of the material

85% of the emissions is related to the binder in prefabricated concrete

Fabrication methods (AM) Sustainability of the material

Process-related material requirements: 3DCP

section II design

Fabrication methods (AM) Sustainability of the material

Process-related material requirements: 3DCP

SECTION III EVALUATION

Fabrication methods (AM) Robustness and brittle behaviour

Difficulty of reinforcement Robustness and brittle behaviour

Fabrication methods (AM) Robustness and brittle behaviour

Difficulty of reinforcement Robustness and brittle behaviour

Source: (Menna et al., 2020)

Fabrication methods (AM) Robustness and brittle behaviour

Difficulty of reinforcement Robustness and brittle behaviour

Source: (Menna et al., 2020)

Fabrication methods (AM) Conventional casting

Process, material requirements
Sustainability of the material

Difficulty of reinforcement
Robustness and brittle behaviour

Additive manufacturing is unlikely to adress the environmental impact of concrete construction

Process-related material requirements

material requirements

material requirements

material requirements

Structural optimization (S0)

Methods of structural optimization

Form finding of compression only structures

Black-box approach to concurrent optimization processes

Size optimization

section II design

Size optimization

Shape optimization

Source: (Gebisa & Lemu, 2017)

Shape optimization

Topology optimization

Material properties
Concrete is strong in compression

floorslab properties
Distributed Q-load

SECTION II DESIGN

SECTION III EVALUATION

Structural optimization for a compression dominant floor slab

Size optimization

Shape optimization

SECTION II DESIGN

Form finding of structures for a compression dominant floor slab

Form finding of structures

With computational tools

The variable shell thickness

The optimal floorslab has a variable height

The variable shell thickness

The optimal floorslab has a variable height

Multiple loadcases are guiding not able to have a concurrent optimization process

SECTION III EVALUATION

The variable shell thickness

The optimal floorslab has a variable height

Multiple loadcases are guiding not able to have a concurrent optimization process

SECTION III EVALUATION

Fabrication constraints

Cannot be intergrated directly in funicular methods

Form-finding as a tool for shape optimization

Form-finding as a tool for shape optimization

section II design

Concurrent optimization process With computational tools

Concurrent optimization process
With computational tools

Why is there little research?

in concurrent optimization methods

SECTION II DESIGN

Concurrent optimization process
With computational tools

Why is there little research?

in concurrent optimization methods

No clear objective function
In multi-objective, fabrication-aware problems

SECTION II DESIGN

Concurrent optimization process Using derivative free optimization

SECTION III EVALUATION

54

Derivative free optimization to find the global optimum

SECTION III EVALUATION

Derivative free optimization to find the global optimum

Metaheuristic methods

Direct-search methods

Model-based methods

SECTION III EVALUATION

Model-based optimization to find the global optimum

SECTION II DESIGN

Concurrent optimization process Using derivative free optimization

60

Floor slab optimization Structural optimization (SO)

Derivative-free optimization process using surrogate-model based optimization solvers

Shape and size optimization

To find the structural form

Size optimization

Shape optimization

Intergration of multiple loadcases in the optimization process

SECTION II DESIGN

Fabrication constraints taken into account

Derivative-free optimization process using surrogate-model based optimization solvers

Shape and size optimization
To find the structural form

Intergration of multiple loadcases in the optimization process

Fabrication constraints

Structural optimization will likely be highly effective, in adressing the environmental impact of floor slabs

Concrete manufacturing (CM)

Where are the emissions?
In concrete construction

What can we do? to reduce the emissions

Concrete manufacturing (CM) Environmental impact of concrete

85% of the emissions

is related to the binder in prefabricated concrete

SECTION II DESIGN

Source: (Kong, Kang, He, Li, & Wang, 2020)

Concrete manufacturing (CM) Environmental impact of concrete

85% of the emissions

is related to the binder in prefabricated concrete

Concrete emissions: key findings

Concrete emissions: key findings

Concrete manufacturing (CM) Environmental impact of concrete

85% of the emissions

is related to the binder in prefabricated concrete

Source: (J. Lehne & F. Preston, 2018)

Concrete manufacturing (CM) Reducing the environmental impact

Reducing of the impact

What is the effectivity of the measures?

Concrete manufacturing (CM) Reducing the environmental impact of the floorslab

Use of clinker substitutes (SCMs)

in Portland clinker-based cement

Concrete manufacturing (CM) Reducing the environmental impact of the floorslab

Use of clinker substitutes (SCMs)

in Portland clinker-based cement

Concrete manufacturing (CM) Reducing the environmental impact of the floorslab

Use of clinker substitutes (SCMs) in Portland clinker-based cement

More efficient use of clinker by optimizing for lower strength concrete

SECTION II HYPOTHESIS DRIVEN DESIGN

Hypothesis

Fabrication-aware, structurally optimized floor slabs can significantly reduce the environmental impact of concrete construction.

This adresses a current gap in literature

In a derivative-free optimization approach for concurrent structural design problems (e.g. taking into account fabrication constraints, and multiple loadcases)

Research through design

Floor slab optimization

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

1. Introduction of the flooring system Thin-shells, shell theory, and critical aspect

- 2. Boundary conditions loadcase, material intergration and assumptions
- 3. The optimization algorithm Insight on the optimization process
- 4. Resulting floorslabs
 The basis for the LCA analysis

Strength through geometry

The concept

1. INTRODUCTION OF THE FLOORING SYSTEM Strength through geometry

Strength through geometry

The concept

1. INTRODUCTION OF THE FLOORING SYSTEM

Casting as the fabrication method Due to material related emissions

Casting as the fabrication method Due to material related emissions

Simplicity over complexity in the fabrication process

Casting as the fabrication method Due to material related emissions

Simplicity over complexity in the fabrication process

Prefabrication and modularization
Reusability of the formwork, and further optimization

Casting as the fabrication method

Due to material related emissions

Simplicity over complexity in the fabrication process

Prefabrication and modularization
Reusability of the formwork, and further optimization

Conform the building regulation

To allow for a more direct application

Casting as the fabrication method Due to material related emissions

Simplicity over complexity in the fabrication process

Prefabrication and modularization Reusability of the formwork, and further optimization

Conform the building regulation To allow for a more direct application

Focus on the LCA in the hypothetical office building

The concept

1. INTRODUCTION OF THE FLOORING SYSTEM

Punching shear Four support points

Fire safety Of the exposed steel

What will it look like? the flooring system

Punching shear Four support points

Source: (Wijte, 2019)

Punching shear Four support points

Fire safety
Of the exposed steel

Source: (Rankin, et al. (1997)

Fire safety Of the exposed steel

No exposed steel on the top side

Fire safety Of the exposed steel

Intumescent coating

Fire safety Of the exposed steel

Intumescent coating

Covering it with an insulating material

What will it look like?

the flooring system

Floor slab optimization

In a derivative-free optimization approach for concurrent structural design problems (e.g. taking into account fabrication constraints, and multiple loadcases)

SECTION II DESIGN

2. BOUNDARY **CONDITIONS**

Focus on office buildings as they are easier for transformation

The boundary conditions

1. INTRODUCTION OF THE FLOORING **SYSTEM**

2. BOUNDARY **CONDITIONS**

Focus on office buildings as they are easier for transformation

Eurocode, loading conditions

- Total load of 5.37 kN/m^2 + self weight

- Offices CC2 2.5 kN/m²
- Additional loading CC2 1.2 kN/m²
- Safety factor permanent load 1.5
- Safety factor variable load 1.35
- Total load of 5.37 kN/m^2 + self weight

The boundary conditions

1. INTRODUCTION OF THE FLOORING **SYSTEM**

2. BOUNDARY **CONDITIONS**

Focus on office buildings as they are easier for transformation

Eurocode, loading conditions - Total load of 5.37 kN/m^2 + self weight

Intergration of critical point loads As they are guiding in thin shells

Incidental point load, might result in tension

2. BOUNDARY CONDITIONS

Focus on office buildings as they are easier for transformation

Eurocode, loading conditions
- Total load of 5.37 kN/m² + self weight

Intergration of critical point loads
As they are guiding in thin shells

Intergration of material in the optimization process

The boundary conditions

1. INTRODUCTION OF THE FLOORING SYSTEM

2. BOUNDARY **CONDITIONS**

Focus on office buildings as they are easier for transformation

Eurocode, loading conditions

- Total load of 5.37 kN/m² + self weight

Intergration of critical point loads As they are guiding in thin shells

Intergration of material

in the optimization process

Strength class = C20/25

Exposure class = XC 1

Consistency class = C2, S2, F2

Maximal w/c factor = 0.65

Design w/c factor = 0.63

Minimal cement $= 260 \, \text{kg/m}$

Cement types used = CEM III/B 42.5 N

Aggregate size = 4/16

2. BOUNDARY **CONDITIONS**

Focus on office buildings as they are easier for transformation

Eurocode, loading conditions - Total load of 5.37 kN/m^2 + self weight

Intergration of critical point loads As they are guiding in thin shells

Intergration of material in the optimization process

Assumptions in the process uncracked concrete, linear finite element analysis, steel shoe to prevent localized edge effects

The boundary conditions

1. INTRODUCTION OF THE FLOORING SYSTEM

2. BOUNDARY CONDITIONS

Focus on office buildings as they are easier for transformation

Eurocode, loading conditions
- Total load of 5.37 kN/m² + self weight

Intergration of critical point loads
As they are guiding in thin shells

Intergration of material in the optimization process

Assumptions in the process uncracked concrete, linear finite element analysis, steel shoe to prevent localized edge effects

SECTION III EVALUATION

Distributing the load by enclosing the concrete

Script in Rhino Grasshopper

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**

STEP 1 Definition of the input length, width, mesh size, height and material properties

2. BOUNDARY **CONDITIONS**

3. OPTIMIZATION **SCRIPT**

STEP 2 Shape optimization length, width, mesh size, height and material properties

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**

STEP 2 Shape optimization length, width, mesh size, height and material properties

Shape optimization

- Remapping of the variables, to influence the solution-space and thereby allow for faster convergence

- 1. INTRODUCTION
 OF THE FLOORING
 SYSTEM
- 2. BOUNDARY CONDITIONS
- 3. OPTIMIZATION SCRIPT

STEP 2 Shape optimization

length, width, mesh size, height and material properties

Shape optimization

- Remapping of the variables, to influence the solution-space and thereby allow for faster convergence
- Quad-Mesh is automatically generated, and forms the input for step three

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**

STEP 3 Intergration of self weight

Intergration of the weight added by the casting constraints

- Generation of the projected voronoi
- area of voronoi * height difference * SW of concrete in N
- Defines the added load on the structure

- 1. INTRODUCTION OF THE FLOORING SYSTEM
- 2. BOUNDARY CONDITIONS
- 3. OPTIMIZATION SCRIPT

STEP 3 Intergration of self weight

Intergration of the weight added by the casting constraints

- Generation of the projected voronoi
- area of voronoi * height difference * SW of concrete in N
- Defines the added load on the structure

SECTION III EVALUATION

- 1. INTRODUCTION
 OF THE FLOORING
 SYSTEM
- 2. BOUNDARY CONDITIONS
- 3. OPTIMIZATION SCRIPT

STEP 4 Finite element analysis Using karamba3D

- Generating the input in karamba3D, (e.g. support, load, variable shell thickness, material)
- Primary load-case (distributed Q-load)

SECTION III EVALUATION

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**

STEP 4 Finite element analysis Using karamba3D

- Generating the input in karamba3D, (e.g. support, load, variable shell thickness, material)
- Primary load-case (distributed Q-load)

SECTION II DESIGN

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**

STEP 4 Finite element analysis Using karamba3D

- Generating the input in karamba3D, (e.g. support, load, variable shell thickness, material)
- Primary load-case (distributed Q-load)

SECTION II DESIGN

1. INTRODUCTION OF THE FLOORING **SYSTEM**

2. BOUNDARY CONDITIONS

3. OPTIMIZATION **SCRIPT**

STEP 5 Size optimization Based on the finite element results of the Q-load

- five optimization steps, to optimize the compression stress

Size optimization

1. INTRODUCTION OF THE FLOORING **SYSTEM**

2. BOUNDARY **CONDITIONS**

3. OPTIMIZATION **SCRIPT**

STEP 5 Size optimization Based on the finite element results of the Q-load

- five optimization steps, to optimize the compression stress

Size optimization

The Q-load defines the variable thickness

1. INTRODUCTION OF THE FLOORING SYSTEM

2. BOUNDARY CONDITIONS

3. OPTIMIZATION SCRIPT

STEP 6 Fabrication-aware

rationalisation of the shell

- The variable mesh is converted to a nurbs surface, forming the basis of the final geometry.

1. INTRODUCTION OF THE FLOORING **SYSTEM**

2. BOUNDARY CONDITIONS

3. OPTIMIZATION **SCRIPT**

STEP 6 Fabrication-aware

rationalisation of the shell

- The stress singularities are due to the linear model, Steel shoes will be used for the localized edge effects.

Solid FEM in Ansys

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**

STEP 7 Generation of the results unity checks

- Performing the unity checks on the tensile, compression and deflection limits.

SECTION III EVALUATION

- 1. INTRODUCTION
 OF THE FLOORING
 SYSTEM
- 2. BOUNDARY CONDITIONS
- 3. OPTIMIZATION SCRIPT

STEP 7 Generation of the results

- Performing the unity checks on the tensile, compression and deflection limits.
- Combining the results in the objective value

SECTION III EVALUATION

2. BOUNDARY **CONDITIONS**

3. OPTIMIZATION **SCRIPT**

STEP 8 Model-based black-box optimization strategy

SECTION II DESIGN

2. BOUNDARY **CONDITIONS**

3. OPTIMIZATION **SCRIPT**

STEP 8 Model-based black-box optimization strategy

SECTION III EVALUATION

2. BOUNDARY **CONDITIONS**

3. OPTIMIZATION **SCRIPT**

4. RESULTING *FLOORSLABS*

The resulting floorslabs 3600 x 2400 mm and 3600 x 5400 mm

SECTION II DESIGN

The results

1. INTRODUCTION OF THE FLOORING **SYSTEM**

2. BOUNDARY **CONDITIONS**

3. OPTIMIZATION **SCRIPT**

4. RESULTING *FLOORSLABS*

The resulting floorslabs 3600 x 2400 mm and 3600 x 5400 mm

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**
- 4. RESULTING *FLOORSLABS*

Results	Description	Unity checks	Description	Description
Max compression stress P1 [N/mm2]	-2,91 N/mm2	Unity check	0.1455 [-]	Passed UC > 1
Max compression stress P2 [N/mm2]	-10,5 N/mm2	Unity check	0.525 [-]	Passed UC > 1
Max tensile stress P1 [N/mm2]	1.48 N/mm2	Unity check	0,99 [-]	Critical UC (Passed)
Max tensile stress P2 [N/mm2]	0.45 N/mm2	Unity check	0.3 [-]	Passed UC > 1
Max tensile stress LC 1 [N/mm2]	1,06 N/mm2	Unity check	0.71 [-]	Passed UC > 1
Max tensile stress LC 2 [N/mm2]	1,02 N/mm2	Unity check	0.68 [-]	Passed UC > 1
Max tensile stress LC 3 [N/mm2]	1,37 N/mm2	Unity check	0.91 [-]	Passed UC > 1
X (horizontal) resultant force [kN]	96,75 kN	Diameter steel wire	12 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Y (horizontal) resultant force [kN]	61,99 kN	Diameter steel wire	9 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Z (vertical) resultant force [kN]	60.96 kN	Vertical load Z [kN]	58,2 kN	
Weight castable shell [kg]	1182,91 kg	Volume	0,514 m ³	
Reduction of weight vs hollowcore [%]	48,91%	Comparison floor	VBI 150mm	0,99 [-]
Reduction of weight vs solid floor [%]	70,24%	Comparison floor	200mm 2300kg concrete	

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**
- 4. RESULTING *FLOORSLABS*

3600 x 2400 mm

Results	Description	Unity checks	Description	Description
Max compression stress P1 [N/mm2]	-2,91 N/mm2	Unity check	0.1455 [-]	Passed UC > 1
Max compression stress P2 [N/mm2]	-10,5 N/mm2	Unity check	0.525 [-]	Passed UC > 1
Max tensile stress P1 [N/mm2]	1.48 N/mm2	Unity check	0,99 [-]	Critical UC (Passed)
Max tensile stress P2 [N/mm2]	0.45 N/mm2	Unity check	0.3 [-]	Passed UC > 1
Max tensile stress LC 1 [N/mm2]	1,06 N/mm2	Unity check	0.71 [-]	Passed UC > 1
Max tensile stress LC 2 [N/mm2]	1,02 N/mm2	Unity check	0.68 [-]	Passed UC > 1
Max tensile stress LC 3 [N/mm2]	1,37 N/mm2	Unity check	0.91 [-]	Passed UC > 1
X (horizontal) resultant force [kN]	96,75 kN	Diameter steel wire	12 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Y (horizontal) resultant force [kN]	61,99 kN	Diameter steel wire	9 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Z (vertical) resultant force [kN]	60.96 kN	Vertical load Z [kN]	58,2 kN	
Weight castable shell [kg]	1182,91 kg	Volume	0,514 m ³	
Reduction of weight vs hollowcore [%]	48,91%	Comparison floor	VBI 150mm	0,99 [-]
Reduction of weight vs solid floor [%]	70,24%	Comparison floor	200mm 2300kg concrete	

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**
- 4. RESULTING *FLOORSLABS*

The resulting floorslabs 3600 x 2400 mm

Results	Description	Unity checks	Description	Description
Max compression stress P1 [N/mm2]	-2,91 N/mm2	Unity check	0.1455 [-]	Passed UC > 1
Max compression stress P2 [N/mm2]	-10,5 N/mm2	Unity check	0.525 [-]	Passed UC > 1
Max tensile stress P1 [N/mm2]	1.48 N/mm2	Unity check	0,99 [-]	Critical UC (Passed)
Max tensile stress P2 [N/mm2]	0.45 N/mm2	Unity check	0.3 [-]	Passed UC > 1
Max tensile stress LC 1 [N/mm2]	1,06 N/mm2	Unity check	0.71 [-]	Passed UC > 1
Max tensile stress LC 2 [N/mm2]	1,02 N/mm2	Unity check	0.68 [-]	Passed UC > 1
Max tensile stress LC 3 [N/mm2]	1,37 N/mm2	Unity check	0.91 [-]	Passed UC > 1
X (horizontal) resultant force [kN]	96,75 kN	Diameter steel wire	12 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Y (horizontal) resultant force [kN]	61,99 kN	Diameter steel wire	9 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Z (vertical) resultant force [kN]	60.96 kN	Vertical load Z [kN]	58,2 kN	
Weight castable shell [kg]	1182,91 kg	Volume	0,514 m ³	
Reduction of weight vs hollowcore [%]	48,91%	Comparison floor	VBI 150mm	0,99 [-]
Reduction of weight vs solid floor [%]	70,24%	Comparison floor	200mm 2300kg concrete	

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**
- 4. RESULTING *FLOORSLABS*

The resulting floorslabs 3600 x 2400 mm

Results	Description	Unity checks	Description	Description
Max compression stress P1 [N/mm2]	-2,91 N/mm2	Unity check	0.1455 [-]	Passed UC > 1
Max compression stress P2 [N/mm2]	-10,5 N/mm2	Unity check	0.525 [-]	Passed UC > 1
Max tensile stress P1 [N/mm2]	1.48 N/mm2	Unity check	0,99 [-]	Critical UC (Passed)
Max tensile stress P2 [N/mm2]	0.45 N/mm2	Unity check	0.3 [-]	Passed UC > 1
Max tensile stress LC 1 [N/mm2]	1,06 N/mm2	Unity check	0.71 [-]	Passed UC > 1
Max tensile stress LC 2 [N/mm2]	1,02 N/mm2	Unity check	0.68 [-]	Passed UC > 1
Max tensile stress LC 3 [N/mm2]	1,37 N/mm2	Unity check	0.91 [-]	Passed UC > 1
X (horizontal) resultant force [kN]	96,75 kN	Diameter steel wire	12 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Y (horizontal) resultant force [kN]	61,99 kN	Diameter steel wire	9 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Z (vertical) resultant force [kN]	60.96 kN	Vertical load Z [kN]	58,2 kN	
Weight castable shell [kg]	1182 91 kg	Volume	0,514 m ³	
Reduction of weight vs hollowcore [%]	48,91%	Comparison floor	VBI 150mm	0,99 [-]
Reduction of weight vs solid floor [%]	70,24%	Comparison floor	200mm 2300kg concrete	

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**
- 4. RESULTING *FLOORSLABS*

The resulting floorslabs 3600 x 2400 mm

Results	Description	Unity checks	Description	Description
Max compression stress P1 [N/mm2]	-2,91 N/mm2	Unity check	0.1455 [-]	Passed UC > 1
Max compression stress P2 [N/mm2]	-10,5 N/mm2	Unity check	0.525 [-]	Passed UC > 1
Max tensile stress P1 [N/mm2]	1.48 N/mm2	Unity check	0,99 [-]	Critical UC (Passed)
Max tensile stress P2 [N/mm2]	0.45 N/mm2	Unity check	0.3 [-]	Passed UC > 1
Max tensile stress LC 1 [N/mm2]	1,06 N/mm2	Unity check	0.71 [-]	Passed UC > 1
Max tensile stress LC 2 [N/mm2]	1,02 N/mm2	Unity check	0.68 [-]	Passed UC > 1
Max tensile stress LC 3 [N/mm2]	1,37 N/mm2	Unity check	0.91 [-]	Passed UC > 1
X (horizontal) resultant force [kN]	96,75 kN	Diameter steel wire	12 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Y (horizontal) resultant force [kN]	61,99 kN	Diameter steel wire	9 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Z (vertical) resultant force [kN]	60.96 kN	Vertical load Z [kN]	58,2 kN	
Weight castable shell [kg]	1182,91 kg	Volume	0,514 m ³	
Reduction of weight vs hollowcore [%]	48,91%	Comparison floor	VBI 150mm	0,99 [-]
Reduction of weight vs solid floor [%]	70,24%	Comparison floor	200mm 2300kg concrete	

- 1. INTRODUCTION OF THE FLOORING SYSTEM
- 2. BOUNDARY CONDITIONS
- 3. OPTIMIZATION SCRIPT
- 4. RESULTING FLOORSLABS

3600 x 2400 mm

- Critical loadcase, P1 tensile stress due to distributed Q-load
- bitmap representation

- 1. INTRODUCTION OF THE FLOORING SYSTEM
- 2. BOUNDARY CONDITIONS
- 3. OPTIMIZATION SCRIPT
- 4. RESULTING FLOORSLABS

Results	Description	Unity checks	Description	Description
Max compression stress P1 [N/mm2]	-4,14 N/mm2	Unity check	0.207 [-]	Passed UC > 1
Max compression stress P2 [N/mm2]	-16,7 N/mm2	Unity check	0.89 [-]	Passed UC > 1
Max tensile stress P1 [N/mm2]	1,47 N/mm2	Unity check	0.98 [-]	Critical UC
Max tensile stress P2 [N/mm2]	0,06 N/mm2	Unity check	0.04 [-]	Passed UC > 1
Max tensile stress LC 1 [N/mm2]	1,22 N/mm2	Unity check	0.81 [-]	Passed UC > 1
Max tensile stress LC 2 [N/mm2]	0,96 N/mm2	Unity check	0.64 [-]	Passed UC > 1
Max tensile stress LC 3 [N/mm2]	1,48 N/mm2	Unity check	0.99 [-]	Passed UC > 1
X (horizontal) resultant force [kN]	143,66 kN	Diameter steel wire	14 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Y (horizontal) resultant force [kN]	218,22 kN	Diameter steel wire	17 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Z (vertical) resultant force [kN]	36,25 kN	Total horizontal force	145 kN	
Weight castable shell [kg]	3313.61 kg	Volume	1.44 m³	
Reduction of weight vs. hollow-core [%]	36,4%	Comparison of floor	VBI 150mm	
Reduction of weight vs. solid floor [%]	69,12%	Comparison floor	240 mm 2300kg concrete	

- 1. INTRODUCTION OF THE FLOORING SYSTEM
- 2. BOUNDARY CONDITIONS
- 3. OPTIMIZATION SCRIPT
- 4. RESULTING FLOORSLABS

3600 x 5400 mm

Results	Description	Unity checks	Description	Description
Max compression stress P1 [N/mm2]	-4,14 N/mm2	Unity check	0.207 [-]	Passed UC > 1
Max compression stress P2 [N/mm2]	-16,7 N/mm2	Unity check	0.89 [-]	Passed UC > 1
Max tensile stress P1 [N/mm2]	1,47 N/mm2	Unity check	0.98 [-]	Critical UC
Max tensile stress P2 [N/mm2]	0,06 N/mm2	Unity check	0.04 [-]	Passed UC > 1
Max tensile stress LC 1 [N/mm2]	1,22 N/mm2	Unity check	0.81 [-]	Passed UC > 1
Max tensile stress LC 2 [N/mm2]	0,96 N/mm2	Unity check	0.64 [-]	Passed UC > 1
Max tensile stress LC 3 [N/mm2]	1,48 N/mm2	Unity check	0.99 [-]	Passed UC > 1
X (horizontal) resultant force [kN]	143,66 kN	Diameter steel wire	14 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Y (horizontal) resultant force [kN]	218,22 kN	Diameter steel wire	17 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Z (vertical) resultant force [kN]	36,25 kN	Total horizontal force	145 kN	
Weight castable shell [kg]	3313,61 kg	Volume	1.44 m³	
Reduction of weight vs. hollow-core [%]	36,4%	Comparison of floor	VBI 150mm	
Reduction of weight vs. solid floor [%]	69,12%	Comparison floor	240 mm 2300kg concrete	

The results

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**
- 4. RESULTING *FLOORSLABS*

The resulting floorslabs

3600 x 5400 mm

Results	Description	Unity checks	Description	Description
Max compression stress P1 [N/mm2]	-4,14 N/mm2	Unity check	0.207 [-]	Passed UC > 1
Max compression stress P2 [N/mm2]	-16,7 N/mm2	Unity check	0.89 [-]	Passed UC > 1
Max tensile stress P1 [N/mm2]	1,47 N/mm2	Unity check	0.98 [-]	Critical UC
Max tensile stress P2 [N/mm2]	0,06 N/mm2	Unity check	0.04 [-]	Passed UC > 1
Max tensile stress LC 1 [N/mm2]	1,22 N/mm2	Unity check	0.81 [-]	Passed UC > 1
Max tensile stress LC 2 [N/mm2]	0,96 N/mm2	Unity check	0.64 [-]	Passed UC > 1
Max tensile stress LC 3 [N/mm2]	1,48 N/mm2	Unity check	0.99 [-]	Passed UC > 1
X (horizontal) resultant force [kN]	143,66 kN	Diameter steel wire	14 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Y (horizontal) resultant force [kN]	218,22 kN	Diameter steel wire	17 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Z (vertical) resultant force [kN]	36,25 kN	Total horizontal force	145 kN	
Weight castable shell [kg]	3313,61 kg	Volume	1.44 m³	
Reduction of weight vs. hollow-core [%]	36,4%	Comparison of floor	VBI 150mm	
Reduction of weight vs. solid floor [%]	69,12%	Comparison floor	240 mm 2300kg concrete	

The results

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**
- 4. RESULTING *FLOORSLABS*

The resulting floorslabs

3600 x 5400 mm

Results	Description	Unity checks	Description	Description
Max compression stress P1 [N/mm2]	-4,14 N/mm2	Unity check	0.207 [-]	Passed UC > 1
Max compression stress P2 [N/mm2]	-16,7 N/mm2	Unity check	0.89 [-]	Passed UC > 1
Max tensile stress P1 [N/mm2]	1,47 N/mm2	Unity check	0.98 [-]	Critical UC
Max tensile stress P2 [N/mm2]	0,06 N/mm2	Unity check	0.04 [-]	Passed UC > 1
Max tensile stress LC 1 [N/mm2]	1,22 N/mm2	Unity check	0.81 [-]	Passed UC > 1
Max tensile stress LC 2 [N/mm2]	0,96 N/mm2	Unity check	0.64 [-]	Passed UC > 1
Max tensile stress LC 3 [N/mm2]	1,48 N/mm2	Unity check	0.99 [-]	Passed UC > 1
X (horizontal) resultant force [kN]	143,66 kN	Diameter steel wire	14 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Y (horizontal) resultant force [kN]	218,22 kN	Diameter steel wire	17 mm	DIN3064 6x36 warrington- seale+steelcore cable (eurocable)
Z (vertical) resultant force [kN]	36,25 kN	Total horizontal force	145 kN	
Weight castable shell [kg]	3313,61 kg	Volume	1.44 m³	
Reduction of weight vs. hollow-core [%]	36,4%	Comparison of floor	VBI 150mm	
Reduction of weight vs. solid floor [%]	69,12%	Comparison floor	240 mm 2300kg concrete	

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**
- 4. RESULTING *FLOORSLABS*

The resulting floorslabs 3600 x 5400 mm

Incidental point load, might result in tension

- 1. INTRODUCTION OF THE FLOORING SYSTEM
- 2. BOUNDARY CONDITIONS
- 3. OPTIMIZATION SCRIPT
- 4. RESULTING FLOORSLABS

Tensile stresses are guiding In thin-shell floorslabs

- 1. INTRODUCTION OF THE FLOORING SYSTEM
- 2. BOUNDARY CONDITIONS
- 3. OPTIMIZATION SCRIPT
- 4. RESULTING FLOORSLABS

Tensile stresses are guiding In thin-shell floorslabs

Reduction of 69% of weight
While intergrating fabrication constraints

SECTION III EVALUATION

- 1. INTRODUCTION OF THE FLOORING **SYSTEM**
- 2. BOUNDARY **CONDITIONS**
- 3. OPTIMIZATION **SCRIPT**
- 4. RESULTING **FLOORSLABS**

Tensile stresses are guiding In thin-shell floorslabs

Reduction of 69% of weight While intergrating fabrication constraints

Multiple loadcases are guiding in the optimization process

SECTION III
EVALUATION
OF THE HYPOTHESIS

Hypothesis

Fabrication-aware, structurally optimized floor slabs can significantly reduce the environmental impact of concrete construction.

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

Life Cycle Assessment (LCA) Of the product stage

SECTION III EVALUATION

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

Life Cycle Assessment (LCA) Of the product stage

- The product stage, as it accounts for more than 80% of the embodied emissions

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

Life Cycle Assessment (LCA) Of the product stage

Virtual office building

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

Life Cycle Assessment (LCA) Of the product stage

Virtual office building

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

Life Cycle Assessment (LCA) Of the product stage

Virtual office building

Ten flooring systems compared 5400 mm span flooring systems

Ten flooring systems 5400 mm span flooring systems

Ten flooring systems Overall environmental impact in shadowcost (3600 mm x 5400 mm)

Ten flooring systems Overall environmental impact in shadowcost (3600 mm x 5400 mm)

Overall environmental impact

Ten flooring systems Overall environmental impact in shadowcost (3600 mm x 5400 mm)

Overall environmental impact

Ten flooring systems Overall environmental impact in shadowcost (3600 mm x 5400 mm)

Overall environmental impact

Ten flooring systems Overall environmental impact in shadowcost (3600 mm x 5400 mm)

Ten flooring systems Global warming potential in shadow cost (3600 mm x 5400 mm)

Summary Conclusion and Outlook

161

Main research question

Process-related material requirements

Reinforcement

Life cycle cost

In what manner can we use additive manufacturing and structural optimization in the building sector to address the environmental impact of concrete construction?

85% of the emissions is the binder

Fabrication-aware, structurally optimized floor slabs can significantly reduce the environmental impact of concrete construction.

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

Research through design

- A derivative free optimimization approach allows for the succesful intergration of fabrication constraints and multiple loadcases in the optimization process.

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

Research through design

- A derivative free optimimization approach allows for the successful intergration of fabrication constraints and multiple loadcases in the optimization process.

This adresses a current gap in literature, on a derivative approach for concurrent structural design problems.

Reducing the environmental impact of concrete construction through fabrication-aware, structurally optimized floor slabs

Research through design

- Thin-shell flooring systems which utilize membrane action, result in a significant reduction in both carbon and environmental footprint.

"Although reinforced concrete has been used for over a hundred years and with increasing interest during the last decades, few of its properties and potentialities have been fully exploited so far. Apart from the unconquerable inertia of our own minds, which do not seem to be able to adapt freely any new ideas, the main cause of this delay is a trivial technicality: The need to prepare wooden frames." – Nervi, 1956

Designing sustainable by designing with less material,

Designing sustainable by designing with less material, with a smaller impact,

173

Designing sustainable by designing with less material, with a smaller impact, in an easy to construct way

174

Designing sustainable by designing with less material, with a smaller impact, in an easy to construct way

A step towards a more sustainable building sector

Thanks for listening

