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The miracle of the appropriateness of the language of mathematics for the formulation of
the laws of physics is a wonderful gift which we neither understand nor deserve. We

should be grateful for it and hope that it will remain valid in future research and that it
will extend, for better or for worse, to our pleasure, even though perhaps also to our

bafflement, to wide branches of learning.

Eugene Wigner
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ABSTRACT

As the age of digitization evolves rapidly, there is an ever-increasing demand for im-
proving precision and decreasing production times for industrial automation in general,
and semiconductor manufacturing in particular. As these complex machines incorpo-
rate flexural elements to overcome friction and backlash, structural vibrations pose a
new challenge. Hence the need for controlling and quickly damping these vibrations
are paramount. In this thesis, a novel reset-based bandpass filter that employs velocity
feedback to achieve finite-time vibration suppression for damped systems is introduced.
The development of this filter stems from an energy based mechanistic approach, pro-
viding a clear understanding of the underlying mechanism for the improved transient
response, which also motivates the use of reset. Systematic tuning rules based on de-
scribing functions are also developed to enable design in the frequency domain, thereby
increasing its relevance for industries. Finally, the effectiveness of the Resetting Velocity
Feedback framework for improved transient damping is demonstrated experimentally
on a single degree-of-freedom flexure stage. The results are compared to a linear band-
pass filter and validates the advantages of reset control for achieving better transient
damping compared to linear control.
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PREFACE

This chapter serves as a guide for readers on how to efficiently go through the contents
of this Thesis by providing an overview of what to expect in the coming pages.

Chapter 1 provides an introduction to the thesis and sets the stage for the research
problem at hand, by motivating the need for active damping in general, and hybrid con-
trol for active damping in particular.

Chapter 2 provides the necessary background on existing linear active damping meth-
ods, motivates the need for nonlinear hybrid control in active damping, and introduces
the foundations of one such hybrid control method - reset control.

Once the background and state-of-the art methods are studied, the research gap and
research objectives will be established in Chapter 3.

Chapter 4 is presented in a conference/journal paper format. This forms the crux of
this Thesis. This chapter is self-contained and should provide the reader with an intro-
duction to the problem, the background information to understand the research, exper-
imental results of the research conducted, and conclusions and recommendations for
future work. If you are short on time, I would recommend reading this chapter alone, as
it includes the entirety of the research conducted.

Chapter 5 concludes the study and briefly summarizes the contributions
For readers who are interested in replicating/extending the experimental study, the

Appendices might be of interest.
Appendix A contains the MATLAB code for obtaining the describing function of the

proposed reset bandpass filter, and generating the FRFs from experimental data. Parts
of the former is adopted from the M.Sc. Thesis of Kars Heinen (2018) at TU Delft.

Appendix B gives a comprehensive treatment of the experimental setup, the compo-
nents used, its important technical specifications, and most importantly, certain tips on
how to perform experiments effectively. This includes but are not limited to, what set-
tings to choose for different components, which software versions to install for seamless
integration, installation instructions, the basic structure of a LabVIEW FPGA program
and an elaborate treatment of the experimental method. This might be beneficial for
someone who intends to replicate the results or extend the study further and plans to
use a similar setup.

I hope you find this preface useful and effective to optimize your time and energy
spent in understanding and appreciating the contents of this document.
Happy reading!

Mathew Mohan
Delft, July 2021
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1
INTRODUCTION

There are ever-increasing demands on both the accuracy and the throughput of high-
precision machines. Examples of such machines are lithographic wafer scanners for the
semi-conductor industry, scanning microscopes, and metrology systems like coordinate
measuring machines (CMMs). As these machines are designed to be light and prevent
friction and backlash, they employ flexure-based designs. Such designs unavoidably in-
troduces structural flexibility and vibrations. Aggressive set points are usually used to
increase the throughput of such machines. This leads to large reaction forces exerted on
the machine frames and, subsequently, heavy vibrations are induced by the machine it-
self. This is a huge concern in the precision and automation industries. To maintain the
accuracy levels needed for precision manufacturing, one has to wait for such vibrations
to settle, which ironically reduces the machine’s throughput. Hence, transient damping
performance becomes a key-factor in the performance of these machines.

Vibration damping techniques aim to suppress the resonant vibrations of flexible
structures by adding damping into these structures. They can be broadly classified into:

Passive Damping methods add damping to the structure by introducing additional
passive components like tuned-mass dampers, constrained-layer damping, magnetic
damping etc. These methods tends to add extra mass to the system and is not very easy
to tune for parametric variations, in case of a tuned-mass damper.

Semi-active Damping methods usually add damping to the structure using active
elements such as piezoelectric shunt circuits and magnetorheological dampers to effec-
tively dissipate vibration energy. In case of shunting circuits, this might at times result in
extremely large inductors. Furthermore, tune-ability is again an issue with such meth-
ods.

Active Damping methods use sensors, actuators, and a feedback control loop to ef-
fectively suppress vibrations of structures. These have the benefits of very low added
mass (depending on the choice of sensors and actuators) and ease of tune-ability since
it employs digital control design. Another advantage of such techniques that is less com-
monly addressed is the ability to alter the mode shapes of the structure [17, 18]. By clev-
erly placing the sensor-actuator pairs, and tuning the controller, it is possible to change
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the mode shapes of the structure. This is particularly important if there are vibration
sensitive equipments on board. By careful placement and tuning, these can be located
at the vibration nodes of the structure, and hence be locally isolated from vibrations.

Due to these advantages, active damping techniques are widely used in practice in
aerospace, automotive, precision, and automation industries. Active damping tech-
niques can be further classified into:

Non-modal techniques provides damping across the entire range of actuator band-
width. These were the first active damping techniques to be introduced for lightweight
flexible structures [Balas, 1979] and is now known as Direct Velocity Feedback (DVF or
DVFB). However, when the objective of active damping is to suppress the resonant vi-
brations of the structure, such an approach is highly inefficient as the actuator energy is
spread across a broad range of frequencies, making it highly energy inefficient.

Modal active damping techniques were introduced to tackle this issue. In such tech-
niques, the controller is a dynamic element with a certain filter behaviour. These are
usually tuned to one or more modes of the structure, and allows the actuators to con-
centrate their energy to these particular frequencies. These also tackle the problem of
instability and spillover, as mentioned in Chapter 2. They key idea of all modal damping
controllers is to provide a feedback signal proportional to the modal velocity, but oppo-
site in phase. This provides damping to the structure.

Existing state-of-the-art active damping techniques use linear feedback control to
actively damp these vibrations. However, certain nonlinear techniques seems to hold
high promise to achieve better transient performance than these linear techniques, while
being easy to design and implement.

The aim of this research thesis is to develop a nonlinear hybrid vibration control
technique that is easy to design and implement using frequency-domain analysis tools
and investigate if considerable transient damping performance gains can be achieved
over linear techniques, while ensuring robustness to plant variations. Furthermore, prac-
tical implementation and challenges that arise with this novel controller will also be in-
vestigated.

1.1. OUTLINE
The outline of this thesis is as follows:

• Chapter 2 provides the necessary background on existing linear active damping
methods, motivates the need for nonlinear hybrid control in active damping, and
introduces the foundations of one such hybrid control method - reset control

• Once the background and state-of-the art methods are studied, the research gap
and research objectives will be established in Chapter 3

• With the research objectives identified, the main contributions of this thesis will be
presented in Chapter 4. This is presented in a journal paper format, and includes
the development of the framework, and the numerical and experimental results

• Chapter 5 concludes the study and briefly summarizes the contributions



2
LITERATURE REVIEW

This chapter provides a review of the relevant literature for the remainder of this thesis.
In Section 2.1, the foundations of dynamics and linear control for active damping of flex-
ible structures are introduced. Section 2.2 provides a motivation to move beyond linear
control techniques and explore nonlinear hybrid control techniques for active damping
controllers. This is further illustrated in Section 2.3 which analyses Resetting Virtual Ab-
sorbers. This is a hybrid control technique that uses reset action to inject damping into
undamped systems. After demonstrating the effectiveness of reset, Section 2.4 provides
a comprehensive overview of reset control in both time- and frequency-domains.

2.1. ACTIVE DAMPING

2.1.1. DYNAMICS OF FLEXIBLE STRUCTURES
Flexible mechanical structures are distributed parameter systems. This means they have
an infinite number of flexible modes [Balas, 1979]. Therefore, to completely describe
their dynamic response we would need infinite degrees of freedom. However, for prac-
tical purposes like modelling and control, the vibration characteristics of these systems
can be approximated by a finite number of flexible modes resulting in a lumped param-
eter system . These modes can be obtained by finite-element modelling, modal anal-
ysis or system identification [Moheimani and Fleming, 2006]. Once these modes are
obtained, they can be expressed in the frequency domain through Fourier transforms.
Mathematically, the transfer function from the force input to the displacement output of
the lumped parameter system G can be expressed in the frequency domain as the sum
of M modes by

G =
M∑

i=1

ω2
i

s2 +2ζiωi s +ω2
i

(2.1)

where ζi and ωi corresponds to the damping ratio and eigenfrequency of the i th
flexible mode, and s is the Laplace variable. A more accurate model which accounts
for the truncated flexible modes, also called as residual modes is defined as [Preumont,
1999]

3
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G =
M∑

i=1

ω2
i

s2 +2ζiωi s +ω2
i

+R (2.2)

where R is the effect of residual modes. The effect of R in frequency domain is a con-
stant static gain for all frequencies [Holterman, 2002]. This feed-through term is often
essential to model the system well, especially when using feedback controllers that use
collocation [Moheimani and Fleming, 2006].

Such a description effectively allows us to treat a continuous flexible structure as
a collection of independent mass-spring-damper systems and develop active damping
techniques for each of these independent systems.

2.1.2. COLLOCATION AND DUALITY
Collocated systems are systems where sensors and actuators are attached to the same
degree of freedom of the system. In practice, this is realized by having the sensor-actuator
pair at the same location. Duality refers to the sensing and actuating variable pair, whose
product should equal the energy transfer (for example, position sensing and force actua-
tion, or angular position and moment actuation). Perfectly collocated and dual systems
enjoy an interesting property that their poles and zeros interlace, and their phase always
lies between 0 and -180 degrees, as shown in Figure 2.1 . This makes them uncondition-
ally stable even in the presence of out-of-bandwidth dynamics, as long as there are no
additional controller, actuator, and filter dynamics. In a collocated system, the FRF from
the actuator to the sensor for the i th mode is represented by

G = φ2
i

s2 +2ζiωi s +ω2
i

(2.3)

where φi is the modal displacement at the actuator/sensor location.

Figure 2.1: Bode plot of a lightly damped collocated system [Preumont, 1999]

Perfect collocation is very difficult to achieve, unless we have a self-sensing actuator.
In most cases, the actuator and sensor are placed very close to each other to give rise to
nearly collocated setups. As long as both the actuator and the sensor have the same sign
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for modal displacement, and similar magnitudes, these systems shows the similar sta-
bility and robustness properties. Hence for practical purposes, this is usually preferred.

2.1.3. LINEAR ACTIVE DAMPING METHODS
A variety of active damping methods exist. In this section some of these methods will
be briefed upon. Broadly speaking, active damping controllers can be modal or non-
modal controllers. Non-modal controllers do not target to damp a particular mode of
the system. Direct Velocity Feedback (DVF) is an example of such a controller. Modal
controllers are designed and tuned to damp certain modes of the system. These include
Positive Position Feedback (PPF) and Negative Derivative Feedback (NDF).

DIRECT VELOCITY FEEDBACK

Historically, one of the first active damping methods used for structural vibrations was
Direct Velocity Feedback (DVF), by Balas [Balas, 1979]. In this method, the structural
velocity of vibration is fed back in a negative fashion, thereby introducing damping to
the structure. Schematically this is represented in Figure 2.2 , where the velocity signal is
amplified by a gain g .

Figure 2.2: Block diagram of Direct Velocity Feedback

This was initially reported to be unconditionally stable for all positive gain values,
but [GOH and CAUGHEY, 1985] later proved otherwise. When actuators have a finite
bandwidth (as is the case, always), modes above this bandwidth could go unstable. Fur-
thermore, DVF is a non-modal damping approach. This means that the control energy is
used throughout the actuator bandwidth, thereby making it highly inefficient. To over-
come these issues, Positive Position Feedback (PPF) was introduced.

POSITIVE POSITION FEEDBACK

Introduced by Fanson and Caughey, [Fanson and Caughey, 1990] in PPF position which
is positively fedback through a second order filter, resembling the dynamics of the plant.
In essence, a PPF filter is a second order low-pass filter, tuned to the natural frequency
of the mode to be suppressed, which provides effective damping at this target frequency.
The structure PPF is shown in Figure 2.3 . For the single DOF plant

q̈ +2ζcωp q̇ +qω2
p = f (2.4)

The PPF compensator dynamics is represented by

η̈+2ζcωc η̇+ηω2
c = qω2

c (2.5)
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The control action generated by the PPF controller is

f = gη (2.6)

ωc is usually chosen equal toωp . g denotes the PPF gain, and ζc denotes the damping
ratio of the compensator. A lower value of ζc provides a higher control force.

Figure 2.3: Block diagram of Positive Position Feedback

PPF is not unconditionally stable, and as mentioned in [Preumont, 1999] g > 1 shifts
the closed loop poles to the RHP. Another limitation of PPF is its low-frequency spillover.
The high DC gain of the low pass filter alters the frequency of all modes with a frequency
lower than ωc . This makes PPF tuning for multi-modal situations difficult as higher
modes need to be damped first. It also introduces a steady-state position error, which
manifests as increased steady-state gain as shown in Figure 2.4. This issue can be re-
duced by using a fractional-order PPF filter [Marinangeli, 2016]. In [Creasy et al., 2008] a
bandpass filter was added to PPF to eliminate low-frequency spillover. However, adding
a bandpass filter in series with PPF requires re-tuning of the PPF filter, and also results in
a marginally worse resonant damping performance. In [citePPFtuning], a comprehen-
sive PPF tuning strategy was developed for maximum damping, using an H2 optimiza-
tion approach, for damping a single mode.

Figure 2.4: Damping the second mode using PPF reults in low frequency spillover and increased static gain

NEGATIVE DERIVATIVE FEEDBACK

In [Cazzulani et al., 2012] Negative Derivative Feedback (NDF) was introduced to over-
come the spillover and stability limitations of PPF. In NDF, velocity is fed back negatively
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though a linear second-order bandpass filter, tuned to ωc . The compensator is repre-
sented by

η̈+2ζcωc η̇+ηω2
c = k(q̇ − η̇) (2.7)

the control force being

f =−η̇ (2.8)

The block diagram representation is given in Figure 2.5 . The bandpass characteristics
of NDF prevent spillover at low and high frequencies. Unlike PPF, increasing the gain g
above unity does not result in instability. This gives more design freedom and, as stated
in [Cazzulani et al., 2012], better damping performance compared to PPF.

Figure 2.5: Block diagram of Negative Derivative Feedback [Cazzulani et al., 2012]

The main advantage of using such bandpass filters is that they act as modal filters
[Kim and Oh, 2013]. Each modal filter of second order is designed to be sensitive to the
target mode for control, while insensitive to the others. This is shown in Figure 2.6 where
two bandpass filters are used in parallel for active damping of two structural modes. This
means they can be effectively used for both collocated as well as non-collocated con-
trol. In case of out-of-phase modes that result from non-collocation, a positive feedback
strategy can be employed instead of negative feedback, and effective damping can be
achieved. Using non-collocated control over collocated control also comes with addi-
tional benefits. Non-collocated plants generally exhibit better high-frequency roll-off
characteristics because there are weaker mechanical and electrical feed-through cou-
plings between non-collocated transducers.

Figure 2.6: Two NDF filters in parallel H( jω) are used to damp two modes of the structure G( jω) without
spillover [Kim and Oh, 2013]
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2.2. MOTIVATION FOR HYBRID DAMPING CONTROLLERS
The controllers discussed so far were linear controllers. As these are designed in the
frequency domain using frequency response functions, they do not explicitly take tran-
sient damping performance into account. This begs the question: can nonlinear control
techniques improve active transient damping performance of flexible structures?

Nonlinear control techniques include feedback linearization, adaptive control, con-
trol laws based on passivity and Control Lyapunov Functions etc. These control tech-
niques generate smooth nonlinear feedback laws, and the state trajectories are continu-
ously differentiable. Hybrid control is a class of nonlinear feedback control which uses a
class of feedback laws and a switching logic, to switch between the feedback laws. This
introduces discrete dynamics along with continuous dynamics, hence the term ’hybrid’
control. This discrete nature and switching action results in trajectories that are non-
smooth and non-differentiable, which could be advantageous in certain instances.

The interest in hybrid control comes from multiple sources. For one, hybrid feed-
back can be used to provide efficient solutions to local and global feedback stabilization
problems that cannot be solved by classical feedback control [Astolfi et al., 2008]. In ad-
dition, the added flexibility of hybrid control sometimes allows the designer to achieve
closed- loop responses not possible with classical linear and smooth nonlinear feedback
control. A case in point is that for a double integrator system to have zero-steady state
error, it is proven that the response must overshoot. However, with hybrid control it is
possible to achieve zero steady-state error without overshoot [Feuer et al., 1997]. Hybrid
control can also show properties of the multiple independent feedback laws [Astolfi et
al., 2008].

One of the most well-known hybrid control strategies to improve the transient per-
formance of linear (motion) systems is reset control. A reset controller is an LTI control
system of which the state, or a subset of the state is reset to a certain value (usually zero)
whenever appropriate algebraic conditions on its input and output are satisfied. Reset
control has its origin in 1958 by the introduction of the so-called Clegg integrator. The
Clegg integrator was proposed to overcome the inherent performance limitation in LTI
control related to a balance between settling time and overshoot. For example, track-
ing in linear systems is always a trade-off between a fast-response and high overshoot,
versus a slower response to achieve lower overshoot. This can be overcome using reset
control as illustrated in Figure 2.7. Reset control produces zero overshoot for the same
rise-time for tracking.

Another hybrid control strategy that focuses on the integral action of the controller
in order to improve the transient performance is given in [Feuer et al., 1997], in which a
switched integral controller is proposed for an LTI plant consisting of an integrator. In
[M. F. Heertjes and Vardar, 2013], a sliding mode controller with a saturated integrator
is studied, which essentially switches between proportional-derivative (PD) control and
proportional-integral-derivative (PID) control in order to limit the overshoot while still
achieving a zero steady-state error. In a similar context, the concept of composite non-
linear feedback in [Lin et al., 2011] combines two linear control laws with a nonlinear
tuning function to improve the transient response of second-order LTI systems. Hybrid
Integrator Gain Switching (HIGS) was developed by [Deenen et al., 2017], which used a
switching logic to switch between an integrating mode and a proportional mode. Such
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Figure 2.7: Response to a step input with a linear and reset controller. Reset controller results in a similar rose
time with zero overshoot [Guo et al., 2015]

a controller showed phase advantages in the frequency domain similar to reset control.
This has been used to improve tracking, transient response, and disturbance attenua-
tion. In [M. Heertjes et al., 2019], a HIGS-based bandpass filter was developed for active
vibration isolation, to improve transient damping performance.

The abundance of existing literature which shows that hybrid control can improve
transient performance is what motivates the use of hybrid control for active damping.

As opposed to linear controllers, the design and tuning of hybrid controllers is often
rather complex and requires additional expertise of the control engineer. In this context,
it is important to mention that control engineers (in industry) are often used to analyzing
performance, and to design stabilizing controllers, based on ‘linear’ frequency-domain
characteristics of a closed-loop control system, such as the sensitivity function and com-
plementary sensitivity function. Often, the design and analysis of hybrid controllers re-
quires accurate parametric models and solving linear matrix inequalities (LMIs), which,
from an industrial point-of-view, introduces considerable design complexity and is not
easily embraced.

2.3. HYBRID CONTROL FOR ACTIVE DAMPING - RESETTING VIR-
TUAL ABSORBERS

The concept of a resetting virtual absorber is based on the insightful analysis found in
[R. T. Bupp et al., 2000, R. Bupp et al., 1996] which shows how reset can inject damp-
ing into an undamped system consisting of a single degree-of-freedom oscillator and an
emulated vibration absorber, for finite-time vibration suppression.

Consider a single degree-of-freedom undamped oscillator with mass M and stiffness
K , in series with an emulated dynamic vibration absorber with mass m and stiffness k,
whose states (position and velocity), can be instantaneously reset to zero. This is shown
in Figure 2.8. This emulated vibration absorber can be considered an active damping
controller, which uses the position of mass M as its input [Kim and Oh, 2013]. As a block
diagram, this can be represented as shown in Figure 2.9 (the diagonal arrow denotes a
reset element).
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Figure 2.8: The model of a Resetting Virtual Absorber [R. Bupp et al., 1996]

Figure 2.9: Block diagram representation of the RVA framework

For an impulse excitation to mass M , for m = 1.33M and k = 1.33K [R. Bupp et al.,
1996], the response of the system is shown in Figure 2.10. When the position of mass M
reaches zero for the first time, the velocities of masses M and m are also simultaneously
zero, as indicated in Figure 2.10. Therefore, the energy contained in the system at this
instant is uniquely due to the compression of spring k, i.e., the non-zero position of mass
m. In other words, all the energy is contained within the emulated absorber.

Figure 2.10: Response of the system in Figure 4.5 to an impulse excitation on mass M

If the states (virtual position and velocity) of the emulated absorber (controller) are
reset to zero at this exact instant, the total energy in the system is instantaneously dissi-
pated before it redistributes it to the states of mass M . Hence, damping is injected into
the system by resetting the states of the controller. This results in finite-time suppression
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of the oscillations of mass M , as shown in Figure 2.11. Reset is the only source for damp-
ing as this system has no natural damping whatsoever. The control effort is the force
provided by the compression of spring k and can be seen to follow a smooth trajectory
until the point where the position of mass M hits zero. It is then instantaneously reset to
zero as shown in Figure 2.11.

Figure 2.11: Finite-time vibration suppression using RVA [R. Bupp et al., 1996]

2.3.1. UNDERLYING CONTROLLER PRINCIPLE
Further insight into the underlying controller principle can be obtained by analyzing the
system in Figure 2.8 from its equations of motion.

The equation of motion for mass M is given by

M s2X1 +K X1 = u (2.9)

where X1 is the position of mass M in the laplace domain, s is the laplace variable
and u is the force exterted by spring k given by

u = k(X2 −X1) (2.10)

where X2 is the absolute displacement of mass m . Similarily, the equation of motion
for mass m is

ms2X2 +k(X2 −X1) = 0 (2.11)

From this X2 can be obtained as follows

X2 = k X1

ms2 +k
(2.12)

Substituting this in equation 2.9, we have

u

X1
= −kms2

ms2 +k
(2.13)
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This represents the transfer function of the emulated absorber, with X1 as the input
(position feedback) and u as the control output. Therefore, we see that this is a Negative
Position Feedback (NPF) controller with high-pass filter characteristics, whose states can
be reset to zero when a condition is met (in this case when X1 = 0). Schematically this
is shown as a block diagram in Figure 2.9. Note that in [R. Bupp et al., 1996] the reset
instants were not specified by analyzing the states, but rather the time instant when X1 =
0, which was found analytically. However, in the framework of reset control, state-based
resets are more common, as they are more well-studied [Guo et al., 2015]. Hence we will
be adopting such an approach in Chapter 4.

Although the structure Resetting Virtual Absorbers is that of an NPF controller, we
see that the damping response as shown in Figure 2.11 is not of that of a linear con-
troller, since it achieves finite-time stabilization. Reset action provides this improvement
in damping performance, and the main idea of this thesis will be to see if such controllers
can be used for active damping of flexible structures.

2.4. RESET CONTROL
Reset control is a class of hybrid control techniques governed by continuous and discrete
dynamics. Such systems in hybrid dynamical system theory is also referred to as Jump-
Flow systems.

The first ever reset control strategy was proposed by J.C. Clegg in 1958 [Clegg, 1958]
and was called the Clegg Integrator (CI). A CI used an analogue electronics circuit (Figure
2.12) with a switching logic to ensure that the input and output always has the same sign.
Mathematically, this meant that the product of the input and output signals of a CI was
always positive, as described below{

ẋc = 1
RC e, is allowed when xc e ≥ 0

x+
c = 0, is allowed when xc e ≤ 0

(2.14)

Figure 2.12: A Clegg Integrator circuit [Prieur et al., 2018]

Lets call the first equation of Equation 2.14 the “flow” equation and its second equa-
tion the “jump” equation. The two conditions at the right hand side become then the
“flow” condition and the “jump” condition. At any time, a solution to the hybrid system
may then flow or jump depending on whether its value at that time belongs to the so-
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called “jump set”, J (namely, the set of states for which the jump condition is true) or it
belongs to the “flow set”, F .

An intuitive way to interpret the dynamics is to regard it as a linear filter with a pole
at the origin embedded with a special resetting rule dependent on the value of the input
and output of the filter at each time. The fact that e and xc always has the same sign
is fundamental to the idea that such a reset element reduces phase lag, compared to a
linear counterpart.

With the slow adaptation of digital control systems, the reset condition specified by
Clegg depending on the input and output having the same sign got diluted. A new for-
mulation was adopted based on logic arguments, easier to implement in digital con-
trollers given by Equation 2.15{

ẋc = ac xc +bc e, if e 6= 0

x+
c = 0, if e = 0

(2.15)

Although this initially looks the same, the state-space formulation reveals subtle dif-
ference in flow and jump sets as shown in Figure 2.13. The new formulation in Equation
2.15, leads to ”thin” jump sets which results in inferior robustness properties as opposed
to the original model. This leads to more conservative stability proofs, and is an active
field of research [Prieur et al., 2018]. In this thesis we will be analyzing the model given by
Equation 2.16. A general description of such a reset element can be given in state-space
form as


ẋc = Axc (t )+Be(t ), if e 6= 0

x+
c = 0, if e = 0

y(t ) =C xc (t )+D

(2.16)

Figure 2.13: The jump (grey) and flow (striped) sets for the revised model (left), and original model (right)
proposed by Clegg [Prieur et al., 2018]

The time-domain response of such an integrator is shown in Figure 2.14. As can be
seen, whenever the input crosses zero, the output of the CI resets to zero. At all other
instances, it follows a similar trajectory as a linear integrator. It is also worth noting that
the reset action ensures the output and the input has the same sign at all times. This
leads to lower inertia of the integrator.
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Figure 2.14: The output of a Clegg integrator compared to a linear integrator for a sinusoidal input

2.4.1. RESET CONTROL IN FREQUENCY DOMAIN

SINUSOIDAL INPUT DESCRIBING FUNCTIONS

Linear controllers are mostly designed using frequency domain techniques such as loop
shaping. For this, the transfer functions of the controllers are represented in the fre-
quency domain as Frequency Response Functions (FRFs). Similarly, a Describing Func-
tion (DF) is a quasi-linearization of a nonlinear element subject to certain excitation
input used to approximately analyze the behavior of nonlinear systems. DF is a power-
ful tool in investigating behaviors of elements with hard non-linearities including dead
zone, backlash, and hysteresis, and has been applied in limit cycle prediction and con-
trol design [Vidyasagar, 1993].

The Sinusoidal Input DF (SIDF), which uses sinusoidal inputs as excitation signals,
is most widely used [Saikumar et al., 2021], as this is independent of the magnitude of
the input signal, and only depends on the frequency, similar to a transfer function. The
SIDF of a Clegg Integrator can be represented as G(ω)

G(ω) =C ( jωI − A)−1 (
I + jΘD (ω)

)
B +D

withΘD (ω) =−2ω2

π
∆(ω)

[
Γr (ω)−Λ−1(ω)

]
Λ(ω) =ω2I + A2

∆(ω) = I +e
π
ω A

∆r (ω) = I + Ar e
π
ω A

Γr (ω) =∆−1
r (ω)Ar∆(ω)Λ−1(ω)

(2.17)

where A B C D are the state space matrices of the reset element. The DF of a Clegg
Integrator in frequency domain is shown in Figure 2.15. It is clear that the magnitude
closely resembles the characteristics of a linear integrator, but the phase has a lead of
52◦ as compared to the linear case. This effect is due to the reset action, and is a clear
violation of Bode’s gain-phase relationship. Researchers have used this to obtain higher
bandwidths and better time domain characteristics [Guo et al., 2015].

It should be noted that although SIDFs produce a sinusoidal output, this is just an ap-
proximation. The output of a Clegg Integrator contains jumps, resulting in sharp edges.
These sharp edges cannot be accurately captured with a single harmonic. When exam-
ining the describing function of the Clegg integrator to a sinusoidal input, the describing
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Figure 2.15: Describing Function of a Clegg Integrator compared to a Linear Integrator

function suggests that the output is a sine wave with a phase shift of −38◦. However, the
output is very different as seen in Figure 2.16. This is essential to keep in mind while de-
signing reset filters that, DFs can only be used as a primary tool and only a time-domain
simulation or experiments can give insights of how the system would really behave.

Figure 2.16: Actual output compared to a describing function output of the Clegg integrator

HIGHER ORDER SINUSOIDAL INPUT DFS (HOSIDFS)
Nonlinear systems when subjected to a single input generates multiple harmonics, in
contrast to a linear system. The SIDF described earlier is just the fundamental or first
harmonic of the output of a reset system. Higher order harmonics are also generated
and these are termed as Higher Order Sinusoidal Input Describing Functions (HOSIDFs),
as mentioned in [Nuij et al., 2006]. The nonlinear system can be visualized as a virtual
harmonic generator as shown in Figure 2.17. When a sine wave of frequency ω is in-
serted, the virtual harmonic generator generates harmonics of frequencies ω, 2ω, 3ω, ...,
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nω. These harmonics are inserted in several describing functions denoted with Hn(ω)in
Figure 2.17. The even harmonics are zero for reset systems.

This means the DF representation in frequency domain of a reset system can be ex-
tended by including HOSIDFs as G(ω,n), where n denotes the nth harmonic

G(ω,n) =



C ( jωI − A)−1
(
I + jΘD (ω)

)
B +D for n = 1

C ( jωnI − A)−1 jΘD (ω)B for odd n ≥ 2
0 for even n ≥ 2

withΘD (ω) =− 2ω2

π ∆(ω)
[
Γr (ω)−Λ−1(ω)

]
Λ(ω) =ω2I + A2

∆(ω) = I +e
π
ω A

∆r (ω) = I + Ar e
π
ω A

Γr (ω) =∆−1
r (ω)Ar∆(ω)Λ−1(ω)

(2.18)

Figure 2.17: Virtual harmonics generator and higher order DFs of a reset system

These higher order harmonics can considerably affect the performance of a reset
control system by introducing high frequency dynamics and excessive control action.
It can also affect the loop-shaping design process that is usually adopted to design reset
control systems in frequency-domain, if the relative magnitudes of HOSIDFs are compa-
rable or greater than the magnitudes of the first harmonic. Several strategies have been
adopted to tackle this issue such as bandpassing non-linearities in a certain frequency
band [Karbasizadeh et al., 2020], optimization based design of reset control to suppress
higher order harmonics [Saikumar et al., 2021].

FIRST ORDER RESET ELEMENT (FORE)
The First Order Reset Element (FORE) was introduced by [HOROWITZ and ROSENBAUM†,
1975] as a generalization of the Clegg Integrator. A FORE can be considered as a reset ver-
sion of a first order low-pass filter, in the frequency domain. In state-space form, a state
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matrix A is added to to the continuous-time dynamics, in addition to the input matrix.
This is represented as 

ẋc =−ωxc (t )+ωe(t ), when e(t ) 6= 0

x+
c = 0, when e(t ) = 0

y(t ) = xc (t )

(2.19)

where ω is the corner frequency for the low-pass action. In the frequency-domain,
the DF and HOSIDFs of a FORE can be represented as shown in Figure 2.18. Here we
see that the magnitude characteristics of the first harmonic closely resembles that of a
linear low-pass filter, but the phase lag at high frequencies is only −38◦. This phase has
been used to obtain higher bandwidths for servo systems [Guo et al., 2009]. Since the
magnitude of HOSIDFs are lower compared to the first harmonic for a FORE, the DF of a
FORE serves as a good analytical tool for loop-shaping-like controller design techniques.

Figure 2.18: Describing functions and HOSIDFs of a FORE
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3
RESEARCH GAP AND OBJECTIVES

In Chapter 2 we covered the existing state-of-art in active damping, and reset control for
vibration suppression. We saw that an RVA was able to provide finite-time stabilization
for an undamped system. However, even introducing a small amount of damping poses
a problem as the plant position never crosses zero when the velocities cross zero (further
emphasized in Chapter 4). This means that a reset law based on position feedback no
longer works for lightly damped systems. It is also worth mentioning that, if there are pa-
rameter uncertainties in the system, the damping performance is affected considerably
when using an RVA. Furthermore, the high-pass characteristics of RVAs are not ideal for
spillover, if the system to be damped has multiple resonance modes.

In [R. T. Bupp et al., 2000, R. Bupp et al., 1996], RVA design was performed by ana-
lytically solving differential equations. Since we have frequency domain techniques at
our disposal for reset controller synthesis, it is also natural to consider this approach
as a more user-friendly alternative for controller synthesis, especially from an industrial
point-of-view.

In [Heertjes et al., 2019], a HIGS bandpass filter was used to improve transient re-
sponse for active vibration isolation compared to linear techniques. However, this needed
high control gains to achieve any conceivable performance advantages over linear con-
trollers. Although the HIGS bandpass filter was designed using describing functions in
the frequency-domain, the underlying mechanism by which it provides better transient
response, and its relation to the frequency-domain attributes were not fully explored. In
[Raimúndez et al., 2011], reset control was used to inject damping by employing an opti-
mal port-Hamiltonian approach. However, this also did not employ frequency-domain
techniques to design reset controllers for active damping.

These research gaps illustrate the following problems:

• Linear control techniques do not take transient damping performance into ac-
count explicitly. Furthermore, they are limited by Bode’s gain-phase relationship
and the trajectories have to be continuously differentiable. Hence the levels of
transient damping performance they can achieve are limited

21
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• Resetting Virtual Absorbers are not effective for damped plants, and HIGS does not
provide a clear understanding of the physics behind how the hybrid action results
in better transient damping

• Most nonlinear hybrid damping control methods cannot be designed in the frequency-
domain, and this limits its relevance for industries

Hence, the research objectives are formulated as follows:

• Develop a reset control strategy for improved transient damping for damped plants.
This strategy should provide a clear idea of the underlying principle that results in
improved transient damping performance

• Enable the design of such a controller in the frequency-domain and provide rules-
of-thumb for quick controller synthesis

• Validate this newly developed active damping strategy on an experimental setup to
demonstrate its effectiveness and compare its performance to a linear counterpart

• Explore its sensitivity to tuning parameters and system delays



4
RESETTING VELOCITY FEEDBACK:

RESET CONTROL FOR IMPROVED

TRANSIENT DAMPING

M.A. Mohan M.B. Kaczmarek S.H. HosseinNia

ABSTRACT Active vibration control (AVC) is crucial for the structural integrity, precision,
and speed of industrial machines. Despite advancements in nonlinear control techniques,
most AVC techniques predominantly employ linear feedback control due to their simplic-
ity and ability to be designed in the frequency domain. In this paper we introduce a reset-
based nonlinear bandpass filter that uses velocity feedback to improve transient damp-
ing of vibrating structures. The approach is motivated from an energy-based mechanistic
analysis, which incentivizes the use of reset. A novel feature of our approach is that it works
for non-ideal, naturally damped systems, and enables control design in the frequency do-
main, thus making it industry friendly. We demonstrate the effectiveness of this new filter
by numerical simulations and experimental validation on a single degree-of-freedom flex-
ure stage.
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4. RESETTING VELOCITY FEEDBACK: RESET CONTROL FOR IMPROVED TRANSIENT

DAMPING

4.1. INTRODUCTION

A S the age of digitalization evolves rapidly, there is an ever-increasing demand for
improving precision and decreasing production times for industrial automation in

general, and semiconductor manufacturing in particular. As these complex machines
incorporate flexural elements to overcome friction and backlash, structural vibrations
pose a new challenge. These structural resonance modes result in vibrations that re-
duces the precision, and considerably increase settling times, and thus decreasing the
productivity of such devices. Hence, the need for controlling and quickly damping these
vibrations is paramount.

Active vibration control is a well-studied problem. In most industries, linear control
methods are the most dominant. These techniques have the advantages of being easy
to analyze and tune, owing to their analysis and design in the frequency-domain. This is
particularly advantageous in an industrial setting where loop-shaping methods are pre-
ferred. However, these frequency-domain based linear techniques do not explicitly take
transient performance into account, which directly relates to settling times. Moreover,
nonlinear control techniques hold better promise compared to linear ones, as they are
not restricted by Bode’s gain-phase relationship, and hence offer better flexibility and
trade-offs.

To this end, in [Chen et al., 2002], a nonlinear technique called QMPPF was used to
damp forced vibrations, focusing on steady-state damping. In [Olgac and Holm-Hansen,
1995], another nonlinear technique called delayed resonant feedback was used, based
on the principle of an electrical realization of a delayed vibration absorber, to absorb the
steady-state resonant oscillations. However, both these techniques focus on steady-state
damping performance. In addition to this, the frequency-domain analysis tools are ren-
dered ineffective for the latter. Therefore, we require a nonlinear control technique that
can be designed in the frequency-domain, thereby increasing its relevance for industries.

Reset control is a nonlinear hybrid control technique that uses jumps in state tra-
jectories to improve transient performance, [Guo et al., 2015] and allow design in the
frequency-domain using Describing Functions (DF). In the insightful work in [R. T. Bupp
et al., 2000], Resetting Virtual Absorbers (RVAs) were introduced to achieve finite-time vi-
bration attenuation for plants without damping. This analysis was motivated by energy
principles and damping injection through reset, thereby providing a clear incentive for
the use of reset. However, the effectiveness of this technique reduces with non-zero plant
damping. Moreover, the absence of frequency-domain techniques to design RVAs limits
their adoption by industries. Hybrid Integrator Gain Switching (HIGS) is another nonlin-
ear hybrid control technique initially introduced in [Deenen et al., 2017]. In [Heertjes et
al., 2019], a HIGS bandpass filter was used to improve transient response for active vibra-
tion isolation compared to linear techniques. However, this needed high control gains to
achieve any conceivable performance advantages over linear controllers. Although the
HIGS bandpass filter was designed using describing functions in the frequency-domain,
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the underlying mechanism by which it provides better transient response, and its re-
lation to the frequency-domain attributes were not fully explored. In [Raimúndez et al.,
2011], reset control was used to inject damping by employing an optimal port-Hamiltonian
approach. However, this also did not employ frequency-domain techniques to design re-
set controllers for active damping.

This begs the question: How can reset control be used to guarantee better transient
damping performance for damped systems compared to linear control? Furthermore,
how can they be systematically designed in the frequency-domain, to ease tuning, im-
plementation, and adoption by industries?

In this paper, we introduce a novel reset-based bandpass filter that employs velocity
feedback to achieve finite-time vibration suppression for damped systems and compare
its performance to a linear bandpass filter. We start with the work of [R. Bupp et al.,
1996] and adopt a velocity feedback framework to extend its effectiveness to damped
plants. Since the original analysis in [R. Bupp et al., 1996] stems from an energy-based
mechanistic approach, our technique also provides an understanding of the underlying
mechanism for the improved transient response, as opposed to HIGS. Furthermore, ow-
ing to the more aggressive nature of reset compared to HIGS, improvement in transient
response is possible with lower control gains which makes our method more energy ef-
ficient.

We also develop tuning rules based on describing functions to design this filter in
the frequency-domain, thereby increasing its relevance for industries. Staying true to
this ethos, the stability of the novel bandpass filter and the closed-loop system is proven
using passivity arguments, which only require the base linear transfer function of the re-
set element and the transfer function of the plant.

An important aspect of this work is that it must be easily implementable on systems
in the real-world. Here we experimentally demonstrate the effectiveness of the Reset-
ting Velocity Feedback (RVF) framework for transient damping using a single degree-of-
freedom flexure stage. While preliminary, our experimental results show great promise
and agree with numerical simulations. The results are also easily extendable to dis-
tributed parameter systems.

4.2. PRELIMINARIES

To fully appreciate Resetting Velocity Feedback, three key ideas must be understood: (1)
Reset control and its analysis in the frequency-domain using describing functions, (2)
Negative Derivative Feedback, and (3) the concept of Resetting Virtual Absorbers (RVAs).
In this section we introduce these topics independently. Combining ideas from these
approaches, we develop the Resetting Velocity Feedback framework in Section 4.3, and
analyze its stability properties. Numerical and experimental results of this novel tech-
nique follow in Section 4.4. Finally, Section 4.5 summarizes the study and suggests rec-
ommendations for future work
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4.2.1. RESET CONTROL AND DESCRIBING FUNCTIONS
Reset control systems are a class of hybrid dynamical systems. In this study we are con-
cerned with zero-crossing reset systems with the general dynamics given by:

ẋ(t ) = Ax(t )+Bu(t ) u(t ) 6= 0

x(t+) = Ar x(t ) u(t ) = 0

y(t ) =C x(t )+Du(t )

(4.1)

where the matrices A,B ,C , and D describe the state-space matrices of the reset ele-
ment, u(t ) is the error input, x(t ) are the states, and y(t ) is the controller output. The lin-
ear dynamics given by the first and third equations of Equation 4.1 are referred to as the
base linear system. The controller states propagate according to the base linear system
if the input u(t ) 6= 0. Whenever the reset conditions are met, i.e., u(t ) = 0, specified con-
troller states are reset according to the reset matrix Ar . Several sets of reset conditions
are presented in literature. Dominant reset conditions in literature are either based on
zero-crossings of the error [Beker et al., 2004], based on the signs of the reset controller
states and plant output [Nešić et al., 2008], or reset at fixed time instants. This work fo-
cusses on reset elements based on zero-crossings of the error with full reset (Ar = 0), as
they are the most widely studied, applied, and tested [Saikumar et al., 2019].

RESET ELEMENTS

Clegg Integrator (CI): This was the first reset element, introduced by Clegg in 1958
[Clegg, 1958]. The time-domain response of such an integrator is shown in Figure 4.1. As
can be seen, the output of the CI resets to zero, whenever the input crosses zero. At all
other instances, it follows a similar trajectory as a linear integrator, according to its base
linear system dynamics. The state-space matrices of a CI are:

A = 0; B = 1; C = 1; D = 0; Ar = 0

Figure 4.1: Response of a CI and a linear integrator to a sinusoidal input, showing zero-crossing reset actions

First Order Reset Element (FORE): CI was extended to a First Order Reset Element in
[HOROWITZ and ROSENBAUM†, 1975]. FORE provides the advantage of filter frequency
placement unlike CI, and has been used for narrow-band phase compensation in [Guo et
al., 2009]. The FORE’s base linear system is a linear first-order low-pass filter. The state-
space matrices of a FORE where the base linear low-pass filter has corner frequency ωr

are:

A =−ωr ; B =ωr ; C = 1; D = 0; Ar = 0
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DESCRIBING FUNCTIONS

Describing Functions (DF) are a quasi-linearization of a nonlinear element subject to
certain excitation input used to approximately analyze the behaviour of nonlinear sys-
tems. DF is a powerful tool for investigating behaviours of elements with hard nonlinear-
ities including dead zone, backlash, and hysteresis, and has been applied in limit cycle
predictions and control design [Vidyasagar, 1993]. Furthermore, DFs allow us to analyze
reset systems in frequency domain and apply loop-shaping like techniques for control
design, which is the de-facto standard in industries [Saikumar et al., 2021].

The Sinusoidal Input DF (SIDF), which uses sinusoidal inputs as excitation signals, is
the most widely used describing function technique to analyze reset systems [Guo et al.,
2009, Saikumar et al., 2021]. The SIDF of a reset element can be represented as G( jω) as
introduced in [Guo et al., 2009]

G(ω) =C ( jωI − A)−1 (
I + jΘD (ω)

)
B +D

withΘD (ω) =−2ω2

π
∆(ω)

[
Γr (ω)−Λ−1(ω)

]
Λ(ω) =ω2I + A2

∆(ω) = I +e
π
ω A

∆r (ω) = I + Ar e
π
ω A

Γr (ω) =∆−1
r (ω)Ar∆(ω)Λ−1(ω)

(4.2)

where A,B ,C ,D are the state-space matrices of the reset element. Although reset
systems are nonlinear, DFs only depend on the frequency of the input signal and not
on the magnitude, unlike certain other nonlinear systems. This makes them an ideal
candidate for frequency-domain analysis. The DF of a FORE in the frequency-domain
is shown in Figure 4.2. The magnitude closely resembles the characteristics of a linear
low-pass filter, but the phase lag is limited to −38◦. In this paper we will use FOREs and
its DF to implement the Resetting Velocity Feedback framework.

Figure 4.2: Describing function of a FORE compared to an FRF of a linear low-pass filter
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4.2.2. NEGATIVE DERIVATIVE FEEDBACK
Direct Velocity Feedback (DVF) is a well understood active damping technique in which
structural (modal) velocity is negatively fedback to impart damping [Balas, 1979]. In
[Cazzulani et al., 2012], this study was extended by feeding back velocity through a band-
pass filter tuned to the eigenfrequency of the mode to eliminate low- and high-frequency
spillover. This is termed as Negative Derivative Feedback (NDF) and is represented schemat-
ically in Figure 4.3.

Figure 4.3: Block diagram representation of NDF for a single DOF oscillator

For such a system, a physical analogy can be drawn as pointed out by [Kim and Oh,
2013], and as shown in Figure 4.4. The closed-loop negative feedback interconnection
in Figure 4.3 represents an oscillator-vibration absorber setup, where the controller per-
forms the role of an emulated dynamic vibration absorber. This physical analogy also
holds true for a negative position feedback framework [Kim and Oh, 2013]. This mechan-
ical analogy will be exploited later on in Section 3 to develop RVF and prove stability.

Figure 4.4: Physical analogy of the NDF framework [Kim and Oh, 2013]

4.2.3. RESETTING VIRTUAL ABSORBERS
The concept of a resetting virtual absorber is based on the insightful analysis found in
[R. T. Bupp et al., 2000, R. Bupp et al., 1996]. which shows how reset can inject damp-
ing into an undamped system consisting of a single degree-of-freedom oscillator and an
emulated vibration absorber, for finite-time vibration suppression.

Consider a single degree-of-freedom undamped oscillator with mass M and stiffness
K , in series with an emulated dynamic vibration absorber with mass m and stiffness k,
whose states (position and velocity), can be instantaneously reset to zero. This is shown
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in Figure 4.5. According to the physical analogy of vibration controllers introduced ear-
lier in Section 4.2.2, this emulated vibration absorber can be considered an active damp-
ing controller, which uses the position of mass M as its input. As a block diagram, this
can be represented as shown in Figure 4.6 (the diagonal arrow denotes a reset element).

Figure 4.5: The model of a Resetting Virtual Absorber [R. Bupp et al., 1996]

Figure 4.6: Block diagram representation of the RVA framework

For an impulse excitation to mass M , for m = 1.33M and k = 1.33K [R. Bupp et al.,
1996], the response of the system is shown in Figure 4.7. When the position of mass M
reaches zero for the first time, the velocities of masses M and m are also simultaneously
zero, as indicated in Figure 4.7. Therefore, the energy contained in the system at this
instant is uniquely due to the compression of spring k, i.e., the non-zero position of
mass m. In other words, all the energy is contained within the emulated absorber.

Figure 4.7: Response of the system in Figure 4.5 to an impulse excitation on mass M
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If the states (virtual position and velocity) of the emulated absorber (controller) are
reset to zero at this exact instant, the total energy in the system is instantaneously dissi-
pated before it redistributes it to the states of mass M . Hence, damping is injected into
the system by resetting the states of the controller. This results in finite-time suppression
of the oscillations of mass M , as shown in Figure 4.8. Reset is the only source for damp-
ing as this system has no natural damping whatsoever. The control effort is the force
provided by the compression of spring k and can be seen to follow a smooth trajectory
until the point where the position of mass M hits zero. It is then instantaneously reset to
zero as shown in Figure 4.8.

Figure 4.8: Finite-time vibration suppression using RVA [R. Bupp et al., 1996]

4.3. FRAMEWORK

In this section, the three independent concepts introduced in Section 4.2 are combined
to develop the Resetting Velocity Feedback (RVF) framework. The stability properties of
the novel reset controller and the closed-loop system are also analysed using a passivity-
based approach.

4.3.1. FROM RVA TO RVF

As seen earlier, RVAs are based on position feedback of undamped plants, designed to re-
set when plant position hits zero. However, therein lies the problem: For damped plants,
the plant position no longer hits zero at the desired point, but remains ever so slightly
positive, as shown in Figure 4.9. Even though this time instant corresponds to a point of
minimum plant and maximum controller energy, the zero position-based reset law no
longer holds. Fortunately, the plant velocity does cross zero at this point (of minimum
plant energy) and thus motivates the use of a reset law based on velocity feedback. This
ensures the reset of controller states when the controller has maximum energy, thereby
taking away most of the energy in the system and injecting damping.
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Figure 4.9: Position trajectories for damped and undamped plants showing the ineffectiveness of zero-crossing
position feedback. Th point-of-interest is highlighted with a rectangular box

Our feedback framework needs to be slightly modified to account for velocity feed-
back compared to Figure 4.6, as shown in Figure 4.10. This framework resembles the
NDF system presented earlier, with the linear bandpass controller being replaced by a
reset alternative. A damping term is also added (with the same damping ratio as the
plant) to match the resonance frequency of the emulated absorber to that of the plant.

Figure 4.10: Modified block diagram to account for velocity feedback which also includes a damping term in
the controller structure

As the main aim of our work is to systematically design reset controllers in frequency
domain, we analyze this “new” reset filter in frequency domain using its describing func-
tion. This is shown in Figure 4.11. Two aspects are worth noting: (1) At the resonance
frequency of the controller ωc = 65 r ad/s, the describing function has a gain of 31.9,
which corresponds to a dimensionless active damping ratio ζacti ve = km

2
p

K M
= 0.55 and

(2) a phase of about −19.09◦ (different from a linear bandpass filter which has a phase of
0◦ at its resonance frequency). The phase becomes slightly less negative with increased
damping. As long as the k

m ratio is maintained, changing m and k does not affect the
phase characteristics, but only adds a constant gain.
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Figure 4.11: Describing function of the reset element in Figure 4.10. The vertical line highlights the target
frequency

Although this reset filter appears promising from describing function analysis, reset
systems with second-order bandpass structures are not well-studied. Reset systems are
also unique in the sense that, for the same base linear system, different state-space re-
alizations result in different closed-loop behaviour. Hence, our aim is to “emulate” the
ζacti ve and phase of this describing function atωc , with a reset bandpass filter built from
commonly-used and well-understood reset elements. This is obtained by subtracting a
FORE with corner frequency ω1 from a FORE with corner frequency ω2, with ω2 > ω1.
Since FOREs have a unique state-space realization, this approach eliminates ambigui-
ties on which state-space realization to implement. The well-studied nature of FOREs
in the reset control community also makes the choice of using them straight-forward.
These are tuned to the appropriate gain and phase value at ωc . The resulting FORE-
based bandpass filter for active damping can be represented as

Rbp = g (FOREω2 –FOREω1 ) (4.3)

where g is the gain required to ensure ζacti ve = 0.55. The structure is shown schemat-
ically in Figure 4.12. The corner frequencies of the FOREs are obtained by solving an
optimization problem involving the phase of the describing function of Rbp , formulated
as:

argminω1,ω2
|∠Rbp –19.09◦|

Figure 4.12: Structure of Rbp
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The describing function of this novel FORE-based bandpass filter is shown in Figure
4.13 and compared to the second-order bandpass filter introduced earlier. Clearly, the
magnitude and phase at the plant eigenfrequency

p
K /M = 65 r ad/s, are equal. Fur-

thermore, the slope of the phase characteristics of this FORE-based bandpass filter is
lower at ω= p

K /M . This results in better robustness to plant uncertainties.

Figure 4.13: Describing function of a FORE-based bandpass filter compared to the second-order bandpass
filter. Both provide the same magnitude and phase values at the target frequency of 65 rad/s

For easy implementation in practice, the following rules-of-thumb are nearly opti-
mal for plants with 1%-2% natural damping:

• Choose ω1 = 0.4
p

K /M and ω2 = 0.75
p

K /M . This ensures a phase of −19.09◦ at
the target frequency

• Choose gain g , such that the magnitude of the describing function of Rbp , |Rbp |ω=pK /M =
(2).(0.55).

p
K M , provided the plant transfer function is of the form as shown in Fig-

ure 4.14. This ensures that the dimensionless active damping ratio, ζacti ve = 0.55,
at the target frequency.

Once the parameters have been calculated, the gain value can be fine-tuned to achieve
optimal transient damping performance.The closed-loop system with such a FORE-based
bandpass filter and a damped single degree-of-freedom plant constitutes the Resetting
Velocity Feedback (RVF) framework, as shown in Figure 4.14. The framework is summa-
rized schematically in Figure 4.15.

Figure 4.14: Resetting Velocity Feedback (RVF) framework
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Figure 4.15: Development of the Resetting Velocity Feedback framework at a glance

4.3.2. STABILITY ANALYSIS

We now address the stability properties of (1) the reset bandpass filter Rbp and, (2) the
closed-loop system of RVF. The following three theorems on passivity will serve as a base-
line for this analysis:

Theorem 1: [Carrasco et al., 2010] For an LTI system with transfer function H (s) =
C (sI − A)−1 B + D , with A Hurwitz and the pair (A,B) controllable, it holds that: The
system is passive if and only if Re

(
H

(
jω

)) ≥ 0 for all ω. The system is Output Strictly

Passive (OSP) if and only if there is an ε such that Re
[
H

(
jω

)]≥ ε|H(
jω

) |2 for all ω

Theorem 2: [Carrasco et al., 2010] A full reset compensator R is passive, ISP, OSP, or VSP
if the base compensator is passive, ISP, OSP, or VSP, respectively.

Corollary 1: In our case, the reset bandpass filter Rbp is formed by two FOREs in par-
allel with corner frequencies ω1 and ω2 with ω2 >ω1 > 0, resulting in the following base
linear transfer function:

Rbp
(

jω
)= (ω2 −ω1) jω(

jω+ω1
)(

jω+ω2
) (4.4)

Re
[
Rbp

(
jω

)]= ω2 (ω2 −ω1) (ω2 +ω1)(
ω1ω2 −ω2

)2 + (ω1 +ω2)2ω2
(4.5)
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∣∣Rbp ( jω)
∣∣2 = ω2 (ω2 −ω1) (ω2 −ω1)(

ω1ω2 −ω2
)2 + (ω1 +ω2)2ω2

(4.6)

Clearly, Re
[
Rbp

(
jω

)]≥ 0 for all ω, and Re
[
Rbp

(
jω

)]≥ ε ∣∣Rbp ( jω)
∣∣2 for ε= 1. Hence,

according to Theorem 1 and Theorem 2, the reset-based bandpass filter is OSP.

Similarly, it can be shown that the plant, with the transfer function from force to
velocity, is also OSP, as its transfer function also has a similar structure.

Theorem 3: [Carrasco et al., 2010] The negative feedback interconnection between an
LTI plant P and a full reset compensator R, with base linear compensator Rbl , is finite-
gain stable if one of the following conditions are satisfied:

• Rbl is ISP, and P is ISP

• Rbl is OSP, and P is OSP

• Rbl is VSP, and P is passive

• Rbl is passive, and P is VSP

Corollary 2: From Corollary 1 and Theorem 3, we can assert that the negative feedback
interconnection of the reset-based bandpass filter and the plant with velocity output is
finite-gain stable, as they are both OSP. Hence the Resetting Velocity Feedback frame-
work is finite-gain stable.

4.4. RESULTS

While describing functions simplify the analysis of reset systems, they are still only ap-
proximations of the actual system. Empirical evidence is needed to determine whether
the framework developed earlier holds true in practice. In this section we report evi-
dence on the previously developed Resetting Velocity Feedback structure, through nu-
merical simulations and experimental testing.

To focus on controller validation, the physical system is chosen to be a simple single
degree-of-freedom flexure stage. A Lorentz actuator (ETEL 025C) is used to provide both,
the disturbance signal and the control force. A Polytec OFV-505 Laser Doppler Vibrome-
ter (LDV) is used as a velocity sensor, which provides voltage signals proportional to the
vibration velocity. National Instruments compactRIO FPGA is used to acquire the sig-
nals, and compute and deliver the control signal to the current-source power amplifier.
LabVIEW 2020 is used to interface the host computer with compactRIO. The experimen-
tal setup is shown in Figure 4.16.
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Figure 4.16: Experimental setup

System identification is performed by exciting the system with a chirp (swept sine)
signal. Using MATLAB’s System Identification Toolbox, the Frequency Response Func-
tion (FRF) of the system is obtained, as shown in Figure 4.17. As expected, this de-
notes the transfer function from force to velocity, and is a reasonable estimate of a single
degree-of-freedom lumped-mass model, with an eigenfrequency at 13.2 Hz. A transfer
function is fitted to the experimental data using MATLAB’s tfestimate function, and is
given by Equation 4.7

P (s) = 555.2s

s2 +2.882s +6972
(4.7)

Figure 4.17: FRF of the experimentally identified system
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With the plant parameters identified experimentally, the method described in Sec-
tion 4.3 is followed to obtain the reset bandpass filter, Rbp . For the plant P (s), the Rbp

parameters are: ω1 = 33.4 rad/s, ω2 = 62.62 rad/s and g = 0.875.

For experiments, the sampling frequency is chosen to be 10 kHz. This is significantly
higher than the eigenfrequency to avoid aliasing, but well within the limits of the FPGA’s
computational capabilities. Before deploying the discrete controller on the experimen-
tal setup, it is numerically simulated using MATLAB/Simulink. A pulse disturbance is
imparted to the system revealing its transient damping performance. For a comparative
study, a linear bandpass filter Lbp is designed with its transfer function given by Equation
4.8

Lbp (s) = 36s

(s +167)(s +41.75)
(4.8)

This linear bandpass filter is designed to have the same gain as Rbp , and 0◦ of phase,
at the plant’s eigenfrequency of 13.2 Hz. The equal gain value of both filters ensure a
similar peak control force and is a practical measure to compare control performance.
The describing function of Rbp and the FRF of Lbp is shown in Figure 4.18. Figure 4.19
shows the simulation results for the pulse disturbance. The reset-based bandpass filter
(RVF) provides a 220.3% improvement in settling time compared to the linear bandpass
filter (NDF).

Figure 4.18: Describing function of Rbp compared to the FRF of Lbp . Both are tuned to provide the same gain
at 13.2 Hz
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Figure 4.19: Comparison of system responses to a pulse disturbance (simulation)

For the experimental study, a finite-time sinusoidal excitation at 13.2 Hz is applied
for 2708 ms (36 complete cycles). This is done as a finite-time sinusoidal disturbance
reveals both steady-state and transient damping performance. These results are shown
in Figure 4.20, with the emphasis placed on transient response. The experimental re-
sults are representative of the numerical simulations. RVF provides a 273.1% increase
in settling time compared to NDF, for the same control gain. The steady-state damping
performance of RVF is marginally worse compared to NDF. This is to be expected as the
focus of RVF design was to ensure better transient performance.

Figure 4.20: Comparison of system responses to a finite sinusoidal excitation (experiment)
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4.4.1. SENSITIVITY ANALYSIS
Reset systems are much more sensitive to tuning than conventional linear systems. There-
fore, it is important to quantify its sensitivity to tuning parameters (control gain) exper-
imentally. We see that for a 10% variation in control gain, the transient performance is
still superior to the nominal linear bandpass filter. The results are shown in Figure 4.21
and summarized in Table 4.1. These results illustrate that even though the reset band-
pass filter is not explicitly designed to be robust, it still shows relatively low sensitivity to
tuning parameters.

Figure 4.21: Sensitivities of transient damping performance to gain variation

Controller Settling Time Deterioration w.r.t nominal Rbp

Rbp (+10% gain) 41 ms 29.9%
Rbp (-10% gain) 53 ms 69.8%

Nominal Lbp 82 ms 273.1%

Table 4.1: Sensitivity of settling times to control gain

As far as (known) system delays are concerned, the reset bandpass filter can be tuned
to provide a certain phase at the plant eigenfrequency such that the net phase including
the delay amounts to about −19.09◦. This further emphasizes the flexibility offered by
using two independent FOREs, as it is possible to manipulate the phase characteristics
without considerably changing the magnitude characteristics. This would be not possi-
ble for a linear bandpass filter. For a delay of 2 milliseconds (amounting to −10◦ of phase
lag at the target frequency), the simulation results for a pulse disturbance, of a re-tuned
reset bandpass filter with delay compensation is compared to a reset bandpass without
delay compensation in Figure 4.22. The control gain is kept constant as the nominal case
without system delays. The bandpass filter with delay compensation performs similar to
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a system without delays. This illustrates that reset can also be used to actively compen-
sate for know time-delays.

Figure 4.22: RVF performance for systems with known time-delays

4.5. CONCLUSIONS AND FUTURE WORK
This paper presented our efforts at using reset control to achieve improved transient
damping compared to linear control methods. The approach is motivated by an energy-
based mechanistic analysis of the base linear systems, which provides clear insight for
the use of reset in such problems. Translating these insights into the frequency-domain
using describing functions and rules-of-thumb for systematic control design, greatly
simplifies the application of reset control for vibration control problems and makes it
relevant for industrial applications. The numerical and experimental results validate the
approach and demonstrate its superiority compared linear to methods such as NDF, by
providing a 273.1% increase in settling time for the same control gain. We also empiri-
cally showed that this novel reset-based bandpass filter is robust with respect to tuning
parameters and can also compensate for known system delays.

As future work, the study can be extended to more complex distributed parameter
systems. Multiple (and non-collocated) modes may render the plant non-passive and
affect stability. This could be a direction for future research. Presently, the controller is
not explicitly designed to be robust to plant variations. An adaptive scheme can be in-
corporated into this framework to improve its performance in uncertain environments.
The design of a robust version of the controller could also be explored. Although the
analysis is motivated from energy principles and describing functions, a rigorous math-
ematical treatment on how the reset bandpass filter provides better transient response
is yet to be performed. Finally, a theoretical treatment on the effect of delays on system
performance is also left out. Further theoretical questions remain unanswered in these
directions and could pave the way for interesting future research.
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5
CONCLUSION

In this thesis, a novel control technique was developed to improve transient response
lightly damped structures. This was motivated by the ever-increasing demands for high-
precision equipments that incorporate flexure-based elements. The resulting structural
vibrations reduce their precision and increase settling times, leading to lower machine
throughput and increased production times.

After having initially surveyed state-of-the-art linear active damping techniques, we
realized that nonlinear hybrid control techniques held greater promise to improve tran-
sient damping characteristics. Reset control was chosen as preferred control technique
due to its well-studied nature and the possibility to design reset controllers in the frequency-
domain using describing functions.

We started off with the work of [Bupp et al., 1996], and extended it to a velocity
feedback framework. This was motivated by the underlying physics, as it was shown
that for damped plants, position feedback-based zero-crossing reset was ineffective. Ex-
tending the RVA structure into a velocity feedback framework, and translating this into
frequency-domain characteristics using describing functions provided the basis for the
synthesis of a novel reset-based bandpass filter, Rbp . This was designed by arranging two
FOREs in parallel. Stability properties of this new reset bandpass filter and the closed-
loop system were then analyzed using passivity-based techniques, developed specifi-
cally for reset control systems. Furthermore, rules-of-thumb were also provided for the
rapid design of the novel bandpass filter using describing functions.

This Resetting Velocity Feedback (RVF) framework was then validated both numeri-
cally and experimentally. It was shown to provide a 273.1% increase in transient damp-
ing performance to a linear bandpass filter for the same control gain. Optimal transient
damping performance was achieved for a dimensionless active damping ratio, ζacti ve =
0.55 as opposed to a HIGS bandpass filter which performed optimally at ζacti ve = 1.0
[Heertjes et al., 2019]. This shows that the RVF framework requires lower control gains,
and is thus more energy efficient. Furthermore, the robustness of this reset bandpass fil-
ter was examined by performing sensitivity analysis. We saw that for a 10% variation in
the tuning parameters, the reset bandpass filter still provided better transient damping
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performance compared to the nominal linear bandpass filter. Finally, we showed that
the reset bandpass filter can be modified to compensate for known system delays, which
results in a transient damping performance comparable to the nominal case.

As future work, the study can be extended to more complex distributed parameter
systems. Multiple (and non-collocated) modes may render the plant non-passive and
affect stability. This could be a direction for future research. Presently, the controller is
not explicitly designed to be robust to plant variations. An adaptive scheme can be incor-
porated into this framework to improve its performance in uncertain environments.The
design of a robust version of the controller could also be explored. Finally, a theoretical
treatment on the effect of delays on system performance is also left out. Further the-
oretical questions remain unanswered in these directions and could pave the way for
interesting future research.
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MATLAB FUNCTION: GENERATE Rbp

%Parameters for FORE
Ts = 100e-6; % Sampling Time
A = -31.4; % Pick A as eigenfrequency/2
B = -1*A;
C = 1;
D = 0;

%% Define element FORE 1
Fore1 = ss(0.8*A,0.8*B,C,D); % BLS of the reset element
Ar1 = 0.0;% Define reset law
Fore1d = c2d(Fore1,100e-6,’tustin’); % Discretize element
n = 1; % highest order of HOSIDF
freqs = logspace(-1,5,10000); % range of frequencies
GR1 = hosidfHeinen(Fore1, Ar1, n, freqs); % HOSIDF reset for comparison

%% %% Define element FORE 2
Fore2 = ss(1.5*A, 1.5*B, C, D); % BLS of the reset element
Ar2 = 0.0;% Define reset law
Fore2d = c2d(Fore2,100e-6,’tustin’); % Discretize element
n = 1; % highest order of HOSIDF
freqs = logspace(-1,5,10000); % range of frequencies
GR2 = hosidfHeinen(Fore2, Ar2, n, freqs);

%% FORE-based Bandpass
BP1 = 144.8*(GR2 - GR1); % pick the gain according to rule-of-thumb

45
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%% Plotting DF
ln = 1;
clear leg
for iter = 1:2:size(BP1,1)

bodeHOSIDF(BP1,freqs,iter);
leg{ln} = sprintf(’ n = %d’,iter);
ln = ln+1;

end
subplot(2,1,1)
legend(leg)
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MATLAB FUNCTION: hosidfHeinen.m

function [G] = hosidfHeinen(sys, Ar, n, freqs)
% Calculated the higher order describing function for a given reset
% system using the method of Kars Heinen

% SYS is the reset element described in state space
% AR is the amount of reset you want to achieve (typical 0)
% N is the highest describing function order
% FREQS contains the frequencies the describing function is calculated
% for represented in rad/s
% G is a matrix with HOSIDF orders as rows and freqs as columns

disp(’hosidfHeinen’)
G = zeros(n,length(freqs));

for iter = 1:n
G(iter,:) = hosidfcalc(sys, Ar, iter, freqs);

end
end

MATLAB FUNCTION: bodeHOSIDF.m

function [] = bodeHOSIDF(G, freqs, n)
%bodeDF Plots a HOSIDF bode plot up to order N
mg = 20*log10(abs(G)); % magnitude
pg = 180*angle(G)/pi; % phase
orders = n;
% for iter = 1:length(orders)% generate legend
% leg{iter+1}=sprintf(’DF = %d’,orders(iter));
% end
% figConfig()
% figure() ; %clf;
subplot( 2 , 1 , 1 ) ;
semilogx(freqs,mg(orders,:), ’-’); % plot only odd orders
hold on
grid on;
ylabel( ’$|\cdot|$ [dB]’) ;
subplot( 2 , 1 , 2 ) ;
semilogx(freqs, pg(orders,:),’-’); % plot only odd orders
hold on
grid on;
xlabel( ’$\omega$ [rad/s]’ ) ;
ylabel( ’$\phi(\cdot)$ [deg]’) ;
end
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MATLAB FUNCTION: hosidfcalc.m

function [G] = hosidfcalc(sys, Ar, n, freqs)
% Calculates the describing function of a reset system
% SYS is the reset element described in state space
% AR is the amount of reset you want to achieve (typical 0)
% N is the describing function order
% FREQS contains the frequencies the describing function
% is calculated for represented in rad/s
% Kars Heinen - TU Delft - 2017

% to do; replace inv() by ’matlab \’

% odd orders will be skipped
if (mod(n,2) == 0)

G = 0;
return;

end
A = sys.a; B = sys.b; C = sys.c; D = sys.d;
G = zeros(1,numel(freqs));

for i=1:numel(freqs)
w = freqs(i);

Lambda = w*w*eye(size(A)) + A^2;
LambdaInv = inv(Lambda);

Delta = eye(size(A)) + expm(A*pi/w);
DeltaR = eye(size(A)) + Ar*expm(A*pi/w);

GammaR = inv(DeltaR)*Ar*Delta*LambdaInv;
ThetaD = (-2*w*w/pi)*Delta*(GammaR-LambdaInv);

if (n==1)
G(i) = C*inv(j*w*eye(size(A)) - A)*(eye(size(A)) + j*ThetaD)*B;

else
G(i) = C*inv(j*w*n*eye(size(A)) - A)*j*ThetaD*B;

end
end

if (n == 1)
G = G + D;

end
end
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MATLAB CODE: IMPORT LABVIEW DATA AND GENERATE FRF
OF PLANT

clear all; close all; clc

%% Import the data from LabVIEW’s LVM file
measurement = lvm_import(’sens25run1.lvm’);

%% Generate time grid
t = linspace(0,37.5,length(measurement.Segment1.data(:,5)));

%% Plot Actuator and Sensor signals
figure(); sgtitle(’Patch Actuation’)
subplot(6,1,1); plot(t,measurement.Segment1.data(:,2));
title(’Actuator 1 Input’);

subplot(6,1,2); plot(t,measurement.Segment1.data(:,3));
title(’Actuator 2 Input’);

subplot(6,1,3); plot(t,measurement.Segment1.data(:,4));
title(’Sensor 1 Output’);

subplot(6,1,4); plot(t,measurement.Segment1.data(:,7));
title(’Sensor 2 Output’);

subplot(6,1,5); plot(t,measurement.Segment1.data(:,6));
title(’Sensor 3 Output’);

%% Generate input and output vectors
u = measurement.Segment1.data(1:end,6); %Actuation
y1 = measurement.Segment1.data(1:end,7); %Displacement
y2 = measurement.Segment1.data(1:end,4); %Velocity

%%
nfs = .5e5; N = 1e5; Fs = 1/100e-6;
wind = hann(N);

%% Force-Velocity FRFs
[txy2,ft2] = tfestimate(u,-1*y2,wind,[1],nfs,Fs);
coherence2 = mscohere(u,-1*y2,wind,[1],nfs,Fs);

figure(); sgtitle(’Transfer Function from Lorentz actuator to LDV’)
subplot(3,1,1); semilogx(ft2(1:end),20*log10(abs(txy2(1:end))));
title(’Magnitude’); xlabel(’f (Hz)’); ylabel(’Gain (dB)’); grid
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subplot(3,1,2); semilogx(ft2(1:end),(180/pi*angle(txy2(1:end))));
title(’Phase’); xlabel(’f (Hz)’); ylabel(’degree’); grid

subplot(3,1,3); semilogx(ft2(1:end),((coherence2(1:end))));
title(’Coherence’); xlabel(’f (Hz)’); ylabel(’Coherence’); grid;
ylim([0 1.1]);

%% Fit Transfer Function to experimental FRF
f1 = 1*round(1*length(ft2)/5000);
f2 = 10/25*round(50*length(ft2)/5000);
sys = frd(txy2(50:300),2*pi*ft2(50:300));
system = tfest(sys,2,1);
[num,den] = tfdata(system);
ftf = tf(num,den);
bode(system);

%% Fitted Transfer Function
s = tf(’s’);
Ccont = (800*s)/((s+8)*(s+800)); % generate linear bandpass
Cd = c2d(Ccont,100e-6,’tustin’); % discretize linear bandpass
bode(Ccont);
hold on
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The experimental setup consists of:

• Single DOF flexure stage

• Lorentz Actuator

• Laser Doppler Vibrometer (Polytec OFV-505) – Velocity Sensor

• Current Source Amplifier with Amplification Factor 0.0625 A/V

• Dual Power Supply (12V - 1A) for the amplifier

• compactRIO FPGA controller

The setup is schematically shown in the Figure 7.1.

Figure 7.1: Experimental setup
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SINGLE DEGREE OF FREEDOM FLEXURE STAGE
The moving mass is 3D printed from PLA. The actuator is positioned to provide the force
at the centre of rotation to eliminate moments, and results in an exactly constrained 1
DOF system. The four aluminium flexures are 0.2mm thick, 60mm long and 8 mm wide,
and provides stiffness and low natural damping. They are clamped using bolts to the
moving mass. On top of the moving mass is a reflective sticker to provide a suitable re-
flective surface to achieve high laser signal quality.

A practical tip: Ensure the eigenfrequency of the plant is well-chosen if you have
the freedom to design your own plant. In this case, the eigenfrequency of 13.2 Hz is
well suited for experiments, as it is high enough to avoid the high-pass characteristics of
electrical wires, and low enough to be not affected by the low-pass characteristics of the
power amplifier, noise, and the sampling frequency limits of the compactRIO.

LORENTZ ACTUATOR
The actuator is a moving-coil Lorentz actuator (ETEL 025C) designed to provide a peak
force of about 3N. The underhung design provides linearity in the operating stroke of
2mm. It’s a non-contact bearing less design, in which the structure mechanism acts like
a bearing. This ensures zero friction in the actuator. ThorLabs fine-translation stages
are used to position the moving part (coil) of the actuator w.r.t to the stationary part
(magnets), and to ensure that the coil is completely underhung and centrally aligned.
This should provide close-to-ideal actuator behaviour.

LDV VELOCITY SENSOR
A Polytec OFV-505 LDV is used to acquire absolute vibration velocity signals. An LDV
provides voltage signals proportional to the vibration velocity by utilizing Doppler ef-
fect. This eliminates the need to differentiate position signals or integrate acceleration
signals, and eases implementation. The LDV control panel offers tune-able sensor sen-
sitivity. For this study a sensitivity of 25 mm/s/V is used. A lower sensitivity was found to
show clipping, as the DAQ system was limited to +/- 10V signals. Depending on the mag-
nitude of vibration velocities, a lower or higher sensitivity can be chosen, if higher/lower
signal resolutions are desired.

CURRENT-SOURCE POWER AMPLIFIER
In a physical system the amplifier converts the low-voltage, low-current control signal
output of the D/A-converter into the electrical current output necessary in the actuator.
Since it is desired to control the force of the Lorentz actuator, and the force is propor-
tional to the current, a current source amplifier is selected. This amplifier has a linear
behaviour and is able to provide a bi-directional current in order to generate a bidirec-
tional force. The inductive load of the coil works as a low pass filter, resulting in a de-
creasing current output at higher frequencies. Using current feedback results in an out-
put current independent of the frequency dependent impedance of the actuator. The
decreasing currents at high frequencies are compensated by applying a higher output
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voltage. In Figure 7.2 a simplified schematic of the amplifier is shown.

Figure 7.2: Current-source amplifier design

The amplification factor can be selected by choosing the appropriate resistances, ac-
cording to

I0

Vi n
= R2

(R1 +R2)R f b
(7.1)

In this particular case, the resistances are chosen such that I0
Vi n

= 0.0625 A/V. This
should be chosen according to the magnitude of the voltage output of the DAC, and the
current limit of the actuator.

The op-amp used in the amplifier is an OPA548 by Texas Instruments. Following the
rated voltage and current limits for this op-amp, a Dual Power Supply of 12V-1A is used
for powering the amplifier.

It is important to ensure that the dynamic behaviour of the amplifier does not affect
the dynamics of the plant. In this case, at the eigenfrequency of the plant (13.2 Hz), the
amplifier provides constant gain and 0 phase, as its cut-off frequency is 10 kHz.

COMPACTRIO FPGA CONTROLLER
compactRIO by National Instruments is an FPGA, which can run acquire signals (ADC),
compute control actions with these signals, and provide the necessary voltage signals
to the amplifier via a DAC. The compactRIO chassis has a modular design. Depending
on the nature of your sensor signals, you can choose either Analog Input (AI) or Digital
Input (DIO) modules to acquire sensor data. Similarly, an Analog Output (AO) module
can give output signals to the amplifier/actuator. For these particular experiments, AI
module with BNC connector (NI 9215) is used to acquire the LDV signals. The control
signals are sent out through the AO module (NI 9264).

The compactRIO interfaces with the host computer using LabVIEW, a software by
National Instruments. A basic guide to setup a LabVIEW FPGA programming environ-
ment is highlighted next.

LABVIEW
LabVIEW 2020 (32-bit) was used in the experiments. Please not that even if the computer
runs a 64-bit OS, LabVIEW 2020 (32-bit) was more stable and interfaces perfectly with the
compactRIO and other software modules.
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INSTALLATION
Install LabVIEW 2020 (32-bit) and the following compatible modules from NI.com:
LabVIEW RealTime Module
LabVIEW FPGA Module
LabVIEW Control and Simulation Module
LabVIEW MathScript Module
NI compactRIO

CONNECTING COMPACTRIO TO THE HOST COMPUTER
Connect the compactRIO to the computer using the USB cable. Make sure all hardware
AI/AO modules are inserted correctly in the compactRIO before connecting to the com-
puter

NI MAX should automatically open. Check if the compactRIO is recognized in the
”Remote Systems” tabs. If it is not recognized, it means that the compactRIO does not
have operating software installed in it. If this is the case, check NI documentation for
help on how to install this.

Once NI MAX recognizes the connected compactRIO, we are ready to open LabVIEW
and interface it with compactRIO

Open up a Blank Project in LabVIEW. On the Project page we need to add a target
(i.e., the compactRIO) to the project to perform real-time control and computation on
the compactRIO by interfacing it with the computer.

Right-click the Project Title ("Untitled Project") on the project tree and select “New >
Targets and Devices”. Select “Discover an existing target or device" and select the Real-
Time CompactRIO from the list of targets, as shown in Figure 7.3.

Figure 7.3: Adding the FPGA compactRIO target to your LabVIEW project

Once you select the appropriate compactRIO target, LabVIEW will add it to the Lab-
VIEW Project. When prompted to select a mode to run the target in, choose “LabVIEW
FPGA Interface”. Once target addition is complete, a new component will appear in the
Project Tree: “NI-cRIO-<serial-number> (IP address)”.



7

55

Once this appears, expand the CRIO tree until you see the FPGA target. Expand this
further until you see the modules listed. Ensure that all physical AI/AO modules are
visible in this drop-down list, with the slot number indicated correctly. Right-click on
ALL of these modules, and select “Properties”. In the Module Properties window, set
Calibration Mode to “Raw”, as shown below in Figure 7.4. This step is crucial. If the
mode is not set to Raw, the acquired signals and the output signals will behave weirdly,
and the experiments will be ineffective.

Figure 7.4: Choosing Raw calibration mode for AI/AO modules

Once these steps are carried out, we are ready to program the FPGA to acquire sig-
nals, compute control actions, and send the control signal out through the AO modules.

LABVIEW FPGA PROGRAM STRUCTURE
Figure 7.5 shows a typical LabVIEW FPGA project structure.

Figure 7.5: LabVIEW FPGA program strcuture

Host VI: This VI is part of the “My Computer” section of the project tree. This VI usually
deals with writing the acquired sensor data to an LVM file, which can be later processed
in MATLAB for data visualization.
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RTMain VI: This VI interfaces the host computer with the FPGA. It is responsible for
transferring the data from FPGA VI to the Host VI. Furthermore, RTMain VI is used to
control the program, through the LabVIEW control panel window. Running the RT Main
VI initiates the test, and provides the signals, which in-turn runs the FPGA VI. Tuning
parameters for the controller, and other user-tuneable test parameters such as frequency
of the excitation, amplitude of the excitation, etc are part of RT Main, and can be changed
in real-time through the front panel, by the user.

Both Host and RTMain are run on the host computer and are hence not the fastest in
execution.

FPGA VI: This VI houses the actual code, to acquire signals, compute controller action,
and send the control signals to the actuator. This is run on the dedicated FPGA processor
and is therefore extremely fast. A problem with this is that every time something in the
code changes, the FPGA code needs to be recompiled and could take anywhere from 20
minutes to one hour. It is therefore better to only provide the logic of the algorithms in
the FPGA VI, and the parameters (like frequency, amplitude, control gains, coefficients
of transfer functions etc) in the RTMain VI which is then linked to the FPGA VI. This
way re-compilation of the FPGA VI is avoided every time the user wishes to modify the
controller parameters, or values of certain test variables.

FIFO: First-In-First-Out is a stack array to enable enough buffer to compensate for the
execution speed discrepancies of the compactRIO and the host computer. The FIFO
should be configured as shown in the Figure ??.

Figure 7.6: Setting up FIFO

EXPERIMENTAL METHOD
To focus on controller validation, the physical system is chosen to be a simple single
degreeof-freedom flexure stage. The moving mass is 3-D printed from PLA, and the flex-
ures provide the stiffness and (low) natural damping to the system. A Lorentz actuator
(ETEL 025C) is used to provide both, the disturbance signal and the control force. The
actuator is positioned at the midpoint of the flexures to eliminate the undesired rotation
of the stage to a moment. This ensures that the five degrees-of-freedom of the stage are
constrained. A Polytec OFV-505 Laser Doppler Vibrometer (LDV) is used as a velocity
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sensor, which provides voltage signals proportional to the vibration velocity. National
Instruments compactRIO FPGA is used to acquire the signals, and compute and deliver
the control signal to the amplifier. LabVIEW 2020 32-bit is used to interface the host
computer with compactRIO and DAQ systems. The amplifier used is a current-source
amplifier that uses an OPA548 op-amp by Texas Instruments. By designing a suitable
circuit, it can provide a constant amplification factor of 0.0625 A/V from 5Hz until high
frequencies.

Before designing the controller, system identification is performed by exciting the
system with a chirp (swept sine) signal from 0.5 Hz to 300 Hz. Using MATALB’s Sys-
tem Identification Toolbox, the Frequency Response Function (FRF) of the system is ob-
tained. A transfer function is fitted to the experimental data to capture the single mode
of interest using MATLAB’s tfestimate function (see Appendix A)

With the plant parameters identified experimentally, the controller can be designed
according to the rules-of-thumb. As this is to be implemented on a digital control sys-
tem, the controller in state-space form is discretized using the c2d MATLAB function,
with the ’tustin’ option enabled (see Appendix A). A discrete linear bandpass can also
be designed similarly. The sampling frequency is chosen to be 10 kHz, which is signif-
icantly higher than the eigenfrequency to avoid aliasing, but well within the limits of
the FPGA’s computational power (40 MHz digital clock). Before deploying the discrete
controller on the experimental setup, it is numerically simulated using Simulink (solver:
ode4, fixed time-step: 1e-4). To increase the credibility of the simulations, the control
signals and plant outputs are quantized, and Zero Mean White Noise (ZMWN) is added
to the plant output to model sensor noise. The results of these can be found in Section
4.4.


