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Abstract. This work explores probabilistic deep learning models as offshore farm-wide virtual
load sensors, including Bayesian neural networks, Monte Carlo dropout, and deep neural net-
work ensembles. The aim is to develop models offering uncertainty-aware predictions of dam-
age equivalent loads using SCADA and accelerometer data. This study uses the data from a Bel-
gian offshore wind farm’s five fleet-leader turbines. After training the neural networks with one
year of collected data, these models are deployed to another year, facing out-of-distribution data
due to changes in operational conditions. The analysis assesses generalization and uncertainty
quantification abilities, providing insights into their strengths and weaknesses. Ultimately, our
work supports the industrial adoption of probabilistic deep learning virtual monitoring models,
enabling informed asset management decisions with predictions and uncertainty measures.
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1 INTRODUCTION

Benefiting from the continuous improvement of sensor technologies, learning algorithms,
and high-performance computational hardware, data-driven solutions for the assessment and
management of offshore wind assets are increasingly being adopted. In particular, the global
approximation qualities of deep neural networks can be leveraged to effectively extract complex
patterns from large datasets, rendering deep learning approaches highly useful in wind energy
applications—ranging from wind speed and direction forecasting [Mbuvha et al., 2021]] to fault
detection [Cho et al., 2021]] and structural health monitoring [Hlaing et al., 2022]], among oth-
ers.

Deterministic neural networks do not, however, explicitly capture model uncertainty, which
is a crucial factor in the safety and reliability of offshore wind assets exposed to stochastic
loads and stressors. Since environmental and operational conditions vary over time, already
trained deep learning models may receive out-of-distribution data in practical scenarios, i.e.,
data unseen by the model during the training stage. In other scenarios, such as farm-wide load
monitoring, prediction models trained on one or multiple fleet leaders may be applied to other
wind turbines, some of which may belong to different design clusters. When load measurements
are unavailable to validate model predictions, deterministic estimates do not provide sufficient
information for effective decision-making.

On the other hand, probabilistic neural networks explicitly provide model uncertainty indi-
cators [Pimenta et al., 2022, Zou et al., 2023, Singh et al., 2024]. It has been shown that proba-
bilistic models based on Bayesian principles are capable of intrinsically reporting higher model
uncertainties when tested on out-of-distribution data, for which the predictions are likely to be
inaccurate [Hlaing et al., 2024]. This capability is of importance for the safe deployment of
deep learning models in practical decision-making applications— such as inspection and main-
tenance planning, lifetime extension— where the quantification of imperfect information plays
a vital role [Hlaing, 2024].

In this work, we investigate the effectiveness of probabilistic deep learning models as farm-
wide virtual load sensors. Specifically, we compare probabilistic neural network variants, in-
cluding Monte Carlo dropout, Bayes by backprop, and neural network ensembles. The primary
objective of this comparative study is to identify models that not only effectively predict dam-
age equivalent loads but also capture the uncertainty associated with model predictions. Such
uncertainty-aware models can support informed decision-making in the dynamic and uncertain
environment characteristic of offshore wind farms. Our analysis is based on data collected over
2 years from five fleet-leader turbines (i.e., turbines equipped with SCADA system and strain
gauges) at a Belgian offshore wind farm. Data collected from the first year is used to train the
neural networks, while data collected from the second year— during which the turbines operate
under different control conditions— is used for testing. This scenario introduces a distribution
shift between the training and testing datasets. Our evaluation focuses on the generalization
and uncertainty quantification of the tested probabilistic neural networks. Throughout the anal-
ysis, we highlight the strengths and limitations of each model. The findings of this study are
expected to accelerate the industrial adoption of probabilistic deep learning models for virtual
load monitoring.
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2 PROBABILISTIC NEURAL NETWORKS
2.1 Bayesian neural networks

A Bayesian neural network (BNN) is an artificial neural network that integrates deep learn-
ing with Bayesian inference principles to generate probabilistic predictions. Unlike determin-
istic artificial neural networks (ANNSs), the distinctive feature of BNNs lies in their stochastic
neural network components, including stochastic weights and/or biases. Stochastic model pa-
rameters, 6, each characterized by a probability distribution P(6), encode multiple possible
model parametrizations, thus capturing the model’s epistemic uncertainty. BNNs are more in-
terpretable than their deterministic counterparts, as they signal high model uncertainty when
making predictions for samples that are far from those contained in the training dataset. This
feature makes them particularly useful in scenarios with limited data availability.

BNNs conduct Bayesian inference to estimate the posterior distribution of model parameters
given the training data. Conditioned to the training dataset D, the posterior P(60 | D) can be
computed via Bayes’ theorem:

P(D|6)P(0)
PO1D) = [P(D|0)P(6)d6 M
Computing the posterior distribution is intractable in practical high-dimensional scenarios. To
overcome this limitation, approximate inference methods have been proposed in the literature,
e.g., stochastic gradient Markov Chain Monte Carlo [Welling and Teh, 2011}, Zhang et al., 2019]
and variational methods [Graves, 2011]].

2.1.1 Variational inference

Variational inference (VI) is a technique used in Bayesian statistics to approximate com-
plex posterior distributions [Graves, 2011, |[Osawa et al., 2019]. In VI, a simpler distribution,
known as the variational distribution, is used to approximate the posterior distribution of model
weights. The main objective of VI is to derive a variational distribution ¢,(0) as close as
possible to the true unknown posterior P(6 | D). The similarity between both distributions
is measured using the Kullback-Leibler (KL) divergence, which quantifies the non-symmetric
statistical difference between the two distributions. The KL divergence between ¢,(6) and
P(0 | D) can be mathematically expressed as:

KL (1:(6) || P(6 | D)) = [ ax(6) o %da @
VI seeks to find the variational parameters A that minimize the KL divergence formulated above,
resulting in the maximizatioin of the evidence lower bound objective (ELBO) function:

ELBO = —/q,\(O)log ?Eg; e + /qA(H) log P(D | 0)d6. 3)
The ELBO loss includes two terms: a regularization term enforcing consistency with prior
knowledge, and an expected log-likelihood term controlling that the model fits the training
data. The relative importance of each term in the loss can be adjusted to optimize model per-
formance. During training, the negative log-likelihood can be computed by drawing only one
neural network sample per forward pass, rather than computing the expectation over multiple
model realizations, thus reducing computational effort. Gradient descent can still be effectively
performed despite the presence of noisy gradient estimates.

3
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Bayes by backprop

Bayes by backprop follows the aforementioned VI approach to approximate the posterior
distribution over neural network weights [Blundell et al., 2015]]. This approach combines the
principles of Bayesian inference with the optimization techniques of backpropagation. By as-
suming the variational posterior as a multivariate standard Gaussian, i.e, ¢y ~ N (0, I), Bayes
by backprop uses the reparametrization trick:

0 = g + 0g - €, where e ~ N(0,1). 4)

Random weights # are sampled from the variational distribution using the reparameterization
trick. This formulation also enables the computation of the gradients and updates of the vari-
ational parameters using standard optimization techniques. Following Equation [3] the model
loss at the k" epoch is can be computed as:

Ny N
£=ad KL (o) || PO))) + % > (i — 6., 5)
j=1

=1

where « is the KL loss factor, /Vy is the number of model parameters, [V is the size of training
dataset, y and ¢ are the target labels and model predictions.

Monte Carlo dropout

Dropout is a regularization technique where, during training, random units (neurons) are
“dropped out” or set to zero with a certain probability. This helps prevent overfitting and en-
courages robustness of the model [Wager et al., 2013]. Monte Carlo dropout (MC-Dropout) is
an approach that extends the idea of dropout regularization in neural networks to approximate
Bayesian inference [Gal and Ghahramani, 2016]]. During the training of MC-Dropout networks,
a dropout rate py € [0, 1] is applied, randomly deactivating a portion of neurons in each forward
and backward pass, introducing stochasticity to the model. The loss function can be formulated

as:
N

£= 5> (=97 + o]l (©)
i=1
in which the second term corresponds to L2 regularization and ¢ is the regularization coeffi-
cient. During the forward prediction of BNNs, dropout is still applied, being opposed to the
traditional dropout in which dropout is only applied during training, but all neurons are ac-
tive during prediction. Multiple forward passes are performed through the network, each time
randomly deactivating neurons with a specified dropout probability. This process is similar to
drawing multiple samples from a probabilistic model. MC-Dropout provides a practical and ef-
ficient way to obtain uncertainty estimates in neural network predictions and can be seen as an
approximation of Bayesian neural networks, while full Bayesian inference is computationally

expensive.

2.2 Deep ensembles

Deep ensemble networks, also known as model ensembles, are a technique in machine learn-
ing that involves training multiple deep neural networks independently and then combining their
predictions to produce more robust and accurate predictions. Since they do not apply Bayesian
principles, deep ensembles may not be categorized as Bayesian neural networks. The key idea

4
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behind deep ensemble networks is to leverage the diversity of multiple models to improve gen-
eralization and reduce overfitting, standing as a sound reference for comparison.

Instead of training a single deep neural network, multiple networks are trained independently
through a different random initialization and/or different training hyperparameters. Once all
the individual networks are trained, they are used to make predictions on new, unseen data
points. Each network produces its own prediction which are then combined to produce a final
prediction. Mathematically, if V,, individual neural networks are considered, each producing a
prediction denoted as gy; for the same input data point, the ensemble prediction Yepsemble Can be
computed as:

Ny,
@ensemble - Z wzgz (7)
i=1

where w; represents the importance weight assigned to each neural network model’s prediction.
The weights can be uniform (equal for all models) or learned during the training process to
optimize the performance of the ensemble.

3 BENCHMARKING PROBABILISTIC NEURAL NETWORKS AS VIRTUAL SEN-
SORS FOR OFFSHORE WIND FARMS

Typically, equipping an entire offshore wind farm with strain sensors is not cost-effective,
primarily due to the high installation and maintenance expenses associated with this process.
In this context, virtual load monitoring offers a practical solution. It involves generating load-
related information using readily accessible monitoring data, which often includes SCADA and
accelerometer data. In this regard, one or a selected group of turbines, often called the ‘fleet-
leader(s)’, are fully equipped, allowing the collection of concurrent SCADA, acceleration, and
load data required for the training of virtual models. The trained model can later be used to
replace the damaged strain sensors of the fleet-leader(s) or predict the loads on other turbines in
the farm.

In this study, we compare the afore-mentioned probabilistic neural network models with
a specific focus on fleet-leader-based virtual monitoring application. This benchmark aims to
assess these methods in terms of generalization ability and robustness of uncertainty indications.
In addition, the computational requirements for the training and deployment of the models are
also compared.

3.1 Uncertainty estimation in probabilistic neural networks

The collected predictions from multiple passes of the probabilistic neural networks form a
distribution of possible outcomes. One can calculate various statistics of this distribution from
the predicted samples. For instance, the expected value and the predictive uncertainty can be
quantified as:

Ny
E[z)lw}zNifo(zﬂx,e(“), ®)
i=1

Ny 2
~ 1 ~ i A 2
V@) = 53 (1 (312.69) ) - (Bli | =)*, ©
i=1
where the network parameters, € are random samples from the posterior weights and biases
associated distributions, f represents the probabilistic neural network model, and Ny is the
number of forward predictions.
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Figure 1: Illustration of an uncertainty-error sparsification plot.

If the output of neural network models is a distribution, i.e., aleatory uncertainty is also con-
sidered, the retrieved predictive uncertainty estimate V(¢ | ) encompasses both aleatory and
epistemic contributions. If the network is modeled to produce point estimates only, the predic-
tive uncertainty solely represents the epistemic part. For a detailed explanation on the uncer-
tainty decomposition of Bayesian neural networks, the reader is referred to [Hlaing et al., 2024]].

3.2 Metrics for comparing probabilistic models

To compare the model uncertainty provided by the tested probabilistic neural networks, we
evaluate the coverage probability, represent sparsification plots, and quantify the AUSE (area
under sparsification error) metric. In order to compute the coverage probability, multiple for-
ward simulations are generated for each test input. From the simulated predictions, we estimate
the 2.5"" and 97.5"" percentiles and check if the target value lies within the interval. The cover-
age probability on the test dataset can thus be computed as:

N
1 ~(2.5) (97.5)

cP=—N"1 [ (25) < 4 < ! ] 10

N ;:1 Ui <Y sy (10)

where g)§2'5) and g)§97'5) are the 2.5'"and 97.5"" quantiles of the predicted samples for observation

i, N is the total number of test observations, and I[.] is an indicator function that returns 1 if the
condition inside is true and 0 otherwise.

Sparsification plots have already been used in computer vision to visualize and compare
different probabilistic neural network models with respect to their performance in estimation
tasks while considering uncertainty estimates [Gustafsson et al., 2020, [[lg et al., 2018]]. The
vertical axis in a sparsification plot is the metric of accuracy, e.g., mean absolute error, mean
squared error, etc., and the percentage of removed samples is indicated on the horizontal axis.
Sparsification plots are obtained through step-by-step removal of test samples and re-assessing
the model accuracy, as illustrated in Figure |1} The oracle curve which eliminates the samples
in a decreasing order of the model accuracy is always monotonic and used as the reference. The
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epistemic curve plots the model accuracy of test samples sorted from high to low uncertainty.
Note that when the model uncertainty is biased- e.g., over-confidence for wrong predictions, the
epistemic curve can be non-monotonic. The closer the epistemic curve aligns with the oracle
curve, the better the model’s uncertainty ranking.

Subsequently, AUSE - the area between the oracle and epistemic curves - is a performance
metric used to quantitatively evaluate the quality of uncertainty estimation. A lower AUSE value
indicates that the model-provided uncertainties align with the error with respect to ground truths.
For non-monotonic epistemic curves, AUSE will increase, indicating inconsistency between
accuracy and uncertainty.

3.3 Experimental setup

Monitoring setup and data description

This case study uses the data collected form five monopile-supported offshore wind turbines
collected during a 2-year period (from late 2022 to 2024). The monitoring setup consists of
a SCADA system which records turbine’s environmental and operational conditions, nacelle
accelerometers and tri-axial strain gauges on the transition piece specifically located at 14 m
above the water level. The signals collected from SCADA and accelerometers are stored in the
form of statistics at every 10-minute - mean, standard deviation, minimum, maximum, and root
mean square (rms), etc.

In common practice, the temporal strain signals are often post-processed into bi-axial dam-
age equivalent moments, D E My, in side-to-side (SS) direction and D E M,,, fore-aft (FA) direc-
tions, as follows:

B — :

eq

DEM = 11)
The term damage equivalent load (or moment) is defined such that the damage caused by a pre-
defined number of DEL range N,, (usually specified as 107) is equal to that of the original load
spectrum. NNV,, represents the number of bins in the load spectrum, M, ; and n, are the reference
moment value of the i*" bin and the corresponding number of cycles and ‘m’ is the slope of the
linear SN curve. In this work, we train the model to predict the moment in SS direction D E M.

Table || lists the input and output features of the virtual monitoring model. Although all
SCADA and acceleration statistics are recorded, some statistical features are not used as model
inputs depending on their influence on the output load (based on pre-conducted feature impor-
tance analysis), and data availability constraints. The collected data that spans 2 years is split
into one year each for training and testing. The test data is further decomposed into two dif-
ferent sets: the samples that are similar to the training data (Test 1) and the others outside the
distribution of the training data (Test 2). In this regard, the test samples are put in the second
test dataset if one input feature is beyond 3 standard deviations in its normalized space of the
training data. In particular, 35% of the 1-year test data is Test 1 and the remainder forms Test 2.

Neural network parameters

The probabilistic neural networks used in this investigation are implemented in PyTorch, a
Python-supported tensor library for deep learning. Table 2] summarizes the network configura-
tions and training parameters for all the methods. The same network architecture is used for
all neural network models with three hidden layers with 32, 64, and 32 neurons respectively,
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Table 1: Description of the input and output features.

| Sensor Monitoring signall Symbol Units
SCADA Wind speed (mean) w[W Spd] m/s

Wind speed (std) o[W Spd] m/s
Power (mean) p[Power] kW
Yaw angle (mean) wulY aw] deg
Pitch angle (mean) w[Pitch] deg
Pitch angle (std) o[Pitch) deg
Rotational speed (mean) u[RPM]| rpm

*g_ Rotational speed (std) o[RPM] rpm

£ Wind direction (mean) w[W Dir] deg
Turbulence intensity (mean) u[Turb] -

Nacelle accelerometers Z acceleration (mean) wlacez) g

Z acceleration (max) mazlaccy] @
Z acceleration (min) minlaccy] g
Z acceleration (rms) rmslaccy] g
FA acceleration (max) mazx[accpa] @
FA acceleration (min) minfaccrpa] @
FA acceleration (rms) rmslaccra] @
SS acceleration (max) mazxaccss] @
SS acceleration (min) minlaccss] 9
SS acceleration (rms) rmslaccss| @

*g_ Strain gauges DEM (side-to-side) DE My MNm

>

O

Table 2: Neural network architecture and training parameters.

Bayes by backprop MC-Dropout Deep ensembles

No of neurons:

Input layer 20 20 20
Hidden layers 32,64,32 32,64, 32 32,64, 32
Output layer 1 1 1
Optimizer Adam Adam Adam
Learning rate 0.001 0.001 0.001
Batch size 2400 2400 2400
No of episodes 1000 1000 100
*KL loss factor I-le-4 - -
*Dropout probability - 0.1-0.25 -
*No of networks - - 10-20

* A sensitivity analysis is performed to analyze the hyper-parameters.
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Figure 2: Sensitivity analysis. The influence of key hyperparameters is assessed for all tested
probabilistic neural networks.

activated by rectified linear unit (ReLU) functions. The input layer receives 20 statistical fea-
tures of SCADA and acceleration parameters and the output layer predicts D E M;;. We do not
implicitly model the aleatory uncertainty in this case study, and therefore the output layer has
only one neuron. However, the BNN can also be alternatively laid out with additional neurons
in the output layer to capture aleatory uncertainty [Hlaing et al., 2024].

During the course of the training task, the neural networks are trained on mini-batches of
2400 training samples, minimizing the respective formulated loss functions. The networks’
weights are adjusted according to Adam optimizer at the learning rate of 0.001. Bayes by back-
prop and MC-Dropout are trained for 1000 episodes and the best weights with minimum loss are
stored. In deep ensembles, each deterministic network is trained for only 100 epochs to avoid
potential overfitting problems. Since each implemented inference method consists of different
hyper-parameters to optimize, we also performed sensitivity analyses on those parameters. The
hyper-parameters and tested values are also shown in Table [2]

The virtual sensing models trained by changing the values of hyperparameters are tested on
the same test dataset to study their effects on the accuracy (MAE) and uncertainty estimation
(CoV), computed as:

N
1 )
MAE:NZWZ»—%-L (12)
=1
\/ yz
= . 1
CoV = NZ 0, | ] (13)

=1

The test dataset used in the sensitivity analysis only consists of the samples that are inside the
training region. In Bayes by backprop, the weight factor of the KL loss « is varied between 1
and le-4. With higher weights of the KL loss, the mean absolute error (MAE) and uncertainty
tend to increase, as shown in Figure[2al With high KL factor, the posterior weights remain closer
to the initial standard Gaussian weights and the model’s fitting capacity to the training data is
limited, thus affecting the prediction accuracy. The MAE and model uncertainty converges for
KL factors less than 1e-3.

The dropout rates in the MC-dropout do not have a significant effect on the averaged mean
absolute error. However, the epistemic uncertainty changes by varying the dropout rates such
that it increases for higher dropout rates. However, smaller uncertainties might not necessarily
mean that the model predictions are better, as it can be seen in Figure that the MAE re-
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mains the same. With small values of dropout rates, the model weights just becomes almost
deterministic, thus showing smaller CoVs.

Deep ensembles of multiple deterministic networks are tested - varying the number of models
from 10 to 20. Neither MAE nor COV is dependent on the number of models, with consistent
values of ~ 4.5% of accuracy and ~ 1.5 for CoV in Figure [2c| Based on the sensitivity results,
the models trained by Bayes by backprop with KL loss factor 1e-4, MC-Dropout with dropout
probability 10%, and deep ensembles of 20 neural networks are selected for the benchmark
study.

4 RESULTS AND DISCUSSION
4.1 Comparative study

The goal of this comparative study is to test popular BNN variants in terms of their ability to
generalize and represent uncertainty. Table[3|lists the mean absolute error (MAE) and area under
the sparsification error (AUSE) curve on the two test datasets. All models achieve an MAE of
approximately 4.5-5% on the first dataset (i.e., Test 1), where the samples are closer to the
training data distribution. Additionally, the models are tested on out-of-distribution data (i.e.,
Test 2) to assess their generalization capabilities. As expected, the MAE for all models increases
significantly on Test 2 compared to Test 1. Interestingly, Bayes by backprop outperforms the
other probabilistic neural network variants, resulting in an MAE of 10%, whereas MC-Dropout
and deep ensembles result in MAEs of 24% and 29%, respectively.

To analyze the ability of the models to rank predictions in terms of model uncertainty, the
sparsification curves are shown in Figurefor Test 1, Test 2, and the combined dataset (i.e., Test
1+2). The sparsification curves are mostly monotonic for Test 1, showing an overall correspon-
dence between model error and uncertainty ranking. The sparsification curves do not, however,
fully align with their corresponding oracle curves, and the MAE only slightly reduces, although
the model becomes more confident. We attribute this result to the fact that prediction errors are
mostly small in this case; the model will not give significantly higher model uncertainties, re-
sulting in flat epistemic curves. This behavior can also be expected considering that test samples
are close to the training dataset, and the model is naturally confident in the predictions despite
possible deviations from ground-truth labels.

It is worth noting that the epistemic sparsification curve of MC-Dropout is not monotonic on
Test 2, which can be caused by incorrect uncertainty estimates. On the other hand, despite high
prediction errors, deep ensemble models’ oracle and epistemic curves almost fully align with
each other, indicating the model’s strong uncertainty awareness. The epistemic curve of Bayes
by backprop rapidly decreases as the sparsity increases, yet it does not completely align with
the oracle.

Table 3: Performance of the tested probabilistic neural networks on two test datasets. Note
that samples contained in 7est 2 dataset are farther to the training data distribution than samples
included in Zest 1.

Test 1 Test 2
MAE (%) AUSE MAE (%) AUSE
Bayes by backprop 4.59 0.41 10.19 0.33
MC-Dropout 4.92 0.47 242 0.24
Deep ensembles 4.58 0.37 29.36 0.11

10
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Figure 3: Sparsification curves for the investigated probabilistic models. Samples contained in
Test 2 dataset are farther to the training data distribution than samples included in 7est 1.

By observing the sparsification curves of Test 142, it can be seen that the epistemic curves
of Test 1+2 up to ~70% sparsity also correspond to those of Test 2, and the remaining tails are
similar to Test 1. It demonstrates that the models themselves can distinguish between similar
data and shifted data. Especially, Bayes by backprop and deep ensembles are able to provide
robust uncertainty estimates for out-of-distribution data. Areas under the sparsification error
are also listed in Table 3] As one can expect, the AUSE values on Test 1 are similar among all
the models. In Test 2, the minimum AUSE of deep ensembles represents the afore-mentioned
accuracy-uncertainty correspondence.

To further assess the quality of uncertainty indicators, we computed the coverage probability
— a frequentist measure of uncertainty representativeness— which checks if the ground-truth
values lie within the credible intervals predicted by the models. The 95% intervals are computed
and described as a ratio with respect to the predicted values. The CPs are computed for test
samples of which the interval width to mean ratio is higher than the indicated threshold. The
CPs of the tested approaches are plotted in Figure [] for combined Test 1+2. In Bayes by

11



Nandar Hlaing, Pablo G. Morato, Francisco de N. Santos, Wout Weijtjens, and Christof Devriendt

—

r [emmm—peeTe e TEe= e mm e —————

S

2

:'E

<

e}

e

Q

(]

%ﬂ —— Backprop

g Dropout

© —— Ensembles
=== 95%CP

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Minimum threshold for interval width to mean ratio

Figure 4: The 95% coverage probability (CP) of the investigated probabilistic neural networks
is represented as a function of the specified threshold. CP is computed by selecting test samples
for which the predicted interval width to mean ratio is higher than the indicated threshold.

backprop, 95% coverage probability is achieved when the interval width to mean ratio goes
higher than 20%. For the other test samples, i.e., the interval width to mean ratio is less than
0.2, the BNN model is confident but the target value is out of the predicted interval. However,
it does not necessarily mean that the prediction error, e.g., mean absolute error, will be high.
The other two models, MC-Dropout and deep ensembles achieve the 95% CP only when the
interval width is higher than 80% of the mean value, meaning that the model is, in general,
over-confident for most of the test samples. If one would like to deploy these models in the
decision-making problem, re-calibration of the uncertainty bounds should be considered for
safe application.

4.2 Computational requirements

We summarize in Table 4| the computational requirements for training and deployment of
the investigated approaches on an 8-core processor operating at a clock speed of 3.2 GHz and
8 GB memory. For Bayes by backprop and MC-Dropout models, the training time is mainly
influenced by the model complexity, i.e., the number of neurons, and the number of training
samples. The indicated computational requirements are for training the dataset consisting of
219,820 samples. The training time of deep ensembles further depends on the number of neural
networks. In the above case study, we use 20 models and require around 2300 seconds of
training time, making it the most computationally expensive.

The computational efforts for prediction are indicated for 237,305 test points. One needs
to simulate multiple forward passes to compute the predicted value and the model uncertainty.
Whereas the number of forward simulations required is case-specific, we run 100 passes of
BNNs (Bayes by backprop and MC-Dropout) in this work. Bayes by backprop is more efficient,
only requiring 2.7 seconds, while MC-Dropout takes 15.7 seconds. In deep ensembles, it is not
necessary or impossible to perform a large number of forward passes as in Bayes by backprop
and MC-Dropout, and the number of forward simulations is just the same as the number of
neural networks, making it the most efficient during the prediction phase.
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Table 4: Computational requirements for training and deployment of the probabilistic models.

Training Prediction

Bayes by backprop ~1100s ~2.7 s (100 simulations)
MC-Dropout ~1200s ~15.7 s (100 simulations)
Deep ensembles ~2300s ~0.5 s (20 simulations)

S CONCLUSIONS

This study assesses the effectiveness of probabilistic deep learning models in serving as
virtual load sensors for offshore wind turbines. The results show that the tested probabilistic
models can generally signal uncertain samples, which are most likely characterized by high
prediction errors, resulting in monotonic uncertainty-error sparsification curves. Among the
approaches investigated, deep ensembles lead to a better agreement between error and uncer-
tainty ranking compared to the other tested Bayesian neural networks, which can yield over-
confident uncertainty estimates when receiving out-of-distribution data. In terms of probability
calibration, the results reveal that all tested models tend to be over-confident when generating
predictions for samples close to the training data distribution, whereas more reliable uncertainty
metrics can be obtained when the models are presented with out-of-distribution data. Overall,
probabilistic models are able to accurately predict loads under conditions similar to the train-
ing data while signaling high uncertainty when making predictions from data collected under
different conditions, thereby offering a useful tool for managing the risk of offshore wind assets.

While a set of probabilistic deep learning models is investigated in terms of generalization,
uncertainty rankings, and probability calibration, this research can be extended by exploring
inference methods, such as Markov Chain Monte Carlo, to quantify the discrepancy between
the computed approximate and exact posterior distributions over neural network parameters.
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