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Abstract

Deep learning techniques have become the tool of choice for side-channel analysis. In recent years,
neural networks like multi-layer perceptrons and convolutional neural networks have proven to be the
most powerful instruments for performing side-channel analysis. Recent work on this topic has focused
on different aspects of these techniques, either to improve the performance of the resulting models,
reduce the complexity or find new well-performing architectures. A part of these neural networks that
has received relatively little attention is the loss function. Loss functions play a key role in how these
networks learn since each of the weights in the network is updated to minimise the loss calculated by
the loss function. Work on loss functions in other fields where deep learning is used shows that the
choice of loss function impacts the performance of the resulting models. While there are two novel
functions proposed specifically for side-channel analysis, no broad analysis of the performance of dif-
ferent functions has been done in this context.

In this work, we provide such a broad comparison between different loss functions in the context of side-
channel analysis and how they impact the performance of the resulting models. We show that novel,
application-specific loss functions almost always outperform the current standard categorical cross-
entropy. Besides that, we also show that state-of-the-art (multi-)loss functions from other domains can
be successfully applied to side-channel analysis. Finally, we provide an overview of the strengths and
weaknesses of the different loss functions in various side-channel analysis scenarios and use those to
introduce our own novel loss function, the focal loss ratio. We show that this new loss function based
on characteristics of other, well-performing loss functions, outperforms the previous best function in
most SCA scenarios.
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Chapter 1

Introduction

In recent years, micro-controllers have found their way into an increasing number of aspects of our lives.
Many of the things we interact with daily now contain some sort of micro-controller: from our phones
and watches, smart cards such as our credit or ID card, to the routers and access points that provide our
homes with Wi-Fi. For many devices, it holds true that we expect some form of confidentiality, integrity,
and availability from them. For example, when we pay with a smart card, we want to be able to trust
the transaction happens securely. To that end, many of those devices use some form of encryption to
secure the processed data. The implementations of those cryptographic functions, however, are not
always flawless.

To research the security of these devices and implementations a technique called side-channel
analysis (SCA) is used. SCA is the act of analysing properties of the implementation of those crypto-
graphic functions in an attempt to learn more about how it works and potentially what secret key is used.
The implementation and nature of the processes used to create the micro-controller and cryptographic
function sometimes cause the unintended leakage of information via a side-channel. This leakage can
for example be in the form of a timing difference [31], power usage [30] or electromagnetic emanation
[17] caused by the device when running a cryptographic function.

A subset of SCA is called profiled SCA. With profiled SCA, we assume that we have control over
a profiling device, a device identical to the device we are targeting. This means that we can use this
device to encrypt any data we want and know the key used for this encryption. With this knowledge, a
profile can be build of the device. One approach to profiled SCA is the template attack [61], in which
the relation between the noise in the measurements from the profiling device and the key is used to
create a profile. Later, machine learning techniques were employed to perform SCA [2, 24, 33] against
various implementations of AES.

More recently, the focus has shifted towards employing deep learning techniques for profiled SCA
[4, 39, 40]. Deep learning architectures often have many hyperparameters and there is no straight-
forward way or a generic architecture that works best in every situation. The work in this context has
therefore focused on improving certain aspects of the used techniques. For example on what opti-
misers work best for SCA [46], specific settings against countermeasures [7], the introduction of SCA
specific metrics [60, 77] and attempts to create a methodology for finding suitable architectures [69, 75].

The problem we try to solve in this thesis is the relatively little attention loss functions have had in
the context of SCA. The loss function is an important component of a deep learning model. It is used
to calculate the error, or loss, between the output of a deep learning model and the true values that
correspond to the given input. This function is then used to update the model with the aim of reducing
this loss, i.e. it helps the model to learn the relation between the input and the expected output.

By comparing loss functions and analysing the impact they have on the performance in SCA, we
aim to improve the tools that researchers have for performing SCA with deep learning. In other areas
where deep learning has been used, such as face recognition, comparisons between various loss
functions have already been made [26, 67, 72]. These works have shown that the choice of loss
function influences the performance of the resulting model. Besides that, numerous proposals for
application-specific loss functions have been made, often further improving the resulting deep learning
models [3, 16, 19, 20, 36, 37, 571].

So far, no analysis of or comparison between commonly used loss functions in deep learning in
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various SCA scenarios has been done. The difficulty of such a comparison in the context of SCA lies in
the number of different settings there are. There are numerous datasets from different implementations
and devices, leakage models, loss functions and architectures to compare. While two loss functions
specifically for deep learning SCA have been proposed [74, 77], the comparison these works provide
between these novel functions and commonly used loss functions is limited. Only a single architecture,
leakage model or other loss function is considered.

To summarise, deep learning techniques have become the most powerful tools for SCA. By provid-
ing an analysis of loss functions in the context of SCA, we try to improve the tools researchers have
for improving the security of cryptographic implementations. In this work, we will therefore analyse the
influence of the loss function on the performance of deep learning models in various SCA scenarios.
To do so, we will answer the following three research questions:

1. How do commonly used loss functions compare to novel, application-specific loss functions when
deep learning is applied to side-channel attacks?

2. How do novel loss functions from other fields and multi-loss functions perform when applied to
deep learning for side-channel analysis?

3. Can we construct a new loss function that improves the performance of deep learning models
when used specifically for side-channel analysis?

The structure of this work is as follows. First, Chapter 2 provides the relevant background infor-
mation required for this thesis. In Chapter 3, work related to this topic is discussed and our research
questions are reformulated into sub-questions. Following that, we present our experiments and results
on commonly used and novel loss functions in Chapter 4. In Chapter 5, we discuss our work on the ap-
plication of (multi-)loss functions from other fields to SCA. The lessons learned from these two chapters
are then used to construct a novel loss function for SCA in Chapter 6. Finally, we conclude our work
by answering our three main research questions in Chapter 7 and providing insight into the limitations
of this work and ideas for future work.



Chapter 2

Background

This chapter provides an introduction to the techniques and theory required for this thesis. First, an
introduction on side-channel attacks (SCA) is given, focusing on profiled SCA. Then, concepts from the
field of machine learning are introduced, such as deep-learning and loss functions. Finally, background
information about the targeted cryptographic functions and the used datasets is given.

2.1 Side-Channel Attacks

Side-channel attacks (SCA) are attacks that use unintentional information leakages caused by the
implementation of a cryptographic function to recover a secret key. These leakages could be in the form
of timing differences [31], electromagnetic emanations [1] or power usage [30]. Finding and exploiting
the correlation between the secret key and the observed side-channel can be done in several ways. In
this section, we will discuss the different types of SCA, the leakage models used to model the relation
between the secret key and the measurements and the metrics related to SCA.

2.1.1 Non-profiled Side-Channel Attacks

The first class of SCA are the non-profiled attacks. The scenario for these attacks is that for example the
power consumption of a targeted device that is performing some cryptographic operation is measured
directly. Kocher et al. first introduced such a method, called simple power analysis (SPA) [30]. The idea
behind SPA is that observing the power usage of such a device directly reveals information about the
performed operations. In turn, this information in combination with knowledge about the device could
in some cases be used to break the implementation and retrieve the secret key.

More powerful non-profiled attacks have also been introduced. Kocher et al. also introduce a
method called differential power analysis (DPA) [30]. For DPA, less or no additional knowledge is
necessary, and only ciphertexts and power traces are required. The idea behind DPA is to create a
differential trace based on the difference between the averages of two subsets of the available traces.
These subsets are created using a selection function, which, if there is a correlation between the func-
tion and the targeted value, results in a differential trace that can reveal the key.

Another technique used to perform non-profiled attacks is called correlation power analysis (CPA)
[6]. CPA uses a correlation factor between a Hamming distance-based leakage model and the available
traces to test key hypotheses. Even more recently, non-profiled attacks based on deep learning have
also been proposed [63]. This technique, which the authors named deep learning power analysis
(DPLA), uses key hypotheses in a similar fashion. They calculate labels based on each hypothesis
and train deep learning models with these traces and labels. They show that by looking at several
metrics, they can discriminate between the correct key and other hypotheses, and train models which
outperform CPA attacks.
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2.1.2 Profiled Side-Channel Attacks

The second class of SCA are the profiled attacks. In a profiled attack, attackers use a second device
that is identical to a targeted device they might have limited access to. Since the attackers have full
control over this profiling device, they can use it to create a set of profiling traces and corresponding
labels. These, in turn, can be used to create a model of the profiling device and attack the targeted
device.

The template attack is the earliest example of such a profiled attack [61]. The profiling phase of the
template attack consists of the attackers constructing templates for each of the possible key values,
consisting of the mean signal and probability distributions of the noise. For each of these possible
key values, a covariance matrix is then calculated. Next, in the attacking phase, one or more traces
from the targeted device are used. For each of these traces, the probability that they originate from
an operation with one of the possible key values is calculated using the constructed templates. The
authors use their method to effectively attack RC4 and the DES cipher. Other works later improved
upon the efficiency of template attacks [12] or demonstrated its potential against other implementations
such as AES [8].

Profiled attacks based on machine learning techniques have also proven to be very successful. For
this type of attack, SCA is seen as a classification problem, where a model is trained on a set of profiling
traces and labels gathered from the profiling device. The trained model is then given traces gathered
from the targeted device and a set of probabilities for each possible key value is predicted. Different
types of machine learning techniques, such as support vector machines [2, 33] and random forest
classifiers [33], have been shown to outperform template attacks while also requiring fewer profiling
traces.

Deep learning techniques have also been used in profiled SCA. First explored by [40], multi-layer
perceptrons (MLP) and convolutional neural networks (CNN) have been empirically shown to be even
more powerful in specific SCA scenarios [7]. Picek et al. does mention that there are several potential
drawbacks, such as the introduction of numerous hyperparameters which have to be tuned and the
need to create new architectures for each different SCA scenario. Methodologies to find these archi-
tectures have been proposed, however [75], and there also seems to be potential in using architectures
that have proven to work well in other domains [4, 27]. The work in this thesis will focus on profiled
SCA using models based on MLP and CNN architectures.

2.1.3 Metrics

There are several metrics commonly used to measure the performance of machine learning models.
Well-known examples are a models’ accuracy, precision and recall and other such metrics based on the
amount of true and false positives and negatives. Earlier work, however, has shown that such metrics
do not work well to indicate the performance of deep learning models in the context of SCA [60, 77].

To be able to estimate, measure and compare the performance of deep learning models in the SCA
domain, two metrics are commonly used: the guessing entropy and success rate. The output of the
machine learning models is a list of probabilities for each possible key value. This output is sorted
by probability from most likely to least likely key value and is called the key guess vector. Both the
guessing entropy and success rate relate to the position or key rank of the correct key in this key guess
vector.

Guessing Entropy

The partial guessing entropy (PGE) is calculated as the average key rank of the correct key byte in the
key guess vector over a number of attacks. Commonly, partial guessing entropy is interchangeably
used with the term guessing entropy (GE). In this work, we define both the GE and PGE to be the
guessing entropy for a single key byte. In practice, the GE is calculated over 100 attacks and reported
by plotting the GE versus the amount traces used in the attack [70, 74]. The amount of traces used
is then increased and an attack can be considered successful if the GE reaches 1, meaning that the
average key rank over the number of attacks is 1 and the correct key was chosen in each of the
individual attacks. In this work, we will report the GE in a similar fashion. The PGE will be plotted



versus the amount of traces used in the attack and averaged over 100 attacks. When attac_ks are
successful, i.e. reach a GE of 1, we will also report the amount of traces required, denoted as N, .

Success Rate

The second metric often used for the evaluation of deep learning models in the SCA domain is the
success rate (SR). The SR is calculated by choosing a low value such as 1, the order, and calculating
for how many of the 100 attacks, the key rank of the correct key is equal or lower than the chosen
value. If for example, an attack using x traces is successful 20 out of 100 attacks, the SR for x is 0.2.
When reporting success rates, we plot the success rates versus the amount of traces used. We use
the first-order success rate, meaning that for a single attack to be counted as successful, the key rank
of the correct key has to be 1.

2.1.4 Leakage Models

The goal of SCA is to retrieve the key that is being used on the targeted device. To this end, we usually
target an intermediate value in the process of encryption that is dependent on the key and either the
plaintext or ciphertext. In the case of AES, further explained in Section 2.4, we target the intermediate
value after the S-box operation is applied in the first round of AES. This value can be denoted as follows:

zi = sbox(pt;[j] ® k[j])

where pt; is the plaintext used during encryption, sbox is the S-box substitution and j is the key byte
we want to attack. In this work, we use two so-called leakage models to model this value. The first
one is the identity (ID) leakage model. When using the identity value, we directly use z; as a target.
This results in 256 possible key byte values and classes. The second leakage model is the Hamming
weight (HW) model. For the HW leakage model, we calculate the Hamming weight for each z; and use
that as a label and target. The Hamming weight for a byte z; is defined as the number of bits set to 1
in the binary representation of the byte. For example the byte A1 = 161 in decimal representation and
A1 = 10100001 in binary representation, so HW (A1) = 3. Using the HW leakage model results in 9
possible values and classes. The assumption behind the HW leakage model is that data leakage from
a power trace is dependent on the number of bits that switch state [6].

2.2 Machine Learning

Machine learning is the process of letting an algorithm analyse different examples to try and create a
model that approximates a certain process or task. By giving the algorithm more examples, a process
called training, the model should learn and become more accurate in performing the task. Machine
learning has been applied to many different fields. Some notable examples are playing various games
[58], credit card fraud detection [38] or more cyber security related topics like penetration testing [9] or
intrusion detection [64]. In general, three different approaches to machine learning exist. Learning can
be done unsupervised, where a dataset without labels is used as training data. Here, learning is done
by letting the algorithm process training data and letting it form a model based on the patterns present
in the data.

Another approach is reinforcement learning. With reinforcement learning, an algorithm is faced with
a certain scenario and has to make decisions or perform actions. Based on those actions, a reward or
score is calculated. The idea is that the algorithm needs to learn to make decisions that maximise that
score, getting better at making the right decisions and the underlying task such as playing a game [58].

The third approach is supervised learning, which is the approach we will consider in this work. In
supervised learning, a training dataset consisting of the actual data and a label for each sample is
used. Often, the task at hand is classification and the label is the class that the training sample belongs
to. During the training phase, the model is given a sample as input and predicts a score or probability
for each of the possible classes. The difference between the output and the actual class the sample
belongs to is calculated via a loss function. This loss is then used to update the model and improve the
predictions on the following inputs. The goal of this process is that after training, a generalised model
is created that can also predict the correct class for inputs it has not seen during training.
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221 Deep Learning

A subset of machine learning algorithms is called deep learning algorithms. Deep learning models
consist of multiple layers of artificial neurons that are interconnected. Each of these connections has
a weight, and the model learns by updating the weights based on the loss calculated on the output
of the model. These techniques are called deep learning for the multiple layers and huge amounts of
connections and therefore weights they contain. In recent years, these complex deep learning models
have been shown to perform well in the context of SCA [4, 7, 27, 40, 43].

The building blocks of these networks are perceptrons: artificial neurons. Such a neuron takes an
input x; from each of the neurons it is connected to in the previous layer. Each of these connections has
a weight, w;, which is multiplied with the input x;. Some activation function f is applied to the sum of
these sets of weights and inputs and calculates an output y. So for a neuron with n inputs, the output is
given by Equation 2.1. For all but the last layer, the output of a neuron acts as the input to the neurons
in the next layer.

y= O xw) 21)
i=1

There are different activation functions commonly used in deep learning. When deep learning is ap-
plied in SCA, most often the Rectified Linear Unit (ReLU) [4, 43], Exponential Linear Unit (ELU) [47, 50],
Scaled Exponential Linear Unit (SELU) [47, 50] or hyperbolic tangent (tanh) [4, 40] functions are used.
The ReLU function is commonly used in deep learning and was shown to result in better performing
models that trained faster than the previously used sigmoid activation function [18, 45].

relu(x) = max (0, x) (ReLU)

The SELU activation function was introduced as an effort to create self-normalising neural networks
[29]. The normalising refers to the activation outputs: the SELU function aims to output activations
across different training samples which have a mean and variance between predefined intervals. The
purpose of this normalisation is to allow for deeper networks, i.e. networks with more layers, to be
trained by avoiding the vanishing or exploding gradient problem. For the parameters, the default val-
ues of @ = 1.6733 and 1 = 1.0507 are used.

x ifx>0
selu(x) =4 (SELU)

ae* —a ifx< 0

The ELU function is introduced by Clevert et al. to further improve the training speed and classification
accuracy in comparison to ReLU [13]. According to Clevert et al., the possibility of negative outputs of
the function improves the generalisation of the resulting model and propose to use a = 1.0

if x>0

x
a(e*—1) ifx< 0 (ELY)

elu(x) =41 {

The tanh function maps the input to a value between —1 and 1. Due to this, networks using the tanh
activation do not suffer from gradients getting too large, i.e. exploding. However, when using deeper
networks with more layers, the tanh activation function might suffer from vanishing gradients, i.e. gra-
dients getting too small [22].

X _ px

tanh(x) = m

(tanh)

Finally, the activation function of the last layer in the deep learning network is often different when
classification problems are considered. Instead of any of the aforementioned functions, the softmax
activation function is used. The softmax function transforms the outputs of the network, the vector x, to
a probability distribution over the possible classes. This means that the resulting outputs of the model



are between 0 and 1 for each of the classes and the sum of the probabilities for all classes is 1.

eX
softmax(x); = m—— fori=1,.,n (Softmax)
j=1€j

Besides the activation function, another part important part of a deep learning model is the optimiser.
The activation function in each neuron is used to propagate the input through the layers of the model
to the final output. The optimiser, in turn, is responsible for updating each of the weights based on the
output of the model. Various algorithms to do this exist [56]. When SCA is considered, two optimisers
are often considered: Adam, introduced by Kingma and Ba, [28, 43, 46] and RMSprop [4, 46]. In this
work, we will treat the activation function and optimiser as configurable hyperparameters.

Multi-layer Perceptron

A multi-layer perceptron (MLP) is a type of neural network that consists of an input layer, one or more
hidden layers and an output layer. The number of neurons in the input layer is equal to the number of
features in the data, while the output layer contains as many neurons as there are possible classes or
outputs. The number of hidden layers, also called dense layers, is configurable as a hyperparameter.
The same is true for the number of neurons in the dense layers. Figure 2.1 shows the basic structure
of an MLP with an input with three features, a single hidden layer and four possible classes.

MLPs have been used successfully in the context of SCA. Simple MLPs with a single dense layer
with 20 neurons have been able to break unprotected implementations of AES [40]. Besides those
small models, deeper architectures with more layers have been used to successfully attack various
protected implementations [4, 39].

Input Layer Hidden layer Qutput Layer

Figure 2.1: The structure of an MLP with an input with three features, a single hidden layer with five neurons and four possible
classes.

Convolutional Neural Network

Convolutional neural networks (CNNs) have gained popularity in various applications. They have
proven to perform well in settings where the input data contains many features, such as in various
computer vision applications [34, 35, 52]. CNNs work well in these cases with high-dimensional data
because of their structure. Besides fully connected layers of neurons, CNNs also have different types
of layers called convolutional and pooling layers. Unlike the layers in an MLP, convolutional layers



8 2.2. Machine Learning

consist of filters. Similarly to the input weights of neurons, filters also contain sets of weights. Instead
of being fully connected to other layers, filters convolve the input, i.e. they create a feature map from
the features in the input. This is done by 'moving’ the filters of size k, the kernel size, over the input
data, multiplying the weights with the inputs and summing the respective values. The step size with
which each filter moves over the input is called the stride. A lower stride, s = 1, is commonly used
for the largest overlap between feature maps. A visual example of how input data is processed by a
convolutional layer with a filter is shown in Figure 2.2. Similar to MLPs, a non-linear activation function
is applied to the output of convolutional layers.

2 4 3 1 2 4 1 2 4

4 4 ] 4 4 ] 1 4 4

Input
4 2 3 1 4 2 3 1 4 2 3 1
1 2 4 2 1 2 -4 2 1 2 4 2
Filter
8 1 10
Output

Figure 2.2: An example of how a convolutional layer calculates its output. The calculation of the output for the first three strides
is shown. The kernelffilter size is 2 and the stride is equal to 1, meaning that with each stride, the filter is moved one place to
the right.

Another part of CNNs is the pooling layers. Pooling layers reduce the output of convolutional layers
further. Instead of containing weights, pooling layers combine their input by taking the maximum values
of subsets of the data (max pooling) or the average value of these subsets (average pooling). Similarly
to the filter in the convolutional layers, a sliding window with a pool size k is moved with a stride s over
the input.

Finally, the last layers in a CNN are fully connected layers. These are the same as the layers of an
MLP, with the number of neurons in the last layer is equal to the number of classes considered. Where
the convolutional and pooling layers are used for feature extraction, e.g. distilling relevant features
from the input data, the fully connected layers perform the classification part. An example of a CNN
architecture with one convolutional block consisting of a convolutional layer and pooling layer, and one
fully connected layer is shown in Figure 2.3.

CNNs have also been used successfully in the SCA domain. Their potential in this context was first
shown by Maghrebi et al. with later work improving the design of CNN architectures and increasing
their performance for SCA [4, 27, 40, 69, 75]. CNNs seem to do especially well in comparison with
MLPs when the data has lots of features and samples [50] or if there is desynchronisation present [4].

2.2.2 Loss Functions

Both the MLPs and CNNs in this work are used in a supervised learning setting, which learns by training
on a set of input and class labels. The difference between the output of the model and the actual class
label belonging to the input is called the loss. This loss is calculated by a loss function. The optimiser
tries to minimise this loss by using the derivative of the loss function to update the weights in the
network. Loss functions are therefore a key part of how a neural network learns since they provide
a target to be minimised. Many different loss functions exist, in this subsection, we will introduce the
functions considered in this work.
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Figure 2.3: The structure of a CNN with a convolutional block consisting of one convolutional layer, one pooling layer, and a
single hidden layer with five neurons and four possible classes. The red square is a single filter moving over the input with the
stride marked by the grey arrow. The output of each filter is calculated by moving the filter over the complete input with a step
size equal to the stride.

Mean Squared Error

One of the simplest examples of a loss function is the mean squared error (MSE). The MSE is calcu-
lated by taking the mean of the pairwise squared differences between the elements of the prediction
vector y and the vector y with the true values.

n
1
mse(y,9) = = ) (i = ? (MSE)
i=1

The MSE and variations that also use the difference between the prediction and truth vectors have
typically been used as loss functions when solving regression problems. The loss is calculated evenly
for each of the samples, regardless of which class a sample belongs to. By minimising the loss, we
minimise the distance between each of the output scores and the relevant true score. MSE is also
usable for classification problems [26] and has been used in the context of SCA.

One variation of the MSE is the mean squared logarithmic error (MSLE). Instead of using the dif-
ference between de vectors directly, the MSLE is calculated by taking the difference of the natural
logarithm applied to the true y and predicted y values.

n

1 A
msle(y,§) = = ) (log(y; +1) — log(%; + 1))? (MSLE)

i=1

The difference in practice is that MSLE is less sensitive to outliers in the data. When using MSE, a large
prediction error on a single value can increase the overall loss substantially. With MSLE, this effect is
less visible.

Finally, we also consider the logarithm of the hyperbolic cosine (log cosh) as a loss function. Log
cosh loss, like MSLE, is also less sensitive to outliers [67].

n
1
log_cosh(y,y) = - Z(log(cosh(ﬁi —-y)) (Log cosh)
i=1
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Classification Losses

The de facto standard loss function when doing classification is the categorical cross-entropy, some-
times also called the negative log-likelihood, softmax loss, log loss or just cross-entropy. It has been
used in various classification tasks [23, 32, 73] and is also commonly used in SCA [4, 27, 40]. Cross-
entropy is a measure of the difference between two distributions. When used as a loss function, the
two underlying distributions are the predictions and the true classes of the samples. Minimising the
cross-entropy, so the difference between the distribution modelled by the deep learning model and the
true distribution of the classes should therefore improve the predictions of the neural network.

n
cce(s.9) = = ) yilog() (CCE)
i=1

Another loss function used for classification is the (categorical) hinge loss. The hinge loss is designed to
increase the margin between the predicted probability for the correct class and the predicted probability
of the wrong class with the highest predicted probability.

cat_hinge(y,¥) = max(1 —y; *y;,0) (Cat Hinge)

Novel Losses

More recently, two application-specific loss functions for SCA have been proposed. One of them is the
ranking loss function proposed by Zaid et al.. The ranking losses uses both the output score of the
model and the probabilities produced by applying the softmax activation function to these scores. The
idea behind the ranking loss is to compare the rank of the correct key byte and the other key bytes in
the score vector before the softmax function is applied.

rkl(s) = Z (log, (1 + e~@(s®k)=s()Y) (Ranking loss)
kexX
k#k*
where s is the vector with scores for each key hypothesis generated by processing the training samples
by the model, K is the set of all possible key values, k* is the correct key and s(k) is the score for key
guess k, calculated by looking at the rank of k in k. Finally, a is a parameter that needs to be set
dependent on the size of the used profiling set. The implementation of the ranking loss function is
provided by Zaid et al. on Github .
The other novel loss function is the cross-entropy ratio (CER) loss [77]. Zhang et al. introduce the
CER as a metric to estimate the performance of a deep learning model in the context of SCA. They
also show that their metric can be used as a loss function directly by using a shuffled set of labels.

cer(,9) = T D)
=~ Yie1 CE(Yr, 9)

where CE is the categorical cross-entropy and y,, denotes the vector with the true probabilities ,1 for
the correct class and 0 for all others, for each class but shuffled. The variable N denotes the number
of shuffled sets to use. Zhang et al. do not provide a value for N but state that increasing N should
increase the accuracy of the metric. No comment is given on the value of N in the CER loss function.
As a starting point for our experiments, N = 10 is used. In Chapter 4, we will give more details about
the influence of the value of N.

(CER)

2.3 Datasets

For our experiments, we use several datasets commonly used in the SCA domain. These datasets
contain power measurements from devices running an implementation of AES. Each dataset has dif-
ferent characteristics such as the number of features, traces and countermeasures. In this section, we

"https://github.com/gabzai/Ranking-Loss—-SCA
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briefly describe each of the datasets used in this work. Table 2.1 gives an overview of all the datasets
and their relevant details.

ASCAD

The first dataset considered is the ASCAD dataset introduced by Benadjila et al.[4]. The ASCAD
dataset is generated by taking measurements from an ATMega8515 running masked AES-128, and is
proposed as a benchmark dataset for SCA. The dataset consists of 50.000 profiling traces and 10.000
attack traces, each trace consisting of 700 features. The profiling and attacking set both use the same,
fixed key. We will denote this dataset as ASCAD _fixed. The dataset is provided on the ASCAD GitHub
repository °.

The second dataset used in this thesis is also part of ASCAD, but uses variable keys. The AS-
CAD_variable dataset consists of 200.000 profiling and 100.000 attack traces, each consisting of 1.400
features. These traces are not synchronised and the keys used in the profiling set are variable. For
our experiments, we use the first 50.000 traces from the profiling dataset to train our models. The
ASCAD _variable dataset is available on the ASCAD GitHub repository °.

As mentioned, the ASCAD dataset is constructed of measurements from a masked implementation
of AES. The masks used during encryption are also included in the dataset and can be used to effec-
tively remove the mask. By doing this, we create a new dataset that is similar to measurements taken
from an unprotected implementation of AES. For our new dataset, denoted ASCAD_plain, the targeted
sensitive value will then become:

zi = sbox(pt;[3] ® k[3]) ® Mo,

where m,,,;, is the known mask for the targeted key byte.
Furthermore, we also use a variant of the ASCAD _fixed dataset but with a random desynchronisa-
tion, i.e. the features of the traces are randomly shifted up to 50 places “.

CHES_CTF

The second dataset is the CHES_CTF dataset [55]. The CHES_CTF dataset is generated by taking
measurements from a masked AES-128 implementation and consists of 45.000 profiling and 5.000
attack traces, each consisting of 2.200 features. The profiling and attack set both have a different, but
fixed key. The used dataset is provided by the TU Delft AISYLab °.

Table 2.1: Datasets considered in this work and their relevant details. For each dataset, the number of features and profiling
and attack traces, and the key settings and countermeasures are listed.

Dataset # Features # Profiling # Attack Keys Countermeasures
ASCAD fixed 700 50.000 10.000 Same and fixed Masking
ASCAD_variable 1400 200.000 100.000 Random Masking
ASCAD_plain 700 50.000 10.000 Same and fixed None
ASCAD_desync50 700 50.000 10.000 Same and fixed Masking and desync
CHES_CTF 2200 45.000 5000 Fixed but different Masking

2.4 Advanced Encryption Standard

The direct goal of side-channel analysis is to retrieve information or (a part of) the secret key used
during some cryptographic operation. Implementations of various cryptographic functions have been
shown to be vulnerable for side-channel analysis. The first timing attacks targeted RSA [31], while the

2nttps://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA AES v1/ATM AES vl fixed key
Shttps://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA AES v1/ATM AES vl variable key
4https://github.com/ANSSI—FR/ASCAD/tree/master/ATMEGA_AES_vl/ATM_AES_vl_fixed_key
5http://aisylabdatasets.ewi.tudelft.nl/


https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
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http://aisylabdatasets.ewi.tudelft.nl/

12 2.4. Advanced Encryption Standard

later introduced DPA targeted DES [30]. Later on, template attacks were used as tools to attack many
different cryptographic functions, such as RC4, DES and RSA [61].

In most of the recent work on SCA, the targeted implementation is that of the Advanced Encryption
Standard (AES) [4, 40, 43, 46, 50]. AES is a commonly used symmetric block cipher with three different
variations using either 128, 192 or 256-bit keys [15]. Symmetric ciphers use the same key for both
encryption and decryption. AES is a block cipher since it encrypts chunks of data in a block-wise
manner. These blocks of data, often with a size of 128 bits, are processed by performing the same
operations for a number of rounds. The number of rounds is 10, 12 or 14 for the 128, 192 and 256-bit
key variants respectively. The operations performed by the AES encryption algorithm are as follows.

1. KeyExpansion - Round keys for each of the rounds are derived from the secret key following the
AES key schedule.

2. AddRoundKey - The XOR operation is applied between the first round key and the plaintext.

3. Intermediate Rounds - For 9, 11 or 13 rounds depending on the key bit size, the following oper-
ations are performed.

(a) SubBytes - The AES S-box, a substitution table, is used to substitute each value of the
state with another value. Daemen and Rijmen use the term state to define the intermediate
values denoted as a matrix.

(b) ShiftRows - The bottom three rows of the state are shifted according to a predefined value
dependent on the used block size.

(c) MixColumns - The columns of the state are mixed by multiplying them with a predefined
polynomial.

(d) AddRoundKey - The XOR operation is applied between the state and the corresponding
round key.

4. Last Round - For the last round, the following operations are applied.

(a) SubBytes
(b) ShiftRows
(c) MixColumns

AES has proven to be a strong cipher. The best-known attack on the 128-bit key variant still has a
computational complexity of 21261, down from 2128 for a brute force attack [5]. This is still too complex
to pose a real threat to the security of AES. The only feasible attacks remain side-channel attacks
against implementations of AES. All of the datasets we use in this work, as introduced in Section 2.3,
contain measurements taken from an implementation of AES-128, with a key length of 128 bits. The
key byte that we target in this work and later in this work denoted just by 'key’, is the third key byte of
the first round key. To this end, we use the intermediate value after the first application of the SubBytes
operation, i.e. the S-box. This intermediate value is commonly used for SCA since the non-linear S-
box operation has shown to be more useful when discriminating between the correct and incorrect key
guesses [33, 51].



Chapter 3

Related Work

Much work has been done in the field of deep learning in recent years. Many new applications have
been proposed and researched [21] and frameworks such as Tensorflow [42] and Keras [11] enable
rapid creation and testing of new solutions. After the successful application of machine learning tech-
niques to the field of side-channel attacks [24] [2] [33], attention shifted towards deep learning [40] [7].
Some of this work focuses on the ability of deep learning models to deal with countermeasures [27]
[7], other work goes more in detail about optimising core deep learning characteristics, like which ar-
chitecture works best for side-channel attacks [50], hyper-parameter optimisation [70] and evaluation
metrics [71]. Even more recently, several novel loss functions specifically for the application of deep
learning to side-channel attacks were proposed [74] [77]. In this section, related work on these topics
is discussed together with the place our work has among the already existing research.

3.1 Deep Learning for Side-Channel Attacks

Deep learning, in general, has found its way into many fields of study, the domain of side-channel
attacks being one of them. Different approaches have been tried, for example by using multi-layer per-
ceptrons (MLP) [4, 40, 70], convolutional neural networks (CNN) [27, 40, 70, 75] or auto-encoders [40].
Maghrebi et al. first studied the potential of these techniques by comparing them with the template at-
tack [61] and machine learning approaches like support vector machines (SVM) and random forest (RF)
models [40]. In their experiments, they used these different models to attack masked and unmasked
implementations of AES, and compare the guessing entropy that the models achieved. Besides using
a CNN and MLP, they also use a stacked auto-encoder, a long-short term memory model as other
examples of deep learning techniques. This work is a good basis for further research: it clearly shows
that deep learning techniques have the potential to be successful solutions for side-channel attacks.
Although the used MLP architecture consists of only a single hidden layer, both the CNN and MLP show
a consistently good performance, on both the masked and unmasked datasets. However, in relation to
our own research question, little information is given about the used loss functions. The authors state
that the mean squared error (MSE) or negative log-likelihood (NLL) are often used, though they never
specify which function they use.

The work of Cagli et al. showed very promising results for the performance of convolutional neural
networks in comparison with template attacks, specifically when random delay, or jitter, countermea-
sures are considered [7]. However, they did not compare their CNN with other machine learning tech-
niques. Picek et al. fill this gap and provide such a comparison [49]. Their results show that, while
considered a very powerful technique in general, CNNs are not always the optimal choice when side-
channel attacks are considered. Interestingly, the other approaches seem to outperform the CNN in
some of the tested scenarios, while being less computationally intensive. Even in a scenario where a
CNN should perform well such as with the random delay dataset, according to Cagli et al., a simpler
method like Naive Bayes seems to perform better. The authors do note that there might still be sce-
narios where using a CNN would be beneficial, such as when large datasets are considered, or when
a dataset with a masking countermeasure is considered, and they propose that future work should be
done on this aspect. Furthermore, while many of the hyperparameters are tuned for the MLP and CNN,
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only the categorical cross-entropy (CCE) is mentioned as a loss function. It might therefore be valuable
to continue on this, and see how CNNs perform when different loss functions are involved.

Picek et al. set out to compare the performance of convolutional neural networks to other machine
learning techniques when considering side-channel attacks [50]. The methods they use are Naive
Bayes, which showed promise in their earlier work [49], XGBoost, a well-known gradient boosting algo-
rithm [10], and a Random Forest model. They compare these methods with deep learning techniques,
namely a CNN architecture optimised for the DPAv4 dataset and a multi-layer perceptron. For each
of these methods, the relevant parameters are tuned with random search. The experiments involve
training and testing the different models on three different datasets: the DPAv2, DPAv4 and a dataset
consisting of traces from a software implementation of AES, protected with the random delay counter-
measure. They compare the resulting accuracy, guessing entropy and success rate [50]. In their work,
they conclude that complex CNNs are not required for smaller datasets, but do show advantages in
cases where the number of features and traces is high. However, they state that more experiments in
this direction are necessary to properly assess the performance of CNNs for SCA.

The work done by Benadjila et al. further reinforces the idea that MLP and CNN architectures are
capable deep learning techniques when applied to side-channel attacks [4]. The goal of their research
is to solve two main limitations they see in previous works, namely the lack of details given on hyper-
parameters and their optimisation, and following from that, the reproducibility of those works. They
provide a step-by-step explanation of how they tuned the different hyperparameters for their CNN and
MLP architectures, and compare their best-found models for both types of architectures with a tem-
plate attack and the VGG-16 architecture, a 16-layer CNN created for image recognition [59]. The four
different approaches are used to attack an AES implementation with a masking countermeasure and
different levels of desynchronisation. Their results show that both the CNN and MLP architectures are
highly effective against synchronised traces and that the CNN performance is less sensitive to desyn-
chronisation than that of the MLP. Although the process of optimising the different hyperparameters is
described extensively, only a single loss function is tested. The authors acknowledge this, and state
that using other functions could lead to different performance and may be investigated in the future.
Besides describing their process of hyperparameter optimisation, Benadjila et al. also introduce a new
format to store side-channel traces in, and datasets in that format '. To enable a better comparison to
previous work on this topic, the ASCAD database will also be used in this work.

3.2 Loss Functions

As explained in section 2.2.2, loss functions play an important role in the way deep learning algorithms
learn. Loss functions have therefore been studied extensively in different scenarios and for different
applications.

Janocha and Czarnecki investigate in their work how the choice for certain loss functions affect
deep learning models and their learning dynamics, and the robustness of the resulting classifiers [26].
They compare twelve different loss functions by training models using these functions on several toy
datasets, the MNIST database” and the CIFAR-10 dataset °. The resulting models are compared
on accuracy and the time it took to train them, and based on those results, the researchers argue
that other losses might be preferable over the log loss. The loss functions that they categorise as
expectation losses, like the L1 and L2 losses and other loss functions derived from them, seem to
perform well when a lot of noise is involved. They also suggest loss functions developed specifically
for an application might perform better than these classical loss functions. This is the premise for our
work: a comparison of several aspects between classical and application-specific, novel loss functions.

Such a comparison has already been done for other specific applications of deep learning. In their
work, Yash Srivastava et al. [72] perform a comparison between more classical loss functions like the
cross-entropy and marginal loss, and loss functions specifically developed for face recognition, such as
angular-softmax loss [66] and ArcFace loss [16]. They use two different CNN architectures and train
these architectures with several combinations of datasets and loss functions, and test the resulting
models on a third dataset. Their results show that the application-specific loss functions outperform the

"The ASCAD Database https://github.com/ANSSI-FR/ASCAD
2MNIST Database http://yann.lecun.com/exdb/mnist/
3CIFAR-10 Dataset https://www.cs.toronto.edu/~kriz/cifar.html
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classical loss functions in terms of accuracy and rate of convergence. A similar setup of experiments,
comparing the influence of loss functions on different architectures and datasets, can be considered
for this work.

To the author’s knowledge, such a broad comparison of the influence of loss functions has not
been researched yet for the application of deep learning to side-channel analysis. However, several
application-specific loss functions have been proposed.

Zhang et al. introduce a new metric for evaluating deep learning-based side-channel attacks called
the cross-entropy ratio (CER), and a new loss function based on this metric [77]. They argue that the
calculation of typical side-channel attack metrics like guessing entropy and success rate is computa-
tionally expensive, and therefore not suitable for direct implementation into a deep learning algorithm.
Therefore, the new CER metric is proposed, which is a ratio between the cross-entropy calculated over
the correct key, and the expected value of the cross-entropy over all other key hypotheses. They com-
pare their loss function based on this metric with on an MLP and a CNN architecture, on three different
datasets, namely ASCAD, AES_HD and AES_RD. Their results seem to show that their loss function
outperforms the cross-entropy loss in every single scenario. There are, however, some remarks to be
placed by these results. First of all, Zaid et al. also performed a comparison between cross-entropy
and the CER loss for the ASCAD and AES_HD datasets. Their results differ from what Zhang et al.
showed, and in their work, the models using cross-entropy loss function often perform better, needing
fewer traces than the ones trained with CER loss to converge to a guessing entropy of 1. The authors
also claim that the CER loss works well for the synchronised traces in the ASCAD database, showing
graphs of the guessing entropy converging to 1 faster than when cross-entropy loss is used. How-
ever, in the work of Zaid et al., the model trained with CER loss does not even converge when the
100ms desynchronised set is considered. This clearly shows that a more in-depth analysis of these
loss functions is necessary.

In their work, Zaid et al. also propose a loss function specifically for deep learning applied to side-
channel analysis called ranking loss [74]. The ranking loss function aims to minimise the rank of the
correct key among all other key hypotheses, thereby maximising the success rate. This is achieved by a
pairwise comparison between the rank of the correct key and all the other key guesses, and increasing
the loss value if the relative ordering of the pair is incorrect. Furthermore, the authors provide a proof
from an information-theoretical perspective as to why the ranking loss should be more effective and
should require fewer traces than the typically used cross-entropy loss. A downside to the RankingLoss
approach is the introduction of the parameter . The authors consider this parameter as a learning
rate and provide some details of how they tuned it for different scenarios and datasets. But they do
state that the @ parameter should be carefully tuned for each different scenario, which introduces extra
work when using this function. The ranking loss, as a recently introduced loss function specifically for
side-channel attacks, shows promising results, and will therefore also be considered in this work.

3.3 Multi-loss Functions

Like using ensembles of models to gain better performance than single deep learning models [47, 65],
previous work has also looked into combinations of various loss functions [3, 19, 20] or adapting existing
loss functions [14, 36]. In various settings, these multi-loss functions have improved the performance
of the resulting models [19, 20, 57] .

First of all, Lin et al. introduced the focal loss [36]. Focal loss is an adaptation of the categorical
cross-entropy introduced to work well for object detection in images. By nature, the object detection
problem deals with imbalanced data: a small amount of pixels represents the interesting object, while
the majority of the pixels is considered to be less interesting background samples. Focal loss introduces
two additional parameters to the categorical cross-entropy, @ and y. The a parameter is a vector of
weights used to balance the influence of samples from each of the classes. By giving classes with large
numbers of samples a smaller weight and rarely occurring classes a higher weight, their contribution to
the total loss is balanced. The y parameter is used to give easy examples, i.e. correctly classified with a
high probability, less influence on the loss in comparison to hard examples. When p gets larger, so when
a sample is correctly classified with a larger probability, the contribution to the loss gets significantly
smaller due to the y. In their work, they show that they can perform similarly or better than the previous
state of the art while using a less complex neural network. The focal loss performs especially well on
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imbalanced datasets. Lin et al. also show that alternate forms of the focal loss work similarly well and
suggest that similar adaptations to other loss functions might also work well.

In other applications of deep learning, several works show promising results by combining two or
more loss functions to increase the performance of the resulting deep learning models [3, 19, 20, 57].
First of all, Barz and Denzler use the cosine similarity and a combination of the cosine similarity and
categorical cross-entropy as loss functions. They show that the combination of those functions leads
to models that outperform either of the loss functions separately on several image recognition datasets
[3]. The increase in performance is largest when there are less than 200 samples per class. In the
context of SCA, this also regularly occurs when considering the ID leakage model. The larger amount
of 256 classes and for example 50.000 profiling traces uniformly distributed over the classes gives an
average of 195 samples per class. To see if this performance increase noted by Barz and Denzler is
also possible with SCA datasets, we will consider the combination of cosine similarity and categorical
cross-entropy in our work.

Finally, Hajiabadi et al. use a combination of three loss functions for text classification and breast
cancer prediction [19, 20]. They state that loss functions have different properties, such as increasing
the margin between the correct class and other classes and robustness against outliers in the data.
They identified three loss functions that have such specific characteristics. First, they use multi-class
hinge loss, which is identical to the categorical hinge loss described in Subsection 2.2.2. Hinge losses
also result in a (small) loss for correctly classified examples, thereby increasing the margin between
the correct class and other classes. The second loss function they use is correntropy [68]. Correntropy
bounds the loss between 0 and 1 for each sample, thereby making it more robust to outliers. The
third function used is the categorical cross-entropy, as introduced in Subsection 2.2.2. [20] use a linear
combination of these three functions, and use a training process to assign each of the functions a
weight. Since this multi-loss function has already been shown to improve the performance in two other
domains, we will use it in our comparison.

3.4 Our contribution

As is apparent from the discussed research, different aspects of the application of deep learning to side-
channel attacks have been studied extensively. However, it seems that loss functions in the context of
side-channel analysis have not been the sole focus of research yet. Our contribution will be such an
analysis of loss functions in the context of side-channel analysis. The research discussed in this chapter
allows us to expand our research questions into sub-questions and reformulate them as follows:

1. How do commonly used loss functions compare to novel, application-specific loss functions when
deep learning is applied to side-channel attacks?

» How does the choice of loss function impact the performance of a side-channel attack in
terms of guessing entropy and success rate with different datasets and leakage models?

* What is the influence of loss functions when different architectures like multi-layer percep-
trons and convolutional neural networks are considered?

» How does the choice of loss function impact the training time?

» How does the choice of loss function impact the performance when countermeasures are
involved?

Furthermore, we will also look into the application of novel (multi-)loss functions from other domains to
the topic of SCA. Our second research question and corresponding sub-questions are:

2. How do novel loss functions from other fields and multi-loss functions perform when applied to
deep learning for side-channel analysis?

* Are there similarities between SCA data and data from other domains where novel loss
functions improve the performance?

* How do models trained with these loss functions perform in terms of guessing entropy and
success rate?
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» Do these loss functions provide a viable alternative to commonly used loss functions and
SCA specific loss functions?

Finally, with the knowledge gained by answering the first two questions, we will define the relevant
components of well-performing loss functions and try to create our own loss function. The aim of this
new loss function is to provide a function that can be used in various SCA scenarios and improves the
performance in comparison with the previously best function. Our third and final research question is:

3. Can we construct a new loss function that improves the performance of deep learning models
when used specifically for side-channel analysis?

* What are the characteristics of previously best loss functions that make them perform well
in the context of SCA?

* How can we use these characteristics to create a new loss function?






Chapter 4

Comparing Loss Functions

The choice of loss function used in training can influence the performance of the resulting deep learning
model [26, 72]. In this section, we compare commonly used loss functions with novel application-
specific loss functions in the context of side-channel analysis. We use several approaches for this
comparison, for each approach we compare the guessing entropy and success rate, the number of
trainable parameters and the required training time. First, we define and select a median model in terms
of performance and use that to compare the different loss functions. Next, we optimise models for each
specific loss function and scenario. Finally, several state-of-the-art architectures that are trained with
different loss functions are compared.

4.1 Motivation

Loss functions play a central role in training a deep learning model. They are used to calculate the
error, or loss, between the actual output and the desired output. The resulting loss is used to learn, i.e.
update the weights associated with the connections between the neurons or filters of the deep learning
network. Earlier work where deep learning is used for other applications such as face recognition
and image classification has shown that the choice of loss function influences the performance of the
resulting model [26, 72].

In recent years, the usage of deep learning has become more popular in the context of SCA [7,
27, 40, 43, 50, 63, 75]. Many of these works focus on improving certain aspects of the used MLP
or CNN architectures. The goal of those improvements is to increase the performance of the model,
by decreasing the amount of traces required to reach a guessing entropy of 1 for the correct key.
However, all of these recent works seem to have in common that no considerations about the used loss
function are made. When they first explored the usage of deep learning techniques for SCA, Maghrebi
et al. mentioned that categorical cross-entropy or the mean squared error are commonly used loss
functions. Later work on deep learning for SCA seems to exclusively use either categorical cross-
entropy [4, 47, 75] or mean squared error [44, 63]. Indeed, in [67], the authors show that minimising
the categorical cross-entropy loss is equivalent to increasing the Perceived Information (PI) [53], a
metric commonly used in the context of SCA.

More recently, two novel loss functions specifically for usage in the context of SCA have been
proposed. Zaid et al. propose ranking loss (RKL), a loss function that uses a pairwise comparison
between the possible different key hypotheses to maximise the models’ success rate. Zhang et al.
propose the cross-entropy ratio (CER), which is the ratio between the categorical cross-entropy of the
original profiling traces and a set of profiling traces with shuffled labels. The CER loss function should,
according to the authors, be better suited for imbalanced profiling data [77].

In both of these papers, the newly proposed loss functions are compared to the categorical cross-
entropy. However, the extent of these comparisons is limited, and only a single architecture or leakage
model is tested. To the best of the author’s knowledge, no broad comparison has been done between
several commonly used loss functions such as categorical cross-entropy, mean squared error or hinge
loss and these novel SCA-based loss functions on different architectures, leakage models and datasets.
In this work, we perform such a broad comparison between commonly used loss functions and the novel

19
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CER and RKL. We do so by testing the loss functions on various architectures, leakage models and
datasets.

411 Median Model & Hyperparameter Optimisation

The training process of a deep learning model is influenced by several different hyperparameters.
These hyperparameters are for example the number of layers and neurons per layer, the activation
function each neuron uses and the loss function. Using CNNs introduces even more hyperparameters,
such as the number of convolutional blocks and filters used. By picking a single random model, there
is a possibility that we end up with certain hyperparameters that influence one loss function more than
they do others. An example of this can be seen in Figure 4.1. In this scenario, each model is trained
with the same hyperparameters, except for the loss function and learning rate. When the learning rate
is set to 0.00001 (Figure 4.1a), most of the loss functions seem to be converging towards a GE of 1.
However, when the learning rate is increased to 0.001 (Figure 4.1b), none of them converge except the
CER loss, for which the performance is actually increased.
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Figure 4.1: All models are trained with the same hyperparameters, except the learning rate. It is clear that the learning rate
influences the performance of models with some losses more than others. In the scenario with the learning rate set to 0.01, the
performance of the CER loss is increased while the other losses fail to result in a model converging to a GE of 1.

To reduce this possible effect of certain combinations of loss function and other hyperparameters,
we use a median model to do our comparison. As defined in 4.1, we select such a model for each sce-
nario by generating 100 random models and select the median performing model in terms of guessing
entropy. We choose the median model to get a more representative model to compare the functions
on and reduce the influence of other hyperparameters on the performance. We then use this model to
compare the different loss functions.

Definition 4.1. Median model: A model selected from a set of N models such that its performance is
the median GE using all of the attack traces of the final guessing entropy of the N models.

Certain hyperparameter values that are very different from the median model might lead to well-
performing models when a specific loss function is used. To compare the loss functions when the other
hyperparameters are optimised, we also perform hyperparameter optimisation via random search. We
perform a random search for each scenario with each of the loss functions fixed. The exact setup of
these experiments is described in Subsection 4.2.1.

4.1.2 Countermeasures & State-of-the-art Architectures

To protect hardware implementations from side-channel attacks, countermeasures are commonly used.
These countermeasures are often a form of hiding or masking, which aims to hide or mask the statistical
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relation between the intermediate value and the used key. This can be done by adding noise in the case
of the hiding countermeasure or using an additional secret value in the case of masking [62]. To com-
pare the robustness of models trained with different loss functions against several countermeasures,
we test these models on datasets with and without these countermeasures.

Besides focusing on the resistance of different loss functions to countermeasures, several recent
papers have proposed different MLP and CNN architectures that perform well on the considered dataset
and leakage model [4, 75]. In those works, only the categorical cross-entropy is considered as a loss
function. The performance of these models with other loss functions is not tested. These architectures
might only work with the categorical cross-entropy, provide good performing models regardless of the
chosen loss functions or perform even better with a different loss function. We therefore train mod-
els based on these state-of-the-art architectures with several classical and novel loss functions and
compare their performance.

4.2 Experiment Setup

In this section, we describe the setup of the experiments we have performed to answer our research
question. All the experiments have been performed on Nvidia GeForce GTX 1080Ti GPUs with 11GB
of memory, part of the TU Delft HPC cluster 1,

421 Median Model & Hyperparameter Optimisation

To perform a broad comparison between the different loss functions, we define 12 different scenarios
in which to do the comparison. Each of these scenarios is a combination of a dataset, a leakage model
and an architecture type.

Datasets and Leakage Models

The three datasets used for these experiments are the ASCAD _fixed, ASCAD_variable and CHES_CTF
datasets introduced in Section 2.3. In all three of the datasets, the targeted sensitive value is the output
of the S-box in the first round of AES. In all of the considered datasets, masking is used as a counter-
measure. For each trace i, the sensitive value z; corresponding to the third key byte can be calculated
as follows:

z; = sbox(pt;[3] D k[3])

where pt; is the plaintext used during encryption. We consider two different leakage models, the iden-
tity model and the Hamming weight (HW) model. In the identity model, we use z; directly as a label
and target, resulting in 256 possible values and classes. In the HW model, we calculate the Hamming
weight for each z; and use that as a label and target. This results in 9 possible values and classes.

Architecture Types

We consider the two different architecture types introduced in Subsection 2.2.1: multi-layer perceptrons
(MLPs) and convolutional neural networks (CNNs). Both of these types of deep learning architectures
are commonly used for SCA and have shown excellent results in previous work [4, 40, 75].

For both the median model and hyperparameter optimisation approach, random hyperparameters
for both of these architecture types need to be selected. In their work, Perin et al. specify a search
space for both the MLP and CNN hyperparameters that is balanced between good performance in
previous work and still allowing a broad range of possible values per parameter. Their search space
is chosen as a basis for this experiment. Benadjila et al. perform several experiments with different
amounts of epochs and learning rates on the ASCAD datasets. They propose to use up to 800 epochs
and a learning rate of 10~° in combination with the RMSProp optimiser. To balance computational cost
and performance, each model is trained for 200 epochs. Both the Adam and RMSProp optimisers have
been shown to perform well [4, 46]. In addition to the hyperparameter ranges proposed by Perin and

1http://insy.ewi.tudelft.nl/content/hpc—cluster
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Picek, both these optimisers are added as an option and the range of learning rates is broadened. The
possible values for each hyperparameter for the MLP models are given in Table 4.1.

Table 4.1: Hyperparameter space for multi-layer perceptrons.

Hyperparameter Min Max Step size
Dense layers 2 8 1
Neurons per layer 100 1000 100
Learning rate 0.000001 0.001  0.00001
Batch size 100 1000 100
Options
Activation function [ReLu, SELU, ELU, Tanh]
Optimiser [Adam, RMSProp]

For the CNN hyperparameters, the search space is again based on the work of Perin et al. with the
same changes to the learning rate, amount of epochs and optimisers as for the MLPs. Additionally, a
batch normalisation layer, as introduced by loffe and Szegedy, is applied after the input layer and after
each convolutional block, as is done in earlier work to improve the performance of CNNs [4, 7, 47]. The
possible values for each hyperparameter for the MLP models are given in Table 4.2.

Table 4.2: Hyperparameter space for convolutional neural networks.

Hyperparameter Min Max Step size
Convolutional layers 1 2 1
Convolutional filters 8 32 4
Kernel size 10 20 2
Pooling size 2 5 1
Pooling stride 2 10 1
Dense layers 2 3 1
Neurons per layer 100 1000 100
Learning rate 0.000001 0.001  0.00001
Batch size 100 1000 100
Options
Activation function [ReLu, SELU, ELU, Tanh]
Optimiser [Adam, RMSProp]
Pooling type [Max pooling, Average pooling]

Loss Functions

The loss functions that are tested are functions commonly used in different deep learning applications
and novel loss functions specifically developed for SCA, introduced in Subsection 2.2.2. In almost all
recent work on deep learning for SCA, the categorical cross-entropy or mean squared error (MSE) are
used as loss functions. Besides those commonly used functions, several others are also considered.
The hyperbolic cosine loss, also called the log cosh loss, and mean squared logarithmic error (MSLE)
are used because they are similar to MSE but more robust when faced with outliers. We also consider
another loss function typically used for classification tasks, the categorical hinge loss. Furthermore,
ranking loss [74] and cross-entropy ratio (CER) [77], two recently proposed novel loss functions specif-
ically for the SCA domain are used.

Preprocessing

For each of the mentioned datasets, the full set of features from each trace is used and no further
selection of points-of-interest is done. Earlier work suggests that scaling SCA features to values be-
tween 0 and 1 works well [39, 74]. Therefore, a similar method is applied in this work, and for every
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experiment we perform, the features are normalised to values between 0 and 1. This is done by using
the MinMaxScaler ° from the scikit-learn Python module °.
Experiment Phases

We compare the loss functions in 12 different scenarios for both the median model and hyperparameter
optimisation experiments. Each of the scenarios is a combination of a dataset, architecture type and
leakage model. Table 4.3 shows an overview of these scenarios.

Table 4.3: Overview of the considered scenarios.

Dataset ASCAD fixed ASCAD _variable CHES _CTF
Architecture MLP CNN MLP CNN MLP CNN
Leakage model | ID | HW | ID | HW | ID | HW | ID | HW | ID | HW | ID | HW

In the first phase, we have to find a median model to test each loss function on. To find such a model,
we generate 100 models and take the median model in terms of guessing entropy. We then use the
hyperparameters of the median model to train new models with each of the loss functions.

To summarise, for each of the scenarios, we perform the following steps:
1. Generate, train and test 100 random models
2. Select the median model in terms of guessing entropy

3. For each loss function, train and test the median model 10 times due to random initialisation of
the trainable parameters

4. From those 10 models, select the median model per loss function based on guessing entropy

5. Compare the resulting models on guessing entropy, success rate, training time and the number
of trainable parameters.

The second experiment phase with these scenarios consists of doing hyperparameter optimisation via
a random search for each loss function. With each of the loss functions fixed, 100 random models
are trained and the best model in terms of guessing entropy is selected. The best models for each
loss function are then compared on guessing entropy, success rate, training time and the number of
trainable parameters.

To summarise, for each of the scenarios from Table 4.3, we perform the following steps:
1. Generate, train and test 100 random models per loss function

2. For each loss function, select the best model based on guessing entropy

3. For each loss function, train and test the best model 10 times due to random initialisation of the
trainable parameters

4. From those 10 models, select the median model per loss function based on guessing entropy

5. Compare the resulting models on guessing entropy, success rate, training time and the number
of trainable parameters.

In both phases, we train 10 new models with the found median or best performing model. Since
models with the same hyperparameters sometimes perform differently due to randomness in for exam-
ple the random initialisation of the weights, outliers might occur in terms of performance or the training
might fail. We therefore choose the median of those 10 models for our comparison.

This setup allows us to compare the loss functions on the same architecture, namely the median
model in the first phase, and on the architectures optimised for each loss function in the second phase.

thtps://scikit—learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
3https://qithub.com/scikit—learn/scikit—learn
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4.2.2 State-of-the-art Architectures in Profiled SCA

Different state-of-the-art deep learning models proposed in recent papers only consider the categorical
cross-entropy loss function [4, 75]. For this experiment, we will use the MLP,,,; architecture proposed
by Benadjila et al., and the CNN architecture used in [74], which we will denote by CNNpethodotogy-
Although there are some remarks to be made by the process used to create the CNNyetpodoiogy Mmodel
[69], itis still one of the best performing CNN models on the ASCAD fixed key dataset for which the used
hyperparameters are available. Therefore, itis a suitable model for our experiments. Both these models
are trained and tested on the ASCAD _fixed, ASCAD_variable and CHES_CTF datasets with each of
the loss functions. Although the architecture is optimised for the ASCAD datasets, for consistency, we
also test the performance on the CHES_CTF dataset. Similarly as before, for each of the datasets,
leakage models and loss functions, we train the same model 10 times and take the median performing
model in terms of guessing entropy. As specified before, the comparison metrics are the final GE, SR,
training time and the number of trainable parameters.

4.2.3 Countermeasures

We compare the robustness of models trained with different loss functions against different countermea-
sures, namely masking and a random desynchronisation added to the traces. We use the previously
found best-performing architectures per loss function for the ASCAD _fixed dataset. These models are
trained on the ASCAD_plain dataset introduced in Section 2.3. The targeted sensitive value will then
become:

z; = sbox(pt;[3] @ k[3]) D Moy,

where m; is the known mask for the targeted key byte. This will allow us to compare the performance
in GE on an unprotected implementation of AES versus the performance on the regular ASCAD _ fixed
dataset, which is a masked implementation of AES. Furthermore, we test the performance of these
models on the ASCAD_desync50. This dataset is similar to the ASCAD _fixed dataset but with arandom
desynchronisation, i.e. the features of the traces are randomly shifted up to 50 places. A comparison is
then made on the performance in terms of guessing entropy and success rate. We again train 10 models
with each loss function and use the median performing model per loss function in our comparison.

4.3 Results

In this section, we discuss the results for each of the aforementioned experiments. We will look at the
performance of the loss functions on median models and models optimised via random search, their
resilience against countermeasures and their performance when used with state-of-the-art architec-
tures. The chosen median and optimised hyperparameters for each of the scenarios can be found in
Appendix A and B.

For all of the experiments, the same attack settings are used. The amounts of profiling traces used
are 50.000 for the ASCAD datasets and 45.000 for the CHES_CTF dataset. In the attacking phase,
we use up to 2000 traces for the ASCAD _fixed dataset and up to 3000 traces for the ASCAD_variable
and CHES_CTF datasets.

4.3.1 Median Model & Hyperparameter Optimisation
ASCAD_fixed

We first consider the performance of the different loss functions on the ASCAD _fixed dataset. Figure 4.2
shows the guessing entropy over 100 attacks for each of the scenario’s median models. Figure 4.3
shows the guessing entropy for each of the optimised models.

First of all, we notice that the ASCAD _fixed dataset can be considered relatively easy to attack.
Most of the loss functions lead to a model which can retrieve the correct key in less than 2000 traces
when a median MLP architecture is used. When we look at the optimised models, we see that even
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Figure 4.2: GE of the median MLP and CNN models on the ASCAD _fixed dataset.

a simple parameter optimisation via random search results in models reaching a GE of 1 in less than
500 traces.

We also see that the commonly used categorical cross-entropy does indeed perform very consis-
tently in these scenarios. It also shows to be quite robust to different hyperparameter choices, perform-
ing well with a broader range of different combinations of hyperparameters. Figure 4.4 shows the 100
models generated for the hyperparameter optimisation experiment with a CNN architecture and the ID
leakage model, for both the categorical cross-entropy and MSE.

Looking at the first of the two novel loss functions, CER loss, we also see some interesting be-
haviour. First of all, CER loss outperforms every other function in all but two scenarios. It is only
outperformed on the scenarios with a median model and ID leakage. Zhang et al. introduce the CER
loss function to improve the performance of deep learning models on imbalanced SCA data, i.e. when
the Hamming weight leakage model is considered [77]. Our results confirm that the function indeed per-
forms well in those scenarios, outperforming the MLP models of the original CER paper and performing
much better than the other loss functions. Furthermore, Zhang et al. show that their CER metric is a
good estimator for the performance of a deep learning model regardless of the data being balanced or
imbalanced. However, they only test their CER loss function on the HW leakage model, i.e. imbalanced
data. Our results show that when the rest of the hyperparameters are optimised, the CER loss is also
very suitable for the ID leakage model. Figure 4.3a and Figure 4.3b show that in these scenarios, the
models trained with CER loss outperform the models trained with categorical cross-entropy. We can
therefore conclude that when the ASCAD fixed dataset is considered, the best choice of loss functions
is the CER loss. Especially when the other hyperparameters are optimised, it significantly reduces the
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Figure 4.3: GE of the optimised MLP and CNN models on the ASCAD _fixed dataset.

amount of traces needed to perform a successful attack in comparison to the categorical cross-entropy
and other loss functions.

The second novel loss function, ranking loss (RKL), performs less consistent. [74] compare the
RKL function to categorical cross-entropy and CER loss, stating that the RKL outperforms both those
functions. However, they only do their comparison with a single CNN architecture and only consider the
ID leakage model[74]. If we look at our CNN median and optimised model results for the ID leakage,
we indeed see that in those scenarios, RKL performs similarly or slightly better than the categorical
cross-entropy and CER loss. However, in all the other scenarios, RKL performs worse than these loss
functions.

Another remark that has to be made when discussing these results is the required training time.
Figure 4.5 shows the training times for the median model with each of the loss functions, on both the
HW and ID leakage models. This shows that when all other hyperparameters are equal, both the RKL
and CER loss functions are significantly slower than other functions. In the case of RKL, the cause
for the slower training time is the pairwise comparison that is part of the loss. This part of the loss
is calculated by comparing the rank of the correct key with all the other key guesses. This causes an
impact on the training time when the HW leakage is considered, where the output consists of 9 classes,
and an even larger impact when the ID leakage is used, where there are 256 output classes.

The increased training time in case of the CER loss is also due to the way the function is con-
structed. CER loss, as explained in Subsection 2.2.2, is calculated by dividing the cross-entropy over
the profiling traces by the average of N times the set of profiling traces with shuffled labels. Calculating
the cross-entropy over the shuffled traces N times causes the slower training in comparison with other
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loss functions. Since [77] do not analyse the impact of different values for N, we chose N = 10 for these
experiments. However, as shown in Figure 4.6, all different values of N except N = 20 resultin a NTGE
of approximately 500. For lower values like N = 1 or N = 2, there is no noticeable difference in training
time in comparison with for example the categorical cross-entropy, while there is still the increase in
performance in GE. For consistency, we have used N = 10 for all the following experiments.

The only function that does not often lead to a converging model is the categorical hinge loss.
Only in two scenarios, namely the optimised MLP and CNN models with HW leakage, the usage of the
categorical hinge loss leads to a converging model. A possible reason for this could be the combination
of a low learning rate and the low amount of classes when HW leakage is considered. The median
models for these scenarios all have a learning rate between 0.0001 and 0.0007, while the optimised
models with categorical hinge loss tend to have a higher learning rate. Furthermore, if we look at the
definition of the categorical hinge loss as described in Subsection 2.2.2, we see that the negative part of
the loss is calculated based on the wrong class with the highest probability, i.e. the largest mistake. With
the ID leakage model, we have too many wrong classes (255) and one correct class. Due to random
initialisation of the weights, the loss coming from wrongly classified traces will stay approximately 1
at the start of training and the main contribution to change of the loss has to come from a correctly
classified example. This will not occur often enough since with the ID leakage, there are 256 classes.
With the HW leakage model, there are only nine classes to consider. A correct classification will, even
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Figure 4.6: Guessing entropy and training time for the optimised model with CER loss using different values of N.

when random guessing, happen more often, impacting the loss and allowing the model to learn. So due
to the difference in the number of classes between the ID and HW leakage model and a low learning
rate, the categorical hinge loss works better with the HW leakage model in this scenario.

The success rates of the discussed scenarios in Figure 4.7 and Figure 4.8 show similar results for
the loss functions as the guessing entropy. Figure 4.8 shows more clearly that when the other hyper-
parameters are optimised, the CER loss performs best when the ASCAD _fixed dataset is considered.

Finally, we look at the number of trainable parameters for the scenarios with optimised hyperparam-
eters. A smaller, less complex model in terms of the number of parameters is generally faster to train
since there are fewer weights to be updated. Table 4.4 shows the number of trainable parameters that
each of the optimised models per loss function has. Here we see that the optimised models trained
with the categorical cross-entropy often have the least amount of trainable parameters in comparison
to the other loss functions. Other functions, like MSE and CER loss, also seem to perform well with
smaller models, while the categorical hinge and MSLE loss only perform well with larger models.

Table 4.4: The number of trainable parameters for the optimised models per loss function and scenario. The lowest number of
trainable parameters for each scenario is marked blue, the highest

Loss function MLP ID MLPHW CNNID CNN HW
Categorical cross-entropy 116,156 302,809 53,244 1,124,565
Categorical hinge 1,022,920

CER loss 467,956 483,909 356,424 598,853
Log cosh 126,256 856,009 335,824 1,011,657
MSLE 543,456 1,449,909 1,335,177
MSE 166,656 754,809 214,564 291,409
RKL 543,456 604,809 186,616 1,056,421

Overall, when considering the ASCAD_fixed dataset, we can conclude that CER loss seems to be
the best choice for the loss function. It significantly outperforms models with categorical cross-entropy,
ranking loss and other loss functions. The resulting models still have a relatively low amount of trainable
parameters and when using N = 1, are still as fast during training.

ASCAD_variable

Next, we look at the results on the ASCAD dataset but with random keys used during the profiling phase.

Figure 4.9 shows the performance in GE on the median models, Figure 4.10 shows the performance
for the optimised models.
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Figure 4.7: Succes rate of the median MLP and CNN models on the ASCAD _fixed dataset.

For the experiments performed on the ASCAD _variable dataset, we see results comparable to those
on the ASCAD _fixed dataset. In most of the scenarios, we see that the models trained with CER loss
perform the best, followed closely by the models trained with categorical cross-entropy. An exception
to these similarities is visible in the scenarios with a median model. In the experiment with MLPs and
HW leakage shown in Figure 4.9c, the CER loss model does not converge. In comparison with other
scenarios with HW leakage, the model with CER loss performs extremely poorly in this case. The
median model in this scenario consists of four dense layers of 200 neurons, uses the ELU activation
function and RMSprop optimiser, and a batch size of 300. Looking closer at the training process of
models with these parameters and CER loss reveals that during training, the loss sometimes becomes
a NaN value. The underlying cause of this problem turns out to be the exploding gradients problem:
gradients getting too large or small, causing the learning process to fail [48]. Figure 4.11 shows the
largest and smallest gradient of the input layer for each of the epochs during the training process of one
of these models. The reason these specific choices result in the exploding gradient problem appears
to be the combination of several hyperparameters. Specifically, the ELU activation function, the loss
function and the 0-1 normalisation used during preprocessing.

By normalising all feature values to values between 0 and 1, we remove any negative values from
the profiling traces. If we look at the definition of the ELU function in Equation 4.1, we see that the output
of the activation function is equal to the input for all x > 0. This means that the output is unbounded, i.e.
there is no limit on how large it can get. This also means that, since we normalised to values between
0 and 1, the output of the activation function will always be positive. Something similar is true for the
RelLU activation function. This, in combination with the CER loss function, and in some cases also
the ranking loss, causes the gradients to get too large, leading to a poorly performing model or even a
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Figure 4.8: Success rate of the optimised MLP and CNN models on the ASCAD _fixed dataset.
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Some solutions to mitigate this problem do exist. We could use a different combination of loss function,
activation function and preprocessing method. Figure 4.11b shows for example the same gradients
but with the profiling traces normalised by Z-score normalisation (standardisation) [69]. The attack
performance is similar to when 0-1 normalisation is used, so when using CER loss and RKL in future
work with activation functions such as ELU, using standardisation instead of 0-1 normalisation is to
be preferred. Another possible solution might be clipping the gradients when they get too large or too
small. For our experiments, we have kept the preprocessing similar for each experiment as described
in Table 4.5.

The success rates and training times show similar results as with the ASCAD _fixed dataset. The
success rates show a similar ordering in performance as the guessing entropy, and looking at the
training times, ranking loss and CER loss are both slower than the other functions. However, some
differences are visible if we compare the number of trainable parameters of the optimised models. Ta-
ble 4.5 shows the number of trainable parameters of the optimised model for each of the loss functions.
In contrast with the results on the ASCAD _fixed dataset, there is no clear function that works well with
smaller models in general. The log cosh loss does seem to perform well with smaller CNN models, but
the best performing MLP models with log cosh tend to be very large. Similarly, the optimised categori-
cal cross-entropy and ranking loss MLP models are relatively small, while their CNN counterparts are
larger.
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Figure 4.9: GE of the median MLP and CNN models on the ASCAD_variable dataset.

Table 4.5: The number of trainable parameters for the optimised models per loss function and scenario. The lowest number of
trainable parameters for each scenario is marked blue, the highest

Loss function MLP ID MLPHW CNNID CNN HW
Categorical cross-entropy 1,830,756 402,609 3,869,540 3,844,221
Categorical hinge 2,582,256 1,007,956

CER loss 1,966,656 2,079,909 1,602,260 937,253
Log cosh 3,701,709 314,616 245,481
MSLE 1,129,456 4,413,009 4,499,560 4,371,285
MSE 1,625,456 1,927,809 1,768,264 179,265
RKL 371,856 1,477,709 3,634,445

Similarly, as to the ASCAD _fixed dataset, we can conclude that the CER loss is also the preferred
loss function when the ASCAD_variable dataset is considered. It again outperforms the categorical
cross-entropy in terms of guessing entropy and success rate in most of the scenarios. It sometimes
reduces the required traces for a guessing entropy of 1, NTGE, more than threefold. When considering

for example the optimised CNN models, the categorical cross-entropy has a NTGE of 2520, while for

CER loss this is reduced to 720.



32 4.3. Results

Guessing entropy - ASCAD_VARIABLE - MLP - ID Guessing entropy - ASCAD_VARIABLE - CNN - ID
mse o mse
120 | | A\ S e g |
A, —— msle 120 1L, . Y i —— msle
| W — cce e —— e
100 |/ —— cat_hinge —— cat_hinge
\ ki 100 k!
—— log_cosh ‘ —— log_cosh
804

—— cer_loss 80 ‘\\ —— cer_loss
|

PGE

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
# Traces # Traces

(a) MLP, ID leakage (b) CNN, ID leakage

Guessing entropy - ASCAD_VARIABLE - MLP - HW Guessing entropy - ASCAD_VARIABLE - CNN - HW

mse - e r—r mse
’ e —— MSle

| — msle R A eon el
120 N ,,
\ L — cce 120 N, — cce

—— cat_hinge —— cat_hinge
100 4 V- rkl 100 {f rkl
—— log_cosh n —— log_cosh

—— cer_loss —— cer_loss

PGE
PGE

1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
# Traces # Traces

(c) MLP, HW leakage (d) CNN, HW leakage

Figure 4.10: GE of the optimised MLP and CNN models on the ASCAD_variable dataset.

CHES_CTF

Finally, we look at the performance of the median and optimised models on the CHES_CTF dataset.
Figure 4.12 shows the guessing entropy in the scenarios with a median model, while the results of the
optimised models are shown in Figure 4.13.

Right away, it is clear that the CHES_CTF is a more difficult target than the ASCAD datasets. Only
in some scenarios are models capable of reaching a GE of 1 with less than 3000 traces. Other works
that use the CHES_CTF dataset confirms this, where more optimised models or ensembles of models
perform similarly or only slightly better when the HW leakage is considered [47, 70]. Another interesting
result is the failure of the median model trained with ranking loss visible in Figure 4.12a. All 10 of the
models trained with the ranking loss in this scenario fail to train due to the gradient problem explained
in Section 4.3.1. This causes (some) weights of the resulting model to become NaN values and always
output the same predictions. This explains the constant GE visible in Figure 4.12a.

In contrast with the ASCAD datasets, there is also no single function that clearly outperforms the
others in all of the scenarios. When the ID leakage is considered, none of the models is able to perform
a successful attack with less than 3000 traces. For the HW leakage scenarios, the best choice again
is the CER loss.

Interestingly, the median CNN model trained with the log cosh loss seems to perform better than
the other functions, shown in Figure 4.12b. It also performs better than the best model with log cosh
loss in the same scenario but with the other hyperparameters optimised via random search visible in
Figure 4.13. The median model for this scenario has three dense layers with 1000 neurons each,
uses average pooling and the hyperbolic tangent (tanh) activation function. The optimised model has
the same hyperparameters, except it uses the SELU activation function. A similar model, with approxi-
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Figure 4.12: GE of the median MLP and CNN models on the CHES_CTF dataset.

mately the same numbers of dense layers and neurons, with the tanh activation function was not among
the 100 models generated for the hyperparameter optimisation. This shows the limit of hyperparame-
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Figure 4.13: GE of the optimised MLP and CNN models on the CHES_CTF dataset.

ter optimisation via random search. For a search space with multiple dimensions and possible values,
other optimisation strategies might be required to find the actual best model. Future work could look
into further finding optimal models for each of the loss functions, for example with the method proposed
by Wu et al.

Looking at the scenarios in which we can attack the CHES_CTF dataset successfully with less
than 3000 traces, we again see that both the categorical cross-entropy and CER loss models perform
the best. Figure 4.14 and Figure 4.15 show the success rates for these scenarios. For all the other
scenarios, the success rates at 3000 traces stay lower than 0.05.

So far we mainly have looked at differences in performance between the leakage models and the
median and optimised scenarios. One of our subquestions is related to the difference in the perfor-
mance of the functions on different architecture types. For the CHES_CTF dataset, we see that our
MLP models seem to perform better when the HW leakage model is considered. However, going back
to the ASCAD datasets, we see different behaviour. In Figure 4.3 for example, we see that the per-
formance decreases for all the loss functions when CNNs are considered, except for the CER loss.
The same effect is visible in for the ASCAD_variable dataset, shown in Figure 4.10. This could be due
to the way we have set up our hyperparameter ranges resulting in relatively better MLP architectures
and less optimal CNN architectures. Earlier work, for example by [4], shows that their CNN,,.s; model
outperforms their MLB,.;; model slightly using categorical cross-entropy as a loss function, although
they use a much more complex CNN architecture.

Finally, we look at the amounts of trainable parameters in Table 4.6. While the categorical hinge
loss models are the least complex for the scenarios, they also do not perform very well. In contrast, the
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Figure 4.14: Succes rate of the median MLP on the CHES_CTF dataset.
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Figure 4.15: Succes rate of the optimised MLP and CNN models on the CHES_CTF dataset.

models with ranking loss perform reasonably, not the best or worst, and do so with the smallest models
in the scenarios where the HW leakage is considered.

Table 4.6: The number of trainable parameters for the optimised models per loss function and scenario. The lowest number of
trainable parameters for each scenario is marked blue, the highest

Loss function MLP ID MLPHW CNNID CNN HW
Categorical cross-entropy 2,210,856 683,209 1,963,312

Categorical hinge 917,956 3,610,809 205,816 3,146,165
CER loss 1,464,256 4,491,209 2,393,676 197,345
Log cosh 3,998,656 522,409 2,376,008 1,187,777
MSLE 1,188,856 967,576 2,276,685
MSE 723,409 983,100 291,409
RKL 3,192,256 231,109 187,245




36 4.3. Results

4.3.2 State-of-the-art Architectures

In this subsection, we will lay out the results of the experiments where two state-of-the-art architectures
are considered, as described in Subsection 4.2.2. First, we will look at the results from the MLP, .
model, introduced by Benadijila et al., followed by the results of the CNNpethodoi0gy Model introduced
by Zaid et al. Figure 4.16 shows the performance in guessing entropy for the models tested on the
three different datasets.
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Figure 4.16: GE of the MLP;,.s; models on the ASCAD _fixed, -variable and CHES_CTF datasets.
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First of all, we can see that in general, the MLP,; architecture is not performing very well. Although
the performance with the categorical cross-entropy is indeed similar to that in the original paper, the
median and optimised models from the previous experiments outperform the MLP, . in every scenario.
The authors do manage to achieve a successful attack with this model on the ASCAD _fixed dataset
and ID leakage, but only when they train the model for 400 epochs or more. In the context of the original
paper, however, similar to the scenario in Figure 4.16a, the categorical cross-entropy does perform the
best. Our results show that using another loss does not improve the performance presented in their
work. The success rates in Figure 4.17 lead to a similar conclusion, i.e. thatthe MLP_best architecture
does not perform well in several datasets, leakage models and loss functions. The model is only able
to reach success rates higher than 50% on the ASCAD _fixed dataset with HW leakage.

The training times are in line with what we previously saw when comparing the different loss func-

tions, although it takes significantly longer than the optimised and median models from our earlier
experiments. Figure 4.18 shows for example the training times for the models on the ASCAD _fixed
dataset with ID leakage. Each of the optimised models is trained 2-3 times faster than the MLP, .
models. A probable explanation for this is the combination of more trainable parameters and the small
batch size of 100 that the authors proposed for the MLP,,;; model. In comparison, the median and
optimised models almost all have fewer layers (2-4 instead of 5) reducing the complexity, and use a
larger batch size of 800-1000. This is also visible in the number of trainable parameters. The MLB, .
has 352,456 trainable parameters, where most of the optimised models had less than 200,000.
Next, we look at the performance of the CNNyetnoqo10gy Model. In their work, Zaid et al. introduce
a methodology to create small but well-performing CNN architectures. For our experiment, we have
used their CNN model created for the ASCAD _fixed dataset. This is also the model that was used by
Zaid et al. to demonstrate the performance of the ranking loss function. Figure 4.19 shows the results
in terms of guessing entropy, while Figure 4.20 shows the success rate.

Since the CNN architecture was created specifically for the ASCAD _fixed dataset and ID leakage,
it is no surprise that the performance is best in that scenario. Both the categorical cross-entropy and
ranking loss are able to perform a successful attack with less than 200 traces. This is comparable to the
performance of the model in the original paper [75]. However, in our experiments, the ranking loss did
not outperform the categorical cross-entropy. In contrast with the ranking loss paper, the categorical
cross-entropy performs slightly better. This difference in performance is better visible in Figure 4.20a.
There the categorical cross-entropy reaches an SR of 1.0 slightly earlier than the ranking loss model.
One possible explanation of this difference with the paper by Zaid et al. is the way they present their
results. They take the average NTGE over 10 converging models and compare those averages. In our
experiments, however, we take the median of 10 models. In our experiments, the models with ranking
loss are less consistent, e.g. there is a higher chance that one does not converge to a GE of 1 for the
correct key.

Looking at the performance on the other datasets, we see that the model is not very successful
when the ID leakage model is used. Since the model is optimised for usage on the ASCAD datasets
with the categorical cross-entropy in mind, this is no surprise. In the case of the HW leakage model,
the models trained with CER loss outperform the other functions by quite a margin. They retrieve the
correct key for the ASCAD_variable and CHES_CTF with less than 1500 and 2000 traces, where the
models with other functions are not successful or need more than 3000 traces.

4.3.3 Countermeasures

In this subsection, we will discuss the results of the experiments with the ASCAD plain and AS-
CAD_desync50 datasets introduced in Section 2.3. These results are compared against the perfor-
mance of the same models on the ASCAD _fixed dataset, described in Subsection 4.3.1. Figure 4.21
shows the performance of the optimised MLP and CNN models in terms of guessing entropy on the
unprotected implementation, while Figure 4.22 shows the performance on the dataset with desynchro-
nised traces.

Since the ASCAD _plain dataset is equal to a set of measurements taken from a device running an
unprotected version of AES, we see that every loss function except for the categorical hinge loss can
retrieve the correct key in at most seven traces. This holds for both the ID and HW leakage, with both
MLP and CNN models. For this unprotected implementation, it seems that every loss function besides
the categorical hinge loss is a good choice.
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Figure 4.17: SR of the MLPy.5; models on the ASCAD_fixed, -variable and CHES_CTF datasets.

The results when attacking the ASCAD_desync50 dataset, however, show different results. The ex-
tra countermeasure in the form of a random desynchronisation impacts the performance of the models
heavily. The MLP models struggle the most. In the case of the HW leakage, only the model with CER
loss seems to be somewhat converging. However, after 3000 traces, the GE is still only approximately
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Figure 4.18: Training times for the MLP,.5; and optimised models on the ASCAD_fixed dataset.

75. In the case of the ID leakage, the same holds for the categorical cross-entropy.

The CNN models seem to perform better than the MLP models on the desynchronised dataset.
This is to be expected, as earlier work has shown the potential of CNNs against datasets with random
desynchronisation added [4, 75]. In comparison to the earlier results on the ASCAD _fixed dataset,
we now see that the additional trace desynchronisation countermeasure impacts models with some
loss functions more than others. In the earlier experiments, we saw that the CER loss performed
best. The categorical cross-entropy now performs best for both the ID and HW leakage, showing that
it is more resilient to countermeasures. In fact, it is the only loss with which the attack against the
ASCAD _desync50 dataset was successful. All MLP and CNN models trained with other loss functions
fail to reach a GE of 1 with less than 3000 traces.

4.4 Discussion

With these experiments we have, for the first time in the SCA domain, performed a broad comparison
of different loss functions in various deep learning-based SCA scenarios. Overall, these results reveal
interesting characteristics of the behaviour of the different loss functions. In general, we see that the
CER loss performs best in most of the experiments. Besides working well with the HW leakage, in
many of the scenarios with the ID leakage, optimised models with CER loss also outperform models
with other loss functions in our experiments. While Zhang et al. already demonstrate that CER loss
might work on balanced data, our experiments confirm this for datasets often used in research. The
other novel loss function proposed specifically for deep learning-based SCA, ranking loss, fared less
well in our experiments. Besides being much slower to train than models with other functions, it only
performed best in a single scenario. In all the other scenarios, CER loss or categorical cross-entropy
are a better choice.

Furthermore, our work also shows that the categorical cross-entropy, often used by default in related
works, is still a solid choice. It shows to be more robust to different hyperparameter choices than the
two novel functions, performing well with almost any type of combination of hyperparameters within the
hyperparameter search space we defined. In terms of guessing entropy and success rate, models with
categorical cross-entropy are also often only second to the performance of CER loss. Besides that,
our results show that it is faster to train and needs less complex models. In our experiments, it showed
no obvious weaknesses.

The other loss functions we considered did in general not show promising results. While used be-
fore in other works, MSE and related loss functions such as MSLE and log cosh are almost always
outperformed by the categorical cross-entropy and CER loss when an attack can be performed suc-
cessfully. Besides that, MSE also does not have any significant benefits in terms of training time or
model complexity, or robustness against countermeasures.
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Figure 4.19: Guessing entropy of the CNNyethodotogy Models on the ASCAD_fixed, -variable and CHES_CTF datasets.

In our results, we saw no consistent differences between the behaviour of loss functions on MLPs
or CNNs. In general, loss functions that performed well did so on both architecture types. If we look
at the other hyperparameters involved, listed in Appendix B, we do see differences between the loss
functions. Functions that perform well, such as categorical cross-entropy or CER loss, often do so with
smaller models. The best performing models trained with the functions that, overall, do not perform
well, are relatively complex. They require more neurons and dense layers, or more filters.
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Figure 4.20: Success rate of the CNNyethodology Models on the ASCAD_fixed, -variable and CHES_CTF datasets.

Despite the more complex models, we do not see large differences in training times between the
different functions. The only function that is significantly slower to train than others is the ranking loss.
Especially when the ID leakage is considered and the amount of classes is high, the training time is
increased by up to a factor of 10, as is visible in Figure 4.5. The CER loss is also slower when a larger N
is chosen. But as we have shown in Chapter 4, a larger N is not required for better performing models.

The goal of our work is to improve the tools that researchers have when performing SCA with deep
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Figure 4.21: Guessing entropy of the optimised models on the ASCAD_plain dataset.

learning. To that end, we have created an overview of strengths and weaknesses for each loss function
as seen in our experiments. These are visible in Table 4.7.

To summarise the result of the experiments in this chapter, we have tested each of the loss functions
in a total of 44 different scenarios. Comparing the performance in terms of guessing entropy, models
with the CER loss function performed best in 20 of those scenarios, the categorical cross-entropy in
8 and the ranking loss in 4. Other functions like MSE, MSLE or log cosh loss only performed best in
scenarios where all models failed to perform a successful attack, e.g. reach a guessing entropy of
1 with less than 3000 traces. Our experiments also show that the categorical hinge loss is not very
suitable for application in the SCA domain.

The models in the scenarios where other hyperparameters are optimised most often lead to a suc-
cessful attack. When we compare the NTGE for all those models with CER loss and categorical cross-

entropy, we see that 58 models with CER loss reached a guessing entropy of 1, with a median NTGE
of 580. For categorical cross-entropy, 39 models were successful with a median NTGE of 1460. To test

the significance of the difference in NTGE between the two functions, we perform a Mann-Whitney-U
test [41]. We use n; = 58,n, = 39 and @ = 0.05. The calculated statistic U = 246 < U.,;; = 864 with
p < 0.00001 confirms that difference in NTGE is indeed significant. The probability that a model with
CER loss has a lower NTGE than a model with categorical cross-entropy is 0.89.

The other novel function, ranking loss, does not seem to increase the performance overall. Consid-
ering again all the optimised models, 33 models with ranking loss reach a N, of 1. The median Ny,
of these models is 1620 in comparison to 1460 for the models with categorical cross-entropy. We again
test the significance of the difference between these results with the Mann-Whitney-U test. There are
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Figure 4.22: Guessing entropy of the optimised models on the ASCAD_desync50 dataset.

33 models with categorical entropy which were successful in attacking the considered datasets, and 58
with CER loss. We use n; = 33, n, = 58 and a = 0.05. We calculate the statistic U = 667.5 > U.,;; =
470 and p = 0.79. Since, 0.79 > 0.05, we cannot say that the difference in performance between the
ranking loss and categorical cross-entropy is significant. One explanation for this difference in perfor-
mance might be the variation in the used architectures. The performance we see with the architecture
and leakage model used by Zaid et al. in Figure 4.19a is similar to the performance presented in their
paper [74]. However, in scenarios with other architectures and leakage models, the performance in
comparison with the categorical cross-entropy shows no improvement. Besides that, using ranking
loss also severely impacts the training time and introduces a new hyperparameter «, which has to be
optimised for each profiling dataset.

We can therefore conclude that the CER loss is, in most cases, the best choice for the loss function
when using deep learning for SCA. The categorical cross-entropy is still a solid choice while ranking
loss, or other loss functions, should only be considered in very specific cases.
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Table 4.7: Strengths and weaknesses for each of the loss functions, based on the results of our experiments.

Loss function

Strengths

Weaknesses

Categorical cross-entropy

» Good performance
» Robust to different architec-

tures
* Robust against different
countermeasures

* Training time

Categorical hinge

+ Training time

* Rarely leads to a successful

attack

CER loss

» Best performance * Less robust to different ar-

» Specifically good against chitectures

HW leakage model

Log cosh

* Training time » Performance is mediocre
MSE

* Training time » Performance is mediocre
MSLE

* Training time

* Requires complex models
» Performance is not good

Ranking loss

» Performance in some spe-
cific scenarios

* Training time

* Not robust to different archi-
tectures

* Introduces new tunable pa-
rameter a



Chapter 5

Multi-loss Functions

As we have seen in the previous chapter, the choice of loss function influences the performance of
deep learning models when used for SCA. In this chapter, we will apply state-of-the-art loss functions
from other domains to SCA. We will use hyperparameter optimisation via random search to find the
best model for each of these functions and compare them to the categorical cross-entropy and the
novel loss functions proposed for SCA.

5.1 Motivation

From our experiments so far, we can see that novel loss functions specifically developed for use in
SCA do outperform more classical loss functions in certain scenarios. In other domains in which deep
learning is applied, several works have also introduced new loss functions that improve the performance
in that context [3, 19, 20, 36]. These functions are created to deal with certain characteristics of the
targeted datasets, such as a class imbalance or a low amount of samples per class. First of all, we will
consider focal loss [36]. Focal loss introduces two extra parameters: a and y, as shown in the definition
of focal loss in Equation 5.1.

Liocat,p) = —a(1 —p)CE(y,p) (5.1)

where p is the predicted probability, y is the true label and CE is the categorical cross-entropy. The «
parameter is a vector of weights used to balance the influence of samples from each of the classes.
The y parameter is used to give easy examples, i.e. correctly classified with a high probability, less
influence on the loss in comparison to hard examples. When p gets larger, so when a sample is correctly
classified with a larger probability, the contribution to the loss gets significantly smaller due to the y. In
the context of SCA, we also deal with imbalanced datasets when we are dealing with the HW leakage
model. We will therefore use the focal loss in our experiments, denoted as Ly,cq;.

As described in Chapter 3, multi-loss functions, which are combinations of two or more loss func-
tions, have shown to increase the performance or robustness of the resulting deep learning models
in other domains [3, 19, 20, 57]. The first of these functions we consider was introduced by Barz and
Denzler. They use the cosine similarity and a combination of the cosine similarity and categorical
cross-entropy as loss functions. They show that the increase in performance is largest when there are
less than 200 samples per class. The datasets we have considered so far have between 135 and 230
samples per class when the ID leakage model is considered. To see if such a combination of losses
can improve the performance in the context of SCA, we will also use this combination of losses in our
experiments. We will denote this function as L¢,scross- The definition of this function is given in Equa-
tion 5.2.

Lcoscross(V,p) = 0.1 CE(y,p) + COS(y,p) (5.2)

where p is the predicted probability, y is the true label, COS is the cosine similarity and CE is the
categorical cross-entropy.

45
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Finally, Hajiabadi et al. use a combination of three loss functions for text classification and breast
cancer prediction [19, 20]. According to Hajiabadi et al., these functions have different properties, such
as increasing the margin between the correct class and other classes and robustness against outliers
in the data. They identified three loss functions that have such specific characteristics. First, they use
multi-class hinge loss, which is identical to the categorical hinge loss described in Subsection 2.2.2.
Hinge losses also result in a (small) loss for correctly classified examples, thereby increasing the mar-
gin between the correct class and other classes. The second loss function they use is correntropy
[68]. Correntropy bounds the loss between 0 and 1 for each sample, thereby making it more robust to
outliers. The parameter o, as seen in the definition of correntropy in Equation 5.3, is introduced to tune
how quickly the loss goes to 1.

lly = plI?

Leorr(y,p) =1— eXp(_T) (5-3)

where p is the predicted probability and y is the true label. The third function used is the categorical
cross-entropy, as introduced in Subsection 2.2.2. [20] use a linear combination of these three functions,
and use a training process to assign each of the functions a weight. For our experiments, we will use
the weights they have found to work well [19]. The final combined loss function is shown in Equation 5.4.

LCorrCrossHinge(y: p) =029+ Lcorr(y: P) +0.36 * CE(J’, P) +0.34 * Lhinge(y: p) (54)

where L, is the correntropy function, CE is the categorical cross-entropy and Ly 4. is the cate-
gorical hinge loss. We will denote this function by L¢orrcrosshinge-

5.2 Experiment Setup

In this section, we describe the setup of the experiments we have performed with these new loss
functions. The experiments have been performed on the same hardware as described in Section 4.2.

For the first experiments with these new functions, we will use a similar approach as to the hyperpa-
rameter optimisation experiment described in Subsection 4.2.1. We will use the same three datasets,
namely ASCAD _fixed, ASCAD_variable and CHES_CTF. Similarly, we attack both the ID and HW
leakage models using CNNs and MLPs. For each of the new loss functions, we again perform hy-
perparameter optimisation via random search by generating 100 models with parameters randomly
chosen from the ranges in Table 4.1 and Table 4.2. We select the best performing models per function
in each scenario and compare them to the categorical cross-entropy, ranking loss and CER loss.

Two of the functions, Lrycq; @nd Leorrcrosshinge, iNtroduce new hyperparameters. For these ex-
periments, we will use the proposed values for each of these parameters[19, 36]. For L¢,cq;, we will
use a = 0.25 and y = 2.0. For Leorrcrossminge, W€ Will use the weights for each function as shown in
Equation 5.4.

Finally, we also look closer at the focal loss. In their work, Lin et al. tested several values for a
and y. They also propose setting a to the inverse class frequencies or optimising the parameters via
a random search. Cui et al. propose a strategy for tuning class weights to be used in combination
with for example focal loss [14]. For this experiment, we use the different strategies for setting the
Locar Parameters and compare them in terms of guessing entropy on the same scenarios as defined
in Subsection 4.2.1.

5.3 Results

In this section, we discuss the results of the experiments with Lf,.,; and the multi-loss functions
Lcoscross @Nd Leorrcrossuinge- After comparing the results of these functions on the three datasets,
we will discuss the results of the experiments with L¢,.,; and different parameter settings.
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5.3.1

Focal & Multi-loss Functions

ASCAD_fixed

First, we look at the guessing entropy and success rates on the ASCAD _fixed dataset, shown in Fig-
ure 5.1 and Figure 5.2.
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Figure 5.1: Guessing entropy of the optimised models on the ASCAD_fixed dataset.

Figure 5.1 shows that focal loss and multi-loss functions can be successfully applied to deep learning in
SCA. In all the scenarios on the ASCAD _fixed dataset, the models with L¢,.q; and Leoscross Outperform

the categorical cross-entropy and ranking loss. Similarly, Table 5.1 shows the median NTGE for the
functions in each of the scenarios. It is clear that using Lc,scross @nd in particular Lg,cq; to train deep
learning models leads to successful attacks. Both functions need fewer traces to successfully retrieve
the correct key than models trained with categorical cross-entropy.

Table 5.1: Median NTGE on the ASCAD _fixed dataset. The lowest NTGE for each scenario is marked blue.

Lfocal RKL CCE CER loss Lcoscross LCorrCrossHinge
MLP ID 580 900 860 570 610 >2000
MLP HW 1480 1620 1560 560 1560 1450
CNNID 1250 1760 1360 600 1060 >2000
CNNHW 1840 >2000 >2000 540 1920 >2000

The results for the other multi-loss function, L¢orrcrossuinge, are less consistent. While models
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Figure 5.2: Success rates of the optimised models on the ASCAD _fixed dataset.

trained with this function still converge to a GE of 1 in most of the scenarios, it only performs well when
the HW leakage is considered. In that case, it performs similarly to the categorical cross-entropy or
slightly worse, which does not make it a good alternative.

Finally, we also look at the training times with each of the losses. Since we have trained 100 random
models with each of the functions, we can use those models to get an idea of how the loss functions
impact the training time. Figure 5.3 shows the training times for each of the scenarios. The training
times show that the multi-loss functions and focal loss are still as fast as categorical cross-entropy, and
faster than the CER loss with N = 10 and the ranking loss.

Overall, the best performing function in terms of GE and SR for the ASCAD _fixed dataset is still the
CER loss. The focal loss and L¢,scr0ss functions do show promising results. They do perform better
than the categorical cross-entropy and ranking loss, and do not result in an increase in training time.

ASCAD_variable

Next, we consider the results on the ASCAD_variable dataset. Figure 5.4 shows the guessing entropy
of the optimised models with the different functions and Figure 5.5 shows the success rates.

The results on the ASCAD _variable dataset show a different picture in comparison with the AS-
CAD _fixed dataset. When the ID leakage model is used in the attack, the focal loss performs similar
to the CER loss. After 3000 traces, focal loss reaches a median GE of 1.67 and CER loss 1.68 when
MLPs are used. For CNNs, the GE when using 3000 traces is 4.00 and 3.13 respectively. They both
easily outperform the categorical cross-entropy, which reaches a GE of 2.71 (MLP) and 17.59 (CNN).
When the HW leakage is used, CER loss still outperforms the focal loss. However, considering the
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Figure 5.3: Training times for 100 random models with each of the loss functions. Each mark is one of the 100 random models.
The median training time for each function is marked with a red arrow.

increase in required training time, the focal loss is the better choice when the ID leakage is considered.
The multi-loss functions perform similarly to our experiments on the ASCAD _fixed dataset. The
Leoscross function performs slightly better than the categorical cross-entropy with the ID leakage, but
slightly worse when the HW leakage is used. The L¢orrcrossuinge function does seem to be able to
deliver converging models, but they do not perform very well.
In terms of the number of trainable parameters, there is no consistent difference between the loss
functions. Table 5.2 shows the number of trainable parameters for each scenario and function.

Table 5.2: Number of trainable parameters of the optimised models on the ASCAD_variable dataset. The lowest number of
trainable parameters for each scenario is marked blue, the highest number

Lfocal RKL CCE CER loss LCosCross LCorrCrossHinge
MLP 1D 371,856 1,830,756 1,966,656 2,797,456 572,856
MLP HW 1,366,009 1,477,709 402,609 603,609 1,045,209
CNN ID 3,365,584 3,869,540 1,602,260 3,869,524 158,308

CNN HW 81,501 3,634,445 3,844,221 937,253 3,6470,17

Similar to the ASCAD _fixed dataset, we can conclude that the focal loss is the preferred loss function
when targeting the ID leakage model. The performance in GE is similar or slightly better than with CER
loss, however, training times are much lower. Only when using CNNs to attack the HW leakage does
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Figure 5.4: Guessing entropy of the optimised models on the ASCAD_variable dataset.

the CER loss outperform the focal loss, needing approximately 1200 traces less to launch a successful
attack. In such a scenario, where fewer traces are available, the increase in training time could be a
good trade-off.

CHES_CTF

Finally, we will look at the performance of the functions on the CHES CTF dataset. Figure 5.6 shows
the guessing entropy in the different scenarios.

The results for the CHES_CTF dataset are again less consistent than those of the experiments
with the ASCAD datasets. There is no single function that performs best in each of the scenarios.
Interestingly, the L¢,scross function does increase the previous best performance in the MLP/ID and
CNN/HW scenarios. However, in the case of the CNN/HW scenario, the difference is marginal. In the
MLP/ID scenario, the small increase is also still not enough to perform a successful key recovery with
3000 traces.

Overall, we can conclude that from the new tested functions, the focal loss has the most potential
for use in the SCA context. When considering the ID leakage model, it performs similarly or better than
our previous best function, the CER loss, and outperforms the regularly used categorical cross-entropy.
It does so without the increase in training time that comes with using CER loss. When the HW leakage
is considered, only the CER loss still outperforms the focal loss, but again at the cost of an increased
training time. To summarise our findings for these new functions, we provide an addition to Table 4.7
for these new loss functions in Table 5.3
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Figure 5.5: Success rates of the optimised models on the ASCAD_variable dataset.
Table 5.3: Strengths and weaknesses for each of the loss functions, based on the results of our experiments.

Loss function | Strengths Weaknesses

Lfocal

* Good performance, sometimes Introduces new parameters
better than previous best

* Robust to different architectures

LCorrCrossHin
ge
+ Performance not very good
* Introduces new parameters
LCosCross ) .
» Good performance » Less robust to different architec-
tures

* Introduces new parameters

5.3.2 Tuning Focal Loss

In the previous section, we showed that we can successfully apply the focal loss, Lf,cq:, to SCA sce-
narios. For those experiments, the parameters a and y were set to the values proposed in the original
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Figure 5.6: Guessing entropy of the optimised models on the CHES_CTF dataset.

focal loss paper [36]. We have seen that the focal loss performs very well when the ID leakage is con-
sidered, but is still slightly worse than CER loss when the HW leakage model is used. In this section,
we will look at the results of our experiments with two different strategies to set these parameters, to
further improve the performance of the focal loss.

First, we optimise the choice of @ and y via random search, as we do with the other hyperparameters.
We choose these values from a similar range as Lin et al., as shown in Table 5.4. In our results, models
which used this strategy for setting a and y are denoted as focal_optimised.

Table 5.4: Possible values for a and y.

a | [0.1,0.25,05,0.75,0.9]
y | 10,05,1.0,20,5.0]

Next, we also use a strategy called class balancing [14]. With class balancing, the weights for each
class, so the a parameter, are based on the number of samples in each class. For each class, the
corresponding weight is calculated as shown in Equation 5.3.2.

1-p
= T35 i
where q; is the weight for class i, n,, is the number of samples in the considered class in the profiling
set and S is a new parameter. For this experiment, we used § = 0.999, since Cui et al. show that this
value works well with different datasets. In our results, models trained with these settings are shown
as focal_balanced.

(44}

(5.5)
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For all the following experiments, we use 50,000 profiling traces for the ASCAD datasets and 45,000
traces for training on the CHES_CTF dataset. In the attacking phase, we use up to 2000 traces for the
ASCAD fixed dataset and up to 3000 traces for the ASCAD _variable and CHES CTF datasets.

ASCAD_fixed

First, we look at the performance on the ASCAD _fixed dataset. Figure 5.7 shows the guessing entropy
of the three different focal losses, the CER loss and the categorical cross-entropy.
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Figure 5.7: Guessing entropy of the optimised models on the ASCAD_fixed dataset.

Here we see that optimising @ and y for each scenario only slightly improves the performance over
the default values of @ = 0.25 and y = 2.0. If we look at performance for different « and y values,
models with the default values perform consistently well. However, models with different values are
less consistent but some outperform the ones with the default values. This effect is visible in Figure 5.8.
For the MLP models, y tends to be smaller (0 or 0.5), while the best performing CNN models often have
a larger value (2 or 5). The class balancing strategy for setting a does result in similarly performing
models as with the default @ = 0.25 value. The performance of the focal_balanced loss is, just like the
other focal losses, good on the ASCAD _fixed dataset.

One other difference between the CER loss and the focal losses seems to be the speed of conver-
gence of the loss towards 0. For these experiments, similar to the previous experiments, we used 200
epochs for training. Figure 5.9 shows the progression of the loss per epoch during training for a similar
model with each of the loss functions. For the focal loss, the default settings of @ = 0.25 and y = 2.0
are used. Here we see that the focal loss reaches a loss of almost 0 after approximately 100 epochs
while the validation loss keeps increasing. The CER loss continues to decrease up to 200 epochs,
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Figure 5.8: Guessing entropy for MLP models on the ASCAD_fixed dataset from 100 random models with focal loss and
different values of @. Here we see that models with the default @ = 0.25 perform consistently well, while models with « = 0.1
are less consistent, but some of them are performing very good.

with the validation loss also decreasing. This could be an indication that the model with focal loss is
over-fitting and that training with fewer epochs could result in better performance when using focal loss,
while further training could increase the performance of with the CER loss.
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Figure 5.9: Loss value during training of the same model with CER loss and focal loss.

ASCAD_variable

Next, we look at the results of the different focal loss settings on the ASCAD_variable dataset. Fig-
ure 5.10 shows the guessing entropy of the models in the different scenarios.

On the ASCAD_ variable dataset, there is again little to no improvement with the different parameter
tuning strategies in comparison with the default values. Interestingly, the class balanced focal loss
outperforms the other functions slightly in the scenarios where ID leakage is used. The median GE
when using 3000 traces for the attack is 1.46 (MLP) and 2.23 (CNN), which is lower than that of CER
loss (1.69 and 3.13) and the focal loss with default parameter values (1.67 and 4.0). Although the
difference is not large, it indicates that optimising the parameters via random search or class balancing
can increase the performance.

The difference in training time between the different parameter tuning strategies is negligible. Fig-
ure 5.11 shows the training time for the 100 models generated with each of the parameter tuning strate-



55

Guessing entropy - ASCAD_VARIABLE - MLP - ID

100 4

80

604

PGE

40 4

focal_loss
focal_balanced
focal_optimised
— cce

cer_loss

0 1000 3000

(a) MLP models, ID leakage

Guessing entropy - ASCAD_VARIABLE - CNN - ID

120 4

100

—— focal_loss
focal_balanced
—— focal_optimised
— cce
cer_loss

1500
# Traces

(c) CNN models, ID leakage

120

100

80

PGE

60

40

100 4

80 -

60| |

40

Guessing entropy - ASCAD_VARIABLE - MLP - HW

—— focal_loss
focal_balanced

—— focal_optimised

— cce

cer_loss

1000 1500

# Traces

2000 2500 3000

(b) MLP models, HW leakage

Guessing entropy - ASCAD_VARIABLE - CNN - HW

1 —— focal_loss
focal_balanced

—— focal_optimised

cce

cer_loss

1500 2000 2500

# Traces

1000 3000

(d) CNN models, HW leakage

Figure 5.10: Guessing entropy of the optimised models on the ASCAD_variable dataset.

gies. There is no notable difference between the focal losses, multi-loss functions and the other loss
functions except the ranking loss. This difference in training time is consistent across the datasets and

scenarios.
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Figure 5.11: Training times of 100 models with each of the loss functions, trained on the ASCAD_variable dataset. The median
training time per loss function is marked with a red mark.
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CHES_CTF

Finally, we look at the performance of the different focal losses on the CHES_CTF dataset. The per-
formance in guessing entropy is shown in Figure 5.12. In comparison with the focal loss with default
parameters, the gain in performance is quite significant on this dataset. For the MLP models with the
ID leakage as a target, the class balanced focal loss improves the performance quite a bit in compari-
son with the default focal loss and every other loss. The median guessing entropy after 3000 traces is
approximately 34, in comparison to 69 for CER loss and 74 for the default focal loss. Although this is an
improvement, the success rate still only reaches 0.12 after 3000 traces, meaning it is still no successful
attack with the considered amount of attack traces.
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Figure 5.12: Guessing entropy of the optimised models on the CHES_CTF dataset.

When the ID leakage and CNN models are considered, both the class balanced and optimising
strategies improve the performance in comparison with the focal loss with default parameters. Again,
the class balanced strategy performs best. Such improvements over the default values are not visible
when using the HW leakage, which is interesting, since class re-balancing was proposed as a solution
to class imbalances [14]. The cause of this is likely to be the choice of g described in Subsection 5.3.2.
Due to the small class imbalance in the dataset when the ID leakage is considered, the f§ = 0.999
results in small and almost constant «; values for each of the classes. As shown in Figure 5.8, models
with constant and small values of a« can perform very well. When the HW leakage is considered,
the difference between the class frequencies is larger. With 8 = 0.999, the smallest «;, for the most
frequent class, is 0.001, while the largest «; is only 0.007. The difference between these weights is
not enough to solve the imbalance between the classes. Using a larger § value does remove the
imbalance, because as 8 goes to 1, the weights for each class approach the inverse class frequency.
For the HW leakage model on the CHES_CTF dataset, this leads to a; = 0.006 for the smallest class
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and a; = 0.00008 for the largest class. The weights and effective contribution to the loss of each trace
for different values of 8 are shown in Table 5.5. By choosing such a larger g, the traces of the minority

Table 5.5: a and the effective contribution of each of the traces to the loss. When using a smaller value for 8, the imbalance
between the classes remains. Using a larger f = 0.999999 makes every trace approximately have the same contribution to the
loss.

Traces per class B =0.999 B =0.999999
a Effective a Effective

168 0.0065 1.092 | 0.00595 | 0.996
1353 0.0013 1.759 | 0.00074 1.000
4958 0.0010 | 4.958 | 0.00020 1.002
9779 0.0010 9.779 | 0.00010 1.007
12286 0.0010 | 12.286 | 0.00008 1.005
9849 0.0010 9.849 | 0.00010 1.005
4986 0.0010 | 4.986 | 0.00020 1.002
1471 0.0013 1.912 | 0.00068 1.000
150 0.0072 1.080 | 0.00667 1.000

classes have a very large impact on the loss in comparison to the traces from the majority class, while
these traces might in general not be more important. The imbalance between the classes is caused
by transforming the original labels to their Hamming weight, the original dataset does not contain a
large imbalance between classes. So while using a larger g value does solve the class imbalance
caused by using the HW leakage, it might not lead to a more successful attack. To verify this, we have
tested the MLP model with the HW leakage model and class balanced focal loss with different g values.
Figure 5.13 shows the performance with several different § values. It is clear that increasing g does
not increase the performance of the model, but only decreases it. Choosing a smaller value, leaving
the class imbalance largely intact, also does not increase the performance. The value chosen based
on the work of [14], B = 0.999, works best when using a class balanced focal loss for SCA.
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Figure 5.13: Class balanced focal loss applied to the CHES_CTF MLP HW leakage scenario. Several different values of g are

used. Class balanced focal loss with 8 = 0.999 is denoted by focal_balanced, beta1x9 denotes g = 0.9, beta2x9 for g = 0.99,
etc.

5.4 Discussion

In this section, we have shown for the first time that multi-loss functions can be used to successfully
perform SCA. In several works introducing new loss functions in other domains, the used datasets show
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similarities with datasets used in the SCA domain. By using combinations of functions that proved to
be effective in these other applications of deep learning, we can perform successful attacks against
datasets commonly used for SCA. Although the performance with these functions was not always better
than with the commonly used categorical cross-entropy or novel CER loss, it shows that combinations
of loss functions have the potential to be successful in the context of SCA. In this work, we have only
considered two multi-loss functions that had already been used in other applications. Future work could
for example look into using different combinations of functions, or optimising for example the weights
for each function.

Furthermore, we have for the first time applied a focal loss to SCA. Our first experiments show that
without optimising the parameters of the focal loss, we can already successfully use it in the context
of SCA. Models trained with focal loss perform consistently good and almost always better than the
categorical cross-entropy. They do so without the increase in training time introduced by using the
CERloss. This shows that in most cases, the focal loss should be preferred over the categorical cross-
entropy. The CER loss offers a further increase in performance when using the HW leakage, but is
slower, and should therefore only be used when training time is not an issue.

We have also looked into tuning the @ and y parameters introduced by the focal loss. In Subsec-
tion 5.3.2, we show that different strategies can be used to set these parameters. When optimising
each of these values together with other hyperparameters, the performance of models with focal loss
can be improved in most scenarios. However, for this work, we have only looked at a limited range
of values for @ and y. By increasing the search space for these values, better combinations might be
found at the cost of increasing the time to optimise them.

Finally, we have also looked at a strategy called class balancing to set a. This strategy improves
the performance even further when using the ID leakage model, but a new parameter g is introduced.
We have shown that increasing S, to effectively solve the class imbalance caused by the HW leak-
age model, does not increase the performance of the resulting model. Choosing a lower value for 3,
thereby leaving some imbalance between the classes, works better. In that case, a similar increase in
performance is seen for the scenarios with the HW leakage.

To conclude, we have successfully applied multi-loss functions and focal loss to deep learning for
SCA. Models trained with focal loss almost always perform better than those with categorical cross-
entropy, without an increase in training time. Further performance improvements can be gained by
tuning the focal loss parameters via optimisation or class balancing. The focal loss should therefore
be preferred over the categorical cross-entropy and CER loss when using deep learning for SCA and
targeting the ID leakage. When the HW leakage is considered, the CER loss remains the best choice.



Chapter 6

Focal Loss Ratio

In this chapter, we discuss the proposal of a new loss function for SCA. We propose the focal loss
ratio based on the lessons learned from our previous experiments. To verify the potential of the new
function, we perform experiments on the same scenarios as before, comparing our new loss function
to the previously best functions.

6.1 Building Blocks

In the previous chapters, we have seen various loss functions with different strengths and weaknesses.
In all considered scenarios, either the CER loss or focal loss outperformed the default choice of cate-
gorical cross-entropy as a loss function. However, none of these two functions performs best in every
scenario. The CER loss performs best in almost all scenarios with the HW leakage model, while in
some scenarios with the ID leakage model, it is outperformed by the focal loss. In this section, we
look further into what makes these functions successful and how we can use those characteristics to
construct a new loss function. The goal is to create a single new loss function that performs best in all
the considered SCA scenarios, without increasing the required training time or the complexity of the
models.

6.1.1 Ratio Loss

The cross-entropy ratio loss, or CER loss, is introduced by Zhang et al. to improve the performance
of deep learning models in the SCA domain. They start with a metric, the cross-entropy ratio, which
purpose is to give an idea of the performance of a deep learning model. Classical machine learning
metrics like accuracy do not give an accurate representation of the performance of a model when SCA
is considered against protected targets [60, 77]. On the other hand, launching practical attacks and
averaging the key rank to estimate the guessing entropy is a computationally costly process. They
show the relation between their new metric, the cross-entropy ratio, and guessing entropy and success
rate. A key part of this is the estimation of the cross-entropy ratio. Zhang et al. define this estimation
as shown in Equation 6.1.

CER = M (6.1)
Hy, (Sp, Mp)
where Hy, is a function that implements the cross-entropy, S, is the set of profiling traces, S is the
profiling set with random labels and My is the deep learning model. This estimation is used directly as
a loss function, using the average of n sets of traces with shuffled labels as the denominator.
Something similar was also done by Zhu et al.. They use the same principle, using the ratio between
the correct label and incorrect labels together with the cross-entropy as a loss. The idea behind this is
that with categorical cross-entropy, or negative log-likelihood, only the probability for the correct class
(true label y = 1) contributes to the loss. For all other classes with y = 0, the contribution to the loss is
0. By using the other classes in the calculation of the loss, either by taking the ratio before calculating
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the cross-entropy or by using the cross-entropy on a set with shuffled labels, the performance of a
model can be increased. We have seen in Chapter 4 and Chapter 5 that this is indeed the case in the
context of SCA, especially when the HW leakage model is used.

For other loss functions we have considered in this work, this is not the case. For example, the
mean squared error (MSE) between a vector with true labels, y = [0,0,1] and predicted labels y; =
[0.1,0.1,0.8] or ¥, = [0,0.2,0.8] is different: MSE(y,¥;) = 0.020 and MSE(y,y,) = 0.027. However,
the categorical cross-entropy for both predictions would be the same. Therefore, using the categorical
cross-entropy in such a way seems like a logical basis for our own loss function.

6.1.2 Focal Loss

Besides the categorical cross-entropy as a loss itself, the categorical cross-entropy is also used in the
focal loss. As we recall, the definition of the focal loss used in this work is shown in Equation 6.2.

Liocat(,p) = —a(1 —p)"CE(y,p) (6.2)

where CE is the categorical cross-entropy function. «a is a vector of weights for each of the classes
and y is the parameter that increases the loss for correctly classified examples that are hard, i.e. the
probability is further from 1.0, and decreases the contribution of easy correctly classified examples, i.e.
with a probability close to 1.0.

As we have seen in Chapter 5, such a focal loss performs very well in the context of SCA. Our exper-
iments show that the focal loss with « set via the class re-balancing strategy [14] or a low constant value
of a outperforms the categorical cross-entropy, especially on the more challenging ASCAD_variable
and CHES_CTF datasets when the ID leakage is considered.

6.2 Focal Loss Ratio

The characteristics that make the CER loss and focal loss perform so well are thus identified as using
a ratio between the categorical cross-entropy and the categorical cross-entropy on a profiling set with
shuffled labels, and adding @ and y to balance the classes and emphasise hard-to-classify examples.
The ratio loss performs really well when the HW leakage model is considered, while the emphasis on
hard training examples improves the performance when the ID leakage is considered. We propose to
combine those two aspects into a single new loss function, the focal loss ratio (FLR). The purpose of
this new function is to have a single loss function that is suitable for every SCA scenario and performs
equally or better than the CER loss and focal loss. We define the FLR function as shown in Equation 6.3.

—a(1—-p)YCE(y,p)
FLR(y,p) = T—
~ Yy —a(1 = p)Y CE(¥5,p)

(6.3)

where y are the true labels, y, are the shuffled labels, CE is the categorical cross-entropy and n is the
number of shuffled sets of labels to use.

For the CER loss function, the value of n proved to have no noticeable influence on the performance
of the resulting model, as shown in Figure 4.6. In Figure 6.1, we show the performance of the same
model on the CHES_CTF dataset using FLR and different values of n. While the difference in NTGE is

small, the median NTGE is lowest for the models with n = 3. The same small difference is also visible
when tested on the other datasets. Since the impact on training time of using n = 3 in comparison to
n = 1 is negligible, we will use n = 3 for our experiments with FLR.

6.3 Experiment Setup

In this section, we discuss the setup of the experiments we perform with the focal loss ratio function.
We consider the same combinations of datasets, leakage models and architecture types as described
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Figure 6.1: Guessing entropy and success rate for FLR with different values of n.

in Subsection 4.2.1. We also use a similar approach, generating 100 random models with hyperparam-
eters from the ranges defined in Subsection 4.2.1 and picking the best set of hyperparameters based
on the guessing entropy. For the comparison, we train 10 models with those hyperparameters and
select the median model. We compare our function against the CER loss, ranking loss, categorical
cross-entropy and focal loss. We look at the guessing entropy and success rate, training time and
complexity of the models.

For the FLR function, we use three different strategies to set the a and y parameters. For the first
strategy, we use the values given by Lin et al., namely @ = 0.25 and y = 2.0. Models with these settings
are denoted as FLR in the plots. The second strategy is the class balancing approach introduced by
Cui et al., denoted by FLR_balanced. The final strategy is optimising both a and y via random search.
Models with that strategy are denoted by FLR_optimised. For this strategy, we select the parameters
randomly for each of the 100 random models from the ranges defined in Table 5.4.

Besides that, we also test the new function in the context of countermeasures. Similar to Subsec-
tion 4.2.3, we compare the performance of models trained with FLR on an unprotected implementation
of AES with those with masking and a random desynchronisation countermeasure. For this experiment,
we use the ASCAD _fixed, ASCAD _plain and ASCAD_desync50 datasets.

6.4 Results

In this section, we discuss the results of the experiments with our newly proposed function, the focal
loss ratio. First, we will consider the ASCAD _fixed dataset, then the ASCAD_variable dataset and
CHES_CTF dataset. Finally, we will discuss the results on the datasets with and without countermea-
sures.

For our experiments on the ASCAD datasets, 50,000 profiling traces are used. For the CHES_CTF,
we use 45,000 profiling traces. In the attacking phase, we use up to 2000 traces for the ASCAD _ fixed
dataset and up to 3000 traces for the ASCAD_variable and CHES CTF datasets. In some of the plots,
the x-axis is reduced to increase the visibility of the differences between the loss functions.

6.41 ASCAD fixed

We start with the results of the models with different functions on the ASCAD _fixed dataset. Figure 6.2
shows the guessing entropy in the different scenarios while Figure 6.3 shows the success rates.

From the guessing entropy and success rate plots, it is straight away clear that models trained
with FLR loss outperform the categorical cross-entropy and focal loss in each of the scenarios with
the ASCAD _fixed dataset. When the HW leakage model is considered, the FLR models need 1000 to
1500 traces less than models with categorical cross-entropy or focal loss to reach a GE of 1.
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Figure 6.2: Guessing entropy of the optimised models on the ASCAD_fixed dataset.

The difference in performance with the CER loss function is smaller. In Table 6.1, we show the me-
dian N, for each of the functions and scenarios. Here we see that in three out of four of the scenarios,
models trained with FLR outperform the CER loss models. In the fourth scenario, the CNN model with
HW leakage, the models with FLR still perform almost as good as the CER loss. All three strategies

for setting « and y work well and lead to successful attacks with relatively few traces. However, which
strategy works best differs per scenario.

Table 6.1: Median NTGE on the ASCAD _fixed dataset. The lowest NTGE for each scenario is marked blue.

Lfocar CCE  CERIloss FLR FLR_balanced FLR_optimised

MLP ID 580 860 570 810 540 680
MLP HW 1480 1560 560 460 570 510
CNN ID 1250 1360 600 610 850 550
CNNHW 1840 >2000 540 570 790 560

There is no significant difference in the training time between the compared loss functions except
for the CER loss. Figure 6.4 shows the training times for the 100 random models with each of the
loss functions. The slowdown for the CER loss is caused by the choice for N = 10 as discussed in
Chapter 4. Choosing a lower N would not have impacted the performance and would have brought
down the training time. We also look at the complexity of models. Table 6.2 shows the number of
trainable parameters for each of the loss functions and scenarios. Here we see that in general, the
models trained with FLR are relatively small. In fact, we see that in the scenarios where FLR performs
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Figure 6.3: Success rate of the optimised models on the ASCAD_fixed dataset.

well, it also uses small or the smallest models. This is an advantage, as it shows that it can outperform
other loss functions while still using relatively small models.
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Figure 6.4: Training time of 100 random models per loss function on the ASCAD _fixed dataset.

From our results on the ASCAD _fixed dataset, we can conclude that the FLR is a suitable loss
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function to use for deep learning SCA. It outperforms the previously best loss function in most cases
without negatively impacting training time or model complexity.

Table 6.2: The number of trainable parameters of the optimised models on the ASCAD _fixed dataset. The lowest number of
trainable parameters for each scenario is marked blue, the highest is marked

Lfocal CCE CERloss FLR FLR balanced FLR_optimised
MLP ID 146,456 116,156 116,156 106,056 377,656
MLP HW 754,809 302,809 483,909 222,409 605,509
CNNID 53,244 356,424 93,772 73,432 93,772
CNN HW 1,068,209 598,853 977,853 954,429 101,777

6.4.2 ASCAD_variable

Next, we look at the results on the ASCAD_variable dataset. We start with the guessing entropy and

success rates in Figure 6.5 and Figure 6.6.
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Figure 6.5: Guessing entropy of the optimised models on the ASCAD_variable dataset.

The ASCAD _variable dataset is a more difficult dataset to attack than the ASCAD dataset with fixed
keys. For the ID leakage, neither the MLP nor CNN models reach a GE of 1 with less than 3000 traces.
If we look at the median GE when using 3000 traces for the attack, the difference between the CER
loss and FLR is small. The CER loss reaches a GE of 1.7 with an MLP model and 3.13 with the CNN
model, while the models with FLR reach 2.11 and 1.18. When the HW leakage is considered, the key is
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Figure 6.6: Success rate of the optimised models on the ASCAD_variable dataset.

retrieved successfully by models with any loss function. Again, when MLPs are considered, CER loss
outperforms models with FLR: Ny, = 1340 versus Ny, = 1800. And similarly, CER loss performs
slightly worse when CNNs are considered: NTGE = 950 versus NTGE = 800. If we look at the success
rates in Figure 6.6, we do see that the FLR model reaches a higher SR slightly faster than the other
loss functions in both the ID leakage model scenarios. For the HW leakage model scenarios, the FLR
and CER loss perform approximately equal.

Finally, we also look at the number of trainable parameters. Table 6.3 shows the number of pa-
rameters per loss function and scenario. We again see that the FLR models are relatively small in
comparison to models trained with other functions.

Table 6.3: Number of trainable parameters of the optimised models on the ASCAD_variable dataset. The lowest number of
trainable parameters for each scenario is marked blue, the highest

Liocat CCE CERloss FLR FLR_balanced FLR_optimised
MLP ID 1,830,756 1,966,656 371,856 2,607,456 1,715,656
MLP HW 1,366,009 402,609 161,209 171,309 402,609
CNN ID 3,365,584 3,869,540 1,602,260 1,082,748 240,392

CNN HW 81,501 937,253 772,977 595,241 1,079,589
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6.4.3 CHES CTF

In this subsection, we discuss the results on the CHES_CTF dataset. Figure 6.7 shows the guessing
entropy in the different scenarios and Figure 6.8 shows the success rates.
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Figure 6.7: Guessing entropy of the optimised models on the CHES_CTF dataset.

Similar to the class balanced focal loss in Chapter 5, we also see a large improvement with the MLP
models and ID leakage model when using the balanced FLR. Such an improvement is also visible by
some of the CNN models with FLR, however, these models turned out to be less consistent in terms
of performance. This caused the median of the 10 CNN models with balanced FLR to still perform
mediocrely. Something similar is also visible for the FLR with optimised parameters, where the perfor-
mance turned out not to be very consistent. Overall, also visible in the success rates, we are still not
able to successfully retrieve the correct key with less than 3000 traces. When the HW leakage model
is considered, we again see a large increase in the performance when a CNN is used. In fact, the mod-
els with FLR and FLR with optimised parameters were the only models which successfully retrieved
the correct key with a CNN model. The median out of 10 models with FLR and FLR_optimised were
successful with a NTGE of 2740 and 2000 respectively. When MLPs are used, there is no significant
increase and the performance is approximately equal to the CER loss.

Overall, we can conclude that the focal loss ratio is also well suited as a loss function for usage with
a more difficult dataset such as the CHES_CTF dataset. The performance is approximately equal and
often better than the CER loss and outperforms typically used loss functions such as the categorical
cross-entropy. It does so without increasing the training time or model complexity.
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Figure 6.8: Success rate of the optimised models on the CHES_CTF dataset.

6.4.4 Countermeasures

Finally, we look at the difference in the performance of the different functions when faced with un-
protected implementations and countermeasures. Figure 6.9 shows the guessing entropy on the AS-
CAD_plain dataset.

As is visible from the GE plots, the unprotected dataset is easily broken. Every model in every
scenario retrieves the correct key byte trivially with less than 10 traces. The models trained with the
FLR perform slightly better, within every scenario a median NTGE of 6 or 7, while the other loss functions
often need 8 or more traces.

If we look at the impact that adding masks has by comparing these results with the models in
Figure 6.2, we see the largest increase NTGE for the models with focal loss or categorical cross-entropy.
This shows that the FLR and CER loss are slightly more resilient to a countermeasure such as masking.

The random desynchronisation countermeasure decreases the performance of every model dras-
tically. Figure 6.10 shows the GE of the models on the ASCAD_desync50 dataset. Similar to before,
the MLPs perform poorly and none of the loss functions results in a successful model. When we look at
the performance of the CNNs, we see that when the ID leakage model is used, the FLR and CER loss
functions are not very successful. None of the models with these functions leads to a successful attack,
only the model trained with the categorical cross-entropy is successful. It seems that the combination
of desynchronisation and the number of classes considered when using the ID leakage model does not
work well for the losses where a ratio is used. The effect is not visible when the HW leakage model is
considered. In that case, the FLR functions outperform every other function, needing less than half of
the amount of traces in comparison with the categorical cross-entropy (1250 versus 2660). The other
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Figure 6.9: Guessing entropy of the optimised models on the ASCAD_plain dataset.

two functions, CER loss and focal loss, do not reach a GE of 1 when using 3000 traces or less to attack.

Overall, we can conclude that the FLR loss is robust to a first-order masking countermeasure. As
expected, there is an increase in the required amount of traces for a successful attack, but this increase
is smaller when compared with other loss functions. When random desynchronisation is added, the
losses with a ratio perform poorly when the ID leakage model is used. When the HW leakage model is
considered, models with FLR outperform the other loss functions by a large margin.

6.5 Discussion

In this section, we have proposed a new way to construct loss functions for deep learning SCA. We have
identified aspects of several loss functions performing well in the context of different deep learning-
based SCA scenarios. By using those characteristics, we constructed a new loss function for deep
learning SCA called the focal loss ratio (FLR). By testing this new function on various combinations
of datasets, leakage models and architectures, we have validated the usability of the loss function in
the context of SCA. We have shown that models using FLR work with different parameter optimisation
strategies and that FLR outperforms the CER loss and other loss functions like the categorical cross-
entropy in most of the considered scenarios.

The only downside to the usage of FLR as a loss function is the introduction of the a and y pa-
rameters, similar to the focal loss. In our experiments, we have used three different strategies. One
with the fixed default values of @« = 0.25 and y = 2.0, one with these parameters optimised together
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Figure 6.10: Guessing entropy of the optimised models on the ASCAD_desync50 dataset.

with the other hyperparameters and finally one strategy in which the values of @ are determined by the
frequency of each class. Throughout the experiments, there was not a single strategy that worked best
in every scenario. However, in almost all cases, the best performing FLR variants are the ones with the
fixed a values for every class. In some of the scenarios with the ID leakage model, the class balanced
strategy improves the performance. But as discussed in Subsection 5.3.2, using class balancing with
the ID leakage model results in almost constant, low values of a. This leads us to conclude that the
best strategy is the variant where the @ and y parameters are optimised and where « is the same for
each class. To set the values, optimisation via random search or other strategies can be performed.
In combination with an increased range of the possible values, e.g. the addition of lower a values,
FLR_optimised outperforms the other variants. To test this hypothesis, we have performed another set
of experiments on the 12 scenarios. For these experiments, we have increased the search space for
a by adding smaller values. The search space for a then becomes 0.005,0.01, 0.05, 0.1, 0.25,0.5,0.75
and 0.9. For each scenario, we use FLR as loss function and optimise the other hyperparameters via
random search. The results of these experiments are listed in Table 6.4, Table 6.5 and Table 6.6.

These results confirm our hypothesis. The scenarios in which the class balanced FLR was previ-
ously best, still perform the best with a fixed low « for every class. In for example the ASCAD _fixed,
MLP and ID leakage model scenario, the best performing model uses a = 0.005. While it did not
perform as well as the CER loss or FLR_balanced in this case, it did perform better than the other
strategies. When using the HW leakage model on the ASCAD _variable and CHES_CTF datasets, we
also see results similar to the previous experiments. In most cases, we are able to outperform the CER
loss with the FLR loss. In the case of the CHES_CTF dataset using CNNs, the FLR loss is the only
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Table 6.4: Median NTGE on the ASCAD _fixed dataset. The lowest NTGE for each scenario is marked blue.

Lfocas CCE  CERloss FLR
MLP ID 580 860 570 640
MLP HW 1480 1560 560 490
CNN ID 1250 1360 600 520
CNNHW 1840 >2000 540 500

Table 6.5: Median NTGE on the ASCAD_variable dataset. The lowest NTGE for each scenario is marked blue.

Lfocal CCE CERIloss FLR
MLP ID >3000 >3000 >3000 >3000
MLP HW 1940 2600 1340 1340
CNNID >3000 >3000 >3000 >3000
CNNHW >3000 2840 950 800

Table 6.6: Median NTGE on the CHES_CTF dataset. The lowest NTGE for each scenario is marked blue.

Lfocw CCE CERloss FLR
MLPID  >3000 >3000 >3000 >3000
MLPHW 1220 630 480 1080
CNNID  >3000 >3000 >3000 >3000
CNNHW >3000 >3000 >3000 2070

loss resulting in a successful attack with less than 3000 traces. When we consider the ID leakage, we
are still not able to perform a successful attack with 3000 traces. The results are similar to the best
results of the FLR_optimised and FLR _balanced mentioned in Section 6.4. The benefit, however, is
that a single strategy can be used this time.

Furthermore, we have also compared the robustness against various countermeasures of each of
the loss functions. There we saw that the combination of desynchronisation and the ID leakage works
poorly for CER loss and FLR equally. The CNN models with FLR targeting the HW leakage model
worked better though, outperforming all other functions by a margin.

To conclude, we have introduced a new loss function for deep learning in SCA called the focal loss
ratio. We have shown that this new function outperforms all other considered loss functions in almost
all cases when the right strategy to set the a« and y parameters is used. We can therefore say that we
have successfully introduced a new loss function for usage in the SCA domain, which performs equally
to or better than commonly used functions like the categorical cross-entropy and recently proposed
novel loss functions such as the CER loss.



Chapter 7

Conclusion

This chapter concludes our work on the analysis of loss functions for deep learning applied to side-
channel analysis. In Chapter 4, we have provided a broad comparison between different loss functions
in the context of SCA. We have compared commonly used loss functions against novel loss functions
proposed specifically for SCA and provided an overview of strengths and weaknesses for each of these
functions. In Chapter 5, we have applied focal loss and multi-loss functions to SCA scenarios and have
shown that they can successfully be used in such a context. Finally, in Chapter 6, we have introduced
a novel loss function called the focal loss ratio, based on our analysis of the different loss functions in
earlier chapters. Via experiments, we have shown that this new function improves the performance of
deep learning models in SCA scenarios in comparison to the previous best functions.

In this section, we first summarise the answers to our research questions. Next, we provide an
overview of the scientific contributions of this work. Finally, we discuss the limitations of our work and
give our thoughts about future work that could be done in this area.

7.1 Research Questions

Research question 1

How do commonly used loss functions compare to novel, application-specific loss functions
when deep learning is applied to side-channel attacks?

In Chapter 4, we have compared several commonly used loss functions to two novel loss functions
specifically introduced for usage in the SCA domain. We have shown that from the commonly used
loss functions, the categorical crossentropy, which is often used by default in the SCA domain, is indeed
the best choice. Itis more robust to different architectures and performs better than for example MSE or
the log cosh loss. However, the recently introduced CER loss is by far the best performing loss function
in almost all SCA scenarios. The categorical crossentropy only performs better when a dataset with a
desynchronisation countermeasure is considered. The other novel loss function we have considered,
the ranking loss, performs less consistent. When used with the CNNyetno4d010gy @rchitecture and 1D
leakage model, with which it was introduced by Zaid et al., it does perform very well. However, it does
not significantly outperform the categorical crossentropy overall and is almost always outperformed by
the CER loss. Besides that, it significantly increases the training time. By performing such a broad
comparison, we have shown that application-specific loss functions have the potential to outperform
typically used loss functions in the context of SCA. To help feature researchers working on the topic,
we have provided an overview of the strengths and weaknesses of the various loss functions.

Research question 2

How do novel loss functions from other fields and multi-loss functions perform when applied
to deep learning for side-channel analysis?

In Chapter 5, we have identified several loss functions from other domains that have the potential to
work well in the context of SCA. The datasets of the applications they are used for show similarities
with commonly used SCA datasets. These characteristics are for example a large class imbalance or
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a low amount of samples per class. The considered loss functions are the focal loss and two multi-loss
functions, Lcoscross @Nd Leorrcrossminge- With our experiments we have, for the first time, shown the
potential of multi-loss functions in the context of SCA. The L¢orrcrossninge function often resulted in a
model that converged to a GE of 1. However, it did not perform better than previously tested functions
and did not show any additional benefits. The L¢,scross PEfOrmed better, outperforming the categorical
cross-entropy on the ASCAD _fixed dataset and performing similarly to it on the other datasets. It also
has downsides, however, such as the introduction of new parameters and the fact that it is less robust
to different architectures. Finally, we also for the first time used a focal loss in the context of SCA. Our
experiments with the focal loss show that it is very suitable for usage in the SCA domain. Especially
when the ID leakage is used, the focal loss performs better than the categorical cross-entropy and
CER loss. We have tried three different strategies for setting the focal loss parameters. Of these
three strategies, using class balanced weights or optimised values for a resulted in the best performing
models. To conclude, we have shown that novel (multi-)loss functions from other domains can be used
successfully for SCA and lead to well-performing models.

Research question 3

Can we construct a loss function that improves the performance of deep learning models when
used for side-channel analysis?

Yes, we have shown in Chapter 6 that we can construct a loss function that improves the performance
in almost all SCA scenarios. We do so by identifying certain characteristics from other, well-performing
loss functions. We show that this method works by identifying characteristics from the focal and CER
loss, two functions that showed good performance in our earlier experiments. Based on this, we in-
troduced a new loss function, the focal loss ratio, which combines these characteristics into a single
function. By performing various experiments with this function, we have shown that it can outperform
the previously best function in most SCA scenarios.

7.2 Summary of Scientific Contributions

The scientific contributions in this work can be summarised as follows:

* We have provided a broad analysis of the performance of various loss functions in the context of
SCA. We have compared two novel loss functions with commonly used loss functions on various
datasets, leakage models and architectures and have created an overview of the strengths and
weaknesses of each function based on these results.

» We have applied a focal loss and two multi-loss functions to various SCA scenarios. We have
shown that these functions have the potential to perform well in the context of SCA.

» We have demonstrated that it is possible to construct loss functions based on other well-performing
loss functions. We do so by identifying characteristics that make certain losses perform well in
the context of SCA and combining those aspects.

* We have, based on our experiments, identified why certain loss functions performed well and
used that to create a new loss function, namely the focal ratio loss. We have shown that such a
function can outperform the previously best-known loss function in the context of SCA.

7.3 Limitations

During the course of this project we have identified several limitations of our work. The first limitation
is the explainability of the behaviour of different loss functions. In some cases, we were able to find a
reason for very good or poor performance of a certain function. For example for the poor performance
of the categorical hinge loss on the ID leakage, or the occasional bad performance on random archi-
tectures of the CER and ranking loss. In other cases, the works in which the functions were proposed
already give an explanation for why they work well. However, in general, we were not always able to
find the cause of certain behaviour.



73

Furthermore, while we have tried to provide some kind of 'neutral’ architecture to test the loss func-
tions on with the introduction of a median model, this method is not a guarantee that the resulting
architecture does not influence the performance of the resulting model. In other words, it is hard to
directly compare the loss functions without the impact other hyperparameters might have.

Besides that, we also use a fixed amount of epochs of 200 for all our experiments. This number is
based on earlier work [4], but in other experiments, lower numbers of epochs have been used because
a higher number of epochs such as 200 might cause over-fitting with the used optimisers [46].

Finally, while we tested the functions in many different SCA scenarios, it is in no way an exhaustive
comparison or an attempt to find the absolute best performing model. We provide an insight into the
performance of these loss functions on commonly used SCA datasets and try a broad selection of
different architectures, but models and functions that perform even better in these scenarios might
certainly exist.

7.4 Future work

Our contributions and limitations provide interesting directions for possible future work. First of all,
since our aim was a fair comparison between the functions, we used the same parameter ranges and
optimisation strategy for each of the functions. We have not tried to get the absolute best performing
model for each of the loss functions and scenarios. Future work could look into finding the best ar-
chitecture for the loss functions with the best performance and see how those would compare against
other state-of-the-art solutions. To find such architectures, other optimisation techniques could be used
instead of random search. Possible approaches could be the technique proposed by \Wu et al. or using
reinforcement learning to find suitable architectures, such as done by Rijsdijk et al. [54, 70].

Furthermore, we have identified two multi-loss functions introduced for other domains, from which
the datasets show similarities to SCA datasets. In our case, these similarities are the low amount of
samples per class related to the ID leakage model, and the class imbalance caused by the HW leakage
model. However, more multi-loss functions and novel functions for other domains exist. For example, in
the face recognition domain, multiple loss functions have been proposed that add some sort of margin
to existing loss functions [16, 66]. In our work, we have seen that such improvements to the categorical
cross-entropy (or SoftMax loss) can work well for SCA, proven by the performance of the focal loss.
An interesting direction to look into might be the application or adaptation of such functions to SCA.

In the final stages of the work on this thesis, a new loss function specifically for deep learning SCA
called ensembling loss was proposed [76]. The purpose of the ensembling loss is to increase the
diversity between the models in an ensemble of models. Zaid et al. demonstrate the performance of
their new loss function and compare it to the ranking loss and categorical crossentropy. Future work
could for example look into how other loss functions, like CER or FLR, perform in such a scenario with
ensembles.

Finally, we have constructed a new loss function based on existing functions that perform well on
SCA datasets. Based on the strengths and weaknesses of each loss function we list in Chapter 4,
other loss functions could be constructed similarly. However, another direction to look into might be the
construction of a new loss function based on SCA related metrics. The CER loss also is based on the
similarly named cross-entropy ratio metric introduced in the same paper. Constructing a loss function
in such a way makes sense since the loss that has to be reduced is related directly to a measure of the
performance we are interested in. An example could be to use the guessing entropy directly. Since the
guessing entropy is commonly estimated by performing a number of attacks, this would be impractical
to incorporate in a loss. However, a feasible way might be using the fast guessing entropy estimation
method as proposed by Zhang et al. in a loss function [78].
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Appendix A

Hyperparameters Median Models

A1 ASCAD

Table A.1: Hyperparameters median MLP models for the ID and HW leakage scenarios.

Hyperparameter HW leakage ID leakage
Dense layers 6 5

Neurons per layer 900 300
Learning rate 0.0001 0.0007
Batch size 800 600
Activation function ELU Tanh
Optimiser Adam Adam

# trainable parameters 648556 4693509

Table A.2: Hyperparameters median CNN models for the ID and HW leakage scenarios.

Hyperparameter HW leakage ID leakage
Convolutional layers 1 1
Convolutional filters 8 16

Kernel size 10 14

Pooling size 4 3

Pooling stride 5 5

Dense layers 2 2

Neurons per layer 900 100
Learning rate 0.00046 0.00002
Batch size 600 400
Activation function ELU SELU
Optimiser RMSProp RMSprop
Pooling type Max pooling  Average pooling
# trainable parameters 1828013 260328

81



82 A.2. ASCAD_variable

A.2 ASCAD_ variable

Table A.3: Hyperparameters median MLP models for the ID and HW leakage scenarios.

Hyperparameter HW leakage ID leakage
Dense layers 4 2

Neurons per layer 200 200
Learning rate 0.00034 0.0006
Batch size 300 200
Activation function ELU ELU
Optimiser RMSprop RMSprop
# trainable parameters 402609 371856

Table A.4: Hyperparameters median CNN models for the ID and HW leakage scenarios.

Hyperparameter HW leakage ID leakage
Convolutional layers 1 1
Convolutional filters 20 32

Kernel size 18 14

Pooling size 4 4

Pooling stride 5 10

Dense layers 2 2

Neurons per layer 800 200
Learning rate 0.00026 0.00014
Batch size 500 700
Activation function Tanh RELU
Optimiser Adam RMSprop
Pooling type Average pooling Average pooling
# trainable parameters 5129229 988400




A.3 CHES_CTF

Table A.5: Hyperparameters median MLP models for the ID and HW leakage scenarios.

Hyperparameter HW leakage ID leakage
Dense layers 6 8

Neurons per layer 1000 800
Learning rate 0.00004 0.0004
Batch size 900 400
Activation function Tanh ELU
Optimiser RMSprop RMSprop
# trainable parameters 7215009 6451456

Table A.6: Hyperparameters median CNN models for the ID and HW leakage scenarios.

Hyperparameter HW leakage ID leakage
Convolutional layers 2 1
Convolutional filters 8 24

Kernel size 20 10

Pooling size 4 5

Pooling stride 10 10

Dense layers 3 3

Neurons per layer 600 1000
Learning rate 0.00024 0.00024
Batch size 900 800
Activation function SELU Tanh
Optimiser RMSProp RMSprop
Pooling type Max pooling  Average pooling
# trainable parameters 834297 7539568







Appendix B

Hyperparameters Optimised Models

B.1 ASCAD

Table B.1: Hyperparameters optimised MLP models for ID leakage.

Hyperparameter | cce cat_hinge cer_loss log_cosh msle mse rki
Dense layers 3 3 3 4 2 8 2
Neurons per layer | 100 600 300 100 400 100 400
Learning rate 0.0004 0.00078 0.00026 0.0008 0.00044 0.0003 0.00046
Batch size 200 1000 1000 400 800 300 900
Activation function | SELU ReLU SELU tanh RelLU tanh ELU
Optimiser RMSprop RMSprop RMSprop RMSprop RMSprop Adam  Adam
Table B.2: Hyperparameters optimised MLP models for HW leakage.
Hyperparameter | cce cat_hinge cer_loss log_cosh msle mse rkl
Dense layers 5 5 4 3 2 7 3
Neurons per layer | 200 900 300 500 900 300 400
Learning rate 0.00016 0.00008 0.00056 0.0004 0.00026 0.00072 0.00016
Batch size 400 800 500 900 300 800 500
Activation function | SELU SELU RelLU ELU ReLU RelLU ReLU
Optimiser RMSprop RMSprop  Adam Adam RMSprop Adam RMSprop
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B.1. ASCAD

Table B.3: Hyperparameters optimised CNN models for ID leakage

Hyperparameter cce cat_hinge cer_loss log_cosh msle mse rkl
Convolutional layers | 2 2 1 1 1 1 1
Convolutional filters | 8 32 16 8 32 24 20
Kernel size 20 12 20 18 32 24 20
Pooling size 4 3 5 2 5 4 4
Pooling stride 10 10 10 10 5 10 10
Pooling type Average  Average Average  Max Average Max Average
Dense layers 3 3 3 2 2 3 3
Neurons per layer 100 600 200 300 1000 100 100
Learning rate 0.00014 0.0008 0.00008  0.00018 0.00022 0.00032 0.00022
Batch size 600 1000 900 500 600 100 300
Activation function SELU SELU tanh RelLU RelLU tanh ELU
Optimiser RMSProp Adam RMSprop Adam Adam Adam RMSprop
Table B.4: Hyperparameters optimised CNN models for HW leakage
Hyperparameter cce cat_hinge cer_loss log_cosh msle mse rkl
Convolutional layers | 2 1 2 2 2 1 2
Convolutional filters | 12 12 24 16 8 20 28
Kernel size 14 10 12 16 10 12 12
Pooling size 4 2 5 4 5 5 3
Pooling stride 5 10 5 5 10 5 5
Pooling type Average Average Average  Average Average  Average Average
Dense layers 2 3 2 2 3 2 2
Neurons per layer 900 1000 500 800 800 100 700
Learning rate 0.00002 0.00008 0.00002 0.00026 0.00094 0.00078 0.00002
Batch size 800 400 500 200 900 200 600
Activation function ELU SELU ELU ELU ELU ELU ReLU
Optimiser Adam RMSprop RMSprop RMSprop RMSprop Adam RMSprop
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Table B.5: Hyperparameters optimised MLP models for ID leakage.

Hyperparameter | cce cat_hinge cer_loss log_cosh msle mse rki
Dense layers 5 8 2 6 8 7 2
Neurons per layer | 500 500 800 1000 300 400 200
Learning rate 0.00026 0.00072 0.0004 0.0005 0.00038 0.0005 0.00052
Batch size 900 500 500 400 500 200 300
Activation function | ELU SELU SELU RelLU ELU ELU ELU
Optimiser RMSprop Adam RMSprop Adam RMSprop Adam  RMSprop
Table B.6: Hyperparameters optimised MLP models for HW leakage.
Hyperparameter | cce cat_hinge cer_loss log_cosh msle mse rki
Dense layers 4 5 2 4 4 4 2
Neurons per layer | 200 900 900 900 1000 600 700
Learning rate 0.00032 0.00006 0.00034  0.00002 0.00014 0.00022 0.00016
Batch size 300 900 700 400 200 100 400
Activation function | ReLU SELU RelLU ELU ELU ELU tanh
Optimiser Adam RMSprop RMSprop RMSprop RMSprop Adam Adam
Table B.7: Hyperparameters optimised CNN models for ID leakage
Hyperparameter cce cat_hinge cer_loss log_cosh msle mse rkl
Convolutional layers | 1 1 1 2 1 1 1
Convolutional filters | 8 20 16 16 16 24 20
Kernel size 20 12 16 12 16 14 16
Pooling size 5 3 5 5 5 4 5
Pooling stride 5 10 5 5 10 10 5
Dense layers 3 2 3 3 3 3 2
Neurons per layer 900 300 300 200 1000 400 700
Learning rate 0.00022 0.00046 0.00016  0.0006 0.00096  0.00054 0.0003
Batch size 1000 800 700 600 600 500 1000
Activation function ELU RelLU SELU ELU RelLU RelLU SELU
Optimiser RMSProp Adam RMSprop RMSprop RMSprop Adam RMSprop
Pooling type Average Max Average  Average Average  Average Average
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Table B.8: Hyperparameters optimised CNN models for HW leakage

Hyperparameter cce cat_hinge cer_loss log_cosh msle mse rki
Convolutional layers | 1 1 2 1 1 1 1
Convolutional filters | 24 28 24 16 12 12 32
Kernel size 10 20 16 14 20 10 20
Pooling size 5 5 5 4 5 5 5
Pooling stride 10 5 5 10 5 10 10
Dense layers 2 2 2 3 2 2 2
Neurons per layer 900 600 500 100 1000 100 700
Learning rate 0.00082 0.00008 0.00002  0.00004 0.00004 0.00048  0.00002
Batch size 700 1000 200 400 400 500 700
Activation function ELU SELU ELU ELU ELU SELU ELU
Optimiser Adam RMSprop RMSprop RMSprop RMSprop RMSprop RMSprop
Pooling type Average Average Average  Average Average  Max Average
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Table B.9: Hyperparameters optimised MLP models for ID leakage.

Hyperparameter | cce cat_hinge cer_loss log_cosh msle mse rkl
Dense layers 2 3 4 8 6 5 4
Neurons per layer | 700 300 400 600 300 1000 700
Learning rate 0.0002 0.00032 0.0005 0.00036 0.00062  0.00022  0.00006
Batch size 400 1000 900 800 400 500 700
Activation function | SELU tanh tanh SELU SELU tanh ELU
Optimiser RMSprop Adam RMSprop RMSprop RMSprop RMSprop Adam

Table B.10: Hyperparameters optimised MLP models for HW leakage.

Hyperparameter | cce cat_hinge cer_loss log_cosh msle mse rki
Dense layers 7 3 6 3 3 8 2
Neurons per layer | 200 900 600 200 1000 200 100
Learning rate 0.0005 0.00038 0.0003 0.00076 0.00038 0.0005 0.00062
Batch size 200 300 600 700 300 700 200
Activation function | SELU  RelLU RelLU RelLU RelLU ELU ELU
Optimiser Adam RMSprop Adam Adam RMSprop Adam  Adam

Table B.11: Hyperparameters optimised CNN models for ID leakage
Hyperparameter cce cat_hinge cer_loss log_cosh msle mse rkl
Convolutional layers | 2 2 1 1 1 2 1
Convolutional filters | 8 16 8 24 8 8 20
Kernel size 14 12 12 20 12 18 20
Pooling size 2 2 3 3 4 3 2
Pooling stride 5 10 10 10 10 5 10
Dense layers 2 3 3 2 2 3 3
Neurons per layer 1000 200 700 400 400 500 1000
Learning rate 0.00072 0.00042 0.00008  0.00072 0.0003 0.00054 0.00028
Batch size 100 300 1000 700 400 200 700
Activation function ELU SELU SELU SELU tanh ELU ELU
Optimiser RMSProp Adam RMSprop Adam RMSprop Adam RMSprop
Pooling type Max Average Average  Average Max Max Max
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Table B.12: Hyperparameters optimised CNN models for HW leakage

Hyperparameter cce cat_hinge cer_loss log_cosh msle mse rkl
Convolutional layers | 1 1 1 2 1 2 1
Convolutional filters | 20 12 8 8 12 24 8

Kernel size 14 10 14 10 20 10 14
Pooling size 3 5 5 2 4 5 5
Pooling stride 10 5 10 10 5 5 10
Dense layers 3 3 3 2 2 3 2
Neurons per layer 600 500 100 1000 400 700 100
Learning rate 0.00052 0.00084 0.0002 0.00004 0.00076  0.00038  0.00096
Batch size 500 600 600 100 200 600 800
Activation function SELU ELU ELU ELU tanh tanh tanh
Optimiser Adam Adam Adam Adam RMSprop RMSprop RMSprop
Pooling type Max Average Average Average Average  Average  Average
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