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Preface

This study is the result of the PhD-research, which I started in 2011 at Delft University
of Technology in the group of Prof. Hanssen. The incentive for this research was ten
years of teaching geodesy at the HU University of Applied Sciences Utrecht (Hogeschool
Utrecht). Several lecture notes had been written during this period (1991-2001), and
software had been developed for educational purposes. In the course of these years I
supervised many students in their thesis writing, which always took place in professional
practice in the Netherlands.

These activities made it clear to me that the theoretical possibilities of the similarity
transformation (1D, 2D and 3D) were not used to their full extent in professional
practice in the Netherlands. The similarity transformation was, of course, well known
to transform coordinates. But it was unusual to solve a transformation problem by
considering it as an adjustment, where the coordinates are considered as “observations”.
As a consequence, the application to the similarity transformation of the achievements of
the Delft School of Mathematical Geodesy (van Daalen, 1985) was poorly investigated.
It seemed promising to me to test coordinate differences after transformation with
statistical tests: one-dimensional w-tests and multidimensional point tests and even
subfield tests. The concept of “minimal detectable biases” seemed useful to describe the
minimal values of significant differences; significant in the sense that they are probably
not caused by random noise.

The study of the application of these concepts to deformation monitoring was to be a
focal point of my PhD-research. The concepts offer the possibility to improve communi-
cation about the results of deformation monitoring. The research started with interviews
with professional practice. It taught me that principals, contractors, politicians and the
general public want clear answers: “is something moving or not, and if it is moving,
how will it move in future?”. How can this be handled in an acceptable way, taking into
account statistical considerations? The focus of the research subject was, therefore,
put on the communication about deformation monitoring. The idea was that commu-
nication should not be hampered by statistical jargon, and yet a sound mathematical
analysis and sound statistical testing should be the basis of good communication. A
model based on the application of Delft School methods to the similarity transformation
seemed a promising basis for clear communication.

Besides the mathematical and statistical deformation analysis, and communication,
three other aspects are important in geodetic monitoring. To judge the reach and in-
fluence of statements about geodetic monitoring, it is important to know how geodetic
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monitoring is organised in society. Put differently: how is the governance of geodetic
monitoring. Moreover, it is important to notice that a statement may be scientifi-
cally justified (it is credible), but not accepted by non-specialists, i.e. by politicians
or the general public (it is not acceptable) (van der Molen, 1999). Finally, to make
statements about deformations comparable, standardisation of the models is important.
Five models had, therefore, to be built: a geodetic deformation analysis model (with a
mathematical and statistical basis), a model on governance, a model on acceptability
and credibility, a model on standardisation, and finally, as the overarching model, a
model on communication.

On three of the five models extensive research has been done: the model on governance,
the model on standardisation and the geodetic deformation analysis model. The models
on credibility/acceptability and communication have only slightly been elaborated upon.
It turned out that the geodetic deformation analysis model needed much more attention
and research than anticipated. So the focus of the research shifted to this model, which
is the subject of this study.

The standardisation model has been worked out in a separate report (Velsink, 2016a,
in Dutch). It is not part of this study, but it was crucial to formulate the requirements
of the geodetic deformation analysis model. It was the result of the research project
DefoGuide, which started in 2014, and had as subject the standardisation of geodetic
deformation analysis. It was a project, funded by the research programme Maps4Society,
with participation of several partners from professional practice in the Netherlands:
government agency Rijkswaterstaat and engineering firms Fugro Geoservices, Grontmij,
Antea Group, and Geomaat. During the project more partners joined the project group:
gas and oil exploration and production company NAM, and engineering firms Brem
Funderingsexpertise, and RPS Nederland. The discussions within the project group were
very fruitful for linking experiences from professional practice and theoretical models.
They led to two scientific publications, which are included as chapters in this thesis.

The research on the governance of geodetic monitoring led to a scientific publication
in the proceedings of Geomonitoring 2012 (Velsink, 2012). It describes a set-up for a
taxonomy of the governance of geodetic deformation analysis. It will serve as a basis for
interviews to be held with professional practice, with the purpose to yield a governance
taxonomy. The treatment of this research is not part of this study, but it was an
important source for the formulation of the requirements for the geodetic deformation
analysis model of this study.

Prof. Hanssen of Delft University of Technology, Prof. Niemeier of Technical University
Braunschweig and Prof. Versendaal of HU University of Applied Sciences Utrecht were
constant advisors during my research. I like to thank them for their guidance and help.
Their support and positive feedback helped me to keep going in my research.

Many evenings and weekends I wandered in the realms of geodesy, its history and its
outskirts, its neighbouring fields of science, and other sciences and humanities, to grasp
the intricacies and possibilities of geodetic deformation analysis. I thank my wife for
supporting me and letting me wander.

Hiddo Velsink, September 2018
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Summary

The subject of this study is deformation analysis of the earth’s surface (or part of it)
and spatial objects on, above or below it. Such analyses are needed in many domains
of society. Geodetic deformation analysis uses various types of geodetic measurements
to substantiate statements about changes in geometric positions.

Professional practice, e.g. in the Netherlands, regularly applies methods for geodetic de-
formation analysis that have shortcomings, e.g. because the methods apply substandard
analysis models or defective testing methods. These shortcomings hamper communi-
cation about the results of deformation analyses with the various parties involved. To
improve communication solid analysis models and a common language have to be used,
which requires standardisation.

Operational demands for geodetic deformation analysis are the reason to formulate in
this study seven characteristic elements that a solid analysis model needs to possess.
Such a model can handle time series of several epochs. It analyses only size and
form, not position and orientation of the reference system; and datum points may be
under influence of deformation. The geodetic and physical models are combined in
one adjustment model. Full use is made of available stochastic information. Statistical
testing and computation of minimal detectable deformations is incorporated. Solution
methods can handle rank deficient matrices (both model matrix and cofactor matrix).
And, finally, a search for the best hypothesis/model is implemented. Because a geodetic
deformation analysis model with all seven elements does not exist, this study develops
such a model.

For effective standardisation geodetic deformation analysis models need: practical key
performance indicators; a clear procedure for using the model; and the possibility to
graphically visualise the estimated deformations.

This study shows that key performance indicators can be derived from the method of
hypothesis formulation and testing, and from rejection criteria. They can also stem from
the description of the test quality by means of minimal detectable deformations. A clear
procedure is possible, if an unambiguous way is provided to distinguish the observation
noise, the deformation signal with zero mean in time, and the deformation trend from
each other. The graphical visualisation, finally, demands clearly defined quantities that
are sensitive only to the deformations of the object at hand and not to changes in, e.g.,
the reference system.



x Summary

In this study I propose a geodetic deformation analysis model, which is built around a
least-squares adjustment model. Two adjustment models are developed in this study:
one model uses geodetic measurements in the observation vector. In the other model
this vector holds pre-computed coordinates, which follow from separate adjustments
per epoch. The parameter vector holds, for both models, the final coordinates. Both
models yield the same adjustment results. The choice, which one to use, depends on
the professional context in which the model is used.

The developed geodetic deformation analysis model is shown to be effective in several
use cases. These use cases are geodetic networks in 1D, 2D and 3D that have been
measured in several epochs, and which are analysed with one of the two adjustment
models, mentioned above.

Moreover, the proposed analysis model not only possesses the seven necessary elements,
mentioned before, it also has some additional advantageous characteristics. First, it is
possible to define the S-basis of the geodetic network, used for deformation analysis,
with points that are under influence of deformation. Secondly, there is no need for
a separate analysis of reference and object points; they are analysed simultaneously.
Thirdly, the deformation estimates of moving points are relative to all the other points
of the same network (moving or not), not relative to an S-basis. These estimates are
invariant for a change of S-basis, i.e. for an S-transformation. Finally, biases in geodetic
measurements and deformation hypotheses can be tested simultaneously.

The availability of key performance indicators, based on the analysis model and its char-
acteristic elements as described in this study, and the definition of a statistically signif-
icant deformation, provided in this study, make a standardised procedure for geodetic
deformation analysis possible. Thus a tool is available for the improvement of commu-
nication about geodetic deformation analysis.



Resumo (in Esperanto)

La temo de ĉi tiu studo estas deformadanalizo de la surfaco de la tero (aŭ parto de ĝi)
kaj spacaj objektoj sur, super aŭ sub ĝi. Tiaj analizoj estas bezonataj en multaj partoj
de la socio. La geodezia deformadanalizo uzas diversajn specojn de geodeziaj mezuroj
por apogi deklarojn pri ŝanĝoj en geometriaj pozicioj.

La profesia praktiko, ekzemple en Nederlando, regule aplikas metodojn por geodezia
deformadanalizo, kiuj havas mankojn, ekzemple ĉar la metodoj aplikas subnivelajn ana-
lizmodelojn aŭ mankhavajn testmetodojn. Ĉi tiuj mankoj malhelpas komunikadon kun
la diversaj partioj pri la rezultoj de deformadanalizoj. Por plibonigi komunikadon, oni
devas uzi solidajn analizmodelojn kaj komunan lingvon, kio postulas normigon.

Praktikaj postuloj por geodeziaj deformadanalizoj estas la kialo por formuli en ĉi tiu
studo sep karakterizajn elementojn, kiujn devas posedi solida analizmodelo. Tia modelo
povu manipuli temposeriojn de pluraj mezurepokoj. Ĝi analizu nur grandon kaj formon,
ne la pozicion kaj orientiĝon de la referenca sistemo; kaj datumaj punktoj povu esti sub
influo de deformado. La modeloj geodeziaj kaj fizikaj kombiniĝu en unu kompensad-
modelon. La kompletaj haveblaj stokastaj informoj estu uzataj. Statistikan testadon
kaj komputadon de minimumaj detekteblaj deformoj la modelo enhavu. Solvometodoj
povu manipuli range mankajn matricojn (kaj modelmatricon kaj matricon de kofaktoroj).
Kaj, fine, la serĉado de la plej bona hipotezo/modelo estu realigita. Ĉar ne ekzistas
analizmodelo de geodezia deformado kun ĉiuj sep elementoj, ĉi tiu studo disvolvas tian
modelon.

Por efektiva normigo geodeziaj deformadanalizaj modeloj bezonas: praktikajn ŝlosilajn
plenumindikilojn; klaran proceduron por uzi la modelon; kaj la eblecon grafike bildigi la
stimitajn deformojn.

Ĉi tiu studo montras ke ŝlosilaj plenumindikiloj povas esti derivitaj de la metodo de
hipotezo-formulado kaj testado, kaj de la kriterioj por malakcepto. Ili ankaŭ povas fonti
el la priskribo de la testkvalito per minimumaj detekteblaj deformoj. Klara proceduro
eblas, se unusenca maniero estas donita por distingi inter si la observan bruon, la
deformajn signalojn kun nula mezo kaj la deforman tendencon. La grafika bildigo fine
postulas klare difinitajn kvantojn, kiuj estas sentivaj nur al la deformoj de la objekto kaj
ne al ŝanĝoj de ekzemple la referenca sistemo.

En ĉi tiu studo mi proponas geodezian deformadanalizmodelon, kiu estas konstruita
ĉirkaŭ kompensadmodelo laŭ la metodo de minimumaj kvadratoj. Du kompensadmod-
elojn disvolvas ĉi tiu studo: unu modelo uzas geodeziajn mezurojn en la observa vektoro.
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En la alia modelo ĉi tiu vektoro entenas pli frue kalkulitajn koordinatojn, kiuj fontas el
apartaj kompensadoj por ĉiu mezurepoko. La parametra vektoro entenas, por ambaŭ
modeloj, la finajn koordinatojn. Ambaŭ modeloj donas la samajn kompensadrezultojn.
La elekto, kiun oni devas uzi, dependas de la profesia kunteksto, en kiu la modelo estas
uzata.

La disvolvita geodezia deformadanalizmodelo montriĝas esti efika en pluraj uzkazoj.
Ĉi tiuj uzkazoj estas geodeziaj retoj en 1D, 2D kaj 3D, kiuj estas mezuritaj en pluraj
mezurepokoj, kaj kiuj analiziĝas per unu el la du kompensadmodeloj, menciitaj antaŭe.

Plie, la proponita analizmodelo ne nur posedas la sep necesajn elementojn, menciitajn
antaŭe, ĝi ankaŭ havas kelkajn pliajn avantaĝajn karakterizâojn. Unue, ĝi povas difini
la S-bazon de la geodezia reto, uzata por la deformadanalizo, pere de punktoj kiuj estas
sub influo de deformado. Due, ne necesas aparta analizo de referencaj kaj objektaj
punktoj; ili analiziĝas samtempe. Trie, la stimado de deformoj de moviĝantaj punktoj
estas relativa al ĉiuj aliaj punktoj (moviĝantaj aŭ ne) de la sama reto, ne relativa al S-
bazo. Ĉi tiuj stimoj estas invariantoj al ŝanĝo de la S-bazo, tio estas: al S-transformacio.
Fine, eraroj en geodeziaj mezuroj kaj deformadhipotezoj povas esti testataj samtempe.

La disponebleco de ŝlosilaj plenumindikiloj, bazitaj sur la analizmodelo kaj ĝiaj karakter-
izaj elementoj kiel priskribitaj en ĉi tiu studo, kaj la difino de statistike signifa deformo,
kiel donita en ĉi tiu studo, povas ebligi normigan proceduron por geodezia deformadana-
lizo. Tiel ilo estas havebla por plibonigo de komunikado pri geodezia deformadanalizo.



Samenvatting (in Dutch)

Het onderwerp van deze studie is deformatieanalyse van het aardoppervlak (of een deel
ervan) en van ruimtelijke objecten erop, erboven of eronder. Dergelijke analyses zijn
nodig in veel domeinen van de samenleving. Geodetische deformatieanalyse gebruikt
verschillende soorten geodetische metingen om uitspraken over veranderingen in geo-
metrische posities te onderbouwen.

De professionele praktijk, bijvoorbeeld in Nederland, past regelmatig methoden toe
voor geodetische deformatieanalyse die tekortkomingen hebben, bijvoorbeeld omdat de
methoden inferieure analysemodellen of gebrekkige testmethoden toepassen. Deze te-
kortkomingen bemoeilijken de communicatie over de resultaten van deformatieanalyses
met de verschillende betrokken partijen. Om de communicatie te verbeteren, moe-
ten solide analysemodellen en een gemeenschappelijke taal worden gebruikt, waarvoor
standaardisatie vereist is.

De operationele eisen voor geodetische deformatieanalyse zijn de reden om in dit onder-
zoek zeven karakteristieke elementen te formuleren die een solide analysemodel moet
bezitten. Zo’n model kan overweg met tijdreeksen van verschillende epochen. Het ana-
lyseert alleen grootte en vorm, niet de positie en oriëntatie van het referentiesysteem; en
basispunten mogen aan deformatie onderhevig zijn. De geodetische en fysische model-
len worden gecombineerd in één vereffeningsmodel. Er wordt gebruik gemaakt van de
volledige beschikbare stochastische informatie. Statistische testen en de berekening van
minimaal detecteerbare deformaties zijn onderdeel van het model. Oplossingsmethoden
kunnen overweg met rangdefecte matrices (zowel modelmatrix als cofactorenmatrix).
Ten slotte is een zoekmethode voor de beste hypothese (het beste model) geïmplemen-
teerd. Omdat een geodetisch deformatieanalysemodel met alle zeven elementen niet
bestaat, ontwikkelt deze studie een dergelijk model.

Voor effectieve standaardisatie hebben geodetische deformatieanalysemodellen nodig:
praktische key performance indicators; een duidelijke procedure voor het gebruik van
het model; en de mogelijkheid om de geschatte deformaties grafisch te visualiseren.

Deze studie laat zien dat key performance indicators kunnen worden afgeleid uit de
methode voor hypotheseformulering en het testen daarvan, en van de criteria voor
verwerping. Ze kunnen ook voortkomen uit de beschrijving van de testkwaliteit door
middel van minimaal detecteerbare deformaties. Een duidelijke procedure is mogelijk
als een eenduidige manier wordt geboden om de waarnemingsruis, het deformatiesignaal
met een gemiddelde van nul en de deformatietrend van elkaar te onderscheiden. De
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grafische visualisatie, ten slotte, vraagt om duidelijk gedefinieerde grootheden die alleen
gevoelig zijn voor de deformaties van het object in kwestie en niet voor veranderingen
in bijvoorbeeld het referentiesysteem.

In deze studie stel ik een geodetisch deformatieanalysemodel voor, dat is opgebouwd
rond een kleinste-kwadratenvereffeningsmodel. Twee vereffeningsmodellen worden ont-
wikkeld in deze studie: het ene model gebruikt geodetische metingen in de waarne-
mingsvector. In het andere model bevat deze vector eerder berekende coördinaten, die
volgen uit afzonderlijke vereffeningen per epoche. De parametervector bevat, voor beide
modellen, de uiteindelijke coördinaten. Beide modellen leveren dezelfde vereffeningsre-
sultaten op. Welke keuze men moet maken, hangt af van de professionele context
waarin het model wordt gebruikt.

Het ontwikkelde geodetische deformatieanalysemodel blijkt effectief te zijn in verschil-
lende gebruikssituaties. Deze gebruikssituaties zijn geodetische netwerken in 1D, 2D en
3D die in verschillende epochen zijn gemeten en die worden geanalyseerd met een van
de twee hierboven genoemde vereffeningsmodellen.

Bovendien bezit het voorgestelde analysemodel niet alleen de zeven noodzakelijke ele-
menten die eerder zijn genoemd, maar heeft het ook enkele aanvullende voordelige
eigenschappen. Ten eerste is het mogelijk om de S-basis van het geodetische netwerk,
dat wordt gebruikt voor deformatieanalyse, te definiëren met punten die aan deformatie
onderhevig zijn. Ten tweede is er geen noodzaak voor een afzonderlijke analyse van
referentie- en objectpunten; ze worden tegelijk geanalyseerd. Ten derde zijn deforma-
tieschattingen van bewegende punten relatief ten opzichte van alle andere punten van
hetzelfde netwerk (al dan niet bewegend), niet ten opzichte van een S-basis. Deze
schattingen zijn invariant voor een verandering van S-basis, dat wil zeggen voor een
S-transformatie. Ten slotte kunnen fouten in geodetische metingen en deformatiehypo-
thesen gelijktijdig worden getest.

De beschikbaarheid van key performance indicators, gebaseerd op het analysemodel
en de karakteristieke elementen zoals beschreven in deze studie, en de definitie van
een statistisch significante deformatie, die in deze studie is beschreven, maken een
gestandaardiseerde procedure voor geodetische deformatieanalyse mogelijk. Er is aldus
een hulpmiddel beschikbaar voor het verbeteren van communicatie over geodetische
deformatieanalyse.
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Introduction

1.1 Motivation

Theoretical methodologies for geodetic deformation analysis are well developed, but are
less well suited to be implemented for operational purposes. Here we propose a new
geodetic deformation analysis model (as theoretical methodology) that is expected to
answer operational demands appropriately.

1.2 Background

The subject of this study is geodetic deformation analysis of geo-objects. We use
the term “geo-objects” to describe both the earth’s surface (or part of it), and spatial
objects on, above or below it. The geo-objects can be man-made structures or natural
objects. Geodetic deformation analysis is about movements and deformations of geo-
objects. They can be human-induced, e.g. because of construction engineering works,
hydrological activities, ageing assets, and mining, or caused by natural forces, such as
landslides and sinkholes. Geodetic deformation analysis is used to address a wide variety
of issues in society, and is important for e.g. risk assessment and asset management
(Caspary, 2000).

The analysis is based on monitoring points that represent the geo-objects. A wide variety
of techniques is used to get relevant observations, e.g. spirit levelling, tacheometry,
GPS, laser scanning (terrestrial, aerial, or from satellites), and InSAR (Interferometric
Synthetic Aperture Radar). Traditionally a multitude of points is measured and analysed
as a geodetic network. Modern developments, however, allow to measure large amounts
of points, which are clustered in point clouds. Repeated measurements of point clouds
do not necessarily give measurements of exactly the same points (e.g.: laser scanning,
scanning tacheometers), or points that are unambiguously identifiable on the ground
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(e.g.: InSAR (Interferometric Synthetic Aperture Radar)). These modern developments
make the analysis as a geodetic network less obvious, but not impossible, if techniques
are used to extract identifiable or repeatibly measurable points (real or virtual) from the
point cloud.

The purpose of monitoring is the identification of changes in form and size, including
relative position changes, of the point cloud or geodetic network. Ideally, the move-
ments and deformations are analysed by the joint adjustment of the observations of
the complete time sequence of the monitoring (in one step or sequentially), and the
subsequent statistical testing of deformation hypotheses. The analysis method may
be different depending on the monitoring being continuous or in discrete epochs. An
epoch is a time period, in which a set of points is measured once. It is assumed that no
movements or deformations occur during this time period, or that they are compensated
for. For certain measuring techniques an epoch can be so short that it is considered a
moment in time.

Thus, geodetic deformation analysis is determined by the purpose of analysis, the rep-
resentation of geo-objects, which are the subject of analysis, the measuring techniques
to get observations as input for the analysis, and finally the analysis itself by adjust-
ment and testing. In the following sections we pay attention to the role of geodetic
deformation analysis in society, and we dwell in more detail on the techniques used for
monitoring, and the existing approaches for the analysis of monitoring results.

1.2.1 Geodetic deformation analysis in society

Geodetic deformation analysis has many applications in society. Interviews with several
stakeholders in the Netherlands have made it clear that at least six domains of hu-
man activity, in which geodetic deformation analysis is of interest, can be distinguished
(appendix A.3). Activities concerning residential and non-residential buildings define a
domain, where primarily the private sector is active. Here risk assurance against unex-
pected movements and deformations of geo-objects is common practice. This makes
insurance companies important stakeholders in this domain. In the domains of infras-
tructure works and hydraulic engineering, the public sector plays a much greater part.
The standard guidelines, used in their invitations to tender for geodetic deformation
analysis assignments, determine to a great extent the analysis methods used. In the
mining industry (in the Netherlands: gas, oil, salt and coal) risks for society of move-
ments and deformations are evident. Ample legal regulations have, therefore, been
adopted, and have a large influence on the used analysis methods. In the domain of
industrial installations regular monitoring for movements and deformations is required.
The installations are mostly owned by the private sector, where interest groups and
large companies have adopted regulations, e.g. for the monitoring of oil containers.
The last domain to be mentioned here, is the domain of analysis of movements and
deformations caused by geophysical processes. As examples can serve landslides, sink-
holes, upheaval or subsidence of large regions or countries, and continental drift. This
is almost exclusively the domain of public organisations, such as universities.

In each of the mentioned domains different legislation and regulations may apply. Dif-
ferent certified standards may be used, and different guidelines from industry or major
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commissioning companies and public organisations may be present. They all have a
large impact on the methods, quality and complexity of geodetic deformation monitor-
ing and analysis. Some remarks can be made on the legislation, standards and guidelines
in the Netherlands. The remarks concern especially the domain of the mining industry
and the domain of infrastructure, where extensive geodetic guidelines for deformation
measurements are available. The other domains have their own guidelines as well, but
geodetic monitoring is less extensively treated.

In the Netherlands the mining law gives regulations regarding deformation measure-
ments. The mining company has the obligation to do observations to monitor the
consequences of mining activities. A government agency “State Supervision of Mines”
supervises the measurements and analyses. Since 2014 there are guidelines to do the
measurements (T.P.B., 2014).

In the domain of infrastructure the guidelines of the executive arm of the Dutch Ministry
of Infrastructure and the Environment are used (Rijkswaterstaat, 2014). They are used
not only by Rijkswaterstaat, but also by many other commissioning companies, also
outside the domain of infrastructure.

The mathematical-geodetic models used in the mentioned guidelines of Rijkswaterstaat
and T.P.B. have shortcomings. The guidelines of T.P.B. consider only two analysis
models: “free network adjustment” and “space-time-analysis” (T.P.B., 2014, p. 23). In
the first analysis the measurements of each epoch are adjusted as a free network, and
the results are compared. For the comparison only one method (point-wise multi-epoch
analysis) is described (T.P.B., 2014, p. 60), where many exist, cf. Holdahl (1975);
Tengen (2010); Heunecke et al. (2013). For the second analysis method only reference
is made to research from the Netherlands (Kenselaar and Quadvlieg, 2001; Houtenbos,
2004), where more research results are available (cf. Tengen, 2010; Heunecke et al.,
2013).

The guidelines of Rijkswaterstaat give detailed instructions on the analysis of individual
epochs of deformation measurements. For the combined analysis of all epochs, however,
it merely states: “Information is provided to the client on the nature and extent of
the deformation and the deformation process.” (Rijkswaterstaat, 2014, pp. 38 & 48).
No indication is provided on the analysis model and methods to be used, or on the
requirements, the analysis has to fulfil.

Nowadays, positioning equipment, such as GPS or tacheometry, is widely available. This
stimulates nonspecialised companies to get involved as contractors in geodetic deforma-
tion analysis. At the same time, for many commissioning companies and government
institutions geodetic deformation analysis is a side issue, for which no specialised officer
is available. Therefore, they lack know-how on geodetic deformation analysis, and they
are unfamiliar with the mentioned guidelines.

The unfamiliarity with the guidelines and their shortcomings lead to many deformation
analyses that are not statistically underpinned and do not fulfil basic geodetic require-
ments of precision and reliability (see the examples in appendix A.4). The result is that
statements about deformations (or their absence) are formulated in ambiguous terms,
often only accompanied by lists of coordinate or height differences (see appendix A.4).
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Communication about deformations (or their absence) is hampered by such inadequate
analysis results. This leads to calls from the surveying industry and their clients for
a clear, unambiguous terminology, and the availability of statistically underpinned nu-
merical indicators, preferably graphically visualised. Such a call was ushered in the
Netherlands in 2014, and resulted in the wish to realise standardisation of geodetic de-
formation analysis. This, in its turn, led to a research project to build a standardisation
model (appendix A.1). To substantiate such a standardisation, an underlying geodetic
deformation analysis model is needed, and is provided in this study.

The above considerations suggest that legislation, standards and guidelines have a sub-
stantial influence on the extent and quality of geodetic deformation analysis. A closer
study of the governance of geodetic deformation analysis in society is, therefore, im-
portant to get a good insight in this influence.

1.2.2 Monitoring techniques

Several geodetic monitoring techniques are available, and new ones are regularly intro-
duced. Here we mention spirit levelling, tacheometry, GPS-positioning, satellite radar
interferometry (InSAR), and laser scanning. In situ measuring techniques can be used
as well for deformation analysis. We mention here inclinometers, crack meters, vibration
meters and fibre optical sensors.

When discrete points are measured in discrete epochs, and points are identifiable as
the same ones in different epochs, the determination of movements and deformations is
based on comparing the point coordinates or point heights of different epochs as they
follow from the measurements. Techniques like spirit levelling, tacheometry and GPS-
positioning, fulfil these conditions, as points receive names and are often marked. With
InSAR identifying identical points is possible, but more difficult is the identification of
corresponding terrestrial points.

Modern techniques such as laser scanning produce point clouds. For them it is more
involved to identify identical points through the epochs. These clouds can be reduced
to smaller point sets by extracting virtual points (i.e. points derived from one or more
measured points) that are identifiable, cf. van Goor (2011). This enables the use
of analysis methods using points, identifiable as the same ones through the epochs.
Deformation analysis of point clouds, using their full amount of information, needs
research into correlation between measurements, specific surface parametrisations, and
systematic effects of the acquisition method (Holst and Kuhlmann, 2016).

1.3 Approaches to geodetic deformation analysis

In this section a short overview is given of possible approaches in geodetic deformation
analysis. A comprehensive overview is given by Heunecke et al. (2013). To put existing
approaches in a general context, it is first described, how a deformation is principally
a change of form (as the word itself says: “de-form-ation). Then, it is described what
a geodetic point field is and how it can be tested for stability. Stability is used in this
study in the sense of absence of deformation.
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If a test for stability is rejected (or a deformation is known to be present, but type and
size of deformation are unknown), the best deformation hypothesis has to be searched
for1. This is described after the testing method has been treated.

If time series of coordinates are available, the analysis often consists of filtering the
individual points and statistically testing the filtered results, which are then presented
graphically per point.

1.3.1 Changes of form and size

The word “deformation” has its origin in the Latin verb “deformare”, which means to
deform, to disfigure. It consists of three parts: de-, forma and -are. De- is a Latin prefix
with the meaning “down” (which is unfavourable), and “in the opposite sense”2. “Forma”
is the Latin word for “form”, and “-are” is the Latin suffix for a verb. “Deformare” thus
means changing the form in an unfavourable way.

Hence, it follows naturally that the subject of geodetic deformation analysis is the anal-
ysis of changes of form of a collection of points. A collection of points that is measured
by geodetic measurements is called in this study a geodetic point field . It can be a
one-dimensional field, if only the point heights are determined. It is a two-dimensional
or three-dimensional field, if two-dimensional or three-dimensional coordinates deter-
mine the point positions. It follows from the just given description of the subject of
geodetic deformation analysis that we cannot talk about the deformation of a single
point, because a point does not have a form.

If two point fields have the same form, they are similar. If, moreover, the size of both
point fields is the same, they are congruent. Therefore, to test a point field for stability,
i.e. to test whether it preserves its form ánd size, the congruence has to be checked
by a congruence analysis (Niemeier, 1979). It is checked between the point field at a
certain time epoch and the same point field at another time epoch. It may happen that,
for some reason, the changes of size of the point field cannot be determined from the
available measurements with the desired precision. In that case the deformation analysis
is restricted to the analysis of form, which means that the similarity of the same point
field in different time epochs has to be checked. An example of missing information
about the size, is a triangulation network. Another example occurs, when monumented
control points (base stations) of a national or international reference system are used as
reference points, relative to which the deformation is monitored. In that case the unit
of length of the measuring devices may differ from the unit of length of the reference
system, in a way not known precisely enough.

1Here, the term ‘best hypothesis’ is considered to describe the hypothesis that is as close as possible
to the observations (‘closeness’ defined by some norm, for example the Frobenius norm), and that can
be considered a valid hypothesis; that is, a hypothesis that can stand up to severe tests (Popper, 2002,
p. 249).

2Compare “destruction“ as opposed to “construction”, and words like “degenerate”, “degrade”.
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1.3.2 Testing for stability

Testing for congruence and similarity To test a point field for stability, its form and
size (or just its form, if size is not taken into account) are expected to stay the same
between one epoch and a later epoch. This can be checked by performing a congruence
or similarity transformation of the coordinates of the later epoch onto those of the first
epoch. A congruence transformation preserves the form ánd size of a point field. A
similarity transformation preserves only the form of a point field. Consequently, with the
proper transformation parameters, the residuals in the coordinates after transformation
should be zero, except for the measurement noise by which the coordinates are contam-
inated because they stem from geodetic measurements. The transformation parameters
can be estimated by a least-squares adjustment. The residuals are then tested by a
standard global test (F-test) (Welsch and Heunecke, 2001, p. 394). For a statistically
optimal test, the covariance matrices of the coordinates have to be taken into account.

The congruence or similarity transformation can be omitted, if the information, con-
tained in the coordinates and their covariance matrix, is only determined by the form
and size (or only by the form) of the point field. This is only the case, if the origin and
orientation (or origin, orientation and scale) of the reference system of the coordinates
is determined by a deterministic function of the coordinates, or, put differently, if the
coordinates and their covariance matrix are in an S-system (Teunissen, 1985a, p. 41).
It means that the coordinates and their covariance matrix define themselves the origin,
orientation and scale of the reference system. No external information is used for this
definition, and thus no external inaccuracies, not related to form and size, can influence
the coordinates and their covariance matrix. A covariance matrix defined in an S-system
is singular with a rank deficiency equal to the freedom of rotations, translations and
scale that the reference system posseses (7 for an S-system that defines only the form
in 3D). In all other situations, the transformation should not be omitted, because the
covariance matrix contains information on more than just form and size of the point
field, cf. Teunissen (1985a, p. 65ff.). Using the coordinates and their covariance matrix
for testing, would yield erroneous results, if the transformation is omitted.

If the covariance matrix of the coordinates is not known (or not available), approximate
values for variances and covariances are often used. It is assumed, for example, that all
coordinates are not correlated mutually, and have the same precision. This means that a
scaled unit matrix is used as covariance matrix. If no correlation is assumed between the
coordinates, and all coordinates have different variances, the covariance matrix is ap-
proximated by a diagonal matrix with nonzero elements on the main diagonal. Because
a scaled unit matrix and a diagonal matrix with nonzero elements on the main diagonal
are not singular, they are not defined in an S-system. Every reference system that is not
an S-system is called an (a)-system (Baarda, 1973, p. 20). Because coordinates and
their covariance matrix, when defined in an (a)-system, contain more information than
just information on form and size, a congruence or similarity transformation has to be
performed before the F-test can be executed. In general a congruence transformation
(alternatively called in 3D a rigid-body-transformation) is used, unless information on
the changes in scale cannot be extracted from the measurements with enough precision.
If the transformation needed is just a differential one, the transformation is called an
S-transformation (Baarda, 1973, p. 21).
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Movement relative to reference points Conventionally, in geodetic deformation
analysis object points are distinguished from reference points. Object points are points
that are part of the object or earth’s surface, whose deformation or movement is un-
der consideration. Reference points are points that are assumed to be not under the
influence of the forces that drive the deformation or movement under consideration.
It is customary in geodetic deformation analysis to treat reference points (if they are
present) differently from the object points (Caspary, 2000, p. 116). Consequently, before
analysing the object points for deformations, the reference points need to be checked for
stability. Subsequently the movements of object points relative to the reference points
are analysed.

In this study, however, the reference points are considered part of the total point field
and analysed in the same way as any other subset of points. In the total point field
the movements of object points or points of the earth’s surface relative to the reference
points is treated as a change in form and size of the total point field.

Control points as reference points The coordinates of the points of a geodetic
point field are defined relative to a reference system, which is determined by its origin,
orientation, and scale. A reference system is operationally defined through a reference
frame, which is defined by well-determined control points, for which the coordinates and
velocities at a certain epoch are assumed to be known (Torge and Müller, 2012, p. 17).
Such control points (called first order control points) or lower order control points, linked
by densifications to the first order control points, can be used as reference points for a
geodetic deformation analysis. If such reference points are assumed to have standard
deviations and correlations of zero (or negligibly small), they define an S-system for the
total point field under consideration.

In this case it may be justified to compare coordinates of different epochs directly,
using the covariance matrices relative to the control/reference points, without a previ-
ous transformation. It is assumed, then, that the coordinates of all epochs and their
covariance matrices are with certainty relative to this reference frame with the desired
precision. It also implies that the control points are stable throughout all epochs. These
assumptions, however, have to be tested for. Noncompliance to these assumptions of
errorfree and stable control points will lead to erroneous deformation analysis results.
Note that in this case the deformation analysis considers the deformation of the total
point field of control points and object points together, and not the deformation of only
the object points.

1.3.3 Formulating deformation hypotheses

If the global test (F-test) of stability leads to rejection, or if it follows from other
considerations that a deformation is probable, it is in general desirable to get information
on the type and size of the deformations. If the driving forces for the deformation
are known, their description can be used to describe the deformations. If, however,
the driving forces are not known, or not known sufficiently, the search for adequate
formulations of deformations can be troublesome. If such formulations are to be tested
statistically, we call them deformation hypotheses. We will now treat two common
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methods to arrive at a formulation of deformations. The two methods are (a) the
method that tries to find all unstable points successively, and (b) the method that
analyses a time series of measured differences for one or more points by distinguishing
trend, signal and noise in the time series.

(a) Search for unstable points A conventional method to find plausible deforma-
tion hypotheses is to test two epochs of measurements statistically for congruence or
similarity. If the global test leads to rejection of the stability hypothesis, we search for
individual points, of which the deformation is statistically significant.

Such a statistical testing of the congruence or similarity of a point field in two epochs,
and the subsequent search for unstable points, was first described by Pelzer (1971). The
approach of Pelzer has been elaborated upon in many further publications (Heunecke
et al., 2013; Chen, 1983; Chrzanowski et al., 1986; Dong, 1993; Caspary, 2000). Because
of the German city where Prof. Pelzer worked, these publications can be characterised
as representing the “Hanover school”.

Characteristic of the method is the analysis point-by-point: if one point is detected as
moving most significantly, it is removed, and the remaining point field is analysed in the
same way for a significantly moved point. Methods to analyse more than two epochs
have been described as well (Niemeier, 1979, 1985; Caspary, 2000).

An improvement of the method aims at identification of a group of stable reference
points, using the general concept of identification of the maximum subgroup of consis-
tent data (Neitzel, 2004).

For testing and reliability concepts in geodesy the “Delft school of geodesy” is well-
known (Staff LGR, 1982). The methods of the Hanover school have been extended by
the testing and reliability concepts from the Delft school of geodesy (van Mierlo, 1978).

The resulting methods to arrive at a formulation of the best deformation hypothesis
have been implemented in several commercial software systems (Heunecke et al., 2013,
p. 521).

(b) Separation of trend, signal and noise; time series Besides the method men-
tioned under (a), the search for the best deformation hypothesis can be accomplished
by interpreting the rejected F-test as caused by a deformation trend (the systematic
or parametric part, i.e. with a lower frequency in time or space), a deformation signal
(with a higher frequency in time or space) and remaining measurement noise, where the
terminology of geodetic collocation is used (Moritz, 1980, p. 111ff.). This terminology
is often used (Walwer et al., 2016; Didova et al., 2016; Ming et al., 2016). The trend
is described by a deterministic function, while the signal is described stochastically with
a temporal or spatial covariance function. To describe a trend or signal in the time
domain with any reliability, a sufficiently high sampling rate in time is needed, i.e. more
than two epochs are generally necessary. We then have a time series of measurements
to determine the deformation hypothesis.

Because the measurements (or the coordinates per epoch, derived from them) consti-
tute a time series, theories about stochastic processes, filtering, covariance functions
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and spectral analysis come into play, cf. Papoulis (1984). The analysis of a time se-
ries is often restricted to individual points, e.g. Chang and Hanssen (2016); Ng et al.
(2015). The analysis of a point field, where both the spatial correlation and the temporal
correlation is considered, is less common.

If the formulation of the deformations is to be tested statistically, the trend and signal
constitute the hypothesis. The estimated noise at times and points in space, for which
measurements are available, can be used for testing the hypothesis. An unmotivated
deterministic trend function (not motivated by driving forces), or an unmotivated tem-
poral or spatial covariance function (and thus an unmotivated signal) may lead to wrong
testing results.

Now that the approaches to geodetic deformation analysis have been described concisely,
we can describe in the following section the link to professional practice, after which
the problem area can be treated.

1.3.4 Link to professional practice

The topic of this study lies at the intersection of theoretical methodologies for geodetic
deformation analysis and their implementations for operational purposes. Therefore,
scientific research in geodetic deformation analysis is divided here in research into avail-
able theoretical models and development of new ones on the one hand, and research
into the extent and maturity of their use in professional practice on the other hand. The
theoretical models have been described concisely in the previous section. To illuminate
the link with professional practice, the cooperation between scientific academia and
professional practice in the Netherlands is described here. In section 1.2.1 six domains
have been distinguished, where geodetic deformation analysis is of interest. For each
domain the link between scientific research and theoretical methodologies on the one
hand and their implementations for operational purposes on the other hand is described
below. These links reveal that geodetic deformation analysis in professional practice
in the Netherlands appears not to be performed according to the available theoretical
methodologies, described in the previous section, in the majority of domains. This is
confirmed by an analysis of the software that is used for geodetic deformation analysis.

Here we first confront the scientific research and the theoretical methodologies with
professional practice. Then an overview of applied software is given. A picture is thus
drawn that gives the foundation for the research question that will be derived afterwards.

Research and methodologies versus professional practice In the domain of anal-
ysis of movements and deformations caused by geophysical processes, the scientific
academia itself constitutes the professional practice. This can be seen in the regular ap-
pearance of scientific papers on this subject, e.g. Chang and Hanssen (2016); Fuhrmann
et al. (2015); Boyd et al. (2015); Ng et al. (2015); Xu et al. (2000).

In the domain of the mining industry, where there is ample legislation, close cooperation
between professional practice and scientific research can be found. This follows, for
example, from the settlement of conflicts by academic discussions, e.g. Blaauwendraad
et al. (2009).
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In the domains of industrial installations, the construction of residential and non-
residential buildings, infrastructure, and also in hydraulic engineering, it is less common
to use one of the approaches of section 1.3 in professional practice in the Netherlands.
A usual method of working is to compute coordinates or heights for measured points
for each epoch separately, and to determine the coordinate differences between the
epochs. The analysis of the differences is not specifically elaborated upon, and is often
restricted to visualisations of difference vectors. This is exemplified by the guidelines of
the executive arm of the Dutch Ministry of Infrastructure and the Environment (Rijkswa-
terstaat, 2014). These guidelines are often used, also for assignments by commissioning
companies and agencies outside the domain of activities of the Ministry.

Software as indicator for use of models To assess the dissemination of theoretical
models in professional practice, the use of dedicated software, in which these models
have been implemented, is a good indicator. For the analysis by means of similarity
and congruence models, several commercial software packages that use methods of the
Hanover school are available (Heunecke et al., 2013, p. 521). In the Netherlands this
software is hardly used by professional practice and the academia (appendix A.5). Here
it is described which software is used in the Netherlands.

Specific software has been made for deformation analysis in the mining industry by
Delft University of Technology (Ketelaar, 2008; de Bruijne et al., 2001; de Heus et al.,
1994b, and older). The software for the analysis of levelling networks, based on the
models of de Heus et al. (1994b), aims at estimating linear trends per point in a least-
squares adjustment, taking account of stochastic information of the measurements. The
software DePSI can analyse InSAR-measurements (van Leijen, 2014). This software is
based on time series analysis of individual points that have been identified as persistent
scatterers.

Engineering firms have made specialised software, which is generally dedicated to specific
application possibilities. An example is the computing tool made by Antea Group in
Microsoft Excel for the deformation analysis of individual levelling points in an area of
soil subsidence because of salt extraction (Velsink, 2016a, p. 75). It is based on the
theory, treated by Verhoef (1994), which, in its turn, is based on the model of de Heus
et al. (1994b). It estimates a linear trend per point.

MOVE3, a software package that is widely used in geodesy in the Netherlands, has
some possibilities for deformation analysis (MOVE3, 2017). These possibilities have
been extended recently, i.a. because of the research that has been conducted for this
study. It is possible to use difference vectors in 1D, 2D or 3D as observations for the
least-squares adjustment of MOVE3. Minimal detectable biases (see Teunissen (2006,
p. 102)) can be computed for these observations. The deformation analysis option of
MOVE3 is an implementation of the model described in chapter 6.

After this overview of the link between the approaches to geodetic deformation anal-
ysis and professional practice, we can direct ourselves to the research question and its
subquestions.
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1.4 Problem area and research question

Problem area The overview of conventional approaches to geodetic deformation anal-
ysis in section 1.3, and the link with professional practice in section 1.3.4, suggest that
in many domains of professional practice in the Netherlands the comparison and anal-
ysis of point positions of different epochs are not handled with one of the conventional
approaches to geodetic deformation analysis. In fact, the analysis is often restricted to
visualisations of difference vectors. Moreover, the differences between epochs are not
statistically analysed, and conclusions, therefore, do not in general meet any statistical
optimality criterion. Hence, without a mathematical-statistical model as foundation for
the geodetic deformation analysis, arguments arise in professional practice on how to
draw conclusions, and on the attainable quality of analyses. The arguments are a sign
of failing communication, and are caused by the absence of a clear, unambiguous ter-
minology, and of statistically underpinned numerical indicators of the quality of analysis
results. As a consequence, standardisation of terminology, processes and presentation
of results is asked for. Such standardisation has to be based on a sound mathematical-
statistical model. Models that follow from the approaches described in section 1.3 (the
Hanover school, and time series analysis) fulfil these requirements, and implementations
in software exist.

Hence, it is appealing to use one of these models, or a combination of them. There
are, however, two drawbacks.

The first drawback concerns the lack of availability of suitable quantities for the assess-
ment of the attainable quality of a deformation analysis. The Delft school of geodesy
yields suitable quantities for such an assesment in the form of bounds to the values of
errors that can be detected by statistical tests with a certain probability (Baarda, 1968b,
p. 19). These bounds are called boundary values or marginally detectable errors (Staff
LGR, 1982, p. 217), or minimal detectable biases (Teunissen, 2006, p. 102). van Mierlo
(1978) gave an impulse to their application for deformation analysis. It has, however,
not been extended for more intricate deformation hypotheses (e.g. when several points
are moving, or when different subsets of points are moving relative to each other, or
when a subset of points is subject to a rotation, or all of this together).

Also the methods of the Hanover school do not in general provide information on the
attainable quality of deformation analyses. This is caused by the fact that the methods
of the Hanover school, and also many time series analyses, are based on determining
point-by-point, whether one point has moved. Neitzel (2004) gives an extension to the
methods of the Hanover school to test for blocks of stable points. However, methods to
test more intricate deformation hypotheses, such as given above, in a straightforward,
uniform, procedure, have not been published.

The second drawback is the absence of ways to incorporate physical models, describing
the deformations, into the models of the Hanover school. A physical model is a descrip-
tion of driving forces, from which a hypothesis can be deduced about the movements
of one or more points. Incorporation of a physical model means that the hypothesis is
part of the adjustment model, and can be tested simultaneously with the testing of the
geodetic observations.
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In conclusion, a suitable geodetic deformation analysis model that enables standardis-
ation, uses physical and geometric models in a combined model, and enables intricate
deformation hypotheses to be tested, is not yet available.

Such a model is a crucial prerequisite for effective communication between all stakehold-
ers concerned with geodetic deformation analyses (legislators and government agencies
that ensure protection against deformation risks, commissioning companies and agen-
cies, companies that perform geodetic deformation analyses, and the general public,
which may or may not be subject to the deformation risks).

Thus it is the purpose of this study is to build such an optimal geodetic deformation
analysis model on the basis of the body of knowledge of the Delft school of geodesy,
and, in this way, to have a foundation for standardisation and communication.

Research question The research question has been formulated in view of the de-
scribed problem area:

How can a generic mathematical-geodetic model be formulated that is:
(i) usable for geodetic deformation analysis, (ii) enables standardisation of
terminology, processes and presentation of results for geodetic deformation
analysis, and (iii) is usable as a basis for communication about goals, pos-
sibilities and analysis results of geodetic deformation measurements?

The model is intended to use geodetic observables on the one hand and information
on deformations in physical reality on the other hand, to test intricate deformation hy-
potheses. The standardisation and the communication have to be based on statistically
valid methods.

Subquestions

The construction of a model for geodetic deformation analysis, and this model’s use for
standardisation and communication, is elaborated upon along the following lines. The
method of least squares with its optimality characteristics, and the statistical meth-
ods that can easily be coupled to the method, forms the basis of model construction.
To describe deformation hypotheses deterministic formulations have to be possible, for
which constraints on model parameters provide an effective apparatus. To weigh hy-
potheses against each other, a search mechanism for finding the best hypothesis has to
be present. Because the model is concerned with deformations, analysis of form and
size is pivotal. For adequate analyses the (physical) causes of deformations have to be
taken into account. Finally, time is of importance in deformation analysis and, thus,
time series analysis is crucial. Formulation of standards and communication, based on
these standards, is made possible, if a geodetic deformation analysis model has been
built along the sketched lines.

In accordance with these lines five subquestions are formulated into which the research
question is broken down.

1. How can a model be built in such a way that the full existing body of knowledge
of least-squares theory is applied for deformation analysis? The focus is here on
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the achievements of the Delft school of geodesy regarding testing and quality
description (Baarda, 1968b, 1973, 1995; Staff LGR, 1982; Teunissen, 2007), and
their application for testing deformation hypotheses. This includes the concept
that the deformation of a point field should be modelled in such a way that only
form and size of the point field are analysed for changes and not changes in
other geometric quantities, such as origin and orientation of a reference system
(the point field is considered here the discretised representation of the monitored
object), cf. Baarda (1995, p. 6).

2. How can a physical model with its functional relations and parameters be incor-
porated in the geodetic deformation analysis model, thus enabling the analysis
of the fit of a time series of observations within both the geodetic and physical
model?

3. When measuring the same geodetic observables during subsequent time epochs in
a deforming point field, the values of the measured observations will change be-
cause of the deformations (and because of changes caused by measurement noise
and other error sources). This is expressed mathematically by the fact that the
mathematical expectations of the observables will comply with the deformation
hypothesis (if this hypothesis is valid). Put differently: a deformation hypothesis
constrains the observables. The measured observations will, of course, not com-
ply with the constraints, because of measurement noise and observation errors.
They will also not comply with the constraints of a deformation hypothesis, if the
hypothesis is not a valid one.

From this follows the subquestion, how constraints can be used effectively to
describe deformation hypotheses, and how these constraints can be tested and
provided with a quality description, expressing minimal detectable deformations.

In the process of handling constraints in an adjustment model, rank deficient
model matrices and covariance matrices can appear. Hence the question follows,
how least-squares solutions of the geodetic deformation analysis model can be
formulated in a way that permits rank deficiency of those matrices.

4. What kind of search method helps finding the hypothesis that best describes the
deformation?

5. What are the requirements that a geodetic deformation analysis model has to fulfil
to be usable for standardisation and, as a derivative, for effective and efficient
communication.

1.5 Research method and outline

Research method To answer the main research question an analysis model will be
built around a mathematical-geodetic adjustment model. The adjustment model takes
geodetic measurements as input and delivers the coordinates of all points under con-
sideration in all epochs as output. The adjustment can be done in one step. The
corresponding adjustment model will be elaborated upon in this study. It is called here
the measurements model. The deformation analysis will be based on the adjustment
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results, especially on the computed coordinates of all points in all epochs and the com-
puted deformation parameters, and on the results of statistical tests, performed on the
adjustment results.

In scientific research and in professional practice the adjustment is often split in two
steps. The splitting up into two steps is often necessary, because the original geodetic
measurements are not available during all epochs, or they are considered too numerous.
The first step comprises the adjustments of the observations for each epoch separately,
resulting in coordinates per epoch. There may be a consirable time (days, months,
or even years) between the adjustments of the first and last epoch. This type of
adjustment is well-known and often used (and in professional practice many software
packages are available). The corresponding adjustment model will, therefore, not be
treated in this study. The coordinates per epoch are used as input for the second step, in
which all epochs are taken together and the coordinates are analysed for deformations.
Customarily, the second step is not realised as a least-squares adjustment. The present
research method, nevertheless, will be based on the construction of an adjustment model
for the second step, called the coordinates model, that is suitable for least-squares
adjustment. The advantages, which are closely linked to the optimality properties of
the least-squares method, will be presented. The model takes coordinates both as input
and as output.

To formulate the two adjustment models (measurements model and coordinates model),
several problems will have to be solved. To keep their treatment manageable, chapters
3 and 4 will treat some of the problems in the framework of simpler models (e.g. only
two-dimensional, or only two epochs). Chapter 5 treats some necessary mathematical
tools, after which the measurements model and the coordinates model are treated in
their full extent in chapters 6 and 7.
The following problems will be dealt with. First it will be studied how similarity and
congruence transformations can be incorporated in an adjustment model for deforma-
tion analysis, how a singular covariance matrix of the input coordinates can be handled,
and how a best deformation hypothesis can be found. This will be studied in two-
dimensional Euclidian space, and with two epochs of observations. Then the problem
will be extended to 3D, where the inclusion of transformations into the adjustment
model is more complicated, because of the rotation parameters.
To extend the model to more than two epochs, i.e. to a time series of observations, with
the incorporation of deformation hypotheses by means of constraints, the handling of
constraints has to be based on a more generic basis than literature provides. This more
generic basis will allow for testing constraints in a model with a singular covariance
matrix and a rank deficient model matrix.
The intermediate models and solutions that will solve the mentioned problems will be
tested by designing algorithms and applying them to simulated test situations. Fi-
nally the geodetic deformation analysis for a time series of observations (measurements
model), and for a time series of coordinates (coordinates model) will be developed.

To answer the last subquestion the results of the research for the set-up of a taxonomy
of governance of geodetic deformation analysis (Velsink, 2012), and of the results of
research project DefoGuide (see the description in appendix A.1), will be used.

Most results have been published before (Velsink, 2015a,b, 2016b, 2017, 2018).
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Outline The outline of this study is described below and summarised in table 1.1.

After this introductory chapter, chapter 2 gives a description of the proposed analysis
model and its essential elements. This analysis model is the foundation for the sub-
sequent chapters. It includes an adjustment model, which will be developed in two
variants, the measurements model and the coordinates model. The requirements are
treated that the analysis model has to fulfil to be usable for standardisation and for
effective and efficient communication.

Chapter 3 4 5 6 7

Epochs 2 2 – > 2 > 2
Dimension 2D 3D – any 3D
Computation methods – – yes – –
Nonstochastic observations – – yes yes yes
Transformations yes yes – – yes
Search for best hypothesis yes yes yes yes yes
Testing & test quality yes yes yes yes yes

Table 1.1: Adjustment model characteristics in chapters 3 – 7.

In chapter 3 the situation is treated that two epochs of deformation measurements in
the plane (two-dimensional Euclidean space) are available. The adjustment model takes
coordinates and their covariance matrix as input, and treats, therefore, the coordinates
model for two epochs and in 2D. The measurements are assumed to have been adjusted
already prior to the use of the model. This prior adjustment has yielded estimates for
the coordinates of the network under consideration. Also the covariance matrix of these
coordinates is used. The prior adjustment is often the adjustment of a free network,
which results necessarily in a singular covariance matrix of the coordinates. Incorporating
a transformation into the adjustment model is shown to have important advantages.
Handling a singular covariance matrix for the observations is treated. Subsequently
testing and quality description of deformation hypotheses are described. It is shown
how the best alternative hypothesis can be found by testing a large amount of possible
hypotheses.

Chapter 4 is about deformation analysis with coordinates in three-dimensional Euclidean
space, where the introduction of transformation parameters, especially the rotation
parameters, needs special care. Two epochs of coordinates of the same physical points
are assumed to be available. This chapter, therefore, treats the coordinates model in the
case of two epochs and in 3D. The coordinates may originate from previous adjustments,
where geodetic observations were used to estimate the coordinates. This implies that
the covariance matrices of the coordinates can be full and singular, e.g. when a free
network was adjusted in the previous adjustment. To guarantee that only the change
of form and size of the point field is analysed, a three-dimensional transformation is
included in the adjustment model, as explained in section 1.3.2. The transformation
can be a similarity or congruence transformation. The transformation is set up in such
a way that no approximate values of the transformation parameters are needed, and
that gimbal lock3 cannot occur.

3Gimbal lock can occur, if a 3D-rotation is realised by three successive rotations around three axes
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Chapter 5 is devoted to the adjustment and testing methods that are needed when
constraints are present in the adjustment model. This happens in the models of chapters
6 and 7, so chapter 5 is a preparatory chapter. To enable a quality description of the
testing of constraints (by means of minimal detectable biases), here the constraints
are handled as nonstochastic observations (constants, treated as observations with a
standard deviation of zero and with no correlation to other observations). They can be
seen as pseudo-observations. An advantage of formulating constraints as nonstochastic
observations, is that testing and test quality description are realised by an identical and
simple procedure for both stochastic observations and constraints. A consequence is,
however, that the covariance matrix of the observations will always be singular. An
overview of several methods is given to accomplish adjustment, testing and test quality
description in case the covariance matrix is singular and the model matrix rank deficient.

In chapter 6 an adjustment model is presented to adjust and test a time series of
geodetic observations. This chapter, therefore, treats the measurements model, for
a time series of observations in 1D, 2D, or 3D. Functional relations, originating from
a physical deformation model, are incorporated in the model by means of constraints
and extra parameters. The significance of these extra parameters can be tested by the
usual testing of an alternative hypothesis against a null hypothesis. The validity of the
physical deformation model is, therefore, tested as an alternative hypothesis. Because
the constraints, which describe the physical model, are introduced in the model as non-
stochastic observations, testing and test quality description of deformation hypotheses
on the one hand, and of measurement errors on the other hand, is accomplished with
the same procedure.

Chapter 7 handles time series of three-dimensional coordinates. This chapter, therefore,
treats the coordinates model, for a time series of coordinates in 3D. The coordinates
can originate from previous free network adjustments, which have singular covariance
matrices. Each epoch of coordinates is linked to a following epoch by means of a trans-
formation (similarity or congruence transformation). This guarantees that only changes
in form and size are analysed. Deformation hypotheses can relate to several points and
to several epochs (e.g. a set of points, belonging to a certain building, that is subsiding
during a number of epochs; or a set of points belonging to one side of a fault, moving
to the points on the other side of the fault during a certain amount of epochs). The
functional relationships, describing the deformation, can contain additional parameters,
and can be, for example, polynomial functions. The deformation hypotheses are, again,
described by a set of nonstochastic observations.

that stand orthogonally to each other. For certain values of the successive rotations two rotation planes
can coincide, and a degree of (rotation) freedom is lost. In this situation the transformation parameters
cannot be determined unambiguously.
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Analysis model and its essential elements

2.1 Introduction

The following chapters treat various elements of geodetic deformation analysis. Each
chapter is self-contained and can be read separately. Most chapters have been published
before as scientific papers. This chapter provides a framework for the following chapters.
This framework I provide in the form of an analysis model for geodetic deformation
analysis. The model distinguishes three analysis stages (design, implementation and
realisation), and seven essential model elements (listed in table 2.1). The next section
elaborates upon the components of each of the three analysis stages. Figure 2.1 presents
a graphical illustration. The seven essential model elements follow from the requirements
as formulated in the research question and its subquestions, which follow, in their turn,
from the intended use of the model. Therefore, I first treat the use of the analysis
model in section 2.3. Subsequently, section 2.4 gives a description of the seven essential
model elements. Models are available in literature, in which one or more of the essential
model elements are fully or partly incorporated (van Mierlo, 1978; de Heus et al., 1994b;
Caspary, 2000; Heunecke et al., 2013; Chang and Hanssen, 2016). I will treat them
thoroughly in this and the following chapters. My purpose, however, is to present a
model that contains all elements, and enables a full answer to the research question.

2.2 Analysis stages

This section describes components of the three stages of the analysis model: design
stage, implementation stage and realisation stage, visualised in figure 2.1.
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Figure 2.1: Analysis model : Geodetic deformation analysis, divided in
three stages: design, implementation and realisation.
y, D{y}, A, B, C1, etc.: variable names used in this study.

2.2.1 Design stage

The analysis model describes a process that starts with the decision that a geodetic
deformation analysis is necessary. The subject of the analysis is the deformation of
objects on, above or below the earth’s surface, or of parts of the surface itself. I call
these objects or parts of the earth’s surface “geo-objects”.

The design of the analysis is the first stage of the analysis process. In the design stage
one makes the decision, advised by the geodesist, how a mathematical-geodetic model
will describe the geo-object or geo-objects. An option is to make a discretisation of
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the geo-objects with several or many points. The coordinates of the points (1D, 2D or
3D) are determined. They constitute a mathematical representation of the geo-objects.
Other options to make a mathematical representation are e.g. raster elements (pixels),
volume elements (voxels), and Delaunay triangles. To limit the scope of my research, I
only consider mathematical-geodetic models that handle 1D, 2D or 3D points.

The determination of deformations of geo-objects now becomes the determination of
movements of representative points. All points together constitute a point field, and I
call it a geodetic point field , if geodetic techniques are used to determine its deforma-
tions. Geodetic techniques are for example spirit levelling, GPS differential carrier phase
positioning, tacheometry, and interferometric synthetic aperture radar (InSAR). Form,
size and nature of the geo-objects, but also the geodetic observation techniques, used
to measure the deformations, determine the optimal configuration of the geodetic point
field. Questions that arise are: What are suitable point locations? How dense should
the distribution of points be? Are monumentations of the points needed, and what do
they look like?

The formulation of deformation hypotheses is part of the design stage: which defor-
mations can be expected, considering the forces exerted on the geo-objects? To assess
the validity of a presumed deformation, a test of the deformation hypothesis is neces-
sary. Figure 2.1 distinguishes the null hypothesis (H0) from alternative hypotheses (H1,
H2, ...), in which I follow the Neyman-Pearson testing theory (Neyman and Pearson,
1933; Teunissen, 2006).

2.2.2 Implementation stage

The second stage of geodetic deformation analysis is the implementation stage, where
the geodesist takes the lead. He implements the chosen geodetic observation techniques
by deciding which physical instruments or sensors to use. This determines the precision
of the observations, and is the basis of the covariance matrix. The geodesist also
implements the point field configuration by making an observation plan. For techniques
such as tacheometry and GPS it means choosing the instrument points and the object
points to be measured. For a technique such as InSAR it means choosing the necessary
images and checking the availability of usable coherent scatterers.

In the centre of the implementation stage stands the adjustment model 1, which deter-
mines the way in which the measured observations are adjusted with the least-squares
method.

The least-squares theory gives two fundamental models to adjust observations (Helmert,
1907; Tienstra, 1956; Teunissen, 2000). The first model, and the most used one, is the
model of observation equations (Gauss-Markov model), first published in 1805 (Leg-
endre, 1805)2. The second model is the model of condition equations, first published
in 1828 (Gauss, 1828). Both models are dual to each other, which means that the
adjustment results are the same, and that each model can be transferred into the other

1The adjustment model is equal to the mathematical-geodetic model of the research question.
2Gauss claimed to have used the least-squares method before 1805; the Gauss-Markov theorem

(proved by Gauss, recovered by Markov) gave a statistical foundation for the method.
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(Teunissen and Amiri-Simkooei, 2008, eq. (3)). The model of observation equations
contains both observables and parameters. The model of condition equations contains
only observables. I will use both models in this and the following chapters, but I will
always take the model of observation equations as starting point, because, in general,
the construction of the adjustment model is easier with observation equations for the
problems I intend to solve.

Three extensions of the two fundamental adjustment models exist (Tienstra, 1956;
Teunissen, 2000): (i) the model of observation equations with constraints on the pa-
rameters, (ii) the model of observation equations, where the observations, used in the
adjustment, are functions of the measured observations, (iii) the two previous models
combined. I will not treat these extensions separately here, but I will use them in this
study, and derive the necessary equations when they are needed.

The adjustment model for geodetic deformation analysis describes the relations between
the mathematical expectations of the observables according to some deformation hy-
pothesis.3 If the model of observation equations is used, the introduction of parameters
into the model is necessary. The parameters that describe the deformations of the geo-
objects constitute an important part of the parameters. The choice which parameters
are used, is free, as long as they describe the deformations adequately. In this study I
choose to use coordinates for these parameters. The reason is that the analysis model
presents deformations of geo-objects as position changes of points. To describe positions
and position changes, coordinates and coordinate changes are convenient. However, the
determination of form and size changes of a geodetic point field demands special pre-
cautions, if coordinates are used as parameters (problem of the geodetic datum). I will
treat this in section 2.4.2 in more detail.

With the observation plan, the covariance matrix, the choice of parameters and the
null hypothesis, the observation equations can now be formulated. They are in general
nonlinear. My approach in least-squares adjustment is to linearise all nonlinear relations
and to solve the adjustment models in their linearised form. This makes it necessary
to have adequate initial values for the parameters (model of observation equations),
and initial values for the observations that are consistent with the initial parameter
values and comply with the adjustment conditions. Iteration of the solution process is
necessary as well. The linearised observation equations (or, for the model of condition
equations, the linearised condition equations) yield the model matrix4, see figure 2.1.

The geodesist uses the null hypothesis to construct the model matrix. An overall model
test (F-test) gives information about the validity of the null hypothesis (Teunissen,
2006). If it is rejected (in the realisation stage), the alternative hypotheses come into
play. An alternative hypothesis is the null hypothesis, complemented with additional
parameters. Such an additional parameter can be, e.g., the subsidence coefficient of
a linear subsidence, or the coefficients of a truncated Fourier series to describe some
periodic deformation. The additional parameters can also describe errors in the observa-
tions (e.g. point identification errors, atmospheric errors, instrument calibration errors).
The relation between the additional parameters and the rest of the adjustment model
is, in general, nonlinear. It is linearised and yields a test matrix . The geodesist uses the

3The hypothesis can be that no deformation is present.
4Also called: coefficient matrix, design matrix.
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test matrix to compute a test statistic in the realisation stage, but also to determine
the quality of the test of the alternative hypothesis.

The geodesist ends the implementation stage before the start of the measurements.
The result is an overview of the efforts that will be necessary in the realisation stage,
as well as an overview of the quality of the tests. This means that before the start of
the measurements the geodesist can make a statement about the types and sizes of
deformations that will be detectable.

2.2.3 Realisation stage

The geodesist collects observations according to the observation plan, and adjusts them
according to the adjustment model. He checks the estimated least-squares residuals with
an overall model test. If the test does not lead to rejection of the null hypothesis, he is
ready. If not, the alternative hypotheses are tested one after the other. For this purpose
test statistics are computed for each hypothesis. The question is, how to determine
which the best hypothesis is. The search for the best hypothesis is complicated and
will be treated in section 2.4.7.

2.3 Model use

The geodetic deformation analysis model, visualised in figure 2.1, and its essential
elements, listed in table 2.1, are intended for use in professional practice. This section
is dedicated to the use of the analysis model. It describes the operational demands
for an analysis model (the requirements that professional practice asks for), and the
communication and standardisation that should be possible with the analysis model.

2.4.1: A time series of several epochs can be handled

2.4.2: Only size and form are analysed, not position and orientation
of the reference system

2.4.3: Geodetic and physical model are combined

2.4.4: Full use of stochastic information

2.4.5: Statistical testing and computation of minimal detectable
biases

2.4.6: Solution methods can handle rank deficient matrices (both
model matrix and cofactor matrix)

2.4.7: Search for best hypothesis/model is possible

Table 2.1: Essential model elements and sections
in which they are described.
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2.3.1 Operational demands

The operational demands have been derived from interviews with several stakeholders
in the Netherlands (Velsink, 2012). The interviewees were from several companies and
public bodies, active in the commissioning and implementation of geodetic deformation
measurements. The operational demands have been derived as well from the results of
a research project on guidelines for geodetic deformation monitoring (see appendix A).

From the interviews it follows that tasks, legislation and regulations, and operational
practice regarding geodetic deformation measurements can differ considerably for the do-
mains of activity where they are used, such as: residential and non-residential buildings,
infrastructure works and hydraulic engineering, mining industry, industrial installations,
and research into deformations of large areas, like countries and continents.

Below I look, succesively, at specific operational demands, originating from Velsink
(2016a), and present their connections to the required model elements, summarised in
table 2.1.

First, it occurs in professional practice that companies, involved in geodetic deforma-
tion measurements for a certain assignment, experience a lack of knowledge in geodetic
deformation analysis, and, if their knowledge is sufficient, lack adequate geodetic defor-
mation analysis models. The result is that they cannot agree on the attainable precision
of deformation estimates, using a certain network configuration. The requirement is,
therefore, that an unambiguous procedure should exist to quantify the attainable pre-
cisions of deformation estimates. Directly related is the need for unambiguous testing
procedures to determine, whether a tolerance has been exceeded. The requirement
can be restated that a quantification of minimal detectable deformations, linked to an
unambiguous testing procedure, should be available.

Secondly, it occurs that the supplier of geodetic deformation measurements delivers
coordinates or heights of the points of a geodetic network at different epochs as a
product to the client, without a clarification what they mean and how they should
be interpreted. The client can be e.g. a geophysict, a construction engineer, or a
hydraulics engineer. He may have made his own calculations of which deformations are
to be expected. It is often not clear how to link the coordinates and heights to the own
calculations. More generally phrased: how should the geodetic model and the physical
model be linked? Is it possible to give an unambiguous procedure to test the physical
model by means of the geodetic model?

A third operational demand follows from the experience that spreadsheets with coor-
dinate or height differences between epochs, or listings of computer programmes are
not acceptable for clients. They want a graphical overview of the deformation analysis
results, and additionally a few numbers or statements (such as “accepted”) as indicators
for stability or for the deformations detected. A visualisation is, for example, a map, on
which the deformation is visible, or a film or filmlike experience of the changes in time.
Such a requirement demands a complete deformation analysis model, where all mea-
surements are treated simultaneously, a testing procedure is incorporated, and testing
procedures are integrated. Hence, the demand encompasses all elements of table 2.1.
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The fourth operational demand is related to insufficient knowledge of covariance matri-
ces and their dependence on S-systems in professional practice in the Netherlands. This
shows itself in the mixing up of local, regional and national precision descriptions, result-
ing in suboptimal deformation analyses. It happens, for example, that twice the value
of a one-dimensional standard deviation is interpreted as a one- or more-dimensional
deformation tolerance. This means that the geodetic deformation analysis model must
be capable of handling, without much interference of the user, the full stochastic in-
formation available. Also, the analysis must be restricted to size and form, without
mixing it with information on position, orientation and scale of the reference system,
or of points, not related and not of interest for the deformation. S-systems must be
handled adequately by the model.

The fifth and final operational demand follows from the often encountered lack of tools
(partly because they do not exist, partly because the specialist does not know them, or
has no access to them) to adequately perform statistical tests on geodetic deformation
measurements. In such a situation, the conclusion what the best deformation hypothesis
is, is based much more on practical expertise than on statistical considerations. It
may be expected that this leads to difficult considerations and consultations with other
specialists to reach a conclusion. This can, indeed, be seen in professional practice in the
Netherlands. Hence, the demand is for an overall statistical analysis of all epochs and all
measurements (time series analysis), and for a procedure to find the best deformation
hypothesis, based on statistical considerations.

2.3.2 Communication and standardisation

The analysis model, presented in this chapter, is intended to improve geodetic deforma-
tion analysis, and, by using the results that follow from the model, to improve commu-
nication on results. Good communication needs a common terminology, because words
need to have an unambiguous meaning for mutual understanding. This is especially
important, when we use words that describe statistical conclusions of measurements.
However, even if we use a common terminology, it is inevitable that different specialists,
stakeholders, journalists and laymen draw different conclusions from the same obser-
vation material and model assumptions. This is caused by the stochastic character of
the observations, which causes many different statistical models to be applicable. It is
also caused by different interpretations of the words in which statistical conclusions are
phrased. Different conclusions from the observational material can also be caused by
unknown parameters of applied physical models, which can be approximated by different
values or mathematical functions.

A different physical model means that the geodetic model uses other or even wrong func-
tional relationships to which the observations are adjusted. This implies that geodetic
observations cannot give a description of deformations without the use of some physical
model.

Hence, to improve communication on the results of geodetic deformation analysis, a
common terminology and a clear perception of the used models, are necessary. Stan-
dardisation can help here. Standardisation means that terms are defined unambiguously,
models to be used are listed, standard processing options are available, and the interpre-
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tation of analysis results is performed in a uniform way. Standardisation, however, does
not solve the multi-interpretability of observations. It only prevents misconceptions,
promotes mutual understanding, and stimulates research to improve analysis methods
(Blind, 2013).

Standardisation facilitates communication on statistical analysis results. The degree of
knowledge and expertise of persons involved in the communication influences the pos-
sible intricacy of terminology and models. Consequently, we distinguish four categories
of persons involved in deformation analysis. The first category is the expert, who is
well-educated in the field of such analyses and has sufficient expertise in it. The sec-
ond category is the technically educated stakeholder, who is sufficiently educated and
has enough expertise to understand the technical language of the expert, but is not
an expert himself. The third category is the non-technically educated stakeholder. It
may be the principal, for example the representative of a tendering authority, it may
also be a person, who is responsible for the consequences of failures to handle risks
(of deformations) adequately. The fourth and last category is the general public, who
is informed by the media and by specific information material, and may be or become
subject to negative consequences of failures regarding deformations. Communication
with each category has to be done in a terminology and a way of reasoning that is
adequate for that category.

2.4 Model elements

The model elements (see table 2.1) are expatiated upon in this section in general terms.

To be able to describe the elements, I assume that the geodetic observables can be
clustered into epochs. An epoch is a moment in time or a time interval in which all
necessary observations of the objects under deformation are collected and, if the epoch
is a time interval, during which interval the deformations are negligible relative to the
possible deformations in between epochs (or they are compensated for). The objects
under deformation are represented by points, and I assume every point to be identifiable
as the same point in each epoch (unless there are physical hindrances).

2.4.1 Time series

The adjustment model, which is used in the geodetic deformation analysis, should be
capable of handling several epochs of observations of the objects under deformation.
This means that time series of 1D, 2D or 3D coordinates have to be determined from the
geodetic observables. Testing such time series is the basis of the geodetic deformation
analysis.

Two different adjustment models are presented in this study. The first one (figure 2.2)
takes geodetic observations in the observation vector and coordinates in the parameter
vector. The second adjustment model (figure 2.3) distinguishes two phases. In the
first phase the geodetic observations are adjusted for each epoch separately. In the
second phase the coordinates, which result from all epoch adjustments, are taken as
observations, and coordinates appear in the parameter vector as well.
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The second adjustment model is added to the straightforward first one, because it is
common practice to base geodetic deformation analysis on the analysis of the coordi-
nates, obtained from the separate epochs (see section 1.3). The use of the second model
is a necessity in case the original measurements are not available, only the coordinates
per epoch.

In the first model (figure 2.2), hereafter called the measurements model, the vector
of observations contains all geodetic measurements, clustered in subvectors: one sub-
vector for each epoch. The parameters are the coordinates of all points. Each point
has a different set of coordinates for each epoch. The epochs are linked together by
constraints, which describe the hypothesised deformation pattern5.

Observations y Parameters x̂

Observations
per epoch

CoordinatesCoordinatesCoordinates
per epoch

Deformation
parameters Analysis

Hypotheses on
deformations

Figure 2.2: Measurements model : adjustment in one phase.
Dotted line links elements that constitute the parameter vector.
Arrows mean “determine(s), are (is) the basis for”.
y, x̂: variable names used in this study.

In the second model (figure 2.3) the analysis is split in two phases. First it is assumed
that the geodetic observations of each epoch have been adjusted separately, resulting in
coordinates per epoch, including their covariance matrix. In the second phase, a model
is built that takes the epoch coordinates both as input (observations), and as output
(parameters). Because the analysis is only concerned with form and size of the point
field, the second phase includes transformations of all epochs to a reference epoch. The
necessity of this inclusion is treated more deeply in section 2.4.2 6.

The results of both models are the same, if, in the second model, the covariance matrices
of the epoch adjustments of the first phase, are taken care of in the second phase. This
follows from the principal property of least-squares adjustment (Tienstra, 1956, p. 154):

“Every problem of adjustment may be divided into an arbitrary number of
phases, provided that in each following phase the cofactors resulting from
preceding phase(s) are used.”

2.4.2 Change in size and form7

In geodetic deformation analysis the form and size, and their changes, of a geodetic point
field are studied. The analysis should be invariant for the scale, position and orientation

5Chapter 6 treats the resulting model, and its adjustment, testing and the description of test quality.
6The resulting model is the subject of chapter 7.
7Large parts of the text in this section are translated and adapted from (Velsink, 2016a).
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First phase:

Observations y Parameters x̂

Observations
epoch · · ·

Observations
epoch 2

Observations
epoch 1

Coordinates
epoch · · ·

Coordinates
epoch 2

Coordinates
epoch 1

Second phase:

Observations y Parameters x̂

CoordinatesCoordinates
per epoch

CoordinatesCoordinatesCoordinates
per epoch

Analysis

Hypotheses on
deformations

Deformation
parameters

Transformation
parameters
TransformationTransformation
parameters

Figure 2.3: Coordinates model: adjustment in two phases.
Dotted lines link elements that constitute the parameter vector.
Arrows mean “determine(s), are (is) the basis for”.
y, x̂: variable names used in this study.

of the reference system, used to fix the positions of the points. In this section first
the concepts “form“ and “size“ are defined for the 1D, 2D and 3D Euclidian space.
From these definitions the concepts “size and form elements” and “form quantities”
follow. Deformation analysis is about changes in size elements and form quantities.
Subsequently, the concept of “coordinates” is introduced, where it will be shown that
they are merely intermediate quantities in the analysis of changes of form and size.
Then, the customary approach to geodetic deformation analysis and its disadvantages
are treated. The choice for a model with coordinates as parameters is discussed, and
finally the conclusion regarding the requirements for the two adjustment models is
drawn.

Size and form elements

The word “deformation” stems from the Latin word “deformatio”, which means “dis-
figuration”, “deformation”. Its kernel is the word “forma”: “form”. This indicates that
deformation is about change of form, and, as an extension, about change of form and
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size. A deformation analysis model must therefore be capable of giving information
about the existence, size and process of this change of form and size.

The mathematical concept “form” follows from the concept “similarity” as defined by
the Greek mathematician Euclid (third century B.C.). When two objects are similar,
they have the same form. Euclid starts his book “The Elements” with 23 definitions
(Fitzpatrick and Heiberg, 2007). Among them are the definitions of the planar angle
and the distance. Using the concept of planar angles, Euclid introduces the concept
of similarity in book 6 of his Elements. The first definition of book 6 states: “Similar
rectilinear figures are those (which) have (their) angles separately equal and the (corre-
sponding) sides about the equal angles proportional.” A more recent definition is: “Two
figures are said to be similar when all corresponding angles are equal and all distances
are increased (or decreased) in the same ratio, called the ratio of magnification (Coxeter
and Greitzer, 1967, p. 94).” A transformation that takes figures to similar figures is
called a similarity transformation. The angles stay the same under such a transforma-
tion and are called the form elements. Distances convey information on the size and
are, therefore, called size elements.

If no increase or decrease in the distances is required (the ratio of magnification is 1) the
objects are congruent: they not only have the same form, but also the same size. The
congruence transformation (also called “direct isometry” or “rigid body transformation”)
transforms an object to another one without changing the form or size. The congruence
transformation is normally used in deformation analysis, unless changes in size are not
determinable from the measurement with enough precision, in which case a similarity
transformation is used.

The following three paragraphs treat the definitions of size and form elements in, first,
the two-dimensinal plan, then in three-dimensional Euclidian space, and finally in one-
dimensional Euclidian space.

Two-dimensional plane In the two-dimensional plane (Euclidean two-dimensional
space) the smallest set of points, by which an angle can be defined, and for which it is
thus sensible to speak of its form, contains three points. The three points constitute a
triangle. The form of the triangle is defined, if two angles are known (figure 2.4(a)).
The size of the triangle is fixed, if additionally one of the distances is known. The
form and size of the triangle are thus defined, if two angles and one distance are known.
They are, however, also defined, if the three distances (AB, BC, AC) are known. Baarda
(1966) pointed out, that the form, without the size, can be defined by two length ratios,
for example:

vCAB =
AB
AC

en vABC =
AB
BC

. (2.1)

The combination of an angle and a length ratio determines the form as well, for example
αABC en vABC, see figure 2.4(b). An angle can be considered to be a length ratio, if it
is seen as the central angle of circle: it is the arc length on the circle, divided by the
radius (Baarda, 1966, blz. 27). Both the length ratio and the angle are taken together
in one variable, the Π-quantity, and written as a complex number:

ΠABC = ln vABC + iαABC, (2.2)
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(a) (b)

A

B

C

αCAB
αABC

A

B

C

vABC

αABC

Figure 2.4: Form of a triangle: αCAB, αABC: angles; vABC: length ratio.

where “ ln” denotes the natural logarithm, and i the imaginary unit, for which holds
i2 = −1. The advantage of taking the natural logarithm is the analogy between the
length ratio and the angle:

ln vABC = ln BC− ln BA;
αABC = rBC − rBA,

(2.3)

with rBC and rBA the directions from B to respectively C and A. The Π-quantity allows
to capture the form of three points in a single complex quantity. It is immediately clear
that there are three Π-quantities that can capture the form of a triangle. Each of the
three can be be determined from each of the other two. By increasing the number of
points, the form of, say, five points is determined from three Π-quantities. In general,
the form of a point field of n points in the plane is defined by (n− 2) Π-quantities.

The Π-quantities are determined in geodetic practice by carrying out measurements of
distances and directions. If more measurements are carried out than are needed to
determine all the required Π-quantities, adjustment and thus also testing and quality
description of the measurements are possible. Conventionally, the method of least
squares is used to do that.

The Π-quantity is the basic form quantity in Euclidean two-dimensional space. Deforma-
tion analysis is concerned with form change and thus with changes in the Π-quantities.

Three-dimensional Euclidian space In three-dimensional Euclidean space, four is the
smallest number of points, for which the form can be defined, provided that all points
do not lie in the same two-dimensional subspace. The four points form a tetrahedron,
as shown in figure 2.5(a). Five form elements are necessary to fix the form of the
tetrahedron (van Mierlo, 1976, p. 5). This can be seen in figure 2.5(a): the form of
the triangle ABD is defined by a Π-quantity: αABD and vABD. The same applies to the
triangle DBC. If the dihedral angle θ of ABD relative to DBC is known, the form of
the entire tetrahedron is fixed.

With five points (figure 2.5(b)) eight form elements are required. For the form of the
triangle BCE one Π-quantity (two form elements) is needed. To determine the position
of the triangle relative to the other triangles additionally a third form element is needed.
With each additional point three additional form elements are required. The form of a
point field of n points is thus defined by 5 + (n− 4) ∗ 3 = (3n− 7) form elements.

In two-dimensional Euclidean space a point field may be linked by triangles (Delaunay
triangulation), after which the form of each triangle is fixed by one Π-quantity. The
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(a) (b)

A

B

C

D

vABD

αABD vDBC

αDBC

θ

A

B

C

D
E

Figure 2.5: Four and five points; α: angle; v: length ratio; θ: dihedral angle.

entire point field is fixed by a collection of Π-quantities. In three-dimensional space
the set-up is more complex. The Π-quantities of a subset of the triangles between the
points is fixed. Then the dihedral angles between these triangles are fixed in order to
obtain the total of (3n− 7)form elements.

The form elements can be grouped as follows.

• Start with one of the triangles, for instance triangle ABD in figure 2.5. Take the
Π-quantity of this triangle.

• Take a connecting triangle and its Π-quantity, plus an extra angle in order to
fix the position of the connecting triangle with respect to the start triangle (a
dihedral angle). Take these three form elements into one quantity, which I call a
P-quantity . The P-quantity contains one form element more than a Π-quantity8.
We write the P-quantity as a vector:

PDBCA =

αDBC
vDBC
αABC

 . (2.4)

The addition of an extra point, for example point E in figure 2.5(b), requires one
additional P-quantity in order to fix the form of the entire point field. A point field
of n points is thus fixed by one Π-quantity and (n − 3) P-quantities. The Π-quantity
is the fundamental form quantity in two-dimensional Euclidean space. Likewise the P-
quantity is fundamental in three-dimensional Euclidean space. If more measurements
are carried out than are needed to determine all necessary form elements, adjustment
of the measurements, and also testing and quality description are possible.

Deformation analysis is about analysing changes in the form elements (if necessary
grouped together in form quantities).

8I call it “P-quantity”, because the letter following the letter Π in the Greek alphabet is the letter
P (capital letter rho). This letter is identical in shape to the Roman capital letter P, which is equal in
pronunciation to Π.
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One-dimensional Euclidian space After the examination of the situation in 2D and
3D, we now consider the 1D situation. Here it seems that the concepts of form and
similarity are not available, because the concept of an angle is not defined. We have
seen, however, that angles can be defined by ratio’s of distances, and similarity is defined
by equality of angles. Applying this to heights, the equivalent form quantity for the 1D
situation is the height difference ratio. It is defined as the ratio of two height differences
that are expressed in the same unit of length.

Using coordinates to describe size and form

In the previous sections it has been argued that deformation analysis is concerned with
the study of changes in size and form quantities. It should be possible to determine the
precision of these changes and to derive a testing method from it. It should also be
possible to derive quantities that provide information about the deformations that are
detectable by the testing method: the minimal detectable deformations. The geometric
problem of deformation analysis is tackled by formulating it with Cartesian coordinates
as an intermediary (figure 2.6).

Observations Coordinates Analysis

Hypotheses on
deformations

Figure 2.6: Coordinates as an intermediary for analysis.

Fixing the form and size of a point field with Cartesian coordinates (or other coordinates,
such as geographic) has advantages. There is no need to make a spatial configuration of
the point field, such as a triangulation or a collection of polyhedrons. The coordinates
are linked directly to the points that have been measured. Disadvantages also stick to
the method. Coordinates fix more than just the form and size. They contain additional
information on the location and orientation of the coordinate system (or coordinate
axes, and reference ellipsoid when geographical coordinates are used).

This study deals with deformation analysis by using coordinates. The premise remains,
however, that deformation analysis is about analysing changes in size and form quanti-
ties. The tests and test quality descriptions should only depend on form changes and
possibly size changes, and should be invariant for modification of other information,
such as the location and orientation of the reference system.

Form, size and coordinates in geodesy

In the previous sections geodetic deformation analysis was linked to changes in form
elements, taken together in form quantities. To define form quantities we need at
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least 3 points (1D, 2D) or 4 points (3D). A deformation analysis, therefore, assumes a
minimum of these numbers of points.

In geodesy it is customary, however, to analyse deformations by computing quantities
for individual points. First coordinate differences between epochs are determined. Sub-
sequently a strain tensor (strain matrix) for each point is computed (Welsch, 1982).
The coordinates, coordinate differences, and also the strain tensor are not invariant for
the location, orientation and scale of the reference system, in which the coordinates
are expressed. Other quantities are needed that are invariant for the location, orienta-
tion and scale of the reference system, both in 2D, and in 3D (Vaníček et al., 2008).
The quantities mentioned by Vaníček are tied to individual points. Also further studies
into strain and strain rate parameters confine themselves to point-oriented quantities
(Berber et al., 2009; Dermanis, 2010, 2011).

Because deformation analysis is about change of form and size, it makes sense to use
quantities that are defined by several points together. This has been done in an analysis
of deformations of the Tokai area, Japan (Xu et al., 2000). In the analysis a triangulation
of 1883 and a trilateration of 1994 of the same network were compared. The network
was divided in 53 blocks, each consisting of four network points. For each block strain
quantities were computed that are invariant for the location, orientation and scale of
the reference system. The analysis was done by visualising the strain quantities with
ellipses for each block of four points, and showed deformations in an area near Shizuoka,
not detected by previous conventional analyses (figure 2.7, the area near Shizuoka is
indicated by a grey line) (Xu et al., 2000, p. 600).

This Japanese example shows the advantage of form and size analysis by invariant
quantities of groups of points over the analysis per point.

Model with coordinates as parameters

Coordinates Two adjustment models (the measurements model and the coordinates
model) are developed in this study, which use coordinates as intermediary quantities:
the parameters in the adjustment model that describe form and size and that are to be
estimated, are coordinates. This is reasonable, because otherwise an adjustment model
has to be built that uses other parameters to describe form and size, such as the Π- and
P-quantities. This would make it necessary to analyse each network to find the necessary
amount of these quantities. Using coordinates makes such an analysis superfluous:
each point has one, two or three coordinates, and that is all that is needed. Moreover,
adjustment models that use coordinates as elements of the parameter vector, are well
known in geodesy, and are based on a large body of knowledge. A further advantage
of using coordinates is that formulating a deformation hypothesis using coordinates is
much easier and transparant, than formulating such an hypothesis by using Π- and
P-quantities. A disadvantage is, however, that S-systems and S-transformations have
to be used to apply coordinates for the description of form and size.

S-system and transformations Geodetic deformation analysis is only concerned with
the changes in size and form of monitored geo-objects, i.e. in changes in their size and
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Figure 2.7: Strain quantities: invariant for reference system and visualised by ellipses.
Picture from Xu et al. (2000).

form quantities. This means that the analysis has to be invariant for changes in position,
orientation and scale of the reference system. Therefore, the degrees of freedom in the
adjustment model concerning the position, orientation and scale, are to be fixed at
some constant values. This can be done by fixing functions of the parameter vector
at some constant values. The number of functions to be fixed is determined by the
difference between the amount of coordinates and the minimal amount of size and form
elements, needed to describe the size and form of the point field. For example, we
saw before that in 3D the minimal amount of form elements to describe the form of a
point field is 3n − 7, with n the number of points. As there are 3n coordinates, the
number of degrees of freedom to be fixed is 7. A reference system, where the position,
orientation and scale are fixed in such a way, is called an S-system (Teunissen, 1985a,
p. 41). Choosing functions of the parameter vector that have fixed values, by which the
S-system is defined, is called here fixing the S-system. The elements of the parameter
vector that are constrained by the functions constitute the S-basis.

Two different adjustment models are developed in this study. The measurements model
(figure 2.2) takes geodetic observations in the observation vector and coordinates in the
parameter vector. To fix the S-system, constraints on the parameters are formulated.
Hence, the requirement for each of the two adjustment models is that it is extendable
with constraints on the parameters.
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The coordinates model (figure 2.3) takes coordinates as observations. The coordinates
have been determined for each epoch separately. They can be defined in different
reference systems, and in different S-systems9. One of the epochs is taken as reference
epoch, and the coordinates of all epochs are transformed to the reference epoch by
means of similarity or congruence transformations. This is done in the deformation
analysis models by putting the transformation parameters into the parameter vector of
the adjustment model. This has to be done no matter whether we have a 1D, 2D or
3D situation. The S-system of the reference epoch is fixed by adding constraints to the
model, or by the singularity of the submatrix of the covariance matrix that relates to this
epoch. The equivalence of using constraints and using a singular covariance matrix is
treated later on (section 2.4.6). The requirement for each of the two adjustment models
is, consequently, that it is extendable with constraints on the parameters, that it can
handle singular covariance matrices, and that transformation parameters are included
in the parameter vector.

In conventional geodetic deformation analysis the transformation to a common S-system
is done separately and before the final adjustment (Setan and Singh, 2001; Heunecke
et al., 2013, p. 492ff.). My choice in this study is to do it simultaneously, thereby
making the procedure simpler, because no separate S-transformations are necessary to
transform coordinates and their covariance matrices, and because transformations and
deformation analysis are evaluated simultaneously.

To fix the S-system it is possible not to use constraints, but to leave the degrees of
freedom that have to be fixed, unfixed. The result is that the parameter vector is not
estimable, or, equivalently, that the model matrix is rank deficient. Methods exist to
solve an adjustment model with a rank deficient model matrix, e.g. with generalised
inverses (Rao and Mitra, 1971). It is worth noting, that the use of constraints to fix
the S-system can be seen as a method to solve a rank deficient adjustment model. The
requirement for the two adjustment models is, consequently, that an adjustment model
with a rank deficient model matrix can be handled.

Conclusion

The two adjustment models to be developed in this study as part of the geodetic
deformation analysis model, are required to be able to fix an S-system. This means
that a rank deficient model matrix can be handled. As a way to do this, constraints
on the parameters can be used. This is, therefore, a more specific requirement for the
two adjustment models. For the model of figure 2.3 it is, additionally, necessary that
transformation parameters are included in the parameter vector of the adjustment model.
The transformation parameters are those of a similarity or congruence transformation,
depending on the analysis of just the form (similarity transformation), or of form and
size (congruence transformation). In the 1D situation the transformation is limited to
just a shift, or, in rare exceptions, a shift and a scale change.

9Different S-systems (different S-bases) can be defined within one reference system.
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2.4.3 Combine geodetic and physical model

A requirement of the two adjustment models that will be developed in the following
chapters, is the ability to combine geodetic and physical models into one model. First
the importance of modelling the driving forces for the deformations, and using them in
the adjustment model by formulating constraints, is treated. Then the advantages of
using nonstochastic observations to formulate constraints are mentioned. Finally it is
shown how reference and object points should be handled in the proposed models.

Driving forces Knowledge of the driving forces of a deformation is valuable for a suc-
cessful deformation analysis. Without it, only geometric changes in time can be viewed
from the measurements, and it is more troublesome to separate the measurement noise
and the deformation signal with zero mean from the deformation trend. Knowledge of
the driving forces can be used to formulate a (forward) model, describing the deforma-
tions, and to test the model(s) subsequently (cf. Xu et al., 2000; Boyd et al., 2015).
Such an approach is often chosen in geophysics, and the amount of models to be tested
is generally limited.

If knowledge of the driving forces is not readily available, one can try to fit a deterministic
mathematical function in time to a time series of coordinates. The time series is
considered a random process and analysed accordingly (Papoulis, 1984; Chang and
Hanssen, 2016; Ng et al., 2015).

It may be that it is difficult to determine which deterministic function should be used.
This happens for example when it is assumed that there is no deformation, but this
assumption is rejected by the measurements. A heuristic can be used in this case,
where the congruence of the same point field in different epochs is compared to find
a satisfactory description (Heunecke et al., 2013; Caspary, 2000; Nowel, 2016). The
heuristic uses the stochastic information of the observations, and it tests hypotheses
that assume deformations per single point and per pair of two epochs. If necessary,
the heuristic successively removes points to arrive at an acceptable hypothesis. Then it
tries to add previously rejected points.

A requirement for the two adjustment models is that information about the driving
forces can be incorporated easily. This is realised by formulating constraints on the
coordinates that are part of the parameter vector of the adjustment model. To make it
possible that such constraints are easily and clearly formulated, each epoch is completely
separated from each other epoch, in the sense that the same point has a different set
of coordinates in each epoch. A constraint can in that case be formulated, for example,
that a point has the same coordinate set in epoch i and in epoch j. Or, the constraint
is that a point has different coordinate sets in epochs i, j and k, to be described by a
linear subsidence with a certain subsidence parameter α. These constraints are part of
the adjustment model. This means that after adjustment a least-squares estimate is
obtained for, for example, the subsidence parameter α. It also means that the adjusted
coordinates comply with the constraints. Testing a deformation hypothesis boils down
to statistically testing whether it was justified to add the constraints to the adjustment
model.
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The use of constraints on coordinates to test geodetic deformation hypotheses is elab-
orated upon in chapters 6 and 7.

Nonstochastic observations Several methods exist to incorporate constraints into
an adjustment model. In this study the choice has been made (motivated below) to use
nonstochastic observations for this purpose. Nonstochastic observations are constants
that are treated as if they were observations (also known as pseudo-observations). They
have a standard deviation of zero and are not correlated to any other observation. There
are several advantages to treat constraints as observations.

First it is possible to use the same, simple, procedure to test both stochastic (“normal”)
observations and nonstochastic (“pseudo”) observations.

Secondly, the computation of minimal detectable biases (MDBs) for constraints is the
same as the computation of MDBs for stochastic observations. In the context of de-
formation analysis the MDBs describe the minimal detectable deformations. They give
information about the deformations that can be detected by testing the adjustment
model under consideration. Because the MDBs can be computed before the measure-
ments are performed, they enable to assess a deformation analysis network already in
the design phase regarding its fitness for use.

Finally stochastic and nonstochastic observations can be tested simultaneously. For a
successful deformation analysis, biases (errors) in the measurements should be distin-
guishable form deformations. Hence, it is advisable to design the deformation analysis
in such a way that the testing procedure can distinguish biases in the measurements
from deformations (e.g. by checking each epoch separately for measurement biases be-
fore testing several epochs for deformations). Nevertheless, there is always a chance
that measurement biases are not discovered and deteriorate the deformation analysis.
Being able to test hypotheses that include both measurement errors and deformations,
is, then, an advantage.

Introducing observations with a standard deviation of zero and no correlation to other
observations, necessarily means that the cofactor matrix of the observations is singular.
It may be that also, because of other reasons, the partial cofactor matrix of the stochastic
(“normal”) observations is singular. The determination of the least-squares solution of
the adjustment model has, therefore, to be capable to handle singular cofactor matrices.

In chapter 5 the use and processing of nonstochastic observations is treated extensively.

Reference and object points In geodetic deformation analysis it is customary to
first identify stable reference points, to keep these fixed, and then to analyse the points
of the object or part of the earth’s surface under consideration (Nowel, 2016). The
motivation for this two-step approach is that the coordinates of all epochs have to be
defined in the same reference system (Caspary, 2000, p. 112). If, however, as discussed
in section 2.4.2, we incorporate the transformations into the adjustment model, there
is no need for such a two-step procedure. The reference points can be considered to
be a similar set of points as the object points. They can be analysed simultaneously
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with the object points. If some reference points are not stable, it will follow from the
analysis in the same way as it follows for the unstable object points.

We can, therefore, require that the adjustment model enables an equivalent, simultane-
ous treatment of both reference and object points. An elaboration is given in chapter 3.

2.4.4 Full use of stochastic information

In the two adjustment models (measurements model and coordinates model) the ele-
ments of the observation vector do not have, in general, an equal standard deviation.
In the coordinates model it is even the normal situation that the cofactor matrix of the
coordinates, as they follow from the first phase, is a full, but singular matrix.

The requirement for the two adjustment models is, therefore, that they must be capable
of handling full, singular cofactor matrices. The requirement also includes the possibility
to handle correlation between observations (or coordinates) from different epochs. The
necessity to be capable of handling singular cofactor matrices was already present,
because of the nonstochastic observations, see the previous section 2.4.3. In all chapters
from chapter 3 up to 7 the possibility to use full, singular cofactor matrices is a premise.

2.4.5 Testing and minimal detectable biases

My approach to testing deformation hypotheses is, first, to formulate constraints that
describe a deformation, and then to test these constraints. This approach will be
elaborated upon in chapters 5, 6 and 7. The quality of such tests is conveniently
described by minimal detectable deformations. Their use to describe the quality of tests
of deformation hypotheses, is introduced in chapter 3, and used in chapters 5 up to 7.
Minimal detectable deformations are an important tool for standardisation.

In this section a short overview is given of the approach of testing deformation hypothe-
ses, of the description of the test quality, and of its use for standardisation.

Testing deformation hypotheses The purpose of geodetic deformation analysis is
formulating a valid deformation hypothesis that will stand the tests against other hy-
potheses. Hence a requirement for the two adjustment models is the availability of
testing methods. Testing (stochastic) observations is common practice in geodetic ap-
plications (Teunissen, 2006). To test deformation hypotheses, a similar procedure is
possible. The way to proceed is to first formulate a null hypothesis. This hypothesis is,
for example, that deformation is absent, or that the deformation is a simple one (like
a linear subsidence of one or more points). An alternative hypothesis is formulated as
well. In case of a overall model test, the alternative hypothesis states only that the null
hypothesis is not valid. If the overall model test is rejected, a more specific and intricate
deformation hypothesis is formulated. The reasoning is that we want to describe reality
with a model that is as simple as possible (law of parsimony, Occam’s razor). Only
when this simple model (the null hypothesis) does not satisfy, we extend it with extra
parameters (the alternative hypothesis) to let the model better fit the observations, cf.
Popper (2002, p. 248ff.).



2.4. Model elements 37

A convenient way to test an alternative hypothesis is by defining the null hypothesis
as the alternative hypothesis with additional constraints on the parameters. These
constraints define the deformation hypothesis, for example that a point is stable. Testing
the validity of the constraints gives information on the validity of the null hypothesis.
It means that a reasonable way to formulate a geodetic deformation hypothesis is to
consider each epoch as a separate geodetic network. To formulate the null hypothesis
for each point, it is determined whether it is assumed to be stable, or to have some
deformation pattern. This stability or deformation pattern of a point is made explicit
by formulating constraints on the parameters of the adjustment model. If the null
hypothesis is rejected by an overall model test, an alternative hypothesis is formulated.
It can mean that a constraint on a point is removed, or that some parameter is added
to the constraint (e.g. a parameter that describes a linear subsidence of a point).

Test quality description For testing deformation hypotheses, as for any testing pro-
cedure, it is important to know, what might stay undetected by the tests. The question
is, what errors, biases and unspecified deformations are still present in the observa-
tions, although the test accepts the hypothesis. We are, therefore, interested in a good
description of the test quality. Valuable quantities for this purpose are the minimal
detectable biases (MDBs) (Baarda, 1968b; Teunissen, 2006). If these MDBs are com-
puted for tests of specific deformation hypotheses, they indicate minimal detectable
deformations.

MDBs can fulfil an important role for standardisation of geodetic deformation analysis.
By standardising testing procedures according to the principles of this study, the MDBs
that belong to specific testing procedures can be used as criteria in assignments, call
for tenders, and similar documents, to which criteria the geodetic deformation analysis
tasks have to comply.

In section 2.4.3 it was substantiated why constraints are introduced in the two adjust-
ment models of this study as nonstochastic observations. For testing and test quality
description the use of nonstochastic observations means that both the geodetic obser-
vations and the deformation pattern constraints are tested in the same way. Also the
MDBs are computed in the same way.

2.4.6 Solution methods

The basic adjustment model of observation equations as described in section 2.2.2 has
to be refined to fulfil all requirements for the two adjustment models, formulated in
the previous sections. In this section the focus is on the availability of solutions for
such a refined adjustment model. With “solutions” I refer to the least-squares solutions:
the least-squares estimates of the parameters in the adjustment model, the adjusted
observations, and the covariance matrices of both the estimated parameters and the
adjusted observations. Additionally to the least-squares solutions, it is necessary for
geodetic deformation analysis to have test results of testing alternative hypotheses
against the null hypothesis by means of uniformly most powerful invariant tests.
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From the requirements for the two adjustment models, listed in the previous sections,
the most demanding are (i) the addition of constraints on the parameters, (ii) the related
demand that a singular covariance matrix can be handled, and (iii) the demand that
the model matrix can be rank deficient.

In the following paragraphs first the available adjustment methods are treated. Then
special attention is paid to the dual model of condition equations and its capability
of easily fulfilling the requirements for the two adjustment models. Subsequently the
consequences of using nonstochastic observations are treated, and the close relation
is hightlighted between constraints, nonstochastic observations and singular covariance
matrices. Finally the methods are treated to test adjustment models with singular
covariance matrices.

Adjustment The basic model to adjust observations is well-known, and its least-
squares solution poses no problems and can be found in many textbooks, e.g. Tienstra
(1956); Rao and Mitra (1971); Bjerhammar (1973); Vaníček and Krakiwsky (1986);
Teunissen (2000); Koch (2013), and dates back to the publications of Legendre and
Gauss in the beginning of the nineteenth century (Legendre, 1805; Gauss, 1809). Neither
Legendre nor Gauss did yet consider the option of a full covariance matrix (first published
by Aitken (1936)). A singular covariance matrix was treated first by Anderson (1948),
according to Goldman and Zelen (1964, p. 165), who give themselves a more general
solution for an adjustment model with singular covariance matrix, however under a
certain restriction concerning the model matrix. This restriction is lifted by the solution
given by Rao and Mitra (1971, p. 147ff.). That solution thus poses no special restrictions
on the model matrix, and it may, therefore, be rank deficient.

Model of condition equations All the mentioned publications treat the model of
observation equations (Gauss-Markov model) to arrive at a least-squares solution. The
dual model is the model of condition equations. This model does not contain pa-
rameters, and can thus be arrived at by eliminating the parameters from the model
of observations equations (for example by Gaussian elimination). It gives exactly the
same least-squares solution, but does not formulate observation equations, but condition
equations between the observations. Important advantages of this model are the fact
that its algorithm does not need the inversion of the cofactor matrix, and that the size
(dimensions) of its normal matrix is different from the size of the normal matrix of the
model of observation equations. If the number of conditions is smaller than the number
of parameters, the normal matrix is smaller. The model of condition equations was
first described by Gauss in 1828, who specifically mentions higher geodesy (geodaesia
sublimior) as the science, where this model finds frequent and satisfactory application
(Gauss, 1828, p. 30).

The model of condition equations has a central position in the approach of the so-called
Delft school, shaped by Tienstra and Baarda (van Daalen, 1985, p. 260). They viewed
the model of condition equations as the formulation of the “laws of nature”, to which
observations will obey on average. They called this model the first standard problem,
and the model of observation equations the second standard problem (Tienstra, 1956,
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p. 140ff.). The first standard problem is primary, from which the second one follows
(Staff LGR, 1982, p. 206).

In this study I show (in chapter 5) that for an example of deformation analysis taken
from professional practice, the computation of the solution for the adjustment model
of that analysis is fastest, if use is made of the model of condition equations. It is,
therefore, remarkable that the use of the model of condition equations has found so
little attention in geodetic literature. It can be seen from the textbooks, mentioned
before. Rao and Mitra (1971) do not treat the model. Vaníček and Krakiwsky (1986,
p. 179) only mention the “condition model”, but do not mention its dual character to the
model of observation equations. Koch (2013) treats the model of condition equations
concisely, where the model of observation equations is treated extensively.

If the covariance matrix is singular, the same algorithm for the model of condition
equations can be used as the one that is used to get a solution with a nonsingular
covariance matrix. Because the covariance matrix does not need to be inverted, the
computation poses no problems. The computed solution is a least-squares solution.

Many authors have put effort in the search for a solution for the model of observation
equations with a singular covariance matrix (Anderson, 1948; Goldman and Zelen, 1964;
Zyskind and Martin, 1969; Pringle and Rayner, 1971; Rao and Mitra, 1971). This
solution requires two changes in the algorithm, as it is known for a nonsingular covariance
matrix. These two changes are (i) what I call in this study the amplification of the
covariance matrix (treated in chapter 5), and (ii) the use of generalised inverses instead
of regular (Cayley) inverses (Rao and Mitra, 1971). In contrast, the algorithm for the
model of condition equations does not need any changes. Moreover, it is straightforward
to switch from the model of observation equations to the model of condition equations
by a numerical procedure. The switch back, to get estimates for the parameters, can be
performed by using a generalised inverse. This is shown in chapter 5. It seems, therefore,
obvious to follow this path to arrive at a solution, but it has not been published before.

It is a requirement for the two adjustment models that they can handle a singular
covariance matrix. The two models are derived as models of observation equations.
Because the switch to and from the model of condition equations is easy, the solution
of this last model with a singular covariance matrix is of interest. The derivation of the
(unchanged) algorithm in case of a singular covariance matrix, is therefore given in this
study. Note that this derivation is different from the one of Bjerhammar (1973).

Nonstochastic observations Constraints can be added to a model of observation
equations. They constrain the estimated values of these parameters. A model of
observation equations with constraints can be reduced to a model without constraints
and with a scaled unit matrix as covariance matrix, by changing the observation vector
and the model matrix (Rao and Mitra, 1971, p. 144). Subsequently, this reduced
model can be solved by the standard method. A different way to rewrite the model of
observation equations with constraints is by formulating the constraints as observations
with a standard deviation of zero and without correlation to any other observation (Rao
and Mitra, 1971, p. 148ff.). This means that an observation with a standard deviation
of zero (and no correlation to other observations), called a nonstochastic observation
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after Rao and Mitra (1971, p. 149), is equivalent to a constraint on the parameters.
Let the covariance matrix of a model of observation equations have a rank deficiency
d. It follows from the derivations of Rao and Mitra (1971) that such a model can be
rewritten as a model with d constraints and a nonsingular covariance matrix.

The conclusion is that (i) constraints on parameters, (ii) rank deficiency of the covari-
ance matrix, and (iii) nonstochastic observations, are three different ways to express the
same phenomenon.

The approach chosen in this study is to formulate constraints as nonstochastic observa-
tions, see the rationale in section 2.4.3. The consequence is that the rows and columns
in the covariance matrix that pertain to these nonstochastic observations, contain only
zeros. The covariance matrix is therefore singular. Also the submatrix of the covari-
ance matrix that pertains to the other, stochastic observations, can be singular. This
can happen, for example, if the observations are coordinates that have resulted from
a previous adjustment. Therefore, the computation of solutions in this study needs to
assume that the covariance matrix is singular. A possible way to get a solution is the
solution via the model of condition equations, shown above. Other methods, however,
exist, and are treated in chapter 5.

We notice that methods to compute an exact, rigorous least-squares solution for a
model of observation equations with a singular covariance matrix, exist already more
than forty years (Rao and Mitra, 1971). Nevertheless, it happens that only approximate
solutions are presented (Koch, 2013, section 3.2.7). Some publications state that only
an approximate solution is possible (Lehmann and Neitzel, 2013; Shi et al., 2017). The
assumption is that the model of observation equations has to be used and that infinitely
large weights have to be approximated by finite weights. It is, however, possible to avoid
the need for infinite weights, as will be shown in chapter 5.

Testing An important component of geodetic deformation analysis is testing the de-
formation hypotheses. In this study the choice has been made, see section 2.4.3, to
formulate deformation hypotheses as constraints in the adjustment model. Testing a
deformation hypothesis thus means testing the pertaining constraints. Because these
constraints are formulated as nonstochastic observations, it is an obvious choice to test
the constraints in exactly the same way as the other, stochastic observations. The
methods and characteristics to test observations are well known (Teunissen, 2006), but
they are valid only for adjustment models with nonsingular covariance matrices. The
requirement for the two adjustment models is, therefore, that the equations are derived
for the situation with singular covariance matrices. This is evaluated in a generic way
in chapter 5.

For testing whether just one observation is biased, the conventional w-test has been
developed (Baarda, 1968b, p. 15). Let us assume that the covariance matrix is a diag-
onal matrix, i.e. there is no correlation between the observations, and all observations
have a finite standard deviation. For such a covariance matrix the test quantity of the
conventional w-test (the w-quantity) of an observation is equal to the ratio between the
estimated least-squares residual of that observation, and the standard deviation of that
residual. This could give the impression that the estimated least-squares residuals are
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essential for testing observations, and that, because for constraints these residuals are
zero, constraints cannot be tested. In chapter 5, however, I will show that not the ordi-
nary least-squares residuals are the essential quantities, but the reciprocal residuals10.
They are introduced in chapter 3 and defined in a generic way in chapter 5 for use in the
subsequent chapters. They are not zero for constraints, and neither are the conventional
w-quantities of constraints, and thus constraints can be tested by conventional w-tests.
Also more intricate hypotheses, concerning one or more constraints, or even constraints
and stochastic observations simultaneously, can be tested.

Two adjustment models are developed in this study. The requirement is that these
models should be capable of being tested for biases in both stochastic and nonstochastic
observations in the same way (see section 2.4.3). It follows from the preceding that such
a requirement can be fulfilled. Also the test quality description by means of minimal
detectable biases can be realised for stochastic and nonstochastic observations in the
same way.

2.4.7 Search for best hypothesis/model

Testing an adjustment model is done by acquiring the observations, subsequently ad-
justing them by the method of least-squares, and finally performing an overall model
test (Teunissen, 2006, p. 93). If this test leads to rejection of the model, an alternative
model has to be found. Comparing the null hypothesis and alternative hypotheses is
done in pairs (Teunissen, 2006, p. 71). Each pair consists of the null hypothesis and
one alternative hypothesis. In general, several, or even many, reasonable alternative
hypotheses can be formulated. The problem to be addressed in this section, is how to
select the best alternative hypothesis. Two situations, how the concept “best” can be
interpreted, will be treated in the following, a simple and a more complicated situation.

Simple situation A relatively simple situation is treated first. Suppose that an alter-
native hypothesis has more parameters in its parameter vector than the null hypothesis.
This is a reasonable assumption if we apply Occam’s razor (see section 2.4.5). Suppose
further that we want the testing procedure to use Uniformly Most Powerful Invariant
tests (UMPI-tests) (Teunissen, 2006, p. 62ff.). Finally suppose that all observables
have a normal distribution. In that case the test statistic for testing the alternative
hypothesis against the null hypothesis is a quadratic form, which has a χ2-distribution
with q degrees of freedom (Teunissen, 2006, p. 78). q is the extra number of parame-
ters that the alternative hypothesis has compared to the null hypothesis. Suppose then
that the parameter vectors of all alternative hypotheses have the same number of extra
parameters, i.e. q is equal for them. In that case, all test statistics to test each of them
against the null hypothesis have the same χ2-distribution, if the null hypothesis is valid.
It is now possible to state that the alternative hypothesis that yields the largest test
statistic is most probable, and to define the concept “best” in terms of probability.

10Reciprocal residuals can be viewed as the contravariant components relative to the reciprocal
basis in a multidimensional Euclidian space of the difference between the observation vector and the
expectation of the observation vector, where the metric is defined by a weight matrix, derived from the
covariance matrix. Hence the adjective "reciprocal".
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This situation can be found in the procedure of data snooping (Baarda, 1968b, p. 33).
This procedure tries to find biases in observations by formulating as many alternative
hypotheses, as there are observations. Each alternative hypothesis assumes one obser-
vation to be biased, and all other observations to be without bias. All these alternative
hypotheses are mutually exclusive, i.e. any two of these hypotheses cannot be both valid.
For these hypotheses q = 1. The procedure states that most probably thát observation
is biased, for which the alternative hypothesis yields the largest test statistic.

A similar situation we find in geodetic deformation analysis for the heuristic described
in both chapter 1 (section 1.3.3), and this chapter (section 2.4.3). The alternative
hypothesis is that one point (in 1D, 2D or 3D) is biased (has moved because of de-
formation), and all others are not. For all points such a hypothesis is formulated and
tested statistically. The alternative hypothesis, for which the test statistic is largest, is
sustained, and the point concerned is assumed to have moved.

For both situations described above two problems can arise.

The first problem arises, when not one observation is biased, but more than one. Then,
no one of the tested alternative hypotheses is valid. Both in data snooping and in the
heuristic for geodetic deformation analysis, the following procedure is followed. The
observation (data snooping) or point (heuristic) that gave the largest test statistic, is
considered biased, or under influence of deformation. To detect other biased obser-
vations or points under influence of deformation, the observation or point is removed
from the observation vector. The adjustment is repeated and also the testing of all
observations/points. The observation/point that has now the largest test statistic is
considered biased, or under influence of deformation, and removed to detect still more
biases or deformations. This process is repeated until the overall model test of the
remaining observations/points leads to acceptance of the null hypothesis.

It may be that observations/points have been removed mistakenly. Therefore, after the
null hypothesis is not rejected any more, observations or points that have been removed
are again added to the observation vector, and it is tested whether the null hypothesis
is still not rejected. This process of removing and again adding is called a forward and
backward search (Welsch et al. (2000, pp. 395-397), Niemeier (2008, pp. 446-450)).

The disadvantage of this procedure is that a valid alternative hypothesis, e.g. that two
observations/points are biased, is not directly compared with other similar alternative
hypotheses. There is, therefore, no statistical evidence that the accepted hypothesis
that the heuristic has arrived at, is really better than other possible hypotheses.

The second problem of data snooping or the heuristic of geodetic deformation analysis
is the multiple testing problem. If many similar hypotheses are tested, the chance of
acceptance of an erroneous hypothesis increases (Lehmann, 2012). A solution is to
adapt the critical values of the tests.

More complicated situation A more complicated situation arises, when q is different
for different alternative hypotheses, i.e. they have a different number of additional
parameters in relation to the null hypothesis. For geodetic deformation analysis this is
a common situation. It arises, for example, if both one moved point and two moved
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points are quite reasonable options. It arises as well, if, for example, a point is subsiding,
and both a linear subsidence (one subsidence parameter) and an exponential decay of
subsidence (described by, e.g., two parameters) are realistic options. In this situation
the test statistics of different alternative hypotheses will not have the same distribution
under the null hypothesis. Consequently, the critical values for testing the alternative
hypotheses will be different, if the same level of signifance is taken. Because the
distributions and the critical values are different, we cannot state that the largest of
the computed values for the test statistics of both alternative hypotheses represents the
most probable hypothesis.

Best hypothesis/model Both the simple situation and the complicated one show
that finding the “best alternative hypothesis”, when it is defined as the hypothesis, un-
der which the vector of observations is most likely, is not straightforward. Here it is
noticed here that finding the best alternative hypothesis is a model selection problem
(cf. Lehmann and Lösler (2017)). To accomplish model selection, use can be made of
a procedure such as data-snooping or the heuristic, described above for geodetic defor-
mation analysis. They are examples of methods for multiple comparison (cf. Imparato,
2016, p. 42ff.) and subset selection (selection of a suitable set of model parameters, cf.
Imparato, 2016, p. 189ff.).

From the given references it is clear that an optimal method for model selection in all
situations is not available, as yet. Here, the choice has been made to use an information
criterion for model selection. Examples of information criteria are the Akaike Information
Criterion (Akaike, 1974) and the Bayesian Information Criterion (Schwarz, 1978). This
study uses a different information criterion (treated more fully in chapter 6), based on
the B-method of testing (cf. Baarda (1968b, p. 33)). The criterion has been introduced
for the purpose of determining deformations in the gas fields in the Northern part of the
Netherlands (de Heus et al. (1994b,a)). The criterion is the ratio between the value of
the test statistic of a hypothesis and its critical value. This test ratio is computed for
different hypotheses, for which the critical values are linked by means of the B-method
of testing. It considers the best hypothesis the one that has the largest test ratio.

Whereas the method of test ratios, linked with the B-method of testing, has been
justified by de Heus et al. (1994b,a), it has not been shown to perform better than
methods that use different information criteria. Therefore, the justification is first
expatiated upon in the next paragraph, and then the desirable characteristics of a
method to find the best hypothesis, are mentioned in the subsequent paragraph.

At the centre of the justification is the linkage by B-method of testing, which means that
a certain deformation (the so-called reference minimal detectable bias or deformation)
will be detected by valid hypotheses of any dimension with the same power11. This
power is a monotonic increasing function of the size of the deformation (Teunissen,
2006, p. 97). The function is well-behaved. Therefore, it may be expected that for
deformations that are moderately larger or smaller, the power of valid hypotheses of
different dimensions, although not the same, are still quite similar. The test ratios
of valid hypotheses will increase with increasing deformations. Nonvalid hypotheses,

11The concepts “reference minimal detectable bias” and “valid model” are defined in chapter 6.
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however, will in general lead to smaller test ratios (de Heus et al., 1994a). Moreover, the
power is a monotonic decreasing function of the dimension of the test (Teunissen, 2006,
p. 97). This will enhance the tendency to get larger test ratios for valid hypotheses with
less parameters. Hence, it may be expected that a large test ratio is a strong indication
of a valid hypothesis with a small amount of parameters.

It is often considered a desirable characteristic of a testing method that it is a uniformly
most powerful test (Teunissen, 2006). If two alternative hypotheses are to be compared
with each other, it is not to be expected that a simple function of the test ratios of
both hypotheses can be used as the test statistic of an UMPI-test. Further research is,
therefore, necessary into the optimality characteristics of the method with test ratios,
coupled via the B-method of testing. It may be that other information criteria are better
suited for specific deformation situations. An example will be encountered in chapter
5, in which both the criterion based on test ratios, and Akaike’s Information Criterion
are used in a verification example. The latter performs better in that situation.

Conclusion In many situations where geodetic deformation analysis is applied, it is
not clear, which alternative hypotheses to consider and how to arrive at the best one.
The described disadvantages of the method used by data snooping and the heuristic
mentioned above, leads to the requirement for the two adjustment models that an infor-
mation criterion is needed to discriminate between competing alternative hypotheses.

In chapter 3 the search for the best alternative hypothesis is elaborated upon by con-
sidering a large amount of alternative hypotheses, each considering one, two, or more
points to be subject to deformation. Each alternative hypothesis is evaluated with the
method that is based on the B-method of testing, combined with test ratios. In the
other chapters the same information criterion is used to discriminate between deforma-
tion hypotheses. Additionally, in chapter 5 the results of this information criterion are
compared to the results when the Akaike Information Criterion is used.

2.5 Findings for standardisation and communication

To finish this chapter, I draw the attention to the last subquestion of the research
question (see section 1.4). It asks for the requirements that a geodetic deformation
analysis model has to fulfil to be usable for standardisation and, as a derivative, for
effective and efficient communication. The requirements are given below in the form of
an operational definition of a statistically significant deformation and of key performance
indicators. Both the definition and the key performance indicators make use of the
analysis model and its essential elements, as they have been treated in this chapter.

For standardisation of geodetic deformation analysis, it is necessary to have a clear
idea of what a deformation is. Therefore, an operational definition of a statistically
significant deformation is needed. My formulation is as follows:

“A statistically significant deformation is a deformation that fits a deforma-
tion hypothesis, which is described by constraints on the parameters of an
adjustment model of geodetic observations (or of coordinates, derived from
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them); the deformation hypothesis is described by physically interpretable
parameters (they have been derived from a physical model); the hypothesis
has been tested by means of a statistical test, which has a known level of
significance, if the hypothesis (either the null hypothesis, or the alterna-
tive hypothesis) is a valid one; and the deformation hypothesis has been
shown to be the best among its competitors, where "best" is defined by an
information criterion.”

For a geodetic stability analysis (“no deformation” is assumed as starting point) it is
generally necessary to know the minimal deformation that can be detected with the
analysis method. The minimal detectable bias (MDB) is the tool that is needed to
describe this quantity. The MDB is connected to a specific deformation test and to a
specific power of the test to detect a deformation, so this information has to be provided
if an MDB is mentioned. The MDBs needed are the MDBs of the constraints that define
the deformation hypothesis. Because they give information about deformations, they
may be calledminimal detectable deformations. A certain threshold for the deformations
is commonly given to the geodesist (a deformation larger than this threshold will lead
to actions to stop the deformation): if this threshold is exceeded, the geodesist has to
give a signal. The threshold is generally not formulated in statistical terms. The MDBs
should be smaller than this threshold. In this way the threshold is given a statistical
interpretation.

Also if not a stability analysis is asked for, but a deformation analysis, that gives informa-
tion on size and form of the deformation, the minimal detectable bias is a fundamental
concept in the communication between the geodesist and the client/non-expert. It pro-
vides a means to convey information on the size and form of the minimal detectable
deviations from the assumed deformation hypothesis.

The reference power that is used to compute the MDB has to be chosen in accordance
with the demands of the client. It may be that the probability of a type I error has to
stay low to avoid possibly superfluous work, and the MDB should give the impression
to be small enough (resulting in a low reference power, for example 70%), or it may
be that the probability of a type II error has to stay low (resulting in a high reference
power, for example 99%).

Besides the statistically significant deformation, the availability of key performance in-
dicators is essential for the assessment of the quality of a geodetic deformation analysis.
They can be used to compare the quality of different analyses, and thus to improve
communication about the analyses. The key performance indicators should give infor-
mation about the presence of a deformation, about its size and form (if a deformation
is present), and about the test quality (i.e. how good is the test in detecting deforma-
tions).
The key performance indicators are realised in this study as follows. The presence of a
deformation is determined with a statistical test of the constraints that define the defor-
mation. Its size and form is determined with least-squares estimates of the deformation
parameters. The test quality, finally, is determined with the MDBs.

The availability of the mentioned key performance indicators, based on the analysis
model and its characteristic elements as described in this chapter, and the definition of
a statistically significant deformation are the requirements that an analysis model has
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to fulfil to make a standardised procedure for geodetic deformation analysis possible.
With this standardised procedure a tool is available for improvement of communication
about geodetic deformation analysis.



3
Analysis model in 2D (2 epochs)1

3.1 Introduction

Deformation analysis is done in many fields of human activity, e.g. the production of
gas and oil, civil and construction engineering, water management, industrial installa-
tions, and because of threats of natural phenomena like land slides. An often applied
method is to determine coordinates (one-, two- or three-dimensional) of points that are
representative of the earth’s surface or the object that is or may be subject to defor-
mation. This object can be a civil engineering work, a building, a dam, an industrial
storage tank, part of the earths’ surface, etcetera. The object is represented by point
coordinates. If the coordinates are acquired by geodetic means, the point field is called
in this chapter a geodetic network. The deformation analysis looks at the changes of
the coordinates in the course of time.

Modern technology offers many possibilities to produce coordinates, e.g. total station
measurements, levelling, GPS, terrestrial photogrammetry and 3D laser scanning (ter-
restrial or air-borne). Also hydrological techniques, like networks of transponders on the
seafloor, can be considered here.

The approach to compare coordinates is appropriate, as it is generally natural to describe
deformations in their terms. Where in the past the amount of acquired coordinates was
often limited to a few tens or hundreds, modern techniques can deliver streams of
coordinates almost continuously, both in time and in space.

An approach towards the geometric analysis of the deformation of a point field is pre-
sented that differs notably from conventional methods as described in section 3.2.

1This chapter has been published before in Journal of Geodesy (Velsink, 2015b). To fit the pub-
lication into this study minor changes have been made. In contrast to the following chapters, in this
chapter stochastic variables are not underlined, and vectors and matrices are not printed in bold face.
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The proposed method The method, proposed in this chapter, is not based on an
analysis of displacement vectors, but on testing the results of connection adjustments
and can test for more deformed points simultaneously. It is invariant under changes of
the chosen S-systems (the reference systems of both the coordinates and their covariance
matrix), also known as the geodetic datums. The concept of an S-system is introduced
by Baarda (1973) and generalised by Teunissen (1985a, p. 41).

The proposed method elaborates on the theory in Teunissen (2006); Teunissen et al.
(1987a); Velsink (1998a) and applies it to the geometric analysis of a geodetic network
that has been measured in two epochs. The least squares adjustment of the coordi-
nates, resulting from the measurements at each epoch, and the detection, specification
and quantification of existing deformations are treated. The application of the theory
of testing multidimensional alternative hypotheses of Teunissen (2006, p. 71ff.), an ex-
tension of the testing of one-dimensional alternative hypotheses of Baarda (1968b), is
shown. The need to perform S-transformations during the testing process is avoided by
inserting transformation parameters into the adjustment model.

The proposed method follows an approach of formulating alternative hypotheses that
allow for complex hypotheses. By testing large amounts of multidimensional tests it
is possible to find the points that have been deformed most likely, without the need
to have prior information about the deformations. The method is capable of giving
a least squares estimates of the deformations. Moreover it can compute the minimal
detectable deformations, i.e. the size of the deformations, specified by an alternative
hypothesis, that can be found with a specified probability by testing the hypothesis. It
is an important tool for designing a geodetic network for deformation analysis.

Overview of this chapter After a description of the conventional approaches in sec-
tion 3.2 this chapter gives in section 3.3 a review of the adjustment model and its
solution for the connection of two epochs of coordinates of a geodetic network. Section
3.4 describes the theory of formulating one- and multidimensional alternative hypothe-
ses and the way to test them. The least squares estimation of the deformation and
the concept of a minimal detectable deformation are treated. Section 3.5 shows how
an alternative hypothesis can be specified that describes the deformation of several
points: the deformation of a partial point field. Also the case of two or more partial
point fields, each of which can have a different deformation, is treated. The connection
adjustment of section 3.3 and the test strategy in section 3.5.2, based on the testing
theory of section 3.4, lie at the heart of the method proposed in this chapter. An
algorithm, designed to test the method, is described in section 3.6. The results of the
application of this algorithm to a simulated network are given. They show that the
method is capable of detecting deformed partial point fields and estimate the size of
the deformation. The method of this chapter gives rise to a reconsideration of a few
aspects of geodetic deformation analysis. They are considered in section 3.7. Section
3.8 gives the conclusions of this chapter.
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3.2 Conventional approaches

If deformations are suspected in a geodetic network, but the exact points that have been
affected are not known, the conventional analysis method is to determine coordinates of
object points in two epochs in the same reference system (S-system) and to compute the
displacement vectors from these coordinates in order to test them (Kamiński and Nowel,
2013; Setan and Singh, 2001; Welsch et al., 2000; Caspary, 2000). The covariance ma-
trix of the displacement vectors is computed as well. Each object point is consecutively
tested by determining the 95%-confidence ellipse in 2D or ellipsoid in 3D and determin-
ing if the displacement vector is outside this ellips(oid) (Koch, 1985; Cederholm, 2003).
Such a test is in general not invariant under a change of S-system, as will be shown
in section 3.7.3. A solution can be sought in performing an S-transformation towards
such an S-system, in which the lengths of the displacement vectors are minimised. The
idea is that deformed points will show most clearly large displacement vectors in such
an S-system. A possible S-system is the inner constraint solution (Baarda, 1960; Pope,
1971). Chen (1983) and Caspary and Borutta (1987) use so-called “robust” methods,
e.g. by minimising the L1-norm of the displacement vector lengths, to find an optimal
S-system.

Welsch et al. (2000) describe also a different approach. They build an adjustment model,
in which the observations of two epochs are combined and constraints are imposed on
the point coordinates. The constraints state that coordinates of common points should
coincide, if no deformation has occurred. The quadratic form of the weighted estimated
least squares residuals that result from the adjustment, is tested. If this test fails, the
quadratic form is analysed to determine which points cause the failure. To this end a
decomposition of the quadratic form is performed by using Gauss, Cholesky or spectral
decomposition.

Typical for all these methods is the search for deformed points one-by-one. Because
more than one point can be subject to deformation, Welsch et al. (2000, pp. 395-
397) and Niemeier (2008, pp. 446-450) describe a strategy of “backward” and “forward”
searching for deformed points. “Backward” means removing points that are suspected of
being deformed and “forward” means (again) adding points that were formerly removed.
Koch (1985) describes a similar approach.

The method proposed in this chapter provides a test for a deformation pattern of several
deformed points that is more powerful (in the sense of a “most powerful test” as defined
by Teunissen (2006, p. 62)) than the mentioned conventional test strategies. It is
invariant under a change of the S-systems, in which the point coordinates are defined.
The need for such an invariance is mentioned in literature (Koch, 1985), but is not
present in the described conventional methods.

3.3 Review of the connection adjustment of two epochs of a
geodetic network

The method proposed in this chapter performs a connection adjustment of the adjust-
ment results of two epochs of geodetic measurements. The deformation analysis is done
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with the results of this connection adjustment. In this section the adjustment model
of the connection adjustment is reviewed. The theory can also be found in Teunissen
(1985a); Teunissen et al. (1987b); Velsink (1998a).

3.3.1 Three partial point fields and two reference systems

Consider a point field of several or even many points, where geodetic measurements have
been made with the intention to determine one-, two- or three-dimensional coordinates
of all points. It is assumed that a least squares adjustment of the measurements has
been performed, resulting in a set of coordinates with its covariance matrix of the point
field. At a later moment, the second epoch, the measurements are repeated, and also
the adjustment, resulting again in coordinates and their covariance matrix. Let us
take together all coordinates of epoch 1 in a vector a. In a two-dimensional plane, for
instance, the column vector a of Cartesian coordinates is written as:

a =
(
xa

1, ya
1, xa

2, ya
2, ... xa

na
, ya

na

)∗ (3.1)

where xa
1 and ya

1 are the x- and y-coordinates of point 1, etc, and na is the number of
points in vector a. The asterisk ∗ indicates the transpose of the vector. In the same
way all coordinates of epoch 2 are taken together in a vector b.

321
b

a

Figure 3.1: Point fields a and b and partial point
fields 1, 2 and 3. Partial point field 2 contains
the connection points.

Now vector a is partitioned in two parts:
part 1 contains all coordinates of points
that have no coordinates in vector b
(point field 1) and part 2 contains the co-
ordinates of all connection points (point
field 2), i.e. the coordinates of those
points that also have coordinates in vec-
tor b. Vector b is divided in the same way
in two subvectors b2 and b3. Subvector b2

contains the coordinates of the connec-
tion points, subvector b3 the coordinates
of the points that have no coordinates in
vector a (point field 3), see figure 3.1.

Only the coordinates in a2 and b2, the coordinates of the connection points, give us
information by which we can perform a connection adjustment. Influenced by the
adjustment are all coordinates: a1, a2, b2 and b3.

Vectors a and b are supposed to be random vectors with a normal distribution, described
by covariance matrices. The covariance matrix of a is indicated by Da. It can be divided
in a scalar variance factor σ2 and a cofactor matrix Qa as Da = σ2Qa. In the same way
we have Db = σ2Qb. The variance factor is seen as a convenient way to get cofactor
matrices with elements that are neither too large nor too small. The same variance
factor is taken for a and b.

A vector c contains the coordinates of all points as unknown parameters, to be estimated
in the least squares adjustment. Vector c is divided into three subvectors c1, c2 and c3,
in accordance with the three point fields 1, 2 and 3.
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It is assumed that c is defined in the same reference system (S-system) as a. Assume
that b is defined in a reference system (S-system) that differs from the reference system
of a by a similarity transformation or a congruence transformation. In 2D a similarity
transformation has four degrees of freedom: two translations in the directions of the x-
and y-axis, a rotation and a change of scale. In 3D there are seven degrees of freedom:
three translations, three rotations and a change of scale. In 1D there are two degrees
of freedom: a translation and a change of scale. A congruence transformation has in
all dimensions one degree of freedom less: the change of scale is missing.

To determine the coordinates in vector a geodetic measurements have been performed
that yield more, less or an equal amount of degrees of freedom in the resulting coordi-
nates as the measurements that resulted in vector b. It should be noted that only the
information that is common to both vectors can influence the adjustment. The degrees
of freedom of the transformation should encompass all degrees of freedom that both a
and b have (Teunissen, 1985a, p. 70).

3.3.2 Linearised adjustment model and its solution

Non-linear model and its linearisation The functional relationship between a, b and
c is given by the following equation:

c1

c2

c2

c3

 =


a1 − ea1

a2 − ea2

t(b2 − eb2
, f )

t(b3 − eb3
, f )

 (3.2)

where ea1 , ea2 , eb2
, eb3

are random errors with a mathematical expectation of zero, f is
the vector of transformation parameters from the reference system of b to that of a and
t(.) is the non-linear function describing the transformation.

Applying a non-linear adjustment to this model is generally not easy, so it is linearised.

To get simpler equations vector b is first loosely transformed to vector b
′
in such a way

that the elements of b
′

2 approximate those of a2:(
b
′

2

b
′

3

)
=

(
t
′
(b2, f

′
)

t
′
(b3, f

′
)

)
(3.3)

where b
′

2 ≈ a2.

Eq. (3.2) is now written as: 
c1

c2

c2

c3

 =


a1 − ea1

a2 − ea2

t(b
′

2 − eb′2
, f )

t(b
′

3 − eb′3
, f )

 (3.4)

where the transformation t and the transformation parameters f now cause only small
changes in the coordinates.
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Linearisation of function t yields the following linearised equation:
∆a1

∆a2

∆b
′

2

∆b
′

3

 =


I 0 0 0
0 I 0 0
0 I 0 −E2

0 0 I −E3




∆c1

∆c2

∆c3

∆f

+


ea1

ea2

eb′2
eb′3

 (3.5)

where I is the unit matrix, 0 is the matrix of zeros, E2, E3 are matrices to be looked
closer at in the sequel, ∆ is the difference of a vector and its vector of approximate
values, and ea1 , · · · , eb′3

are random errors. For a1, a2, b
′

2, · · · , c2, c3, f see section 3.3.1.

As approximate values are taken:

for a1 and c1 : a1;
for a2, b

′

2 and c2 : a2;
for b

′

3 and c3 : b
′

3;

For f approximate values are taken that leave the coordinates unchanged.

Matrix of coefficients of the transformation The matrices E2 and E3 are linearised
coefficient matrices of the transformation from the reference system of b to that of a.
As described in section 3.3.1 it is assumed that the transformation is a similarity or a
congruence transformation, which means that E2 and E3 result from the linearisation
of these transformations.

If for instance the transformation is a four parameter similarity transformation in a
two-dimensional plane (change of scale, change of orientation, translation along the x-
axis, translation along the y-axis), the matrices E2 and E3 have the following structure
(Velsink, 1998a, p. 60):

E =


...

...
...

...
x0

i −y0
i 1 0

y0
i x0

i 0 1
...

...
...

...

 (3.6)

where x0
i and y0

i are approximate coordinates of point i. The first column of E pertains
to the change of scale, the second to the change of orientation, the third and fourth
to the translation along respectively the x- and y-axis. For each point i the first row
concerns the x-coordinate and the second row the y-coordinate.

Reduced linearised adjustment model In the following the deltas will be dropped
and also the primes of b

′
, therefore e.g. ∆a1, ∆b

′

2 or ∆c3 will be indicated as a1, b2 and
c3 respectively. From eq. (3.5) the rows concerning vector a1 and vector b3 are omitted,
because they give no redundant information and do not influence the adjustment results.
Eq. (3.5) becomes:

(
a2

b2

)
=

(
I 0
I −E2

)(
c2

f

)
+

(
ea2

eb2

)
(3.7)
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Subtracting the second row from the first and putting d = a2− b2 and its random error
vector as ed with its cofactor matrix Qd gives:

d = E2f + ed (3.8)
Qd = Qa2 + Qb2

(3.9)

where Qa2 and Qb2
are the cofactor matrices of a2 and b2 respectively. The stochastic

vectors a and b (and therefore also a2 and b2) are supposed to be stochastically not
correlated mutually. Qa2 and Qb2

however can be full matrices.

The vector d contains 2na2 elements. The vector of transformation parameters f contains
p elements, where p is 2, 4 or 7 in 1D, 2D and 3D respectively in case of a similarity
transformation. For a congruence transformation p is 1, 3 or 6. The redundancy is
therefore 2na2 − p.

Adjustment The model consisting of equations (3.8) and (3.9) can be adjusted ac-
cording to the method of least squares. The result is:

f̂ = (E∗2Q−1
d E2)−1E∗2Q−1

d d (3.10)

d̂ = E2 f̂ (3.11)

êd = d− d̂ (3.12)

where f̂ contains the adjusted transformation parameters; d̂ the adjusted values of d,
and êd the estimated values of ed.

Because the model is a linearised one, iteration of the computation is necessary until a
certain iteration criterion is met.

Adjusted coordinates for all partial point fields From the adjusted vector d̂ the
adjusted vectors ĉ1, ĉ2 and ĉ3 can be calculated. The equations to use follow from the
equations to estimate the random errors of free variates (Teunissen, 2000, p. 76, equa-
tion (14)) and can be written as (Velsink, 1998a, p. 79):

ĉ1

ĉ2

ĉ2

ĉ3

 =


a1

a2

b2

b3

+


0
0

E2

E3

 f̂ +


−Qa1,a2

−Qa2

Qb2

Qb3,b2

Q−1
d êd (3.13)

As can be seen ĉ2 can be calculated along two paths. In practical calculations one path
is used. The other one may serve as a check.

3.3.3 The solution of the datum problem

In the previous section it is shown that a solution for vector c in eq. (3.2) can be found
via the following steps:
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1. Perform an approximate transformation on b in such a way that the transformed
vector b

′

2 is almost the same as vector a2.
2. Calculate the adjusted coordinates ĉ1, ĉ2 and ĉ3 with equations (3.8) to (3.13).

In performing these steps a problem occurs, if the matrix Qd of eq. (3.9) is singular and
the inverse of Qd in eq. (3.10) and (3.13) cannot be calculated. This may occur for
instance, if both vectors a2 and b2 are defined in the same S-system and Qa2 and Qb2

are both singular matrices. The singularity of Qd is related to the S-systems, in which
a2 and b2 are defined and can therefore be solved by performing S-transformations,
i.e. by changing the geodetic datums. Generally this is done by having the datum
defined by some or all stable points, making it possible in that way to test the other
points for deformation. This means that a change of datum is necessary if a datum
point is detected as being influenced by deformation. This is done by S-transformations
(van Mierlo, 1978) or generalised inverses (Koch, 1985). Another solution is however
possible.

Matrix Qd is calculated from eq. (3.9). In Teunissen et al. (1987b, p. 231) it is proven
that the same solution in eq. (3.13) is arrived at, if Qd of eq. (3.9) is replaced by the
regular matrix Qd′ :

Qd′ = Qd + E2QtE∗2 (3.14)

where Qt is any positive definite matrix with the right dimensions, for example the unit
matrix. Changing matrix Qd into the regular matrix Qd′ is called the regularisation
of Qd. Almost the same equation gives Teunissen (1985a, eq. (3.2.14.a)), where the
product E2E∗2 is used.

Schaffrin (1975, p. 27) shows that for any adjustment problem, formulated with observa-
tion equations, any symmetric positive semi-definite generalised inverse of Qd +k2E2E∗2 ,
with k 6= 0 an arbitrary real scalar, can be used as weight matrix of the observations
to arrive at the least squares solution. Because in our case Qd + k2E2E∗2 is a regular
matrix, the ordinary (Cayley) inverse can be used. From the proof of Schaffrin (1975,
p. 28) it is clear that instead of Qd + k2E2E∗2 also Qd′ = Qd + E2QtE∗2 can be taken
(the proof requires that R(E2) ⊂ R(Qd′); this is true, because Qd′ has full rank and so
R(Qd′) = Rm).

If Qd has a rank defect, i.e. rank(Qd) < na2 , with na2 the dimension of Qd, the rank of
Qd′ is larger than that of Qd, because Qd′ has full rank na2 . The regularisation of Qd can
therefore be interpreted as moving the datum outside the point field under consideration
and it is unnecessary to perform datum transformations: the datum problem is solved by
the transformation that is implicit in the adjustment model (Teunissen, 1985a, p. 75).

3.4 Testing theory applied to deformation analysis

The way to determine the deformation of an object is to represent the object by a point
field and to determine the changes in position, size and form of this point field. When
looking at just one point it is tempting to calculate the differences in coordinates of
this one point at two different epochs and to see these differences as the deformation.
This is common practice in many deformation analyses, see for example the product
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specification for performing and analysing deformation measurements of civil engineering
works in the Netherlands (Rijkswaterstaat, 2014).

It is however better to perform a connection between the coordinate set at the first
epoch and that of the second one. In section 3.3 the equations are given to fuse both
coordinate sets into one vector c by means of the method of least squares. In that
case it is assumed that both coordinate sets describe the same point field, without
any deformation. If a deformation has taken place it should be tested by one or more
appropriate statistical tests. If a statistical test leads to rejection, i.e. a deformation is
present, the corresponding equations for estimating errors give estimates for the size of
the deformation. These equations are given in section 3.4.2.

Before any deformation measurement is done it is possible to assess the smallest de-
formations that can be discovered with a certain probability by means of the designed
deformation network. Section 3.4.3 treats the necessary statistical quantities.

3.4.1 Detection and specification of a deformation

Performing a statistical test on the connection of two coordinate sets and concluding
that both coordinate sets describe the same point field differently and that a deformation
has occurred, is the detection phase of the analysis. Closely related to the detection is
the specification of the deformation, described by an alternative hypothesis.

3.4.1.1 Detection of blunders

Before any detection of deformations can be done, both a and b, and therefore d, have
to be free of blunders. If checking for blunders has not been done well, the remaining
blunders will lead to wrong conclusions regarding the deformations. A careful analysis of
external reliability (Baarda (1968a, p. 68), van Mierlo (1978, p. 19)) of the models by
which a and b were acquired, is necessary to assess the influence of possible remaining
blunders.

3.4.1.2 Null and alternative hypothesis

The detection of a deformation can be done by performing χ2-tests on the results of
the least squares adjustment. The equations given here are based on Velsink (1998c),
which in their turn are based on the first student edition of Teunissen (2006).

The adjustment model for the connection of both coordinate sets is given by equations
(3.8) and (3.9). It is written as a linear model of observation equations, where d is
the vector of observations and Qd its cofactor matrix. The matrix E2 is the matrix of
coefficients, f the vector of unknowns and ed the vector of random errors.

Solving the model of observation equations by means of the method of least squares
gives equations (3.10), (3.11) and (3.12). Testing this solution by means of χ2-tests is
done (Teunissen, 2006, p. 78) by considering the model of equations (3.8) and (3.9) as
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a null hypothesis and opposing it to an alternative hypothesis, defined by a specification
matrix C and a vector of unknowns ∇ (pronounced as “nabla”):

Null hypothesis Alternative hypothesis
d = E2f + ed d = E2f + C∇+ ed
Qd = Qa2 + Qb2

Qd = Qa2 + Qb2

(3.15)

where the random errors are supposed to be normally distributed, described by the
cofactor matrix Qd, and to have an expected value of zero, i.e.: E{ed} = 0.

Examples of the specification matrix C As an example take a two-dimensional
plane point field, of which x- and y-coordinates have been determined in two epochs.
Suppose that all points except points 4 and 5 stayed at the same position. Points 4
and 5 however have shifted away together in an equal, but unknown direction with an
equal, but unknown amount. The vector ∇ now consists of two elements, a shift in the
x-direction and a shift in the y-direction. The matrix C has two columns and twice as
many rows as there are points:

...
∇dx4

∇dy4

∇dx5

∇dy5

...


= C∇ =



...
...

1 0
0 1
1 0
0 1
...

...


(
∇x
∇y

)
(3.16)

where ∇dxi and ∇dyi are the shifts in the x- and y-direction of point i and ∇x and ∇y
the size of the shift in both directions. The elements of C that are represented by dots
are all zero.

If point 4 and 5 have shifted independently from each other, the vector ∇ has four
elements and we have:

...
∇dx4

∇dy4

∇dx5

∇dy5

...


= C∇ =



...
...

...
...

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
...

...
...

...




∇x4

∇y4

∇x5

∇y5

 (3.17)

3.4.1.3 Testing the alternative hypothesis

To test the alternative hypothesis against the null hypothesis the test statistic Vq is
calculated, where q indicates the number of elements of ∇ (and the rank of C) (Velsink,
1998c, p. (3)32):

Vq = r̂∗C(C∗Qr̂C)−1C∗r̂ (3.18)
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where the reciprocal random errors r̂ and their cofactor matrix Qr̂ are calculated as:

r̂ = Q−1
d êd (3.19)

Qr̂ = Q−1
d Qêd Q−1

d (3.20)

where êd is calculated with eq. (3.12) and Qd with eq. (3.9). The cofactor matrix Qêd

is calculated as follows:

Qêd = Qd −Qd̂
= Qd − E2(E∗2Q−1

d E2)−1E∗2
(3.21)

with E2 from equation (3.5) and Qd̂ the cofactor matrix of d̂.

The test statistic Vq is statistically distributed according to the χ2-distribution and
can therefore be tested by comparing it with a critical value, calculated from a chosen
level of significance. It is the uniformly most powerful invariant test (Teunissen, 2006,
pp. 69, 78) to test the alternative hypothesis against the null hypothesis according to
(3.15). We get the same result if Vq is divided by q and compared with a critical value,
computed from the F-distribution. The test is as follows:

If Fq,∞ =
Vq

qσ2
> Fcritical reject the null hypothesis. (3.22)

with σ2 the variance factor (variance of unit weight). It is assumed here that the
variance factor is known and is not estimated from the adjustment results.

In section 3.5.2 this test is adapted to take account of the situation where alternative
hypotheses of different dimension q are to be compared with each other.

3.4.1.4 S-system invariance of the test

Test (3.22) is invariant under changes of the S-systems relative to which vectors a and
b are defined. It is proven as follows. In Teunissen et al. (1987b, pp. 231, 232) it is
proven that r̂ is invariant under changes of the S-systems, in which a2 and b2 are defined
(hereafter called: r̂ is S-system invariant). Because the proof in Teunissen et al. (1987b)
is in Dutch, it is repeated here in English, adapted to the reasoning and formulation
of this chapter. Subsequently it is proven that also Qr̂ is S-system invariant. Because
r̂ and Qr̂ are S-system invariant, also Vq of eq. (3.18) and therefore test (3.22) are
S-system invariant.

Lemma 3.4.1. r̂ is S-system invariant

Proof. Model (3.8) includes a transformation f that describes, according to sections
3.3.1 and 3.3.2, the transformation from the reference system of b to the reference
system of a by a similarity or congruence transformation. Suppose that a or b or both
are defined in different S-systems, i.e. a and b are replaced by:

a′ = a + Ea∆fa (3.23)
b′ = b + Eb∆fb (3.24)
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where Ea and Eb are the linearised coefficient matrices of the similarity or congruence
transformation as described in section 3.3.2 and ∆fa and ∆fb are the vectors of trans-
formation parameters. Considering only the coordinates a2 and b2 of the connection
points and switching to vector d of eq. (3.8) we have:

d′ = a′2 − b′2 = d + E2∆f (3.25)

with ∆f = ∆fa −∆fb. For the cofactor matrix Qd′ of d′ we get:

Qd′ = Qd + Qd,f E∗2 + E2Qf ,d + E2Qf E∗2 (3.26)

where Qd,f is the cofactor matrix between d and ∆f , Qf ,d its transpose and Qf the
cofactor matrix of ∆f .

Model (3.8), (3.9) is formulated as a system of observation equations. It is now re-
formulated as the associated system of condition equations (that yields the same least
squares solution). First the full rank (2na2 × (2na2 − p))-matrix E⊥2 is introduced as the
matrix defined by:

E⊥∗2 E2 = 0 (3.27)

Premultiplying eq. (3.8) on both sides with E⊥∗2 we get

E⊥∗2 d = t (3.28)

where t = E⊥∗2 ed is the vector of misclosures with E{t} = 0. Eq. (3.28) is a system
of condition equations. Solving it by the method of least squares yields the following
equation:

r̂ = E⊥2 (E⊥∗2 QdE⊥2 )−1E⊥∗2 d (3.29)

where it should be noted that in solving the model of condition equations first r̂ is
calculated and then êd with:

êd = Qdr̂ (3.30)

which means that r̂ can be calculated without using the inverse of Qd.

If d is replaced in eq. (3.29) by d′ and Qd by Qd′ we get the changed r̂′, caused by the
transition of a and b to other S-systems:

r̂′ = E⊥2 (E⊥∗2 Qd′E⊥2 )−1E⊥∗2 d′ (3.31)

Substituting equations (3.25) and (3.26) into eq. (3.31), we see that the second term of
(3.25) and the last three terms of (3.26) lead to terms in (3.31) that are zero, because
E∗2E⊥2 = 0 and also E⊥∗2 E2 = 0 and therefore:

r̂′ = r̂ (3.32)

This means that r̂ remains unchanged and is S-system invariant.

Lemma 3.4.2. Qr̂ is S-system invariant

Proof. The cofactor matrix Qr̂ is obtained by applying the law of propagation of cofac-
tors to eq. (3.29):
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Qr̂ = E⊥2 (E⊥∗2 QdE⊥2 )−1E⊥∗2 (3.33)

Switching to other S-systems for a and b means replacing Qd in eq. (3.33) with Qd′

of eq. (3.26). Elaborating this shows that the last three terms of eq. (3.26) lead to
terms in eq. (3.33) that are zero, because E∗2E⊥2 = 0 and also E⊥∗2 E2 = 0. Therefore
Qr̂ remains unchanged and is S-system invariant.

3.4.1.5 Invariance under regularisation of Qd

In section 3.3.3 it is shown how regularisation of Qd can solve the datum problem.
Therefore it is important to prove the following lemma.
Lemma 3.4.3. Test (3.22) is invariant under regularisation of Qd.

Proof. The regularisation of Qd is done with eq. (3.14), which is repeated here:

Qd′ = Qd + E2QtE∗2 (3.34)

Substituting (3.34) into eq. (3.29) shows that the second term of (3.34) is postmulti-
plied with E⊥2 , which yields a term of zero, because E∗2E⊥2 = 0. Therefore r̂ is invariant
under the replacement of Qd with Qd′ .

Eq. (3.33) yields the cofactor matrix Qr̂. Replacing Qd in this equation with Qd′ doesn’t
change Qr̂ for the same reason it didn’t change r̂. Therefore also Qr̂ is invariant under
the replacement of Qd with Qd′ .

The conclusion is that both r̂ and Qr̂ are invariant under regularisation of Qd, which
means that also Vq of eq. (3.18) and therefore test (3.22) are invariant under regulari-
sation of Qd.

3.4.1.6 Types of alternative hypotheses

There are many alternative hypotheses, each defined by its own specification matrix C,
that can be tested by the test statistic Vq. The number of elements of vector ∇ (and
so the number of independent errors that can be tested for) is q and it is limited by the
redundancy of the adjustment model (equations (3.8), (3.9)). In this adjustment model
2, 4 or 7 transformation parameters (in a 1-, 2- or 3-dimensional connection problem
respectively) are determined by at least as many coordinate differences. The excess
coordinate differences determine the redundancy. So the redundancy ρ is equal to the
difference of the number of rows of the matrix E2 and its number of columns.

The number of elements of vector ∇ is q. It cannot exceed the redundancy ρ, so:

1 ≤ q ≤ ρ (3.35)
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Overall model test If q = ρ the test statistic Vq, now indicated as Vρ, can be
simplified to (Velsink, 1998c, p. (3)44):

Vρ = ê∗d Q−1
d êd (3.36)

Because the matrix C is eliminated from the equation, any matrix C of full rank and
with ρ columns, of which the range space is complementary to the range space of E2,
will give the same test result when used in eq. (3.18). This test is therefore a general
test on the correctness of the null hypothesis and is called the overall model test.

w-test If q = 1 the test statistic Vq, written as V1 can be transformed into the well-
known w test statistic (Baarda, 1968b, p. 14). The matrix C is now a vector, indicated
by a lower-case letter c. Eq. (3.18) can in this case be written as:

V1 =
(c∗r̂)2

c∗Qr̂c
(3.37)

The test statistic w is defined by:

w =
c∗r̂

σ
√

c∗Qr̂c
(3.38)

Therefore the relation between V1 and w is:

w2 = σ2V1 (3.39)

The test statistic w has a standard normal distribution and therefore its expectation is
0 and its standard deviation 1.

Data-snooping and point test If in performing the w-test the vector c in eq. (3.38)
is defined as:

c =



0
...
0
1
0
...
0


(3.40)

the test is, if one point has changed in one coordinate direction only, while all other
points have not changed position. Testing successively all coordinates with (3.22),
(3.37) and (3.40) is called data-snooping (Baarda, 1968b, p. 30). In a 1D-connection
of point fields this is a realistic test. In a 2D- or 3D-connection it can be used to check
for example for an input error. To test for a deformation in 2D and 3D however, it
is less useful, because a deformation affects in general two or three coordinates of one
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point simultaneously. A more logical test is then a test with q = 2 or q = 3 and a
C-matrix that looks like, for example in 3D, with the dots indicating zeros:

C =



...
...

...
1 0 0
0 1 0
0 0 1
...

...
...

 (3.41)

Such a test is called a point test.

3.4.1.7 Tests with 1 < q < ρ

The overall model test with Vρ of eq. (3.36) is called a ρ-dimensional test and the
w-test with the test statistic of eq. (3.38), where q = 1, is called a 1-dimensional test.
Between these two extremes of q = 1 and q = ρ many tests can be devised where
1 < q < ρ. The point tests of the previous section 3.4.1.6, where q = 2 or q = 3, are
just one example. The case, where a deformation pattern of many points is tested by
specifying an appropriate C-matrix with q a value between 1 and ρ will be treated in
section 3.5.

3.4.2 Quantification of a deformation (its least squares estimation)

As shown in the previous subsections many alternative hypotheses can be formulated.
In section 3.6 it will be shown that it is worthwhile to automate the process and to test
for thousands of alternative hypotheses to find the best one in the case that the overall
model test of section 3.4.1.6 has rejected the null hypothesis.

If the best alternative hypothesis has been found, the associated C-matrix is known and
it is possible to estimate the size of the deformation by estimating ∇̂:

∇̂ = (C∗Qr̂C)−1C∗r̂ (3.42)

The estimated deformation in each coordinate is in e.g. 2D:
∇̂dx1

∇̂dy1

...
∇̂dxna2

∇̂dyna2

 = C∇̂ (3.43)

It is worth noting that this estimation of deformations for each coordinate direction
of a point is in general different from the coordinate differences between the first and
second epoch of that point: the least squares estimator of the deformation is a best
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linear unbiased estimator (Teunissen, 2000) and is in that sense better than the in
practice often applied method of assessing a deformation by computing differences and
at the most presenting a graphical representation of the differences. Much however
depends upon the correctness of the alternative hypothesis. Finding the right alternative
hypothesis is the subject of sections 3.5 and 3.6.

3.4.3 Minimal Detectable Deformation

Designing a geodetic network for the purpose of deformation analysis involves con-
sideration of the type and size of deformation that can be detected by the analysis.
Deformation measurements are subject to stochasticity that is caused by the measuring
instruments, the observer (human or not) and the idealisation precision (the precision
by which an object in reality is represented in a mathematical model, i.e. the precision
of the “linking-up” of the model (Baarda, 1967, p. 6)). It is difficult to distinguish a
deformation from this stochastical variation of measurement values. The way to go is
shown by Baarda (1968b) and extended by Teunissen (2000).

Using the analysis procedure as described in the preceding sections it is natural to use
the concept of the minimal detectable bias (Teunissen, 2006, p. 102) to evaluate the
type and size of deformation that can be detected by the analysis. In the context of
deformation analysis we will talk about the minimal detectable deformation ∇0, defined
by:

σ2λ0 = ∇∗0C∗Qr̂C∇0 (3.44)

where σ2 is the variance factor (variance of unit weight), λ0 is the reference noncentrality
parameter (its computation is explained below), and C and Qr̂ are as defined above.

The reference noncentrality parameter λ0 is dependent on the power γ of test (3.22),
the size α of this test and the dimension q, symbolically written as:

λ0 = λ(γ,α, q) (3.45)

If a 1-dimensional test is performed (q = 1) and the size is chosen as α = 0.1% and
the power as γ = 80%, a value of λ0 = 17.075 results.

In general it is desirable that different tests (3.22) with different dimensions q have the
same power γ (indicated as γ0) and the same noncentrality parameter λ0 (the reference
noncentrality parameter). That means that for different dimensions different sizes α
are used. Usually the value for q = 1, indicated by α0, is fixed at a certain value, often
α0 = 0.1%. This procedure is called the B-method of testing (Baarda, 1968b, p. 34),
see also Velsink (1998c, p. (3)54) and Niemeier (2008, p. 303).

The minimal detectable deformation ∇0 of eq. (3.44) describes the deformation that,
if present, will be detected by test (3.22) with a probability of γ0 (e.g. 80%), if the
critical value of the test is computed with the chosen reference noncentrality parameter
λ0 (e.g. 17.075), using the B-method of testing.
Deformations that are smaller will be detected with a smaller probability than γ0.
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The minimal detectable deformation ∇0 (MDD) is defined in eq. (3.44). In a 1-
dimensional test (q = 1) it is a scalar, that can be readily derived from eq. (3.44),
except for its sign:

|∇0| = σ

√
λ0

c∗Qr̂c
(3.46)

where c is written with a lower-case letter, because it is a vector in case q = 1.

If q = 2 eq. (3.44) describes an ellipse, if q = 3 an ellipsoid and for q > 3 a hyperellip-
soid.

The principal axes of the hyperellipsoid are determined by computing the eigenvectors
of C∗Qr̂C. The lengths of ∇0 in the direction of these axes are determined by the
eigenvalues of the said matrix. The following equation gives the relation (Teunissen,
2006, p. 105):

∇0k = σ

√
λ0

λk
dk , k = 1, 2, ... , q (3.47)

where ∇0k is the vector that gives the MDD in the direction of the k-th eigenvector, σ
is the square root of the variance factor, λ0 is the reference noncentrality parameter, λk
is the k-th eigenvalue of C∗Qr̂C, and dk is the k-th normalised eigenvector of C∗Qr̂C.

The hyperellipsoid of eq. (3.44) gives information about the whole point field, not
just about one or a few points. The equation to give information about individual
coordinates is: 

∇0dx1

∇0dy1

...
∇0dxna2

∇0dyna2

 = C∇0 (3.48)

In the case of data snooping the matrix C is a vector with only one element different
from zero and eq. (3.46) can be used. The MDD can then be uniquely attributed to
one coordinate. For higher dimensional alternative hypotheses the quantity ∇0 in eq.
(3.48) can be chosen to be ∇0k of eq. (3.47) belonging to the largest eigenvalue of
C∗Qr̂C.

Designing a geodetic network for deformation analysis is strongly supported by comput-
ing the MDD’s for those alternative hypotheses that describe the deformation situations
that might occur. An advantage of the equations given is that the MDD’s can be com-
puted before the first epoch is measured, i.e. in the design stage of the deformation
network.
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3.5 Testing the deformation of partial point fields

3.5.1 Data snooping strategy

If coordinates of a point field have been determined at two or more epochs a deformation
analysis can be performed. What is an optimal strategy to perform such an analysis?
When no specific indication is present about the points that have been deformed, it
seems appropriate to start with data snooping, if the overall model test rejects the null
hypothesis. That means that each coordinate is tested by means of the test statistic
w of eq. (3.38) with the c-vector from eq. (3.40). The idea is that by checking
each coordinate successively for a deformation one will effectively find all deformed
coordinates. In the following these test statistics w are called conventional w-quantities.

Baarda (1968b) introduced the idea of data snooping and he warned immediately for
the limitations of it. He writes on page 12: “These “possible” model errors are now
described by a number of alternative hypotheses, which in principle do not have to
occur simultaneously” (emphasis from Baarda). The alternative hypothesis that checks
coordinate i tests if that coordinate is deformed and all other coordinates are not. This
alternative hypothesis cannot be true simultaneously with the alternative hypothesis
that coordinate j 6= i is deformed and all other coordinates are not.

The conventional strategy of data snooping is to compute the conventional w-quantities
and consider the coordinate with the largest w-quantity deformed, if its absolute value
is larger than the critical value of the normal distribution (3.29 if α = 0.1%). After
removing this coordinate from the data set and repeating the adjustment and testing
the then largest w-quantity, its coordinate is removed if the critical value is exceeded.
This process is repeated until no critical value is exceeded anymore. This strategy does
not provide the uniformly most powerful invariant test as defined in Teunissen (2006,
p. 62), if the deformation concerns more than one coordinate. The uniformly most
powerful invariant test is test (3.22) with a matrix C that describes all coordinates
affected by the deformation.

In a 2D or 3D point field testing for deformations is done more logically not by testing
individual coordinates, but individual points. The alternative hypothesis is in this case,
that two or three coordinates (for 2D and 3D respectively) are deformed and all other
coordinates are not. Here we call a strategy that tests every point successively with
such an alternative hypothesis point data snooping.

Point data snooping does not provide the uniformly most powerful invariant test if more
than one point is subject to deformation. Such a test is test (3.22) with a matrix C
that describes all points affected by the deformation.

3.5.2 Formulating alternative hypotheses to test for a deformation

Usually a deformation affects not just one point, but several points of a geodetic network.
Testing for the occurrence of such a deformation can be done by choosing an appropriate
C-matrix and using test (3.22). But how to know what an appropriate C-matrix is?
If information is available about the processes that underlie the deformation, these
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processes may dictate the C-matrix to use. In many cases however the underlying
processes are not known well enough or even not known at all. Then one can simply
try several different C-matrices and perform test (3.22). The C-matrix that delivers the
largest value for the test statistic indicates the best alternative hypothesis.

Dimension q differs for different C-matrices A problem arises if the different C-
matrices that are tested, have different dimensions, i.e. q is different. This means
that test (3.22) is executed with different sizes α (if the B-method of testing is used).
As a consequence different critical values are used. In that case the fact that the
test statistic Vq for a certain alternative hypothesis has a larger value than any other
alternative hypothesis doesn’t mean that the alternative hypothesis concerned is the
best one. De Heus et al. (1994b) proposed to use in such a situation the ratio of
the test statistic with the critical value, while fixing the power γ at 50% (not 80% as
before). The resulting new test is:

If
Fq,∞

Fcritical
=

Vq

qσ2Fcritical
> 1 reject the null hypothesis. (3.49)

Test strategy The test strategy now becomes: try several different C-matrices and
perform test (3.49). The C-matrix that gives the largest ratio that is larger than one
indicates the best alternative hypothesis, assuming that no C-matrix exists that is not
tested for and that would give an even larger ratio.

Because test (3.22) is S-system invariant also test (3.49) and the above test strategy
are S-system invariant.

A justification for a test strategy using test ratios is given by de Heus et al. (1994a),
de Heus et al. (1994b, appendix).

3.5.3 Several differently deformed partial point fields

In a geodetic network, consisting of many points, designed to detect deformations, it is
plausible that one point may deform, but also that two, three, or even more points may
deform. These points can deform in exactly the same way, for example shifting away
with the same amount in the same direction. It is also possible that some deform in
the same way, but others differently. To illustrate these possibilities three examples in
2D of C-matrices are given.

The first C-matrix says that the first two points have been deformed with the same
amount in the same direction. The second C-matrix says also that the first two points
have been deformed, but the second point has a deformation that differs from that of
the first point. The third C-matrix says the size of the deformation of the second point
is s times the size of the deformation of the first point. s may be, for example, the ratio
of the distance of the second point to a certain fixed point and the distance of the first
point to that point, reflecting the situation that the deformation of a point may depend
on the distance to a certain fixed point.
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The vertical dots indicate a not specified amount of rows, consisting merely of zeros.

C1 =


1 0
0 1
1 0
0 1
...

...

 C2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
...

...
...

...

 C3 =


1 0
0 1
s 0
0 s
...

...

 (3.50)

By using such specification matrices C one can test the deformation of a subset of
points or even of several subsets of points. It is therefore a multi-point testing method,
contrary to the often used point-by-point methods, described in section 3.2.

How points are deformed, depends on the physical processes that underlie the defor-
mations. These processes may cause a simple shifting of (subsets of) points that can
be described by simple C-matrices like the ones above. It is however also possible that
more complex deformations result from the physical processes. If the parabolic form of
a water storage dam is considered, its deformations might follow a pattern that can be
described by a mathematical function. Linearisation of this function gives the C-matrix
that can be used for testing. If a subset of points is subject to an elastic deforma-
tion, the points of this subset undergo an affine transformation. Linearisation of the
equations of the affine transformation results in the following matrix C:

C =



0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0

x0
i y0

i 0 0 1 0
0 0 x0

i y0
i 0 1

...
...

...
...

...
...

x0
i+j y0

i+j 0 0 1 0

0 0 x0
i+j y0

i+j 0 1

0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0



(3.51)

with i until i + j the points of the deformed subset.

The six columns of this matrix C correspond to the six parameters of the affine trans-
formation that the points are subject to.

3.5.4 B-method of testing

It is assumed in the testing strategy that the B-method of testing is applied (Baarda,
1968b, p. 33). This means that first the overall model test is performed. If the null
hypothesis is accepted, the testing stops. Only if the null hypothosesis is rejected
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the search for the best fitting alternative hypothesis is started, beginning with data
snooping. The overall model test and the one- and multidimensional tests are linked by
the requirement that all tests have the same power if a deformation of the size of the
minimal detectable deformation is present. The consequence is that the significance
levels of the tests differ for different dimensions. The significance level for a certain
dimension is chosen, from which the significance levels for all other dimensions are
derived. Starting from the one-dimensional test or starting from the ρ-dimensional
overall model test are two options given by Baarda (1968b, p. 25). Starting from the
significance level of the one-dimensional test (α0) may result in large values for the
significance level αρ of the overall model test (over 50%), if ρ is large. Therefore for
the validation in section 3.6.2 it is chosen to fix αρ and to derive α0 from it. This may
result in very small values for α0.

3.6 Searching the best alternative hypothesis

3.6.1 Automating the process

The assumption in the test strategy of section 3.5.2 that no accidentally not tested
C-matrix exists with a larger ratio, is tricky. The amount of possible alternative hy-
potheses, and thus of possible C-matrices, can be infinitely large. In practice not all are
relevant, but extremely many can be plausible. It is possible to automate the process of
formulating alternative hypotheses (and thus of designing C-matrices) and subsequently
testing these hypotheses. Testing one alternative hypothesis can be done very fast, if
a computer is used. The number of numerical computations depends on the size of
matrix C∗Qr̂C in eq. (3.18). The dimension of this matrix is equal to the amount of
columns of matrix C, so equal to q. Computing the test statistic for small-dimensional
tests can therefore be done extremely fast. Computing thousands or ten thousands of
test statistics is just a matter of seconds.

An algorithm for the adjustment model of section 3.3 and its testing with q-dimensional
tests, as described in sections 3.4 and 3.5, has been programmed for use in a computer.

The automated testing of large amounts of alternative hypotheses has been incorporated
into the algorithm. The algorithm starts with testing all hypotheses that just one point
has been deformed and all others haven’t. Then it takes every combination of two
points and tests if those two points have been deformed in the same way and that all
other points have not been deformed. It also tests if the two points have been deformed
in a different way.

Subsequently it takes every combination of three points and performs analogous tests.
It goes on with testing combinations of four points, five points, etcetera.

Here the algorithm as for now stops in taking combinations of points to be tested. It
could be possible to test, for example, if two points have been deformed in the same
way and a certain third point in a different way. This the algorithm doesn’t do, as so
many other combinations are not tested.
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Because point fields can have very large amounts of points, the amount of combinations
can very rapidly attain incredibly large numbers, so the algorithm limits the total amount
of alternative hypotheses to be calculated.

The algorithm calculates test ratios (see test (3.49)) for every alternative hypothesis
and lists the 10 alternative hypotheses with the largest ratios.

Testing the algorithm showed that the deformation patterns of the 10 alternative hy-
potheses give more information about the deformations present than just data snooping
or point data snooping can provide.

3.6.2 Validation of the method

To validate the proposed automated process a numerical test is presented. In section
13.5 of Niemeier (2008) a simulated network (figure 3.2), used before in a FIG working
group (Welsch, 1983), is given. It is about a 2D geodetic network, where distances and
directions have been measured in two epochs.

Figure 3.2: The simulated network from Niemeier (2008) (“Verwerfung” means “fault”).

Niemeier’s analysis Niemeier (2008) analyses the network in two ways. First he
assumes that it is unknown if and where points are deformed and performs a one-step
analysis, in which the forward and backward strategy, mentioned in the introduction,
is performed. This strategy identifies significantly shifted points. Secondly a two-step
strategy is described, in which the fault zone is assumed to be known. The points that
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are supposed to be stable (reference points) are tested with an overall model test and
a subsequent localisation of non-stable points is done. In the second step it is tested
point-by-point, if a point should be attributed to the reference points. The results are
given in table 3.1 together with the simulated shifts (deformations). Point 7 doesn’t
appear in the table, because it was not measured in two epochs and is therefore no
connection point.

As can be seen in table 3.1 the one-step strategy doesn’t succeed in giving satisfying
results. The two-step strategy gives better results, helped, of course, by its knowing
which points are deformed most probably.

simul. 1-step 2-step section 6.1

Pointnr. dx dy dx dy dx dy dx dy

3 20 12 0 0 21.8 20.7 23.7 8.0
5 20 12 0 0 22.8 21.0 23.7 8.0
11 20 12 18.8 -8.3 23.3 5.8 23.7 8.0
21 0 0 -21.9 -5.2 0 0 0 0
35 0 0 -12.2 -4.4 0 0 0 0
39 20 12 0 0 22.4 9.2 23.7 8.0
41 20 12 10.2 -5.5 20.7 6.5 23.7 8.0
43 0 0 -19.4 -6.3 0 0 0 0
45 0 0 -21.4 -0.4 0 0 0 0
47 0 0 -17.2 2.8 0 0 0 0

Table 3.1: Simulated shifts in cm and results of one-step strategy, two-step
strategy (from Niemeier (2008)) and algorithm of section 3.6.1.

Analysis with the algorithm To test the algorithm, described in section 3.6.1, first
coordinates and their covariance matrices were computed for each epoch. The distance
and direction observations and their standard deviations as given in Niemeier (2008)
were used, except for the incorrect standard deviation of 1.5 cm for the distance obser-
vations, for which the correct standard deviation of 10.5 cm (personal communication
of Prof. Niemeier) was used. The adjustment of each epoch was done as a free network
adjustment. Both adjustments were tested with an overall model test and accepted.
For the connection adjustment the model of section 3.3.2 was used with a similarity
transformation. The full covariance matrices of the coordinates as computed in both
epochs were used in the connection adjustment. The overall model test (eq. (3.36))
was not accepted with a square root of Fb,∞ from eq. (3.22) equal to 2.33, using the
B-method of testing with λ0 = 10.014, γ0 = 50% and αρ = 10%. The square root of
the ratio according to test (3.49) was 1.98.

Because the overall model test was not accepted, the algorithm searched for the best
alternative hypothesis. It generated 19,800 alternative hypotheses and tested each of
them. The following three types of alternative hypotheses were generated:
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1. one point is deformed, all others are not; to be tested for each of the 14 points
that were measured in both epochs;

2. two, three, four and up to seven points are deformed; the deformation is the same
for each point;

3. two, three, four and up to seven points are deformed; the deformation is different
for each point.

The first type amounts to fourteen alternative hypotheses.

The second and third type amount each to
7∑

i=2

(
14

i

)
= 9, 893 alternative hypotheses. (3.52)

Each alternative hypothesis with i > 7 gives an identical test result as one alternative
hypothesis with i ≤ 7, because testing that some specified points are deformed and
the others not is equivalent to testing that those others are deformed and the specified
aren’t.

The three types of alternative hypotheses together give 14 + 9, 893 + 9, 893 = 19, 800
alternative hypotheses.

B-method of testing is used
Tested alternative hypotheses 19,800
Level of significance overall model test 10%
Level of significance one-dimensional test 0.16%
Power 50%
Reference non-centrality parameter 10.014
Test ratio overall model test 1.98
Ten largest test ratios of alternative hypotheses
Ratio Points affected:
3.09 11 3 41 5 39
2.74 11 15 3 41 5 39
2.73 11 41 39
2.72 11 3 41 5 21 39
2.71 45 13 21 35 43 47
2.63 11 15 37 41 17 39
2.58 45 13 17 21 35 43

47
2.58 11 15 3 37 41 5

39
2.57 11 15 41 39
2.56 11 41 5 39

Table 3.2: Results of the algorithm.

For each alternative hypothesis the square root of the ratio according to test (3.49) was
computed. The alternative hypotheses were sorted in order of this ratio. The largest
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square root of the ratio was 3.09 (table 3.2) and belonged to the alternative hypothesis
that the five points 3, 5, 11, 39 and 41 were deformed, all in the same way, and that
all other points had not been deformed. This hypothesis gives exactly the points that
are the deformed points according to Niemeier (2008), see table 3.1 and figure 3.2. It
is clear from table 3.2 that the largest value of 3.09 was notably larger than the other
ones.

For the best alternative hypothesis the deformations of the five deformed points were
estimated according to equations (3.42) and (3.43). Estimated was a shift in the x-
direction of 23.7 cm and in the y-direction of 8.0 cm. These results are shown in the last
two columns of table 3.1. The root mean square (rms) of the differences between the
estimated shifts and the simulated ones is 3.9 cm, where it is 5.1 cm for the two-step
strategy.

Conclusion of the numerical test The numerical test shows that the method is
effective in detecting the points affected by deformation and gives a smaller rms of
the remaining coordinate differences than the conventional methods as described in
Niemeier (2008, section 13). The advantage of this method is that it doesn’t need to
have prior information about which points might have been deformed (no information
about the deformation zone is needed).

Not all possible alternative hypotheses were tested in the simulation. For example the
hypothesis that two points were deformed in the same way and one other point in a
different way, was not tested. Because the true hypothesis was among the tested ones,
the method found it.

3.7 Considerations

3.7.1 Reference points and object points

It is common in the literature (de Heus et al., 1994b; Welsch and Heunecke, 2001;
Rüeger, 2006) to distinguish between object points and reference points. In an absolute
deformation analysis the stability of the reference points is checked first. Then the
reference points are kept fixed and the object points are checked for deformation. Using
the model of this chapter, the reference points are just one subset of points. The object
points form another subset of points, or they may form several subsets. The search
is for the functional relationship between the points and is equivalent to the search of
the specification matrix C as described in section 3.6. The result can be that several
subsets emerge that have changed their relative positions. The subset of reference
points is one of them. If, for the analysis of the object points, the reference points are
fixed, i.e. considered errorless, the stochasticity of the reference points is "pushed" to
the object points and in this way disturbs the analysis. Specifying the right alternative
hypothesis, i.e. specifying the right matrix C with the appropriate subsets of points and
with stochastic reference points, is to be preferred.



72 3. Analysis model in 2D (2 epochs)

3.7.2 S-transformation or implicit transformation

The model for the connection adjustment, as it is presented in this chapter, includes
a transformation (eq. (3.2)). One could approach the connection problem without a
transformation, in which case it is necessary that the coordinate vectors a and b are
defined in the same reference system. Generally the geodetic datum is defined by some or
all points and it is necessary to perform S-transformations (Baarda, 1973; Koch, 1985;
Welsch et al., 2000) in the process of searching the best alternative hypothesis. To
avoid this the connection model includes a transformation. This implicit transformation
and the regularisation, described in section 3.3.3, take care of the datum problem,
i.e. the transformation between S-systems. Because of the implicit transformation and
the regularisation, it is possible to perform tests of points that are part of the datum
definition in an S-system, and to estimate their deformations, without performing any
S-transformation.

3.7.3 Testing with confidence ellipsoids

In this section the conditions are derived under which the more general test (3.22) is
equal to the testing of confidence ellipsoids (Cederholm, 2003).

If a and b are defined in the same S-system, transformation f is estimated in eq. (3.10)
as f̂ = 0. This means:

êd = d (3.53)
Qêd = Qd (3.54)

From this the test quantity of eq. (3.18) becomes:

Vq = d∗Q−1
d C(C∗Q−1

d C)−1C∗Q−1
d d (3.55)

Divide Q−1
d into four sub matrices and d into two sub vectors according to:

Q−1
d =

(
W1 W∗3
W3 W2

)
; d =

(
d1

d2

)
(3.56)

with W1 a (3× 3)-matrix and d1 a 3-vector.

In case of point data snooping in 3D and testing the first point, matrix C follows from
eq. (3.41) and we get:

d∗Q−1
d C = d∗1W1 + d∗2W3 (3.57)

C∗Q−1
d d = W1d1 + W∗3 d2 (3.58)

C∗Q−1
d C = W1 (3.59)

Vq becomes:
Vq = (d∗1W1 + d∗2W3)W−1

1 (W1d1 + W∗3 d2) (3.60)
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If W3 = 0, i.e. there is no correlation between the coordinates of the first point and all
other points for both a and b, we get:

Vq = d∗1W1d1 (3.61)

Performing test (3.22) is now equal to testing coordinate differences with confidence
ellipsoids (Cederholm, 2003), if the same level of statistical significance is chosen.

The choice of which point is the first point is arbitrary, which means that eq. (3.61)
can be used for any point. The reasoning has been done for 3D, but is the same for 1D
and 2D.

The conclusion is that testing using confidence ellipsoids (confidence regions in 1D,
confidence ellipses in 2D) is the uniformly most powerful invariant test (in accordance
with the definition of such a test in Teunissen (2006, p. 62)), if two conditions are
fulfilled:

1. The coordinates of a and b are defined in the same S-system

2. The coordinate difference between a and b of any point is not correlated with any
other coordinate difference.

If an S-transformation is performed on the coordinates of all points, they will all in
general be correlated with each other after the transformation, even if they were not
before. This means that testing with confidence ellipsoids is not the uniformly most
powerful invariant test after an S-transformation. It also means that the results of a
confidence ellipsoids test (Koch, 1985; Cederholm, 2003) is in general not invariant
under a change of the S-system.

If Qd is of full rank, it is not clear whether a and b are defined in the same S-system.
In such a case using model (3.8), (3.9) is preferable for two reasons. First it has
a transformation included, which solves the datum problem. Secondly it eliminates
the uncertainty in the definition of the degrees of freedom of the S-system from the
deformation analysis.

Model (3.8), (3.9) cannot be used, if the deformation is relative to points (objects,
part of the earth’s surface) that lie outside the point field under consideration, i.e.
the reference points are not part of a2 and b2. This is the case, for instance, if the
reference system itself is used as reference for the deformation analysis. In such a case
the transformation should be omitted from model (3.5). This is not elaborated upon in
this chapter.

3.7.4 Geometric and physical interpretation

A geometric deformation analysis can be improved significantly if physical causes of
the deformation are taken into account. In section 3.4 it is shown how an alternative
hypothesis is defined by a specification matrix C. A method is proposed to find the
best C. The method applies in fact "brute force": it tries to test as many as possible
alternative hypotheses to find the one with the largest test ratio. The search for the
best alternative hypothesis could, however, be formulated in a general way:
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Search Find the alternative hypothesis with a specification matrix C that maximises
the test ratio of test (3.49).

A mathematical approach of this search means finding the derivative of the left hand
side of the inequality of test (3.49) relative to the elements of matrix C and equating
it to zero. It is a system of non-linear equations, whose solution is not straightforward.

Here we approach the search by trying different alternative hypotheses. The large
amount of alternative hypotheses that has to be tested, can be reduced by omitting
not plausible hypotheses. Such not plausible hypotheses can be found by geometric
reasoning (e.g. points that are far away from each other probably don’t undergo exactly
the same deformation). Having knowledge, however, about the underlying physical
processes that determine the deformations, helps considerably to reduce the amount of
matrices C that has to be tested.

The method, proposed in section 3.4, can be used in the absence of knowledge of
the underlying physical processes. If however knowledge about them is available, that
knowledge should be used to reduce the amount of alternative hypotheses that has to
be tested.

3.7.5 Outlook

Although the situation that two epochs of measurements of a limited amount of 1D-,
2D- or 3D-points are to be analysed, still happens often in professional practice, the trend
is towards very frequent measuring, even continous monitoring, of objects and towards
very dense coverage of an object with measured points (Niemeier, 2011). Extension of
the presented method towards more epochs than just two and towards a large amount
of points, is therefore desirable.

With an adjustment model that covers more than two epochs it is possible to specify
alternative hypotheses that describe deformation processes during more epochs. The
search for the best alternative hypothesis will be even more complicated. It is therefore
important to find ways to reduce the amount of alternative hypotheses that have to
be tested. Analysing underlying physical processes and finding functional relationships
that describe the deformation processes is a way to do it.

3.8 Conclusions

A new approach to determine a multi-point deformation of a geodetic network, measured
in two epochs, is presented. Monitoring an object or the earth’s surface for deforma-
tions is possible by choosing a representing set of points and measuring them, and, if
necessary, reference points outside the object, with geodetic means. If two epochs of
measurements are available, it is shown how to test the measured points in such a way
that subsets of points can be distinguished. Each subset can have its own deformation
behaviour. The reference points are seen as just one subset, not to be treated differently
from the other subsets.
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The deformation analysis uses the null hypothesis that no deformation has occurred.
This hypothesis is tested with an overall model test. If this test leads to rejection, a
search starts for the best alternative hypothesis. An alternative hypothesis can concern
the deformation of just one point, but in general it will affect more points (i.e. a subset
of points). It can even distinguish more subsets of points. If no information is available
on possible deformations, a method is given to test by “brute force” as many alternative
hypotheses as possible.

The test method is invariant under changes of the S-systems in which the point coor-
dinates are defined.

When the best alternative hypothesis has been detected, the least squares estimate of
the deformation can be computed. The equations are given as well to compute the
minimal detectable deformations that can be used in the design stage of a geodetic
network for deformation analysis.

The method to find the best alternative hypothesis has been tested numerically in a
2D-network, where it succeeded to find the deformation.

The used adjustment model includes a transformation that makes it unnecessary to use
S-transformations in the process of testing for deformations.

The relation between the proposed method and the method of testing confidence ellip-
soids is shown.

Finally it is shown that the proposed method exceeds the boundaries of a purely ge-
ometric analysis. Application of the method yields improved results, if the underlying
physical processes are taken into account.





4
Analysis model in 3D (2 epochs)1

4.1 Introduction

Geodetic deformation analysis is about analysing the geometric changes of objects on,
above or under the earth’s surface or changes of this surface itself. The objects are
generally discretised by points, whose coordinates are registered at two or more epochs.

Affine, similarity and congruence transformations play an important role in geodetic
deformation analyses, mainly for two reasons. First objects may undergo deformations
that are well described by such transformations. This is the case, if the deformations
comprise translations, rotations, shears and changes of size. The second reason is that
objects are often described with geodetically determined coordinates that are defined
by geodetic datums. To transform coordinates to a common datum, transformations
are necessary. The three mentioned transformation types are often adequate for this
purpose.

Deformations of objects may comprise much more complicated patterns than can be
described by congruence, similarity or affine transformations. Therefore extended func-
tional models have to be built to describe the relations between coordinate sets of two or
more epochs of geodetic measurements. These extended models can often be described
as extensions to the congruence, similarity or affine transformation or to combinations
thereof. If necessary the models are complemented by covariance functions (collocation)
or variograms (kriging) to capture the systematic effects that are not described by the
functional model.

1This chapter has been published before in Survey Review (Velsink, 2015a). To fit the publication
into this study minor changes have been made.
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4.1.1 Problem definition

The problem addressed in this chapter is the problem of finding the relation between
two coordinate sets in 3D, describing each object by means of the same points but
at different moments in time. This relation describes the deformation that the object
is subject to and a possible difference in geodetic datum. The coordinate sets are
supposed to be Cartesian with full covariance matrices, reflecting the precision by which
the coordinates have been acquired. Testing the correctness of the deformation model
should be possible. If it is not correct, it should be possible to find least squares
estimates of the deformations. These estimates can be used to extend the adjustment
model.

4.1.2 Approach to solution

The problem is addressed by first finding the optimal affine transformation, or its special
cases: the similarity and congruence transformation. Subsequently the transformation
model is extended by additional parameters to find the best fitting solution.

The affine transformation in 3D involves a rotation. This rotation is often described by
Euler angles. They have, however, the disadvantage that gimbal lock may occur, i.e.
the impossibility to determine the three Euler angles, if a specific one of them is 0 or
90◦. Which angle gives this problem and at what value, depends on the sequence in
which Euler angles are applied to perform a rotation. If the problematic angle is close to
the dangerous value, this may still cause problems to determine the other angles with
sufficient precision. Therefore finding the deformation should avoid the use of Euler
angles, because angles of 0 and 90◦ can occur in deformation problems.

The approach to solve the posed problem is setting up an adjustment model and solv-
ing the parameters of this model by means of the method of least squares. It is an
adjustment model, because there are in general more coordinate differences than trans-
formation parameters to be estimated.

The adjustment model describes a null hypothesis, in which it is supposed that no
deformation occurred. It should be possible to extend the model with extra parameters
to formulate alternative hypotheses, which describe possible deformations, and to test
them against the null hypothesis. A linearised adjustment model makes it relatively easy
to formulate many types of hypotheses. Linearisation of the model makes it easy as
well to take account of full covariance matrices of coordinate sets. Such full covariance
matrices are to be expected when the coordinate sets are the result of the adjustment
of geodetic measurements (terrestrial, airborne or satellite).

4.1.3 Overview

The setup of this chapter is as follows.

First the general adjustment model for a transformation is given. Determining the
transformation parameters between two or more coordinate sets is a problem that can
be solved without linearisation of the functional model, if the transformation is one-,
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two- or three-dimensional and an affine, similarity or congruence transformation. Direct
solutions to the general adjustment model are referenced.

The chapter continues with the linearised adjustment model. If the deformations are
more than just an affine, similarity or congruence transformation, it is hardly ever pos-
sible to find a direct solution for the transformation parameters. Linearisation of the
functional model and solving the linearised model is necessary in that case. The lin-
earised adjustment model is given as a model of observation equations with constraints
on the parameters. The starting point is the affine transformation, whose parameters
are constrained to get the parameters of the similarity or congruence transformation. In
this way the use of Euler angles is avoided.

The least squares solution of a linearised adjustment model is reviewed. It is shown how
to handle a singular cofactor matrix. Methods to solve an adjustment problem with
constraints are given.

Then the model for the affine transformation is elaborated upon, followed by the con-
gruence transformation. A linearised adjustment model needs approximate values for
the unknown parameters. Their determination and the iteration to arrive at the final
solution are treated. In each iteration step approximate parameters are necessary that
fulfil the constraints. For the affine transformation it is easy to get approximate coor-
dinates. To make subsequently the approximate coordinates comply to the constraints,
use is made of the singular value decomposition of the rotation matrix.

Finally the similarity transformation is treated and an experimental validation is given.

Recent literature mentions total least squares as a method to find a least squares solution
for transformation problems, where all coordinates are considered stochastic (Fang,
2011; Snow, 2012). In this chapter it is shown that it is very well possible to construct
an adjustment model, where all coordinates are considered stochastic and the coefficient
matrix does not contain stochastic elements. This makes application of the total least
squares method unnecessary. Since the standard method of least squares is used, its
extensive body of knowledge can be used.

4.2 General adjustment model for transformation

A general adjustment model for solving the transformation parameters between two sets
of coordinates is treated in this section.

Let a point field be described by a set of Cartesian coordinates in reference system ra,
taken together in a vector a, and by another set of Cartesian coordinates in reference
system rb, taken together in a vector b. The vector names are underlined to indicate that
they are random variables. It is supposed that vector a differs from vector b because of
a deformation, a difference in geodetic datum and of stochastic noise in both vectors.
Let the vector c contain the mathematical expectations of a, i.e.

c = E{a}, (4.1)

where E{} indicates the mathematical expectation.
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Let a transformation, represented by the vector function t, transform the vector b into
the vector a by means of transformation parameters, taken together in vector f. The
transformation is supposed to describe the deformation and the difference in geodetic
datum. The mathematical expectation of a and of the transformed vector b should
then be equal

E{a} = E{t(b, f)}. (4.2)

The transformation t is non-linear in the elements of vector b and of vector f for the
affine, congruence and similarity transformation. If, however, vector b is considered non-
random, i.e. a constant vector, transformation t is linear for the affine transformation.
Its direct least squares solution is given in section ‘Step 1: affine transformation done
simply’.

For the general case transformation t is non-linear, which means that a solution can be
found by a direct solution, treated in the next section, or by solving iteratively a linearised
model, treated subsequently. This chapter proposes a solution with a linearised model,
which is elaborated upon in the section ‘Linearised adjustment model’.

4.2.1 Direct solutions

A direct solution of the transformation parameters in (4.2) is, as mentioned above,
straightforward in the case of an affine transformation if b is considered a constant
vector. The stochastic behaviour of b cannot be taken account of, unless it is possible
to have it included in the stochastic behaviour of vector a.

In the case of a congruence transformation the transformation consists of a rotation
around a certain axis and a translation in a certain direction. It can be considered a
special case of the similarity transformation, treated subsequently.

The similarity transformation in 3D consists of a rotation around a certain axis, a
translation in a certain direction and a change of scale. It is also called a seven-
parameter transformation or a Helmert transformation (Awange et al., 2004; Krarup,
2006).

Much literature is devoted to finding direct solutions for the parameters of these trans-
formations, where finding the three rotation parameters is most difficult.

Menno Tienstra writes (Tienstra, 1969) that the first method published was by Thomp-
son (1959) and that Schut (1961) gave a more elegant derivation of the same method.
Tienstra himself gives a different method (Tienstra, 1969). At least eight solutions of
more recent date (from 1981 up to 2006) can be found in literature. They are the solu-
tions of Hanson and Norris (1981), Bakker et al. (1989, p. 55), Awange et al. (2004),
Teunissen (1985a, p. 148), Arun et al. (1987), Hinsken (1987), Horn et al. (1988), and
Krarup (2006).

Of the first three solutions a short description is given to illustrate the different ap-
proaches that are possible.

Hanson and Norris consider in their paper (Hanson and Norris, 1981) the estimation of
the transformation parameters of the congruence and similarity transformations. Their
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application is quality control of manufactured parts, where points on parts are matched
with points on a drawing. They prove that the least squares estimation of the rotation
can be performed independently from the translation, if the elements of a and b are
mutually stochastically independent and the x, y and z-coordinate of each point i have
the same weight γi. A procedure is given to compute the direct least squares estimates
of the rotation parameters by means of singular value decomposition of a matrix that
is computed from the elements of a and b. Also a procedure is given to compute the
direct least squares estimate of the change of scale of the similarity transformation. The
direct least squares estimate of the translation is the difference between the centres of
gravity of a and the rotated and scaled b.

Bakker et al. (1989) consider the points of a and b as a distribution of mass points with
unit mass. They compute for both a and b the centre of mass, the set of body-axes,
the mean radius of gyration and the inertia tensor. After translating to the centre of
mass, rotating with the inertia tensor and scaling both a and b, the transformed vectors
are equated and a formula for the transformation parameters derived. The stochastic
characteristics of a and b are not taken into account, although it is mentioned by Bakker
et al. (1989) that an adjustment is easy, especially if the coordinates have rotationally
symmetric variances.

Awange et al. (2004) give a procedure to compute the least squares estimates of the
parameters of the similarity transformation (seven-parameter transformation), based on
finding the roots of univariate polynomials using a Groebner basis.

4.2.2 Solutions by linearisation

The transformation parameters in (4.2) can be solved by linearising the equation and
using the standard least squares algorithm. The advantage of this approach is the
possibility of solving adjustment models, for which direct solutions are not known. The
disadvantages are the need to have approximate values for all unknown parameters and
the need to iterate the computation with the risk of divergence, if the approximate
values are not chosen well.

The linearisation of the affine transformation is simplest and is given first. For the
linearisation of the congruence and similarity transformation, the rotation has to be
parameterised. This is generally done, see e.g. Hofmann-Wellenhof et al. (2001, p. 294),
by using three angles that describe the rotation around three coordinate axes, the so
called Euler angles. As described in the introduction, the use of Euler angles may result
in gimbal lock. This problem occurs for example for the rotation parameterisation of
Hofmann-Wellenhof et al. (2001, p. 294), if the second rotation angle α2 is a right
angle (α2 = 100 gon), which yields the rotation matrix R

R =

0 sin(α1 + α3) − cos(α1 + α3)
0 cos(α1 + α3) sin(α1 + α3)
1 0 0

 . (4.3)

Only the sum (α1 + α3) appears in the matrix, and angle α1 nor angle α3 can be
determined separately, although the rotation matrix itself is well defined. This is called
‘gimbal lock’ after the equivalent problem in mechanical engineering, when two of three
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gimbals become parallel to each other and one rotation possibility is lost. An additional
disadvantage of Euler angles is that approximate values for them have to be determined
in some way. In this chapter a different approach is chosen, where the rotations are
not parameterised by three angles, but by the nine elements of the rotation matrix.
By imposing six constraints on the nine elements, the matrix is forced to describe only
rotations.

The use of the direct solutions of the previous section has the advantage that no ap-
proximate values and no iteration are needed. The advantage of a linearised adjustment
model, however, is that extending the model with other parameters is easy. There are
two reasons why the model should be extended:

(i) errors may be present in the coordinates, caused by errors in the measurements
that were used to compute the coordinates, or caused by e.g. identification
errors. To test for these errors the model is extended by parameters, describing
these errors. The extended model is tested as an alternative hypothesis against
the null hypothesis of no errors (Teunissen, 2006, p. 78).

(ii) the description by means of 6, 7 or 12 parameters of one congruence, similarity
or affine transformation may be not adequate. Maybe not one but more such
transformations are needed, for example each describing a subset of points. Or
more complex transformations with more or other parameters are needed.

Extending or changing the model is easier for a linearised model than for a non-linear
one.

4.3 Linearised adjustment model

4.3.1 Linearisation of general model

To solve the problem of finding the transformation parameters, a system of observation
equations is set up. Constraints are added to this system. This constrained system is
solved by means of the method of least squares. As the equations of this system are
not linear, they are linearised.

First the system is given for an affine transformation. The affine parameters can be
obtained without the addition of constraints. Then the system is augmented by con-
straints that force the parameters of the affine transformation to become the parameters
of a congruence transformation. Finally it is shown how the parameters of a similarity
transformation are obtained.

A linearised adjustment model is constructed by differentiating the function t of (4.2)
relative to the elements of the vectors b and f Teunissen (2000, p. 142). The resulting
equations stay simpler, if vector b is first transformed to coincide approximately with
vector a. For this transformation approximate transformation parameters are needed.
Their computation is treated later on.

The approximately transformed vector is

b′ = t′(b, f ′). (4.4)
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The cofactor matrix of b′ is determined by applying the law of propagation of cofactors.
To do this, equation (4.4) is linearised by a Taylor expansion, neglecting second and
higher order terms. The expansion is relative to the elements of vector b.

Equation (4.2) now becomes

E{a} = E{t(b′, f)}. (4.5)

Define two matrices B and F of partial derivatives as follows

B =

(
∂t
∂b′

)
0

; F =

(
∂t
∂f

)
0

. (4.6)

The sub index 0 indicates that approximate values of resp. b′ and f have to be entered
into the matrices.

Assuming that B is square and invertible, which is the case in the situations treated in
this chapter, the adjustment model can be constructed as

E{
(

∆a
∆b′

)
} =

(
I 0

B−1 −B−1F

)(
∆c
∆f

)
. (4.7)

where ∆a = a−a0; ∆b′ = b′−b′0; ∆c = c− c0; a0, b′0, c0, f0 are approximate values;
I is the unit matrix; 0 is the zero matrix; c0 = a0 and thus E{∆a} = ∆c.

On the left hand side of (4.7) the vector of observations can be found, which consists
of the two vectors containing the coordinates. The right hand side contains the matrix
of coefficients and the vector of unknown parameters. The parameters are the mathe-
matical expectations of the coordinates in reference system ra and the transformation
parameters.

The vector of observations is assumed to have a normal distribution, described by a
covariance matrix that is the product of a scalar variance factor and the cofactor matrix.
The cofactor matrix is

Q{
(

a
b′

)
} =

(
Qa Qab′

Qb′a Qb′

)
(4.8)

where Qa and Qb′ are the cofactor matrices of a and b′. Qab′ = (Qb′a)T gives the
cofactors that describe the correlation between a and b′. It equals the zero-matrix if a
and b′ are supposed to be not correlated mutually. It is, however, possible to use non-
zero matrices, for example to describe temporal correlation using a covariance function.
The variance factor is chosen in such a way that the elements of the cofactor matrix
have computationally convenient values. The situation that Qa or Qb′ or both are not
regular, but positive-semidefinite matrices, is treated later on.

4.3.2 Reduced general model

The system can be reduced to minimise the amount of unknown parameters, which is
advantageous in case there is a large number of coordinates. The solution of the system
of normal equations can be a computational burden with many coordinates, especially if
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full covariance matrices are involved. The reduced system is acquired by premultiplying
the second row of (4.7) with B and subtracting it from the first row

E{∆a− B∆b′} = F∆f. (4.9)

On the left hand side appears the vector of remaining coordinate differences (∆a−B∆b′)
as vector of observations. On the right hand side the only unknown parameters are
the transformation parameters. The least squares residuals of the coordinates can be
computed by means of the stochastic correlation of the adjusted coordinates with the
estimated transformation parameters, because the adjusted coordinates are so called
free variates Teunissen (2000, p. 75).

In this chapter use is made of the model as defined by (4.7), because it shows more
clearly the structure, because constraints on the coordinates can be added, e.g. to
describe more complex deformation behaviour, and because it can readily be extended
to more than two epochs.

4.4 Least squares solution

The system of observation equations (4.7) is overdetermined if the number of parameters
is less than the number of coordinates and can be solved by the method of least squares.
A weighted least squares solution is obtained, if account is taken of cofactor matrix (4.8).

A system of linearised observation equations, like (4.7), has the following general struc-
ture

E{`} = Ap; D{`} = σ2Q`. (4.10)

where ` is the m-vector of observations, A is the (m × n)-matrix of coefficients and p
is the n-vector of unknown parameters. The equation behind the semicolon describes
the stochastic model by giving the covariance matrix D{`}, the variance factor σ2 and
the cofactor matrix Q`. The least squares solution of system (4.10) is given in the
appendix. There the equations for testing of the results are given as well.

For each system of linear observation equations an equivalent system of linear condition
equations exists

KTE{`} = 0; D{`} = σ2Q`. (4.11)

where KT is the [(m− n)×m]-matrix of conditions, for which holds

KTA = 0. (4.12)

The least squares solution of system (4.11) is given in the appendix. The equations for
testing are the same as those given for the model of observation equations.

4.4.1 Positive semidefinite cofactor matrix

The vector ` of observations of system (4.7) contains coordinates, which may have
resulted from geodetic measurements. In that case it can easily happen that the cofactor
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matrix Q` is positive semidefinite, because the coordinates are defined relative to a
geodetic datum, defined by some of the points.

A solution for handling a positive semidefinite cofactor matrix of the observations is
given for the reduced general model by Teunissen et al. (1987b, p. 231) for the similarity
transformation. Matrix Q` is regularised by adding a term to it, which does not change
the least squares solution of the parameters p. It is possible to generalise regularisation
to any model of observation equations2, if the coefficient matrix A is of full rank.

Matrix Q` of (4.10) can be regularised by adding to it a matrix λAAT, with A from
(4.10) and λ any real scalar with λ > 0

Q′` = Q` + λAAT. (4.13)

Matrix A is a real matrix of full rank and therefore AAT is positive definite. Multiplying
it with a positive factor λ does not change its positive definiteness. Q′` is the sum of
a positive semidefinite matrix and a positive definite matrix and is therefore positive
definite. This means that its inverse (Q′`)−1 exists.

Using Q′` instead of Q` for computing the least squares solution yields the same ad-
justment and testing results. This can be seen by switching to the model of condition
equations (4.11). The equations in the appendix show that vector r̂ and its cofactor
matrix Qr̂ are used to get the adjustment and testing results. In the equations Q′`
appears only in the product Q′`K (or its transpose), for which we have

Q′`K = (Q` + λAAT)K = Q`K + λAATK. (4.14)

The second term is zero because of (4.12). Therefore

Q′`K = Q`K. (4.15)

The conclusion is that the adjustment and testing results do not change by using Q′`
instead of Q`. Owing to the equivalence of using the model of observation equations
and the model of condition equations, Q′` can be used as well to get the least squares
solution for the model of observation equations.

4.5 Constraining parameters

The parameters of an adjustment model can be constrained to satisfy certain linear or
linearised relations

Cp = 0, (4.16)

where matrix C is a matrix of coefficients and 0 a zero vector. In the following sections
constraints are used to force the affine transformation parameters to change into the
parameters of a congruence or similarity transformation.

The least squares solution for the parameters p from (4.7) has to be found under the
condition that they fulfil the constraints (4.16). A method is the extension of the system

2in fact: not “any model”; see appendix C.6 for the restrictions.
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of normal equations with the constraints as follows (Tienstra, 1956, section 7.3)(
ATQ−1

` A CT

C 0

)(
p
k

)
=

(
ATQ−1

` `
c

)
, (4.17)

where k contains the and 0 is a zero matrix. Solving this system of normal equations
delivers a solution for p and k. Vector k plays no further role in the considerations of
this chapter.

If Q` is positive semidefinite, it has to be regularised. To see how this can be done,
another method to solve (4.10), taking account of the constraints (4.16), is given. Take
the null space of the space R(C), spanned by the columns of matrix C of (4.16). If NC
is a base matrix of this null space, we can write

p = NCλ (4.18)

with λ a vector of (n− nc) parameters (nc is the amount of constraints). We can now
write (4.10) as

E{`} = Arλ; D{`} = σ2Q`, (4.19)

with Ar = ANC. These are observation equations, for which a least squares solution is
found in the normal way. It is the same solution as the one that follows from (4.17).
The determination of Ar can be seen as the elimination of nc parameters from (4.10),
which can be done with the Gaussian algorithm or the Cholesky method (Wolf, 1982).
If Ar is determined as Ar = ANC, the base matrix NC can be determined e.g. by the
Matlab-command ‘null(C)’.

For the regularisation of Q` we now use

Q′` = Q` + λArAT
r . (4.20)

4.6 Model for affine transformation

If an object is subject to a force, the material and the force may be such that applying
and releasing the force causes respectively an elastic deformation and the disappearance
of the deformation. Such a deformation is often linear and can be described by an affine
transformation. In this section the adjustment model for the affine transformation is
given by defining the content of the matrices B and F of (4.6).

Let x, y, z be the vectors with the x-, y- and z- coordinates of vector a, as described
in the appendix. Let u, v, w be the vectors with the x-, y- and z- coordinates of the
same points in vector b′.

Let the vectors α1, α2, α3 and the vector t be defined as

α1 =

a11

a12

a13

 , α2 =

a21

a22

a23

 , α3 =

a31

a32

a33

 , t =

tx
ty
tz

 . (4.21)
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Let the matrix R be defined as

R =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

αT
1

αT
2

αT
3

 . (4.22)

The equation for the affine transformation reads thenxT

yT

zT

 = R

uT

vT

wT

+ tεT, (4.23)

where ε = (1, 1, · · · , 1)T.

The parameters tx, ty, tz describe a translation and the parameters a11, ... , a33 describe
the rotation, scaling and shearing of the affine transformation.

To get the matrices B and F of (4.6) the coordinates x, y, z have to be differentiated
relative to the coordinates u, v, w and to the parameters tx, ty, tz and a11, ... , a33.

Matrix B has the following structure in the case of an affine transformation

B =

a0
11I a0

12I a0
13I

a0
21I a0

22I a0
23I

a0
31I a0

32I a0
33I

 , (4.24)

where a0
ij, with i, j = 1, 2, 3, are the approximate values of the parameters of (4.21) and

I is the (n× n) unit matrix.

Since with (4.4) vector b′ is already approximately equal to a, the approximate values
of (4.24) can be chosen as follows

a0
ij = δij,

with i, j = 1, 2, 3 and δij the Kronecker delta. Then matrix B becomes a (3n× 3n) unit
matrix.

During iteration of the least squares adjustment, the approximate values have to be
adjusted. If this is done by adjusting transformation (4.4), matrix B does not need to
be adjusted and can stay a unit matrix.

To give a simple structure for matrix F the vector of transformation parameters ∆f is
divided as follows

∆f =


∆α1

∆α2

∆α3

∆t

 , (4.25)

with the ∆-quantities defined as described in the appendix (Conventions).

Matrix F has now the following structure

F =

β 0 0 ε1

0 β 0 ε2

0 0 β ε3

 , (4.26)

where β, ε1, ε2, ε3 and 0 are all (n× 3) matrices, as follows
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β = (u0,v0,w0); u0,v0,w0: approximate values of u, v, w.

ε1 =


1 0 0
1 0 0
...

...
...

1 0 0

, ε2 =


0 1 0
0 1 0
...

...
...

0 1 0

, ε3 =


0 0 1
0 0 1
...

...
...

0 0 1

.

0 is the (n× 3) zero matrix.

The adjustment model for the affine transformation can be constructed with (4.7), with
B and F according to (4.24) and (4.26). Solution of this model by the method of least
squares follows by generating the normal equations and solving them.

4.7 Model for congruence transformation

One of the simplest deformations an object can undergo on, under or above the earth’s
surface is a movement that consists of a shift and a rotation, i.e. a congruence trans-
formation (also called a rigid body transformation).

The congruence transformation is a special form of an affine transformation, in which
no central dilatations (changes of scale) and no shears occur, only translations and
rotations. It has less parameters than the affine transformation. It involves a translation,
described by three parameters tx, ty, tz, and a rotation, described by three Euler angles,
or by one angle and a unit vector, around which the rotation occurs.

We can write down matrix R in (4.22) with only three parameters: the three Euler
angles. Differentiating such a system results in matrices B and F that can be used to
construct adjustment model (4.7). There are two disadvantages to such an approach:

1. determining the parameters to perform the approximate transformation (4.4) is
no easy task (but it is easy for an affine transformation, as will be shown later
on);

2. the Euler angles may cause problems, as it was discussed before.

The approach chosen in this chapter, is to use the model as it was derived for the affine
transformation in the previous section, and constrain the parameters in such a way that
they become the parameters of a congruence transformation.

4.7.1 Applying constraints to affine transformation

For a congruence transformation matrix R of (4.22) has to be an orthogonal matrix.
This means that the rows of R are orthogonal and each row has length 1 (Strang, 1988,
p. 166). So six conditions have to be satisfied, i.e. three orthogonality conditions (e.g.:
row 1 is orthogonal to row 2 and to row 3, and row 2 is orthogonal to row 3) and three
length conditions (three rows have length 1).
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As an equation
αT

i αj = δij, (4.27)

with i=1, 2, 3; j=1, 2, 3; j ≥ i; αi defined as in (4.21) and δij the Kronecker delta.

The six conditions can be linearised and added as constraints on the parameters to
system (4.7). The six linearised constraints are

α0
2

T
α0

1
T

0

α0
3

T
0 α0

1
T

0 α0
3

T
α0

2
T

α0
1

T
0 0

0 α0
2

T
0

0 0 α0
3

T


∆α1

∆α2

∆α3

 =


0
0
0
0
0
0

 , (4.28)

where 0 is the (1 × 3) zero vector and α0
i

T with i=1, 2, 3 is the transposed vector of
approximate values of the parameters as defined in (4.21). As mentioned before, as
approximate values can be chosen a0

ij = δij, with i, j=1, 2, 3, from which follows(
α0

1,α0
2,α0

3

)
= I3, (4.29)

with I3 the (3× 3) unit matrix.

4.7.2 Determining approximate values

To determine the transformation parameters of the congruence transformation, adjust-
ment model (4.7) is constructed, the matrices B and F are determined with (4.24) and
(4.26), and the constraints are added with (4.28). Two methods to determine a solution
of the adjustment model with constraints have been described before.

In the matrices B and F, in the constraints and in the ∆-quantities, however, approxi-
mate values have to be entered. The case of matrix B has been treated already when
the adjustment model for the affine transformation was constructed: a unit matrix can
be used. In matrix F the approximate values u0, v0, w0 are needed. Here the observed
values of u, v, w must be transformed with (4.4) and can then be used as u0, v0, w0.

For the transformation parameters of (4.4) approximate values are needed for all nine
elements of matrix R and for the three translation parameters tx, ty, tz.

The methods to get direct solutions of the transformation parameters in (4.2) have
been treated before and can be used to get approximate values for the nine elements of
matrix R and the three translation parameters.

Instead of using one of the treated direct methods a two-step procedure is described
here to arrive at approximate transformation parameters. It is given to show its usability.
The choice to use this method or one of the direct solutions depends on considerations
like computational suitability.

In the two-step procedure approximate values for the translation parameters and the
elements of matrix R are determined by first using a simplified version of the adjustment
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model of the affine transformation and secondly using the singular value decomposition
of matrix R.

Step 1: affine transformation done simply

If in (4.2) vector b′ is considered a non-random vector (i.e. b′ without an underscore),
and the equations of an affine transformation are used, the elements of vector E{a} are
a linear function of the transformation parameters

E{a} = Ff, (4.30)

where F is the matrix from (4.26) and f the vector of parameters

f =


α1

α2

α3

t

 . (4.31)

The least squares estimator of f, indicated as f̂, with all observations considered as
having the same variance and not being correlated, is

f̂ = (ATA)−1 ATa. (4.32)

With (4.32) approximate values for all transformation parameters can be acquired.

Step 2: singular value decomposition of R

The approximate values, acquired with (4.32), are, however, not usable in transformation
(4.4) and adjustment model (4.7), using the matrices B and F from (4.24) and (4.26),
and the constraints from (4.28). The reason is that the approximate values must
fulfil the constraints (4.27), which is a consequence of the linearisation process of the
constraints by means of a first order Taylor expansion.

If the approximate values, computed with (4.32) are entered in matrix R from (4.22)
the result should be an orthogonal matrix. In general this will not be the case. Chang-
ing R into an orthogonal matrix can be accomplished by performing a singular value
decomposition of R. The result is three matrices, for which holds (Strang, 1988, p. 443)

R = Q1 ΣQT
2 , (4.33)

where Q1 and Q2 are (3 × 3) orthogonal matrices and Σ is a (3 × 3) diagonal matrix
that contains the three singular values on the main diagonal. How these matrices are
computed can be found in textbooks on linear algebra, e.g. Strang (1988). Computation
routines are available in mathematical software like Matlab.

Changing R into an orthogonal matrix is done by changing all singular values to a value
of 1, i.e. by removing matrix Σ and computing the changed matrix R′ as follows

R′ = Q1Q2. (4.34)



4.8. Iteration 91

Since Q1 and the transpose of Q2 are orthogonal matrices also their product R′ is an
orthogonal matrix. A proof that the elements of R′ are as close as possible to the
analogous elements of R is given by (Higham, 1989). Closeness is defined with the .

By using the results of (4.32) to construct matrix R and using singular value decompo-
sition to arrive at the orthogonal rotation matrix of (4.34), approximate values for all
transformation parameters of the congruence transformation can be computed.

4.8 Iteration

Since both adjustment model (4.7) and the added constraints (4.28) are linearised, solv-
ing the model by the method of least squares needs iteration. In each iteration step the
estimates of the coordinate corrections ∆c and the corrections to the transformation
parameters ∆f are used to compute new approximate values. The adjustment model
with its added constraints is then solved again. The iteration continues until the dif-
ference between the newly computed approximate values and those from the previous
step is less than a preset limit.

In each iteration step the new approximate transformation parameters should again fulfil
the constraints (4.27). That means that in each iteration step the adaptation of matrix
R by means of a singular value decomposition, as described in the previous section, has
to be repeated.

As mentioned before, (4.4) is used in each iteration step to compute new coordinates
b′. Their cofactor matrix is determined by applying the law of propagation of cofactors.
This guarantees that matrices B and F and the linearised conditions (4.28) keep their
simple structure.

4.9 Model for similarity transformation

A similarity transformation is a congruence transformation with an additional parameter
to account for a change of scale (change in the unit of length). This additional scale
parameter may be necessary for example if the two coordinate sets have been determined
by measuring techniques that cannot be guaranteed to use exactly the same unit of
length.

Because of the additional transformation parameter, equation (4.23) receives an addi-
tional parameter λ as follows xT

yT

zT

 = λR

uT

vT

wT

+ tεT. (4.35)

Again matrix R has to be orthogonal.

Linearisation is done relative to the coordinates of b′ and to thirteen transformation
parameters f (of which seven remain as independent parameters, because there are six
constraints):
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f =


α1

α2

α3

t
λ

 . (4.36)

Linearisation gives matrices B and F that resemble very much the ones of the congruence
transformation. Matrix B is the same as in (4.24), matrix F has one column more than
matrix F in (4.26)

F =

β 0 0 ε1 βα1

0 β 0 ε2 βα2

0 0 β ε3 βα3

 . (4.37)

A slight disadvantage of this matrix F is that it makes the adjustment model singular
without the constraints. Another approach is possible that does not have this disad-
vantage. To arrive at rotation matrix R six constraints are put on matrix R of (4.22).
These six constraints were relaxed by allowing an extra parameter λ. It is also possible
to put only five constraints on matrix R. The three constraints that the lengths of the
three rows are equal to 1, are replaced by two constraints: the length of the first row
equals the length of the second, and it equals the length of the third row. Matrix F
now stays the one of (4.26). The linearised constraints are
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0 α0

1
T

0 α0
3

T
α0

2
T

α0
1

T −α0
2

T
0

α0
1

T
0 −α0
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∆α1

∆α2

∆α3

 =


0
0
0
0
0
0

 , (4.38)

Approximate values are computed in the same way as for the congruence transformation.
An approximate value for λ can be determined from matrix Σ of the singular value
decomposition by taking the mean of the singular values, i.e. the mean of the three
values on the main diagonal of Σ.

4.10 Barycentric coordinates

The numeric values of the coordinates can be very large, for example if coordinates in a
national grid are used. It is advisable to switch in such a case to barycentric coordinates
xb, y

b
, zb. xT

b

yT
b

zT
b

 =

xT

yT

zT

− 1

n

xTε

yTε

zTε

 , (4.39)

where ε = (1, 1, ... , 1)T. Likewise barycentric coordinates ub, vb, wb are defined. The
cofactor matrix should be adapted accordingly, but it is possible to consider the second
term on the right hand side of (4.39) as a constant term (a non-stochastic shift).
The cofactor matrix then remains unchanged. If barycentric coordinates are used, the
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last column of (4.26) or the last-but-one column of (4.37) can be left out, because
the pertinent parameters are zero, also after adjustment, as long as a and b are not
correlated mutually.

4.11 Use of adjustment model

Given two vectors of coordinates a and b, which describe the same points in 3D, the
relation between both is searched by estimating the parameters of a transformation be-
tween them. To solve this problem in case of a congruence or similarity transformation,
the adjustment model (4.7) is set up and constrained by (4.28) or (4.38). The matri-
ces B and F in this model have been defined for the affine, congruence and similarity
transformation (resp. (4.24), (4.26) and (4.37). The adjustment model can be used in
the following ways:

(i) Suppose that the two vectors of coordinates a and b are defined in different
geodetic datums, i.e. reference system ra is different from system rb. Adjustment
model (4.7) and the constraints (4.28) or (4.38) can be used to transform vector
b into system ra. Coordinates in vector b that have no analogous coordinates in
vector a can be transformed to reference system ra as free variates (Teunissen,
2000, p. 75). Coordinates in vector a that have no analogous coordinates in vector
b can be adjusted as free variates in the same way.

(ii) If the two vectors of coordinates a and b differ from each other because of a
deformation that can be described by an affine, congruency or similarity transfor-
mation, adjustment model (4.7) and the constraints (4.28) or (4.38) can be used
to estimate the deformation.

(iii) If a combination of both datum differences and a deformation describes the re-
lation between a and b, adjustment model (4.7) and the constraints (4.28) or
(4.38) can be used to estimate both datum differences and the deformation.

Using adjustment model (4.7) in combination with the constraints (4.28) or (4.38) has
the following characteristics:

(i) Positive-semidefinite, full covariance matrices of a and b, and the correlation
between both, can be taken account of, which is especially useful if a and b stem
from geodetic measurements, in which case such covariance matrices are to be
expected.

(ii) Testing for biases in the coordinates can be easily done by adding parameters to
the model that describe the biases (Teunissen, 2006, p. 71).

(iii) Testing for several simultaneous deformations can be easily done by extending the
model with extra parameters and constraints that describe those deformations.

(iv) Suppose that a test shows that added parameters are significant. These parame-
ters can easily be added to the adjustment model.

(v) Extending the model to more than two epochs can be readily accomplished by
adding the coordinates of a new epoch to the vector of observations and adding
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additional parameters to describe the datum of the new epoch and the deformation
of this new epoch relative to the other epochs.

Model (4.7) contains a transformation. The model could be constructed without such a
transformation, but the transformation fulfils a fundamental function: it takes care that
the vectors a and b, including their cofactor matrices, are compared with each other only
by means of their intrinsic geometric information [the information that can be extracted
from the underlying measurements with enough ‘sharpness’, a word used by Baarda
(1995, p. 1)]. Information about the geodetic datum and the precision of its definition
are eliminated from the deformation analysis. Tests of the deformation measurements
are therefore more accurate. Also the description of the resulting precision and reliability
is better. The necessity to eliminate the influence of the geodetic datum is closely related
to the search of Baarda (1995, p. 1) for dimensionless quantities and the call of Xu et al.
(2000) for invariant quantities.

4.12 Experimental validation

To show the effectiveness of the proposed adjustment model for deformation analysis,
a deformation analysis task, as it is encountered in professional practice in the Nether-
lands, is used. For this task fictitious observations were generated (assuming a normal
distribution) and two different deformations simulated.
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Figure 4.1: 15 object points, 2 instru-
ment points.

Three monumental buildings are moni-
tored by total station measurements. Be-
cause of underground works, movements
of the buildings might occur. Fifteen
points are monitored (Fig. 4.1) from an
instrument point that is not monumented
and varies from epoch to epoch. Two
epochs are considered (99 and 100 are
the instrument points). A state-of-the-
art high precision total station is supposed
to have been used. The standard devia-
tion of horizontal and vertical direction
measurements is 0.3 mgon, of distance
measurements 1 mm. The precision with
which a point is defined (idealisation precision) is supposed to be 0.5 mm. The gener-
ated observations are listed in the appendix. The second epoch has two different lists
of observations. In the first one (called case 1 hereafter) a deformation of point 1 is
intentionally introduced. In the second one (case 2) the first five points, belonging to
one building, are deformed.

The generated observations were processed by the commercial software package MOVE3
(2017), version 4.2.1(x64). 3D coordinates and their full covariance matrix were com-
puted. The covariance matrices of both epochs were defined relative to the approximate
x-, y-, z-coordinates of point 1 and 14 and z-coordinate of point 26. Note, however, that
the testing results of the adjustment model of this chapter are invariant to a change of
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base points. This was confirmed by computations with other base points. The approxi-
mate coordinates of the first epoch were in the national grid, those of the second epoch
in a local system that was rotated on purpose over 100 gon relative to the national grid.

The adjusted coordinates and their covariance matrix, of both epochs, were transformed
to the system of the first epoch and adjusted and tested with the adjustment model
of this chapter. A similarity transformation was used, in accordance with the degrees
of freedom of the adjustments of each epoch in MOVE3. To do the computations
a specifically designed MATLAB programme was used. The results are shown in the
appendix.

The covariance matrices of both epochs are rank deficient, because they are defined
relative to a subset of the points. This results in a rank deficiency of 14 for the cofactor
matrix of (4.8). Regularisation of the cofactor matrix has been used to handle the rank
deficiency.

To estimate the parameters of the 3D similarity transformation and to adjust the co-
ordinates, three computations (i.e. two iterations) were needed. In the last iteration
the absolute value of the largest correction to the estimated parameters was less than
10−12.

4.12.1 Testing of case 1

In case 1 a deformation of point 1 of 5.2 mm was induced by giving the x-, y-, z-
coordinate each a bias of 3 mm.

The overall model test (F-test) of the adjustment yielded an F-value of 1.41, which
was more than the critical value of 1.18 (computed with a one-dimensional significance
level of 0.1%, a power of 80% and using the B-method of testing). Conventional w-
tests were performed, using (B.21) and (B.22). None led to any rejection. Also point
tests were performed, using (B.23). A point test is a three-dimensional test, where the
alternative hypothesis is, that three independent biases are present for respectively the
x-, y-, z-coordinate of a point. Point 1 was rejected with estimated errors (computed
with (B.19)) of 4, 2 and 3 mm in resp. the x-, y-, z-direction of system ra. This
shows that using weighted least squares with full covariance matrices and applying a
three-dimensional point test is capable of detecting deformed single points.

Point 1 is one of the base points that were held fixed on their approximate values in
the epoch adjustments. Testing of this point, however, can be done with the model of
this chapter like the testing of the non-base points, without any additional action. This
is possible, because the model includes a transformation. The estimated least squares
residuals from ê of (B.7) are zero for the base points, but the reciprocal least squares
residuals from r̂ of (B.8) are not. The reciprocal residuals are used for testing ((B.17),
(B.20) and (B.21)).
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4.12.2 Testing of case 2

In case 2 the first five points, belonging to one building, are deformed, all with the same
deformation: 3 mm along the x- and y-axis, 22 mm along the z-axis. The x-, y-, and
z-axis are those of the local system of the second epoch.

The overall model test (F-test) of the adjustment yielded an F-value of 2.20, which was
more than the critical value of 1.18. Both conventional w-tests and point tests were
performed. Only the w-tests of the x- coordinate of point 5 and the y-coordinate of
point 2 led to rejection. Points 2 and 5 were rejected by the point tests. If, however,
the deformation of this one building was tested by formulating an alternative hypothesis
that the five points of this building had undergone the same deformation, the pertinent
test led to rejection with a test statistic that was 2.01 times larger than the critical
value. This was larger than the same ratio for any other alternative hypothesis that
was formulated. The estimated deformation was 3, 3 and 24 mm in the direction
of respectively the x-, y-, and z-axis in system rb. This shows that using weighted
least squares with full covariance matrices and applying multidimensional tests gives
the possibility to detect deformations that are below the noise level of individual points.

4.13 Conclusions

The problem of finding the relation between two Cartesian coordinate vectors that per-
tain to the same points of an object under deformation, is addressed. If the two vectors
refer to two different epochs, the relation between them is determined by a possible dif-
ference in geodetic datum, by a possible deformation, which may have occurred between
both epochs, and by measurement noise. In this chapter the relation is considered as
describable by in principle one or more affine, congruence or similarity transformations,
to be extended by other parameters.

An adjustment model is given to estimate the parameters of an affine, a congruence or a
similarity transformation. The congruence and similarity transformation are formulated
as an affine transformation with constraints. That makes it possible to avoid the use of
Euler angles.

To compute approximate values for the parameters of a congruence and similarity trans-
formation it is possible to compute first approximate values for an affine transformation
and subsequently to change these values to those of a congruence or similarity trans-
formation by applying a singular value decomposition of the rotation matrix. This
computation of approximate values has to be repeated in each iteration step of solving
the linearised adjustment model.

Applying the proposed linearised adjustment model with constraints makes it easy to
extend the model as follows

1. Several transformations can be combined.
2. Different geodetic datums are taken account of.
3. Testing for biases in the coordinate vectors is made possible.
4. Testing alternative deformation models is possible.
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The proposed linearised adjustment model can be solved to get a weighted least squares
solution, where full covariance matrices of the coordinates of both epochs are taken
account of. The covariance matrices may be singular positive semidefinite matrices.

The effectiveness of the proposed adjustment model is demonstrated in an experiment,
where artificially added deformations are successfully detected.

Extending the proposed linearised adjustment model to more than two epochs and to
more complex deformation models is straightforward.





5
Testing adjustment models with constraints1

5.1 Introduction

Tests for the misfit of one or more observations in a geodetic adjustment model are
well-known, see e.g. Teunissen (2006, p. 71ff.). The set-up is to formulate a null-
hypothesis and an alternative hypothesis and to derive a test statistic that can be
used decide with a certain probability which one is better. In addition, complicated
alternative hypotheses with one or more additional parameters, and concerning several
or many observations, are tested in the same way. In this setup the test for a bias in an
observation is approached as a test of the complete adjustment model, in which a bias
for that observation is present (alternative hypothesis) or absent (null hypothesis).

The adjustment model is often formulated as a model of observation equations with
additional constraints on the parameters. A test for a misfit between one or more
constraints and the rest of the adjustment model and the observations, was derived
by Rao (1945b). He formulated the constraints as estimable functions of the model
parameters and tested the hypothesis that they are equal to some assigned values.
According to Rao (1945a), the concept of an estimable function was introduced by
Bose (1944).

Independently, it seems, a derivation was given by Aitchison and Silvey (1958) and
Silvey (1959). They used the probability distribution of Lagrange multipliers to test the
constraints.

Rao (1971) treats the general case of an adjustment model of observation equations
with a possibly rank deficient coefficient matrix and a possibly singular covariance matrix
of the observations. He defines the concept of a consistent hypothesis and shows how
to test it. He also showed that an adjustment model with constraints is equivalent

1This chapter will be published in Journal of Surveying Engineering (Velsink, 2018). To fit the
publication into this study minor changes have been made.
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to an adjustment model without constraints, in which the constraints are added as
nonstochastic observations. Nonstochastic observations are constants that are treated
as if they were observations (pseudo-observations).

Teunissen (1985b) treated the test of Lagrange multipliers and, additionally, showed
how to describe the reliability, both internal and external, of the test.

Lehmann and Neitzel (2013) showed how to test a subset of constraints and multiple
individual constraints, and give an elaborate geodetic example.

If it is not clear which constraints are valid, a choice between alternative sets of con-
straints has to be made, either by using multiple outlier detection or by using an infor-
mation criterion (Lehmann and Lösler, 2017).

In recent years the adjustment model with constraints on the parameters has been
handled in the framework of the adjustment model of total least squares. It has been
elaborated upon for the situation that the covariance matrix is the identity matrix
(Schaffrin and Felus, 2009), for a full covariance matrix (Fang, 2014), and for multiple
constraints and a full, singular covariance matrix (Jazaeri et al., 2014; Amiri-Simkooei,
2017). Parameters of an affine transformation, to be estimated in a total least squares
adjustment, can be constrained to become the parameters of a similarity or congruence
transformation (Tong et al., 2011; Zhang et al., 2016).

However, many adjustment problems that are given as examples for total least squares,
can be handled equally well by the standard least-squares algorithm that uses a full, but
possibly singular, covariance matrix, and a possibly rank deficient coefficient matrix.
Such a standard algorithm is described in the "Adjustment with rank deficient cofactor
matrix and coefficient matrix" section. In this chapter, it is shown that it can handle
an adjustment model with constraints. Examples of its field of application are the
two-dimensional (2D) similarity and congruence transformations (Velsink, 2015b), the
3D affine, similarity and congruence (rigid-body) transformations (Velsink, 2015a), and
their extensions to a time series of transformations (Velsink, 2016b). The advantage
of using the standard algorithm is that its complete body of knowledge can be applied.
Moreover, all stochastic variables are elements of the observation vector and treated in
the same way.

In this chapter an alternative approach is proposed for testing the adjustment model
with constraints on the parameters. Here hypotheses about models with constraints
are tested using nonstochastic observations. An advantage of this approach is that the
same equations are used for testing hypotheses about stochastic observations as for
hypotheses about constraints. Consequently hypotheses about simultaneous biases in
both the stochastic observations and in (part of) the constraints can be tested. Test
quality quantities, like minimal detectable biases, can be computed for such hypotheses.
It enables the assessment of the test quality. A further advantage is that switching from
hard constraints (standard deviation = 0) to soft constraints (standard deviation > 0)
is accomplished by changing just that standard deviation, which makes a sensitivity
analysis easy. The proposed approach gives a simple procedure to adjust and test both
stochastic observations and constraints on the parameters, and quantify the test quality.
An overview of six computation methods for the alternative approach is given.
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The purpose of this chapter is to describe the alternative approach to test an adjustment
model with constraints; to provide a still missing, systematic overview of six compu-
tation methods, as well as some not yet published derivations; and to show, in two
examples, the applicability for geodetic deformation analysis. The setup of the chapter
is as follows. The adjustment model of observation equations with constraints on the
parameters, formulated as nonstochastic observations, is given in the next section. The
introduction of nonstochastic observations in the adjustment model makes it inevitable
that the covariance matrix of the observations is singular. The solution of the adjust-
ment model with a singular covariance matrix is given. The model testing is treated in
the “Testing” section. It needs special care because of the singular covariance matrix.
For the computation of the test statistic, it is possible to use reciprocal residuals, which
are defined in the “Overview of computation methods with rank deficient matrices” sec-
tion where an overview is given of six methods to compute the test statistic. In the
“Testing procedure and quality description” section the procedure for testing adjust-
ment models with constraints is treated, including the test quality description. Finally
two examples from geodetic deformation analysis are given to show the usability of the
proposed test of an adjustment model with constraints.

5.2 Adjustment with rank deficient cofactor matrix and coeffi-
cient matrix

The adjustment model has the general structure:

y = Ax + a0 + e, E{e} = 0, D{y} = σ2Qy. (5.1)

The m-vector y contains m observations. The y is underlined to indicate that it is
stochastic : a probability density function, here assumed to be a normal distribution, is
linked to it. The matrix A is the coefficient matrix (model matrix), which may be rank
deficient, the n-vector x contains n parameters, a0 is an m-vector of constant terms
and e is the m-vector of random noise. The expectation of e, i.e. E{e}, is zero. D{y}
is the covariance matrix of y, split into a variance factor σ2 and a symmetric positive
semidefinite cofactor matrix Qy, so it can be rank deficient (singular). The variance
factor is any positive real scalar.

A least-squares solution to model (5.1) with rank deficient coefficient matrix and singular
cofactor matrix is as follows (Rao, 1971):

Qy = Qy + λAAT, (5.2)

A−m = (ATQ
−
y A)−ATQ

−
y , (5.3)

x̂ = A−m (y − a0), (5.4)

with λ > 0 any positive real scalar. Let R(.) indicate the range space. If R(A) ⊂
R(Qy), the choice λ = 0 is possible.

The symbol − indicates a g-inverse (generalised inverse). For any matrix X the g-inverse
X− is defined by XX−X = X. Matrix A−m is a minimum Qy-norm g-inverse of A. It
is a g-inverse with the additional property that any linear function pTx̂, with x̂ from
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equation (5.4), that is an unbiased estimator of pTx, has minimum variance among all
linear unbiased estimators of pTx. Expressions to compute this g-inverse are given by
Rao and Mitra (1971, p. 148) and Rao (1971). The estimator pTx̂ is called a best linear
unbiased estimator (BLUE).

By adding the term λAAT the space R(Qy) is amplified to the space R(Qy) in such
a way that R(A) ⊂ R(Qy). The estimator of e is ê = y − (Ax̂ + a0). It minimises

eTQ
−
y e, but also eTQ−y e. It follows that x̂ is the least-squares estimator we are looking

for. Here it is proposed to call Qy an amplified cofactor matrix.

The cofactor matrix of x̂, based on the original Qy, is:

Qx̂ = Qx̂ − λI, (5.5)

in which I is the unit matrix. Qx̂ is the cofactor matrix of x̂ because it follows from
applying the propagation law of cofactors to equation (5.4). The derivation is given in
appendix C.5.

In the following sections, the constraints are formulated as nonstochastic observations.
This makes it possible to test with the same method all constraints, or just a subset
of the constraints, or even simultaneously a subset of the constraints and a subset of
the stochastic observations. Therefore, the observations are split into the stochastic
observations y

s
and the nonstochastic yz. The constraints are described by yz. The

coefficient matrix, the vector of constants and the residual vector are split accordingly.(
y

s
yz

)
=

(
As
Az

)
x +

(
a0s
a0z

)
+

(
es
ez

)
, E{

(
es
ez

)
} =

(
0
0

)
. (5.6)

D{
(

y
s

yz

)
} = σ2

(
Qys 0
0 0

)
.

This model is a model of observation equations with constraints on the parameters.
The constraints are described by the nonstochastic observations yz.

Model (5.1), and (5.6) likewise, is linear or linearised. If necessary, its least-squares
solution is computed by iteration.

5.3 Testing

5.3.1 Null and Alternative Hypothesis

The standard method for testing a linear adjustment model uses a nonsingular cofactor
matrix of the observations. It is given here in the formulation of Teunissen (2006,
p. 71) and extended to handle a singular cofactor matrix. This is necessary, because
the cofactor matrixQy in model (5.6) is singular. A null hypothesis H0 and an alternative
model Ha are formulated:

H0 : E{y} = Ax + a0 (5.7)

Ha : E{y} = Ax + a0 + C∇ (5.8)
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Equation (5.7) equals model (5.1). Equation (5.8) has an additional term C∇, with
C a known (m × q)-coefficient matrix (model matrix), and an unknown q-vector ∇.
The term C∇ gives the bias in the functional model. Both hypotheses have the same
stochastic model, described with a covariance matrix D{y}, assumed to belong to a
normal distribution.

The difference between H0 and Ha is the vector C∇. Under H0 ∇ is zero, under Ha
it is not. Assume ∇̂ ∼ Nm(∇,σ2Q∇̂), with ∇̂ a least-squares estimate of ∇, and Nm
denoting an m-variate normal distribution with mean ∇ and covariance matrix σ2Q∇̂.
Let (.)−rs indicate a reflexive symmetric g-inverse. Then, according to Rao and Mitra
(1971, theorem 9.2.3), the quadratic form:

Tq =
1

σ2
∇̂T

(Q∇̂)−rs ∇̂ (5.9)

has a χ2(q, δ)-distribution, q = rank(Q∇̂) and δ =
1

σ2
∇T(Q∇̂)−rs∇.

The null hypothesis is tested against the alternative hypothesis by using Tq as the test
statistic. The test is to choose a significance level α, to compute the critical value and
to test whether the computed value of Tq exceeds the critical value. If this happens, the
null hypothesis is rejected (Teunissen, 2006, p. 78). The test is a generalised likelihood
ratio test, which is shown in appendix C.4.

5.3.2 Testable and Consistent Hypothesis, Invariance of Tq

For the test statistic to be usable, it must be capable of distinguishing between the null
and alternative hypothesis, that is, the alternative hypothesis must be testable. Matrix
C describes a nontestable hypothesis, if it spans a space that is a subspace of the space
spanned by matrix A. ∇ is not estimable in this situation.

Another requirement for the test statistic is that it gives a unique value, independent
of the choice of reflexive symmetric g-inverse in equation (5.9). Therefore, the concept
of a consistent hypothesis is important. A hypothesis, described by a matrix C, is
consistent, if

∇̂ ∈ R(Q∇̂). (5.10)

Tq is invariant for the choice of reflexive symmetric g-inverse in equation (5.9), if the
hypothesis is consistent. This follows from lemma 2.2.4 (ii) of Rao and Mitra (1971).

5.3.3 Comparison with Other Methods in the Literature

In the introduction of this chapter, several references were given that provide methods
to test H0 against Ha (Rao, 1945b; Aitchison and Silvey, 1958; Silvey, 1959; Rao, 1971;
Teunissen, 1985b; Lehmann and Neitzel, 2013). In all these references H0 and Ha are
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written in a form similar to:
H0 : y

s
= Asx + a0s + es; yz − a0z = Azx,

Ha : y
s

= Asx + a0s + es,

E{es} = 0; D{y
s
} = σ2Qys .

(5.11)

Here yz − a0z = Azx are constraints on the parameters x.

Equation (5.11) states that the null hypothesis is equal to the alternative hypothesis,
but with additional constraints on the parameters. It is tested whether these constraints
are valid. The references give as test statistic Tq:

u = (yz − a0z)− Azx̂, Qu = AzQx̂AT
z ,

Tq = uTQ−1
u u, (5.12)

in which x̂ is the least-squares solution of Ha (i.e. without constraints), and Qu is
assumed invertible.

This chapter treats testing for biases of an adjustment model with constraints, using
equations (5.7) and (5.8). Here the alternative hypothesis is equal to the null hypoth-
esis, but with additional parameters (the biases).

Suppose we want to test all constraints, just as it is done with equation (5.12), but
now using equations (5.7) and (5.8). Here the constraints are incorporated into H0 as
nonstochastic observations. In Ha, equation (5.8), they are still present as nonstochastic
observations, but they are neutralised, if we take C = (0 , I)T, in which 0 matches As
of equation (5.6), and the unit matrix I matches Az. It follows then that ∇̂ = u, and
Q∇̂ = Qu, giving the same expression for Tq.

However, C = (0 , I)T is only one possible choice for C. Therefore, by using (5.7) and
(5.8) to formulate H0 and Ha, it is easy to test various types of alternative hypotheses
by specifying appropriate matrices C.

Thus the various special cases, distinguished by Lehmann and Neitzel (2013), as well
as cases involving both constraints and stochastic observations, can be treated by one
procedure. Methods to compute the appropriate test statistic Tq are elaborated upon
in the next section.

5.4 Overview of computation methods with rank deficient ma-
trices

5.4.1 Two Approaches, Resulting In Six Methods

Several methods are available to compute Tq when both the cofactor matrix Qy and
the coefficient matrix A have full rank (Teunissen, 2006, p. 71ff.). Here methods are
proposed for the situation when both Qy and A are rank deficient. Two approaches are
given, from which the second one results in five methods. These six methods are not
exhaustive, but should provide enough flexibility to solve most practical situations.
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First approach Solve the alternative hypothesis using equation (5.8). It can be for-
mulated as a model of observation equations:

E{y} = (A
...C)

(
x
∇

)
+ a0. (5.13)

Solving this model using equation (5.4), we get ∇̂ and its cofactor matrix Q∇̂, which
can be used in equation (5.9) to compute the test statistic.

Second approach Solve the null hypothesis, and do not use matrix C, until Tq is
computed. This means that for testing different alternative hypotheses, characterised
by different matrices C, only one adjustment process is necessary.

Because e ∈ R(Qy) (proof in appendix C.2), it is possible to write, with r some
appropriate vector

e = Qyr. (5.14)

Here the elements of vector r are called reciprocal residuals. Using the least-squares
estimates r̂ and their cofactor matrix Qr̂, the least-squares solution ∇̂ and its cofactor
matrix Q∇̂ can be written (derivation in appendix C.2):

∇̂ = (CTQr̂C)− CT r̂, Q∇̂ = (CTQr̂C)−rs . (5.15)

The least-squares estimates r̂ and Qr̂ follow from the adjustment of the null hypothesis
(see appendix C.2).

Test statistic Tq follows from inserting (5.15) in (5.9):

Tq =
1

σ2
r̂TC(CTQr̂C)−rsC

T r̂. (5.16)

Condition (5.10) is necessary for test statistic Tq to be unique. It can now be written:

CT r̂ ∈ R(CTQr̂C). (5.17)

If CTQr̂C is an invertible matrix, the solution ∇̂ is unique, and Tq is:

Tq =
1

σ2
r̂TC(CTQr̂C)−1CT r̂. (5.18)

If the cofactor matrix Qy is regular, the reciprocal residuals can be computed as r̂ =

Q−1
y ê. However, Qy is singular in model (5.6) because of the nonstochastic observations.

To compute Tq the two approaches are elaborated upon in six methods, treated in the
next section.

5.4.2 Six Computation Methods

5.4.2.1 Observation equations of alternative hypothesis

To test alternative hypotheses concerning the model, two approaches have been given.
The first approach uses equation (5.13), which is solved by using, for example, equations
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(5.2) – (5.4). It gives ∇̂ as part of the estimated parameter vector, and analogously its
cofactor matrix. With them Tq can be computed.

The second approach uses equation (5.16) and needs, therefore, the reciprocal residuals
r̂ and their cofactor matrix. In the following an overview of five methods to compute
them is given. These methods use the Pandora box matrix, condition equations, a
regularised cofactor matrix, reduction after orthogonalisation, or standard deviations
that are almost, not precisely, zero (“almost zero”).

5.4.2.2 Pandora box

The first method to compute reciprocal residuals and their cofactor matrix uses the
following system of equations with Pandora box matrix P (Kourouklis and Paige, 1981,
eq. (2.8)): (

Qy A

AT 0

)
︸ ︷︷ ︸

P

(
r̂

x̂

)
=

(
y − a0

0

)
. (5.19)

This system follows from the combination of equations (C.5) and (C.6) in appendix
C.2. Any g-inverse of P is called by C.R. Rao a “Pandora box” (Rao, 1971), because it
supplies all the ingredients needed for adjustment and testing. The g-inverse P− gives
the solution of system (5.19). Both Qy and A may be rank deficient.(

r̂

x̂

)
=

(
Qy A

AT 0

)−
︸ ︷︷ ︸

P−

(
y − a0

0

)
=

=

(
C1 C2

C3 −C4

)
︸ ︷︷ ︸

P−

(
y − a0

0

)
. (5.20)

If P− is computed explicitly, we get the cofactor matrices Qr̂ = C1QyC1 and Qx̂ = C4.
If P is nonsingular, P− is the regular inverse P−1 of P, and Qr̂ = C1. P is nonsingular, if
the range space of A, that is, R(A), contains the nullspace of Qy, and, simultaneously,
A has full column rank. Even if A is rank deficient, but its nullspace does not intersect
the nullspace of Qy, P is nonsingular. These conditions are fulfilled in many use cases.

5.4.2.3 Condition equations

The second method to compute r̂ and Qr̂, is to switch from the model of observation
equations to the model of condition equations. This model is dual to the model of
observation equations, and is elaborated upon in appendix C.2. By using the model of
condition equations, the necessity to invert the cofactor matrix Qy is avoided.

The relation BTA = 0 holds, with A being the coefficient matrix of the model of
observation equations and B being the coefficient matrix of the model of condition
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equations. This relation means that R(B), the range space of B, is the null space
of R(AT). The numerical determination of B can be accomplished by, for example,
singular value decomposition.

The coefficient matrix A may be rank deficient. By switching to the model of condition
equations, and determining B as a base matrix of the mentioned null space, the rank
deficiency of A no longer poses a problem.

The reciprocal residuals and their cofactor matrix are computed with equation (C.7) in
appendix C.2.

5.4.2.4 Regularised cofactor matrix

The third method to compute r̂ and Qr̂ is to use equation (5.2). If the range space of
A, that is, R(A) = R(AAT), contains the nullspace of Qy, Qy is a regular matrix and
its regular (Cayley) inverse exists. We met this condition already in the treatment of
the Pandora box method. It is equivalent to the condition that the normal matrix of
the model of condition equations is invertible. It will be elaborated upon in appendix
C.6. Equation (5.2) can now be called the regularisation of the cofactor matrix. r̂ and
Qr̂ are computed from:

r̂ = Q
−1

y ê and Qr̂ = Q
−1

y QêQ
−1

y . (5.21)

They are unaffected by the regularisation (proof is given in appendix C.5), which means
that testing is unaffected.

5.4.2.5 Reduction after orthogonalisation

The fourth method to compute reciprocal residuals and their cofactor matrix uses a
reduced model in a first adjustment step, followed by a follow-up adjustment as second
step. To solve model (5.1), the observations are first orthogonalised relative to Qy,
resulting in stochastic observations y

1
with the unit matrix as cofactor matrix, and

nonstochastic observations y
2
(Rao and Mitra, 1971, p. 149). The necessary matrices

F and N are given in appendix C.2:

y
1

= FTy; Qy1
= I, (5.22)

y
2

= NTy; Qy2
= 0. (5.23)

The nonstochastic observations are handled as constraints, and used to define an
adapted vector of observations y

R
with the unit matrix as cofactor matrix and a re-

duced vector of parameters xR (appendix C.2):

y
R

= ARxR + eR; QyR = I, (5.24)

This reduced model has a coefficient matrix AR of full rank. After obtaining the least-
squares solution of this model, a follow-up model is formulated, which determines the
reciprocal residuals of the original observations (appendix C.2).
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Notice that the new nonstochastic observations y
2
consist of those formulated in the

original model, supplemented with nonstochastic observations that follow from a pos-
sible singularity of the cofactor submatrix of the stochastic observations y

s
.

5.4.2.6 Almost zero

The fifth method to compute reciprocal residuals and their cofactor matrix is to change
the zero standard deviations of the nonstochastic observations into very small values.

It may be that the cofactor matrix Qy is still singular after this change because the
submatrix Qys of the stochastic observations y

s
is singular. It is proposed here to

amplify Qy in this situation into Qy, using a base matrix N of the nullspace of Qy and
a very small value ε:

Qy = Qy + εNNT. (5.25)

R(Qy) is the complete space Rm and Qy is a regular matrix. The regular (Cayley)
inverse of Qy can now be computed and used in equation (5.21) to compute r̂ and its
cofactor matrix. The value, however, for the standard deviations or ε should, on the
one hand, not be too small, in order to keep the inversion process stable. On the other
hand, they should not be too large, in order to keep the results sufficiently close to the
desired ones. In the first example at the end of this chapter, a standard deviation of
0.01 mm can be taken to give the same results as the other methods at submillimeter
level.

The testing method of the first approach, and the four testing methods with reciprocal
residuals and their cofactor matrix, all yield the same testing results. The testing results
of this fifth method will approach those results, as ε approaches zero, cf. Rao and Mitra
(1971, pp. 136, 149).

5.4.3 Independent Constraints

For four of the five methods to compute reciprocal residuals, a matrix exists whose
nonsingularity indicates that there are only independent constraints, or, equivalently,
independent nonstochastic observations. It is proposed here to call this matrix the
indicator matrix. The independent constraints make it possible to apply equation (5.16).
If the constraints are dependent, the computation of Tq is more involved. It may be
necessary, for example, to amplify Qt, and Tq may not be unique. Therefore, it is
assumed in this chapter that the indicator matrices are nonsingular. Table 5.1 lists the
indicator matrices.

A comprehensive treatment of these indicator matrices is given in appendix C.6.

5.4.4 Comparison of Methods

Six methods have been shown to test an adjustment model with constraints, one for
the first approach (which solves the alternative hypothesis), plus five for the second
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Computation method Indicator matrix
Pandora box Pandora box matrix P
Condition equations Normal matrix Qt

Regularised cofactor
matrix

Amplified cofactor matrix Qy

Reduction after
orthogonalisation

Constraints matrix S

Almost zero –

Table 5.1: Indicator matrix for each computation method.

approach (which solves the null hypothesis, and only uses the alternative hypothesis for
the test statistic). Each method has its advantages and disadvantages. Computational
time may be an important factor in deciding which method to use, as will the available
software.

To give an impression of relative computation times, an example of the application
of model (5.1) is considered. It concerns a geodetic deformation analysis with several
epochs of 3D coordinate sets with their covariance matrices. The epochs are linked by
transformations that are incorporated in the adjustment model (Velsink, 2016b). The
model has been applied to adjust and test a deformation network of a large bridge in the
Netherlands. It was a regular assignment by professional practice. Ten epochs of each
more than 90 points with (x, y, z)-coordinates, had been measured. The adjustment
model contained 5391 observations (2832 stochastic and 2559 nonstochastic), 2940
parameters and 2451 conditions. It was adjusted and tested with all six methods,
described in this chapter. In the following, for each method it is indicated, which part
of the computation takes the most time.

The model “almost zero” gave the fastest computation of the adjustment and testing
results, followed by the method that applies condition equations. Slowest among the
methods of the second approach was the method that uses a regularised cofactor matrix.
The method of the first approach is slowest if more than one alternative hypothesis has
to be tested.

1. Observation equations of alternative hypothesis In addition to ∇̂, x̂ is also
computed under the alternative hypothesis. This means extra effort, which can
become a disadvantage if a large number of alternative hypotheses has to be
tested. It is possible to eliminate x as a parameter vector from the system, but
then we arrive at the method that uses the model of condition equations.

Any of the following methods can be used for the adjustment; however, only
the estimated parameters and their cofactor matrix need to be computed, not
the reciprocal residuals and their cofactor matrix. Yet, that does not give much
reduction of computation time for any of the methods.

2. Pandora box The size of the Pandora box matrix is large: The sum of the
number of observations and the number of parameters. This is a disadvantage
when solving the system of equations. The advantage is, however, that the
possible sparseness of Qy and A is preserved. In the “bridge example” most time
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was spent on the inversion of the Pandora box matrix.

A further advantage is that the solution gives both the adjustment results (x̂ and
its cofactor matrix) and the results needed for testing (̂r and its cofactor matrix).

3. Condition equations

Switching to the model of condition equations has the advantage that the inverse
of Qy is not needed to compute a solution. This avoids computation time and
the problem of inverting a singular matrix.

The size of the normal equations in the model of condition equations is determined
by the number of conditions, that is, the redundancy of the model. If it is small
compared with the number of parameters in the model of observation equations,
the model of condition equations may be preferred.

In the previously discussed bridge example, the elimination of the parameters
from matrix A to get matrix B was very fast. The most time was spent on the
computation of the cofactor matrix of the reciprocal residuals.

The misclosures of the conditions can be computed and tested separately, allowing
for an extra possibility to detect biases in the model.

4. Regularised cofactor matrix The method to regularise the cofactor matrix uses
the well-known and widely applied model of observation equations (the Gauss-
Markov model). The size of the normal equations in the model of observation
equations is determined by the amount of parameters. A disadvantage is the loss
of sparseness of the cofactor matrix when it is amplified. The cofactor matrix has
to be inverted to get the weight matrix. The inversion time was very large for the
bridge example.

5. Reduction after orthogonalisation Depending on the number of stochastic ob-
servations, nonstochastic observations, and the redundancy, the model using a
reduction of the observation vector and the coefficient matrix can be advanta-
geous.

In the bridge example, the most computation time was lost in the orthogonalisa-
tion.

6. Almost zero Existing software for least-squares adjustment can easily be acco-
modated to make it suitable for testing constraints, if the method “almost zero”
is used, in which the zero standard deviations are replaced by very small values.
The software needs to have an observation type that allows for the input of a
1-, 2- or 3D-vector, for which the observed values can be put to zero and the
standard deviations to almost zero.

5.5 Testing Procedure and Quality Description

It has been shown in the previous sections how a null hypothesis and an alternative
hypothesis regarding an adjustment model with constraints are tested against each
other. In the following a testing procedure is given, which is based on the procedure
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described by Baarda (1968b). The procedure starts with an overall model test of the null
hypothesis. If it is rejected, all observations (stochastic observations and constraints)
are tested one by one with so-called conventional w-tests. This should give indications
how an alternative hypothesis can be formulated that may have biases in more than
one observation, constraint or both, and that fits the data very well. A test of such
an alternative hypothesis (a multidimensional test) is treated subsequently. It is also
possible to use a more systematic way by testing a large number of alternative hypotheses
(Velsink, 2015b): For each alternative hypothesis the test ratio is determined (see the
“Multidimensional Test” section). The alternative hypothesis with the largest test ratio
is considered the best one.

To judge the quality of tests, a quality description is necessary. It will be treated in a
short section, after which two examples show the applicability of the proposed procedure.

5.5.1 Overall Model Test

The first step in testing adjustment results is performing an overall model test. Using the
reciprocal residuals r̂ and a generalised inverse Q−y of Qy, the test statistic of equation
(5.16) is computed for q = b as

Tb =
1

σ2
r̂T Qy r̂ =

1

σ2
êT Q−y ê. (5.26)

This follows from equation (5.16) because C is now a matrix with the same dimensions
(m×(m−n)) as B. To yield a testable alternative hypothesis, BTC has to be regular and
invertible. Using this, and combining equation (5.16) and equation (C.7) in appendix
C.1, equation (5.26) is obtained.

The test statistic is χ2-distributed, if e has a normal distribution. Its critical value can
be computed by means of the B-method of testing (Baarda, 1968b, p. 33). That means
that first a value for the significance level of a 1D test is chosen (in the elaborated
example that follows, a value of 0.1% is chosen) and a value for the power (80% in the
example). From these the value of the significance level of the b-dimensional test can
be derived.

5.5.2 Conventional w-Tests

If the overall model test leads to rejection of the null hypothesis, an alternative hypoth-
esis has to be found that describes the relations between the observations better. To
this end, conventional w-tests are performed (Baarda, 1968b, p. 15). This means that
a bias is assumed in only one observation, that is, we have for matrix C of equation
(5.8)

C =
(
0, ... 0, 1, 0 ... 0

)T
, (5.27)
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with 1 in the ith row, if the ith observation is tested. The test quantity wi to test the
ith observation, is derived from test statistic Tq for q = 1. It is defined as:

wi =
CT r̂

σ

√
CTQr̂C

=
r̂i

σ
√

(Qr̂)ii
, (5.28)

with r̂i the ith element of r̂ and (Qr̂)ii the element of Qr̂ in the ith row and ith column.
From this follows

w2
i = Tq=1. (5.29)

If the observations have a normal distribution, wi has a standard normal distribution.

5.5.3 Multidimensional Test

If there is reason to believe that more than one observation (stochastic or nonstochastic)
is biased, a multidimensional test can be performed. A matrix C for the alternative
hypothesis is formulated. Examples can be found in chapter 3. The test statistic Tq is
computed and compared with a critical value, which is computed with the B-method
of testing. It is not straightforward how to compare this result with the results of
the 1D w-test or the overall model test because the dimensions, and so the probability
density functions and the critical values, differ. Following the approach of de Heus et al.
(1994b), we take the ratio between Tq and its critical value, and compare the ratio’s,
see also Chang (2015). The largest ratio indicates the best alternative hypothesis.

5.5.4 Quality Description

The quality of the test of a certain alternative hypothesis against the null hypothesis
is described by the minimal detectable bias (Teunissen, 2006, p. 94ff.). For the ith

conventional w-test, it is computed as (Velsink, 2015b, eq. (46)):

MDBi = σ

√
λ0

CT
i Qr̂Ci

, (5.30)

Ci =
(
0, ... 0, 1, 0 ... 0

)T
, i = 1, ... , m,

with λ0 the reference noncentrality parameter, which is 17.075 if the 1D level of sig-
nificance is 0.1% and the reference power is 80%. The MDB gives the size of the bias
that can be found with a probability of 80% (the reference power) if the observation is
tested with the pertinent w-test.

5.6 Two examples

Two examples are given to show the application of testing an adjustment model with
constraints in geodetic deformation analysis. The first example is a small one and is
intended to show in detail how the adjustment model is built and used. The second
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example is a larger one and is intended to compare the method with other methods to
perform geodetic deformation analysis.

Both examples show that constraints can describe deterministic, unmeasured model
elements that are often designated as a priori information. Here the deterministic
elements are statements about deformation of points or the absence of deformation.

5.7 Example 1

5.7.1 Problem Description

To illustrate the testing of constraints, an example is taken from geodetic deformation
analysis. Three bolts, named A, B and C, have been placed in three buildings to
determine subsidence of each of the bolts relative to the other two. Three height
differences (y

1
, y

2
, y

3
) have been measured by levelling at time 1. At a later time 2,

they are measured again, yielding y
4
, y

5
, y

6
, see figure 5.1. How can whether relative

subsidence has occurred be tested?

A1

B1

C1

A2

B2

C2

y
1

y
2

y
3

y
4

y
5

y
6

Figure 5.1: Three levelled height differences,
measured twice to determine sub-
sidence.

Here it is shown by regarding the three
heights at time 1 as a network that is
separate from the network of the three
heights at time 2. Subsequently, both
networks are connected by three con-
straints that state that the three heights
are unchanged between time 1 and 2.
Testing these constraints means testing
the deformation hypothesis of stability.

This deformation analysis is convention-
ally done differently (Caspary, 2000).

5.7.2 Adjustment Model

The purpose is to determine relative heights. The height of A at time 1, indicated as
A1, is fixed at an arbitrary height: 2 m. As unknown parameters, the heights of B and
C at time 1, indicated by B1 and C1, and the heights of A, B and C at time 2, indicated
as A2, B2 and C2, are used.
The assumption is that no subsidence has taken place, and so we should have:

0 = A2 − A1,
0 = B2 − B1,
0 = C2 − C1.

(5.31)

These are three constraints on the five parameters. We get the following elements of
adjustment model (5.6):
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y
s

=
(

y
1
, ... , y

6

)T
, yz =

(
y7, y8, y9

)T
=
(
0, 0, 0

)T
,

x =
(
B1, C1, A2, B2, C2

)T
,

As =


1 0 0 0 0
−1 1 0 0 0
0 −1 0 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 1 0 −1

 , (5.32)

Az =

 0 0 1 0 0
−1 0 0 1 0
0 −1 0 0 1

 ,

a0s =
(
−A1 0 A1 0 0 0

)T
,

a0z =
(
−A1 0 0

)T
.

With nine measurements (six levelled height differences, three nonstochastic observa-
tions) and five parameters, the model has a redundancy of four.

5.7.3 Observations and Adjustment Results

The observations are given in table 5.2. The standard deviation of all observations is
1 mm and no correlation between the observations is assumed, that is, the cofactor
matrix Qys is the unit matrix if the variance of unit weight is chosen as 10−6. For the
six measured height differences exact fitting values are taken and are therefore without
noise.

To present the capability of the proposed analysis method to test for both biases in
the constraints and biases in the stochastic observations, two biases are added to these
differences: point A subsides 4 mm, causing the height differences y4 and y6 to be each
4 mm larger than y1 and y3; and a bias of 4 mm in y4, which is not a subsidence, but
a measurement bias.

The observations y7, y8 and y9 are, according to equation (5.32), the changes in height
of A, B and C, respectively, and have values of zero.

Table 5.3 gives the estimated heights after least-squares adjustment.

5.7.4 Test Results and Quality Description

The value of Tb from equation (5.26) is 43.7 with 4 degrees of freedom and a critical
value of 13.5. The overall model test leads thus to rejection of the null hypothesis,
that is, the assumption of point stability and the simultaneous absence of measurement
biases is not accepted.
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Observation From To Height difference
y1 A1 B1 1.732 m
y2 B1 C1 -0.634 m
y3 C1 A1 -1.098 m
y4 A2 B2 1.740 m
y5 B2 C2 -0.634 m
y6 C2 A2 -1.102 m

Table 5.2: Measured height differences.

Point Height
A1 = A2 2.000 m
B1 = B2 3.735 m
C1 = C2 3.101 m

Table 5.3: Estimated heights (no subsidence assumed).

Subsequently, w-tests are performed. The absolute values of the w-quantities are given
in table 5.4. With the previously chosen level of significance 0.1%, the critical value is
3.29. Four observations are rejected, two measured observations and two constraints:

Observ. êi r̂i |wi| ∇̂i MDBi
y1 -3.33 -3.33 4.08 -5 5
y2 0.67 0.67 0.82 1 5
y3 2.67 2.67 3.27 4 5
y4 4.67 4.67 5.72 7 5
y5 0.67 0.67 0.82 1 5
y6 -1.33 -1.33 1.63 -2 5
y7 0 6 6 6 4
y8 0 -4 4 -4 4
y9 0 -2 2 -2 4

Table 5.4: Test results (̂ei, ∇̂i and MDBi in mm, r̂i in mm−1, and wi dimensionless).

y1, y4, y7 and y8 (|wi| > 3.29). If only one observation is biased, it is most probably y7

(the height change of A), but y4 is not far off. The least-squares estimate of the bias
of y7, when this observation is biased and all others are not, is computed with equation
(5.15) as 6 mm. The value is listed in table 5.4 under ∇̂i.

Table 5.4 shows that a constraint (like y7, y8, y9) is tested in the same way as an
observation acquired by some measuring device.

In the observations both y4 and y7 are biased. The first bias is a measurement bias, the
second bias a subsidence of point A. Table 5.4 gives the test results of 1D tests. Each
alternative hypothesis states that only one observation is biased, and the rest is without
bias. Two observations, however, are biased. None of the alternative hypotheses of
table 5.4 is, therefore, a good hypothesis.
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Let us test the hypothesis that both y4 and y7 are biased. The matrix C is:

C =

(
0, 0, 0, 1, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 1, 0, 0

)T

. (5.33)

The test is 2D (q = 2). We have Tq = 42.67 and a critical value of 11.73, computed
with the B-method of testing using the previously mentioned parameters. Here test
ratio’s are used to compare this result with the results in table 5.4. For the largest
value of |wi| in table 5.4, we get the ratio (6/3.2905)2 = 3.32. For the 2D test we get
42.67/11.73 = 3.64. This indicates that, indeed, the hypothesis that two biases are
present might be better.

To check this result, all 36 alternative hypotheses, in which biases in two observations
are present, are tested against the null hypothesis. Indeed, the largest value of the test
ratio encountered is 3.64, but it does also occur in other combinations of observations:

• y4 and y6 are biased simultaneously; and
• y6 and y7 are biased simultaneously.

It is easy to see that these biases cannot be distinguished by the test from the biases
in y4 and y7 and therefore give the same test values. To overcome this problem of
inseparability, additional observations would be necessary.

For the alternative hypothesis that y4 and y7 are biased, the least-squares estimates of
the biases, computed with equation (5.15), are 4 mm for y4 and 4 mm for y7, as they
should be.

Table 5.4 shows that the MDB for the subsidence of each of the points is 4 mm, if it
is tested with a conventional w-test.

5.7.5 Conclusion of Example 1

This example shows that testing one or more constraints, or even testing constraints
and measured observations simultaneously, can be done by using standard test statistics
for testing alternative hypotheses. Least-squares estimates of biases in the constraints
and the measured observations can be determined. Minimal detectable biases in the
constraints and in the measured observations, which describe the sizes of the biases
detectable with a predefined probability, can be determined for planning and standard-
isation purposes.

The computations have been done with a MATLAB programme made for this purpose.
All six computation methods, derived before, have been used, yielding all the same
results.

5.8 Example 2

To compare the method of geodetic deformation analysis of example 1 with other
published methods, an example of a levelling network is taken, of which the analysis
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with several methods is given by Wiśniewski and Zienkiewicz (2016). The network
(figure 5.2) consists of nine points, that is, 4 reference points (R1, · · · , R4) and 5
control points (P1, · · · , P5), between which 16 height differences (h1, · · · , h16) have
been measured in two epochs α and β. The simulated measurements are given in table
5.5. The measurements of epoch β are also given in five variants, each variant with
other biases, see table 5.6.

R3

R4

R2

P4

P1

P5

P3

R1

P2
h1 h2

h3

h4

h5h6

h7

h8

h9

h10

h11

h12

h13 h14

h15h16

Figure 5.2: Levelling network, adapted from Wiśniewski and Zienkiewicz (2016).

Obs. Epoch α Epoch β
h1 1.0011 m 1.0037 m
h2 0.9986 m 1.0017 m
h3 1.0006 m 0.9974 m
h4 0.9991 m 1.0007 m
h5 1.0019 m 1.0030 m
h6 0.9973 m 1.0011 m
h7 1.0015 m 0.9999 m
h8 1.0014 m 0.9996 m
h9 -0.0002 m 0.0030 m
h10 0.0028 m 0.0028 m
h11 0.0013 m -0.0024 m
h12 0.0014 m 0.0033 m
h13 0.0010 m -0.0485 m
h14 0.0015 m -0.0506 m
h15 0.0006 m -0.0516 m
h16 0.0018 m -0.0478 m

Table 5.5: Measured height differences at epochs α and β (variant I). Simulated
observations with a bias of -50 mm in point P5 (= deformation).
Data from Wiśniewski and Zienkiewicz (2016).
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Variant Biases Changed
observations

II ∆P5 = -0.050 m h16 = -0.0228 m
∆h16 = 0.025 m

III ∆P5 = -0.050 m h16 = 0.0022 m
∆h16 = 0.050 m

IV ∆P5 = -0.050 m h3 = 1.2474 m
∆R1 = -0.250 m h4 = 1.2507 m

V ∆P5 = -0.050 m h3 = 1.2474 m
∆R1 = -0.250 m h4 = 1.2507 m
∆h16 = 0.050 m h16 = 0.0022 m

VI ∆P5 = -0.050 m h3 = 1.2474 m
∆R1 = -0.250 m h4 = 1.2507 m
∆R2 = -0.250 m h7 = 1.2499 m

h8 = 1.2496 m

Table 5.6: Variants of simulated observations at epoch β.
Data from Wiśniewski and Zienkiewicz (2016).

5.8.1 Adjustment Model

The adjustment model is built in the same way as in example 1. Because there is
no fundamental difference in this example (example 2) between reference points and
control points, they are treated in the same way. For point R1, a fixed height of 9 m at
epoch 1 is taken. Note that any height of any point at any epoch may be taken: It will
give identical test results. Vector y

s
consists of 32 elements: 16 height differences for

two epochs. Vector yz consists of 9 zeros, that is, the height of each of the 9 points at
epoch α is assumed to be equal to the height of the same point at epoch β. Vector x
consists of 17 elements: 8 heights in epoch α and 9 heights in epoch β (R1 in epoch
α is missing as a parameter because it is fixed at 9 m). Matrices and vectors As, Az,
a0s and a0z are constructed in the same way as in example 1. For the cofactor matrix
Qys the unit matrix is taken and the variance of unit weight is 10−6, that is, all height
differences have a standard deviation of 1 mm and are not correlated.

5.8.2 Adjustment and Test Results of Variant I

The adjustment of variant I (table 5.5) gives least-squares estimates for the heights of
all points (table 5.7). Note that the estimated heights for both epochs α and β are the
same, because of the constraints. These constraints are too strict, as is shown by the
overall model test of the adjustment, which gives a value of 5257.2 for Tb of equation
(5.26) with 24 degrees of freedom and a critical value of 31.8 (level of significance is
0.131).

Because of the rejection of the null hypothesis, subsequently conventional w-tests are
done. The largest w-test value is for the constraint that the height of P5 does not
change: w = 71.9. The next largest w-test values are for biases in measured height
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Point Height
R1 9.0000 m
R2 8.9985 m
R3 8.9978 m
R4 8.9986 m
P1 9.9993 m
P2 9.9989 m
P3 10.0000 m
P4 9.9988 m
P5 9.9751 m

Table 5.7: Estimated heights, equal for epochs α and β;
they are not used in the testing procedure.
Point R1 has been fixed at 9 meter.

differences: 31.3 (h15−β), 30 (h14−β), 30 (h16−α), 28.4 (h14−α), 28.4 (h13−α), and 27.3
(h15−α). The notably larger value of 71.9 clearly indicates that the height of P5 has
changed between epoch α and β.

5.8.3 Search for best alternative hypothesis

It may be that not only the height of P5 has changed, but that also biases are present
in measured height differences or in heights of other points (i.e., other points have
moved). To test this, many alternative hypotheses are formulated systematically. Bi-
ases are assumed in 1, 2, 3 or 4 observations (stochastic observations or constraints)
successively. One bias can be present in 41 observations. Two biases can be present in
820 combinations of the 41 observations. Similarly 3 and 4 biases can be present in a
large number of combinations. The total for 1, 2, 3, or 4 biases is 112,791 combinations
all together. To find the best alternative hypothesis, all these combinations are tested
(as long as they are consistent and testable, see the “Testable And Consistent Hypoth-
esis, Invariance Of Tq” section) and compared with each other by using the test ratio
(see chapter 3). The computation takes less than two minutes on a standard computer.
The constraint on the height of P5 (therefore, only one bias) gives the largest test ratio
of 477.6. The next largest ones are 442.1 (P5 and h9−β are both biased), 441,9 (P5

and h6−α are both biased) and 441.7 (P5 and h16−β are both biased). The notably
larger value of 477.6 is a strong indication that only the constraint on the height of P5

is biased, that is, only this height has changed.

With equation (5.15), the least-squares estimate of the subsidence of P5 can be deter-
mined as 50.9 mm, which is very close to the simulated value of 50 mm. The g-inverse
in equation (5.15) is here a regular inverse because CTQr̂C has no rank defect.

5.8.4 Variants II-VI

After variant I, now variants II–VI are analysed. For all these variants the overall model
test leads to rejection of the null hypothesis. The same search for the best alternative
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Variant Largest
ratio

Biased
observ.

Simul.
biases

Estim.
biases

II 386.6 P5 50 mm 51.8 mm
h16−β 25 mm 28.8 mm

III 416.3 P5 50 mm 51.8 mm
h16−β 50 mm 53.8 mm

IV 5735.4 P5 50 mm –
R1 250 mm 249.2 mm

V 5735.4 P5 50 mm –
R1 250 mm 249.2 mm
h16−β 50 mm –

VI 5735.4 P5 50 mm –
R1 250 mm 249.2 mm
R2 250 mm 249.2 mm

Table 5.8: Variants II-VI: biased observations and estimated biases according to
largest test ratio.
Note: Not all biases are detected (underfitting). Simulated biases for ref-
erence. Estim. = estimated; Obs. = observation; Simul. = simulated.

hypothesis as performed for variant I, is now performed for variants II-VI. This search
includes also hypotheses that assume only one bias, the tests of which are equivalent
to the w-test. The results are summarised in table 5.8.

Table 5.8 shows that the alternative hypotheses with the largest test ratios have biases
that are indeed present. The least-squares estimates of the biases are very close to the
simulated values. However, too few biases are detected. It means that the method using
the largest test ratio has too large a preference for hypotheses with fewer parameters.
It tends to underfitting of the model to the measurements, although it takes account
of the number of parameters through the χ2-distribution and its critical value.

The Akaike information criterion (AIC) is designed to take into account a difference in
the number of parameters in the hypotheses that are compared (Akaike, 1974). For
comparisons in which only a small number of observations are used, as in this example, a
corrected AIC (AICc) has been proposed by Hurvich and Tsai (1989). For the comparison
of geodetic point fields, the equation for the AICc can be written, omitting a constant
term that is irrelevant in the comparisons, as follows (Lehmann and Lösler, 2017):

k = n + q− d + 1,

AICc = 2k +
2k(k + 1)

m− (k + 1)
+ m ln

Tb − Tq

m
, (5.34)

in which d is the rank defect of model matrix A. In this example d = 0. Table 5.9 shows
the hypotheses that have the smallest AICc (which indicates the best hypothesis). All
biases are detected without underfitting or overfitting (i.e., not too few, nor too many
biases are detected). The least-squares estimates of the biases are close to the simulated
ones.

The AICc performs better than the largest test ratio in this example. Just this example
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Variant Smallest
AICc

Biased
observ.

Simul.
biases

Estim.
biases

II 107.2 P5 50 mm 51.8 mm
h16−β 25 mm 28.8 mm

III 107.2 P5 50 mm 51.8 mm
h16−β 50 mm 53.8 mm

IV 112.0 P5 50 mm 50.9 mm
R1 250 mm 249.2 mm

V 115.5 P5 50 mm 51.8 mm
R1 250 mm 249.2 mm
h16−β 50 mm 53.8 mm

VI 119.2 P5 50 mm 50.9 mm
R1 250 mm 249.2 mm
R2 250 mm 248.3 mm

Table 5.9: Variants II-VI: biased observations and estimated biases according to AICc.
All biases are detected and no under- or overfitting occurs. Simulated biases
for reference.

is, however, not enough to reach a general conclusion about the effectiveness of one or
another information criterion. Here, the largest test ratio and the AICc are used to show
how an adjustment model with constraints can be tested for the purpose of geodetic
deformation analysis.

5.8.5 Conclusion of Example 2

This example shows that geodetic deformation analysis is possible by testing an adjust-
ment model with constraints. It has the advantage relative to other methods of geodetic
deformation analysis that points that define the geodetic datum are fixed in only one
epoch. This means that datum points do not have to be stable points. Points are tested
for movements by testing constraints, and, simultaneously, stochastic observations are
tested for biases. This testing is invariant for a change of datum points (i.e., for S-
transformations). Comparison with the results of the same example in Wiśniewski and
Zienkiewicz (2016) shows that using the adjustment model with constraints, and using
the AICc to select the best alternative hypothesis, is more effective in indicating which
observations are biased and which points are unstable. The least-squares estimates of
biases (biases in stochastic observations and deformations) are close to the simulated
biases.

The extension of the analysis of two epochs to the analysis of more than two epochs is
straightforward (see chapter 7).
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5.9 Conclusions

It has been shown how constraints on parameters in an adjustment model of obser-
vation equations can be tested using standard generalised likelihood ratio tests. The
constraints are formulated for this purpose as nonstochastic observations. This gives a
simple procedure to adjust and test both stochastic observations and constraints on the
parameters in an analogous way, and even simultaneously. The cofactor matrix of the
observations is singular because of the nonstochastic observations. Adjustment of an
adjustment model of observations with a singular, that is, positive semidefinite, cofactor
matrix, is well-known. Testing of such a model needs, however, special consideration to
compute the test statistic. Six methods have been treated to compute the test statis-
tic. Two examples from geodetic deformation analysis have been given to illustrate
testing of biases in both constraints and stochastic observations. These examples show
that testing geodetic deformation hypotheses by testing constraints makes it possible to
define a geodetic datum by unstable points. Detection of deformations with an infor-
mation criterion has been demonstrated to be effective, and least-squares estimates of
deformations to be adequate. Minimal detectable biases, usable for planning purposes,
have been computed.
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Time series analysis with geodetic observations1

6.1 Introduction

Geodetic measurements from e.g. levelling instruments, total stations and GPS re-
ceivers, acquired during many epochs, can be used for geodetic deformation analysis.
In most standard applications Cartesian coordinates (1D, 2D, or 3D) are determined
per epoch and transformed to a common geodetic datum. Subsequently coordinate
differences are determined and analysed.

This chapter deals with the problem of finding the best mathematical description of a
deformation. “Best description” is here defined by means of an information criterion,
(e.g. the Akaike information criterion (Akaike, 1974)). Existing approaches to this
problem suffer from one or more of the following three flaws. (1) They neglect stochastic
information about the observations, especially correlation, where this can have a major
influence (Borre and Tiberius, 2000; Beavan, 2005; Holst and Kuhlmann, 2016). (2)
They cannot take into account the mathematical descriptions of driving forces, and
focus on the analysis of displaced points (Heunecke et al., 2013; Caspary, 2000; Nowel,
2016). (3) Or they are not designed to handle a comparison between a multitude of
alternative deformation descriptions (Xu et al., 2000; Boyd et al., 2015; Ng et al., 2015).

The existing approaches to find the best mathematical description of a deformation
belong to one of three main approaches. Each approach suffers from one or more of
the mentioned flaws.

The first approach, used in signal processing, tries to fit a deterministic mathematical
function in time to a time series of coordinates. The time series is considered a random
process and analysed accordingly (Papoulis, 1984). In general the stochastic nature of

1This chapter has been published before in Journal of Applied Geodesy (Velsink, 2017). To fit the
publication into this study, minor changes have been made.
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the observations (full covariance matrix) is not taken into account, and the deforma-
tions are analysed for each observing station separately (many publications apply this
approach, we mention here (Chang and Hanssen, 2016; Ng et al., 2015)).

The second approach, traditionally used for geodetic deformation surveys, uses a heuris-
tic, where the congruence of the same point field in different epochs is compared to find
a satisfactory description (Heunecke et al., 2013; Caspary, 2000; Nowel, 2016). The
heuristic uses the stochastic information of the observations, and it tests hypotheses
that assume deformations per single point and per pair of two epochs. To be applica-
ble, it requires some points to be stable through all epochs. If necessary, the heuristic
successively removes points to arrive at an acceptable hypothesis. Then it tries to add
previously rejected points. Many publications treat this and similar methods (Pelzer,
1971; Heunecke et al., 2013; Chen, 1983; Chrzanowski et al., 1986; Dong, 1993; Cas-
pary, 2000). To what extent the goodness of fit, reached by such a heuristic, is the
best one, is hard to determine.

The third approach, applied e.g. in geophysics, is based on knowledge of the driving
forces, leading to a forward model, describing the deformations, and tests the model(s)
subsequently. In many publications this approach is used; we mention Xu et al. (2000);
Boyd et al. (2015). The number of models to be tested is generally limited.

This chapter proposes an alternative geodetic deformation analysis method to address
the three flaws, mentioned earlier. This means, firstly, that it takes the stochastic
information of the observations into account. Secondly, hypothesised deformations
are included in the adjustment model as mathematical functions. The hypothesised
deformations are confronted with the time series of observations, and tested. The
mathematical functions provide the link between the driving forces and the observations.
Thirdly, a statistical information criterion is used to select the best description of the
deformations.

The proposed analysis method expresses the mathematical functions as constraints on
the parameters of the adjustment model. The constraints are processed as observa-
tions without random noise (nonstochastic observations). In the appendix methods
are given to solve an adjustment problem with nonstochastic observations rigorously
(without approximations). The addition of nonstochastic observations enlarges the sys-
tem of normal equations. This is a disadvantage relative to other solution methods of
adjustment problems with constraints. The advantages are described in Section 6.3.1.4.

The original observations of all epochs are input for the analysis method. There is no
intermediate step, where coordinates per epoch are determined. This means that there
are no different geodetic datums for different epochs, and testing is directly related to
the original observations. It may be a disadvantage, if the original observations of an
epoch are not available.

Section 6.2 starts with an overview of the chosen method to solve the problem. Section
6.3 continues with the adjustment model for deformation analysis, and shows how a
physical model of the deformation is included in the adjustment model. Testing and
quality description are treated as well. It is shown that the testing method is invariant
for a change of geodetic datum. Section 6.4 treats an elaborate example of geodetic
deformation analysis.
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6.2 Method overview

In Figure 6.1 an overview is given of the proposed method for geodetic deformation
analysis.

Design geodetic deformation analysis network

Check minimal detectable deformations
Perform measurements for each epoch

Adjustment and testing of each epoch sepa-
rately

Construct combined model of all observations
(all epochs), using simplest physical model
(deformations, or their absence, are described
by constraints)

Adjustment and testing of combined model

Model rejected?
true false

Formulate alternative physical models

Test all reasonable alternatives
Use information criterion to select best
one

∅

Draw conclusions

Figure 6.1: Overview of the proposed method to find the best
mathematical description of a deformation.

To solve the problem of finding the best mathematical description of a deformation, we
design a geodetic deformation analysis network. This network represents one or more
objects. Such an object may, e.g., be a building, a tunnel, an area, a region. The
subset of reference points is an object, which is considered stable. This object is not
treated separately from the other objects. Each object possibly moves relative to the
other objects or possibly experiences internal deformations, or both.

The point coordinates of the geodetic deformation analysis network are determined by
measurements in each epoch. The measured points of any one epoch are considered
to constitute a separate geodetic network, belonging solely to that epoch. Each point
is linked to the equivalent point in another geodetic network, i.e. in another epoch, by
constraints that define how the point is expected to move relative to the other points. It
may be no deformation (the point is stable), or any kind of movement. It is illustrated
for two epochs in Figure 6.2. Thus the constraints describe deformation hypotheses
(which can be the absence of deformation).

To derive the point coordinates from the geodetic observations, a linear or linearised
adjustment model is formulated, which is solved by least-squares. The adjustment
model is a combined model, containing the observations of all epochs, the parameters
of all epochs, and the constraints that link the parameters together into time series of
parameters.
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A
B

A

B

Epoch 1

Epoch 2

Object 1
Object 2

Object 1 Object 2

Constraints

Figure 6.2: Two epochs linked by constraints, visualised by dashed lines. Constraints
describe deformation behaviour, including no deformation. A, B: reference points,
considered together a separate object.

The combined model must be capable of determining the deformations of interest.
Therefore, a check is performed, whether the minimal detectable deformations (see
chapter 3) comply with the specifications. If so, the measurements can start, and after
collecting measurements of two or more epochs, adjustment and testing of the combined
model can be carried out.

First, however, it is recommended to adjust and test each epoch separately. Only when
the adjustment and testing of the observations of an epoch is accepted by its overall
model test, the observations are included in the combined model. This makes it less
likely that a bias in an epoch, caused by measurement noise or errors, is interpreted in
the combined analysis as a deformation.

A combined adjustment and testing is performed, when all epochs have been included.
Initially the assumed deformation is as simple as possible, often the absence of any
deformation. If the overall model test of the combined adjustment model is rejected,
alternative deformation models are added to the model, and tested. An alternative
deformation model is derived from knowledge of the driving forces, i.e. from a physical
model.

If the knowledge of the driving forces is limited, several, and often many deformation
hypotheses are reasonable alternatives. Each of them can be tested, and the best among
them is chosen. An information criterion is used to make a sensible choice.

To handle a time series of measured or derived 3D coordinates, for each epoch the
coordinates and their covariance matrix can be taken, and the epochs can be linked by
a chain of 3D transformations (see chapter 7).

In the present chapter, however, the focus is on a time series of geodetic measurements,
of whatever measurement type they may be. The measurements of all epochs are direct
input for the adjustment model. This avoids the intermediate step of determining
coordinates and their covariance matrix for each epoch.
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In the following section a time series analysis with the proposed method is described in
more detail.

6.3 Time series analysis

The proposed method to find the best mathematical description of a deformation starts
a time series analysis with a least-squares adjustment (Section 6.3.1) and testing, in-
cluding a test quality description (Section 6.3.2). It is followed by the selection of the
best deformation description with an information criterion (Section 6.3.3).

The complete process is illustrated in Figure 6.3, which is an elaborated version of
Figure 6.1.

6.3.1 Adjustment model

6.3.1.1 Deformation analysis model

Our adjustment model for deformation analysis distinguishes three types of observations
and two types of unknown parameters, which gives the following model:y

s
zd
zg


︸ ︷︷ ︸

y

=

As 0
Zd Z∇
Zg 0


︸ ︷︷ ︸

A

(
xs
∇

)
︸ ︷︷ ︸

x

+

es
0
0


︸ ︷︷ ︸

e

, (6.1)

y
s

=

y
1
...

y
p

 ; xs =

xc
xd
xn

 ; xc =

x1

...
xp

 ,

D{y} = σ2Qy = σ2

Qys 0 0
0 0 0
0 0 0

 .

Underlined variables indicate that they are stochastic. Here we assume that the stochas-
ticity can be described by a Gaussian probability density function. The m-vector y
contains m observations. The matrix A is the coefficient matrix, which may be rank
deficient, the n-vector x contains n parameters, and e is the m-vector of Gaussian noise.
The expectation of e, i.e. E{e}, is zero.

D{y} is the covariance matrix of y, split into a variance factor σ2 and a symmetric
positive semidefinite cofactor matrix Qy, which is singular. The variance factor is any
positive real scalar.

The observations, assembled in vector y, are split into:

y
s
: time series of observations that originate from measuring devices; clustered from
epoch 1 to p in y

1
to y

p
.
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zd: nonstochastic observations (constraints) that stipulate which points in different
epochs are the same points and how they move.

zg: nonstochastic observations (constraints) that define the geodetic datum. More
generally: they define the minimal constraints, needed to deal with nonestimable
parameters. We will come back on this in Section 6.3.1.3.

Parameters, assembled in vector x, are split into:

xc: time series of heights or coordinates, clustered from epoch 1 to p in x1 to xp.

xd: deformation parameters that are part of the simplest physical model; in case the
simplest physical model is “no deformation”, this vector is empty.

xn: nuisance parameters, necessary to build the model, but not of primary interest
(e.g. orientation parameters when directions are used as observations).

∇: deformation model parameters, describing the motion of points, for example the
linear rate of a linear subsidence through the epochs.

Random noise, assembled in vector e, is split into:

es: the measurement noise of observations y
s
.

ed = 0, because zd is nonstochastic.

eg = 0, because zg is nonstochastic.

Model (6.1) considers each epoch as a different geodetic network. The same point in
another epoch is considered to be a different point. Only by linking corresponding points
with nonstochastic observations, the geodetic networks of all epochs get connected, see
Figure 6.2. This is reflected in matrix Zd that contains in each row a 1 and a -1 in the
columns of the pertaining points and epochs, in case the simplest physical model is “no
deformation” (see the example in Section 6.4).

The nonstochastic observations zd appear in two variants. If a point is not moving,
the corresponding row in Z∇ contains zeros. In a stability analysis none of the points
is expected to be moving. In that case, the column with Z∇ in matrix A, as well as
the parameter vector ∇ are missing. If one or more points are expected to be moving
between two or more epochs, there are parameters ∇ and there is a matrix Z∇. These
parameters are the rate of linear movement, or the coefficients of a power law function,
or the coefficients of a periodic function, etc.

The nonstochastic observations zg solve the datum problem. An essential difference
between zd and zg is that zd can be tested, which is not possible for zg.

Model (6.1) is linear or linearised. Its least-squares solution is treated in appendix D.1.

6.3.1.2 Physical model

To get a good description of a deformation, it is important to have information on
the driving forces. This information is used to construct the physical model of the
deformations, and to model the resulting deformations in the adjustment model. The
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Design deformation analysis network

Check minimal detectable deformations
Carry out measurements during several epochs

Repeat until all epochs treated

First epoch?
true false

i = 1 i = i + 1

For epoch i:

Collect observations: y
i
, D{y

i
}

Choose location and nuisance parameters

Construct design matrix for adjustment

Perform adjustment and testing, and solve biases

Continue only if number of epochs i ≥ 2

Collect parameters of all epochs in vector xs

Construct design matrix As from the collected design
matrices of all epochs

Formulate simplest physical model; if necessary: add
deformation parameters to xs and extend As; determine
Zd, zd.
Identify nonestimable parameters, and formulate mini-
mal constraints (e.g. geodetic datum): Zg, zg

Perform adjustment and overall model test

Model rejected?
true false

Repeat until all reasonable alternatives tested

First alternative?
true false

j = 1 j = j + 1

For alternative j:

Formulate model:
– Choose deformation parameters ∇
– Determine Z∇, C

Perform test using B-method of testing

Compute information criterion (test ratio)

Determine best deformation description
with information criterion (largest test ratio)

Final adjustment with adapted design matrix

∅

Draw conclusions

Figure 6.3: Proposed geodetic deformation analysis method.
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physical model can have unknown parameters, like the unknown linear subsidence rate
of a building, or the coefficients of a periodic movement. The physical model and its
parameters are put into deformation analysis model (6.1) as nonstochastic observations
zd, model matrices Zd and Z∇, and parameters ∇.

Note that measurements can have been used to build the physical model. They can be
put into model (6.1) as measurements zd. They are, however, stochastic, and are treated
in the same way as the geodetic measurements y

s
. Standard deviations and correlations

of the measurements have to be available, or an assumed standard deviation can be
used. Variance component estimation can give information on the correctness of the
used standard deviations.

6.3.1.3 Constraints

Model (6.1) contains both minimal and redundant constraints (Pope, 1971). zg are
minimal constraints, while zd are in general redundant constraints.

Minimal constraints are added to solve a rank deficiency of matrix A. In geodetic
practice two major reasons exist, why rank deficiency occurs: (i) the definition of a
geodetic datum, and (ii) the existence of a configuration defect, which means that
some coordinates or other parameters are not or not sufficiently estimable, e.g. because
of missing observations.

Redundant constraints are added as part of the functional model. In deformation analysis
they can describe deformation hypotheses.

It may occur that without the constraints zd, the adjustment model is not solvable. In
that case the elements of zd also function as minimal constraints. In general they will
be redundant as well (we have more of them than needed to solve the rank deficiency
of matrix A).

If standard deviations larger than zero are assigned to constraints, we speak of “weighted
constraints” or “soft constraints”. Soft constraints can be processed as observations.
They differ from other observations in that they do not originate, directly or indirectly,
from measuring devices. This distinction is, however, artificial. If a deformation analysis
model states that a point is not moving, the human model designer, observing that “no
motion” is a credible assumption, acts as a measuring device. The term “pseudo-
observation” is, therefore, sometimes used to indicate a soft constraint.

If standard deviations of zero are assigned to constraints, we speak of “hard constraints”.
They can be treated as nonstochastic observations within model (6.1). Adjustment is
possible with one of the three methods, described in appendix D.1.

If a generalised inverse is used, it is not necessary to explicitly formulate minimal con-
straints to solve a rank deficiency of matrix A, because the rank deficiency is implicitly
solved. Explicitly formulating minimal constraints makes it, however, clear, how the
geodetic datum is defined, or how a configuration defect is solved.

If an extended system of normal equations is used, the constraints can be tested by
testing the estimated Lagrange multipliers Lehmann and Neitzel (2013).
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It is possible to test constraints by treating them as nonstochastic observations. This
is described in appendix D.2. There it is shown that stochastic and nonstochastic
observations are tested in the same way. The advantages are listed in the next section.

6.3.1.4 Discussion on nonstochastic observations

The advantage of handling hard constraints by means of nonstochastic observations, is
that it yields a relatively simple adjustment model (6.1). This, in itself, may be a reason
to use this option. But processing constraints by using nonstochastic observations has
other advantages.

First, alternative hypotheses containing one or several additional bias parameters, having
an influence on one or more observations (stochastic or nonstochastic ones, or both),
are easily formulated and tested.

Secondly, the quality of the test can be described by minimal detectable biases (MDB’s).
They describe the minimal values of biases that can be detected with a certain reference
probability by testing a model that contains these biases. A more detailed treatment will
be given later (Section 6.3.2.3). If a constraint does not fit into the model, it is biased.
The model can be tested for such a bias, and an MDB can be computed. Thus MDB’s
give information about detectable biases in both stochastic observations and constraints.
One or more constraints in model (6.1) describe a deformation hypothesis. M.d.b.’s of
these constraints describe the minimal detectable deformations. It is illustrated in an
elaborated example in Section 6.4.5.

Thirdly, if a constraint is given a nonzero standard deviation and the adjustment is
done again, it is relatively easy to see the effects of a less “hard” constraint. If a
standard deviation is changed from zero to a nonzero value, it is called “relaxation” of
the constraint. It enables a sensitivity analysis: the assessment of the effect of relaxing
constraints on the estimated parameters and adjusted observations, and on the MDB’s.

Relaxation of constraints makes it possible to estimate deformation effects that are un-
modelled in the deterministic model matrix. Deformations that have a local influence
can be modelled by covariance functions that determine the cofactors between con-
straints. The word “local” can have here a spatial and a temporal meaning. The option
to estimate such a local deformation signal, comparable with collocation (Moritz, 1978)
or Kriging (Krige, 1951), is left for future research.

6.3.1.5 Matrix C inside or outside model

Deformation parameters ∇ are included in model (6.1). They are inside the model,
which is tested by means of an overall model test (see chapter 3). If the model is not
rejected, the deformation is corroborated (confirmed).

However, we take in general as null hypothesis the simplest deformation description.
Often this is the assumption of stability, i.e. no deformation is assumed to be present.
It may be that the simplest deformation does include a deformation, described by the
parameters xd, which are assumed to be undisputed. The parameters ∇ and the second
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column of the coefficient matrix of model (6.1) do not appear in the null hypothesis.
We now formulate the alternative hypothesis that a (more intricate) deformation has
occurred. To test the alternative hypothesis against the null hypothesis, a test quantity
Tq is computed. The equation for Tq is (appendix D.2):

Tq =
1

σ2
r̂TC(CTQr̂C)−1CT r̂. (6.2)

with r̂ the reciprocal residuals, for which holds, using the least-squares residuals ê:

ê = Qyr̂. (6.3)

In equation (6.2) we take for matrix C the second column of the coefficient matrix of
equation (6.1): As 0

Zd Z∇
Zg 0

 (6.4)

︸︷︷︸
A′
︸︷︷︸
C

Now we can write:

y = A′xs + C∇+ e =
(
A′ C

)︸ ︷︷ ︸
A

(
xs
∇

)
︸ ︷︷ ︸

x

+e. (6.5)

Matrix C is now outside the model that describes the null hypothesis. Model (6.5)
describes the alternative hypothesis (appendix D.2), and the model:

y = A′xs + e (6.6)

is the null hypothesis.

Suppose that a certain alternative hypothesis is accepted as the best one to replace a
rejected null hypothesis. It is easy to adapt the null hypothesis by adding C and to
perform the final adjustment.

Before the best alternative hypothesis can be selected, the null hypothesis has been
tested, and, if it was rejected, different alternatives have been tested. How this testing
is done, is the subject of the next section.

6.3.2 Testing and test quality description

6.3.2.1 Testing

To test a time series of measurements, first a null hypothesis is formulated, often the
absence of deformations. An overall model test of the null hypothesis is performed
(appendix D.2.1). If the null hypothesis is rejected, an alternative hypothesis has to
be searched for. Candidates are hypotheses, where only one observation is biased rel-
ative to the null hypothesis. Such hypotheses can be tested by conventional w-tests
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(appendix D.2.2). In data snooping (Baarda, 1968b) all possible conventional w-tests
are tested subsequently. For deformation analysis other types of systematic hypotheses
are possible, e.g. the hypothesis that only one point is moving linearly through several
epochs. If the driving forces are sufficiently known, more intricate hypotheses may be
reasonable. They are tested by specific, multidimensional tests (appendix D.2.3).

From the test method follows what the quality of the tests is. This test quality, described
by minimal detectable deformations, is needed already in the design stage of network
analysis (Figure 6.3), and will be treated in Section 6.3.2.3. First, however, it will
be shown that testing deformation hypotheses as described here, is invariant for S-
transformations.

6.3.2.2 Deformations and S-transformation invariance

The coordinates and their covariance matrices contain information about the form and
size of objects and also about the relative locations of these objects. They contain
information about the geodetic datum as well. S-transformations of the coordinates
and their covariance matrices change the geodetic datum, but not the form and size,
nor the relative locations (Pope, 1971; Baarda, 1973).

The nonstochastic observations zg define the geodetic datum, i.e. the S-system (Teu-
nissen, 1985a, p. 41). The elements of the parameter vector that are constrained by
zg constitute the S-basis. A different zg and a different Zg mean a change of S-basis
(an S-transformation), cf. Pope (1971); Baarda (1973). Different coordinates, and
a different covariance matrix of the coordinates, will result. The choice of S-system
is arbitrary, and should not influence the deformation analysis. This means, that the
tests have to be invariant under an S-transformation, i.e. the test statistic Tq and the
MDB’s have to be S-transformation invariant. In appendix D.3 it is shown that this
holds indeed.

It is worth noting that the S-system can be fixed by the height or coordinates of points
within one epoch, although a time series of observations, pertaining to many epochs, is
analysed. The relation to the other epochs is realised by the constraints (nonstochastic
observations zd) that define the deformation hypothesis. The consequence is that de-
formations of S-base points can be tested without the need for an S-transformation. It
is illustrated in the elaborated example in Section 6.4.6.

6.3.2.3 Test quality description

To assess the quality of a deformation analysis, the deformation size that can be de-
tected, is important. A measure for it is the minimal detectable bias (MDB).

An MDB gives the bias in the functional model that can be detected by the associated
test with a certain reference probability (Teunissen, 2006, p. 102). If the bias is a
deformation, the MDB describes the minimal detectable deformation (MDD), and is an
indication of the sensitivity of the network for deformations (Niemeier, 1982).



134 6. Time series analysis with geodetic observations

An MDB (indicated as ∇0) can be determined as (cf. Teunissen (2006, p. 101)):

σ2λ0 = ∇T
0 C

TQr̂ C∇0 , (6.7)

where C∇0 describes the bias in the observations that can be detected with a certain
probability γ0 (e.g. 80%), while using a certain significance level α0 (e.g. 0,1%). λ is
the non-centrality parameter of the χ2-distribution, if a bias is present. The reference
value λ0 is computed for a test power γ0 and a significance level α0. The only unknowns
in equation (6.7) are the elements of vector ∇0.

If ∇0 has only one element, and, as a consequence, matrix C has one column, ∇0 is a
scalar and follows from the equation:

∇0 = σ

√
λ0

cT Qr̂ c
, (6.8)

where c is a lowercase letter, because it is a vector.

If ∇0 has two elements, and C two columns, equation (6.7) describes an ellipse (because
Qr̂ is a semidefinite positive matrix). If ∇0 has three elements the equation describes
an ellipsoid, for more than three a hyperellipsoid.

The quality of a deformation analysis can be described by giving the tests that will be
performed for the analysis, and listing the MDD’s belonging to these tests.

An advantage of MDD’s is that they can be computed in the design stage of a geodetic
deformation network, when no measurements have been made yet (Figure 6.3). They
allow to design an optimal network for the detection of those deformations that are
most crucial (see chapter 3). Besides the criteria available for optimal design and sensi-
tivity analysis of geodetic networks (Heunecke et al., 2013 (pp. 251ff.); Niemeier, 1982;
Kuang, 1991), they yield the additional criteria to assess a network for its capability to
detect deformations.

6.3.3 Best deformation description

6.3.3.1 Model identification and information criterion

To find the best mathematical description of a deformation, model identification is
needed. Its purpose is to find the model that describes the relations between the
observations most adequately. To start model identification the simplest deformation
hypothesis is formulated. In geodetic deformation analysis this is often stability, which
implies the absence of any deformation. The simplest deformation hypothesis may also
describe something else than stability. For example a linear movement in time of some
points may be assumed, if it is clear that these are not stable. This simple deformation
is described by parameters xd in model (6.1).

Testing a model, treated in appendix D.2, is done by opposing a null hypothesis to an
alternative hypothesis. The alternative hypothesis has more parameters (parameters ∇
are supplementary). The null hypothesis is retained, unless it is rejected. This is in
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accordance with Occam’s razor, which means that the simplest hypothesis (translated
as: with the fewest parameters; cf. Popper, 2002, p. 394ff.) is the preferred hypothesis.

Testing starts by performing an overall model test. If it does not reject the model, the
simplest deformation hypothesis is corroborated, cf. Popper (2002, p. 248ff.). Other-
wise, a better model needs to be identified.

Finding a better hypothesis implies comparing several models (i.e. several alternative
hypotheses) with a different number of parameters. To choose between them, a criterion
is needed (Lehmann and Lösler, 2016). Well-known are the Akaike Information Criterion
(Akaike, 1974), and the Bayesian Information Criterion (Schwarz, 1978). In geodesy the
B-method of testing (Baarda, 1968b, p. 33) is well-known. This method in combination
with test ratios (cf. Chang (2015); de Heus et al. (1994b,a)) is used as information
criterion in the example of Section 6.4.

To explain this information criterion, we first define the concepts “bias parameter”, “valid
model”, and “reference minimal detectable bias”. The alternative hypothesis deviates
from the null hypothesis by its supplementary parameters, which are called here the bias
parameters. If an alternative hypothesis is shown to give the best model among its com-
petitors, the bias parameters of this hypothesis can be integrated into the model. The
bias is in that case a vector of necessary additional parameters, and here: a deformation.

Suppose that a certain bias is indeed present, and that several models, each with a
different vector of bias parameters, are valid descriptions of this bias. Here we call these
models valid models for this bias. We take one of these models as reference and call its
vector ∇0 of minimal detectable biases the reference minimal detectable bias (reference
MDB). Let the number of elements of ∇, i.e. its dimension, be q. We call the test of
an alternative hypothesis with ∇ as vector of bias parameters a q-dimensional test. In
general the MDB of a one-dimensional test is taken as reference MDB, i.e. the MDB
of an alternative hypothesis, which is tested with a w-test (Baarda, 1968b, p. 18ff.).

The B-method states that the power of a test to find a bias that is equal to the
reference MDB should be the same for all tests of valid models, whatever the dimension
q of each of these tests may be. A consequence of the B-method is that tests of
different dimension use different critical values (Baarda, 1968b, p. 25). Therefore, to
evaluate the results of tests of different dimension, the values of test statistic Tq cannot
be compared directly. Hence, the ratio of the test statistic and its critical value is used
(Chang, 2015; de Heus et al., 1994b,a). A bias equal to ∇0 will lead to rejection by
tests of two valid models with an equal power. Therefore, the test ratio’s of both tests
will be larger than one with an equal power.

Hence, the basis for using the B-method of testing in combination with test ratio’s as
an information criterion, is the fact that the test ratio’s of two hypotheses are larger
than one with the same power, if both hypotheses are valid descriptions of the bias,
and this bias is equal to the reference minimal detectable bias.

The use of this information criterion is shown in the elaborated example of Section 6.4.
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6.3.3.2 Estimation of deformation parameters

If the best deformation description has been determined, the next step is drawing con-
clusions. This includes estimation of the deformation parameters ∇. They can be
estimated by using model (6.1) (C is inside H0) and one of the solution methods of
appendix D.1. Another option is to use a model that assumes stability (no deformation;
C is outside H0). ∇ is estimated from the adjustment results of H0 as:

∇̂ = (CTQr̂C)−1CT r̂. (6.9)

This result follows from the overview of testing equations in appendix D.2 (multiply
equation (7.32) with BT and solve for ∇). It is usable if Qy is singular, which is
the case for model (6.1). We notice that this equation is equal to equation (33) of
(Teunissen, 2006), if Qy is nonsingular (i.e. Q−1

y exists):

∇̂ = (CTQ−1
y QêQ−1

y C)−1CTQ−1
y ê. (6.10)

This is, because we have from equation (6.3), and the application of the propagation
law of cofactors:

r̂ = Q−1
y ê ; Qr̂ = Q−1

y QêQ−1
y , (6.11)

with Qê the cofactor matrix of ê. If we insert this in equation (6.9), we get equation
(6.10).

6.4 Experimental validation

The workability of the proposed method is experimentally validated by an example from
deformation analysis, using spirit levelling measurements. The approach of this example
can be applied to deformation description problems in e.g. the mining industry, where
soil subsidence has to be monitored. An important advantage of the method is that
no stable points are needed for the definition of an S-system. Professional practice in,
for example, the mining industry in the Netherlands uses guidelines that demand such
stable points, because it is assumed that they are necessary for the analysis (T.P.B.,
2014).

6.4.1 Problem description

The problem solved in this experimental validation is the description of the deforma-
tion of five levelling bolts. The observations are height differences between the bolts,
measured by spirit levelling. The bolts are indicated as A to E (Figure 6.4). The
measurements are repeated four times, resulting in a time series of five epochs of mea-
surements. The moments in time of these epochs are given in Table 6.1. Time is
indicated in “units of time” (uot), which may be any unit (day, week, several months,
etc). Both bolts B and C have been monumented in the same building, which is sus-
pected to subside linearly with time. Bolts A, D and E are supposed to be stable and
not influenced by the forces causing the subsidence. The suppositions are to be tested
by adjusting and testing the measured height differences of all epochs.
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Figure 6.4: Levelling network.

Epoch 1 2 3 4 5
Time 1 2 4 7 10

hAB 1.5730 1.5700 1.5690 1.5600 1.5550
hBC -0.1440 -0.1464 -0.1454 -0.1456 -0.1447
hCA -1.4290 -1.4270 -1.4220 -1.4160 -1.4090
hCE 0.8682 0.8708 0.8754 0.8817 0.8877
hEB -0.7241 -0.7247 -0.7309 -0.7377 -0.7424
hED 0.6577 0.6572 0.6571 0.6577 0.6572
hDC -1.5280 -1.5290 -1.5320 -1.5380 -1.5440

Table 6.1: Time series of measurements of height differences in meter
(time in any unit of time).

6.4.2 Measurements

The simulated measurements of the height differences are listed in Table 6.1. They
have a standard deviation of 1 mm and no correlation. The subsidence has been added
to the heights of B and C by adding in each following epoch a height difference ∆h
defined by:

∆h = a (t(i+1) − ti), (6.12)

with a = −2 mm/uot and ti the time of epoch i and i = 1, .., 4. Both B and C subside
at the same rate.

6.4.3 Null hypothesis: point field stability

We start with the null hypothesis that no subsidence has occurred. This is a simpler
hypothesis with less parameters than the hypothesis that B and C have subsided, cf.
Section 6.3.3.1. If this hypothesis is rejected, an alternative hypothesis with more
parameters is formulated and tested.
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To build model (6.1) for the null hypothesis, the heights of the five bolts are taken as
the 25 parameters in vector x, five parameters for each epoch.

x =
(

h(1)
A , ... , h(1)

E , ... , h(5)
A , ... , h(5)

E

)T
. (6.13)

where by (1), (5) the epoch is indicated.

The observations of Table 6.1 give rise to 35 observation equations (vector y
s
in model

(6.1)):

y
1

= −h(1)
A + h(1)

B + e1 = −x1 + x2 + e1

y
2

= −h(1)
B + h(1)

C + e2 = −x2 + x3 + e2

y
3

= h(1)
A − h(1)

C + e3 = x1 − x3 + e3

...
...

...
y

8
= −h(2)

A + h(2)
B + e8 = −x6 + x7 + e8

...
...

...
y

35
= h(5)

C − h(5)
D + e35 = x24 − x25 + e35

(6.14)

To these observations we add two groups of nonstochastic observations.

1. Twenty observations to establish the equality of heights of all points in all epochs
(vector zd in model (6.1)). The observation equations are:

y36 = −h(1)
A + h(2)

A = −x1 + x6

y37 = −h(1)
B + h(2)

B = −x4 + x9

...
...

...

y41 = −h(2)
A + h(3)

A = −x6 + x11 (6.15)

y42 = −h(2)
B + h(3)

B = −x7 + x12

...
...

...

y54 = −h(4)
D + h(5)

D = −x19 + x24

y55 = −h(4)
E + h(5)

E = −x20 + x25

The values for all twenty observations are zero.

2. One observation to define the S-system (vector zg in model (6.1)). Because from
height differences no heights can be determined without having the height of
at least one of the bolts, the height of one bolt in one epoch is fixed at some
arbitrary height. We take h(1)

A = 2 m, but any one height in any one epoch would
do. This arbitrary height and its standard deviation of zero are the S-basis. The
observation equation can be written as:

y56 = h(1)
A ; σy56 = 0mm, (6.16)
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noticing that because the standard deviation is zero, the observation is non-
stochastic and the residual e56 = 0. The value of y56 = 2m. Because the height
of A is only fixed for the first epoch, the estimation of the height of A at other
epochs can yield a different height, if under (1) not equality, but some movement
is formulated. How a movement can be formulated is shown in the following
sections. It means that A does not have to be a stable point to be usable as
S-basis.

The 21 observations in these two groups are all taken as nonstochastic; their standard
deviation is zero:

σy36 = ... = σy56 = 0 (6.17)

There are 56 observations and 25 unknown parameters all together, which results in a
redundancy of 31.

6.4.3.1 Adjustment and overall model test

The model, formulated in the previous section, is adjusted by means of least squares,
cf. appendix D.1. In Table 6.2 the estimated heights are given. The heights of all
points have the same values for all epochs. This is the consequence of the observations
(constraints) under (1) in Section 6.4.3, which state that the heights do not change.

hA hB hC hD hE

Height 2.0000 3.5655 3.4205 4.9547 4.2974

Table 6.2: Estimated heights in meters for all epochs (no deformation assumed.)

The null hypothesis is tested by performing an overall model test. The significance level
α of this test follows from the B-method of testing (Section 6.3.3.1). It is computed as
α=0.172 after choosing the significance level α0 of one-dimensional tests as α0 = 0.001
. With α, the critical value is computed as χ2

crit. = 38.3.

The overall model test gives a value of test statistic Tq of 1195.6. The model is therefore
clearly rejected. It means that the situation of Table 6.2, i.e. all heights stay the same, is
not a valid hypothesis. Several alternative hypotheses are subsequently formulated and
tested to find the best one. The following sections treat different possible alternative
hypotheses.

6.4.3.2 Testing each observation

The search for the cause of the rejection starts with the conventional w-tests (appendix
D.2.2). They test as many alternative hypotheses as there are observations. Each
hypothesis has, with respect to the null hypothesis, only one additional parameter that
affects only one observation. In tables 6.3 and 6.4 the absolute w-values for respectively
the height differences and the point stability are shown. It is not tested, whether the
nonstochastic observation of the S-basis (point A is fixed to a value of 2 m) is affected
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by a bias. Its w-value is undefined, because this observation is not checked by any of
the other observations.

Epoch 1 2 3 4 5
Time 1 2 4 7 10

hAB 8.56 5.13 3.99 6.28 11.99
hBC 1.11 1.54 0.44 0.66 0.34
hCA 9.70 7.42 1.72 5.13 13.12
hCE 9.57 6.69 1.61 5.36 11.99
hEB 8.75 8.07 1.07 6.61 11.91
hED 0.38 0.19 0.30 0.38 0.19
hDC 7.10 5.95 2.53 4.32 11.17

Table 6.3: absolute w-values for height differences
(critical value is 3.29 with a significance
level of 0.001).

Epoch
interval

1-2 2-3 3-4 4-5

∆t 1 2 3 3

hA 10.00 11.25 13.33 13.75
hB 5.93 7.58 8.92 8.90
hC 7.62 8.49 9.49 9.94
hD 3.67 4.69 5.72 6.01
hE 6.98 8.27 8.87 8.98

Table 6.4: absolute w-values for stability of points
(critical value is 3.29 with a significance
level of 0.001; ∆t is time length of each
epoch interval).

Most absolute w-values are much larger than the critical value of 3.29. That is an
indication that biases in the observations are present. But which heights or height
differences are biased? The w-test is a test that checks whether one observation has a
bias, and the other observations are without bias. Even if all observations are tested by
the respective w-tests, these tests cannot give the right conclusion, if the bias is in fact
in more than one observation. This can be seen in the tables. Not B and C give the
largest w-values, although we might expect the largest values for them. It seems as if
the height of A between epochs 4 and 5 is biased, because it gives the largest w-value
(Table 6.4).

6.4.3.3 One point subsiding, differently for each epoch interval

A more specific hypothesis states that one of the five points is subsiding, but without
correlation between the epoch intervals. This hypothesis is formulated by specifying
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matrix C of equation (6.4). Matrix C has four columns, pertaining to four extra pa-
rameters ∇. Each parameter describes the bias during one epoch interval. There are
four epoch intervals (1–2, 2–3, 3–4, 4–5). Matrix C has the following structure (dots
indicating zeros):

C =


0, ... , 1, ... , 0, ... , 0, ... , 0, ... , 0
0, ... , 0, ... , 1, ... , 0, ... , 0, ... , 0
0, ... , 0, ... , 0, ... , 1, ... , 0, ... , 0
0, ... , 0, ... , 0, ... , 0, ... , 1, ... , 0


T

. (6.18)

Test statistic Tq is computed and tested. The value is 493.0 with a critical value of
36.4. Because q=4, w-values cannot be computed.

Test statistic Tq is χ2-distributed. The square of w is also χ2-distributed, but the
degrees of freedom and the critical values are different. We determine, as described in
Section 6.3.3, the ratio of Tq and its critical value and likewise the ratio of w2 and its
critical value to use the ratios as information criterion. The largest w-value encountered
upto now is w=13.75, which gives a test ratio of 17.5. The test ratios of the above
hypothesis of one point subsiding differently for each epoch interval are given in Table
6.5. Four of these test ratios exceed the largest previously computed w-test ratio. This

hA hB hC hD hE

Test ratio 36.4 23.8 38.5 6.6 25.3

Table 6.5: Test ratios of one point subsiding differently
for each epoch interval.

indicates that points may be unstable during more epochs. However, bolt C and then
A have the largest values. Is it possible to formulate still better hypotheses?

6.4.3.4 One point subsiding linearly

The next step can be to test whether one of the points is subsiding linearly in time
with a constant rate. Performing such a test is done by constructing the matrix C that
describes the alternative hypothesis. Matrix C has one column, pertaining to one extra
parameter ∇, which is the linear subsidence rate. For example between the first and
second epoch the subsidence for point A is expressed as:

h(2)
A = h(1)

A + t12∇. (6.19)

with t12 = t2 − t1 the time interval (epoch interval) between epoch 1 and 2 and ∇ the
rate of change, constant for all epoch intervals.

Four nonstochastic observations are extended with this extra parameter to describe the
linear subsidence of a point in each of the four epoch intervals 1–2, 2–3, 3–4 and 4–5.
In matrix C in the pertinent rows appears the time difference tij of each epoch interval
i–j. All other elements of matrix C are zero. We define three vectors ns, nd and ng.
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Vectors ns and ng have the same lengths as y
s
and y

g
respectively. nd has five elements.

ns = (0, ... , 0)T; ng = 0; nd = (1, 0, 0, 0, 0)T. (6.20)

The “1” corresponds to the point that is tested; here point A. Matrix C has one column
as follows:

C =
(
nT

s , nT
d , 2nT

d , 3nT
d , 3nT

d , nT
g
)T

, (6.21)

The test statistic Tq is computed and tested as described in appendix D.2. Because q=1,
we can compute w-values as well. The results are given in Table 6.6. Two test ratios

hA hB hC hD hE

w-value 22.2 17.9 22.8 9.4 18.5
Test ratio 45.4 29.5 48.1 8.2 31.5

Table 6.6: absolute w-values and test ratios for
testing linear subsidence of one point.

are notably larger than those of Table 6.5, so linear subsidence might have occurred.
But it is not clear that only a linear subsidence of points B or C has occurred.

6.4.3.5 Points B and C subsiding linearly

Because it is known that bolts B and C are positioned in the same building, it is a
logical step to test whether both bolts are subsiding in the same way. A matrix C is
constructed to test this hypothesis.

We define two vectors ns and ng as in equation (6.20). Vector nd is defined as:

nd = (0, 1, 1, 0, 0)T. (6.22)

Matrix C is taken as in equation (6.21). We compute a w-value of 34.3 and a test ratio
of 108.4 (Table 6.7). These values are yet another step larger than the values computed
in Table 6.6. Testing the same hypothesis for other combinations of two points gives
smaller w-values (Table 6.7). Indeed the hypothesis that both B and C are linearly
subsiding, is indicated as a very good one.

Finding the hypothesis that explains the available data best, is implemented here as
finding matrix C that yields a large test ratio. To formulate the best hypothesis, it is
important to have information about the causes of the deformation, as this example
shows.

6.4.4 New null hypothesis

Based on the result of the previous section, a new null hypothesis can be formulated,
cf. Section 6.3.1.5. Points B and C are now supposed to subside with a rate of ∇
mm per unit of time. This extra parameter is added to vector x of parameters as 26th

parameter.
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Point pair w-value Test ratio

A, B 0.2 0.0
A, C 7.2 4.7
A, D 22.3 46.0
A, E 28.3 74.1
B, C 34.3 108.4
B, D 7.9 5.8
B, E 0.5 0.0
C, D 16.2 24.2
C, E 6.1 3.5
D, E 26.1 63.1

Table 6.7: absolute w-values and test ratios
for testing linear subsidence of two
points.

Eight observation equations establish the linear subsidence of B and C. We use equations
like equation (6.19) and replace eight observation equations by the following ones, using
the additional parameter ∇ = x26:

y37 = x2 − x7 + t12 x26

y38 = x3 − x8 + t12 x26

y42 = x7 − x12 + t23 x26 (6.23)
y43 = x8 − x13 + t23 x26

...
...

y53 = x18 − x23 + t45 x26

The values of these eight nonstochastic observations are zero.

6.4.4.1 Adjustment results

The least-squares solution of the model, constructed in the preceding section, can be
obtained by one of the methods of appendix D.1. The estimated heights are given in
Table 6.8.

Epoch 1 2 3 4 5

hA 2.0000 2.0000 2.0000 2.0000 2.0000
hB 3.5734 3.5713 3.5672 3.5609 3.5547
hC 3.4284 3.4263 3.4222 3.4159 3.4097
hD 4.9547 4.9547 4.9547 4.9547 4.9547
hE 4.2974 4.2974 4.2974 4.2974 4.2974

Table 6.8: Estimated heights in meters.



144 6. Time series analysis with geodetic observations

The table shows that the constraints, imposed by the nonstochastic observations, have
been effective:

• Point A in epoch 1 has been fixed at 2 m.

• Points A, D and E have the same height in all five epochs.

• Points B and C have a linear subsidence with an estimated rate ∇̂ (= x̂26) of -2.07
mm/uot. It is in accordance with the value used for the simulated observations
(Section 6.4.2). This rate is illustrated in Figure 6.5.

0 2 4 6 8 10
3.4

3.45

3.5

3.55

3.6

Point B

Point C

Figure 6.5: Subsidence of B (upper line) and C (lower line).

6.4.4.2 Test result

For the overall model test we have a value for Tq of 21.4, which means that the test
doesn’t reject the adjustment model. The assumed deformation (A, D and E are stable
and B and C are subsiding linearly) is not rejected. And neither are the measured height
differences rejected.

6.4.5 Quality description

To plan a deformation analysis before any measurement has yet been done, it is im-
portant to give an indication of the test quality. In this section for all tests of the
previous section the quality is described by giving the minimal detectable biases, i.e. the
minimum deformations that can be detected by each test.

6.4.5.1 All points stable, testing each observation

For the null hypothesis of Section 6.4.3.2 the MDB-values are:

1. 4.3 or 4.4 mm per epoch for all measured height differences;

2. listed in Table 6.9 for the point stability tests;

Table 6.9 shows that a lower MDB (= better detection of deformations) is achieved, if
a height in a certain epoch is sandwiched in time (there are measurements before and
after that epoch) and in space (there are measurements to surrounding points). The
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Epoch interval 1-2 2-3 3-4 4-5
∆t 1 2 3 3

hA 3.3 2.7 2.7 3.3
hB 2.7 2.2 2.2 2.7
hC 2.3 1.9 1.9 2.3
hD 3.3 2.7 2.7 3.3
hE 2.7 2.2 2.2 2.7

Table 6.9: MDB in mm for stability of points (signif-
icance level: 0.001, power: 80%).

lowest values are in epoch intervals 2-3 and 3-4 (sandwiched in time between epochs 1
and 4) for point C (sandwiched in space between four other points).

6.4.5.2 One point subsiding, differently in each epoch interval

For the null hypothesis of Section 6.4.3.3 (only one point subsiding, but differently
in each epoch interval) four MDB-values for each point can be computed. They are
determined by the intersections of the four-dimensional hyperellipsoid that follows from
equation (6.7) with the coordinate axes, see Table 6.10.

Epoch interval ∆t hA hB hC hD hE

1-2 1 1.3 1.0 0.9 1.3 1.0
2-3 2 1.6 1.3 1.1 1.6 1.3
3-4 3 1.6 1.3 1.1 1.6 1.3
4-5 3 1.3 1.0 0.9 1.3 1.0

Table 6.10: MDB for each point in mm per epoch interval
for subsidence, different for each interval.

6.4.5.3 One point subsiding linearly

For the null hypothesis of Section 6.4.3.4 (linear subsidence of only one point with a
constant rate) the MDB-values are listed in Table 6.11.

hA hB hC hD hE

MDB 0.39 0.32 0.28 0.39 0.32

Table 6.11: MDB’s in mm per uot for linear subsidence
of one point with a constant rate (significance
level: 0.001, power: 80%.)

Suppose we want to design a deformation analysis network that can detect a deformation
of, say, 2 mm per epoch interval. From Table 6.9 it follows that the test of one point’s
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subsidence in only one epoch interval can detect a subsidence of 2 mm per epoch
interval with a power of 80% in only two epoch intervals. Using, however, five epoch
intervals (Table 6.11), one can easily detect a subsidence of 2 mm per epoch interval
with a power of 80% (the epoch intervals are 1, 2 or 3 uot (units of time)).

6.4.5.4 Points B and C subsiding linearly

The MDB of testing the null hypothesis of Section 6.4.3.5 by a one-dimensional test
is 0.25 mm/uot. This is better than the MDB’s of Section 6.4.5.3, because more
observations are used.

6.4.6 S-transformation invariance

The height of bolt A has been fixed for the analysis at a value of 2 m in epoch 1, to be
able to determine the heights of the other bolts in all epochs. Point A in epoch 1 is the
S-basis. The analysis doesn’t change, if one of the other points is taken as S-basis. Let
the S-basis be point B, not A. The height of point B in epoch 1 is fixed at 2 m. The
only values that change are the estimated heights of the points. For the situation of
Section 6.4.4.1 we get different estimated heights (Table 6.12), but all results regarding
testing and quality description are the same.

Epoch 1 2 3 4 5
Time 1 2 4 7 10

hA 0.4266 0.4266 0.4266 0.4266 0.4266
hB 2.0000 1.9979 1.9940 1.9876 1.9814
hC 1.8550 1.8529 1.8488 1.8426 1.8364
hD 3.3813 3.3813 3.3813 3.3813 3.3813
hE 2.7240 2.7240 2.7240 2.7240 2.7240

Table 6.12: Estimated heights in meters with hB

in epoch 1 fixed at 2 m.

This example makes it clear that there is no need for the S-system to be defined by one
of the stable points.

6.4.7 Deformation analysis in 2D and 3D

A 2D or 3D deformation analysis can be effectuated with model (6.1) in the same
way as a 1D problem. An S-system is defined by formulating the minimally necessary
number of constraints on the coordinates with zg. In 2D an S-system is defined by 3
or 4 constraints (analysis of form and size, respectively only of form) (see chapter 3).
In 3D it is defined by 6 or 7 constraints (see chapter 4). In appendix D.3 a proof is
given of the invariance of the test results for an S-transformation, i.e. for the transition
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to another S-system. Here the S-transformation is a 2D or 3D congruence or similarity
transformation.

To define the equality (or deformation) of points in different epochs, vector zd and ma-
trices Zd and Z∇ are used. Each point, for which stability or deformation is postulated,
is represented in zd by one, two or three elements (1D, 2D, 3D). These one, two or
three elements within zd can be seen as a vector that links the position of a point in one
epoch to the position of the same point in another epoch. If the vector has elements
with values zero, it is the null vector, and represents stability: the point does not move.
If such a vector has elements different from zero, it represents a point that is moving.

Application of the method of this chapter to 2D and 3D problems, especially the testing
of particular deformation problems (such as movements of a bridge or quay, torsion in
a tunnel), will be the subject of future research.

Another approach to 2D and 3D problems is possible, which performs the analysis in
two steps. In the first step the measurements of each separate epoch are processed
to get adjusted coordinates and their (possibly singular) covariance matrix for each
epoch. Succesively an adjustment model that has coordinates as input, and includes
a transformation, can be used for the deformation analysis of two epochs (see chapter
4). This model can be extended to more than two epochs, i.e. to a time series of
coordinates, for 2D and 3D deformation analysis problems (see chapter 7). Testing
deformation hypotheses by testing constraints is possible for such a model in a similar
way as described in this chapter.

6.5 Conclusions

In this study the problem of finding the best mathematical description of a deformation
is addressed by testing physical deformation hypotheses by a time series of geodetic
observations. The hypotheses are formulated as constraints on the parameters of an
adjustment model. This approach allows for a flexible method to test deformation
hypotheses, to find the best one, and to give a quantification of the test quality. The
method uses the full stochastic information of the observations. Moreover, the tests
are invariant for datum transformations, and the points that define the geodetic datum
do not have to be stable points.

The constraints, describing the deformation hypotheses, can involve subsets of points
and subsets of epochs. The constraints are formulated as nonstochastic observations
(constants that are considered as observations). Thus the constraints can be tested
as observations. Also minimal detectable deformations can be computed, by which
the quality of the constraint tests can be assessed. In this chapter it has been shown
how the best description of deformations is found with an information criterion. Here
the B-method of testing combined with test ratio’s is used as information criterion.
The criterion is meant to have an optimal discriminatory power between alternative
hypotheses. The MDD’s are well suited to check geodetic deformation analysis models
for the minimal detectable deformations, and the method is usable for 1D, 2D and 3D
problems. The method’s use has been demonstrated with an elaborate example.
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Comparison of the performance of different information criteria; the testing of particular
deformation problems, such as deformations of bridges, quays and tunnels; and also the
option to estimate local deformation signals with covariance functions, is left for future
research.



7
Time series analysis with coordinates1

In the previous chapter deformation analysis with a time series of geodetic observations
has been treated. In geodetic practice it is a common situation that the original observa-
tions are not available any more, often because it is deemed convenient to store derived
coordinates, and not the original observations, which are more numerous and difficult
to interpret for non-specialists. Hence, in this chapter a time series of coordinates is
used as input for the deformation analysis. The covariance matrix of the coordinates is
known or unknown. It is known, when the coordinates stem from a previous adjustment
of geodetic observations, and the covariance matrix has been estimated (and has also
been stored together with the coordinates, and is available for further use). In many
situations the covariance matrix is unknown, because it has not been estimated, it has
not been stored, or it is not available. In the absence of the covariance matrix, it is
replaced by a scaled unit matrix, or by a diagonal matrix. The scaling factor or the
diagonal elements are known from the further unknown covariance matrix, or they are
estimated from experience or requirements. With the adjustment model of this chapter
it can easily be determined what the losses are, if a full covariance matrix is replaced
by a scaled unit matrix, or a diagonal matrix.

This chapter treats the situation that 3D coordinates are used as input. The situations
for 2D coordinates (x and y), and 1D coordinates (normally heights) are simpler, and
the necessary results are easily derived from the 3D situation.

7.1 Introduction

Geodetic deformation analysis is about change of form and size of the earth’s surface or
of objects on, below or above it, and also of the relative position and orientation of the

1This chapter has been published before in Journal of Applied Geodesy (Velsink, 2016b). To fit the
publication into this study, minor changes have been made.
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objects. The objects to be analysed are represented by points that constitute a three-
dimensional geodetic network. It is nowadays common practice to use total stations,
GPS receivers and other devices for the analysis. If processing the measurements re-
sults in three-dimensional x, y, z coordinates, these can be presented in two-dimensional
graphs, showing the displacements in time or in space or both. It is, however, generally
difficult to come to statistically sound conclusions by analysing the graphs. Compu-
tational methods to test statistical hypotheses are desirable. For two epochs methods
are available to perform an adjustment of the coordinates, taking into account their
covariance matrix, and to perform hypothesis testing (Heunecke et al., 2013, p. 494ff.).
The analysis is generally not invariant for the used S-basis (see chapter 3, section 3.7.3).

In this chapter an adjustment model is proposed that analyses a time series of 3D coor-
dinates, taking account of the covariance matrices and analysing the deformations of all
points and all epochs simultaneously, by computing statistics of deformation patterns
and testing them. The model can be applied to any 3D geodetic network, observed
quasi-continuously (i.e. with permanently installed sensors measuring frequently). Ex-
amples are the monitoring of the movement of a subset of points through all epochs,
or the periodic oscillation of a subset of points.

In the next section the problem is defined. After describing existing approaches in
section 7.3, section 7.4 describes the solution set-up. The adjustment model is treated
in section 7.5. The adjustment itself, the deformation testing and the S-basis invariance
are handled in section 7.6. Section 7.7 gives an experimental validation of the model.

7.2 Problem definition

The problem addressed in this chapter is the adjustment and testing for deformations of
a time series of three-dimensional coordinates of a geodetic network, with a covariance
matrix of the coordinates that is full and generally singular, because each epoch of the
time series is adjusted as a free network.

The described problem will be handled by constructing a least squares adjustment model.
As a practical application to show the usability of the model, the continuous monitoring
by a total station of points, situated on built structures that are prone to deformations,
is analysed.

7.3 Existing solutions

Heunecke et al. give an overview of existing approaches for deformation analysis of two
time epochs of deformation measurements (Heunecke et al., 2013, p. 521) . The general
approach is to compute displacement vectors between coordinates of two epochs and
their covariance matrix. Different approaches exists to analyse the displacement vectors,
e.g. by using 95%-confidence ellipsoids after a least squares adjustment (Kamiński
and Nowel, 2013; Caspary, 2000) or a L1-norm adjustment (Chen, 1983; Caspary and
Borutta, 1987), or using constraints on common points and analysing the quadratic form
of the weighted estimated least squares residuals (Heunecke et al., 2013, p. 500ff.).
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Heunecke et al. give also methods to analyse time series (Heunecke et al., 2013,
p. 548). They do not take advantage of the covariance matrices of the coordinates and
do not perform the analysis for all three dimensions (x, y and z) simultaneously. As a
consequence the choice of datum definition and the solution’s invariance for it, are not
addressed.

A comprehensive 3D multi-epoch model is treated by Caspary (2000, p. 164ff.). It takes
care of singular covariance matrices and incorporates deterministic deformation models.
It assumes all epochs to be defined relative to the same S-basis, which has to be defined
by points, measured in all epochs. Testing is treated for the sequential adjustment case.
Quality description of the tests is not treated.

7.4 Solution set-up

7.4.1 Form and size, position and orientation

The subject of geodetic deformation analysis is the change in time of the form and
size of objects, and also of the relative position and orientation of the objects. Form,
size, relative position and orientation can be recorded by Euclidian x, y, z coordinates.
It is assumed that the coordinates are normally distributed with a probability density
function, which is fully described by a known covariance matrix, except for the first
moments. This matrix may be singular, e.g. because it stems from a free network
adjustment. If there are reference points, i.e. points that are considered not to be
influenced by the deformation to be analysed, they are part of the geodetic network,
and are analysed simultaneously with the object points.

The Euclidian coordinates describe the position and orientation of the network relative
to the coordinate origin and axes as well. These, however, are not subject of the
analysis. Their uncertaintity, as it is reflected in the covariance matrix, has to be
eliminated from the analysis. This is realised in the adjustment model by a congruence
or similarity transformation of the coordinates of each epoch to the coordinate system
of the epoch!reference epoch. It is shown that after these transformations, testing of
deformation hypotheses can be done independently from the S-bases chosen for the
individual epochs. The first epoch is chosen in this chapter as reference epoch, but any
other epoch as reference epoch would give the same analysis results.

The choice between a congruence and a similarity transformation depends on the ques-
tion, whether the scale (unit of length) is considered stable between epochs and essential
for the analysis.

The set-up of the adjustment model, with transformations between the epochs incor-
porated into it, not only removes the influence of origin, axes and scale of the ref-
erence system on the analysis. It also makes it possible to test, without additional
S-transformations, for deformations of all kinds of subsets of points, independent of
their being reference or object points, or being part of the S-basis or not. It is possible
to include in one hypothesis that is to be tested, both reference and object points, and
both points within and outside the S-basis.
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7.4.2 Nonstochastic observations

The adjustment model is built as a model of observation equations with the coordinates
as observations, arranged according to the epochs. The parameters are the expectations
of the coordinates of all epochs. Each point has for each epoch different coordinates
in the parameter vector. Also the transformation parameters of each epoch relative to
the previous one appear in the parameter vector.

Constraints are stated concerning the coordinates of all epochs. In the case of stability
analysis the constraints state that the expectations of coordinates of the same points
in different epochs are equal. These constraints are added to the observation vector
as nonstochastic observations, following the approach of chapter 5. If coordinates are
assumed to be subject to some kind of deformation, for example a linear movement of
one or more points, or a deformation pattern with a periodic character for a subset of
points, the constraints add extra unknown parameters, for example the linear rate of
movement, or the coefficients of the periodic pattern, to the parameter vector.

The advantage of using nonstochastic observations is that testing of deformation hy-
potheses is done in the same way as testing of one- or multidimensional hypotheses on
biases in the other observations. Least squares estimates of the deformations are deter-
mined using standard formulas. Also minimal detectable biases can be computed with
standard formulas, giving information on the deformation sizes that can be detected
with the tests.

7.4.3 Full, singular covariance matrices

Observations, for example direction and distance observations of total stations, and their
stochastic model are used for a deformation analysis, which is performed in two phases.
In the first phase the direction and distance observations are adjusted for each epoch
separately. The results are coordinates and their covariance matrices for all epochs. The
second step is the subject of this chapter: the deformation analysis of the coordinates
of many epochs. The covariance matrices of all epochs have to be used (Tienstra,
1956, p. 154). These matrices are generally full matrices (no or few zeros) and singular,
because each epoch is adjusted as a free network, not connected to control points. The
adjustment model of section 7.5 can handle full, singular covariance matrices.

7.4.4 Solution characteristics

An overview of the solution characteristics can now be given. The most relevant terms
are listed below and the solution procedure is illustrated by a Nassi-Schneidermann di-
agram (figure 7.1).

A geodetic network per epoch is a set of points on, above, or under the earth’s
surface, in this chapter assumed to be represented by 3D Euclidian coordinates.
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Collect input:
mi, D{mi}: measurements and their precision (covariance

matrix) of the geodetic networks of all epochs i

Adjustment of measurements of every epoch as free network
(not treated in this paper)

Collect intermediate results:
bi, D{bi}: coordinates and their precision (covariance matrix)

of the geodetic networks of all epochs i
Determine deformation pattern

Equate corresponding points in epochs using nonstochastic
observations

No deformation?
true false

Add deformation pattern to equated points us-
ing matrix Z∇ of eq. (7.16)∅

Describe transformations between epochs using i.a. nonsto-
chastic observations
Perform adjustment using model (7.28), with iteration if
necessary

Perform testing

Null hypothesis
rejected?

true false

Formulate alternative hypotheses

Test alternative hypotheses and select best one

Formulate new deformation pattern

∅

New deformation pattern formulated?

Determine minimal detectable deformations (m.d.d.) as de-
scription of deformation analysis quality

Output of adjustment and testing results

Output of m.d.d.’s

Figure 7.1: Solution procedure.
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Form and size of a geodetic network (and their changes in time) are of interest, not
the position and orientation relative to the reference system. Transformations are
therefore included in the adjustment model.

Stability assumes the expectations of coordinates to be equal through all epochs, ex-
cept for the above mentioned transformations.

A deformation pattern is the relation between the geodetic networks per epoch, for-
mulated by giving the expectations of coordinates through the epochs using math-
ematical functions, described by nonstochastic observations, which depend on
unknown deformation parameters, for example a linear movement rate, or the
coefficients of a series expansion of a periodic function.

Inside or outside the adjustment model we put the description of the deformation.
If it is inside, nonstochastic observations describe the deformation pattern, and
extra deformation parameters are included in the parameter vector. If it is outside,
the adjustment model assumes stability and no extra deformation parameters are
in the parameter vector. The hypothesis of stability is tested against alternative
hypotheses, describing deformation patterns, by appropiate test statistics, which
make use of the nonstochastic observations to determine matrix Z∇ of eq. (7.16).

Singular, full covariance matrices result from the free network adjustments of each
epoch, and are used in the adjustment model. If only coordinates are available for
each epoch, a substitute matrix, for example a unit matrix, is used as covariance
matrix, which yields sub optimal adjustment and testing results.

7.5 Adjustment model

7.5.1 Observations and parameters

The adjustment model is built taking as:

• observations:

1. cartesian 3D point coordinates of a geodetic network and their covariance
matrix, available for at least two epochs. For the first epoch they are as-
sembled in vector a1 (an underlined variable indicates a stochastic variable)
with the covariance matrix D{a1}. For the second and later epochs they are
assembled in vectors bi, with i the epoch number, which runs from 2 to p
with p the number of epochs. Each bi has a covariance matrix D{bi};

2. nonstochastic observations zf , describing constraints on the transformation
parameters; their covariance matrix is the zero matrix;

3. nonstochastic observations zd, describing the deformation pattern; their co-
variance matrix is the zero matrix.
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• unknown parameters:

1. expectations of cartesian 3D network point coordinates, for each epoch as-
sembled in vector ci of epoch i. Vector c takes all epochs together:

c =
(
c1, · · · , cp

)T
. (7.1)

2. vector of transformation parameters f, subdivided in subvectors fi,i−1 for
the transformation in each epoch interval between epoch i and i−1, with
i = 2, ... , p.

3. additonal parameters ∇ to describe the trend function of the deformation,
see section 7.4.2.

7.5.2 Nonlinear adjustment model

In the adjustment model the expectations of all point coordinates are expressed in the
reference system of the first epoch, and are parameters in vector c. The observed
coordinates in the first epoch are taken together in vector a1. We have:

E{a1} = c1 = P1 c, (7.2)

with E{.} the expectation operator, and P1 the matrix that selects the points of the first
epoch from c. P1 has only ones and zeros. The observed coordinates bi in a following
epoch i (i = 2, · · · , p) are assumed to be in a separate reference system, indicated by
a superindex (i):

bi = b(i)
i . (7.3)

These coordinates are transformed with a vector function ϕi,i−1 to the reference system
of epoch (i− 1):

b(i−1)
i = ϕi,i−1(b(i)

i , fi,i−1), (7.4)

then with ϕi−1,i−2 to the reference system of epoch (i− 2), and so on, and we get the
transformed coordinates ai:

ai = b(1)
i =

ϕ2,1(· · · (ϕi,i−1(bi, fi,i−1), ...), f2,1),
(7.5)

and:

E{ai} = ci = Pi c. (7.6)

Pi selects ci from c. It follows that:

E{ϕ2,1(· · · (ϕi,i−1(bi, fi,i−1), ...), f2,1)} = Pi c. (7.7)

Hopping from epoch i through all intermediate epochs to the first one, is chosen, and
not a direct transformation to the first epoch, because it is assumed that in general
more common points are available for successive epochs.
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Following the approach of chapter 4, the transformation ϕi,j between epoch i and j, is of
a general form, for example an affine transformation, which is changed to another type
of transformation, for example a similarity transformation, by the use of constraints.
These constraints are formulated as nonstochastic observations:

zf = ζf (f), (7.8)

for which zeros are assumed as observed values.

The deformation pattern is described by a vector of nonstochastic observations zd and
a deformation function ζd, which gives a relation between the elements of c and the
elements of a vector of deformation parameters ∇:

zd = ζd(c,∇). (7.9)

For zd we assume zeros as the observed values.

From equations (7.2), (7.7), (7.8) and (7.9) follows the following system for p epochs:

E{a1} = P1c,
E{ϕ2,1(b2, f2,1)} = P2c,

...
E{g(bp, f)} = Ppc,

zf = ζf (f),
zd = ζd(c,∇),

(7.10)

with
g(bp, f) = ϕ2,1(...(ϕp,p−1(bp, fp,p−1), ...), f2,1).

A point may be present in an epoch, but missing in one or more other epochs. This is
handled by matrix Pi. The S-basis definition of an epoch is arbitrary (see section 7.6.3)
and may be realised by only a few points, by many points, or by all. There can even be
no S-basis, i.e. the covariance matrix is regular, and the S-basis can be considered to
lie outside the geodetic network. The fact that a point is missing, be it in the first or
in any other epoch, does therefore not pose any problem for the deformation analysis
with model (7.10).

7.5.3 Transformations

7.5.3.1 Affine Transformation

As general form of transformation ϕi,j the affine transformation is taken, written as:xT

yT

zT

 = R

uT

vT

wT

+ tε,

R =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , t =

tx
ty
tz

 ,

ε =
(
1, 1, ... , 1

)
.

(7.11)
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The column vectors u, v, w contain resp. the x-, y-, z-coordinates of bi before transfor-
mation. The vectors x, y, z contain the coordinates after transformation. R describes
the rotation, shear and scale change of the affine transformation, t the translation.

7.5.3.2 Congruence Transformation

Equation (7.11) describes a congruence (or rigid body) transformation, if the nine
coefficients of matrix R meet the following six constraints:

aT
i aj = δij, ai =

ai1
ai2
ai3

 , i, j = 1, 2, 3,

j ≥ i, δij = 1 if i = j, otherwise δij = 0.

(7.12)

In the following sections a linearised adjustment model is derived. The linearised con-
straints are: 

a0
2

T
a0

1
T

0

a0
3

T
0 a0

1
T

0 a0
3

T
a0

2
T

a0
1

T
0 0

0 a0
2

T
0

0 0 a0
3

T


∆a1

∆a2

∆a3

 =


0
0
0
0
0
0

 , (7.13)

where 0 is the (1×3) zero vector and a0
i (i=1,2,3) is the vector of approximate values

of ai. ∆ indicates the difference of the quantity concerned and its approximate value.

7.5.3.3 Similarity transformation

For the similarity transformation the affine transformation is constrained with five con-
straints. Three constraints state that the three rows of R are perpendicular to each
other. The two remaining constraints state that the lengths of the first and second row,
and those of the second and third row are equal. The linearised constraints are:

a0
2

T
a0

1
T

0

a0
3

T
0 a0

1
T

0 a0
3

T
a0

2
T

a0
1

T −a0
2

T
0

a0
1

T
0 −a0

3
T


∆a1

∆a2

∆a3

 =


0
0
0
0
0

 . (7.14)

7.5.3.4 Approximate transformation

Before the adjustment, bi is approximately transformed to b′i in the reference system
of a1, using equation (7.5). Likewise D{bi} is transformed to D{b′i} by applying the
law of propagation of covariances. The approximate transformation parameters are
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determined as affine parameters, and subsequently adapted to those of a congruence
or similarity transformation using singular value decomposition (see chapter 4). The
transformations of equation (7.10) are now differential transformations. In each iteration
step of the adjustment this is repeated with adapted transformation parameters from
the previous iteration step. Therefore as approximate values for aij in the constraints of
the congruence or similarity transformation we can take a0

ij = δij.

In the following sections, if bi is written, b
′
i is meant.

7.5.4 Linearised adjustment model

A linearised adjustment model is built for the deformation analysis. Linearisation of all
equations of system (7.10) is done with implicit differentiation relative to the observed
vectors a1, bi (i= 2,· · · ,p), zd, and zf , and the unknown parameter vectors f, c and ∇.

The first and last two equations of system (7.10) are linearised as:
E{∆a1} = P1 ∆c,

∆zf = (
∂ζf

∂f
)0∆f,

∆zd = (
∂ζd

∂c
)0∆c + (

∂ζd

∂∇
)0∆∇.

(7.15)

We define for later use:

Zf = (
∂ζf

∂f
)0,

Zd = (
∂ζd

∂c
)0, Z∇ = (

∂ζd

∂∇
)0.

(7.16)

The partial derivatives of the vectors ζf and ζd with respect to the vectors f, c and ∇
are matrices. The parentheses with zero (.)0 indicate that approximate values of the
parameters have to be used to get the values in the matrices.

For the equations with bi (i=2,· · · , p) in system (7.10) the linearised equations are:

Bi E{∆bi}+ Fi ∆fi = Pi ∆c, (7.17)

with the matrices Bi defined as follows:

Bi = B2,1B3,2 · · ·Bi,i−1, (7.18)

and with (j=2, ...,i−1):

Bj,j−1 = (
∂ϕj,j−1

∂ϕj+1,j
)0 = (

∂ϕj,j−1

∂b
(j)
i

)0,

Bi,i−1 = (
∂ϕi,i−1

∂b
(i)
i

)0.
(7.19)
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Fi is defined for i = 2 ... p as follows:

Fi =
(
F2,1, · · · ,Fi,i−1, 0, · · · , 0

)
, (7.20)

with (p-i) matrices 0 of zeros, which have the same number of rows as F2,1, and the
partioning of Fi in columns in accordance with the partitioning of ∆f:

∆f =
(
∆f2,1, · · · , ∆fi,i−1, ∆fi+1,i · · · , ∆fp,p−1

)
. (7.21)

For Fi,i−1 (i=2,...,p) we have:

Fi,i−1 = B2,1 B3,2 · · ·Bi−2,i−1 (
∂ϕi,i−1

∂fi,i−1
)0. (7.22)

Matrix Bi,i−1 for an affine transformation is given in chapter 4 as follows:

Bi,i−1 =

a0
11I a0

12I a0
13I

a0
21I a0

22I a0
23I

a0
31I a0

32I a0
33I

 , (7.23)

with a0
ij (i, j=1, 2, 3) the approximate values of aij and I the (n× n) unit matrix and n

the amount of points in bi.

As explained in section 7.5.3.4, we can take a0
ij = δij, which results in a unit matrix for

Bi,i−1, from which follows, see equations (7.18) and (7.22):

Bi = I,

Fi,i−1 = (
∂ϕi,i−1

∂fi,i−1
)0.

(7.24)

Matrix Fi,i−1 for an affine transformation is given in chapter 4 as follows:

Fi,i−1 =

βi 0 0 ε1

0 βi 0 ε2

0 0 βi ε3

 , (7.25)

where βi, ε1, ε2, ε3 and 0 are all (n× 3) matrices, as follows:

βi = (u0, v0, w0); u0, v0, w0 are approximate values of u, v, w (the x, y, z
coordinates in bi), which can be transformed to make the barycentre the origin.

ε1 =


1 0 0
1 0 0
...

...
...

1 0 0

 ,

ε2 and ε3 are analogous matrices as ε1 with ones in the second, resp. third
column,
0 is the (n× 3) zero matrix.



160 7. Time series analysis with 3D coordinates

We define F1 as the null matrix 0 and put it together with the Fi, i = 2 ... p of equation
(7.20) into matrix F. Analogously we take all Pi together in a matrix P:

F =
(
F1, ... ,Fp

)T

P =
(
P1, ... ,Pp

)T (7.26)

We define vector ∆b as:

∆b =
(
∆a1, ∆b2, ... , ∆bp

)T
. (7.27)

We can now formulate the linearised equivalent of system (7.10):

E{

∆b
∆zf
∆zd

} =

P −F 0
0 Zf 0
Zd 0 Z∇

∆c
∆f
∆∇

 . (7.28)

The covariance matrix of the observation vector on the left-hand side consists of the
covariance matrices of a1 and bi, i=2, · · · , p, as described in section 7.5.1, approximately
transformed as described in section 7.5.3.4, and zero matrices for the remainder if no
correlation between the epochs is assumed (which is, however, not necessary to solve
the model).

The model takes each epoch as a separate geodetic network: each point has a different
point number for each epoch, for example point A is called A1 in epoch 1, A2 in epoch
2, etc. The hypothesis that no deformation has occured is formulated by stating that

0 = xA2 − xA1 ,
0 = yA2 − yA1 ,
0 = zA2 − zA1 ,

etc.

(7.29)

The separate geodetic networks are linked together in this way. Equation (7.29) gives
the nonstochastic observation equations (the zeros constitute together vector zd and
have a standard deviation of zero). The number of rows of matrix Zd is three times the
number of points. In each row there are zeros and one 1 and one -1 for respectively
the coordinate of epoch 2 and epoch 1 (which are separate unknowns in the parameter
vector). There are no parameters ∇ and no matrix Z∇.

Let us now assume that a deformation is present for point A. Let it be a linear movement
for which we write:

0 = xA2 − xA1 + axt12,

0 = yA2 − yA1 + ayt12, (7.30)
0 = zA2 − zA1 + azt12

The ax, ay, az are unknown parameters, which enter the parameter vector ∇, and for
which a least squares estimate is determined in the adjustment. t12 is the time interval
between epoch 1 and 2. The matrix Z∇ is in this case a matrix with three columns and
three elements t12 on the rows of the three nonstochastic observations mentioned, and
with zeros on all other positions.
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We can also leave ax, ay, az out of the adjustment. Then the last column of the
coefficient matrix of equation (7.28) disappears. The null hypothesis states now that
there is no deformation. We test for a linear movement by using Z∇ in the test statistic
of equation (7.34).

Generally the transformation between epoch i and i−1 is a similarity or congruence, not
an affine transformation. Matrix Fi is constructed according to equation (7.20) from
matrices Fi,i−1 as given in equation (7.22) for the affine transformation. Matrix Zf is
the matrix that describes the constraints for a congruence or similarity transformation.
The coefficient matrix of equation (7.13) or (7.14) is used to construct matrix Zf .

7.6 Adjustment and testing

7.6.1 Adjustment

System (7.28) is a linear system of observation equations and can be solved by least
squares. If sufficient points are available in all epochs to determine the transformation
parameters, the coefficient matrix is of full rank.

Because of the nonstochastic observations, and because of possible singularities of the
covariance matrices of a1 and the vectors bi, the covariance matrix of the observation
vector of system (7.28) is singular. To get a least squares solution of the system, at
least five methods are available that make it possible to test nonstochastic observations
in the same way as stochastic observations (see chapter 5).

1. The adjustment model is split into two parts for the stochastic and the non-
stochastic observations respectively, and a sequential adjustment is applied.

2. A switch is made from the model of observation equations to the model of con-
dition equations.

3. The covariance matrix is regularised.

4. The standard deviations in the covariance matrix that are zero, are replaced by
values that are very small.

5. The observations are orthogonalised and the nonstochastic observations elimi-
nated. A follow-up adjustment determines the test quantities.

Because the system is linearised, iteration is needed to find the least squares solution.
To start the iteration good approximate values for all observations and all parameters
are needed, which have to satisfy the non-linear equations (7.10) and the non-linear
constraints of section 7.5.3.2 or 7.5.3.3. As described in chapter 4, in each iteration
step the approximate transformation parameters are updated, using singular value de-
composition. Also, in each iteration step, all bi and their covariance matrices D{bi} are
transformed with the new approximate transformation parameters to new coordinates
b′i and D{b′i} that are (for the common points) almost equal to a1 and in the reference
system of a1.
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In each iteration step the approximate values of all observations, and of all parameters
have to comply again with the non-linear equations (7.10) and the non-linear constraints
of section 7.5.3.2 or 7.5.3.3.

7.6.2 Deformation testing

If one of the five methods, mentioned in the previous section, is used, standard methods
for testing can be applied with the formulas given in chapter 5. Also the nonstochastic
observations can be tested with the same formulas, which means that a method of
testing deformation patterns is provided.

If it is not sure whether there is any deformation, or what type of deformation happens,
a null hypothesis H0 is formulated, where no deformation is assumed (∇ is missing in
system (7.28)), and an alternative hypothesis Ha:

H0 : E{∆y} = A∆x, (7.31)

Ha : E{∆y} = A∆x + Z′∇∆∇, (7.32)

where ∆y, A and ∆x are respectively the observation vector, the coefficient matrix and
the parameter vector of system (7.28). In A the last column of the coefficient matrix is
missing and in ∆x the parameters ∆∇. Z′∇ is the last column of the coefficient matrix
of equation (7.28):

Z′∇ =

 0
0
Z∇

 (7.33)

The alternative hypothesis is tested against the null hypothesis, without the need to
perform a complete adjustment of (7.32), by using test statistic Tq (Teunissen, 2006,
p. 77):

Tq =
1

σ2
r̂T Z′∇ (Z′ T∇ Qr̂ Z′∇)−1 Z′ T∇ r̂. (7.34)

q is the number of columns in Z′∇ and gives the degrees of freedom of the test. σ2 is
the variance factor of unit weight, and r̂ are the reciprocal least squares residuals as they
follow from a weighted least squares adjustment (see chapter 4) and for which holds,
with ê the usual least squares residuals and Qy the cofactor matrix of the observations
y:

ê = Qy r̂. (7.35)

Qr̂ is the cofactor matrix of r̂. Z′∇ describes a testable deformation pattern, if the
product Z′ T∇ Qr̂ Z′∇ is a regular matrix.

The probability density function of Tq is a χ2-distribution with an expected value of q.
The test is to choose a significance level α, to compute the critical value and to test,
whether the computed value of Tq exceeds the critical value. If this happens, the null
hypothesis is rejected (Teunissen, 2006, p. 78).
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7.6.3 S-basis invariance

In chapters 3 and 5 it is shown that the test statistic of equation (7.34) is invariant
for a change of S-basis of the parameter vector x. It is evident from the fact that r̂
can be computed from the model of condition equations, which is dual to the model of
observation equations. In this dual model the parameter vector x has been eliminated,
and therefore a change of S-basis of x doesn’t influence r̂.

The test statistic of equation (7.34) is also invariant for changes of S-bases of the
observed coordinate vectors a1 and bi, i=2, ... , p, if deformation patterns are tested.
To see this, model (7.28) is simplified and reduced. To do this, we assume all observed
vectors a1 and bi, and also the parameter vectors ci to contain coordinates of the same
points in the same order, from which follows:

P = unit matrix. (7.36)

We also assume stability of all points, and therefore:

∆ci = ∆cj, with i, j = 1, ... , p, (7.37)

and we reduce ∆c to a vector ∆c with the coordinate parameters of only one epoch.
With matrix Ip defined with unit matrices I as:

Ip =
(
I, ... , I

)T
, (7.38)

we get:
∆c = Ip ∆c. (7.39)

This means that the nonstochastic observations zd disappear. Furthermore we assume
that the nonstochastic observations zf are elimated. This can be done by noting that
the equation:

0 = Zf ∆f (7.40)

means that ∆f lies in the nullspace of Zf . If N is a base matrix that spans this nullspace,
we have:

∆f = N∆f, (7.41)

with ∆f a vector of coefficients, which can be used as the new vector of unknown
transformation parameters. If, for example, ∆f contains 12 parameters of an affine
transformation and there are 5 nonstochastic observations to constrain the transforma-
tion into a similarity transformation, ∆f contains 7 transformation parameters. With
the definition F = FN, it follows that:

F∆f = F∆f. (7.42)

So if we use F∆f instead of F∆f in model (7.28), we can omit the nonstochastic
observations zf .

Because of the stability assumption, no parameters ∇ exist and no matrix Z∇.

With (7.36), (7.39) and (7.42), model (7.28) is written as:

E{∆b} = Ip ∆c− F∆f (7.43)
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To eliminate ∆c, we define matrix H as:

H =


−I I 0 · · · 0
0 −I I · · · 0
...

. . . . . .
...

0 ... ... −I I


T

, (7.44)

and the vector d, containing the difference vectors of all epoch intervals, as:

d = HTb. (7.45)

Premultiplying equation (7.43) with HT, we get:

E{∆d} = −HT F∆f. (7.46)

This model has the same redundancy as model (7.43) and yields the same least squares
solution.

Let the vectors a1 and bi, i = 2, ... , p all have been S-transformed to other S-bases. It
means that we have new vectors a′1 and b′i , taken together in vector b′:

b′ = b + Sψ, (7.47)

where ψ is the vector of the differential transformations of the coordinate vectors of all
epochs. These relate, however, to the same degrees of freedom as the transformations
in ∆f. This means that we can take S = F.

A proof for two epochs that test statistic (7.34) is invariant for changes of S-bases of
a1 and b2, by proving that r̂ and Qr̂ are invariant, is given in chapter 3. The extension
to more than two epochs is possible by using reduced model (7.46). This model can be
solved by switching to the model of condition equations with matrix G, which is chosen
to fulfil:

GT HTF = 0, (7.48)

with R(G) the complementary space of R(HTF). It follows with the same reasoning as
given in chapter 3 that r̂ and Qr̂, as they follow from solving model (7.46), are invariant
for changes in S-bases of a1 and bi, i = 2, ... , p.

The conclusion is that if hypotheses concerning deformation patterns are formulated
in terms of the original model (7.28), and they can be reformulated in terms of model
(7.46), which is generally possible, test statistic (7.34) is invariant for changes to other
S-bases of the coordinate vectors a1 and bi, i = 2, ... , p.

A deformation hypothesis may concern a point that is part of the S-basis definition
and whose coordinates are fixed with a zero standard deviation. No S-transformation
is needed to test such a point for deformation. It is demonstrated by the example of
chapter 5.
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7.7 Experimental validation

The proposed model can be applied to the 3D monitoring by GPS and total stations of
deformations of buildings, harbour quays, bridges, tunnels, land slides, etc. The model
gives the possibility to compute statistics and to test hypotheses that describe complex
deformation patterns, like the abnormal movement of a subset of points through many
epochs, or the periodic oscillation of a subset of points, for example caused by changes
of temperature.
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Figure 7.2: 15 object points, 5 instrument points.

To validate experimentally the model, the monitoring of some buildings is taken. To
be able to judge effectively the performance of the model, observations have been
generated with known standard deviations, to which artificially deformations have been
added. Fifteen points have been measured with direction and distance observations from
a total station during five epochs. The fifteen points are positioned on three buildings
(figure 7.2), which are monitored because of construction works. The instrument point is
not fixed (not monumented). The observations are adjusted using the software package
MOVE3 (www.move3.com), resulting in x, y, z coordinates and their covariance matrix.
The network is not attached to a control network.

A Matlab programme has been written to do the computations. The observations have
been generated with the following standard deviations:

• directions: 0.3 mgon;
• distances: 1 mm;
• zenith angles: 0.3 mgon.

The precision with which a point is defined (idealisation precision) is supposed to be
0.5 mm, indicating the precision by which a removable prism can be put on a point.

First no deformation is put in the observations. The adjustment model to test stability
of all points is created by adding for each epoch interval, for each point and for each

http://www.move3.com
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coordinate direction a nonstochastic observation, i.e. 4 × 15 × 3 = 180 nonstochastic
observations: 

0 = ∆c1 −∆c2

0 = ∆c2 −∆c3

0 = ∆c3 −∆c4

0 = ∆c4 −∆c5

(7.49)

From these equations follows matrix Zd in equation (7.28).

The epochs are joined together with similarity transformations, which are realised for
each epoch interval by five constraints on the affine transformation parameters.

The model contains 425 observations (5 × 15 × 3 = 225 coordinates, 4 × 5 = 20 trans-
formation constraints, 180 point constraints), and 273 parameters (225 coordinates, 4
× 12 = 48 transformation parameters), which yields a redundancy of 152. Adjusting
the model leads to an overall model test of 0.60. With a critical value of 1.004, based
on the use of the B-method of testing with a significance level of a one-dimensional
test of 0.1% and of 47% for the overall model test, the null hypothesis is accepted.

Then a movement of 1 mm in each epoch interval, in the direction of each coordinate
axis of one point (point 101), is added and observations are generated. The same
adjustment model as before is used and leads to rejection of the null hypothesis. The
movement is then modelled with twelve nonstochastic observations. Assume vector c

(i)
101

is the subvector of vector c that contains the x, y and z coordinates of point 101 in
epoch i. Let vector a contain the movements in x, y and z direction between epoch i
and j, and ∆a the difference of a with its approximate value, necessary for the linearised
model. The following 12 nonstochastic observations describe the deformation.

0 = ∆c
(1)
101 −∆c

(2)
101 + ∆a

0 = ∆c
(2)
101 −∆c

(3)
101 + ∆a

0 = ∆c
(3)
101 −∆c

(4)
101 + ∆a

0 = ∆c
(4)
101 −∆c

(5)
101 + ∆a

(7.50)

From these equations the matrix Z′∇ of equation (7.32) is deduced, and the alternative
hypothesis tested against the null hypothesis. The same test is used to test for linear
movement of all other points. The deformed point shows the largest value of the test
statistic (table 7.1 under “Stat.”), with a critical value of 12.6 and a significance level
of 0.6 %. The estimated deformation (equation (3.42)) in each epoch interval is given
in the same table for point 101 and three other points with large test statistics. The
estimated deformation of point 101 resembles closely the values that have been put
intentionally into the coordinates, and the length of the deformation vector is even the
same: 1.7 mm in each epoch interval.

Table 7.2 gives the minimal detectable deformations as the lengths of the semi-axes of
the ellipsoid determined by equation (3.44):

σ2λ0 = ∇T
0Z
′ T
∇Qr̂Z′∇∇0, (7.51)
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Stat. Est. def. (mm)

Pnt. x y z

101 70.9 0.9 1.1 1.0
103 16.9 -0.4 -0.5 -0.3
102 7.0 -0.1 -0.1 -0.5
104 4.7 -0.2 -0.3 -0.1

Table 7.1: Test of linear point movement over 5 epochs.
Values are per epoch interval.

with λ0 the non-centrality parameter of the χ2-distribution and ∇0 describing the min-
imal detectable deformations. They give the deformations that can be detected with
the three-dimensional point test of five epochs with a power of 80%.

MDD (mm)

Pnt. axis 1 axis 2 axis 3

101 1.55 0.80 0.76
103 1.49 0.73 0.73
102 1.52 0.76 0.74
104 1.48 0.72 0.72

Table 7.2: Minimal detectable deformations (MDD).
Values are per epoch interval.

Finally five points (101,...,105) are given a movement of 1 mm in both the x and y
direction and -0.7 mm in the z direction in each epoch interval. It is modelled by
60 nonstochastic observations. Let vector c

(i)
101−105 be the subvector of vector c that

contains the x, y, z coordinates of the five points in epoch i. Let k = (1, 1, 1, 1, 1)T, I3
the (3×3)-unit matrix, and E = I3 ⊗ k, with ⊗ denoting the kronecker product. From
the following nonstochastic observations the matrix Z∇ is deduced.

0 = ∆c
(1)
101−105 −∆c

(2)
101−105 + E∆a

0 = ∆c
(2)
101−105 −∆c

(3)
101−105 + E∆a

0 = ∆c
(3)
101−105 −∆c

(4)
101−105 + E∆a

0 = ∆c
(4)
101−105 −∆c

(5)
101−105 + E∆a

(7.52)

with ∆a as defined before.

The null hypothesis is rejected again. The test of the hypothesis that the five points
have shifted gives a very large test statistic (74.2 with a critical value of 12.6, if the
significance level is 0.6 %), indicating that it is a very good hypothesis. The estimated
deformation and the minimal detectable deformations are given in table 7.3. The length
of the deformation vector is 1.6 mm, which is exactly the length of the vector that has
been put intentionally into the coordinates.
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Est. def. (mm) M.d.d. (mm)

Pnt. x y z axis 1 axis 2 axis 3

101 - 105 1.0 0.7 -1.1 0.93 0.71 0.60

Table 7.3: Linear movement of points 101-105 over five epochs.
Values are per epoch interval.

Point movements that are nonlinear in time are modelled by nonstochastic observations
that are nonlinear functions of the deformation parameters. To be used in the model,
the functions have to be linearised.

If the deformation pattern to be expected is not known, a search has to be performed
for the best alternative hypothesis. A strategy is described in chapter 3 for two epochs.
Extending it to more than two epochs, one could for example systematically test for a
constant linear movement through all epochs of each point individually, of combinations
of two points close together, of combinations of three points close together, etc. Because
it is not needed to solve a complete adjustment model, only to compute test statistic
(7.34), its degrees of freedom q determines the computational burden of testing many
hypotheses.

7.8 Conclusions

A model has been built for the adjustment of a time series of 3D coordinates in a geodetic
point field. The covariance matrices of the coordinates of all epochs of the time series
are used and they may be full and singular. Deformation patterns, or their absence, are
modelled as nonstochastic observations. To make the testing of the model invariant
for S-transformations, transformations between all epochs are built into the model.
The transformations can be similarity or congruence transformations, and are modelled
as affine transformations, subject to constraints. The constraints are implemented
as nonstochastic observations. The model is first built as a nonlinear one, and then
linearised. The approximate parameter values and their updates in the iteration steps
(needed because of the linearisation) have to comply with all nonstochastic observations.
For the rotation parameters this is accomplished with singular value decomposition.

In many cases it is a sound deformation analysis procedure to formulate a null hypoth-
esis that assumes no deformation. The nonstochastic observation equations state that
the coordinate differences between the epochs are expected to be zero after the trans-
formations. Alternative hypotheses are formulated that describe movements of one or
many points over one or many epoch intervals. Standard hypothesis testing is used to
test the alternative hypothesis against the null hypothesis. The quality of the tests is
described by the sizes of the minimal detectable deformations.

The point movements are formulated as nonstochastic observation equations, which
give the matrices to be used in the testing equations.
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The model and its adjustment and testing have been verified experimentally with a
geodetic network, where 15 points are measured by a total station during five epochs.
The results show that 3D deformation analysis of time series of coordinates is possible
with the model proposed.





8
Conclusions and recommendations

In this study a geodetic deformation analysis model has been developed and its essential
elements have been clarified. The purpose at the outset of this study was to improve
geodetic deformation analysis in professional practice by developing a model that is based
on operational demands. The development made it necessary to approach geodetic
deformation analysis in a novel way. This led to the development of a new geodetic
deformation analysis model with at its centre an adjustment model, which has been
developed in two variants. The applicability of the developed analysis model was tested
for several use cases. In this chapter the conclusions of this study will be presented
first, and subsequently an overview will be given of the contributions of this study to
science. Finally, recommendations will be given for future research.

8.1 Conclusions

The research question for this study is (chapter 1, section 1.4):

How can a generic mathematical-geodetic model be formulated that is:
(i) usable for geodetic deformation analysis, (ii) enables standardisation of
terminology, processes and presentation of results for geodetic deformation
analysis, and (iii) is usable as a basis for communication about goals, pos-
sibilities and analysis results of geodetic deformation measurements?

The model is intended to use geodetic observables on the one hand and information
on deformations in physical reality on the other hand, to test intricate deformation hy-
potheses. The standardisation and the communication have to be based on statistically
valid methods.
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The research question has been worked out in five subquestions. The answers that have
been given in this study to the research question and its subquestions are summarised
below. First the research question will be answered by describing the developed geodetic
deformation analysis model. Then the five subquestions will be treated.

Geodetic deformation analysis model The generic mathematical-geodetic model of
the research question has been developed as a geodetic deformation analysis model, of
which a dedicated adjustment model constitutes the kernel. This geodetic deformation
analysis model assumes a discretisation of monitored geo-objects1 in discrete points.
These points are measured by geodetic measuring techniques in discrete epochs2. De-
formation analysis according to the proposed analysis model is divided in three stages:
design, implementation and realisation. The design stage is concerned with the method
that will be used to represent geo-objects, the geodetic observation techniques that will
be used, and the deformation hypotheses that will be investigated. The implementation
stage takes care of the construction of the adjustment model and gives a description of
the quality of tests. The realisation stage is concerned with the acquisition of data (ob-
servations), the adjustment of data, and the testing of them; and finally with drawing
conclusions on the best deformation hypothesis.

Central in the implementation stage is the adjustment model, which will be used in
the realisation stage to adjust the observations according to least-squares theory. The
adjustment model handles all epochs together. This means that the comparison of ob-
servations or coordinates of different epochs is not a seperate process, but an integrated
part of the adjustment model. The adjustment is modelled as a model of observation
equations using a model matrix with nonstochastic elements, and taking the covariance
matrices of all observations (or coordinates, if they constitute the input) into account.

Two different adjustment models have been developed: the measurements model (in
chapter 6) and the coordinates model (in chapter 7). Chapters 3 and 4 propose two
simpler models that provide essential components, used in chapters 6 and 7. Chapter 5
provides essential algorithms and tools. The measurements model takes the measure-
ments of all epochs as the observations of an adjustment model of observation equations
(Gauss-Markov model), and the coordinates of all epochs as part of the parameters of
the adjustment model. A point of a monitored geo-object has a different set of coordi-
nates in each epoch. These sets are linked together by constraints (on the parameters
of the adjustment model), which, in this way, define the deformation hypothesis.
The coordinates model divides the adjustment in two phases. In the first phase the
measurements of each epoch are adjusted separately. The resulting adjusted coordi-
nates per epoch are subsequently taken as input (i.e. pseudo-observations) for a second
adjustment. In this second adjustment the coordinates of all epochs are taken as param-
eters in the adjustment model, just as in the measurements model; and the deformation
hypothesis is again formulated by using constraints.

1A geo-object is an object on, above or under the earth’s surface or a part of the surface itself.
2An epoch is a time period, in which a set of points is measured once. It is assumed that no

movements or deformations occur during this time period, or that they are compensated for. For
certain measuring techniques an epoch can be so short that it is considered a moment in time.
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The seven essential elements of the proposed geodetic deformation analysis model (with
its two adjustment models) are discussed in the answers below to the subquestions of
the research question.

Least-squares and Delft school of geodesy
First subquestion (shortened):
How can a model be built in such a way that the full existing body of knowledge
of least-squares theory is applied for deformation analysis? The focus is here on the
achievements of the Delft school of geodesy.

Both the measurements model and the coordinates model compare the results of all
epochs as part of the adjustment model. This enables the application of ordinary least-
squares theory (with a full, possibly rank deficient covariance matrix of the observations,
and with a model matrix without stochastic elements) for geodetic deformation analysis.
It enables the application of the achievements of the Delft school of geodesy as well.
Especially the results of the Delft school in the analysis of size and form (as opposed
to absolute position, orientation and scale of a reference system); and of reliability
have been used in the construction of the adjustment models (chapters 3, 4, 6 and 7).
The preference of the Delft school of geodesy for the adjustment model of condition
equations (as opposed to the model of observation equations, i.e. the Gauss-Markov
model) has led to the successful application of this model for the derivation of algorithms
of the proposed adjustment models (chapter 5).

The consideration that deformation (i.e. de-form-ation) analysis is about the analysis of
size and form has led to the introduction of transformation parameters in the coordinates
model (chapters 3, 4 and 7). It has also led to the definition of deformation hypotheses
(in both measurements model and coordinates model) by means of constraints (chapters
5, 6 and 7), which makes it possible to use the coordinates of just one epoch to define
the S-system3. These two characteristics of the adjustment model make the use of
S-transformations superfluous, and makes it possible that the points that define the S-
system are subject to deformation (chapter 6). This makes the conventional approach
unnecessary, in which points that are stable (not moving) during all epochs, are searched
for (to define the S-system), before the actual deformation analysis can start.

The emphasis of the Delft school on reliability with its concept of a minimal detectable
bias has been at the basis of the description of minimal detectable deformations. They
have been developed in this study as a valuable tool to express the power of a certain
geodetic deformation analysis model to detect deformations (chapters 3 to 7).

Physical model, and time series of measurements
Second subquestion (shortened):
How can a physical model be incorporated in the geodetic deformation analysis model?

A physical model is a description of driving forces, from which a hypothesis can be
deduced about the movements of one or more points, i.e. a deformation hypothesis. It
is advantageous to combine the geodetic measurements and the deformation hypothesis

3An S-system is a coordinate reference system, of which absolute position, orientation and scale are
defined by functions of the coordinates themselves, and not by external information.
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in one adjustment model, because it allows for a simultaneous analysis. Both the
measurements model and the coordinates model can accomplish this by formulating a
deformation hypothesis by means of constraints on the coordinates in the parameter
vector of the adjustment model. These constraints are added to the adjustment model
as nonstochastic observations (constants that are treated as if they were observations;
also known as pseudo-observations). This makes it possible to test both the geodetic
measurements and the deformation hypothesis in the same way by standard statistical
tests. The concept and algorithms of testing constraints on parameters are treated in
chapter 5 and applied in the adjustment models of chapters 6 and 7.

A physical model may concern just two epochs, or a time series of measurements. In
professional practice an analysis of just two epochs of measurements is used for the
first deformation analysis, which is often crucial to determine whether more epochs of
measurements will have to take place. And if so, how frequent they will have to be. An
analysis of more than two epochs, i.e. a time series, of measurements, is the next step.
The proposed adjustment models (the measurements model and the coordinates model)
are capable of adjusting two epochs, but also a time series of measurements. A deforma-
tion hypothesis about a time series describes the movements of several points, or even
several point sets, during several epochs. Each point set may show a different behaviour.
Such an intricate deformation hypothesis is formulated as a set of constraints in the
adjustment model. This set of constraints is tested, and minimal detectable defora-
mations are determined for the set. Thus intricate deformation hypotheses about time
series of geodetic deformation measurements are tested and supllied with a description
of the test quality (chapters 6 and 7).

Constraints and rank deficiency
Third subquestion (shortened):
How can constraints be used effectively to describe deformation hypotheses, and how
can these constraints be tested and provided with a quality description, expressing
minimal detectable deformations?

As described above, constraints can be used to describe deformation hypotheses. They
are added to the adjustment model as nonstochastic observations. This causes the
covariance matrix of the observations in the adjustment model to be necessarily a rank
deficient (singular) matrix. The standard formulas for testing and description of test
quality do not allow for singular covariance matrices. Therefore, in this study the
formulas are developed that accept singular covariance matrices of the observations
(chapter 5).

This study shows that (i) a singular covariance matrix of the observations, (ii) con-
straints on the parameters and a nonsingular covariance matrix of observations, and
(iii) nonstochastic observations, are three ways to express the same phenomenon. The
use of nonstochastic observations has the advantage that stochastic observations (e.g.
geodetic measurements) and nonstochastic observations (e.g. deformation hypotheses)
are handled in the same way. To arrive at the least-squares solution of the adjustment
model, and, subsequently, to test the results and to determine the test quality, several
algorithms are treated in this study. They make partially use of algorithms that were
developed to solve (i) or (ii); and partially they use newly developed results (chapter 5).
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Search for best hypothesis
Fourth subquestion:
What is a good search method to find the hypothesis that best describes the deforma-
tion?

If the task at hand is to test just one deformation hypothesis, this can be done with the
tools described above. In general, however, several, or even many, deformation hypothe-
ses exists, that might all be plausible hypotheses, considering the physical causes of the
deformation, which are often not known well enough to reduce the number of plausible
hypotheses to just one. If the number of plausible hypotheses is not utterly large, a
search for the best hypothesis by systematically testing all hypotheses is possible (chap-
ter 4). A deformation hypothesis may, however, concern several points, several epochs,
and several deformation parameters4. Hence, it can be a quite intricate hypothesis.
Several of such intricate hypotheses may relate to different amounts of deformation
parameters. The task to determine by statistical tests which of the intricate hypotheses
is the best one, is far from straightforward. Well-known methods to find the best hy-
pothesis make use of an information criterion, such as the Akaike Information Criterion,
and the Bayesian Information Criterion. This study uses the test quotient within the
context of the B-method of testing as information criterion (chapter 6). Its use has
been illustrated in several numerical examples of use cases (chapters 3, 4, 6 and 7).

Standardisation and communication
Fifth subquestion:
What are the requirements that a geodetic deformation analysis model has to fulfil to
be usable for standardisation and, as a derivative, for effective and efficient communi-
cation.

To answer operational demands about deformations appropiately, a geodetic deforma-
tion analysis model has been developed in this study. This analysis model enables the
definition of a statistically significant deformation and of key performance indicators
of a geodetic deformation analysis. These concepts make it possible to define the re-
quirements for standardisation and for effective and efficient communication of geodetic
deformation analysis.

A statistically significant deformation is defined in this study (chapter 2) as “a defor-
mation that fits a deformation hypothesis, which is described by constraints on the
parameters of an adjustment model of geodetic observations (or of coordinates, derived
from them); the deformation hypothesis is described by physically interpretable parame-
ters (they have been derived from a physical model); the hypothesis has been tested by
means of a statistical test, which has a known probability of rejection, if the hypothesis
is a valid one; and the deformation hypothesis has been shown to be the best among
its competitors, where "best" is defined by an information criterion.”

As key performance indicators the test quantities of deformation hypotheses, the least
squares estimates of deformation parameters, and the minimal detectable deformations
have been introduced in this study (chapter 2).

4A deformation parameter is a parameter that is used to describe a certain deformation behaviour,
for example the linear rate of subsidence of some points, or the period and amplitude of some periodic
movement of points.
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The availability of the mentioned key performance indicators, based on the analysis
model and its characteristic elements as described in this study, and the definition of
a statistically significant deformation are the requirements that an analysis model has
to fulfil to make a standardised procedure for geodetic deformation analysis possible.
The geodetic deformation analysis model, developed in this study, fulfils these require-
ments. With the standardised procedure a tool is available for the improvement of
communication about geodetic deformation analysis.

8.2 Contributions

The research for this study resulted in several contributions to the scientific field of
geodesy, deformation analysis and adjacent fields. The contributions are summarised
below in seven categories.

1. Application of achievements of the Delft school of geodesy

• Delft school of geodesy applied to deformation analysis
This study extends the application of the achievements of the Delft school of
geodesy regarding the analysis of form and size, and the related achievements
about S-systems and S-transformations, to the field of geodetic deformation
analysis.

• Datum points do not have to be stable
This study uses test methods, in which points that are used in the definition
of the S-system (the geodetic datum) can be points that are subject to
deformation.

• Invariance for change of S-system
This study provides statistical tests and minimal detectable deformations
(quality descriptors) that depend only on the form and size of the monitored
geo-object(s), and are, therefore, invariant for the chosen S-system.

• S-transformation to other datum points is unnecessary
This study proves that testing successively many deformation hypotheses can
be accomplished without any S-transformation to redefine datum points.

• Minimal detectable deformations based on constraints
This study defines minimal detectable deformations by defining deforma-
tion hypotheses with constraints on the parameter vector of the adjustment
model, and computing minimal detectable biases for these constraints.

• Condition equations to solve and test a model with constraints
This study uses the preference of the Delft school of geodesy to use the ad-
justment model of condition equations to search and find a solution method
for testing for biases in the constraints within an adjustment model of ob-
servation equations with constraints.
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2. Estimation of transformation parameters; form and size

• Affine transformation with constraints
This study demonstrates how two sets of 3D stochastic coordinates of the
same point field can be merged by using a 3D congruence or 3D similar-
ity transformation by describing the merging process as an adjustment with
affine transformation parameters in the vector of parameters, and with con-
straints on these transformation parameters to make them the parameters
of a congruence or similarity transformation.

• Coordinates of all epochs are stochastic
This study shows that adjustment models can be constructed, in which the
coordinates of all epochs are stochastic variables, and the model matrix
contains only constant (nonstochastic) elements, thus avoiding the need to
resort to a method like Total Least Squares.

• Overview of methods for 3D congruence and similarity transformation
This study provides an overview of methods, published in scientific litera-
ture, to determine the transformation parameters of the 3D congruence and
similarity transformations between two sets of coordinates.

• Deformation analysis starting from size and form elements
This study analyses the amount of form elements and size elements, needed
to describe the form and size of a geodetic point field in 3D, based on the
same analysis for 2D. It introduces the concept of P-quantities to do the
analysis. From this analysis, the geodetic deformation analysis in 1D, 2D
and 3D can be derived.

3. Physical model

• Combination of geodetic and physical model
This study combines a geodetic and a physical model in one adjustment
model, thus enabling the simultaneous analysis of geodetic measurements
and deformation hypotheses.

• Separate analysis of reference points is unnecessary
This study shows that it is possible to consider reference and object points
as subsets of points that can be analysed simultaneously and on an equal
level, thus avoiding the necessity to first analyse the reference points.

• Displacements are not only relative to S-basis points
This study uses adjustment models that estimate deformation parameters
and movements of points by using the method of least squares. The es-
timated movements of points are movements of one point, or of a subset
of points, relative to the other points of the point field (which may or may
not include reference points); they are not only relative to the points that
constitute an S-basis (geodetic datum), fixed reference points, or similar
references, used by conventional methods.

• Rank deficient covariance and model matrices
This study presents adjustment models that are capable to analyse time series
of geodetic deformation measurements with consideration of full, possibly
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rank deficient covariance matrices, and with possibly a rank deficient model
matrix.

4. Algorithms

• Nonstochastic observations
This study uses nonstochastic observations as a means to handle an ad-
justment model with constraints on the parameters. It shows that they are
an effective tool to incorporate deformation hypotheses and, thus, physical
models in the adjustment model. Nonstochastic observations are also, as
this study demonstrates, an effective tool to test constraints for biases, and,
additionally to give a quality description with minimal detectable biases.

• Reciprocal residuals
This study introduces reciprocal residuals as an effective tool in testing the-
ory. They allow for the testing of hypotheses regarding both stochastic and
nonstochastic observations. Nonstochastic observations (also called “hard
constraints”) have a standard deviation of zero and no correlation to other
observations. Hence, their estimated residuals in the least-squares adjust-
ment are zero: they stay unchanged. But the reciprocal residuals of the
nonstochastic observations are, in general, not zero and they can, therefore,
be used to test hypotheses regarding nonstochastic observations.

• Amplification
This study introduces the term “amplification” for the adaptation of a rank
deficient (singular) covariance matrix of the observations to solve an adjust-
ment model of observation equations with such a covariance matrix. It shows
how amplification can be applied for testing for biases in the constraints of
an adjustment model of observation equations with constraints.

• Overview of methods to test a model with constraints
This study gives an overview of methods to test for biases in the constraints
of an adjustment model of observation equations with constraints.

• Condition equations with singular covariance matrix
This study derives the formulas to solve an adjustment model of condition
equations with a rank deficient (singular) covariance matrix of the observa-
tions.

5. Search for best deformation hypothesis

• Model identification
This study presents a search method for model identification, i.e. for finding
the best deformation hypothesis. The search method uses a systematic
search of all reasonable hypotheses, and applies the B-method of testing
with test ratio’s as information criterion to decide, which hypothesis is the
best one. The search method is typically different from the search method
as applied by data-snooping, or by the search heuristic to find moved points
used in conventional congruence analysis of point fields.
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6. Standardisation and communication

• Standardisation model
This study provides a foundation for a standardisation model.

• Four levels of stakeholders
This study distinguishes four levels of stakeholders in geodetic deformation
analysis. For each level communication has to be different.

7. Professional practice

• Deformation analysis with existing software
This study provides an adjustment model (the measurements model) that is
readily usable for deformation analysis with existing software for the adjust-
ment of geodetic networks, especially if the method “almost zero” is applied.

• Comparison between measurements model and coordinates model
This study provides the theoretical tools to compare an analysis that uses
the measurements model with an analysis that uses the coordinates model.
The measurements model can be used by existing adjustment software for
geodetic networks (see previous item). The coordinates model stongly re-
sembles the methods predominantly used in professional practice, where co-
ordinate sets, computed for separate epochs, are compared with each other.

• Invariance for changes in geodetic datum
This study provides tests of deformation hypotheses that are invariant for
changes in geodetic datum.
Conventional analysis methods used in professional practice compute coor-
dinate sets per epoch relative to the geodetic datum (or S-basis, or compu-
tation basis). The choice of the best geodetic datum often poses a problem.

• Stable reference points not required
This study provides a geodetic deformation analysis model that does not
require stable reference points.
Conventional analysis methods use comparisons of coordinate sets relative
to one geodetic datum. This requires a geodetic datum that consists of
stable points. In geodetic practice, however, stable points are often hard to
find, and the stability is generally difficult to be sure of.

• Key performance indicators
This study provides a geodetic deformation analysis model that delivers key
performance indicators that are based on least-squares adjustment and sta-
tistical tests. They are acceptable and credible for both experts and non-
experts.

• Minimal detectable biases and communication
This study shows that the concept of minimal detectable biases (MDB’s) is
suitable for judging the quality of geodetic deformation analysis. The MDB’s
provide a powerful tool for standardisation of the design of a geodetic defor-
mation analysis. Standardisation, in its turn, enables better communication
about the results of geodetic deformation analysis.
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• Physical model
This study presents an analysis model that provide a clear link between the
geodetic and physical model, thus facilitating the translation of predictions
from other sciences to deformations of geodetic networks.

8. Education

• Transparent education and involvement of students
This study provides a geodetic analysis model that delivers key performance
indicators that are acceptable and credible for experts and non-experts (as
stated before), and also for students, thus stimulating transparent education
and involvement of students in the subject.

• Follow-up research
This study makes follow-up research necessary, both into further theoretical
developments and in the practical implementations in professional practice
(both for main stream applications and for specialised projects). This funda-
mental and applied research will stimulate education, internships and thesis
work of students at academic universities and universities of applied sciences.

• Cooperation between universities and professional practice
This study will stimulate cooperation between universities and professional
practice to improve geodetic deformation analysis, thus bringing education
and professional practice closer together.

8.3 Recommendations

Based on the results of this study, several recommendations can be given. They are
grouped in seven categories

1. Physical model

The incorporation of a physical model into the adjustment model for geodetic
measurements can be improved:

• The developed analysis model has to be applied to as many different use
cases from professional practice as possible. The purpose of the research
of these use cases is to acquire information to improve and show the weak-
nesses and strenghts of the developed analysis model. The use cases should
provide intricate deformation hypotheses, such as: periodic movements of
geo-objects, caused by, for example, sea tides, wind, sun, and human ac-
tivities; specific deformation behaviour like twists in tunnels, and shifts of
harbour quays; different deformation behaviour of various subsets of a geo-
object, such as the abutments and the deck of a bridge.

• Research is required into the applicability of machine learning for the search
of the best deformation hypothesis.

• The search for the best deformation hypotheses by trying all possible combi-
nations of biases in points, leads to unacceptable large numbers of hypothe-
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ses to be tested. Research into the reduction of the number of reasonable
deformation hypotheses by physical considerations is desirable.

2. Information criterion

This study uses the B-method of testing with test ratio’s as an information crite-
rion. Comparison of its performance with the performance of other information
criteria (AKAIKE (AIC), Baysian (BIC)) is desirable. The theoretical study of
these different information criteria may help in assessing the use and applicability
of the criteria. Moreover, the consequences of the fact that multiple compar-
ison influences the characteristics of the parameter estimator and the minimal
detectable bias (Teunissen et al., 2017; Teunissen, 2018) has to be researched.
Further, the error of type III, that is the error of a wrong identification of bi-
ases, and the related discernability of hypotheses (Förstner, 1990) needs a closer
examination.

3. Pandora box

Research into computation methods that employ the sparseness of the Pandora
matrix is desirable to assess its properties for solving and testing the adjustment
and testing models of this study.

4. Trend and signal

It is possible to derive the formulas of collocation (Moritz, 1978) from an adjust-
ment model with pseudo-observations (Strang van Hees, 1981), where collocation
is used to separate the trend in stochastic observations from local signals. Con-
sequently, it should be possible to change the adjustment models of this study in
such a way that the nonstochastic observations become stochastic observations,
where the stochastic information comes from a covariance function that describes
a deformation signal. Introduction of a signal in the two adjustment models of
this study is expected to improve the capability of the models to describe defor-
mations.

5. Software

For the numerical examples in this study research software has been written. This
software can be extended to make it usable for testing more intricate deformation
hypotheses. This will be necessary to use the software for new use cases from
professional practice, as described above.

The software has also to be made more robust for its use in professional practice.

6. Deformation analysis of point clouds

Research is necessary to make the developed geodetic deformation analysis model
suitable for deformation analysis by means of (extreme large) point clouds.

7. Governance, standardisation and communication

A model has already been developed to make a taxonomy of the governance
of geodetic deformation analysis (Velsink, 2012). Such a taxonomy will help in
assessing the needs and possibilities for extending the use of the developed analysis
model in professional practice.
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A standardisation model has already been constructed in its first form (Velsink,
2016a). Elaboration of this model, and preparing it for application in national and
international standards, is important to improve geodetic deformation analysis.
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Guidelines for Geodetic Deformation Monitoring

A.1 Research project DefoGuide

In 2014 the author of this study initiated a research project as part of the research
activities for this study. The project was started under the leadership of Delft University
of Technology (responsible professor: Prof. dr. ir. R.F. Hanssen) with participation of
HU University of Applied Sciences Utrecht (responsible and acting researcher: ir. H.
Velsink). Its title was “Guidelines for Geodetic Deformation Monitoring”, short title:
“DefoGuide”. Partners in the project were Rijkswaterstaat (Ministry of Infrastructure
and the Environment) and three Engineering Consultancies: Grontmij Nederland, Fugro
Geoservices and Antea Group (Oranjewoud). Later others joined the project: Neder-
landse Aardolie Maatschappij (Dutch Oil Company), and Engineering Consultancies
Geomaat, RPS, and Brem Funderingsexpertise.

Funding was granted to the project by Research Programme Maps4Society, a pro-
gramme of the government of the Netherlands in cooperation with several public and
private companies.

The research question was formulated as: “How does a model look like hat describes
the domains, the key players, the legislation, the measuring techniques and the prod-
ucts of geodetic deformation measurements, which model can be used as the basis of
standards to be used in the management and the tendering of geodetic deformation
measurements?"

The results of the research project have been published in the Dutch language (Velsink,
2016a). Some results, relevant to this study, are translated or summarised in the follow-
ing sections, to make them accessible to those not familiar with the Dutch language.
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A.2 Table of contents of the report

The table of contents of the report (Velsink, 2016a), translated from Dutch, is:

Preface
Introduction
1. Current regulations and practice

1.1 Introduction
1.2 Laws and regulations and ways of work assignment

1.2.1 Domains
1.2.2 Laws and regulations
1.2.3 Functional procurement and procurement on price

1.3 Standards for geodetic deformation analysis
1.4 Requirements for geometric accuracy in practice

2. A standardisation model for geodetic deformation analysis
2.1 Introduction
2.2 Product of geodetic deformation analysis
2.3 Analysis model
2.4 Use of the analysis model
2.5 Standardisation Model

3. Analysis of height changes
3.1 Introduction
3.2 One height at two times
3.3 What is a height?
3.4 Three points and their heights
3.5 Deformation analysis with height differences
3.6 Deformation analysis with heights
3.7 S-transformation
3.8 One- and multidimensional minimal detectable biases
3.9 Conclusions on the analysis of height changes

4. Analysis of position changes
4.1 Introduction
4.2 One point and its position change
4.3 Point field and relative point positions
4.4 Describing form and size with coordinates
4.5 Deformation analysis with geodetic observations
4.6 Deformation analysis with coordinates
4.7 Conclusions on the analysis of position changes

5. Software
5.1 Deformation Analysis Software - May 2016
5.2 MOVE3
5.3 Software Antea Group
5.4 NAM software
5.5 TU Delft
5.6 Skygeo
5.7 Houtenbos’ SuRe
5.8 Hiddo’s Matlab programs

6. Conclusions
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A.3 Domains1

Geodetic deformation measurements may differ from one another in terms of the appli-
cable law, regulations, standardisation, method of assignment, mode of implementation
and method of drawing conclusions. This appears to be dependent on the application
domain. The following domains of activity are distinguished:

1. Residential and non-residential buidings
2. Hydraulic engineering (State)
3. Hydraulic engineering (Water boards)
4. Mining (gas, oil, salt, coal)
5. Infrastructure (state roads)
6. Infrastructure (provincial and municipal)
7. Rail infrastructure
8. Industrial installations
9. Scientific research / long-term movements (sea level and climate change)

A meeting of the partners of the project DefoGuide found that this categorisation
properly covers the domains where the partners are active with geodetic deformation
measurements.

A.4 Requirements for geometric accuracy in practice2

In the case of an assignment, which may take place within the organisation, outside
the organisation by privately negotiated procedure, or outside the organisation through
public procurement, standards must be formulated. The standards determine how the
work has to be performed. They are explicitly and in detail written out, just vaguely
defined, or implicitly known. This section focuses on formulations of standards for
precision and reliability of geometry. The wording of standards comes from tenders
delivered by partners to the project or found on the internet.

A.4.1 Rijkswaterstaat: Product Specifications Deformation Measurements of
Infrastructure Works3

Merging of epochs

In performing deformation analyses with, for example, tacheometry measurements, ob-
jects are measured in more than one epoch. From each epoch the measurements are
adjusted. This results in a description of form and size of the objects in each epoch.
The analysis, whether deformations have taken place, and if so, which ones, is carried
out by comparing the results of the epochs.

1This section is taken and translated from section 1.2.1 of Velsink (2016a).
2This section is taken and translated from section 1.4 of Velsink (2016a).
3This subsection is taken and translated from section 4.4.2 of Velsink (2016a).
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Analysis with spreadsheet In current practice4 the analysis often consists of putting
the adjusted heights or x, y, and z coordinates in a spreadsheet, after which the differ-
ences between the epochs in the spreadsheet are calculated. If possible, graphs of the
differences are made: on the x axis the epochs are presented, and on the y axis the
height differences, the x coordinates, the y coordinates or the z coordinates. A verbal
explanation of these time series concludes the analysis. This makes a multidimensional
analysis difficult, because the presentation of the differences is only for two epochs, for
only one point and for one dimension.

The Product Specifications Deformation Measurements of Infrastructure Works of Rijks-
waterstaat (Rijkswaterstaat, 2014) can serve as an example of the way in which current
requirements for geodetic deformation measurements are formulated. These product
specifications are used not only by Rijkswaterstaat itself when outsourcing works, but
also by many other public and private companies. Here are some examples:

• Outsourcing of deformation measurements by the Harbour Authority Rotterdam.
Tender ICM-1011497 from the Harbour Authority, posted at www.tendernet.nl,
published August 5, 2013, contains the document:
“NVI 2 – BIJLAGE 1 – AANGEPASTE ANNEX 1”, which states:
“For the accuracy requirements of all objects, see document “Product Specifi-
cations Deformation Measurements of Infrastructure Works” version 1 of March
2012, by Rijkswaterstaat (Ministry of I&M)”.

• Monitoring plan redirection N325, drafted by Fugro GeoServices B.V. on behalf
of the Combination I-Lent, which works for the municipality of Nijmegen. Section
4.2 of the plan states:
"The set up of the preliminary monitoring plan for the deformation measurements
of the bridge and tunnel has been based, as much as possible, on the Product
Specifications Deformation Measurements of Infrastructure Works of Rijkswater-
staat, dated 1 March 2012.” (Municipality of Nijmegen, 2015).

• Master’s thesis of Ivar Schols at TU Delft, based on research for research institute
TNO: “Segment joint capacity of the Kiltunnel, Part 1: Immersed tunnels and set-
tling”. Section 3.3.4 states: “Information, guidelines and requirements regarding
the deformation measurements can be found in the document used by Rijks-
waterstaat “Product Specifications Deformation Measurements of Infrastructure
Works”.”. The requirements of the document are taken over and not discussed.
The report can be found at "repository.tudelft.nl".

The Product Specifications Deformations of Infrastructure Works thus play an impor-
tant role in formulating requirements for geodetic deformation measurements in current
practice in the Netherlands.

The Product Specifications assume that four types of measurements will be performed
in each epoch:

4With “current practice” is meant the practice, as known to the author at the time of writing,
February 2015.

https://www.tenderned.nl/tenderned-web/aankondiging
http://repository.tudelft.nl/view/ir/uuid%3A135c8ca3-b444-4182-a1c3-5fdf7c974101/
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1. Z measurements (measurement of height);
2. XY measurements (determination of x and y coordinates in the horizontal plane;
3. joint measurements;
4. tilt measurements.

For Z-measurements and XY measurements, the requirements are elaborated in Annex
C and D of Rijkswaterstaat (2014). These annexes show that it is assumed that the
measurements will be adjusted for each epoch separately. The least squares method is
not mentioned explicitly, but the prescription of the MOVE3 network adjustment pack-
age (using the least squares method) in Appendix C.5, the mention of a preference for
MOVE3 in Annex D.5.1 and the prescription of the B method of testing (based on the
least-squared method (Baarda, 1968a)) clearly show that the least squares method is
required for calculating the results per epoch. For the adjustment of each epoch, statis-
tical parameters, such as the significance level and test power, are explicitly prescribed
(Annex C.5.2, C.5.4, D.5.2).

However, the requirements for the analysis of the connection of the epochs are remark-
ably short. In Annex C.6 and D.7, only four and three paragraphs are devoted to this
analysis. In both Annexes C.6 and D.7 it is stated: "The Client is provided with in-
formation on the nature and extent of the deformation and deformation process." It is
not specified, how to determine and test the nature and extent of the deformation and
deformation process.

Therefore, a least squares adjustment and subsequent statistical tests of the connection
of the epochs are not treated.

A.4.2 Industrial Guidelines Mining Industry5

A.4.2.1 Guidelines

The Industrial Guidelines Mining Industry (T.P.B., 2014) do not describe a standard
for deformation measurements, nor is it a manual for performing deformation measure-
ments. It is somewhere in between. The measurement process of three measurement
methods (spirit levelling, GNSS, InSAR) is described and statements are made about
the achievable precision. Lidar is briefly discussed. The descriptions do not provide stan-
dards nor give they indications, how standards could be formulated. How the testing of
measurement results against standards should be done is not dealt with at all.

Section 1.2 (page 6) states that in the guidelines “the establishment of geodetic net-
works, acquisition of data, mode of processing and reporting on soil movement by
mineral extraction and/or storage, are formalized”. Therefore, it is not the intention to
formulate product standards, but process standards. This is special, because the general
trend in the Netherlands is to move over to product standards, which makes functional
procurement possible. In functional procurement, the function of the product to be de-
livered is specified and not how the product and its function are created. In deformation
measurements, the product is a set of statements about the deformation pattern of a

5This section and the rest of section A.4 are taken and translated from section 1.4 of Velsink
(2016a).
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geo-object. The function of the statements is to provide support for statements about
the risks of human actions regarding the geo-object under consideration.

The guidelines, therefore, do not have the purpose of making functional procurement
possible.

The guidelines do not provide concrete standards for product features and products, and
neither for the processes. It therefore appears that the guidelines are primarily intended
to clarify which aspects of measurement and analysis methods should be addressed by
the contractor during the work and in the report, without explicit requirements and
without indications how testing with respect to the requirements should take place.

A.4.2.2 Precision, reliability and accuracy

The concepts of precision, reliability and accuracy are different concepts in the Dutch
school of geodesy. The guidelines use the words sloppily.

They make statements about the precision of different measurement methods by giving
numerical values. Usually it is not clear what the precise definition is of the concept,
which the numerical values relates to. Generally, an indication of the S-basis, i.e. relative
to what the value applies, is missing.

Typical is table 3.3 on page 58. The column “Precision deformation estimate” states
for levelling: “1-5 mm” and “1 mm/

√
km”. The standard deviation of levelling height

differences is proportional to
√
km. Is the second value the standard deviation of a

measured height difference? That is something different from a deformation estimate6!
Do the first two numbers “1-5 mm” state something about the deformation estimate?
Is it a standard deviation? And how is that estimate calculated? The guidelines provide
two methods7:

1. pointwise multi-epoch deformation analysis;
2. continuous space-time deformation analysis.

Which method has been used to determine the mentioned values of 1-5 mm? If the
answer is that the values indicate only an order of magnitude, the table hardly gives a
clear lead how to draft standards and how to test them.

In Appendix B (page 76), one of the few formulations can be found, in which the
standard deviation plays a role8: "Less than significant means that the subsidence rate
of the neighboring point relative to the stable point is less than 3-sigma of the estimated
velocity.”. The word “significant” appears in the guidelines many times. It is not clear
why the concept has been specified on page 76 only.

6If only one height difference is measured, it is immediately the deformation estimate. If more
measurements are made, if there is an interpolation in time, if there are corrections for individual point
movements, etc., this will no longer be the case.

7Scientific literature provides a lot more methods.
8The text speaks about “3-sigma”. Sigma is likely to mean the standard deviation, but it is not

defined.
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A.4.2.3 Reference point

In 2009, an inquiry was commissioned on behalf of the Technical Committee on Soil
Movement (Technische Commissie Bodembeweging (TCBB)) on “how we can achieve
a consistent approach in the Netherlands for the clear determination of soil movements
caused by mining”. The final report “From Measurement to Subsidence” addresses i.a.
the method recommended by SodM. It states:

(begin of quote)

1. The SodM method is based on the adjustment of levelling measure-
ments per epoch (per measurement campaign), assuming one stable
reference point.

2. The reference point should be carefully chosen so that it is expected
to be stable throughout the period.

3. The SodM method is a break with the past when the levelling network
was connected to multiple NAP9reference points, assumed to be sta-
ble. In fact, the absolute soil subsidence relative to NAP is no longer
determined, only the relative movement of the benchmarks.

(end of quote)

The guidelines seem to use the SodM method as starting point. The “one reference
point” is discussed in the guidelines many times. However, the above three statements
are not defensible, combined together. It may be that one wants to know the change
relative to a stable supposed environment, ór one wants to know the change of the
geo-object relative to itself. In the first case, several points must be selected, which
represent the stable supposed environment. Just one point is insufficient because there
is no redundancy and the movement of this one reference point (relative to the stable
environment) cannot be detected. The second case does not require any reference
point that must be carefully chosen and stable throughout the entire period. One
should carefully select all points representing the geo-object. Of course, calculations
need to be relative to a reference point, but that can be any point, possibly a fictional
point, such as the center of gravity. And it does not have to be stable.

A.4.2.4 Analysis with free network adjustment

On page 23 of the guidelines, two methods of deformation analysis are mentioned:

1. Analysis by Free network adjustment;
2. Analysis Space/Time.

The first method states: “With, for example, software package MOVE3 from Grontmij”.
Current version 4.3.0 of MOVE3 is a package that can perform deformation analyses
with the observation type “shift vector” (MOVE3, 2017). But at the time of adoption
of the guidelines, it was not yet possible. MOVE3 was able to perform a free network
adjustment of a single epoch. MOVE3 could also merge the measurements of more

9Dutch national height reference network: Normaal Amsterdams Peil : Standardised Amsterdam
Level.
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epochs and perform an adjustment. However, the deformation analysis could not do
more than deliver co-ordinates, between which co-ordinate differences were calculated
(moreover, not by MOVE3). What is intended exactly by the "Analysis Free network
adjustment"? What MOVE3 can do, is delivering coordinates including the covariance
matrix. This allows for a good deformation analysis to be performed in a separate
programme, if necessary equivalent to the “Analysis Space/Time”.

A.4.3 Harbour Authority Rotterdam

A.4.3.1 European procurement of quay wall

From the Antea Group the standards have been obtained of a European tender by the
municipality of Rotterdam for deformation measurements of quay walls. It is assumed
that this tender is public. Delivered are annexes 5, 6 and 7 of the tender. Unfortunately,
a further specification of the document is not available. The document is from before
December 2014. The author received information in May 2016 showing that the tender
has been withdrawn after some time, after which the tender has been restarted by the
Port of Rotterdam, using the product specifications of Rijkswaterstaat (Rijkswaterstaat,
2014) as standards.

Annex 7 (Requirements Measurement and Processing of Quay Wall Deformations)
states:

The required standard quality is described in the section on horizontal and
vertical deformation measurements. Quality class “Medium” is deemed suf-
ficient for the quay walls. The result of the measurement has to possess
the following quality features:

Standard
Deviation

Relative
Precision

Change to be detected

XY (horizontal) 4.0 mm 2.0 mm Abs. 8.0 mm, Rel. 4 mm
Z (vertical) 2.0 mm 1.0 mm Abs. 4.0 mm, Rel. 2 mm

The deformation points and fixed points must be measured redundantly
in the horizontal measurements. The change to be detected is interpreted
as follows: In re-measurement, the differences fall within the mentioned
tolerance (tolerance = +/- 2 times the standard deviation) in 95% of the
cases.

Comment:

1. “Standard Deviation” and “Relative Precision”: What is meant by this? Presum-
ably, the “Relative precision” value is a standard deviation, relative to something
close to it. Presumably the “Standard deviation” is thought to be ’absolute’, that
is, in relation to the national reference system. But such an "absolute standard
deviation" is always relative in the operational definition: the absolute standard
deviation is relative to control points, whose co-ordinates are known in the na-
tional system. Then the question is: which S-basis (which reference points) is
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taken for the relative and which for absolute precision? And how does one test
whether the standard is met?

2. Why is there interest in the absolute standard deviation? In general the interest is
only in the approximate absolute position of the measured object. Is a standard
deviation of, for example, a meter already sufficient? Connection to a basis of
three points, which was measured with GNSS on the mobile phone, might suffice.

The deformation analysis requires a very good relative precision (small standard
deviation). Its definition (S-basis, testing method) must be addressed, not the
definition of absolute precision.

3. “Change to be detected”: “Abs.” is probably given a value (8.0 mm) that is
twice the “Standard Deviation” and with “Rel.” a value (4.0 mm) that is twice
the “Relative Precision”. The factor two comes from a two-sided critical area of
the one-dimensional standard normal distribution, with a significance level of 5%,
giving a critical value of 1.96 (rounded: 2). This follows from the sentence: “By
re-measurement ...”.

But XY is not one, but two-dimensional. And change is determined by determining
twice the XY and their difference. The discussion should be, then, about the
standard deviation of that difference. Therefore, the numerical values in “Change
to be detected” (both XY and Z) can not be set as standard simultaneously with
the aforementioned standard deviations.

A.5 Software

Chapter 6 of Velsink (2016a) treats software used for geodetic deformation analysis,
according to information acquired by the author in 2016. Several packages from Ger-
many, the United States of America and Portugal are treated. From the Netherlands the
package MOVE3 is reviewed and specialised software packages from the Antea Group
(Engineering Consultancy), NAM (oil and gas company), Skygeo (InSAR-software) and
TU Delft are described. Also from the Netherlands are a package for analysis of levelling
measurements from Houtenbos Geodetic Consultancy, and the MATLAB-programmes
of the author.

From the inventarisation and from questioning the Dutch partners in project DefoGuide
it became clear that the software packages from abroad (Germany, United States of
America, Portugal) are hardly used (maybe not at all) in professional practice in the
Netherlands. The reason is unknown.
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B
Appendices to chapter 4

B.1 Conventions

In chapter 4 use is made of the following conventions:

• T indicates the transpose of a matrix.

• Approximate values of a scalar or vector are indicated by a sub or super script 0,
e.g. a scalar s0 or a vector v0.

• If v is a certain vector, then ∆v is the vector of differences of v with its vector
v0 of approximate values.

∆v = v − v0.

For a scalar an analogous equation holds.

• a vector that contains the coordinates of n points contains first all x-coordinates
from point 1 up to point n, then all y-coordinates and finally all z- coordinates

• the vector a consists of three sub vectors x, y and z, and the vector b′ of three
sub vectors u, v and w, such that

a =

x
y
z

 and b′ =

x
v
w

 . (B.1)

• vector x contains for each point the x-coordinates. If there are n points, then

x =


x1

x2
...

xn

 . (B.2)

In the same way y, z and u, v, w are defined.
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B.2 Adjustment equations

Most of the following equations can be found in Teunissen (2000) and Teunissen (2006).
To write the equations more concisely, and because of their central role in testing, the
reciprocal least squares residuals r̂ are introduced.

A system of linear or linearised observation equations has the following general structure

E{`} = Ap; D{`} = σ2Q`, (B.3)

where ` is the m-vector of observations, A is the (m× n) matrix of coefficients and p
is the n-vector of unknown parameters. The equation behind the semicolon describes
the stochastic model by giving the covariance matrix D{`}, the variance factor σ2 and
the cofactor matrix Q`. Both A and Q`, are considered in the following equations to
be regular matrices. The situation that Q` is singular is treated in the paper.

The least squares solution is given by

p̂ = (ATQ−1
` A)−1ATQ−1

` , (B.4)

Qp̂ = (ATQ−1
` A)−1, (B.5)

with p̂ the vector of estimated parameters and Qp̂ its cofactor matrix. We have also

ˆ̀= Ax̂; Q ˆ̀ = AQx̂AT, (B.6)

ê = `− ˆ̀; Qê = Q` −Q ˆ̀, (B.7)

r̂ = Q−1
` ê; Qr̂ = Q−1

` QêQ−1
` (B.8)

with ˆ̀ the adjusted observations, ê the least squares residuals and r̂ the reciprocal least
squares residuals. The Q-matrices are their cofactor matrices. The reciprocal least
squares residuals are used in the testing equations.

For each system of linear observation equations an equivalent system of linear condition
equations exists

KTE{`} = 0; D{`} = σ2Q`. (B.9)

where KT is the [(m− n)×m]-matrix of conditions, for which holds

KTA = 0. (B.10)

Matrix K is considered a regular matrix. Q` is considered a positive semidefinite matrix,
so it may be singular.

Define the vector of misclosures t and its cofactor matrix Qt as

t = KT`; Qt = KTQ`K. (B.11)

The least squares solution is

r̂ = KQ−1
t t; Qr̂ = KQ−1

t KT, (B.12)
ê = Q`r̂; Qê = Q`Qr̂Q`, (B.13)
ˆ̀= `− ê; Q ˆ̀ = Q` −Qê. (B.14)
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B.3 Testing equations

Consider models (B.3) or (B.9) as the null hypothesis. Let an alternative hypothesis be
defined as

E{`} = Ap + G∇; D{`} = σ2Q`, (B.15)

with G a (m × q) matrix of known coefficients and ∇ a q-vector of unknown bias
parameters, with m the amount of observations and q the amount of bias parameters.
The formulation for the model of condition equations is

KTE{`} = KTG∇; D{`} = σ2Q`. (B.16)

To test this alternative hypothesis against the null hypothesis (model (B.3) or (B.9))
use is made of the following test statistic (Teunissen, 2006, p. 78)

Vq = r̂TG(GTQr̂G)−1GT r̂. (B.17)

If Fq,∞ =
Vq

qσ2
> Fcrit (B.18)

with Fcrit the critical value, the null hypothesis is rejected in favour of the alternative
hypothesis.

If the null hypothesis is rejected, an estimate of the biases and its cofactor matrix can
be determined as (Teunissen, 2006, p. 76)

∇̂ = (GTQr̂G)−1GT r̂; Q∇̂ = (GTQr̂G)−1 (B.19)

For q we have 1 ≤ q ≤ m− n. If q > m− n the adjustment models (B.15) and (B.16)
are underdetermined and cannot be solved. For the limiting case q = m− n the test is
equal to the overall model test and we have

Vm−n = êTQ−1
` ê = r̂TQ`r̂. (B.20)

The rightmost expression can be used if the system of condition equations is used and
Q` is singular.

The limiting case q=1 is the test of w-quantities (Baarda, 1968b, p. 13). It is called a
w-test.

If w =
gT r̂

σ(gTQr̂g)1/2
> wcrit (B.21)

reject the null hypothesis. Here wcrit is the critical value and g is the matrix G, but
written as a lower case letter, because it has only one column: it is a vector. The
w-quantity has a normal distribution with an expectation of 0 and a standard deviation
of 1. A conventional w-test (Baarda, 1968b, p. 15) is the test of one observation being
biased and all other observations being without bias. The vector g is

g = (0 ... 010 ... 0)T, (B.22)

with the 1 corresponding to the biased observation.
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A point test is a three-dimensional test (q=3) of the x-, y- and z-coordinate of one
point (used as observations). The matrix G is

G =

0 ... 0 1 0 0 0 ... 0
0 ... 0 0 1 0 0 ... 0
0 ... 0 0 0 1 0 ... 0

 , (B.23)

with the ones corresponding to the coordinates that are supposed to be biased.

B.4 Data of the experimental validation

Observations of the first epoch:

pnt pnt direction distance zenith angle
99 1 307.7820765 24.5060074 99.8055455
99 2 319.7344105 20.0876102 98.7070717
99 3 331.5296877 17.0625166 105.4327481
99 4 352.4563301 14.7326649 106.6349756
99 5 388.3056469 15.4070803 101.3380122
99 14 29.0918416 17.8292985 99.7871557
99 15 46.7749502 15.3559925 96.6129838
99 16 59.3812951 14.5848606 99.6001975
99 17 79.1592740 14.9923557 105.715829
99 18 89.8716178 17.9265803 106.5598073
99 19 93.2971810 21.2104291 98.4820515
99 23 186.8788155 19.3414323 103.9408223
99 24 200.1056248 20.9264019 105.3692816
99 25 212.6876307 23.5421679 99.0553208
99 26 224.8455986 28.3270008 98.4196188

Observations of the second epoch, point 1 is biased:

pnt pnt direction distance zenith angle
100 1 13,7372731 23,0672793 99,7859602
100 2 27,7594635 19,1262636 98,6398106
100 3 41,4401419 16,6097400 105,582282
100 4 63,6494039 15,1749445 106,4430463
100 5 96,2060486 17,1252428 101,2017896
100 14 131,4346394 20,3808279 99,8127807
100 15 146,8624786 18,0020637 97,1040642
100 16 157,5422153 17,1916389 99,6580831
100 17 174,4918375 17,3543574 104,9366243
100 18 184,6390687 20,0631725 105,8611633
100 19 188,5080762 23,2655969 98,6169971
100 23 279,1965362 17,9334770 104,2543189
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100 24 294,0907282 19,0647202 105,8937977
100 25 308,5860882 21,3237391 98,9581652
100 26 322,5863556 25,8583270 98,2684568

Observations of the second epoch, points 1 up to 5 are biased:

pnt pnt direction distance zenith angle
100 1 13,7372731 23,0672631 99,7997607
100 2 27,7642973 19,1302064 98,6467483
100 3 41,4423295 16,6141034 105,5885051
100 4 63,6455986 15,1792709 106,4496345
100 5 96,1955807 17,1284537 101,2089988
100 14 131,4346394 20,3808279 99,8127807
100 15 146,8624786 18,0020637 97,1040642
100 16 157,5422153 17,1916389 99,6580831
100 17 174,4918375 17,3543574 104,9366243
100 18 184,6390687 20,0631725 105,8611633
100 19 188,5080762 23,2655969 98,6169971
100 23 279,1965362 17,9334770 104,2543189
100 24 294,0907282 19,0647202 105,8937977
100 25 308,5860882 21,3237391 98,9581652
100 26 322,5863556 25,8583270 98,2684568

Approximate coordinates of the first epoch:

pnt x y z
099 83277.7360 457303.9790 2.0000
001 83253.4140 457306.9670 2.0740
002 83258.6090 457310.1060 2.4080
003 83262.7790 457312.0580 0.5460
004 83267.7820 457314.7330 0.4670
005 83274.9220 457319.1230 1.6760
014 83285.6020 457319.9780 2.0600
015 83288.0160 457315.3580 2.8170
016 83289.4500 457312.6660 2.0920
017 83291.8750 457308.7800 0.6560
018 83295.3420 457306.8040 0.1560
019 83298.8230 457306.2070 2.5050
023 83281.6860 457285.0840 0.8030
024 83277.7020 457283.1290 0.2370
025 83273.0750 457280.9050 2.3490
026 83266.9620 457277.7910 2.7030
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Approximate coordinates of the second epoch:

pnt x y z
100 0.000 0.000 0.000
1 4.936 22.528 0.074
2 80.750 173.330 0.408
3 100.270 131.630 -14.540
4 127.020 81.600 -15.330
5 170.920 10.200 -0.324
14 17.947 -9.660 0.060
15 133.270 -120.740 0.817
16 106.350 -135.080 0.092
17 67.490 -159.330 -13.440
18 47.730 -194.000 -18.440
19 41.760 -228.810 0.505
23 -169.470 -57.440 -11.970
24 -189.020 -17.600 -17.630
25 -211.260 28.670 0.349
26 -242.400 89.800 0.703

. .

B.5 Results case 1

Point 1 is biased
dx, dy, dz = 3 mm, -3 mm, -3 mm in x-system
Number_of_computations = 3
Max_criterion = 5.0e-013
Scale_factor = 1
Translation_x_y_z_in_m =
81475.939, 455202.030, 2.000
Alpha_Beta_Gamma_in_gon =
0, 0, -100
Overall model test:
Number_of_conditions = 38
Ftest = 1.41
Critical_value = 1.18
w-test: Critical value is 3.29
No rejections
Point test: Critical value = 4.21
Point F_q
001 6.2758
Est.def. x Est.def. y Est.def. z
3.6 mm -2.4 mm -2.5 mm
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Differences between x and adj. coord. in mm
1 0.0 0.0 0.0
2 -1.1 0.1 0.9
3 -1.6 1.5 1.2
4 -1.1 -0.2 1.1
5 -0.7 0.2 0.4
14 0.0 0.0 0.0
15 -1.1 -1.5 -1.1
16 -0.3 -0.6 -0.5
17 -0.9 -0.8 -0.4
18 -1.2 -1.7 -0.4
19 -2.1 -1.4 -0.6
23 -2.5 -1.1 0.0
24 -3.2 -1.5 -0.6
25 -2.9 0.9 0.0
26 -3.2 -0.5 0.0

B.6 Results case 2

Points 1, 2, 3, 4, 5 are biased
dx, dy, dz = 3 mm, -3 mm, 2 mm
in x-system
Number_of_computations = 3
Max_criterion = 5.2e-012
Scale_factor = 1
Translation_x_y_z_in_m =
81475.940, 455202.029, 2.001
Alpha_Beta_Gamma_in_gon =
0, 0, -100
Overall model test
Number_of_conditions = 38
Ftest = 2.20
Critical_value = 1.18
w-test: Critical value is 3.29
x-coordinate
Point Ratio w Est.error
005 1.1582 3.8106 3.0011
y-coordinate
Point Ratio w Est.error
002 1.1816 3.8875 -3.2984
z-coordinate
no rejections
Point test: Critical value = 4.21
Point F_q
002 5.8141



202 B. Appendices to chapter 4

Est.def. x Est.def. y Est.def. z
2.3 mm -3.9 mm -0.4 mm
More-dimensional test
q=3, points 001, 002, 003, 004, 005
F_q
5.8141
Est.def. x Est.def. y Est.def. z
2.8 mm -3.1 mm 3.7 mm
Differences between x and adj. coord. in mm
1 0.0 0.0 0.0
2 0.2 -1.2 -0.2
3 0.0 0.1 0.3
4 0.7 -1.7 0.6
5 1.0 -1.6 0.4
14 0.0 0.0 0.0
15 -1.2 -1.5 -0.6
16 -0.3 -0.7 0.2
17 -0.8 -0.9 0.7
18 -1.0 -1.9 1.1
19 -2.3 -1.4 1.2
23 -2.4 -1.2 1.1
24 -3.1 -1.7 0.2
25 -3.0 0.9 0.4
26 -3.4 -0.5 0.0
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C.1 Estimation of ∇

To derive the equations for the least-squares estimate ∇̂ and its cofactor matrix Q∇̂,
the model of condition equations is used. This model is dual to the model of observation
equations, model (5.1), yielding the same least-squares adjustment:

BTy − b0 = BTe = t; E{t} = 0, (C.1)

with BTA = 0 and BTa0 = b0.

Matrix B is the (m × b) coefficient matrix and b0 a b-vector of constant terms. The
number of conditions equals b = m−n. The vector t contains the misclosures. The
least-squares solution of model (C.1), using a positive semidefinite Qy, is derived in
appendix C.3.

Under the alternative hypothesis Ha the model of condition equations takes the form:

BTy − b0 = t; E{t} = BTC∇, (C.2)

This model can be solved as a model of observation equations:

E{t} = BTC∇. (C.3)

The cofactor matrix of t is Qt = BTQyB. It is assumed that Qt has full rank. Us-
ing equations (5.2)-(5.4) a least-squares solution ∇̂ and its cofactor matrix can be
computed.

This is rewritten in such a way that only the adjustment results of the null hypothesis
are needed, until Tq is computed. Because e ∈ R(Qy) (proof in appendix C.2), it is
possible to write, with r some appropriate vector:

e = Qyr. (C.4)
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Here r is called the vector of reciprocal residuals. Model (5.1), that is, the null hypoth-
esis, is written

y = Ax + a0 + Qyr, E{r} = 0, D{y} = σ2Qy. (C.5)

A least-squares estimate r̂ has to fulfil the condition (Kourouklis and Paige, 1981,
p. 621):

AT r̂ = 0. (C.6)

We can write r̂ and its cofactor matrix Qr̂ in terms of the model of condition equations
as

r̂ = BQ−1
t t, Qr̂ = BQ−1

t BT. (C.7)

It can be verified that AT r̂ = 0, and that r̂ complies with the model equation BTê = t.

A least-squares solution ∇̂ and its cofactor matrix Q∇̂ follow from solving equation
(C.3):

∇̂ = (CTQr̂C)− CT r̂, Q∇̂ = (CTQr̂C)−rs . (C.8)

Notice that r̂ and Qr̂ follow from the adjustment of the null hypothesis.

C.2 Elaboration of Reduced Model after Orthogonalisation

This appendix describes the determination of the reciprocal residuals r̂ and their cofactor
matrix Qr̂ from a model of observation equations with a rank deficient coefficient matrix
A and singular cofactor matrix Qy. To accomplish this, the model of observation
equations is changed into a model with a coefficient and cofactor matrix that are both
nonsingular. First, the observations are orthogonalised relative to Qy, and subsequently
the model is reduced (Rao and Mitra, 1971, p. 149). Then the least-squares solution
is determined. This is used to determine with a follow-up adjustment the reciprocal
residuals and their cofactor matrix.

Orthogonalisation According to Rao and Mitra (1971) the cofactor matrix Qy can
be split in Qy = JJT with rank(Qy) = rank(J) = number of columns in J. Let N be
an orthogonal complement of Qy, that is, N is a matrix of maximum rank such that
NTQy = 0. Let FT be a left inverse of J, that is FTJ = I, with the additional condition
FTN = 0. For any positive semidefinite Qy with rank ≥ 1 F exists. The observations
of model (5.1) are transformed:

y
1

= FTy = FT A x + FT e, Qy1
= I, (C.9)

y2 = NTy = NT A x, Qy2
= 0. (C.10)

y2 has the zero matrix as cofactor matrix and, therefore, defines constraints on the
parameters, with NTA the constraints matrix, and y2 the vector of constants. Equation
(C.10) shows that NTe = 0. Therefore, e has no component in the nullspace of Qy,
or, equivalently, e ∈ R(Qy).
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Reduction Define:

BT = FT − FTA(NTA)−NT; AR = FTAU;

y
R

= BT(y − a0); eR = FTe. (C.11)

For (.)− any generalised inverse can be taken. U is a matrix for which holds NTAU = 0,
and whose range space is complementary to the range space ofNTA. The reduced model
is (Rao and Mitra, 1971, p. 144):

y
R

= ARxR + eR; QyR = I, (C.12)

with I being a unit matrix. Solution of the normal equations yields the least-squares
solution x̂R.

Follow-up adjustment With least-squares solution x̂R, model (C.1) of condition equa-
tions is formulated for the original observations y, based on equations (C.11) and (C.12).

BTy − (BTa0 + AR x̂R)︸ ︷︷ ︸
b0

= t; E{t} = 0. (C.13)

The reciprocal residuals are given by equation (C.7):

r̂ = B(BTQyB)−1(BTy − b0). (C.14)

Because b0 is a stochastic vector, the computation of the cofactor matrix of r̂ is lengthy.

H = B(BTQyB)−1(BT − AR(AT
RAR)−1AT

RB
T), (C.15)

r̂ = H(y − a0), Qr̂ = HQyHT. (C.16)

C.3 Condition Equations with Singular Cofactor Matrix

In this appendix the formulas are derived to perform a least-squares adjustment with a
singular, that is, a semidefinite positive, cofactor matrix using the model of condition
equations.

As described in appendix C.2, the observations in the model of observation equations
can be orthogonalised with matrices F and N, yielding y

1
and y2. The BLUE of an

estimable linear function of the parameters x is found by solving (C.9) for x, while
minimising (Rao and Mitra, 1971, p. 149)

(y
1
− FT A x)T (y

1
− FT A x) =

= (y − a0 − A x)T Q−y (y − a0 − A x) = (C.17)

= eT Q−y e,

under the restriction that NT A x = y2 and with Q−y any generalised inverse of Qy.
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Equation (C.1) gives the model of condition equations. From the preceding condition
for the BLUE of an estimable linear function of the parameters x, it follows that the
BLUE ê is obtained by minimising eTQ−y e under the restriction that (C.1) holds, that
is, BTe = t, and under the restriction e ∈ R(Qy). The solution can be found by using
Lagrange multipliers. The optimum e = ê of function Ω:

Ω = eTQ−y e− 2kT(BTe− t), (C.18)

is determined, under the restriction e ∈ R(Qy), and with k the so-called correlates.
Differentiating Ω relative to e, and equating the result to zero, we get:

2Q−y e− 2Bk = 0. (C.19)

Premultiplication with Qy and dividing by 2 gives:

QyQ−y e = QyBk (C.20)

Because e ∈ R(Qy), we can write (Rao and Mitra, 1971, Lemma 2.2.4):

QyQ−y e = e. (C.21)

And thus:
ê = QyBk̂. (C.22)

If we premultiply with BT and use the conditions BTê = t, we get the normal equations
of the model of condition equations:

BTQyB k̂ = t. (C.23)

The normal equations are identical to those used in case Qy is regular. Solving the
normal equations gives the least-squares solution k̂. The least-squares residuals are
determined with equation (C.22).

C.4 Generalised Likelihood Ratio Test

If Qy is regular, the test of Tq of equation (5.16) is a generalised likelihood ratio test
(Teunissen, 2006, p. 72ff). Therefore, if Qy is not regular, Qy is regularised (equation
(5.2), and the conditions under which equation (5.2) is valid). This is possible, if the
range space of A contains the nullspace of Qy. Tq is invariant for such a regularisation
(proven in appendix C.5). If we make λ of equation (5.2) smaller, Tq stays the same
and its test stays a generalised likelihood ratio test, and, therefore, also in the limit of
λ = 0.

C.5 Consequences of Cofactor Matrix Amplification

The estimated residuals ê and their cofactor matrix Qê are invariant for the amplification
of the cofactor matrix in equation (5.2). It can be seen by using the model of condition
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equations. This model gives identical results as the model of observation equations.
Insert Qy in its equation according to the model of condition equations:

ê = Qy B (BT Qy B)−1t. (C.24)

The matrix Qy appears in this equation only in the combination Qy B, for which we can
write, taking into account that ATB = 0 (eq. (C.1)):

Qy B = (Qy + λAAT)B =

= Qy B + λA AT B︸ ︷︷ ︸
=0

= (C.25)

= Qy B.

From this, it follows that ê and, therefore, also ŷ are the same, using Qy or Qy. In
addition, the cofactor matrix Qê is unchanged by the amplification. It can be seen from
the equation of Qê:

Qê = Qy B (BT Qy B)−1 (Qy B)T, (C.26)

in which again Qy only appears in the combination (Qy B).

Also r̂ and Qr̂ are invariant for the amplification. Their equations are the same, except
for the leading Qy.

Qx̂ and Qŷ are not unaffected by the amplification of Qy. To determine Qŷ, the fact is
used that Qê is unaffected by the amplification:

Qŷ = Qy −Qê =

= Qy + λAAT − λAAT −Qê = (C.27)

= Qy −Qê − λAAT =

= Qŷ − λAAT.

The cofactor matrix Qx̂ can be computed from the amplified Qx̂. To see this, Qŷ is
written as:

Qŷ = Qŷ − λAAT =

= AQx̂ AT − λAAT = (C.28)

= A (Qx̂ − λI)AT,

with I being the unit matrix. From this, it follows that Qx̂ can be determined from

Qx̂ = Qx̂ − λI. (C.29)

C.6 Indicator matrices

In this appendix a comprehensive treatment of the indicator matrix is given for each of
the methods to compute the reciprocal residuals.
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Let the constraints be formulated as Sx = s with S the constraints matrix and s a vector
of constants. Using the computation method “Reduction after orthogonalisation”, S and
s follow from the orthogonalisation (see appendix C.2). It is clear that the constraints
matrix S has full rank, if the constraints are independent.

From the orthogonalisation, it is also clear that the rank defect of Qy is equal to the
number of constraints between the parameters (number of rows of S).

Let us take the model of condition equations. In the derivations of computation methods
in this chapter, the assumption was thatQt is nonsingular (see text after equation (C.3)).
This means that the conditions are independent. Because this model has translated the
constraints on the parameters into conditions between the observations, it means that
the constraints are independent.

The next method is the method that uses the regularised cofactor matrix.
If Qt = BTQyB has full rank, BTQy must have full rank. To achieve this the direct
sum of the range space of Qy and the null space of BT must fill the whole space Rm.
The null space of BT is, however, the range space of A. From this, it follows that the
null space of Qy must be filled by the range space of A. This is the restriction we met
in the method with a regularised cofactor matrix for the invertibility of the amplified
cofactor matrix Qy. Therefore, if the constraints are independent, Qy has full rank.

This is the same restriction we find in the Pandora box method. Hence, if the constraints
are independent, and if coefficient matrix A fulfils the restrictions mentioned after
equation (5.20) for the Pandora box method, Pandora box matrix P has full rank.

In the method “Almost zero”, no constraints are present because they have received
small standard deviations and have, therefore, become stochastic observations.
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D.1 Overview: adjustment

Model (6.1) has a rank deficient (singular) covariance matrix. It may have a rank
deficient coefficient matrix, and therefore, elements in the parameter vector x may not
be estimable. Let pTx be any unbiasedly estimable (u.e.) linear function of x under
model (6.1), cf. (Rao and Mitra, 1971, p. 137). We mention below three methods to
compute a best linear unbiased estimator (BLU-estimator) of pTx. This estimator is
also the least-squares estimator. It yields BLU-estimators for the adjusted observations
(which are u.e. functions of x) and also for those elements of x that are u.e. themselves.

The first method transforms model (6.1) into a model with full rank and a regular
covariance matrix (Rao and Mitra, 1971, pp. 149, 144). In a first step the observations
are orthogonalised relative to the covariance matrix. The result is a subvector of obser-
vations with a scaled unit matrix as covariance matrix, and a subvector of nonstochastic
observations. The latter are considered constraints!on parameters, which implies that a
model with less parameters is possible. In a second step such a model is derived. The
result is a model with full rank and a regular covariance matrix, and no constraints.

The second method uses the fact that the BLU-estimator in model (6.1) for pTx is given
by a minimum Qy-norm solution of ATf = p as (Rao and Mitra, 1971, equation (7.4.2)):

fTy = pT[(AT)−n(Qy)]
Ty. (D.1)

where (AT)−n(Qy) is a minimum Qy-norm generalised inverse (g-inverse) of AT. Expres-
sions to compute this g-inverse are given in (Rao and Mitra, 1971, p. 148) and (Rao,
1971).

The third method is closely related to the use of a minimum Qy-norm g-inverse. This
g-inverse is, in fact, a solution of an extended system of normal equations, in which
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Lagrange multipliers are used (Rao and Mitra, 1971, eq. 7.4.101). So formulating this
system and solving it numerically, provides the desired solution of x.

Model (6.1) is often formulated after linearisation. In that case iteration is needed to
arrive at its solution.

D.2 Overview: testing

To test a model of observation equations like model (6.1), a null hypothesis H0 and an
alternative model Ha are formulated:

H0 : y = Ax + e, (D.2)

Ha : y = Ax + C∇+ e, (D.3)

with C a known (m×q)-coefficient matrix, and an unknown q-vector∇. The product C∇
describes the bias in the functional model. Both hypotheses have the same stochastic
model.

The null hypothesis is tested against the alternative hypothesis with test statistic Tq. If
Qy is an invertible matrix, Tq is (Teunissen, 2006, p. 78):

Tq =
1

σ2
êTQ−1

y C(CTQ−1
y QêQ−1

y C)−1CTQ−1
y ê. (D.4)

Tq is the square of the norm of the difference between the vector of adjusted observations
under H0 and the same vector under Ha. The norm is determined by the metric of the
vector space, which is defined by Q−1

y (Teunissen, 2006, p. 85).

Let the reciprocal residuals r̂ be defined by r̂ = Q−1
y ê, if Qy is not singular. Let their

cofactor matrix be called Qr̂. Equation (D.4) becomes:

Tq =
1

σ2
r̂TC(CTQr̂C)−1CT r̂. (D.5)

Deformation analysis model (6.1) has a singular cofactor matrix Qy. Therefore, we need
another, more general, definition of the reciprocal residuals. For this, we switch to the
model of condition equations. It is defined as:

BTy = t; E{t} = 0,with BTA = 0. (D.6)

Matrix B is the (m × b) - coefficient matrix. t is the b-vector of misclosures. b =
m−n is the number of conditions. The model gives the same least-squares solution
as model (D.2). Its solution, using a positive semidefinite Qy, is given by solving the
normal equations. They have the same form as when using a positive definite (regular)
Qy. The parameters to be solved are the correlates k. They are used to define more
generally the reciprocal residuals r̂:

1The equation contains an error: the first S should be S−.
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BTQyB k̂ = t normal equations, (D.7)

r̂ = Bk̂ reciprocal residuals, (D.8)
ê = Qyr̂ least-squares residuals, (D.9)
Qê = QyQr̂Qy cofactor matrix of ê. (D.10)

It is assumed that (BTQyB) is invertible (which implies that the conditions are linearly
independent), but Qy can be singular. The reciprocal residuals and their cofactor matrix
are:

r̂ = B(BTQyB)−1t; Qr̂ = B(BTQyB)−1BT. (D.11)

Test statistic Tq is computed with equation (D.5).

To switch from model (D.2) to (D.6) B is computed as a base matrix of the nullspace of
AT. It means solving the equation ATB = 0 for B, e.g. by singular value decomposition.

The probability density function of Tq is a χ2-distribution, with E{Tq} = q. After
choosing a significance level α, the critical value is computed, and it is determined,
whether the critical value is exceeded by the computed value of Tq. In that case the
null hypothesis is rejected.

D.2.1 Overall model test

Testing the adjustment results begins with the overall model test (Velsink, 2015b). It
uses the reciprocal residuals r̂ of equation (D.11) and the test statistic of equation (D.5)
with q=m–n (m is the number of observation, n the number of parameters):

Tm−n =
1

σ2
r̂T Qy r̂. (D.12)

The test statistic is χ2-distributed and its critical value is computed with the B-method
of testing, after choosing the one-dimensional test significance level (often 0.1%) and
the power (often 80%). The significance level of the (m − n)-dimensional test is then
derived.

D.2.2 w-tests

If the overall model test doesn’t lead to rejection of the adjustment model (the null
hypothesis), more specific tests are not needed, if the B-method of testing is used. The
B-method of testing uses the principle that if a hypothetical reference bias is present,
the overall model will find it with the same statistical power as more specific tests,
that have a smaller degree of freedom q (Baarda, 1968b, p. 33). A more specific test
can be the one-dimensional test that the alternative hypothesis has only one additional
parameter ∇ that affects only one observation (conventional w-test (Baarda, 1968b,
p. 15)). As reference bias in general the minimal detectable bias of the conventional
w-test is taken.
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If the overall model test leads to rejection of the null hypothesis, more specific alter-
native hypotheses are formulated by specifying matrix C in equation (D.3). For the
conventional w-tests we have C =

(
0, ... , 0, 1, 0, ... , 0

)T.

D.2.3 Tests of specific deformation hypotheses

In deformation analysis one may expect certain deformations of subsets of points, like the
gradual subsidence of a few points in the course of several epochs, or the temperature
induced fluctuation of other points. Such expectations may be tested by formulating
alternative hypotheses, using appropriate matrices C. Examples are given in section 6.4.

D.3 S-transformation invariance

In this section it is shown that test statistic Tq and the m.d.b.’s are S-transformation
invariant. Use the following definitions:

y
a

=

(
y

s
zd

)
; Aa =

(
As 0
Zd Z∇

)
; ea =

(
es
0

)
; (D.13)

G =
(
Zg 0

)
, (D.14)

to write model (6.1) as: (
y

a
zg

)
=

(
Aa
G

)
x +

(
ea
0

)
, (D.15)

The S-system is defined by the second row: zg = Gx. It solves the rank deficiency of
Aa. If N is a (n× (n− nG)) base matrix of the null space of G, we can write (Rao and
Mitra, 1971, p. 24):

x = G−zg + Nλ. (D.16)

λ is a vector of (n-nG) parameters and G− any generalised inverse of G (i.e. it is defined
by: GG−G = G). We can insert equation (D.16) into model (D.15). For zg we get

zg = GG−zg + GNλ = zg + 0λ, (D.17)

which is valid for any λ. It can be left out of the model. Model (D.15) becomes
therefore:

y
a
− AaG−zg = AaNλ+ ea, (D.18)

Because G solves the rank deficiency of Aa, the product AaN has full rank. The
parameters λ are solved from equation (D.18) by least-squares. Then they are inserted
into (D.16) to get the estimated parameters x̂, relative to the S-basis, defined by the
equation zg = Gx.

Let the range space of any matrix U be written as R(U). Then R(AaN) = R(Aa),
because rank(AaN) = rank(Aa).

If we switch to another S-basis, we have another zg, G and N. We have, however:

R(AaN) = R(AaN) = R(Aa). (D.19)



D.3. S-transformation invariance 213

Let us switch to model (D.6), the model of condition equations. We have, with ⊕
indicating the direct sum of two vector spaces, and Rma the ma-dimensional Euclidian
space, where ma is the number of elements in y

a
:

R(B)⊕R(Aa) = Rma . (D.20)

Because of (D.19) we have

BTAaN = BTAaN = 0; (D.21)

R(B)⊕R(AaN) = R(B)⊕R(AaN) = Rma . (D.22)

So, if we use equation (D.18) using N, and premultiply it with BT; or we use the same
equation (D.18), but with another N, and premultiply it again with BT, we get the
same model:

BTy
a

= BTea, E{BTea} = 0. (D.23)

This is a complete model to use for adjustment, irrespective of the choise of N, i.e.
irrespective of the S-system. Therefore r̂a and Qr̂a are S-transformation invariant. Then
also test statistic Tq and the m.d.b.’s are S-transformation invariant, as long as matrix C
contains zeros for the rows that pertain to S-basis elements (i.e. as long as the S-basis
elements are not tested, which would be, by the way, meaningless).
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adjustment
constrained, 85
with rank deficiency, 101

adjustment model, 19, 127, 154
almost zero, 108, 110
condition equations, 38, 106, 110
condition equations with singular

covariance matrix, 205
Gauss-Markov model, 38
linearised, 51, 82, 158
nonlinear, 79
observation equations, 38
observation equations of alterna-

tive hypothesis, 105, 109
observation equations with singu-

lar covariance matrix, 39
Pandora box, 106, 109
reduced, 52, 83
reduction after orthogonalisation,

107, 110, 204
regularised cofactor matrix, 107,

110
affine transformation, see transforma-

tion
Akaike information criterion, 43, 120,

135
Akaike, corrected, 120

alternative hypothesis, see hypothesis
amplification, 39, 102, 108, 206
amplified cofactor matrix, 39, 102
analysis method

conventional, 49, 123, 150
approximate values, 89, 195

B-method, 66, 135, 211
combined with test ratio, 43, 65,

111, 112
backward search, 42, 49

barycentric coordinates, 92
best linear unbiased estimator

methods to compute, 209

C-matrix, see specification matrix
categories of persons involved in defor-

mation analysis, 24
cofactor matrix

amplified, 39, 102
singular, 54, 85, 102, 151, 152,

161, 209
collocation, 131
communication, 13, 23, 44
confidence ellipsoids, 72
congruence transformation, see trans-

formation
congruent, 27
consistent hypothesis, 103
constraints, 13

hard, 130
independent, 108
minimal, 130
on affine transformation, 88
on parameters, 37, 124, 209
redundant, 130
relaxation, 131
soft, 130
to describe deformation, 125
weighted, 130

constraints matrix, 204
control points, 7
coordinates model, 14, 26, 33
correlates, 206, 210
covariance matrix, see cofactor matrix

data snooping, 42, 60, 133
point data snooping, 64

data snooping strategy, 64
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datum
defined by stable points, 54
geodetic, 48, 133

de facto standard, see standard
deformation

estimated deformation, 61, 136, 152
deformation pattern, 154, 156
deformation testing, 162
Delft school of geodesy, 8, 38
design stage, 18
dimensionless quantities, 94
direct isometry, 27
direct solutions for 3D transformation,

80
discretisation, 18
domains of activity, 47, 187
driving forces, 34, 124
dual model, 19, 38

Elements (book of Euclid), 27
elements (model elements), 17, 21, 24
elimination of parameters, 86
epoch, 2

reference epoch, 151
estimate of bias, 197, 203
Euclid, 27
Euler angles, 81

form and size, 13, 25, 154
form element, 27
form quantity

1D, 30
2D, 28
3D, 29

forward search, 42, 49
free network, 154
free variates, 53, 93
Frobenius norm, 5, 91

g-inverse, see generalised inverse
minimum Qy-norm g-inverse, 101,

209
Gauss, Carl Friedrich, 38
Gauss-Markov model, see adjustment

model
generalised inverse, 101
generalised likelihood ratio test, 206
geo-objects, 18

gimbal lock, 15, 81

Hanover school, 8, 11
height difference ratio, 30
Helmert transformation, 80
heuristic, 34, 42, 124
hypothesis

consistent, 103
nontestable, 103
search for best hypothesis, 13, 43,

67, 73, 119, 123, 134
search points one-by-one, 49
test strategy, 65

identifiable, 4
implementation stage, 19
indicator matrix, 108, 207
industrial guidelines mining industry, 189
information criterion, 43, 124, 135

Akaike, 43, 120, 135
Akaike, corrected, 120

invariance
S-system, see S-system
under regularisation, 59

invariant quantities, 94
iteration, 91, 158, 161

key performance indicators, 45
Kriging, 131

Lagrange multipliers, 86, 130, 210
least squares, 19, 84, 196
Legendre, Adrien Marie, 38
length ratio, 27

Maps4Society, 185
MDB, 35
measurements model, 13, 25, 32
minimal detectable bias, 11, 35, 112,

131, 133
reference minimal detectable bias,
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minimal detectable deformation, 37, 45,
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model elements, 17, 21, 24
model identification, 134
model selection problem, 43
multidimensional test, 61, 112
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multiple testing problem, 42

noise, 8
nonstochastic observations, 16, 35, 39,

124, 128, 152
advantage, 100, 152
discussion, 131
test methods, 161

nontestable hypothesis, 103
nuisance parameters, 128
null hypothesis, see hypothesis

object point, 7, 71
Occam’s razor, 36, 135
operational demands, 22
orientation relative to reference system,

151
orthogonalisation, 107, 204, 209
overall model test, 20, 60, 111, 132,

197, 211

Π-quantity, 27
P-quantity, 29
Pandora box, 106, 109
parsimony, law of, 36
physical model, 13, 34, 126, 128

simplest, 128
point data snooping, 64
point field, geodetic, 5, 19
point test, 60
Popper, 5, 36, 135
position relative to reference system,

151
positive semidefinite, 85
principal property (Tienstra), 25
product specifications (Rijkswaterstaat),

187
professional practice, 9

rank deficient coefficient matrix, 209
rank deficient model matrix, 33
realisation stage, 21
reciprocal residual, 41, 57, 95, 105, 196,

210
reference frame, 7
reference points, 7, 35, 71, 151, 191
reference system, 7
regularisation, 54, 85, 107

research question, 12
rigid body transformation, 27

S-basis, 32, 156
S-basis invariance, see S-system
S-system, 6, 7, 31, 48, 133

fixing, 32
fixing within one epoch, 133
invariance, 57, 133, 146, 163, 212

S-transformation, 48, 72
S-transformation invariance, see S-system
sensitivity, 133
sharpness, 94
signal, 8
signal processing, 123
similar, 27
similarity transformation, see transfor-

mation
simplest deformation description, 131
singular value decomposition, 90, 158
size element, 27
software, 193
specification matrix, 20, 56, 162, 210

examples, 56
inside or outside, 131, 154

specification of deformation, 55
spreadsheet, 188
stability, 4, 146, 154

search for unstable points, 8
stable through all epochs, 124

standardisation, 13, 23, 44
statistically significant deformation, 44
switch from A- to B-model, 211

test matrix, see specification matrix
test quality description, 37, 133
test ratio, see B-method
test statistic, 162, 197, 210
testing

alternative against null hypothe-
sis, 56

data snooping strategy, 64
multidimensional, 61, 112
of deformation hypotheses, 36
procedure of Baarda, 111

time series, 8, 13, 24, 34, 127
transformation

affine, 80, 86, 156
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approximate, 157
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Helmert, 80
implicit, 72, 94
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trend, 8

valid model, 5, 135

w-test, 60, 111, 197, 211
conventional, 111, 132, 211
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