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Chapter 1

INTRODUCTION

The present investigation of high-supersonic and hypersonic flows around (blunt) bodies at large an-
gle of attack has been initiated by the development of re-entry spacecraft (Space Shuttle, Hermes)
and advanced launchers. In general the flow at these conditions is characterized by several phenom-
ena, such as the presence of a bow shock, embedded shocks, regions of separated and vortical flow,
shock-boundary layer and shock-shock interactions and high heating rates near discontinuities at the
model surface, such as cockpit-body and wing-body junctions. The prediction of the complex three-
dimensional flow field provides a challenging task for numerical methods. In order to validate such
computer codes, experimental data of good quality are a prerequisite. For validation of the codes it is
satisfactory to study simple configurations, with which interesting flow phenomena can be generated.

Realistic hypersonic flow conditions during re-entry are difficult to simulate in a wind tunnel and
require special facilities. Many flow phenomena, such as separation and vortex formation, shock-
boundary layer interactions and shock-shock interactions, already appear at high supersonic Mach
numbers (3—4). These flow conditions can be realized in standard facilities, for which a variety of
measuring techniques is available. In view of these considerations an experimental program on a sim-
ple test configuration has been started at the High Speed Aerodynamics Laboratory of the Faculty
of Aerospace Engineering. Several wind tunnel tests have been performed on a hemispherical-nose-
cylinder with a 30° conical afterbody. Although a simple geometry was selected, several interesting
flow phenomena were observed. The leeward flow field at medium to high angle of attack is domi-
nated by large separated regions, vortical flow and embedded shocks. The windward flow field is less
complicated, but at large angles of attack an interesting shock-shock interaction exists, which influ-
ences the surface flow. The model has been investigated in the high-supersonic flow regime (Mach
number 3 up to 4) and angles of attack up to 20°. Under these flow conditions the assumption of a
perfect gas is still valid. The purpose of this investigation was to provide aerodynamic data of good
quality and high resolution in order to validate computer codes.

Besides the experimental program, a number of numerical simulations with a three-dimensional Euler
code have been performed. Within this investigation, emphasis was put on the simulation of inviscid
flow phenomena, like the capturing of the bow shock and the flare shock and their interaction at high
angles of attack.

The work described in this report has been sponsored by the European Space Research and Technology
Centre (ESTEC, Noordwijk, the Netherlands) under Purchase Order number 141125 (date: 28-03-
1994). The study was monitored by J. Muylaert, Aerothermodynamics section (YPA) of ESTEC.




Chapter 2

EXPERIMENTS

2.1 Experimental equipment and conventional techniques

The major part of the experiments are performed in the TST-27 wind tunnel of the High Speed Aero-
dynamics Laboratory. This is a blow-down wind tunnel with a test-section of 27 x 28 cm? (height
x width), which can be operated in the Mach number range M, = 0.5 — 4. Interferometric exper-
iments are performed in the ST-15 supersonic blow-down wind tunnel, which has a test-section of
15 x 15 cm?. This wind tunnel is equipped with a fixed nozzle, generating a Mach number of 2.95
in the test-section.

The model 1s axi-symmetric, consisting of a cylinder with a hemispherical head, a conical flare with
an angle of 30° and a cylindrical tail. The coordinate system used and the dimensions of the model
are given in Fig. 2.1; the dimensions of the model used in the smaller ST-15 wind tunnel are given

between brackets. For the tests in the TST-27 wind tunnel two models were made. A solid black-
Z

Sideview Frontview

z 30’

_ /Qﬂsm . Ly

60 (28)

99 (46.2) 75 (35)

127 (59.5) dimensions in mm (interferometry)

Figure 2.1: Geometry of test configuration

painted model was used for several experiments, including: qualitative flow visualization as obtained
from shadowgraph- and Schlieren techniques, surface oil-flow visualizations and flow field explo-
rations with a five-hole probe (Lusse 1992). Another model was used for measuring the surface pres-
sure distribution (Reginato 1993). This model was equipped with 75 pressure orifices, located at three
generators with a 10° spacing (Fig. 2.2). At the rear of the model screw holes allow roll angles with a
360° range and a 5° stepsize, which enables the determination of a pressure distribution over the en-
tire model with a high resolution. The location of pressure orifices is concentrated in regions where
a complex (separated) flow was expected, i.e. the region where the hemispherical head changes into
the cylindrical part and the region near the conical wedge.

The tests are performed at Mach numbers M, of 3, 3.5 and 4, and angles of attack o from 0° to 20°.
The Reynolds number based on 2 model-length of 127 mm ranges from 6 x 10° to 7.6 x 10°. Part of the
results (surface pressures and shadowgraph pictures) is available on demand for validation purposes.

[\




2.2 Digital Holographic Interferometry 3
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Figure 2.2: Location of pressure orifices on test configuration

2.2 Digital Holographic Interferometry

Digital Holographic Interferometry (DHI) is applied to obtain quantitative information about the den-
sity distribution in the flow field. In the dual-reference-beam, plane-wave DHI set-up used here,
holographic interferometry for recording of a flow field in an interferogram is combined with phase-
stepping of this interferogram and digital image-processing to compute the phase map from these di gi-
tised interferograms (Lanen et al. 1992; Lanen 1992). This phase map represents the deformation of
the wavefront of the light beam which has traversed the flow field and from it the mean density in the
flow field can be calculated. As the results only contain the density integrated along the light paths,
quantitative interpretation for 3-D flows is not as direct as in the case of 2-D flows. Main advantage
of this optical technique is that a large part of the flow field can be measured at one instant with a
high resolution of data and without disturbance of the flow.

The flow field was recorded with the plane-wave holographic interferometer set-up shown in Fig. 2.3.
A ruby pulse laser was used to expose the holographic plate, thereby freezing the flow-field image.
The pulse length used here is 0.5 msec, resuiting in a limited sensitivity to unsteady flow phenomena.
In the post-processing phase the plate is illuminated with a (continuous) CW HeNe laser and four
phase-stepped interferograms are generated, which are digitally stored and processed. From these four
interferograms a 2-D phase image (512 x 512 pixels, representing a region of 75 x 75 mm? in the
flow) is obtained, which contains information about the flow-field density averaged over the light path
(tunnel width). The use of two reference paths makes it possible to store two different flow situations
on the same holographic plate in such a way that they can be reconstructed separately.

The interferometer set-up is placed over the test section of the wind tunnel. Optical access is provided

I

TR




4 EXPERIMENTS

M1 PULSED RUBY LASER
CW HeNe LASER

oc | D/A L |
AMPURER CONVERTER

COMPUTER

| FRAME ]
CRERA GRABBER

Figure 2.3: Two-reference-beam, plane-wave holographic interferometer. BSP: 50/50 beamsplit-
ter plate; H: holographic plate; L;,...,Ls, Lg: positive lens, Ly, L;: negative
lens; My, ..., My: 453°-incidence HEL-mirror; Mj. M-, Mg: mirror; Mg: 0°-incidence
HEL-mirror; PBSC: polarising beamsplitting cube; PZT: piezo-electric transducer;
R,.... ,R3: %/\-retardation plate; S: mechanical shutter; Wy, W5: test-section window;
SF': spatial filter

by (circular) windows in the tunnel side walls. The main flow direction is normal to the plane of
drawing. The model is placed in the middle of the test section. In the reconstruction stage the CCD-
camera is focussed at the symmetry plane of the flow, as for axi-symmetric flows this has been shown
to minimise refraction problems (Montgomery and Reuss 1982). Hence, the inverse Abel transform
can be used to compute the radial refractive index distribution from the interferometric data while
neglecting refractive distortion.

The wind tunnel is started with the model in the field of view. With mirror Mg unblocked the ruby
laser is fired once to record the “model flow”. Subsequently a recording of the “undisturbed flow”
is made, after having retracted the model, out of the field of view (Fig. 2.4), firing the laser for the
second time with Mg blocked and M7 unblocked. During the reconstruction phase, the object beam is
blocked, while both reference beams are recreated by unblocking M7 as well as Mg. The plane-wave
interferogram resulting from those two reconstructions can be subjected to phase-stepping by trans-
lating mirror M7, thus enabling an accurate automatic digital computation of the phase shift (Lanen
et al. 1992). The method measures the deformation of the wavefront of a (laser) light beam caused
by spatial density gradients in the flow field.

Quantitative deduction of the wave front distortion from interferograms requires application of the
phase stepping technique to generate at least three phase-stepped interferograms and the application
of digital image processing routines to compute the wave front deformation from these digitized inter-
ferograms. This procedure overcomes certain ambiguity problems, usually occuring when the evalu-
ation is based on the principle of fringe counting.

In the phase map modulo 27 resulting from phase stepping this “flow” hologram, horizontal
background fringes can be seen (Fig. 2.5.a). These result from the difference between the wave-
length at which the hologram is recorded (Arypy =693.4 nm) and that at which it is reconstructed
(AHene =632.8 nm). These background fringes can be removed in two ways. The first one makes
use of the fact that the fringe-effect caused by a difference in recording and reconstruction wavelength

T
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2.2 Digital Holographic Interferometry 5

Viewing Area

(a) Superimposed linear phase distribution, obtained (b) Reference fringes, obtained from reference holo-
from "flow™ hologram gram

Figure 2.5: Phase maps modulo 27 radians




6 EXPERIMENTS

is similar to that which occurs when the direction of the reconstruction beam differs from that in the
recording stage (Frangon 1974). Therefore, the background fringes can be eliminated by slightly
rotating mirror Mg, thereby producing an infinite fringe pattern. Phase-stepping and image processing
this interference pattern then directly gives the phase modulo 27. The second solution avoids chang-
ing anything to the set-up, by recording an additional hologram of which the reconstructed fringe
pattern will only contain the background fringes. This reference hologram is made by two exposures
in a no flow situation. By subtracting the phase maps of the reference hologram (Fig. 2.5.b) from the
flow hologram, the real phase map modulo 27 is obtained. This second method was used to obtain
the results presented in this report.

Figure 2.6: Phase map modulo 27 showing steady deviations from uniform supersonic flow

The phase map (Lanen 1992), which represents the deformation of the wave front of the light beam
traversing the flow field (scene beam), may be written as an integral of the refractive index n along
the light rays:

27
A.@'($>3)“—‘—/\— /ndiszds— / Nundistds 2.1)

ist undist

Here Ag denotes the phase difference between the undisturbed scene beam and the disturbed scene
beam, A the wavelength of the pulsed laser, ng;s; the refractive index in the disturbed flow field (flow
with model) and n,,4;,: the refractive index in the undisturbed flow field (flow without model). The
coordinate s is measured along the light rays and (z, z) represents the projection plane. The refractive
index m is linearly coupled to the density p via the relation:

=1+ Kp (2.2)

in which K is the Gladstone-Dale constant, which is a characteristic for the gas through which the
light passes. Using this relation, the phase map can be written as a function of the density p(z, ¥, z)
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in the flow field:
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To assess the quality of the free stream in the wind tunnel, Fig. 2.6 shows the phase map obtained by
comparing the undisturbed flow to the no flow situation. It shows an average phase gradient in the
flow direction of about one wavelength over 75 mm, which corresponds to a variation in density of
0.02 k°/m (i.e. 3% of the average po, corresponding to 1% change in M,). This agrees with earlier
pressure probe measurements (Bannink 1963) which showed a decrease in Mach number of 0.4/m in
the flow direction. Also, disturbance lines can be seen running at the Mach angle (o = 22°).




Chapter 3

NUMERICAL FLOW SIMULATIONS

3.1 Discretization of the Euler equations

Numerical simulations were performed using a code based on a cell-centred finite-volume discretiza-
tion of the three-dimensional Euler equations. The Euler equations, expressing conservation of mass,
momentum and energy for a compressible perfect gas, will be formulated in conservative form. In a
Cartesian coordinate system the Euler equations in a conservative differential form are given by:

oq  of(q) 3g(q)+8h(q)

=0 3.1
5t T or oy T e: (3-1)
where q is the vector of the conserved variables:
a=(p,pu, pv, pw,pes )" (3.2)
and f(q) , g(q) and h(q) are the flux vectors, given by:
f(a) = (pu,pu’+p,puwv,puw,puhy )’ ‘
g@ = (pv,puv,pv®+p,pvw,pvh )" (3.3)
h(q) = (pw,puw,pvw,pw’ +p,pwhy)”

Here p is the density; u, v, w are the Cartesian velocity components in the z, y, = directions respec-
tively; p is the static pressure; e; is the total energy per unit of mass given by e¢; = e+ % (u?+v24+w?),
in which e is the internal energy per unit of mass; A, is the total enthalpy given by h; = e; +p/p. For
a calorically perfect gas the equation of state may be expressed as:

p=(7—1)pe (3.4)
in which the ratio of specific heats v = ¢, /c, is considered constant (v = 1.4). These equations fully
describe the three-dimensional inviscid perfect gas flow.

Solutions of the Euler equations in general may contain discontinuities (shock waves, shear layers).
Since the differential form expressed by Eq. (3.1) is not valid at these discontinuities, the equations
are written in an integral form, in which discontinuities are captured as "weak” solutions:

/// ?)_?dv'”“//(f(q)'nﬁg(q)'ny+h(q)-n:)d5=o 3.5)
v S

where n = (n,,ny,n:)7 with |n|= 1 is the outward unit normal vector on the boundary S of the
control volume V. Making use of the invariance of the Euler equations under rotation of the coordinate
system, equation Eq. (3.5) can be simplified with:

f(q) - nz: +g(q) - ny +h(q) n. =T ' f(Tq) (3.6)

|
|
i
t



3.1 Discretization of the Euler equations 9

where T is the rotation matrix, which transforms the momentum components of the state vector q to
anew Cartesian Z, g, Z coordinate system in which the Z-axis is aligned with the unit normal on the
control volume boundary.

A straightforward and simple discretization of Eq. (3.5) with the substitution of Eq. (3.6) for a subdi-
vision of the control volume V into disjunct cells V5. (finite volumes) is:

. 0qz
AN Jk + Zka m ¥ (Tijem Qiji,m ) A Sijem =0 (3.7

where AV;;. is the volume of cell Vjj, q ;i is the mean value of q over Vi;k and is collocated at
the centre of the finite volume. The second part of the equation is the summation of the total fluxes
normal to the surface AS;;;. -, of the Ny cell faces of Vijk- This total flux is assumed to be constant
over the cell face. For practical reasons (simple implementation) a structured grid with hexahedral
cells is used, where Viyy;i, Vij11x and V4 are the neighbouring cells of Vijx- The flux vectors
Tz;le £ (Tijk,m Qijk.m ) in Eq. (3.7) have to be calculated by some numerical flux function. For
the calculation of the numerical flux some functions belonging to the family of upwind schemes are
used. Three different types of schemes have been implemented in the code: the flux-vector-splitting
scheme of van Leer (1982) and flux-difference-splitting schemes of Osher (1982) and Roe (1981).
The computations presented in the present report have been obtained with the Osher scheme. In this

scheme the numerical flux function for the interface S;_ 1 jx Mmay be written in the form:
2

-1 _ - R
Ti+%jkf(Ti+%ikqi+%ik) = fipin = T vrr (T aliy s Ty ey )

3.8)

where q£ and q . are the states at either side of the cell interface, obtained from an interpola-

+ 7k
tion between some states qzjk in the centres of the finite volumes. For example, in a spatlally first order

accurate system, the states are assumed to be constant within each volume, so we get q = Qjik

+3 3k
and qH, 1k = Gitlse

First order accuracy, however, is too low for practical applications and discontinuities not aligned with
the grid are smeared out disastrously. As has been noted by van Leer (1977) the order of accuracy
can be improved by using a more accurate interpolation to calculate the different components q of the
state vectors q at both sides of a cell face. In order to avoid spurious non-monotonicity (wiggles or
over- and undershoots), the interpolation has to be limited, which has the properties of second order
accuracy in the smooth part of the flow field and steepening of discontinuities without introducing
non-monotonicity. For the present calculations the MinMod limiter function is used, which had been
chosen for reasons of efficiency. The interpolation formulae for the MinMod limiter are:

qiL+%jk =gijr+ {1 +K)A; +(1 - K)V;}
qi]i%jk =gk — 3 {(L = 8)Ai + (1 + 1)V}
where
A; = MinMod(A;,V;) ; V; = MinMod(V;, A;) (3.9)
and the MinMod-function is given by:

MinMod(z, y) = sign(z) - max[0, min(z - sign(y) ,y - sign(z)))] (3.10)
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3.2 Solution procedure

The system of nonlinear discretized equations is solved by means of a multigrid technique. Although
not well-established for hyperbolic differential equations, the multigrid technique has been applied
successfully to the Euler equations (Anderson et al. 1988; Spekreijse 1987; Hemker and Koren 1995).
The advantage of a multigrid solution method is that (at least for the first-order discretized Euler equa-
tions) a convergence rate is achieved, which is independent of the mesh size at quite general circum-
stances.

Consider the first- or second order accurate discretization of the Euler equations given by equation
Eq. (3.7) to be written as:
. 0

Avm____;l;n + Fn(am) =0 (.11
where F, is the spatial discretization operator at gridlevel m. A nested sequence of finite volume
grids Vp,, (m = 1, ..., n) is developed, with corresponding mesh sizes h; > hs > ... > h,,. Hence ;
is the coarsest grid and V,, is the finest grid. The grids have a regular structure for reasons of simple
implementation. Each finite volume on a given grid is the union of eight volumes on the next finer
grid by skipping every other point in each direction on the finer grid.

The solution of the discretized equations is achieved by a Nonlinear MultiGrid method (NMG), also
known as Full Approximation Scheme (FAS). In order to start with a good initialization, the NMG
is preceded by a nested iteration. The nested iteration starts at the coarsest grid with an initial qyy;
m = 1. The approximate solution q,, is improved by a single NMG-cycle. The approximate solution
Qm+1 On the next finer grid is obtained by a prolongation of the approximate solution q.,; this is
achieved by a trilinear interpolation.

Within the multigrid method, the solution at the different grid levels is smoothed by a relaxation
method. Relaxation methods have very good stability and (error) smoothing properties, and although
the computational costs per iteration are higher, the overall performance may defeat an explicit time-
integration method.

The smoothing procedure used here is based on an implicit time integration method. For the system
of equations Eq. (3.11) a backward time-integration method can be written as:

Aqft!
AV; AJt = -F(q*) (3.12)

n+l

where F (q;’+1 ) denotes the spatial discretization evaluated at time level n+1, and Aq**! = q ;
q;'. Because Eq. (3.12) is a system of non-linear equations, this cannot be solved directly. Therefore
a Newton linearization is used, which can be written as:

n+ n (9.7‘- " n ~
F(q] '1):]-'(q] )'l' [E]AQJ-’-I (.‘)]3)
7

OF
Substitution of Eq. (3.13) into Eq. (3.12) with H = [E} gives:
AV; e n
T —HLA%“ = -7(q}") (3.14)
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For the limit At — oo Newton’s root finding method is obtained, which should theoretically lead
to quadratic convergence if the Jacobian matrix H is evaluated correctly. The system Eq. (3.14) rep-
resents a large banded block matrix, whose bandwidth is dependent on the order of accuracy of the
spatial discretization and on the dimensions of the grid. Especially for the three-dimensional second-
order discretized equations the bandwidth is very large. The construction of this matrix and solving
the system requires an enormous amount of memory and CPU-time, which goes far beyond the ca-
pacities of most computers. Rather than solving Eq. (3.14) directly, a number of strategies have been
developed in order to reduce the computational work, but maintaining a high convergence rate as far
as possible. When second order accurate steady solutions are required, it is common practice to re-
place the true Jacobian matrix H in the left hand side of Eq. (3.14) by a much simpler matrix !
based on the first-order accurate equations. For steady flows this has no effect on the accuracy of the
right hand side discretization. The matrix for a three-dimensional first-order system is a septadiago-
nal block matrix, where the blocks itself are 5 x 5-matrices. However, certainly for three-dimensional
problems this system is still too large to solve directly, so most implicit methods use iterative methods.
In this report a Collective point Gauss-Seidel relaxation method has been used, with an ordering of
the relaxation sweeps along diagonal planes in order to achieve some level of vectorization.

3.3 Computational grid

A view of the grid is given in Fig. 3.1, where the grid on the surface of the model, in the symmetry
plane and in the outflow plane is shown. The majority of the computations is performed on a grid
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Figure 3.1: Three-dimensional view on grid; 64 x 48 x 32 cells

with 64 cells in the direction of the rotation axis, 48 cells in the circumferential direction and 32 cells
in the direction normal to the surface. The grid is constructed with an elliptic grid generator based on
the Poisson equation, which uses an initial solution obtained by a 3D transfinite interpolation.
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12 NUMERICAL FLOW SIMULATIONS

3.4 Numerical simulation of Interferometry

Since the experimental DHI technique delivers an integrated density, which is not a direct output of
the numerical simulation, it is necessary to post-process the numerical results, in order to be able to
compare experimental and numerical results. The computation of the numerical phase map is based
on Eq. (2.3), which will be evaluated for a number of lines equal to the number of pixels in the exper-
imental phase map. This procedure makes a direct comparison between experimental and numerical
results possible. Comparison of experimental and calculated phase maps serves a two-fold purpose.
In addition to the validation of the calculations it can assist in the interpretation of the experimental
data.

The parameters needed for computing the phase map from the 3-D density field around the body,
o(z, vy, z), are the Gladstone-Dale constant for air, K (0.2251 x 1072 m®/kg), the wavelength of the
laser, A (693.4 x 107°m) and the free stream density, po, (0.70kg/m3).

The evaluation of the integral Eq. (2.3) should be performed along the actual light paths. The actual
light path is bent due to refractive-index gradients. Formally this path through the flow field should
be traced, and the refractive index gradient (or density gradient) should be integrated along this path,
but this is a computationally very expensive procedure. The computational complexity can be reduced
considerably by approximating the light path by a straight line perpendicular to the image plane (along
the y-axis).

In order to evaluate integrals along straight lines through a discrete field, an algorithm has been writ-
ten which calculates the values of the appropriate integrand at certain points, after which the inte-
gration is performed according the trapezoidal rule. This process is schematically shown in Fig. 3.2,
The Euler code described above uses a grid with hexahedral cells. For the interpolation procedure,

1-8: Data points in Euler solution

Figure 3.2: Schematic View of Integration Process

each computational cell is subdivided into five tetrahedrals. The integration procedure follows a path
along subsequent triangular cell faces of the tetrahedrals. The intersection of the light path with the
triangular cell face is determined (points a, b and ¢ in Fig. 3.2) and the desired quantity is calculated
via a linear interpolation between the nodes of the triangular cell face. This cell-face to cell-face in-
terpolation algorithm makes the search algorithm much faster than an interpolation based on a fixed
interval spacing along the light paths. Furthermore the accuracy of the integration along the light ray
is automatically adjusted to the accuracy of the discrete Euler solution.




Chapter 4

RESULTS

Before discussing the interferometry- and computational results, some results of the qualitative flow
visualization tests will be presented, in order to highlight the global flow structure and some interesting
flow phenomena.

4.1 Visualization studies

In Fig. 4.1 the most significant shadowgraphs taken at a very short exposure (20 nanoseconds) are
given for flows at Mach numbers My, = 3 and 4 and angles of attack of 10°, 15° and 20°. These
pictures clearly show the bow shock and the flare shock, and their interaction at the windward side for
a =15° and o = 20°. The flow features drawing attention are the unsteady character of the leeside
flow, where the flow separation from the cylinder and attachment at the conical flare is coupled with
a number of weak shocks. Apparently we have to do with a transitional flow. This unsteadiness may
also be observed at the windward side for a certain combination of Mach number and angle of attack
as shown by the flare shock at the vertex of the flare. The unsteadiness is present at all angles of
attack at M = 3 and only at o = 20° at M, = 4. The flow separation at the leeward side may
be observed by means of the weak separation shock and the edge of the separated flow. The weak
separation shock is clearly present in all cases, except at Mo, = 4 and o = 20° and extends from the
separation point to the flare shock. The front part of the separation zone shows itself as a very thin
layer which suddenly dissolves more or less halfway the cylinder, indicating probably the transition
from laminar to turbulent flow. The shadowgraphs show a tendency that the transition region moves
upstream with increasing angle of attack.

The shock-shock interaction at the windward side moves upstream and closer to the surface with in-
creasing angle of attack and with increasing free-stream Mach number. At an angle of attack of 20°
and at Mo, = 4 and o = 15° the shock-shock interaction has an effect on the flare surface via an ad-
justment wave, originating from the interaction point. This adjustment wave is clearly visible in the
shadowgraphs. Interactions between two shocks can be classified into several types, depending on
the Mach number of the oncoming flow and the angles of the two impinging shocks (Edney 1968). A
type VlIinteraction (see Fig. 4.2.b) takes place when both shocks are sufficiently weak and of the same
family. This type of interaction produces a combined shock, a slip line and an adjustment wave ema-
nating from the shock intersection point. Depending on the geometrical configuration and free stream
Mach number the adjustment wave appears either as a compression shock or as an expansion fan. A
type V interaction (see Fig. 4.2.a) can occur when the flare shock is sufficiently strong. Here, the
interaction region is more complex and from it four different elements emanate: a curved combined
shock, an extra shock, a shear layer and a jet (a small layer containing compression and expansion
waves). The jet and the shear layer almost coincide.

A detail of the shock-shock interaction area at Mo, = 4 and o = 20° is shown in Fig. 4.3. This
interaction may be investigated by the use of Edney’s pressure flow deflection diagrams (Edney 1968),
which gives the pressure rise and flow deflection through one or more oblique shock waves. The
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Figure 4.2: Sketches of different shock-shock interactions (Edney 1968)

pressure-flow-deflection diagram for the case Mo, = 4 and o = 20° is shown in Fig. 4.4, which is
based on the measurement of the shock angles of the bow shock, the flare shock and the combined
shock near the interaction point. The static pressure p behind an oblique shock is plotted as a function
of the flow deflection ¢ through a shock, giving a heart-shaped curve. The shock-polar for the free-
stream Mach number, which is 3.96 in the present case, is shown, and other shock-polars are given
relative to the free-stream shock-polar. From the measured bow shock angle near the interaction, point
1 on the free-stream shock-polar can be found. At this point the deflection angle and static pressure
are defined behind the bow shock. Point 1 serves as a starting point for another curve, which is a
function of the Mach number and deflection angle behind the bow shock. In a similar way point 2,
which defines the flow deflection and static pressure behind the flare shock, can be found. Using the
angle of the combined shock, point 4 can be found on the free-stream shock-polar. The flow behind
this part of the shock appears to be subsonic. If it is assumed that no other waves depart from the
interaction point S, the pressures in the regions 3 and 4 should be equal. Since the pressure in region
2 1s lower than the pressure in region 4, a shock wave is needed between regions 2 and 3 in order
to establish the required pressure. This type of interaction was classified by Edney (Edney 1968) as
a type VI interaction. It must be emphasized that the flow-deflection diagram is only valid in the
interaction point, because of the three-dimensionality of the flow.

However, studying the detailed shadowgraph of the interaction Fig. 4.3, there may be some evidence
that the bow shock, the flare shock and the adjustment wave do not intersect in a single point, but in
two different points. The structure belonging to this type of interaction is the much more complex
type V interaction, which can not be analyzed using only the shadowgraph information, since starting
conditions at the flare shock are unknown. As can be seen in the sketch of this type of interaction
(Fig. 4.2.a) two adjustment waves start from the interaction region. These two waves, a shock wave
and an expansion wave are also visible in the shadowgraph picture. Furthermore, the appearance of a
weak adjustment shock and an expansion wave is supported by other experiments (oil-flow and surface
pressures), which will be presented further on.

The oil-flow visualization tests reveal a complex separation pattern at angles of attack above 3°. The
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Figure 4.3: Spark-shadowgraph of the shock-shock interaction, Mo, = 4, a = 20°
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Figure 4.4: Pressure-flow deflection diagram of shock-shock interaction at windward side;
My =4, a=20°
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oil-flow pictures at the leeward- and windward side for Mo, = 4 and o = 20° are given in Fig. 4.5
and Fig. 4.6 respectively. Based on the leeward oil-flow picture a proposition of the surface topology

Figure 4.5: Oil-flow visualization leeward side, Mo, = 4.04, o = 20°

is arranged (Bakker and Bannink 1992) in Fig. 4.7. A primary separation starts from a saddle point
(Ss) at the leeward side of the cylindrical part directly behind the hemisphere. This type of separa-

Figure 4.6: Oil-flow visualization windward side, M., = 4.04, a = 20°

tion is characteristic for hemispherical cylinders at large angle of attack. Pairs of saddles (Ss) and
foci (N;) signal the formation of vortices emerging from the body surface. At the windward side a
separation line is visible (Fig. 4.6) at the aft part of the cylinder. This separation is probably caused
by the existence of the flare shock. The separation lines at the windward and leeward side pass into
each other. On the flare cone a reattachment occurs on both sides. Downstream of this reattachment,
separation lines can be observed at the leeward side, which diverge at the cylindrical aft part.

The effect of the adjustment shock originating from the shock-shock interaction is visible as a dark line




18 RESULTS
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Figure 4.7: Proposition for leeward side surface topology, Mo, = 4, o = 20°

in the oil-flow pattern on the windward conical flare surface. This position coincides with intersection
of the adjustment shock and the surface as was observed in the shadowgraph Fig. 4.3.

4.2 Interferometry

Figures 4.8 (a) and (b) show the results of the interferometric experiments and the postprocessed nu-
merical calculations, respectively, for the axi-symmetric flow case (0° angle of attack). In the exper-
imental phase map modulo 27 the model has been depicted in black. It further contains some areas
(near the shock waves) where the fringes are so closely packed that no separate fringes can be dis-
cerned. These areas do not satisfy the sampling criterion (i.e. the minimum sampling frequency must
be higher than 2 pixels/fringe) required in order to remove the 27 discontinuities correctly from the
phase map modulo 27 (phase unwrapping), and therefore have to be circumvented in this process. In
pixels with a low value of the modulation intensity (this also follows from the phase-stepping pro-
cedure (Lanen et al. 1990)), the phase value is unreliable. Low modulation intensity areas can be
found in regions where light rays are blocked by the model and in regions of insufficient sampling
(high gradients, e.g. near shocks). Therefore the position of the model and the unreliable pixels can
be determined by thresholding the modulation intensity. By doing so a mask is obtained containing
the pixels that have to be circumvented in the phase unwrapping process. In the following interfero-
metric results the unreliable pixels will be depicted in black, not to be confused with the fringe pixels
with value 2ns, with n a natural number.

Direct comparison of measured and computed phase maps is inhibited by two error sources in the
experimental data: non-uniformities in the free stream and the presence of unreliable areas. From the
mask in Fig. 4.9 a it appears that not all pixels on the bow shock are unreliable. However, phase-
unwrapping attempts fail to pass the shock correctly. Therefore in all results presented here the phase
map modulo 27 will be shown instead of the continuous phase map. This means that the comparison
with numerical results can only reveal whether the behaviour of the flow inside the reliable areas is
the same for both techniques.
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(a) Experiment (b) Computation

Figure 4.8: Phase maps modulo 27, My, = 2.95, a = 0°

An example of a mask is given in Fig. 4.9 a for the zero angle of attack case. From the mask a strength-
ening of the flare shock can be seen which is caused by the impingement of the expansion fan from
the nose region due to the increase of local shock angle and Mach number. Between the nose and the
bow shock the phase map modulo 27 seems to give continuous fringes, but these have to be cancelled
because of unreliability.

Also the flare shocks and the shock-shock interaction area give no reliable results. An explanation for
this can be found in the numerical phase map: the gradient is very high in those areas, which results in
a very close spacing of the fringes, so that the limit of 2 pixels per fringe cannot be reached. This could
not be helped sufficiently by zooming in on these areas. Therefore, as little or no extra information
could be gained from zooming, all results are presented covering the same area: 75 x 75mm?. The
blurred regions at the cone surface might be due to unsteady flow phenomena, such as a turbulent
boundary layer.

Fig. 4.9 b shows a pixelwise comparison by subtracting the measured and the computed phase maps.
It can be seen that, apart from the shock areas, the results agree reasonably well. However, the dif-
ferential phase map shows substantial differences in the vicinity of the shock waves, especially at the
bow shock near the stagnation point and at the flare shock. The numerical phase map shows a more
gradual phase difference gradient at the shock than the experimental phase map. Also, the differential
phase map is seen to be slightly asymmetric. This is caused by the fact that the angle of incidence
was not exactly 0° (namely 0.45°) and by the non-uniformity of the free stream.

Differences between the numerical and experimental phase maps can also be expected in regions of
the flow field where viscous effects are present. For the axi-symmetric flow case these regions are
confined to the boundary layer, which influences the flare shock. The correspondence between the
shock locations is good. The results only differ at the foot of the flare shock. Due to the presence of a
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(a) Binary mask indicating the location of model and (b) Differential phase map modulo 27 derived from
unreliable pixels, Mo = 2.95, @ = 0° subtracting the computational solution from the mea-
sured phase map

Figure 4.9: Binary mask and differential phase map, M, = 2.95, o = 0°

boundary layer the flare shock in the experiment is formed at some distance from the model surface.

In general a strong bending of the interference fringes towards the surface is observed (Lanen and
Houtman 1992) as a result of the temperature gradient in the boundary layer. The present result also
shows this behaviour, especially at the flare surface where the experimental, turbulent boundary layer
is thick. The differential phase map (Fig. 4.9 b) clearly shows that the influence of the boundary layer
is most pronounced over the flare surface. The small separation of the flow at the strong expansion
wave is also visible, which is not present in the numerical computations.

Similar experiments have been performed for several non-zero angle of attack flows. Figures 4.10 and
4.11 show the results of the interferometric experiments and the postprocessed numerical calculations,
for the flow at M, = 2.95 and o = 10° and o = 20°, respectively. It can be seen that on the
windward side the unreliable area of the flare shock is expanding with increasing angle of incidence.
An unreliable area also occurs at the flare cylinder connection, where an expansion of the flow causes
a strong density gradient.

For the 3-D flow field the influence of viscosity is no longer restricted to the vicinity of the model
surface. A comparison of the results shows that the viscous areas are captured very well by interfer-
ometry, whereas they are obviously not by the numerical code. Flow separation at the leeward side
occurs just downstream of the nose and shows up clearly in the interferometric results. Even though
the unreliable area at the windward side becomes rather large, some information can be gained from
these unreliable parts, because of the sharp boundary between reliable and unreliable pixels near the
shock waves. Especially at an angle of attack, when the area behind the intersection comes into view,
some signs of the phenomena emanating from the interaction can be seen (also in the numerical re-
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(a) Experiment (unreliable pixels depicted in black) (b) Computation

Figure 4.10: Phase maps modulo 27, M., = 2.95, a = 10°

(a) Experiment (unreliable pixels depicted in black) . (b) Computation

Figure 4.11: Phase maps modulo 27, M, = 2.95, o = 20°
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sults).

At the windward side of the model there is a reasonable correspondence of the experimental and nu-
merical shock locations, although the numerical flare shock seems to be positioned further from the
body. This may be caused by the fact that in the experimental results the flare shock is not attached
to the model, whereas it is for the numerical flow field. In the experimental results the flare shock
is formed closer to the model surface than for & = 0° which is probably due to a thinner upstream
boundary layer. The numerical results now yield a detached shock, which is the correct non-viscous
solution. Both the numerical and the experimental results show that the flare shock strength increases
at the shock-shock interaction. Further downstream the flare shock becomes weaker due to the inter-
action with the expansion wave originating at the cone-cylinder junction. At the leeward side of the
model the flare shock is formed at a considerable distance from the model surface due to the large
scale flow separation. The non-viscous results of the Euler Code still yield a shock wave which can
be traced up to the model surface.

In the interferometric measurements there seems to be some structure at the leeward side of the model
aligned with the flare. Here the unreliable, flare shock area does not possess the narrow shock-like
structure but has a more wavy character. Especially at an angle of 20° it gives a "vortical” impression.
Topological interpretations of earlier oil-flow experiments reveal the presence of two counter rotating
vortices originating from the separation region at the leeward side of the model (Bakker et al. 1992),
which may explain this pattern. In the interferometric results these structures show up as unreliable
pixels because they occur outside the symmetry plane at which the set-up is focussed. As they are not
imaged properly a shadowgraph-effect occurs due to light ray deflection. Although no quantitative
information can be extracted from these points, some insight into the form and behaviour of these
vortical structures may be gained.
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Figure 4.12: Unwrapped phase along vertical line, M, = 2.95, o = 10°

The unwrapped phase angle (A¢/27) along a vertical line through the cylindrical part (indicated in the
small figure inserted) has been plotted in Figs. 4.12 and 4.13 for & = 10° and o = 20°, respectively.
The phase angle Ag is related to the integrated density along the light paths according to Eq. (2.4).
The experimental phase distribution has been shifted 27 and 47 radians for ¢ = 10° and o = 20°,
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Figure 4.13: Unwrapped phase along vertical line, M, = 2.95, a = 20°

respectively, in order to make a comparison with the numerical result. This shift is necessary, since
the phase unwrapping in the experimental results fails at the shock due to the closely packed fringes.
For the computations no phase unwrapping is necessary, since the phase angle A is a direct result of
the simulation process rather than the phase modulo 27. The experimental and computational phase
distribution agree rather well in the regions which are enclosed by the model and the shock. Compar-
ison of the phase distribution in the flow outside of the shock shows that the phase period which has
disappeared is 27 and 47 for o = 10° and @ = 20°, respectively.

4.3 Computations

The convergence history of the computations at Mo, = 2.95 and @ = 10° and o = 20° is given in
Fig. 4.14. Figure 4.14(a) shows the logarithm (base 10) of the L;-norm of the residual as a function of
the FAS-iteration number. The residual drops to engineering accuracy (10™*) within 58 and 96 FAS
iterations for & = 10° and o = 20° respectively. The lift- and drag coefficients, which do not include
the forces on the base area, are obtained within 0.1% of its final value within 15 a 20 FAS-cycles, see
Fig. 4.14(b).

Since viscous effects are not modelled by the Euler equations and the model is not equipped with
sharp edges, the computational results do not predict separated flow. The bow-shock-wave topology
is however predicted rather well by the numerical method. A three-dimensional view of the shock-
wave pattern in the half space in the background is given in Fig. 4.15 for M, = 4.04 and o = 20°.

In this picture the shocks are represented as surfaces. These surfaces are calculated by an algorithm for
the detection and visualization of shocks in a discrete flow field. The criterion used for the occurrence
of a shock wave is that the velocity component in the direction of the local pressure gradient should
pass the sonic value. Therefore the following scalar quantity is calculated:

1 Vp

My = ~q- @.1)
et | Vp|
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Figure 4.14: History of residual and aerodynamic forces, Mo, = 2.95, o = 10° and 20°

Figure 4.15: Shock pattern in computational data set, Mo, = 4.04, o = 20°
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where q is the velocity vector, ¢ the speed of sound and Vp/[Vp] is the normalized pressure gradient.
The shock surfaces are then represented as surfaces where Mp, = 1, and the gradient of M, along
the local flow direction is negative (q - VM, < 0).

Besides the bow shock and the flare shock, this shock detection also reveals the existence of an em-
bedded shock at the leeward side of the conical flare. Only this shock is also plotted in the foreground
half-space. This shock can be filtered out of the isosurface by a selection criterion which uses the nor-
mal vectors of the triangular surfaces of the discrete shock surface. Only those triangles are plotted for
which the angle between its normal vector and the assumed normal vector of the shock is less than a
specified value. The position of this embedded shock corresponds with a curve at which the oil-streak
lines show a kink (Figs.4.5,4.7).

Figure 4.16 shows the pressure distribution in the plane of symmetry for a calculation at M., = 4.04
and o = 20°. The bow shock is captured within 2 cells in those regions where the shock is aligned
with the gnid (nose region). The isobars in the region between the shock-shock interaction and the
model do not reveal an adjustment shock originating from the interaction point, which was observed
in the shadowgraph and also follows from the heart-diagram analysis.
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Figure 4.16: Isobars p/ps in the plane of symmetry, M, = 4.04, a: = 20°
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4.4 Surface pressure distributions

The surface pressure distributions obtained from the experiments and the computations at the
windward- and leeward generator in the plane y = 0 are given in Figs. 4.17 - 4.20 for Mach numbers
Mo = 2.95 and 4.04 and angles of attack o = 10° and 20°. The pressure distributions from the
computations agree very well with the experimental pressure distributions in those regions which are
not dominated by viscosity effects, the windward sides of the hemispherical head and the cylinder.
At the leeward side of the cylinder a separation causes a higher pressure than the computations
(with attached flow) predict. Furthermore, differences occur at the beginning of the flare, where a
shock-induced separation smears out the pressure increase in the experiments. At the leeward surface
no shock can be observed in the experimental pressure distribution.
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Figure 4.17: Computational and experimental surface pressure distribution at leeward- and windward
generator, Mo, = 2.95, a = 10°

For the lower angle of attack (o = 10°), the experimental and the computational pressure distributions
at the flare agree rather well. In these cases the shock-shock interaction has no influence on the flare
surface. Downstream of the flare, at the cylindrical part, the decrease of pressure due to the expansion
is predicted rather well by the computational method for all angles of attack.

The effects of the shock-shock interaction on the pressure distribution at the windward side of the flare
at o = 20° are not predicted very well by the numerical simulations. In order to explain the behaviour
of the pressure distribution at the windward side at z > 80mm, the lines observed in the corresponding
shadowgraphs are depicted in the Figures 4.18 and 4.20. They show that the lines coming from the
interaction point, which are shocks according to the heart-diagram, coincide with a sudden increase of
pressure on the surface. At Mo, = 4.04 (Fig. 4.20) a significant expansion occurs just downstream of
this shock, which coincides with another line coming from the interaction area and reflecting on the
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Figure 4.18: Computational and experimental surface pressure distribution at leeward- and windward
generator, M., = 2.95, o = 20°
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Figure 4.19: Computational and experimental surface pressure distribution at leeward- and windward
generator, Mo, = 4.04, a = 10°




28 RESULTS

M_ =4.04; 0 =20°

25
plp_ : ]Experiment
4
20 ——— Computation

Lines in spark-shadowgraph

o} 20 40 60 80 100
x (mm)

Figure 4.20: Computational and experimental surface pressure distribution at leeward- and windward
generator, Mo, = 4.04, a = 20°

surface. In the shadowgraph (Fig. 4.3) it is visible that this line reflects on the shear layer and again
reflects on the surface, which coincides with another expansion.

The shock-shock interaction is an inviscid phenomenon, which should be modelled by the present
numerical method. The weak adjustment shocks and expansion waves are not captured due to the
numerical dissipation, which causes discontinuities to be smeared out when they are not aligned with
grid lines. A finer grid in the z-direction (96 cells) with a clustering of points near the shock-shock
interaction did not improve the result. The pressure distributions at the flare for the standard and the
finer grid computations and the experiment are shown in Fig. 4.21.

The embedded shock at the flare, which was predicted by the shock detection algorithm, can also be
observed in the computational leeward surface pressure distribution, which is given in the upper half
of Fig. 4.22 together with some streamlines. The kink in the streamlines at this shock are also ob-
served in the oil-flow visualization (Figs.4.5,4.7). The experimental pressure distribution, which is
given in the lower half of Fig. 4.22, does not show the shock; apparently, the pressure rise through the
shock is smeared out and decreased by the (turbulent) boundary layer. At the windward side the com-
putational and experimental pressure distributions agree rather well at the cylindrical part (Fig. 4.23);
at the flare the effect of the adjustment shock is not visible in the computational pressure distribu-
tion. The footprint of the adjustment shock in the experimental pressure distribution may be observed
by the local maxima. The shape of this footprint is almost identical to the footprint observed in the
oil-flow visualization (Fig. 4.6).
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Figure 4.21: Computational and experimental surface pressure distribution at the leeward and wind-
ward generator of the flare, Mo, = 4.04, o = 20°
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Figure 4.23: Computational and experimental windward surface pressure distribution,
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Chapter 5

CONCLUSIONS

Different experimental techniques have been used to analyse the high-supersonic flow around a
hemispherical-nose-cylinder with conical flare. The model has been investigated for flows with
free-stream Mach numbers of 3 and 4 and angles of attack from 0° up to 20°. Interesting features of
this flow are a complex surface flow topology, with various separations and their interactions, and
a shock-shock interaction at large angles of attack in the windward region interfering with the body.
The experiments are compared with computational results obtained from an Euler code.

Qualitative visualization techniques as spark shadowgraph and surface oil-flow appear to be a valuable
tool to 1dentify characteristic features about the flow topology and the shock patterns. High resolution
surface pressure data support the interpretation of the visualization studies.

Digital Holographic Interferometry is a valuable tool for quantitative flow diagnostics, since the entire
integrated density field is captured at a single moment. It may serve as a validation instrument for
computer codes, because the integrated density can be compared directly to post-processed numerical
results. Difficult areas in the flow field are areas with high density gradients (shock waves) normal to
the light rays, where the phase-unwrapping process fails. Simulated phase maps were obtained from
discrete solutions of a 3D Euler code, neglecting the light ray deflection. The experimental results and
the post-processed Euler results show a rather good agreement in those areas which are not affected by
viscous effects or by shock waves. Comparing interferometric and numerical results can serve multiple
purposes, as differences may reveal flaws in both methods and can assist in mutual interpretation of the
results. Comparison of both phase maps gives some insight into the possible causes for “bad” points
in the interferometric results. E.g., the Euler code results reveal that the areas indicated as unreliable
in the interferometry (because of low modulation intensity) near the shock waves and expansion areas
at the flare-cylinder junction are caused by a strong density gradient, so that the sampling condition
cannot be met.

The computational results are compared with detailed surface pressure measurements. The pressure
distribution at the nose and the windward side of the model is predicted rather well by the Euler code.
At the leeward side, where the flow is dominated by the presence of separation and vortex formation,
the agreement between experimental pressure and computational pressures is rather poor, as may be
expected. The surface pressure distributions at 20° angle of attack indicate adjustment shocks and
expansion waves originating from the shock-shock interaction in the windward flow field. The ad-
justment shock- and expansion waves, which interfere with the body, are however not captured by the
numerical method due to numerical dissipation. In order to capture these phenomena, a very fine grid
in the shock-shock interaction region should be used.
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