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Abstract 

Human knowledge is an important source of information 
for modeling and control of complex dynamic processes. 
Fuzzy sets proved to be suitable for dealing with subjec­
tive uncertainty encountered when incorporating human 
knowledge in the design of automatic control Systems. 
Besides direct fuzzy control, in which the control law 
is explicitly described by If-Then rules, the knowledge-
based approach can be applied at a higher level for formu-
lating the control objectives and constraints. Appropriate 
control actions are then found by means of a multistage 
fuzzy décision making algorithm, using optimization over 
a finite horizon as in conventional prédictive control. 
Compared to the standard quadratic objective fonction, 
the knowledge-based approach gives the designer more 
freedom in specifying the desired process behavior. By 
using fuzzy models, the uncertainty arising from the mod­
eling of complex and partially unknown Systems can be 
represented at the same conceptual level as is the uncer­
tainty in the goals and constraints. Finally, a model-based 
search for an optimal control strategy can be combined 
with model-freereinforcement techniques inspired by hu­
man learning. 

K e y w o r d s : Prédictive control, fuzzy décision making, 
optimization, learning. 

1 Introduction 

Complex, nonlinear and partially unknown Systems, en­
countered for instance in chemical process industry, 
biotechnology or climate control, présent big challenges 
for automatic control. While the conventional linear con­
trol techniques often fail or can be applied only loeally, 
human Operators are able to control thèse Systems across 
a wide range of operating conditions. Knowledge-based 
control tries to integrate the knowledge of human Op­
erators or process engineers into the Controller design. 
Fuzzy control, one of the most populär techniques, has 
been successfully applied to a large number of consumer 
products and industrial processes [10, 12]. Most of the 
applications of fuzzy control use a descriptive approach 
introduced in the seventies by Mamdani [4]. The opera-

tor's knowledge is verbalized as a collection of If-Then 
control rules, that are directly translated into a control 
algorithm, as schematically depicted in Fig. 1. 

Fuzzy contrai rules: 

If desired température is large 
and current température is small 
then increase heating 

Figure 1 : In conventional fuzzy control, Operator's knowl­
edge is verbalized as a collection of If-Then control rules. 

With this methodology, no explicit model of the process 
is required, which can significantly reduce the develop-
ment time if sufficient knowledge is available. If this is 
not the case, the design must rely on the tuning phase, 
which may be a tedious and time-consuming trial-and-
error procédure. In industrial environments, an on-line 
expérimental tuning is often not acceptable for e.g. safety, 
economical and environmental reasons. Moreover, it has 
been observed, that human control skills are sometimes 
difficult to verbalize since the operator's control strategy 
can be based on various control principles simultaneously, 
combining feedforward, feedback, prédictive stratégies in 
a complex, time-varying fashion. In that case, an Operator 
may not be able to explain why he or she chooses a par-
ticular control action. Expérience from knowledge acqui­
sition also shows that opinions of différent Operators may 
be very différent or even contradicting [5]. Being based 
on a human control strategy, the descriptive approach is 
also not suitable for control problems that go beyond the 
capabilities of the human Operator, such as optimization. 
Process Operators usually tend to react quite cautiously 
and do not want to force the System to the limits of the 
allowable régions. 

In this paper we discuss an alternative approach, where 
human knowledge is used to specify the control objectives 
and constraints, not the control protocol itself. A décision 
making algorithm sélects the control actions that best meet 
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the specified criteria, see Fig. 2. 
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Figure 2: Controller based on objective évaluation and 
fuzzy décision making. 

Since this prescriptive approach is closely related to pré­
dictive control, we first review the basic concepts of con-
ventional prédictive control, than we motívate the ap­
proach using fuzzy décision making. Finally, we discuss 
practical issues related to optimization, its computational 
complexity and we briefly describe a model-free opti­
mization scheme using reinforcement learning. 

2 Prédictive control 

Model-based prédictive control has become an important 
research area of automatic control theory and it also has 
been widely applied in industry [7]. Reasons for this 
success are the ability of MBPC to control multivariable, 
nonlinear Systems under various constraints in an optimal 
way (with respect to the specified objective function). 
The working of a MBPC is as follows. A model of the 
process predicts the process behavior over a specified 
(finite) prédiction horizon, as shown in Fig. 3. 
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Figure 3 : The principie of model based prédictive control. 

A prédictive controller uses an optimization algorithm 
to calcúlate a séquence of future controller Outputs over 
a control horizon, such that a specified objective (cost) 
function is minimized. Most of the objective functions 
are some modifications of the quadratic form [3]: 

»=i 
(1) 

where y denotes the predicted process Output, w the de-
sired process behavior (référence trajectory) and u the 

future control signal. H is the prédiction horizon and 
Hc is the control horizon. Vectors a and ß determine the 
weighting of the output error and the control effort with re­
spect to each other and with respect to time. It is important 
to realize that the cost function is only a suitable math-
ematical approximation of the control objectives. While 
its quadratic nature is convenient for finding analytical 
solutions for linear models, it may be less suitable for 
achieving the "real" control goals, such as fast rise time, 
small overshoot, good damping, etc. Though many au-
thors provide tuning rules that attempt to relate the desired 
performance to the setting of the individual parameters in 
(1), see e.g. [9], in practice, extra constraint (such as over­
shoot constraints, etc.) often must be imposed in order to 
meet the prescribed goals. The quadratic cost (1) mini-
mizes the variance of the process output, which might not 
be always désirable. In many processes, it is sufficient 
to keep the controlled variables within certain lirnits and 
more accurate control is not desired since it makes the 
production more expensive. Too a tight control also re­
duces the information contents of the data that otherwise 
may be used for adapting the process model. Though 
optimal w.r.t. (1), the control response may have some 
undesirable features such as non-minimum phase closed-
loop behavior for a minimum phase plant. 

From practical reasons, it is désirable to have a direct 
control over the influence of the individual components 
of the objective function on the controller performance. 
It is advantageous if the degree of compensation among 
the partial goals and among the goals and constraints can 
be specified by the designer. This additional freedom can 
be achieved by choosing a différent représentation of the 
objective function, e.g. as a combination of fuzzy goals 
and constraints, as shown in the following section. 

3 Objective function with fuzzy goals and 
fuzzy constraints 

The idea of décision making in fuzzy environment was 
introduced in the beginning of seventies by Bellman and 
Zadeh [1]. In fuzzy décision making, the goals, con­
straints and also the Systems under control can be fuzzy. 
An example of a fuzzy goal is "the product concentra­
tion should be about 80%", where concentration is the 
controlled variable and the vague expression about 80% 
is represented by a subjectively defined fuzzy set, for in­
stance as shown in Fig. 4. For a crisp measurement x, the 
degree of satisfaction of a fuzzy goal G is determined by 
the membership degree of the measurement in the fuzzy 
set G, HG(X). For a value expressed as a fuzzy set1 F, 
the degree of satisfaction of the goal G is computed as a 
degree of similarity between the two corresponding fuzzy 

1 Also the process values can be fuzzy, consider for instance notions 
based on human perception that can be expressed as rule-based combi-
nations of measured variables (e.g. comfort may be defined using rules 
combining température and humidity). 
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Figure 4: A membership function for the fuzzy goal about 
80%. 

sets, e.g. as max(pF{x) A ßo{x)). 

Simple fuzzy goals can be combined in more complex 
goals or can be refined by adding other conditions, e.g. 
"the product concentration should be about 80% but (and) 
not substantially higher than 82%". Here the goal "not 
substantially higher than 82%" can represent for instance 
a temporary restriction that can be added without remov-
ing or modifying the original goal. The logical connec-
tive and and the négation Operator not are represented 
as intersection and complément of the fuzzy sets respec-
tively, G = Gi fl G 2, or in terms of membership degrees, 
HG{%) — PG1(X) A (1 — ßa2(x))- Fuzzy constraints can 
be represented in a similar way as fuzzy sets Ci. 

Fuzzy décision D for n fuzzy goals G\, G2, • •., Gn and 
m fuzzy constraints Ci, Ci, Cm is a confluence of 
thèse goals and constraints. If we require simultaneous 
satisfaction of the goals and constraints, we may define 
D as intersection of the corresponding fuzzy sets: 

D = Gi n G 2 n . . . n Gn n Ct n C2 n . . . n Cm 

or in terms of membership degrees 

ßD {x) = MOi 0) A ßo2 (x) A . . . A nGn (x) A 
ApCl (x) A ßc2{x) A . . . A [ i C m ( x ) 

The maximizing décision xm is any x € Xthatmaximizes 
HD{X), i.e. 

ßD(xm) = V ßD(x) 
lex 

Optimizing the system's performance over a finite hori­
zon, as in prédictive control, corresponds to finding an 
optimal séquence of décisions in a multistage décision 
making process. Assume that the system under control is 
described by a state transition équation 

x(k + l) = f(x(k),u(k)) (2) 

Given the current state x(k) we are interested in finding a 
séquence of actions Uk, • • •, « H - I , corresponding to the 
maximizing décision. This is a nonlinear optimization 
problem that can be solved e.g. by dynamicprogramming. 

E x a m p l e : Prédictive c o n t r o l of a conta iner crâne. 

We give a simple example of prédictive control with fuzzy 
goals and constraints of a container crâne shown schemat-
ically in Fig. 5. A simulation model of a real container 

Figure 5: Schematic drawing of a container crâne 

crâne of the port of Kobe was taken over from [8]. The 
System output variables are the trolley position x, the 
length of the rope h and its angle a. The torque of the 
trolley drive and the torque of the hoist motor are the 
manipulated inputs. In our example we only consider 
setpoint change of the trolley position from x — 35 m to 
x = 45 m on which we compare three différent objective 
functions: 

1. Sum of squared errors between the référence and the 
actual trolley position of x (J = 23i=fc+i(r(*) — 

x(i)f. 

2. Minimization of the overshoot in the trolley position 
x, using a fuzzy goal with a membership function 
shown in Fig. 6 a. 

3. A combination of 2) with a criterion for minimizing 
the variance of x around the setpoint, using member­
ship function shown in Fig. 6 b. 

Figure 6: Membership functions for small overshoot (a) 
and small variance (b). 

Note that the variance réduction term in 3) aims at a sim­
ilar goal as 1). The two goals in 3) are combined using 
the logical and Operator, i.e. the minimum of the mem­
bership degrees, to represent that both the goals should be 
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satisfied simultaiïeously. Note that there is no compensa­
tion between the criteria involved, as opposed to (1). The 
prédiction and control horizon were both 8 steps. 

Timels] 

Figure 7: Simulation results for three different objective 
functions: minimum variance (dash-dotted line), over­
shoot (dashed line) and combination of the two using the 
minimum operator (solid line). 

The simulation results shown in Fig. 7 clearly show that 
the oscillation obtained with the overshoot criterion alone 
can be eliminated by simply adding another criterion for 
variance minimization. 

4 Approximating processes using fuzzy 
models 

For engineering purposes, mathematical models are often 
constructed, based on, for instance, differential or dif­
ference equations, derived from physical laws and with 
parameters estimated via experimental identification. For 
well-defined systems, these standard mathematical tools 
lead to good models, even though the modeling process 
is often very tedious. There are, however, many systems 
where the underlying physical mechanisms are not known 
or are so complex that a mathematical model is difficult 
to obtain and to use. On the other hand, such systems can 
be described quite simply and with a sufficient accuracy 
in a verbal way, using fuzzy If-Then rules. Fuzzy sets 
are used for partitioning the continuous domains of the 
system input and output variables into a small number of 
overlapping regions labeled with linguistic terms such as 
LOW, HIGH, etc. A fuzzy model describes the system by 
establishing relations between the input and output labels. 
These relations can be expressed in the form of If-Then 
rules, mapping fuzzy regions from the premise space to 
other fuzzy regions in the consequent space. For instance, 
the following rule 

If voltage is HIGH then speed is HIGH 

relates HIGH voltage on an electric motor to HIGH 
speed of its rotor. Fuzzy sets for linguistic terms HIGH 

are defined in their respective domains of voltage and 
rpm. Fuzzy inference mechanism ensures interpolation 
between the rules, providing answers to inputs that are 
not defined in the rule premises. This idea of linguistic 
fuzzy modeling was introduced in the pioneering papers 
of Zadeh and applied later on by Mamdani to fuzzy control 
of dynamical plants, see e.g. [4]. Instead of an explicit 
description by rules, the mapping can be defined via a 
fuzzy relation. The construction of this so-called fuzzy 
relational model is based on the theory of fuzzy relations 
and relational equations, see e.g. [6]. The output fuzzy set 
Y is computed from the input fuzzy set X via relational 
composition 

Y = XoR 

A dynamic system, such as (2) can be described as a 
composition of the input fuzzy set U(k), state fuzzy set 
X(k) and a relation R describing the system 

X(Jc + l) = U(k)oX(k)oR 

Fuzzy models have several useful properties. First, their 
belong to the class of general function approximators, 
e.g. a fuzzy model can approximate a smooth function to 
any degree of accuracy, as shown by Wang [13] (among 
others). Secondly, different kinds of information can be 
integrated for building fuzzy models, such as knowledge 
expressed as If-Then rules and numerical data (process 
measurements). Finally, the mathematical framework for 
representation of fuzzy models is convenient for analytical 
manipulations, such as analysis of the model, its inversion, 
etc. Fuzzy models also can be seamlessly integrated in 
a predictive control system based on the fuzzy decision 
making approach, as shown in the previous section. 

5 Optimization based on reinforcement 
learning 

The previously described approach requires a reliable 
model of the plant and if a significant model-plant mis­
match appears, the controller performance rapidly de­
grades. Modeling and identification of complex systems 
is a difficult, time-consuming and expensive task, result­
ing in the fact that most of the design effort (sometimes 
as much as 80%) is spent on developing a good process 
model [7]. In many cases, an accurate model cannot be 
obtained which places the use of MBPC out of question. 
Therefore, techniques for optimizing the control policy 
without an explicit model of the plant are desirable. 

Here again, it is useful to take inspiration from the way 
humans adapt their behavior in a particular environment 
without knowing an accurate model of that environment. 
Many learning tasks (think for instance of learning to play 
tennis) consist of repeated trials (attempts to hit the ball) 
followed by a reward (a nice shot) or punishment (picking 
the ball from the ground). Each trial can be a dynamic 
sequence of actions (run, taking a stand, hitting the ball) 
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while the feedback (reinforcement) comes only at the end. 
Therefore, a large number of trials may be needed to fig­
ure out which particular actions were correct and which 
must be adapted. 

A family of algorithms inspired by human and animal 
learning is known as reinforcement learning. Reinforce­
ment learning assumes that there is no direct evaluation of 
the quality of the selected control action. Instead, an in­
direct evaluation is received, possibly after a sequence of 
control actions, in terms of (dis)satisfaction of the control 
objectives and/or violations of constraints. The reinforce­
ment system learns how to predict the outcome of each 
particular action, using techniques like temporal differ­
ence [11] or Q- learning [14]. This prediction is used to 
adapt parameters of a suitable general function approxi­
mator (e.g. a neural network) to iteratively approximate 
the optimal control policy. This approach differs from 
other optimization techniques in two respects: i) no model 
of the system is needed, ii) the optimization is not done at 
once, it is distributed over a large number of small steps 
that gradually approximate the optimal policy. 

Most of the approaches based on neural networks do not 
employ any prior information and learn the control policy 
from scratch. It is well known that prior knowledge can 
speed up the learning process (in our example, it might be 
useful to know how to grip the racket and how to stand for 
backhand and forehand). In more serious control tasks, 
prior knowledge is essential for a correct functioning of 
the system at the very start of the learning process (think of 
driving a car without knowing the function of the pedals, 
or stochastically exploring the effect of individual control 
variables in an unstable chemical process). The ability of 
fuzzy rule-based system to use prior knowledge on one 
hand and to approximate nonlinear functions on the other 
hand is advantageous for combining fuzzy models with 
reinforcement learning [2]. By using reinforcement learn­
ing, possibly approximate and imprecise prior knowledge 
expressed in terms of fuzzy rules can be refined on line, 
during the control process. 

In order to briefly explain the principle of reinforcement 
learning, let us assume (without loss of generality) that the 
system to be controlled is represented by a state transition 
function (2). When the system is fuzzy, ƒ is a rule base. 
The goal is to learn (or adapt) an associative mapping 
7r : X —* U, by maximizing a (scalar) evaluation of 
the performance (reinforcement). Here 7r is so called 
policy function and is equivalent to a controller, that for 
a particular state x € X computes a control action u € 
U, see Fig. 8. When controlling dynamic systems, the 
reinforcement evaluation is usually available only after a 
sequence of state-action pairs {(x(k),u(k))}. 
For discrete control actions U = {«1,^2,... ,um], the 
policy 7T can be formed as a composition of two func­
tions: a function approximator g : X —• Rm that assigns 

niles, membership functions 
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Figure 8: Control scheme with reinforcement learning. 

each Ui a real value representing its merit (cf. degrees 
of fulfillment in fuzzy inference) and a fixed function 
M : Rm —• A that selects a particular control action 
(cf. the aggregation/defuzzification block). Often, M is 
a maximum selector combined with a stochastic action 
modifier that ensures proper exploration of the search 
space. 

The basic principle of reinforcement learning can be ex­
plained as follows. The goal is to maximize the total 
reinforcement over time, which can be expressed as a dis­
counted sum of the immediate payoffs r(x, u) computed 
by the performance evaluator (see Fig. 8). The sum, so 
called value function V : X —> R, is defined as: 

N-l 

V(x) = lim E{52~,kr(x(k)Mxk))\x0 = x} (3) 
fc=0 

where the constant 7 6 [0,1) is a discount rate. V(x) can 
be approximated, using the temporal difference operator 

A(x) = r{x(k), u(k)) + jV(x{k + 1)) - V{x{k)) 

which is a difference of predictions of V (x) at two con­
secutive time steps. The estimate V(x) is updated, using 
A O ) 

Vk+\x) = Vk{x)+ßA{x) 

where ß is a small positive constant. Finally, the learning 
rule for the merit function g(x) is: 

gk+1(x) = gk(x)+a(p(x(k),u(k))-V{x(k))) (4) 

where a is a small positive constant and p(x(k), u(k)) is 
the expected total reward obtained if u is applied to the 
system at state x(k) and then policy 7r is followed. This 
estimate is not available, but it can be approximated as: 

p(x{k),u(k)) « r(x(k),u{k)) + -yV(x(k + 1)) (5) 

Using (5) in (4) gives the update law for g(x): 

gk+1(x)=gk(x) + aA(x) 

Obviously, the reinforcement learning (RL) methods 
solve the same optimization problem as the dynamic pro­
gramming (DP) methods. The difference is that the DP 
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methods are off-line, while RL techniques try to learn the 
optimal policy on-line, concurrently with the system op-
eration. The DP methods search the entire space X x U, 
while the RL methods opérate on the a subset of states 
X that occur during the system operation. Since X may 
be significantly smaller than X, RL methods do not suf-
fer from the curse of dimensionality as much as the DP 
methods. RL methods also do not require a system model 
and can be extended to continuous spaces of u. 

6 Concluding remarks 

In this paper we discussed some links between conven­
tional predictive control, multistage fuzzy decisión mak­
ing and reinforcement learning. These three approaches, 
originating from different roots, nicely complement each 
other and in combination may be applied to control of 
complex dynamic systems that are diíficult to deal with 
using standard methods. Let us summarize the main fea-
tures of the proposed approach: 

• The control objective function can be specified as 
any suitable combination of the terms representing 
degree of satisfaction of the goals and constraints, 
ranging from a simple conjunction to a problem-
specific rule base. Such a rule base, for instance, can 
capture context-dependentimportance of the control 
goals and constraints or different ways of their ag-
gregation [15]. 

• With such an objective function, each control action 
can be explained in terms of partial decisions and de­
grees of satisfaction of the individual criteria, which 
is suitable for tuning and monitoring purposes. 

• Subjective uncertainty can be easily incorporated in 
the specification of goals and constraints. 

• The process itself can be represented as a fuzzy rule-
based or a relational model. In this way, also ill— 
defined, partially unknown or highly nonlinear sys­
tems can be modelled in a transparent way. 

For the higher flexibility one has to pay by increased 
computational costs, since the optimization problem is in 
general nonlinear and often non-convex. Reinforcement 
learning is considered as an on-line optimization method 
which can simultaneously add adaptivity features to the 
controller. Potential applications of the proposed method-
ology include such systems where humans have been or 
are part of the control structure or the environment, such 
as climate control, telemanipulation, crane control, etc. 
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