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Abstract 
This thesis aims to assess how different convex penalty functions can be used in orbit 

determination methods and to design an algorithm to test them under different conditions. 

Most traditional Precise Orbit Determination (POD) algorithms use the Least-Squares (LSQ) 

method to minimise the misfit between a set of modelled and actual measurements. The 

approach followed in this research is to investigate other convex penalty functions for this 

purpose in order to achieve better results than the traditional LSQ method, while maintaining 

the overall quality and robustness of the former. 

To simplify the application of convex optimisation methods, an external toolbox was used to 

implement the different convex cost functions. The testing environment included a Precise Orbit 

Propagator (POP), measurement generating and processing functions, the POD algorithm itself, 

and data processing functionalities for the representation of the results. All the different 

components integrated in the final algorithm were validated before their application. 

Tests to assess different aspects of the implemented penalty functions were run, regarding both 

computational aspects and solution performance. The traditional method was observed to 

present suboptimal results when the noise present in the observations included unprocessed 

outliers. In addition, cases where the observations were highly sparse yielded a suboptimal 

estimation of the trajectory. 

After that, the L1-Norm was implemented as penalty function, alongside with Huber’s penalty 

function, which represents a combination of both LSQ and L1-Norm. 

The use of the L1-Norm in the orbit determination algorithm outperformed the traditional 

method in the cases where it lacked performance, such as in the presence of unprocessed 

outliers or sparse observation sets. However, in other tests run, the LSQ algorithm was able to 

reach higher accuracy levels than the L1-Norm. Huber’s penalty function, conversely, proved to 

be a great candidate for both purposes, closely resembling the results obtained by the best 

penalty function for each test and even improving it on occasions, at the cost of a higher 

computational effort. 

Finally, the designed algorithms were applied to a real-world study-case making use of GOCE 

data provided by TU Delft. These applications demonstrated satisfactory performance for each 

of the methods that were implemented and provided an important validation of the work. 
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1 INTRODUCTION 

Precise Orbit Determination (POD) is currently one of the most used technologies in the satellite 

industry and, even if it has been used for many decades already, it keeps evolving and improving 

its results. Following this line, and including newer concepts like Convex Optimisation (CO), this 

research is meant to work towards a further development in such an important field by 

combining POD and CO. In this chapter, these two fields will be introduced and, afterwards, their 

research opportunities will be explained. 

1.1 PREVIOUS WORK 
The content of this thesis will be based on the current state of the technology involved, and will 

build new concepts upon that. A literature study was carried at the beginning of the research 

and its main conclusions are summed up in this section, classified in two parts: POD and CO. 

1.1.1 Precise Orbit Determination 

POD is based on the combination of dynamics and orbital data to obtain a statistical orbit 

determination leading to very high accuracy levels. Once these data are gathered, there is 

usually a ground segment (sometimes on-board) post-processing that yields the desired results, 

which are combined once again with the rest of the operational instrumentation of the satellite 

-such as altimeters, cameras, etc. – to refine and produce more accurate final products. POD 

was one of the first activities in which the Global Navigation Satellite Systems (GNSS or 

GLONASS1) were involved (Dow, Neilan, Weber, & Gendt, 2007). These navigation systems 

provide a highly valuable source of (pseudo-)range observations for satellite orbiting the Earth 

in a Low Earth Orbit (LEO), for instance (Cerri, et al., 2010) (Visser P. N., 2007). With this 

information, the quality of the final products given by Earth observation satellites increased 

abruptly, meaning enhancements in the geodetic models, the altimetry data, or the imagery 

products, among others. 

POD has been applied to many missions during the last decades including the ERS (European 

Remote Sensing) satellites (Visser & Scharroo, 1998), the GRACE ((Gravity Recovery and Climate 

Experiment) mission (Lemoine, et al., 2007), GOCE (Gravity Field and Steady-State Ocean 

Circular Explorer) mission (Visser P. N., 2007) (Bock, et al., 2007), or the LAGEOS (LAser 

GEOdynamic Satellite) satellites (Lucchesi, 2007), among others. However, in a more general 

sense, almost every mission needs POD (or at least orbit determination). 

One of the first applications was the TOPEX/POSEIDON Mission (Tapley, et al., 1994), which was 

an oceanographic mission intended to improve the level of accuracy to which the geographical 

accidents underneath the oceans were known. It carried two experimental instruments: a single-

frequency altimeter and a GPS (Global Positioning System) receiver (Fu, et al., 1994). The mission 

objective was to know the radial position of the spacecraft within an error of 13 cm RMS (Root 

Mean Square), but, thanks to the effort invested by the POD team composed by the Universities 

of Texas (Austin) and Colorado, the NASA (National Aeronautics and Space Administration) 

Goddard Space Flight centre, and the JPL (Jet Propulsion Laboratory), it was possible, not only 

to fulfil the latter, but to achieve an accuracy of 4.7cm and 5.1cm for TOPEX and POSEIDON (for 

singles passes), respectively. Since the requirement was to reduce the error to 13.7cm, the 

technology was validated and adopted by many missions after TOPEX/POSEIDON. 

                                                           
1 Note that when the acronym GLONASS is used, it refers to the Russian alternative to GPS. 
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JASON-1 was the heir of the TOPEX/POSEIDON’s legacy. Again, POD was vital to achieve the 

accuracy requirements, which were set to 1 to 1.5 cm RMS (Cerri, et al., 2010). JASON-1, and its 

follow-on mission JASON-2/OSTM, carried on-board three state-of-the-art tracking systems: 

DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), GPS, and SLR 

(Satellite Laser Ranging); in order to achieve the mentioned accuracy. Additionally, altimeter 

crossover measurements (Tapley, Schutz, & Born, Differenced Altimeter Data, 2004) were taken 

to allow for more accurate results. The combination of these measurements led to a reduced-

dynamics solution that took the accuracy towards the 1 𝑐𝑚 level (Luthcke, Zelensky, Rowlands, 

Lemoine, & Williams, 2010). This exemplifies the narrow relation between the positioning 

technologies and the effectiveness of the POD techniques. 

POD techniques continued spreading and (Dow, Neilan, Weber, & Gendt, 2007) explained how 

they were planning to include the benefits of POD inside the Galileo mission frame. According 

to their research, the Galileo constellation would be useful for Earth Orientation Parameter 

(EOP) science (Altamimi, Boucher, & Willis, 2005), in the International GLONASS Service Pilot 

Project (IGLOS), see (Springer, Gendt, & Dow, 2007) or (Weber, Slater, Fragner, & et al., 2005); 

or in projects including the International Laser Ranging Service (ILRS) (Pearlman, Degnan, & 

Bosworth, 2002). At the same time, the fundamental geodetic network in Russia was being built 

up using GPS. GLONASS (Sergey, Sergey, & Suriya, 2007) utilized this technique to refine the 

satellite data they already had using the GIPSY-OASIS II software provided by (Webb & 

Zumberge, 1995). 

Apart from the mathematical methods to be used when it comes to data processing, there have 

been also multiple studies about how to use POD techniques for specific cases, for instance, 

orbital prediction for Resident Space Objects (RSO) near Geostationary Earth Orbits (GEO) 

(DeMars, Jah, Giza, & Kelecy, 2010). These researches would have to be taken in account 

because, as they explain, different case studies require different uses of POD techniques, 

depending on the differencing of the GPS carrier-phase or the use (or not) of the ambiguity 

resolution (comparisons are shown in (Svehla & Rothacher, 2003) or (Jäggi, Hugentobler, Bock, 

& Beutler, 2007)). 

1.1.2 Convex Optimisation 

CO is a subfield of general optimisation that deals with convex problems. This kind of problems 

is “easier” to solve because, for instance, any local minimum must be a global minimum, making 

the convergence of the algorithm much more robust and reliable. Most of the effort put in CO 

problems lies in translating general and complex problems into convex and smoother ones. Once 

this process has taken place, the problem can usually be solved without major hindrances (Boyd 

& Vandenberghe, 2009). 

CO techniques are on the rise these days and their implementations to multiple fields have 

yielded excellent results in several topics such as Rendez-Vous (Bhagat, 2016), re-entry 

trajectories (Xinfu, Shen, & Lu, 2015), or trajectory optimisation (Liu, 2013), among others in 

space sciences. They have been proven to be a superb tool for many different applications, 

letting highly complex problems transform into much more approachable cases, whose final 

solution is also a solution for the original case (Boyd & Vandenberghe, 2009). 

Most recently, (de Bruijn, 2017) carried a research on how CO techniques could be applied to 

guide and control geostationary satellites and on how such a method could be used to collocate 

a number of satellites under geometric constraints. The results were very satisfactory, serving 

as another example of CO techniques being applied to space-related problems. 
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1.2 MOTIVATION 
Nowadays, POD applications are still on the verge of technology and space missions, and their 

use is practically required for any Earth-sensing missions or other accuracy-based applications 

(Cerri, et al., 2010). Because of that, this research represents an excellent chance both for 

academic and industry-related fields, lending an opportunity to include CO techniques in the 

POD methods. The results would offer new insight into this theory and, perhaps, the possibility 

of an improved implementation and outcome for future space missions, and for the data 

processing of currently operated spacecraft. 

The goal of this project is to develop and evaluate new methods that, combining POD with CO 

techniques, could lead to more robust and/or efficient algorithms compared to traditional 

methods. For this, the analysis will be focused on the cost (or penalty) functions involved in orbit 

determination algorithms. 

Summing up, in this work, the starting point is set on top of all the previous developments 

gathered in the referenced bibliography. From there, an investigation on how CO functions and 

techniques could be applied to the penalty functions involved in many data processing methods 

will be conducted. This approach differs to what most authors have investigated in the previous 

years, who were mainly focused on the final results or on the statistical method involved. Here, 

a comparison will be offered between different penalty functions and how can they affect the 

robustness and performance of POD algorithms. 

1.2.1 Research Questions and Methodology 

Now, the starting point has been identified and the environment around the fields involved has 

been set up, in this section, a representative research question will be introduced and broken 

down into smaller sub-questions that will help distributing the different tasks to be undertaken 

during the investigation as well as establishing priorities for them. 

The research question could be posed as: 

Can CO techniques, when applied to POD algorithms’ penalty functions, lead to an 

enhancement over the current technology and offer more robust and/or efficient results? If so, 

how can this be done? 

Or alternatively: 

How can convex optimisation techniques be applied to POD problems and what are the merits 
of the respective solutions in comparison to solutions resulting from conventional weighted 

least-squares methods in terms of efficiency, accuracy and robustness? 

From this question, some more specific sub-questions can be developed: 

 What are the main drawbacks of the currently used penalty functions in POD? 

 How can convex cost functions be applied to POD algorithms in an efficient and robust 
way? 

 If feasible, how do these penalty functions perform in comparison to the current state 
of the art? 

 
By answering these three sub-questions, it will be possible to determine which aspects are to be 

improved and whether CO techniques are the way to do it.  

The research question poses the challenge not only to demonstrate whether the application of 

CO techniques to POD problems is feasible, but also to find how this can be done. The 
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development of such a method would represent truly valuable tools that could be directly 

applied to the space industry. 

 

The objective of this research is to investigate whether the use of CO techniques in POD 

penalty functions can outperform in terms of accuracy, robustness,  and/or efficiency the 

current technologies used by the industry and develop (if feasible) such a tool within the 

time-frame of this MSc Thesis. 

 

With this objective, the workload can be distributed into different tasks to be undertaken. These 

are shown in Table 1.1. At the end of the project, if the feasibility analysis is positive, the creation 

and validation of a computational tool should be regarded. 

Table 1.1 - Tasks to be completed during the thesis research. 

Kinematics and 

Dynamics  Development of a Precise Orbit Propagator (POP). 

POD 

 Implementation of measurement simulation and measurement 

processing function. 

 Implementation of relevant measurements models. 
 Implementation of weighting on measurements accounting for the 

confidence on the measurements. 

CO 

 Study CO applications to POD. 

 Implementation and comparison of orbit determination algorithms with 

different residuals penalty functions. 

 Evaluation and comparison of robustness and accuracy. 

 

About the methodology involved in this research, a hybrid structure will be used, combining 

different resources depending on the current step of the research. First of all, the link between 

POD and CO will be identified, mainly by desk-researching to establish the starting point. 

Afterwards, using an experimental approach, the different CO functions that may be available 

will be compared and the results will be assessed. If their feasibility is proved, the use of different 

case studies will be necessary to validate the developed theory and proof its robustness. 

1.3 ROADMAP 
To provide a structured and clear path to the reader, this document is organised in several 

chapters, ordered content- and time-wise.  

Chapter 2 is included to serve as a brief introduction of the theoretical background, as well as 

the environmental set-up used along this thesis. The reader may refer to it for simple 

clarifications but further doubts should be checked in the referred bibliography. 

After that, Chapter 3 will offer the first testing results, which will not be so focused on the final 

trajectory estimations from a realistic perspective but from a more computational sense. 

Aspects such as the validation of the computational capabilities of the tools involved or the 

proper understanding of the included technology will be the focus in this chapter. 

Chapter 4 will contain more realistic tests with more practical applications. The algorithmic and 

computational part is considered validated at this point, and emphasis is made on the accuracy 

of the results and on how well the latter fit the expectations. The outcome of these tests is 
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expected to be a relatively good overview of how the different penalty functions face different 

typical real-world situations. 

Once all these tests have been run, Chapter 5 will serve as a proof of all the conclusions gathered 

by implementing real tracking data (from the GOCE mission) in the developed algorithm. The 

solutions using different CO methods will be compared with each other. 

Finally, a last chapter including the conclusions obtained and the possible improvements will be 

added as the final point of this report. References and annexes can be found after that.  

It is recommended that the Glossary is read before going through the body of the report. 
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2 THEORETICAL & TECHNICAL ENVIRONMENT 

As it was already introduced, this research includes terms from different fields; mainly POD and 

CO, but also general concepts from orbital mechanics, for instance. In addition, for the different 

validation tests performed, a basic knowledge about reference systems is required. Also, 

information about the simulation environment and conditions could be of interest for the 

reader. Finally, a rationale for the tests to be run in future chapters will be included. 

2.1 REFERENCE SYSTEMS 
For any kind of positioning method there is always a need for a reference in order to establish 

consistent and logic spatial distributions. A reference frame, in other words, is the abstract 

coordinate system and the physical references that fix its location and orientation in order to 

standardise measurements. 

A reference system, differently from a reference frame, is the set of physical definitions that 

ideally define a coordinate system. As the human knowledge about the universe and its motion 

becomes larger, the definition of such systems varies in order to fit the best basis.  

On the other hand, a reference frame is the realization of a certain reference system, so to say, 

the best representation of the ideal reference system that the current technology is able to 

obtain. 

Once a reference system has been adopted, it is possible to classify its reference frames into 

two main types: (pseudo-)inertial and non-inertial.  

In the following, some of the reference frames used throughout this document will be briefly 

described. 

2.1.1 Inertial Reference Frames 

An inertial or pseudo-inertial reference frame is the one that is defined to be under the influence 

of no other accelerations and is at rest or moves along a straight line. Theoretically there is no 

inertial reference frame, since there will always be some kind of movement (NASA, 2016) in the 

reference points no matter the further away they are. However, quasi-inertial reference frames 

are those whose apparent accelerations can be completely ignored for human purposes and 

timescales. This is reflected in the evolution of the reference systems mentioned before; as time 

goes by, technology grants higher accuracies and what used to be a quasi-inertial reference 

system, is not anymore. From this point on, when the term inertial reference frame, this concept 

should be taken into consideration.  

2.1.1.1 International Celestial Reference Frame 

The International Celestial Reference Frame (ICRF) is the realization of the ICRS (International 

Celestial Reference System), which was adopted as the official system to follow in 1997 by the 

International Astronomical Union (IAU), and based on its first realization of 1995. After that, the 

maintenance process has led to continuous corrections meant to make the realization closer to 

the system definition.  

This reference frame is centred in the barycentre of the Solar System, this is the reason why is 

also known as Barycentre Centred Reference Frame (BCRF), with its axes fixed with respect to 

space. Its principal plane was defined by the International Earth Rotations and Reference 

Systems Service (IERS) to be “close to the mean dynamical equator at J2000.0 epoch” (IERS, 

2010) (1st January 2000 at 12.0h, or Julian Date 2451545.0). This definition gives the Z-axis 
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direction. Regarding the X-axis, the IAU recommends that “the origin of the right ascension (RA) 

should be close to the dynamical equinox of J2000.0” (IERS, 2010), what means that the axis 

should be pointing to the vernal equinox of J2000.0, which is the intersection of the celestial 

equator (see Section 2.1.2) and the solar ecliptic, i.e., the line projected onto the celestial sphere 

that describes the plane that contains the Earth and the apparent trajectory of the Sun around 

it. The Y-axis completes the orthonormal trihedron. 

Because the distance from the Earth to the barycentre of the Solar System is tiny compared to 

the distance to the quasar radio sources, no rotation is needed to translate this system towards 

and Earth-centred definition. 

The difference between this system and the dynamical references, which the ICRS is 

recommended to be close to, is that the ICRS is defined with respect to quasars instead of stars 

as the dynamical frame (a.k.a. J2000) was. 

The last realization of this system (called ICRF-2) is defined by more than 3400 compact radio 

sources and maintained by a special set of 295 sources with good positional stability and 

unambiguous spatial structure. This results in a noise floor of only 40 𝜇𝑎𝑠 and an axis stability of 

10 𝜇𝑎𝑠 (much better than the previous realization, ICRF-1, that had 250 and 20 𝜇𝑎𝑠 respectively). 

This realization allows great improvements in spacecraft navigation and a better control of the 

EOPs. 

2.1.2 Non-inertial Reference Frames 

On the other hand, non-inertial reference frames are those that show accelerations acting on 

them. These accelerations have to be expressed as apparent forces and included in the 

equations for accelerations acting in this frame. On Earth, there are some of these auxiliary 

forces that have to be taken into account. The most commonly applied are Coriolis, Euler, or the 

centrifugal acceleration (Arnolʹd, 1997) (Taylor, 2005). 

2.1.2.1 Earth Centred Earth Fixed 

The Earth Centred Earth Fixed (ECEF) is the most frequently used non-inertial reference frame 

for Earth-related purposes. This frame, a.k.a. International Terrestrial Reference Frame (ITRF), 

represents a right-handed Cartesian reference system. Its origin is placed in the Earth’s centre 

of mass and is called geocentre. From that point, the X-axis points towards the Greenwich 

Meridian, which represents 0° longitude on Earth coordinates. The Z-axis is directed along the 

Earth’s mean rotational axis of the planet, this is, it points to the mean pole of the Earth’s 

rotation. The need for such a designation is impelled by the existence of periodical perturbations 

to the Earth’s rotational axis direction. These perturbations, among which nutation, and 

precession can be found, are explained more in detail in (Wakker, 2015) and (de Pater & 

Lissauer, 2007). The Y-axis is directed to complete the right-handed system. 

The plane formed by the XY directions is called mean equatorial plane and the XZ-plane is called 

the mean zero-meridian. The projection of the mean equatorial plane onto the celestial sphere 

is called celestial equator, and the intersection of this point with the Solar ecliptic plane is called 

Vernal Equinox, which has been addressed before as the reference point for the X-axis in some 

inertial frames. 

Transformations between this frame and the ICRF need to account for different effects such as 

nutation, precession, or polar wander (NOVAS, 2011) (IERS, 2010). 
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2.1.2.2 Spherical Coordinates 

This coordinate system is only a different representation of the ECEF frame. In order to represent 

the position of a point in spherical coordinates, three parameters for the allocation need to be 

introduced: 

 𝑟: radius of the point (𝑥, 𝑦, 𝑧), i.e., the norm of the position vector. 

 𝜙: geocentric latitude, i.e., the angle that the position vector forms with the mean 

equatorial plane. 

 𝜆: geocentric longitude, i.e., the angle that the position vector forms with the mean 

zero-meridian plane. 

These parameters are referred to the centre of the sphere and are denominated geocentric 

coordinates (for the Earth). 

2.1.2.1 Radial, Tangential, Normal 
The Radial, Tangential, Normal reference frame (RTN) is centred on the centre of mass of the 

spacecraft and is composed by a radial vector (pointing outwards the Earth) in the X-axis, the 

angular momentum vector of the orbit in the Z-axis, and the Y-axis in the resulting cross product 

(in the direction of the velocity for circular orbits). The name stands for Radial, Tangential and 

Normal, but is also usually known as Hill or Orbital Frame. 

2.2 ORBITAL MECHANICS 
In this section, a brief introduction of the orbital dynamics used throughout this thesis will be 

given. It will be classified in two sections regarding the formulation and the content of the 

different perturbation modules used: equations of motion and force models. 

2.2.1 Equations of Motion 
The Equations of Motion (EoM) are the mathematical reflection of the trajectories and states 

that a certain body will have throughout time. There are several state representations in which 

they can be described. Two of the more usual ones are Cartesian and Keplerian forms. The 

Cartesian form will express the state of the spacecraft (or any other celestial body) in terms of 

its coordinates according to a Cartesian reference frame (see Section 2.1). The Keplerian form, 

on the other hand, will represent the orbital state in terms of orbital elements of the body at 

that precise moment in time. The unperturbed, or Keplerian, orbits will be treated first. How the 

perturbing forces are introduced in the equations of motion will follow afterwards. 

2.2.1.1 Keplerian Orbits 

Using the Cartesian form, the state vector is defined by  

𝒙 = (𝑥, 𝑦, 𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 ) = (𝒓, 𝒗) 

where the first three elements (𝒓) represent the position and the three last ones the velocity 

(𝒗). 

Taking the derivative of the state vector with respect to time leads to expressions for velocity 

and acceleration. As velocity is already the derivative with respect to time of position, the 

acceleration can be written as: 

𝒂 =
𝑑2𝒓

𝑑𝑡2
=

𝑭𝒏𝒆𝒕

𝑚
 (2.1) 
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where 𝑭𝒏𝒆𝒕 is the net external force on the body and 𝑚 its instantaneous mass. It should be 

highlighted here that this equation holds for inertial reference frames, where no apparent forces 

appear. 

The model for gravitational accelerations in unperturbed orbits is given by: 

�̈� = −
𝜇

𝑟𝟑
𝒓 (2.2) 

which is based on the potential model 

𝑈 = −
𝜇

𝑟
               �̈� = −𝛻𝑈 (2.3) 

In the equations above, 𝜇 is the gravitational parameter of the orbited body and  �̈� is the second 

time-derivative of the position, i.e., the acceleration. 

On the other hand, the Keplerian approach is a much more geometric way to identify the state 

of an orbiting body. It is based on the polar equation for position 

𝑟 =
𝑎(1 − 𝑒2)

1 + 𝑒 cos𝜃
 (2.4) 

where the orbital elements have already been implemented. A derivation for this can be found 

in (Wakker, 2015). In a similar fashion to what was explained in the previous section, the velocity 

and acceleration expressions can be obtained by taking the derivative of (2.4) with respect to 

time. For this derivative the only time-dependent variable is 𝜃, since these orbits are 

unperturbed, where none of the orbital elements changes along the trajectory. 

From (2.4), it is simple to obtain other relevant orbital equations such as the orbital period or 

the Vis-Viva equation, which is a reflection of the equation of energy (Wakker, 2015): 

𝑇 = 2𝜋 √
𝑎3

𝜇
                   𝑣2 = 𝜇 (

2

𝑟
−

1

𝑎
) (2.5) 

2.2.1.2 Perturbed Orbits 
Perturbed orbits are those that take into account not only the acceleration of the main body as 

a point-mass but other perturbing forces that act upon the body. This can be expressed, from 

(2.2), as 

�̈� = −
𝜇

𝑟𝟑
𝒓 + 𝒇 (2.6) 

where f represents the perturbations that appear in the trajectory of the body. In the scope of 

this document, perturbation refers to any force, apart from the point-mass acceleration of the 

main orbited body that acts upon the orbiting body. The next section will deal with the most 

relevant perturbations that should be modelled in order for the results to be as close as possible 

to reality. 

2.2.2 Force Models 

This section will introduce some of the most important perturbations that should be taken into 

account when modelling an orbital trajectory. It is relevant to remark that these accelerations 

are given by equations that try to model the actual perturbations and, thus, they give (within a 

very high limit of accuracy) estimations of these. 
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Relativistic effects have been omitted in this section, as assumed also in (Wakker, 2015). This is 

due to the fact that the values for these perturbations, that affect mainly the argument of the 

pericentre, are in the order of magnitude of seconds of arc per century. This value is way below 

the errors that the other force models present, and, therefore, their effects could actually not 

be distinguished from the errors introduced by other (more relevant) models. The perturbations 

that are considered will be briefly explained in the following. 

2.2.2.1 Irregular gravity 
Gravity is the main driver of the orbital accelerations. As it can be observed in (2.2), the main 

force acting upon the orbiting the body is the gravitational pull that the orbited body exerts. This 

force can be modelled according to different levels of resolution. Initially, the model shown in 

(2.2) could be used, which corresponds to a Newtonian inverse-square expression that 

represents a perfectly uniform and spherical gravity force emanating from a single point. But as 

the accuracy requirements become more demanding, the Earth cannot be considered as a point-

mass. 

For this reason, models are created to try to model a geometry that could fit as close as possible 

the actual mass distribution of the Earth. These models are called spherical harmonics and 

consist of a list of coefficients that are combined with sinusoidal expressions to obtain a better 

approximation of the mass distribution of the Earth. 

𝑈 = −
𝜇

𝑟
[1 + ∑ (

𝑅

𝑟
)

𝑛

𝐽𝑛𝑃𝑛(sin 𝜃)

∞

𝑛=2

+ ∑ ∑ (
𝑅

𝑟
)

𝑛

𝐽𝑛,𝑚𝑃𝑛,𝑚(sin 𝜃) cos𝑚(𝜙 − 𝜙𝑛,𝑚)

𝑛

𝑚=1

∞

𝑛=2

] (2.7) 

The equation above can be compared to that of the potential for point-mass distribution (2.3) 

shown before to observe that it keeps that term and adds a series of variations up to a certain 

degree and order (n, m). In this equation, (𝑟, 𝜙, 𝜃) are the spherical coordinates of the point 

under consideration, 𝑅 is the mean equatorial radius of the body (Earth, usually), and 

𝐽𝑛, 𝐽𝑛,𝑚 and 𝜙𝑛,𝑚 are model parameters. Also, 𝑃𝑛(𝑥) and 𝑃𝑛,𝑚(𝑥) are Legendre functions of the 

first kind defined as: 

𝑃𝑛(𝑥) =
1

(−2)𝑛𝑛!
 
𝑑𝑛

𝑑𝑥𝑛
 (1 − 𝑥2)𝑛 

𝑃𝑛,𝑚(𝑥) = (1 − 𝑥2)𝑚/2  
𝑑𝑚

𝑑𝑥𝑚 (𝑃𝑛(𝑥)) 

(2.8) 

As (Wertz, 2009) states, when applied to Earth irregular gravity field, there are some 

considerations to be taken with these equations: 

 Equation (2.7) is only valid for 𝑟 > 𝑅𝑒, i.e., points outside the Earth’s surface. 

 The index 𝑛 starts at 2 because the system is defined such that the centre of coordinates 

is the centre of mass and therefore both 𝐽1 and 𝐽1,1 are null (Wakker, 2015) 

(Montenbrück & Gill, 2000). 

 The term 𝐽2 is three orders of magnitude larger than the rest and sometimes the effects 

of the others can be disregarded. 

 The second and third terms of equation (2.7) refer to north-south direction (zonal 

harmonics) and to both east-west and north-south direction (tesseral harmonics). When 

𝑛 = 𝑚 the third term only represents east-west harmonics (sectorial harmonics). This is 

pictured in figure below. 
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Figure 2.1 - Zonal (left), sectorial (centre), and tesseral (right) harmonics. (Wakker, 2015) 

 

For other planets or bodies, the coefficients change but the method can be used in a similar 

fashion. In this thesis, the model used for Earth is the EGM2008 (Earth Gravity Model 2008), 

defined in (Pavlis, Holmes, Kenyon, & Factor, 2012). 

2.2.2.2 N-body gravitation 

It has already been seen that gravitational acceleration is actually not a point-mass force exerted 

on the orbiting body but an integral of all the mass particles of such a main body exerting their 

individual pull over the orbiting body. This concept, if extended, leads to the N-body 

gravitational acceleration. Every massive body exerts acceleration over the bodies around it. It 

has been shown in the previous sections that the further away from the centre of mass of a 

body, the smaller the effect in the perturbing acceleration (at inverse-quadratic proportion). On 

the other hand, the higher the mass (contained in the gravitational parameter) the higher this 

effect (directly proportional). For this reason, when considering an orbiting body, other massive 

bodies other than the main orbited body have to be taken into account. For example, in the case 

of the Earth, a spacecraft orbiting our planet will be perturbed by the Sun and the Moon mainly, 

but also by other Solar System bodies. 

These additional gravitational forces are part of what is called the N-body problem, as a 

reference to the N bodies involved in it. As N gets higher, the problem becomes more and more 

complicated, and, therefore, a solution is not always directly obtained. 

Up to 𝑁 = 2, the problem has an analytical solution, first solved by J. Bernoulli in 1710 (Wakker, 

2015). This is, however, the unperturbed case and is not applicable in this section. When  𝑁 >

2, there is no analytical solution for the general case. Nevertheless, if some restrictions are 

applied to the statement of the problem, it is possible to get to an analytical solution. Example 

of this is the circular restricted three body problem, which is widely described in section 3.3 from 

(Wakker, 2015). 

This situation is usually solved treating the 𝑁 bodies as point-masses, calculating their 

acceleration separately and integrating all the components via numerical integrators. The 

positions of the planets will be retrieved using (NOVAS, 2011). 

2.2.2.3 Thrust 

Thrust represents the main source of acceleration that a satellite may use to face the rest of the 

perturbations that act upon the trajectory. Its effect is non negligible, precisely because it has 

been designed to change the trajectory of the orbit or to compensate for the perturbing forces 

that modify the latter. 

When in an atmospheric environment, the force that the thrusters generate can be expressed 

by this simple equation: 

𝑇 = �̇�𝑣𝑒 + (𝑝𝑒 − 𝑝𝑎𝑚𝑏)𝐴𝑒 (2.9) 
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where 𝑇 is the total thrust on the spacecraft, �̇� is the mass rate, 𝑣𝑒 is the exhaust velocity of the 

propellant out of the nozzle, 𝑝𝑒  and  𝑝𝑎𝑚𝑏 are the exhaust (just inside the nozzle) and ambient 

pressure, and  𝐴𝑒 is the exhaust section of the rocket engine. 

On the other hand, when in vacuum, 𝑝𝑎𝑚𝑏 ≈ 0 and the last term is substituted by a constant 

term called specific impulse (𝐼𝑠𝑝) that is defined as the impulse produced per unit of weight of 

propellant. It reflects the efficiency of the thrusting system. With this parameter, the previous 

equation can be re-written as: 

𝑇 = �̇�𝐼𝑠𝑝𝑔0           𝐼𝑠𝑝 =
∫𝑇 𝑑𝑡

∫ �̇�𝑔0 𝑑𝑡
 (2.10) 

with 𝑔0 is the gravitational acceleration at sea level on Earth. 

From (2.9), it is easy to see that, as the exit velocity is only dependant on the design of the rocket 

engine, the thrust will be higher at higher altitudes. Considering 𝐼𝑠𝑝 in (2.10) to be variable (not 

constant), it can be said, in order to agree with (2.9), that the optimal specific impulse is reached 

in vacuum, so the propulsion is optimal in outer space conditions. 

2.2.2.4 Atmospheric Drag 

Atmospheric drag constitutes a highly relevant perturbation for satellites in low altitude orbits. 

It is due to the layer of gases that surround some planets, such as the Earth, for example. For 

this reason, using an accurate atmospheric drag model is extremely important for orbital 

propagations. 

The force that the aerodynamic drag induces on the spacecraft is related to the composition of 

the atmosphere, the shape and dimensions of the satellite and the instantaneous speed at which 

it flies. With this information, the drag acceleration can be modelled as: 

𝒂𝒅𝒓𝒂𝒈 = −
1

2
(
𝑐𝐷 𝑆

𝑚
)𝜌∞ 𝒗∞

𝟐  (2.11) 

where 𝑐𝐷 is a coefficient that accounts for the aerodynamic efficiency of the satellite (drag 

coefficient), 𝑆 is a representative cross-section or wet area, 𝑚 is the mass of the spacecraft, and 

𝑣∞ and 𝜌∞ are the velocity (relative to the motion of the atmosphere) and the density of the 

medium in an unaltered point at the same altitude and conditions as the rest of points under 

study. 

Equation (2.11) models the drag acceleration in a very precise way, when all parameters are 

known. However, the main problem with this perturbation is the value of 𝜌. The density of the 

atmosphere is not homogeneous throughout its extension nor varies in a predictable manner. It 

is affected by atmospheric streams, solar flux and tidal effects, among other perturbations. 

These effects can sometimes be extremely difficult to predict, and, thus, the values that the 

propagator gives will include an error with respect to reality. For this error to be as small as 

possible, numerical and empirical models for the atmosphere are used. In particular, the 

NRLMSISE00 model was adopted for this study. 

As for magnitude of the perturbation, atmospheric drag is the most notable perturbation under 

200 km of altitude. On the other hand, and as specified by the model used in this thesis (NRL, 

2016), it can be disregarded above 1000 km (Wertz, 2009). 

2.2.2.5 Radiation Pressure 

Radiation pressure is the perturbation arising from radiated particles hitting the exposed 

surfaces of an orbiting body. Such particles generate a small but continuous acceleration 
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directed against the source of radiation that could, throughout long periods of time, significantly 

deviate the spacecraft from its original trajectory. 

On the terrestrial surface, the Solar Radiation Pressure (SRP) is extremely low because of the 

atmosphere, which offers a layer of protection. However, for satellite orbits, this effect has to 

be taken into account for accurate predictions. Earth-orbiting satellites might need to take 

Earth’s Albedo, with a value of 0.3 (de Pater & Lissauer, 2007), into account also, in order for the 

propagation to be within the required tolerances. 

It is possible to model this force in a simple way by using 

arad = 𝑐𝑅  
𝑊 𝑆

𝑚 𝑐
,    𝑤𝑖𝑡ℎ    0 ≤ 𝑐𝑅 ≤ 2 (2.12) 

where 𝑊 represents the incoming radiation flux, 𝑆 is the cross-sectional area, 𝑐 is the speed of 

light, and 𝑐𝑅 is a factor that takes into account the satellite’s reflectivity. In (2.12), 𝑊 is not a 

constant value and varies according to the proportional relation 

𝑊𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑠𝑢𝑟𝑓𝑎𝑐𝑒
2 = 𝑊1 𝑟1

2 = ⋯ = 𝑊 𝑟2 →  𝑊 = (
𝑟𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑟
)
2

𝑊𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (2.13) 

And, thus, the model shown in (2.12), when applied to the Solar System, can be rewritten as: 

arad = 𝑐𝑅  
𝑆

𝑚 𝑐
(
𝑅𝑠

𝑟
)
2

𝑊𝑆 (2.14) 

where 𝑅𝑆 is the radius of the Sun, r is the distance from the Sun to the point of interest (usually 

spacecraft) and 𝑊𝑆 is the radiation flux at the surface of the Sun. 

Close to the Earth, 𝑊𝑆 ≈ 1350 W/m2 and the radiation due to the Earth Albedo (including 

infrared radiations) is about 300 − 400 W/m2. These values, of course, are affected by the solar 

activity or time-varying coefficients of reflectivity. For this reason, a precise model of the solar 

activity is required for higher accuracies. 

Figure 2.2 offers a great and general overview of how much the various forces mentioned above 

influence the orbiting body when this trajectory takes place around the Earth. 

2.3 PRECISE ORBIT DETERMINATION 
As it was introduced in Chapter 1, POD is based on the combination of dynamics and orbital data 

to obtain a statistical orbit prediction leading to very high accuracy levels. In this section, a more 

detailed definition will be elaborated, including the resources needed, the theory involved, and 

its application to space related problems. 

2.3.1 Data Acquisition 
In order to make use of a POD method, a set of observations is needed. These observations can 

come from different sources, depending on the instrument used for the acquisition. Nowadays, 

two of the most frequently used techniques are GNSS positioning and Azimuth-Elevation (AE) 

tracking. 

GNSS measurements are taken using satellite networks such as GPS, Galileo, or GLONASS 

services. They allow for POD without ground tracking facilities, which is vital for autonomous 

spacecraft navigation or formation flying. They are taken as pseudo-range and carrier phase 

measurements and afterwards transformed to Position, Velocity, Time (PVT). Examples of its 
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application can be found in (Bock, et al., 2007). The accuracy of these instruments is usually in 

the order of 1 − 10 𝑚. 

 

Figure 2.2 - Magnitude of the different forces involved in Earth-centred orbits. (Montenbrück & Gill, 2000) 

 

These measurements will be used throughout this document represented as PVT values. Some 

of the advantages inherent to GNSS measurements are continuous tracking and high accuracy 

results, but requires the satellite to carry a GPS receiver and is dependent on the GNSS network 

involved. 

On the other hand, AE data are taken using ground facilities that track arcs of the satellite’s 

trajectory yielding data in the form of two angles: azimuth, which is the angle that the projection 
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of the station-satellite line onto the Earth’s surface forms with the direction of the Earth’s north 

pole; and elevation, which is the angle that the station-satellite line forms w.r.t. to the local 

horizon (more information in (Montenbrück & Gill, 2000)). The main benefit of these 

observations is that they require a much simpler setup for the satellite to be tracked. However, 

they do not offer continuous data (sometimes multiple ground stations are required) and 

present lower accuracy (especially for lower elevations, where the atmospheric distortions are 

larger). For the purposes of this thesis, this accuracy has been assumed to result in position 

errors of around 10 − 100 𝑚. 

In any case, both acquisition techniques are relevant in the current space industry and, thus, 

tests involving their application will be run to assess whether the results given by the different 

penalty functions studied vary from one to another. 

2.3.1.1 Covariance Matrixes 

Covariance matrixes are used to collect, in a numerical way, information about the confidence 

level of a certain batch of measurements or the correlations between these measurements. 

Typically, they are used in weighted POD methods and play relevant roles in their application. In 

this thesis, the covariance matrixes involved have been set to be diagonal, meaning that no 

correlation is expected between the different observations. In reality, this is far from true, but 

represents a fair approximation when it comes to simulation environments. 

2.3.2 Batch Methods vs Sequential Methods 

Regarding the application of the POD algorithms, there are two possible methodologies: batch 

methods and sequential methods. 

Batch methods make use of a set (or “batch”) of measurements taken prior to the orbit 

determination process. Because of that, their ideal application lies on the ground segment. 

These methods make use of all the observations at once to compute the estimation of the 

trajectory. On the other hand, sequential methods provide an estimation of the trajectory that 

is updated every time an observation is made, what makes it perfect for real time applications 

such as on-board orbit determination. 

Even though differences exist between the applications of both estimators (Tapley, Schutz, & 

Born, 2004, p. 237), their results show a very close agreement. Because the focus of this research 

lies on the comparison of the different penalty functions involved and not on a particular 

application of the tool, batch methods will be used for the tests included here. This is also 

supported by the possibility to apply the developed algorithm to real-world applications from a 

ground-segment perspective. 

2.3.3 General Formulation of the Batch Methods 

The general formulation of a batch method is based on a formulation where a set of parameters 

to be estimated has a linear (or linearised) relation with the measurements taken. For this simple 

formulation, the problem is stated using three different components: 

 The observations, 𝑌, grouped in a column vector containing the different values for the 

measured parameters, e.g., position, angle, range… 

 The estimated parameters, 𝑋, grouped as well in a column vector and representing the 

final outcome of the estimation process. 

 The model matrix, 𝐴, represented by a matrix expressing the partial derivatives of the 

observations w.r.t. the estimated parameters. It relates the two latter components such 

that: 
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𝑌 = 𝐴𝑋  (2.15) 

Naturally, this expression is never exact because of imperfections in the models or noise in the 

observations, so a misfit is left. This misfit, 𝜌, is expressed as 

𝜌 = 𝑌 − 𝐴𝑋  (2.16) 

and 𝜌 is the quantity to be minimised so that 𝑋 is the best possible fit for the cloud of 

observations 𝑌. 

To minimise 𝜌, a penalty function, Φ, is used to express the final form of the determination 

problem as shown in Equation (2.17). The optimisation and the penalty functions involved are 

further explained in Sections 2.4 and 2.5, respectively. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     Φ(𝜌)  (2.17) 

2.3.3.1 Linearised Batch Methods 

If 𝑋 is linearly related to 𝑌, then the problem is straight-forward and a solution is easily found. 

However, in space applications, as well as in many other fields, the relation between the orbital 

state and the observations taken is not linear, so a linearised approach needs to be taken 

(Tapley, et al., 1994). Then, an initial guess is necessary and the components of the problem are 

changed to: 

 The observation residual, 𝑦. It represents the difference between the real 

observations, 𝑌, and the estimated observations, 𝑌∗, that have to be provided as an 

initial guess.2 

 The parameter residual, 𝑥. It represents the increment that has to be added to the first 

guess of 𝑋∗ to reach the next estimation (and eventually the final solution). 

 The model matrix, 𝐴, is again composed of the partial derivatives of the observations 

w.r.t. the estimated parameters. For space applications, this matrix is usually combined 

with the State Transition Matrix (STM), accounting for the dynamical evolution of the 

state; and obtaining, thus, the design matrix, 𝐻. 

The problem is finally formulated as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     Φ(𝜌) = Φ(𝑦 − 𝐻𝑥)  (2.18) 

When the process is linearised, an iterative process needs to be adopted until convergence is 

reached. Usually, a tolerance level is set and the change on the value of 𝑋 (i.e., 𝑥) is used as 

convergence criteria. This process is accurately detailed in Section 4.6 from (Tapley, Schutz, & 

Born, 2004) and will not be further discussed here. 

2.3.4 State Transition Matrix 

As mentioned before, the STM is used in orbit determination problems to serve as a way to 

integrate the evolution of the orbital state, when a relatively small perturbation, represented 

by Δ𝑋0 is introduced. The perturbation needs to be small because if its magnitude is too large, 

the process takes place out of the confidence region for the linearization of the model, and the 

result may not be accurate enough for the iterative process to find convergence. 

The STM satisfies the relation 

                                                           
2 The (*) superindex is adopted following the referred bibliography and represents estimated values, as 
opposed to measurements or other constant data. Further explanations can be read in the literature 
and/or in the Glossary Annex. 
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Δ𝑋𝑘 = 𝑆𝑇𝑀(𝑡𝑘, 𝑡0)  Δ𝑋0  (2.19) 

and always needs to be referred to an initial epoch (𝑡0). Detailed explanations about how the 

STM is obtained or its fundamental concepts are included in the literature, mainly in (Tapley, 

Schutz, & Born, 2004) and (Montenbrück & Gill, 2000). The latter, additionally, recommends 

that, as the calculation of the STM is a computationally demanding operation, reduced-accuracy 

models are utilised when the STM is generated. The differences in the results have been proved 

by the author (and throughout this thesis) to be completely dismissible and the savings in 

computational efforts really are worth the assumption. 

2.3.4.1 The Sensitivity Matrix 

The Sensitivity Matrix (SM) can be used for the estimation of parameters other than the 

components of the state vector, e.g., manoeuvres, coefficients, or satellite`s dimensions. 

This matrix adds extra columns to the STM accounting for the partial derivatives of the 

accelerations involved in the propagation of the trajectory w.r.t. the selected parameters. Most 

typically, the drag coefficient, 𝑐𝐷, the radiation coefficient, 𝑐𝑅, or the manoeuvre commands are 

estimated to compensate for errors in the modelling of the satellite or in the models used for its 

propagation. 

Again, more detailed information can be found in the literature. 

2.4 OPTIMISATION THEORY 
In this section, CO techniques will be introduced. As a starting point, conventional optimisation 

techniques will be briefly explained, to serve as reference point.  

2.4.1 General Optimisation 

The general optimisation problem is of the form: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓0(𝒙) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑓𝑖(𝒙) ≤ 𝑏𝑖,     𝑖 = 1,… ,𝑚 
(2.20) 

 

where the vector 𝒙 is composed of the optimisation variables, 𝑓0:ℝ
𝑛 → ℝ is the objective 

function (a.k.a. cost function), and 𝑓𝑖: ℝ
𝑛 → ℝ are the 𝑚 (in)equality constraints. The optimum 

vector that would minimise the objective function shown in Equation (2.20) is called 𝒙∗. In the 

same fashion, the mentioned problem can be maximised if −𝑓0(𝒙) is chosen as the objective or 

cost function. 

The general optimisation problems can turn out to be extremely hard to resolve as the 

optimisation variable increases the number of elements that have to be optimised. According to 

(Hindi, 2004), the reasons for that are: 

1. Local optima may blur the optimum point search. 

2. There might even not exist a set of feasible points (due to constraints, for example). 

3. The stopping criteria is often arbitrary. 

4. The convergence rates could be very poor. 

5. Numerical problems could cause the algorithm to stop or wander. 

On the other hand, not all the optimisation problems are hard to solve and the ones that fit the 

requirements for an algorithm to find a proper optimal point are quite efficiently solved. Here, 

the selected constraints play an extremely relevant role because, sometimes, functions that are 

bounded within a certain range have the minimum precisely in the limit of their domain. Linear 
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programming or the well-known Least Squares method (LSQ) are also easily and reliably solved. 

They are nowadays considered as, in words of Stephen Boyd (Boyd & Vandenberghe, 2009), a 

“mature technology”, due to the extensive research they have been the object of. These two 

types of problems are comprised by a larger set of problems called “Convex Problems”. 

2.4.2 Convex Theory 

In this section some important (and also basic) concepts about CO theory will be introduced. 

This will be mainly taken from (Boyd & Vandenberghe, 2009). 

Convex Sets 

A set C is affine if the linear combination of any points in the set is also in C. This idea can be 

extended from two points to n points, being the linear combination (equation of a line): 

𝜃1𝑥1 + ⋯+ 𝜃𝑛𝑥𝑛 (2.21)    

where 𝜃1 + ⋯+ 𝜃𝑛 = 1. 

Similarly, a certain set is convex if the line segment (and not the whole line, as happened with 

affine sets) between any two points in C lies in the set as well, i.e., if for any 𝑥1, 𝑥2  ∈ 𝐶 and any 

𝜃 such that 0 ≤ 𝜃 ≤ 1: 

𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝐶 (2.22)    

In plain words, a set is convex if a line connecting two points in it can be made passing only 

through points that lie in the set. Convex sets must, therefore, have a non-empty interior. 

 

Figure 2.3 - Some simple examples. Left: a hexagonal convex set. Centre and right: two non-convex sets (Boyd & 
Vandenberghe, 2009). 

 

Something that is really useful when dealing with (potentially) convex sets is to know how to 

determine whether they are or not actually convex sets. There are three main ways to assess 

that: 

 Analytical Evaluation: if the function that generates the set is convex, it can be 

decomposed into convex subfunctions and/or it has been formed with operations that 

preserve convexity (see Section 2.4.3), then the set will be convex. This is not very 

applicable to computational techniques and has a much more theoretical and didactic 

basis. 

 Restriction of a convex function to a line: if a function is restricted to a line (making it 

intersect with a plane, for example), it can be said that the function is convex (and thus 

the set it generates) if any of these lines is also convex. This generates infinite lines, but 

conceptually is a great way to understand the way the set is formed. 

 Random point generation: if a large enough number of pair of points is generated and 

each segment connecting all of these pairs is evaluated, then, after a number of 

iterations, it can be concluded with a relatively high degree of certainty whether the set 

is convex or not. 
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The convex Hull of a set C is the smallest volume that makes a set of points convex. This can be 

clearly understood in Figure 2.4 

 

Figure 2.4 - Convex Hulls of simple sets (Boyd & Vandenberghe, 2009). 

 

Another type of set is what is called a cone. A set C is a cone if for every 𝑥 ∈ 𝐶 and any 𝜃 such 

that 0 ≤ 𝜃, it applies that 𝜃𝑥 ∈ 𝐶. Moreover, this cone is convex if: 

𝜃1𝑥1 + 𝜃2𝑥2 ∈ 𝐶 (2.23) 

for any 𝑥1, 𝑥2  ∈ 𝐶 and 𝜃1, 𝜃2 ≥ 0.  

 

Figure 2.5 - Convex cone (left) and non-convex cones (right) (Bhagat, 2016). 

 

Note that the fact that 𝜃𝑖 is always non-negative defines all the points of a convex cone at one 

side of the apex (which is usually considered to be placed at the origin). In the same fashion as 

before, given an apex point, conic hulls may be defined as can be seen in Figure 2.6. 

 

 

 

Figure 2.6 - Conic Hulls (Boyd & Vandenberghe, 2009). 

 

A conic set can be constrained to a certain dimension by applying a certain norm. One of the 

most famous ones is the second-order cone, which results from applying the Euclidean norm to 

a certain conic set. It is defined as: 

𝐶 = {(𝒙, 𝑡) | ‖𝑥‖2 ≤ 𝑡} (2.24) 

If applied to ℝ3, it is known as the ice cream cone or Lorentz cone (see Figure 2.7). 
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Figure 2.7 - Lorentz cone (Bhagat, 2016). 

 

2.4.3 Convex Functions 
A function f: ℝ𝑛 → ℝ is said to be convex if 𝒅𝒐𝒎 𝑓 is a convex set for all 𝑥, 𝑦 ∈ 𝒅𝒐𝒎 𝑓, and 0 ≤

𝜃 ≤ 1: 

𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦) (2.25) 

Equation (2.25) is also known as the Jensen inequality (Boyd & Vandenberghe, 2009). From a 

geometrical point of view, Equation (2.25) can be interpreted as: 

A function f is convex if the line segment between (𝑥, 𝑓(𝑥)) and (𝑦, 𝑓(𝑦)) lies above the graph 

of f in the range [𝑥, 𝑦]. 

 

Figure 2.8 - Geometrical interpretation of a convex function (Boyd & Vandenberghe, 2009). 

 

The same can be said about a concave function, with the difference that in a concave function, 

the chord between these two points lies below the graph. 

Sometimes, some functions present problems when defining their domain, and thus, the 

resolution of these becomes more difficult. For this sake, there is a technique known as 

extended-value extension. In this technique a value for the function is assigned when the 

function is evaluated out of its domain. This is: 

𝑓(𝑥) = {
𝑓(𝑥)   𝑥 ∈ 𝒅𝒐𝒎 𝑓

    ∞    𝑥   𝒅𝒐𝒎 𝑓
 

(2.26) 

In this way, when the function is not defined, it is ensured that its value is higher (or at least 

equal) than anywhere else in the domain. 

The Jensen inequality (Equation (2.25)) and the extended-value method do not always serve as 

a proof of the (non-)convexity of a certain function. Luckily, there are other methods that are 

used to find out whether a function is convex or not. The two main methods are grouped as first 

and second-order conditions for convexity: 

First-order condition: For 𝑓 differentiable, it is convex if and only if 𝒅𝒐𝒎 𝑓 is convex and 
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𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓(𝑥)𝑇(𝑦 − 𝑥) (2.27) 

in all 𝑥, 𝑦 ∈ 𝒅𝒐𝒎 𝑓. When observed carefully, it is clear that Equation (2.27) is a first-order 

Taylor approximation of the function itself, thus, what this expression reflects is that the Taylor 

expansion of a function is a global underestimator of its behaviour. This implies a concept of 

vital importance: it is possible to obtain global information of a convex function from local 

information. Proof of this very important property is given in (Boyd & Vandenberghe, 2009). 

 

Figure 2.9 - First-order condition for convexity (Boyd & Vandenberghe, 2009). 

 

Second-order condition: For 𝑓 twice differentiable, it is convex if and only if 𝒅𝒐𝒎 𝑓 is convex 

and its Hessian (second derivative) at any point is positive-semidefinite: 

∇2𝑓(𝑥) ≽ 0 (2.28) 

where ≽ refers to a matrix inequality. For a function in 𝑹, this condition basically says that a 

function is convex if its derivative, i.e., its growth, is always non-decreasing, 𝑓′′(𝑥) ≥ 0. 

These two conditions can be easily reversed for the concave case by just changing the signs in 

the inequalities. 

Examples of Convex Functions 

Some of the most basic and known examples of convex functions are: 

1. Exponential functions: 𝑒𝑎𝑥 is convex in ℝ, for any 𝑎 ∈ ℝ. 

2. Powers: 𝑥𝑎 is convex in ℝ++ when 𝑎 ≥ 1 or 𝑎 ≤ 0 and concave otherwise. 

3. Powers of absolute value: |𝑥|𝑝, for any 𝑝 ≥ 1, is convex in ℝ. 

4. Logarithm: concave in ℝ++. 

5. Negative entropy: 𝑥 ⋅ log(𝑥) is convex in ℝ+if the function is defined as 0 when 𝑥 = 0. 

6. Norms: every norm in ℝ𝑛 is convex. 

7. Max functions: always convex. 

8. Quadratic-over-linear functions: 𝑥2/𝑦 is convex when 𝒅𝒐𝒎 𝑓 = ℝ × ℝ++. 

9. Log-determinant: 𝑓(𝑿) = log(det𝑿) is concave in 𝒅𝒐𝒎 𝑓 = 𝑆++
𝑛 . 

Operations that Preserve Convexity 

Also important is to take into account the operations that allow to preserve convexity when they 

are applied: 

1. Non-negative scaling. 

2. Addition. 

3. Non-negative weighted sum (from two previous ones). 

4. Composition with affine mapping: if 𝑓:ℝ𝑛 → ℝ,𝑨 ∈ ℝ𝑛×𝑚, and 𝒃 ∈ ℝ𝑛: 

𝑔(𝒙) = 𝑓(𝑨𝒙 + 𝒃) 
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where 𝑔:ℝ𝑚 → ℝ, and 𝒅𝒐𝒎 𝑔 = {𝒙 | 𝑨𝒙 + 𝒃 ∈ 𝒅𝒐𝒎 𝑓}, then if 𝑓 is convex, 𝑔 is also 

convex. 

5. Point-wise maximum. 

6. (Point-wise) Minimization. 

All these cases are further explained in (Boyd & Vandenberghe, 2009). 

2.4.4 Optimisation Problem 
First of all, some basic terminology used in general optimisation problems will be defined. The 

problem notation is written as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓0(𝒙) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑓𝑖(𝒙) ≤ 0,       𝑖 = 1,… ,𝑚 
                       ℎ𝑖(𝒙) = 0𝑖,     𝑖 = 1,… , 𝑝 

 (2.29) 

where all components are the same as described in Equation (2.20) except ℎ𝑖(𝒙), which are the 

𝑝 equality constraints. Also note that all constrains are referred to 0 and are set as minor or 

equal. If 𝑚 = 𝑝 = 0, the problem is unconstrained. 

The domain (𝐷) of the convex problem is defined as: 

𝐷 = ⋂𝒅𝒐𝒎 𝒇𝒊

𝑚

𝑖=0

∩ ⋂𝒅𝒐𝒎 ℎ𝑖

𝑝

𝑖=1

 

(2.30) 

A problem is feasible if there is at least one point contained in the domain 𝐷. Moreover, an 

optimal value (𝑝∗) is defined by: 

𝑝∗ = 𝑚𝑖𝑛{𝑓0(𝒙) |  𝑓𝑖(𝒙) ≤ 0, 𝑖 = 1,… ,𝑚, ℎ𝑖(𝒙) = 0𝑖 , 𝑖 = 1,… , 𝑝}  (2.31) 

In other words, 𝑝∗ is the minimal point that fulfils the constraints imposed in Equation (2.30). 

Note that 𝑝∗ is used as well when working in the extended-value case. There, if the problem is 

infeasible, 𝑝∗ = ∞. The optimal point 𝐱∗ is the point that makes 𝑓0(𝒙
∗) = p∗. 

With this set up, there are several characteristics that could be further explained, such as 

changes of variables, function transformations, introduction of slack variables or 

elimination/introduction of equality constraints. These cases are explained in detail in (Boyd & 

Vandenberghe, 2009). 

2.4.4.1 Convex Optimisation Problem 

The convex optimisation problem has the form: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓0(𝒙) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑓𝑖(𝒙) ≤ 0,       𝑖 = 1,… ,𝑚 
                       𝑎𝑖

𝑇𝒙 = 𝑏𝑖,     𝑖 = 1,… , 𝑝 

 (2.32) 

where f0, … , 𝑓𝑚 are convex functions. Three points must be remarked with respect to the 

general optimisation problem: 

1. The objective function must be convex. 

2. The inequality constraints must also be convex. 

3. The equality constraints must be affine. 

This immediately remarks an important property: the feasible set of a convex optimisation 

problem is convex. 
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𝐷 = ⋂𝒅𝒐𝒎 𝒇𝒊

𝑚

𝑖=0

 

(2.33) 

As mentioned before in Section 2.4.3, the first-order condition for convexity allows to obtain 

global information from local information. In that case, for any differentiable 𝑓 and 𝑥, 𝑦 ∈

𝒅𝒐𝒎 𝑓0: 

𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓(𝑥)𝑇(𝑦 − 𝑥) 

and, thus, 𝑥 is only optimal if and only if it belongs to the set of feasible points for the problem 

and ∇𝑓(𝑥)𝑇(𝑦 − 𝑥) ≥ 0. Proof of this fact can be found in (Boyd & Vandenberghe, 2009, p. 139). 

2.4.4.2 Special Cases 

The convex optimisation problems may appear in special or characteristic forms that allow for a 

simpler resolution. Three very well-known cases will be briefly commented in the next 

paragraphs. 

1. Linear Programming (LP): The special case when both the objective function and the 

constraints are affine. This is, the problem has the form: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑐𝑇𝒙 + 𝑑 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝐺𝒙 ≤ ℎ 
                       A𝐱 = b 

(2.34) 

where d is usually omitted, since it does not change the outcome of the optimisation. 

2. Quadratic Programming (QP): When the previous LP problem includes a quadratic term in 

the objective function, while the constraints are preserved affine. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     
1

2
𝒙𝑇𝑷𝒙 + 𝒒𝑇𝒙 + 𝑟 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝐺𝒙 ≤ ℎ 
                       A𝐱 = b 

(2.35) 

When, additionally, one or more constraints are also quadratic, the problem is called 

Quadratically Constrained Quadratic Problem (QCQP). The famous LSQ problem, is an 

example of unconstrained QP problem, and LP problems are a special case where 𝑷𝒊 = 0, 

thus, QP problems are more general than LP. 

3. Second-Order Conic Programming (SOCP): This is a more general problem in which one of 

the constraints is a second-order conic constraint: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓𝑇𝒙 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   ‖𝐴𝑖𝒙 + 𝑏𝑖‖2 ≤ 𝑐𝑖
𝑇𝒙 + 𝑑𝑖 ,       𝑖 = 1,… ,𝑚 

                   F𝐱 = g 

(2.36) 

In this case, for example, if Ai = 0 a general LP problem is posed. It is clear from Equation 

(2.36) that this form is more generic. There is, however, an even more general form of a 

convex problem:  

4. Conic Programming (CP): The difference with respect to the SOCP is that it contains a 

generalised inequality constraint (M𝒙 + 𝐩 ≼k 0) over a certain cone 𝐾 ⊆ ℝ𝑚. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓𝑇𝒙 (2.37) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑀𝒙 + 𝒑 ≼𝑘 0 
                       F𝐱 = g 

The term generalized inequality means that the point in discussion is contained in a certain 

cone, component-wise. If write 𝒙 ≼ 𝒚, that means that 𝑥𝑖 ≤ 𝑦𝑖  , for 𝑖 = 1,… ,𝑚. As it is still 

an inequality, it preserves its natural properties: 

𝒙 ≼𝐾 𝒚 → 𝜶𝒙 ≼ 𝜶𝒚        ∀𝜶 > 𝟎 

𝒙 ≼𝐾 𝒚 → 𝜶𝒙 ≽ 𝜶𝒚        ∀𝜶 < 𝟎 

𝒙 ≼𝐾 𝒚   𝒙 ≽𝑲 𝒚                 𝒙 = 𝒚 

(2.38) 

The expression 𝑀𝒙 + 𝒑 ≼𝑘 0, means that 𝑀𝒙 + 𝒑 ∈ 𝐾. This information is further 

completed in (Bhagat, 2016) and (Boyd & Vandenberghe, 2009). 

It can be observed that, if a CP solver is coded, all the other type of problems would be solved, 

because they are contained in the formulation and to reach them would be only a matter of 

setting determined coefficients to zero. However, there is a flaw to this simple idea: the 

generalised inequalities. They apply an equal concept in different ways and it is difficult to define 

a generalised inequality in an efficient way in a computational solver. The solution for this, is 

explained in Section 4.4.2 of (Bhagat, 2016) and deals with this problem based on the fact that, 

for the SOCP, the set of inequality constraints are defined by 𝑚 cones (one for 

each 𝐴𝑖, 𝑏𝑖, 𝑐𝑖 , and 𝑑𝑖). If all the sets of feasible points for each cone are obtained, 𝑚 cones that 

define the problem will be found. The intersection of all these cones forms the set of feasible 

points of the whole problem, 𝐾, and, thus: 

𝐾 = 𝑘1 × 𝑘2 × …× 𝑘𝑚 (2.39) 

where 𝑘𝑖 represents the cone for the 𝑖𝑡ℎ constraint and 𝐾 is the union of all of them. 

With the help of the formulation of the norm-cone shown in Equation (2.23), it is possible to 

define the components M and 𝑝 shown in Equation (2.38) as: 

𝑘𝑖 = {(𝐴𝑖𝒙 + 𝑏𝑖, 𝑐𝑖
𝑇𝒙 + 𝑑𝑖) | ‖𝐴𝑖𝒙 + 𝑏𝑖‖2 ≤ 𝑐𝑖

𝑇𝒙 + 𝑑𝑖} 

→ (
𝐴𝑖𝒙 + 𝑏𝑖

𝑐𝑖
𝑇𝒙 + 𝑑𝑖

) = (
𝐴𝑖

𝑐𝑖
𝑇)𝒙 + (

𝑏𝑖

𝑑𝑖
) ≽𝑘𝑖 0 

(2.40) 

and thus: 

M = −

(

 
 
 
 

𝐴1

𝑐1

𝐴2

𝑐2

⋮
𝐴𝑚

𝑐𝑚 )

 
 
 
 

     𝑝 = −

(

 
 
 
 

𝑏1

𝑑1

𝑏2

𝑑2

⋮
𝑏𝑚

𝑑𝑚)

 
 
 
 

 

(2.41) 

where the negative sign helps the ≽ shown in Equation (2.40) transform to a ≼ as Equation 

(2.38) requires. 

2.5 PENALTY FUNCTIONS 
In this section, the different penalty functions, Φ, to be compared throughout this thesis will be 

introduced. A graphical representation of these functions is depicted in Figure 2.10. It is worth 

noting that all of the cost functions studied in this report, including the quadratic cost function 
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used in the traditional LSQ method, are convex, and, thus, all the theory explained above can be 

applied to them. 

 

Figure 2.10 - Graphical representation of the different penalty functions studied. 

 

2.5.1 Least-Squares 

The LSQ parameter estimation, based on the L2-Norm, is used to obtain reliable solutions for a 

certain set of parameters given a larger set of measurements and a model relating the 

parameters and the measurements. The LSQ penalty function can be described as: 

ΦLSQ(𝜌) = 𝜌𝑇𝜌 (2.42) 

The LSQ batch method fits linear problems, so its application to problems with a non-linear 

behaviour would require the linearization of these. Thus, starting from a relation between the 

observations, 𝑦𝑖  (𝑖 = 1, 2, … ,𝑚), and the parameters, 𝑥𝑗 (𝑗 = 1, 2, … , 𝑛) 

𝑦𝑖 = 𝑎𝑖,1𝑥1 + 𝑎𝑖,2𝑥2 + ⋯+ 𝑎𝑖,𝑛𝑥𝑛 (2.43) 

It is possible to set this relation in matrix form as: 

𝐴  𝑥∗ = 𝑦∗ (2.44) 

where  𝑥∗ and 𝑦∗ represent the estimated parameters and observations, respectively, and 𝐴 is 

called the design matrix. 

However, if the relation between  𝑥∗ and 𝑦∗is not perfectly linear or noise is present in the 

observations, both sides of Equation (2.44) will not be equal, and residuals will appear: 

𝑦∗ − 𝐴𝑥∗ = 𝜌∗ (2.45) 

The residuals, 𝜌𝑖
∗  (𝑖 = 1, 2, … ,𝑚) represent the misfit vector between the parameters 

(combined with the design matrix) and the observations. 

The LSQ method tries to minimise the sum of the squares of this misfit: 

min{𝜌∗𝑇𝜌∗} (2.46) 
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min{(𝑦∗ − 𝐴𝑥∗)𝑇(𝑦∗ − 𝐴𝑥∗)} 

which leads to the solution 

𝑥∗ = (𝐴𝑇𝐴)
−1

𝐴𝑇𝑦∗ 
(2.47) 

The product 𝐴𝑇𝐴 is called normal matrix. This product is symmetric and positive definite if not 

rank deficient. 

When not all the observations have the same quality, a weighting factor can be included in the 

method. This weighting, 𝑤, is defined as the inverse of the assumed accuracy level, usually 

represented by the standard deviation, 𝜎. 

𝑤𝑖 =
1

𝜎𝑖
 

𝑊 =

(

 
 

𝑤1 0 ⋯ ⋯ 0
0 𝑤2 ⋯ ⋯ 0
⋮
⋮
0

⋮
⋮
0

⋱
⋱
⋯

⋱
⋱
⋯

⋮
⋮

𝑤𝑚)

 
 

 

(2.48) 

Repeating the minimisation procedure used in Equation (2.46), the weighted solution of the LSQ 

method is obtained: 

𝑥∗ = (𝐴𝑇𝑊𝑇𝑊𝐴)
−1

𝐴𝑇𝑊𝑇𝑊𝑦∗ 
(2.49) 

The product 𝐴𝑇𝑊𝑇𝑊𝐴 is called the weighted normal matrix. More specifically, the product 

𝑊𝑇𝑊 is usually written as 𝑄𝑦
−1, which is the inverse of the observation error covariance matrix 

(which needs not to be diagonal). 

𝑄𝑦 =

(

 
 

𝜎1
2 0 ⋯ ⋯ 0

0 𝜎2
2 ⋯ ⋯ 0

⋮
⋮
0

⋮
⋮
0

⋱
⋱
⋯

⋱
⋱
⋯

⋮
⋮

𝜎𝑚
2 )

 
 

=

(

 
 

1/𝑤1
2 0 ⋯ ⋯ 0

0 1/𝑤2
2 ⋯ ⋯ 0

⋮
⋮
0

⋮
⋮
0

⋱
⋱
⋯

⋱
⋱
⋯

⋮
⋮

1/𝑤𝑚
2 )

 
 

 (2.50) 

So the weighted solution could be written as 

𝑥∗ = (𝐴𝑇𝑄𝑦
−1𝐴)

−1
𝐴𝑇𝑄𝑦

−1𝑦∗ 
(2.51) 

The use of a weighted method, allows to also obtain information about the errors in the 

estimation of the parameters. This is known as quality assessment. From 𝑄𝑦 and 𝐴, it is possible 

to obtain the parameter covariance matrix (demonstration can be found in (Visser P. d., 2017, 

p. 7)) 𝑄𝑥:  

𝑄𝑥 = (𝐴𝑇𝑄𝑦
−1𝐴)

−1
 

 (2.52) 

The values in the diagonals 𝑄𝑥𝑗𝑗
= 𝜎𝑥𝑗

2  are estimates of the variance of the estimated 

parameters, where 𝜎𝑥𝑗
 is known as the formal error. On the other hand, the off-diagonal values 

provide estimates for the covariances of the parameters, i.e., the dependency existing between 

each of them and the stability of the estimation process. This correlation is usually represented 

as 
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𝜌𝑥𝑖𝑗
=

𝑄𝑥𝑖𝑗

 √𝑄𝑥𝑖𝑖
 𝑄𝑥𝑗𝑗

         𝑤𝑖𝑡ℎ        − 1 ≤ 𝜌𝑥𝑖𝑗
≤ 1 

(2.53) 

Correlations close to 1 or −1 imply that the set of observations is not good enough to estimate 

parameters 𝑥𝑖 and  𝑥𝑗 simultaneously. 

The formal error is a very insightful parameter that will provide an estimation of how accurate 

the determination of the parameters is, without any information about the true values of the 

modelled function. However, this error only depends on modelling parameters (design matrix 

and covariance matrix of the observations). For this reason, if the model’s accuracy or the 

measurements are not as close to reality as expected, the estimated error would be much 

smaller than the actual error, leading to false conclusions about the quality of the results. This 

is exemplified in Section 3.4. 

2.5.2 L1-Norm 

Even if its use is not as common as the LSQ method, the L1-Norm has been used and proved to 

be less sensitive against certain observation errors such as outliers (Bassett & Koenker, 1978). It 

can be represented by 

ΦL1(𝜌) = ‖𝜌‖1 (2.54) 

and, for a simpler interpretation when using CVX (see Section 2.6.2), it will be implemented as: 

𝑟 = 𝐻𝑥 − 𝑦 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑧 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

                  𝑧 ≥ 𝑟 

               −𝑧 ≥ −𝑟 

(2.55) 

This formulation was used due to convergence issues encountered during the testing phase in 

this thesis. It was defined following the rules and concepts previously introduced in sections 

2.4.2 and 2.4.3. 

2.5.3 Huber’s Penalty Function 

Huber’s Penalty Function (HPF) is a hybrid between the two previously introduced norms that 

tries to make use of the robust qualities of the L1-Norm for outlying measurements, and the 

accuracy level of the LSQ method for the rest. It is described as 

𝛷𝐻𝑃𝐹(𝑥,𝑀) = {
𝑥2, |𝑥| ≤ 𝑀

2𝑀|𝑥| − 𝑀2, |𝑥| ≥ 𝑀
 (2.56) 

where the 𝑀 factor represents the threshold where the Huber´s function changes its behaviour. 

Conceptually, its value means that the cost function will change if the residual is beyond (or 

within) 𝑀 times the standard deviation (Geebelen, Wagner, Gros, Swevers, & Diehl, 2017). If 

nothing else is specified, it will be set to 𝑀 = 1.35, according to the recommendation found in 

(Owen, 2006). 

It represents the most interesting study case of all the penalty functions introduced, since its 

application to space-related problems is yet to be assessed. 
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2.6 SIMULATION ENVIRONMENT 
In this section, the simulation environment used to run the tests will be introduced, ranging from 

the platform used for scripting, to the engines responsible for the propagation of the 

trajectories, or the optimisation of the penalty functions. 

2.6.1 Scripting Frame 

All the tests run throughout this document are set up using a script written in MATLAB. Figure 

2.11 shows a simplified representation of the organisation of the simulation environment. The 

outermost box represents the main MATLAB script, in charge of setting the different conditions 

for the tests, such as the penalty functions involved, the type of test to be run, or the 

initialisation of the variables used in the POD process. After that, and if no real measurements 

are being used, a scenario is generated and a true trajectory is obtained. A layer of noise is 

applied on top of that true trajectory, and the measurements that the batch method will receive 

as input are generated using PVT format nominally (Section 4.4 will also treat different formats). 

Once the input is ready, each configured condition is run in a loop and results for each of these 

conditions are saved and plotted. Each loop consists of a brief initialisation, a call to the function 

that runs the selected POD method, and a results processing section. 

Finally, all the results are saved and the script closes up. 

 

Figure 2.11 - Schematic overview of the testing environment. 

 

2.6.2 CVX 

CVX is a toolbox of solvers designed to deal with convex problems in MATLAB interface in a very 

user-friendly fashion. 

For the developed algorithm, the CVX tool was applied to the optimisation of the penalty 

functions to be assessed. All of the penalty functions were initially included in the manual 

provided (Grant & Boyd, 2017), although the L1-Norm needed a reformulation for a better 

numerical assimilation (shown in Section 2.5.2). 

The basic package of the CVX tool offers two solvers: SDPT3 and SeDuMi (further detailed in 

(Grant & Boyd, 2017)). After thorough testing, it was found that the SDPT3 solver is more robust 

regarding numerical problems, but SeDuMi is able to work using less memory. Due to this, the 

L1- and L2-Norm are minimised using the former while HPF is minimised using the latter. 
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2.6.2.1 Validation of the tool 

The implementation of the CVX toolbox should be tested against the conventional LSQ algorithm 

to check whether the results match. And if they do, it will be used for all the penalty functions 

to be studied, including the LSQ method. The scenario used can be seen in Table 2.3 (on page 

36). 

The results of this test can be observed in Figure 2.12. The nominal noise layer was used for 

these tests (see Section 2.7.1.5) and only position measurements were considered. 

  

Figure 2.12 - Comparison of the results obtained from the conventional LSQ algorithm and from the CVX toolbox. 

 

It is clear that the toolbox fits perfectly the results obtained by the conventional LSQ algorithm 

in both accuracy and convergence rates (so perfectly that the blue line cannot be distinguished 

under the red one without zooming). The only difference, was found in the computational effort, 

where the conventional algorithm resulted to be around 7% faster (50,34 𝑠 against 54,51 𝑠). 

This increase in time was expected, since the toolbox uses a general approach for convex 

problems, which will always be slower than a specific method. Nevertheless, the higher flexibility 

of the CVX tool and the savings in time coming from the problem statement largely compensate 

this drawback. 

These results prove the CVX toolbox to be valid. Thus, from now on, when any L2-Norm (LSQ) 

method is applied, it will be accounting for the CVX implementation. 

2.6.3 MyProp 

The trajectories and the STM need to be computed using an orbital propagator. Such a 

propagator was the objective of the internship of the author of this thesis before the MSc thesis. 

The developed (and hereby implemented) tool is a Precise Orbit Propagator (POP) consisting on 

a numerical integrator able to generate a trajectory from initial scenario conditions. 

This POP, named MyProp, includes all the forces introduced in Section 2.2.2 and some additional 

features such as STM and SM computation, or eclipse detection algorithm. All its different 

modules have been validated in (Peñarroya, 2017), and the tool is ready to be used in a 

professional environment. 

MyProp is coded in C and a mex function was compiled from MATLAB to ease the interaction 

between the two platforms. This allows very fast propagations, combined with a more user-

friendly result processing capabilities. 
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Table 2.1 – Nominal perturbations included in the simulations (unless specified change)3. 

Perturbation Implementation 

Geopotential Degree and order 20 

Sun Gravity DE405 

Moon Gravity DE405 

SRP Spherical Model 

Atmospheric Model NRLMSISE00 

 

The nominal models used in the trajectory propagations can be observed in Table 2.1. If this 

configuration is changed for any specific test, it will be mentioned. 

2.7 MODELLING OF ERRORS 
The different techniques used in POD algorithms usually contain an optimisation problem within 

their structure. Regardless of the nature of the objective function to be minimised, the solution 

obtained is the best fit to the observations, according to a certain penalty function. However, 

this fit is not perfect and there will always be a residual. 

This residual is the numerical representation of the different inaccuracies that a certain 

estimation could have. Mainly, they can be grouped into three different types: errors in the 

measurements, in the models, or in the orbit determination problem. The latter refers to the 

final error of the estimation w.r.t. the real solution, and represents the main discussion of this 

thesis. Thus, it will be treated afterwards in this document, in a more extensive way. The errors 

in the models will be specifically tested in Section 4.3. 

2.7.1 Errors in Measurements 

Depending on the measurement source used, the way in which data is collected varies. Even 

within similar measuring technologies, the quality of the data varies with respect to the accuracy 

of the instrument, the environmental conditions, or the orbital characteristics, for instance. 

In order to execute a POD process, a set of observations is needed. Until the software is ready 

to handle real satellite data, a measurement generator will cover this necessity. This generator 

will include different sources of error to the true trajectory, propagated using MyProp. These 

sources are described in this section, as well as the way in which the developed generator deals 

with them, if applicable. 

2.7.1.1 Stochastic Errors 

Stochastic errors are due to random noise in the measurements that is usually fitted by a certain 

Gaussian distribution. To simulate this, a low amplitude noise around the true trajectory is 

generated, giving place to the observations. This noise is generated using a normal 

distribution, 𝑁~(0, 𝜎), for the nominal noise layer, although different distributions will be 

tested (read Section 3.5.3). It could be defined as: 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑘 = 𝑡𝑟𝑢𝑒𝑆𝑡𝑎𝑡𝑒𝑘 + 𝑁(0, 𝜎) (2.57) 

                                                           
3 See (Peñarroya, 2017) for more information about the used implementations. 
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where 𝜎 is the standard deviation of the noise for each component of the state, i.e., positions 

and velocities. 

This error is processed to a large extent during the POD algorithm, which, by definition, finds the 

trajectory that best fits the cloud of measurements. 

2.7.1.2 Systematic Errors 
This type of errors are usually identified by biases or offsets in the measurements and might be 

difficult to detect. They can arise from problems with the measuring instrument or inaccuracies 

in the modelling parameters. A very typical case for this error could appear when using GPS 

measurements. If the antenna is not exactly in the centre of mass of the satellite, there will be 

an offset between the positions of the satellite (i.e., its centre of mass) and the position of the 

receiver, which is what the measurements reflect. 

These errors are not identified by the POD method and have to be foreseen or processed 

afterwards. For instance, in the GPS case, it is possible to include an estimated offset in the 

measurements to compensate for the location of the GPS receiver within the satellite. 

These systematic errors are currently not included in the generator. 

2.7.1.3 Data Gaps 

Data gaps are very usual problems in measurements that can appear due to the nature of the 

measurements or some temporal impediment, for instance. When a satellite does not have full 

tracking throughout its entire orbit, there will be gaps in the data collected. Depending on how 

large the gaps are, the number of measurements needed to arrive to a certain accuracy will vary. 

The most typical case is range-angle measurements. 

2.7.1.4 Outliers 

Outliers are errors in measurements characterised by a large difference w.r.t. the trend of the 

data. They are very common and have been included in the nominal noise layer that will be 

introduced in Subsection 2.7.1.5. The way in which these measurements are generated in this 

algorithm is based on probabilities and magnitudes. 

The reference trajectory is given to the noise generation function as an input, along with the 

standard deviations, 𝜎, of the noise for each component of the state vector, i.e., three positions 

and three velocities. Based on a pre-established probability, a certain number of observations 

will be flagged as outliers. When this happens, an outlying component will be added, i.e., an 

extra value within the outlier´s magnitude range (pre-established by the user) multiplied by 𝜎. 

Nominally, the configuration settings are adjusted as it is shown in Table 2.2. In this case, the 

observations will have the normally distributed noise, 𝑁~(0, 𝜎), i.e., approximately a 5% of the 

state components of all the observations will include a state component defined as: 

𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑀𝑎𝑔 = ± 𝜎 ∗ 𝑟𝑎𝑛𝑑([10 − 100]) (2.58) 

where, the ± sign means sign of this component is selected randomly. Summing up, the formula 

used to assign noise to an outlying observation, 𝑘, is: 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑘 = 𝑡𝑟𝑢𝑒𝑆𝑡𝑎𝑡𝑒𝑘 ±  𝜎 ∗ 𝑟𝑎𝑛𝑑([10 − 100]) (2.59) 

It is important to remark that this probability is applied to the components. Thus, the final 

number of outlying measurements will correspond approximately to the 5% of six times the 

number of observations. 
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There are many ways to identify them, but in this case, an approach based on the Grubbs´ test 

(Grubbs, 1969) was followed, and extended for multiple outliers; named Generalized Extreme 

Studentized Deviate (GESD) test. This method, chosen for its simplicity and effectiveness, 

calculates statistical parameters about the collection of measurements and looks for values in 

dissonance with the rest. These values are eliminated, leaving a signal free of outliers. 

In this method, an a priori estimation of the number of outliers needs to be given, to serve as 

upper limit. If this number is higher than half the number of measurements, the maximum 

number of outliers can be larger than the number of non-outliers. This is far from acceptable for 

measurement data and the algorithm finds trouble in deciding which of the values are outliers 

and which are not. Therefore, the upper limit for the number of outliers is half of the 

observations, with a recommended value of a third of the data sample. 

In addition, the algorithm needs a reference trajectory to compare the measurements to. This 

reference trajectory is something that, if not given, is completely unknown at the beginning of 

the processing. Thus, the first estimation of the trajectory will include the totality of the outlying 

measurements. After that, every iteration will process the observations using as a reference the 

current estimation of the trajectory, until convergence is found regarding the number of 

outliers. 

The Grubbs’ test uses this reference data to process the outliers. To do that, it finds the point 

that differs the most from the trend, Δmax𝑚𝑒𝑎𝑠, and computes a statistical parameter, 𝐺: 

𝐺 =
|Δmax𝑚𝑒𝑎𝑠|

𝜎
 

(2.60) 

where σ is the standard deviation of the input data, computed from the sample.  

In parallel, the Student distribution is used to compute the 𝑡𝑐𝑟𝑖𝑡 of the distribution 𝑇(𝑛 − 2), with 

significance level 𝛼/𝑛, where  𝑛 is the number of samples in the data, and α is the nominal 

significance level. The critical value, above which, the chosen point is considered an outlier is 

given by: 

𝐺𝑐𝑟𝑖𝑡 =
(𝑛 − 1)𝑡𝑐𝑟𝑖𝑡

√𝑛(𝑛 − 2 + 𝑡𝑐𝑟𝑖𝑡
2 )

 
(2.61) 

If 𝐺𝑐𝑟𝑖𝑡 < 𝐺, the value is considered an outlier and is discarded; if not, the algorithms continues 

with the next value, i.e., the second furthest away from the trend. This process continues until 

the maximum number of possible outliers is reached. It is important to remark that the only 

inputs given for this test are the observations, the reference trajectory, the significance level, 

which is related to the estimated distribution of the outliers; and an upper boundary for the 

number of outliers. 

An interesting case is possible: if the number of outliers is high enough, the 𝜎 and the trend, �̅�, 

can be biased. Thus, the first considered points may not be evaluated as outliers. As more points 

are studied, the �̅� and the 𝜎 will vary, and, at a certain point, one of the “hidden” outlying points 

will be discovered as such. Now, what would happen with the rest of the non-detected outliers? 

Will they be omitted by the algorithm and, therefore, perturb the accuracy of the POD 

algorithm? In preparation for this, the algorithm has been programmed to identify this situation 

and re-evaluate the previous points as outliers. In this way, even very outlier-rich data can be 

successfully processed and the quality of the results will not be compromised. 
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After that, and in order to omit the detected outliers for the POD algorithm, the measurements 

where an outlier is found are set to 0 (every component), as well as the corresponding rows of 

the design matrix that models the dynamics (see Section 2.5.1). Thus, the outlying 

measurements will have no contribution to the residual and the estimated value for the initial 

position is calculated in a clearer way. 

This fact, however, has an impact on the calculation of the estimated errors, which are 

calculated from statistical information and, thus, are affected by the latter. 

 

Table 2.2 - Main characteristics of the nominal noise layer. 

Outlier Probability 5 % 

𝝈 1 𝑚 // 1
𝑚𝑚

𝑠
 

Outlier Magnitude 10𝜎 − 100𝜎 

 

For instance, in the case of the LSQ method, the formal error was defined in section 2.5.1 as the 

square root of the diagonal values contained in the parameter covariance matrix (see Equation 

(2.52)). Because this matrix only depends on the design matrix and the observations covariance 

matrix, the calculated value for the formal error will vary if the rows of the design matrix 

corresponding to the outlying measurements are dismissed. The lesser the number of points in 

a sample (matrix rows in this case) the larger the value of the standard deviation. This can be 

observed in Equation (2.52), where the inverse of something that becomes smaller (since the 

design matrix reduces its dimension after the outliers are processed) yields larger values. 

Summing up, an increase is expected in the formal error after the outliers are processed. This 

increase, in turn, will be approximately proportional to the square root of the ratio between the 

original number of observations over the number of observations containing outliers. Thus, if 

one third of the observations are identified as outliers, the new formal error will increase by a 

factor around √3. 

 

Figure 2.13 - Nominal Noise Layer. 
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2.7.1.5 The noise layer 

When the reference trajectory used needs to be generated, i.e., no real data is being used; noise 

must be introduced to generate measurements that the POD method could take as an input. A 

noise generation is, thus, vital and has been applied to the reference trajectory computed by 

MyProp as explained in the previous subsections. 

Depending on the test configuration, some parameters are modified. However, all these 

modifications take place upon a basic noise that will be referred to as the “nominal noise layer”. 

This layer represents a combination of stochastic noise and outliers and its main characteristics 

are gathered in Table 2.2. 

An outlier probability of 5 % is higher than the actual behaviour of current instruments. 

However, this was selected to keep a conservative approach and make the outlier detection 

easier to evaluate. This philosophy was also followed for the selection of the other parameters 

represented in Table 2.2. 

This noise is applied equally to all scenarios (if no modifications are mentioned) so that the 

comparisons to be made could be more reliable. Figure 2.13 illustrates the generated nominal 

noise. 

 

Table 2.3 – Scenario conditions for POD algorithm testing. 

𝒂 [𝒌𝒎] 7000.0 

𝒆 [−] 0.01 

𝒊 [°] 45.0 

𝛀 [°] 10.0 

𝝎 [°] 50.0 

𝜽 [°] 35.0 

 Epoch  10th August 1993 08:00:00.00 UTC 

dt [s] / timespan [days] 100 / 1 

 

2.8 SCENARIO CONDITIONS 
The scenario conditions, similarly as the noise layer, are also gathered on a general set of 

parameters that will be equally applied to all the tests. When these conditions are changed, it 

will be mentioned in the corresponding section. 

Selecting a single initial scenario for a relatively large number of tests is not straight forward. As 

many perturbations as possible should be included to enrich the results. For that sake, a LEO 

was chosen, so that drag acceleration could be included. The orbit was also chose to be circular 

to further simplify the interpretation of the results. The rest of the orbital elements, as well as 

the epoch, the timespan, and the time-step used to propagate the trajectory (acting as sampling-

frequency) are described in Table 2.3. 

Regarding the satellite’s configuration, a medium size satellite was considered. It is assumed to 

have a wet surface (for both drag and SRP purposes) of 20 𝑚2, a drag coefficient cD of 2.2 and 

a SRP coefficient cR of 1.2. Its shape can be interpreted as a cannon ball. The in-orbit mass 
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is 2000 𝑘𝑔. This information should suffice for the purposes of this thesis, since the attitude of 

the satellite is not considered in the propagations. 

2.9 TESTING RATIONALE 
At this point, all the information needed for the proper understanding of the aim of this research 

has been presented and is, thus, finally time to start with the research. For that, and as it was 

introduced in Chapter 1, a series of tests will be run. It is the aim of this section to justify their 

application and serve as a preparation for the reader for the following chapters. 

There are basically two different sides to the testing: the testing environment and the 

application of the algorithm to actual scenarios, i.e., the performance of the algorithm in 

different situations. The former will be presented in Chapter 3, and the latter distributed among 

chapters 4 and 5. 

2.9.1 Simulation Environment Tests 

These tests refer to the tests that need to be made to warrant not only the validity of the results 

but also of the tools used and the configurations of the simulation environment. 

 The core of the POP in charge of the trajectory propagations has already been validated in 

(Peñarroya, 2017). However, further validations need to be run for the STM, SM, and manoeuvre 

application, gathered in sections 3.1 and 3.2. 

Independently, the CVX toolbox has also been implemented, as explained in Section 2.6.2. 

There, it was proven that the results are identical to those obtained from the usual formulation 

of the LSQ problem. It is not the goal here to validate the toolbox but the application of the latter 

to the stated problem and, if needed, to figure out a way to improve the convergence of the 

minimisation process for each penalty function, since each definition varies the optimal values 

of the problem and, thus, the resolution of the latter. This very important test will be shown in 

Section 3.3. 

Once all the components are proven to work as expected, it is important to validate the 

methodology to be followed during the tests. In principle, as the true trajectory is generated 

within the simulation environment, the results could be easily compared to the true value to 

assess how well each penalty function is able to deal with the introduced noise. However, it 

would be also attractive to explore the possibility of an error estimation assuming no perfect 

knowledge of the true trajectory, as introduced in Section 2.5.1 with the formal error, but for all 

penalty functions. Section 3.4 will take care of this. 

After that, and probably most importantly, the errors in the observations need to be tested. Not 

only its generation but also how much and in which way they affect the results. The developed 

outlier detection function will also be tested in Section 3.5. This test serves also as a first 

comparison between the penalty functions studied in this document, assessing how well they 

can estimate a reference for the data processing function, or, more directly, to assess the 

performances of the different penalty functions when using unprocessed outliers. 

Finally, the value of the 𝑀 parameter of HPF will be also investigated, since it is not clear yet 

how this parameter affects the performances of the function. These results will be presented in 

Section 3.6. 
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2.9.2 Performance Tests 

On the other hand, and once the more computational side of the errors is properly observed 

and assessed, tests related to the performance of the developed algorithm regarding the 

environmental conditions will be run. 

The first variable that comes to mind is the scenario. In Section 2.8, a nominal scenario was 

selected. However, different orbits might yield different results, and that is what Section 4.1 will 

investigate. 

As it was introduced in Section 2.3, one of the most used applications for POD methods is 

parameter estimation. Section 4.2 will collect some results, supported by the validations offered 

in sections 3.1 and 3.2. 

The next set of tests to be run should be focused on simulating the gap existing between the 

models used in any simulation and reality. These gaps can be closely approximated but, for some 

perturbations, such as irregular gravity or atmospheric model mainly, there is always a gap that 

causes errors in the dynamics that needs to be, at least partially, fixed by the POD process. This 

very important set of tests will be included in Section 4.3. 

Another perspective could be taken if, instead of thinking about the scenario configuration or 

the dynamic models, more practical aspects are considered. Up to this point, all the proposed 

tests will be run using PVT measurements (as mentioned in 2.6), but other measurements could 

also be given as an input representing data with different characteristics. This will be treated in 

Section 4.4 with the case study of angle measurements. 

Finally, Chapter 5 will apply the developed algorithm to a real-data case (GOCE mission), to serve 

as further comparison of the penalty functions, as well as a final validation of the developed POD 

process. 
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3 SENSITIVITY ANALYSIS AND TECHNOLOGY SELECTION 

This chapter starts from the first version of the POD algorithm to be used during this thesis. In 

this stage, the concepts introduced throughout Chapter 2 are synthesised in a real simulation 

environment and the first tests are run. 

However, before starting with the core of the tests (performed in Chapter 4) a set of validations 

needs to be made to ensure that the implementation of the software is correct and that a deep 

understanding of the behaviour of the algorithm is gained. Due to this, tests regarding 

convergence capabilities, error estimation, errors in the observations, or a study about how does 

the 𝑀 parameter actually affect HPF will take place in this chapter. 

3.1 MANOEUVRES VALIDATION 
The validation of the manoeuvres will be based on the Gauss’ form of Lagrange’s planetary 

equations (Wakker, 2015, p. 601). These equations calculate the variation of each of the orbital 

elements accordingly to the state of the satellite and the perturbations involved. In this case, 

the perturbation will only be the manoeuvres. A close correlation is expected between the 

outcome of MyProp and the Gauss equations. 

For the equations not to yield any singularity problem, scenario conditions will be set such that 

none of the critical orbital elements, i.e., 𝑒 and 𝑖, is 0. Thus, all the tests are run in equal scenario 

conditions, characterised by the following elements: 

 

Table 3.1 - Scenario conditions for manoeuvre validation 

𝒂 [𝒌𝒎] 10000.0 

𝒆 [−] 0.01 

𝒊 [°] 20.0 

𝛀 [°] 10.0 

𝝎 [°] 20.0 

𝜽 [°] 150.0 

Epoch 10th August 1993 08:00:00.00 UTC 

 

Also, it will be assumed that 𝑀 ≈ 𝜃 based on 𝑒 ↓ 0 (Gauss’ form of Lagrange’s planetary 

equations uses 𝑀 instead of 𝜃). All scenarios would be considered to be Keplerian elliptic orbits 

only perturbed by the thrusting manoeuvre. These manoeuvres will be applied in each of the 

frame axes, in positive and negative directions. This makes for a total of 6 scenarios with 

identical initial conditions and varying manoeuvres. 

𝑚𝑎𝑛𝑜𝑒𝑢𝑣𝑟𝑒𝑠 =

(

  
 

+1 0 0
−1 0 0
0 +1 0
0 −1 0
0 0 +1
0 0 −1)

  
 𝑚

𝑠2
 

(3.1) 
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The loop runs MyProp for the established manoeuvre timespan, collects the ephemeris, and 

calculates the change in each of the classical orbital elements. After that, the Gauss´ equations 

are applied to compute what the theoretical change in each element should be. The Gauss 

formulation of these equations is used because the manoeuvre commands are given in orbital 

frame, which is the frame in which they are based. 

Something to be taken into account is that these equations are linearized in the point where 

they are applied, so the value of each orbital element is included in the computation of its own 

rate of change. For this reason, higher accuracy requires an update of these elements within 

each time step. A very simple Euler-based numerical method is used to obtain this accuracy 

level. 

After that, the results are compared and the relative error is computed, defined as the difference 

between both methods w.r.t. the change in the elements according to MyProp. 

The results obtained for these tests are shown in this chapter in terms of relative errors. 

Additionally, specific cases are included where relevant behaviours that might be of interest for 

the reader will be pointed out. 

3.1.1 Relative Error 

When the set of manoeuvres shown in Equation (3.1) is run, the results shown in Table 3.2 are 

obtained. 

 

Table 3.2 - Relative errors in each of the implemented manoeuvres. 

manoeuvre 𝒂 𝒆 𝒊 𝛀 𝝎 𝜽 

1 0,0022% 0,0021% 0,0000% 0,0000% 0,0010% 0,0245% 

2 0,0032% 0,0034% 0,0000% 0,0000% 0,0006% 0,0220% 

3 0,0000% 0,0001% 0,0000% 0,0000% 0,0004% 0,0009% 

4 0,0000% 0,0000% 0,0000% 0,0000% 0,0001% 0,0010% 

5 0,0019% 0,0000% 0,0000% 0,0003% 0,0003% 0,0174% 

6 0,0019% 0,0000% 0,0000% 0,0003% 0,0003% 0,0174% 

 

The only comment worth making here is that the largest errors belong to the true anomaly (𝜃), 

what can be explained by recalling that it has been assumed that 𝑀 ≈ 𝜃 based on 𝑒 ↓ 0. 

Otherwise, the results are excellent. 

3.1.2 Absolute Error 
In order to get a bit more of insight, one of the scenarios is selected to show how the absolute 

results are like. All the cases show similar levels of accuracy, so scenario number 1 is selected as 

an example, but the conclusions can be extrapolated to any of the others. 

In this example, a positive acceleration is applied onto the radial axis. According to Gauss´ 

equations (Wakker, 2015, p. 601), this should generate variations in every orbital element 

except in the inclination and the RAAN. When the plots shown in Figure 3.4 are observed, it is 

clear that this is exactly what happens, supporting the validation of the manoeuvres. 
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It is also interesting to see how the Gauss equation´s value for the orbital elements shows a 

slight curvature, based on the Euler-based integration approach used. On the other hand, the 

data collected from MyProp is a straight line. This is because, although a Runge-Kutta (RK) 

method is implemented within the software, the ephemeris obtained as an output are 

referenced to each time step, and the intermediate values are not registered. It has been 

explained that, in order for the Euler method to match the integration accuracy level of MyProp, 

around 100 steps are needed (while the RK method inside the propagator uses only 11 for the 

RK89 Verner´s model). 

 

 

Figure 3.1 - Evolution of the classical orbital elements. 

 

Based on these results, the implementation of the manoeuvres is considered validated. 

3.2 STATE TRANSITION AND SENSITIVITY MATRIXES VALIDATION 
In this section the validation process for the STM and SM will be shown. The methodology 

utilised is explained before the results are shown. 

3.2.1 Methodology 

First of all, a number of random scenarios are defined and saved so that the different validations 

are run for the same initial conditions. Although the scenarios are set to be random, there are 

some parameters that have been limited: 

 timespan is fixed to 5 solar days, 

 altitude ranges from 400 − 1000 𝑘𝑚 (for the atmospheric models to be effective), 

 eccentricity is set to be minor than 0,01 (to avoid impacts with the Earth’s surface), 
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 inclination ≤ 45𝑜 (explained in Section 3.2.2), 

 ICRF, and 

 epochs between 1970 and 2015 (limited by the input files for EOP or Space Weather). 

A loop is run for each different scenario. At each iteration, the implemented POP is called, using 

the corresponding scenario conditions, and the trajectory, 𝑋0, the STM, and the SM are obtained 

and stored. After that, a small perturbation to the initial state or the parameters (for STM or SM 

respectively) is applied and, again, the perturbed initial state is propagated using the POP to 

obtain 𝑋0,𝑝𝑒𝑟𝑡. In parallel, the introduced perturbation is also propagated using the stored STM 

(and SM, if applicable) and its evolution, Δ𝑋0, is recorded. 

After that, the outcome of the propagation (POP) of the perturbed state, and the sum of the 

propagation (POP) of the non-perturbed state and the propagated (STM or SM) initial 

perturbation are compared. This is: 

𝑎𝑏𝑠 (𝑿𝟎,𝒑𝒆𝒓𝒕 − (𝑿𝟎 + 𝜟𝑿𝟎)) 
(3.2) 

With this, absolute and relative information about the error can be easily obtained. The relative 

error is computed as: 

𝑟𝑒𝑙𝐸𝑟𝑟𝑜𝑟 =
𝑎𝑏𝑠 (𝑿𝟎,𝒑𝒆𝒓𝒕 − (𝑿𝟎 + 𝜟𝑿𝟎))

𝑎𝑏𝑠(𝑿𝟎,𝒑𝒆𝒓𝒕 − 𝑿𝟎)
% 

(3.3) 

All data are stored and the plots shown in the following section are generated. 

For the STM, twelve different scenarios were run for each perturbation. The reason for this 

number is that a perturbation will be introduced in the initial state in each of the components 

of the state vector (three for position and three for velocity) in each of the directions (positive 

or negative axis). Thus, twelve cases are needed. 

Similarly, an additional set of tests was generated, based on the same scenario conditions, for 

the validation of the SM. The parameters used for the SM are 𝑐𝐷 , 𝑐𝑅, and manoeuvres. The 

scenario used will be perturbed by atmospheric drag, solar radiation, and a single manoeuvre; 

so that any further variation of the involved parameters will have a repercussion in the 

trajectory. 

This process is used for each of the different modules involved in the computation of the STM 

within the POP, i.e., Keplerian, irregular gravity, Sun and Moon gravitational pull (separately), 

SRP, and atmospheric drag. Also, tests for all together was run. Defining a threshold as 

acceptance criteria is not simple for this validation, as it would depend on the application case 

and the complexity of the problem. 

3.2.2 State Transition Matrix 

The magnitude of the perturbations introduced for this validation test are 

ΔX0
initial state =

[
 
 
 
 
 

  

Δ𝑥
Δ𝑦
Δ𝑧
Δvx

Δv𝑦

Δv𝑧]
 
 
 
 
 
𝐼𝐶𝑅𝐹

=

[
 
 
 
 
 
 
 
± 10 𝑚
± 10 𝑚
± 10 𝑚

± 0.01
𝑚

𝑠

± 0.01
𝑚

𝑠

± 0.01
𝑚

𝑠 ]
 
 
 
 
 
 
 
𝐼𝐶𝑅𝐹

, 

(3.4) 
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and the results are shown in the following subsections. The perturbations for the velocities were 

set to be 10−3 times smaller than the ones for positions. 

 

  

  

  

Figure 3.2 - Relative errors for each individual perturbation applied. 
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3.2.2.1 Relative Error 

When the tests for each perturbation are run, the results shown in Figure 3.2 are obtained. 

There, it can be observed that the relative errors do not exceed 0.12% for any of the cases or 

perturbations applied. Moreover, a linear evolution of the relative error is clearly appreciated in 

most of the force models. This means there is a linear increment in the error of the propagated 

perturbation. A relatively large timespan was selected for the propagation to evaluate whether 

there was a certain timeframe after which it is not recommended to use a STM-based approach 

for the orbital propagation. However the results shown offer very accurate results in this sense, 

and it can be concluded that timespans over 5 days in a LEO would not exceed a 0.15% relative 

error. 

The tests for the Earth´s irregular gravity field, nevertheless, show a particularly strange 

behaviour. Compared with the other plots, it is the only one where the relative error does not 

show a clear linear behaviour for every case. There are, however, three cases where the linear 

behaviour holds (coloured in red, blue, and orange from the bottom to the top). 

These three cases represent the scenarios where the inclination of the orbit was lower. 

Moreover, if these scenarios are fetched in the other plots, for example in the Keplerian test, it 

can be seen that they remain practically unchanged (as they do for the rest of the perturbations). 

Therefore, it is possible to conclude that inclination values close to 90° generate larger relative 

errors. Nevertheless, there is no clear proportionality between the value of the inclination and 

the magnitude of the relative error. With the original constraint on the inclination ( 𝑖 ≤ 90°), 

and due to the random nature of the generated scenarios, all test cases showed the same 

behaviour. As it was also important to show the low inclination cases in the analysis, the 

inclination was constrained to be under 45°, so that more low inclination cases were generated 

to picture both behaviours.  

Considering that an order and degree 2 for the harmonic gravity field was used (as 

recommended in (Montenbrück & Gill, 2000)), it makes sense that the orbits with lower 

inclination suffer a more continuous perturbation, i.e., they do not show the oscillations that 

are seen in the plot, since the mass underneath the satellite is more regularly distributed 

according to the harmonics used.  Also, when the trend of each of the errors is analysed, a linear 

component can still be observed underneath the frequency oscillation (related to the relative 

motion of the surface of the Earth under the orbit). 

 

Figure 3.3 - General case validation 
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The magnitude of the relative error increases with respect to the other cases. This is due to the 

fact that the initial perturbation is propagated using a linearized procedure. The more irregular 

the perturbation is, the less valid the linearization becomes, and, thus, the higher the errors.  

After each of the perturbations has been validated, a general case is run, where all the 

perturbations are run together. The results are shown in Figure 3.3, prove that the error due to 

the irregular gravity field overtakes the rest of the error and shapes the general relative error 

(mainly because of the sinusoidal layer that it adds). 

  

Figure 3.4 - Absolute error in orbit centred reference frame. 

 

3.2.2.2 Absolute Error 

It is also very insightful to see how the components of the state evolve. In the right plot of Figure 

3.4, it can be seen that the errors are maintained well below the centimetre level for the 

tangential and normal directions, whereas the radial component shows the largest error. This 

kind of behaviour is interesting, overall when the original difference between both ephemeris 

was much larger in the tangential component instead. 

 

 

Figure 3.5 - Absolute error in ICRF. 
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The propagation of the 𝛥𝑥 as a function of time, is linearly related to the STM values and the 

introduced 𝛥𝑥0. This means that the accuracy will be affected by this linearization error. As it 

was explained in Section 2.3, the STM generation involves the calculation of the partial 

derivatives of the acceleration w.r.t. the satellite´s state. Because of this, the more the 

acceleration the satellite goes under varies, the less accurate a linearization would be around 

that point. In this case, the component in which this varies the most is the radial component, 

since the main acceleration is the gravity from the Earth. However, for sufficiently small 𝛥𝑥0´s 

(as it is the one applied in these tests), this concept does not justify the magnitude of the error 

seen on Figure 3.4. 

Radial perturbation in the initial state 

  

Tangential perturbation in the initial state 

  

Figure 3.6 - Absolute error in orbit centred reference frame for perturbation only in the radial (top) and tangential 
(bottom) direction. Study case with a=10 000 km, e=0.01, 𝑖=𝛺= 𝜔= 𝜃=0°, and 𝛥𝑥 = 10 𝑚. 

 

A different possibility is that the transformation of the obtained ephemeris to the reference 

frame of use (orbital frame) is generating some sort of error. To check this, the same data are 

plotted in ICRF (see Figure 3.5) and it can be observed that the error remains constant. Thus, 

this hypothesis is discarded. 
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In order to study the relation between the initial state perturbations and the errors, a fixed 

scenario is selected (differently from the random set used in the validation) onto which 

perturbations will be applied in the radial, tangential, and normal directions, i.e., in orbital frame 

and not in ICRF axes anymore. The results for the radial and tangential perturbations in the initial 

state are shown in Figure 3.6. 

From these results, it seems likely that a relation between the tangential error before the 

inclusion of the Δ𝑥 propagation and the radial error after the latter (middle-left and upper-right 

subplots of Figure 3.6, respectively) exists. To obtain a better insight on the relative motion of 

both satellites, plots are generated representing the position of the trajectory starting from the 

perturbed initial position w.r.t. to the position of the original trajectory, and the results are 

shown in Figure 3.7. 

When the initial perturbation is applied in the radial direction, a drift in the tangential direction 

is observed (as expected, according to orbital dynamics; see Clohessy-Wiltshire equations in 

(Wakker, 2015)). Nevertheless, a very interesting behaviour appears: the difference between 

the initial minimum radial distance (10 𝑚) and the final minimum radial distance (6.71 𝑚) 

coincides almost exactly with the magnitude of the error appearing in the radial component 

after the 𝛥𝑥 propagation was added (3.29 𝑚, see upper-right subplot of Figure 3.6).  

On the other hand, the tangential 𝛥𝑥0 shows no apparent drift in any component but only a 

periodic oscillation around satellite 1. 

This test was repeated for different magnitudes of the 𝛥𝑥0 and different scenario conditions, 

but the results were still the same. This proves that the error reflected in the radial upper-right 

plot of Figure 3.6 does not come from the STM propagation but from somewhere else. 

 

  

Figure 3.7 - Relative motion of the trajectory with the perturbed initial state w.r.t. the original trajectory. Left side for 
radial perturbation and right side for tangential perturbation. 

 

It is quite intuitive that the arc shown in the left-hand side of Figure 3.7 resembles the curve that 

an orbit would follow throughout its trajectory. To check if this is the case, this hypothesis is 

tried estimating the error that a curved trajectory would generate when measured with respect 

to straight axes. 
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Figure 3.8 - Geometry of a circular trajectory with an orbital reference frame. 

 

The aim is to compute 𝑒𝑟, for a given 𝑒𝑡 and 𝑟. For that, and based on the scheme shown in 

Figure 3.8, a value of 𝛼 ≪ 1° is assumed: 

𝛼 ≈ tan𝛼 =
𝑒𝑡

𝑟
 

𝑒𝑟 =
𝑟

cos𝛼
− 𝑟 

(3.5) 

Applying these formulas to the case shown in Figure 3.6: 

𝑟 = 10 000 𝑘𝑚 , 𝑒𝑡 = 8,105 𝑘𝑚 → 𝑒𝑟 = 3,29 𝑚 

Thus, it is proved that the error in the radial component is only due to the nature of the curved 

(almost circular in this case) trajectory that a satellite follows and the fact that the reference 

frames use straight axes. It can also be said that the tangential distance will map the error to be 

expected in the radial component of the corrected trajectory. 

Finally, it can be observed that, apart from this error, the propagation of Δ𝑥 is able to handle 

the errors due to the orbital dynamics involved with almost perfect accuracy. This can be seen 

in the case where the perturbation in the initial position was only tangential, where the errors 

after the correction are well below the centimetre level (see bottom-right plot of Figure 3.6). 

3.2.3 Sensitivity Matrix 

The perturbations used for the validation are: 

Δparameters = [  
ΔcD

ΔcR

Δ𝑚𝑎𝑛
] = [

10−2

10−2

10−6 𝑚/𝑠2
]. 

(3.6) 

The differences in the perturbations are due to the magnitude of the acceleration they are 

related to. While the accelerations coming from atmospheric drag and SRP are usually relatively 

small (see Figure 2.2), the manoeuvres’ magnitude is quite high, in comparison. Additionally, the 

variations on the drag acceleration and SRP are introduced in their corresponding coefficients, 

whereas the variation for the manoeuvres is directly introduced in its value. 

The initial values for the parameters are  

parameters = [  
cD

cR

𝑚𝑎𝑛
] = [

2.2
1.2

0.001 𝑚/𝑠2
], 

(3.7) 
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where the perturbation for the manoeuvre is applied equally in all the components of the orbital 

frame (radial, tangential, and normal), after one day of propagation, and lasting 10 𝑠. 

  

  

Figure 3.9 - Relative errors for each individual parameter perturbation applied4. Manoeuvres of 0.001 m/s2. 

3.2.3.1 Relative Error 
The results for the relative error are shown in Figure 3.9.  

It is clear that, for the magnitudes used for these tests, the manoeuvre acceleration is the most 

affected by a coefficient variation. Even if the change is still very small (below 0.02% relative 

error), it drives the general case, where all three perturbations in the coefficients are applied. 

All the plots show a drastic change of behaviour after the manoeuvre is implemented (after one 

day). This is the clear reflection of the STM-SM propagation process being strictly linear. A 

manoeuvre creates an extremely abrupt and sudden change in the force that the satellite 

experiences, generating a huge increase of the relative error. 

Because of that, it could be interesting to find out what happens when the acceleration is some 

orders of magnitude higher. The same process is repeated for manoeuvres of 0.01 and 0.1 𝑚/𝑠2 

to obtain the results shown in the figures below and below, respectively. The perturbations will 

                                                           
4 Note that the changes in concavity/convexity of the plots of the error are due to the analysis being 
processed in absolute magnitudes. 
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be again three orders of magnitude smaller than the command, i.e., 10−5 and 10−4 𝑚/𝑠2 

respectively. 

  

  

Figure 3.10 - Relative errors for each individual parameter perturbation applied. Manoeuvres of 0.01 m/s2. 

 

Both cases show similar behaviours. For perturbations in the drag or SRP coefficients, the 

relative error is multiplied by a factor 10 (Figure 3.10 and factor 100 (Figure 3.11), 

approximately, due to the dependence of both acceleration on the position of the body. The 

more this position is altered (with stronger manoeuvres), the further from the point of 

linearization for the STM/SM the satellite will be, and the higher the relative error will become. 

It is worth remarking that the perturbation in the manoeuvres shows now a smaller relative 

error than in the other parameters. Also, although it grows as well, this relative error remains 

more stable, and keeps driving the general case. This is due to the perturbation in the 

manoeuvre instructions having a greater effect in the trajectory of the body than a change in its 

aerodynamic or reflective coefficients (this will become clearer in the next section, where the 

absolute error is shown). 

3.2.3.2 Absolute Error 

As expected, the larger absolute error is given by the case where the manoeuvres are perturbed, 

as observed in Figure 3.12). It clearly dominates the general case and explains why the relative 

errors shown before follow the manoeuvre perturbation behaviour, as it was introduced before. 
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Figure 3.11 - Relative errors for each individual parameter perturbation applied. Manoeuvres of 0.1 m/s2. 

 

3.2.4 Conclusions of the Validation 

Even though the results are extremely satisfactory and the errors are low enough to warrant a 

high accuracy for long timespans and relatively large perturbations, care must be taken 

regarding the magnitudes and behaviours of the forces involved in the orbital problem. The 

observed errors are mainly inconsistencies related to the tangential drift between both 

trajectories, because of curved nature of the orbital trajectories. Also, the errors grow linearly 

with the magnitude of the 𝛥𝑥0. 

In case manoeuvres are applied, it has been shown that, even if they are extremely accurate 

when used within MyProp (see Section 3.1), they introduce a highly non-linear step in the 

accelerations that the satellite undergoes and increase the error of the STM-/SM-based 

propagation. 

With these two main points in mind, and based on the excellent results shown and explained in 

this section, it is possible to ensure that the STM and the SM are validated, and ready to be used 

in a POD process. 
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Figure 3.12 - Absolute error in orbit centred reference frame. 

 

3.3 CONVERGENCE CAPABILITIES 
The first aspect that should be tested is the convergence of the optimisation toolbox itself, to 

make sure the penalty functions are correctly implemented. POD methods are based on solving 
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minimisation problems and, if a solution for this minimisation problem cannot be found, there 

will be no trajectory estimation. 

The cost function for POD applications, whose generic form was introduced in Section 2.3, is 

shown in Equation (2.17). The outcome of this equation is the value that the optimisation 

problem tries to minimise, i.e., the optimal value.  

At this point it is very important to differentiate between the two convergence loops present in 

this algorithm: the inner loop and the outer loop. 

The inner loop refers to the iterative process followed by the CVX tool to find a solution for the 

optimisation problem. The convergence of this method is based on the evolution of the optimal 

value throughout these iterations, and on certain threshold configurations of the CVX toolbox 

(see (Grant & Boyd, 2017)). The result obtained from this loop is conceptually equivalent to the 

solution obtained from the traditional LSQ solution, as represented in Equation (2.47). Once a 

solution is found, it is taken as the current estimate of the POD method, 𝑥∗, and the algorithm 

continues. 

The outer loop is the classical iterative process used in batch methods, where the estimated 

solution is compared to the previous value, until the difference between both, 𝑥∗, is below a 

certain tolerance level. The exact value is taken using the infinity-norm for the residual of the 

parameters, 𝑥∗. Figure 3.13 offers a simplified view of the process. 

 

Figure 3.13 - Schematic overview of the POD batch algorithm. 

 

As it is the object of this thesis to deal with convex functions, the optimisation problem stated 

in the inner loop will always be theoretically possible. However, numerical issues might occur 

due to the used toolbox not reaching the desired convergence, or to the evolution of the optimal 

value not being properly assessed (more details in (Grant & Boyd, 2017)). These numerical 

situations are usually triggered by conflicts between the tolerances of the toolbox and the 

outcome of the penalty function, errors in the measurements or the model that exceed the 

magnitudes that the optimisation method can handle, or a wrong problem set-up. 

To evaluate convergence, a number of tests were run in this section to understand how different 

the optimal values for each penalty function are. The methodology consisted of running the POD 

algorithm using a different penalty function in the inner loop each time. The solution of each 
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penalty function, was given to the other penalty functions to compute the “optimal” 5 value they 

would yield. The aim of this experiment is to evaluate how the same trajectory estimation can 

be represented by the different definitions of the penalty functions implemented and, thus, 

understand the order of magnitudes in which each of these functions usually works. 

This set-up yields a total of nine values for each test configuration (three “optimal” values are 

computed when the LSQ method is active, another three when the L1-Norm is, and another 

three when HPF is). 

The result of this optimal value depends on basically two factors: the number of measurements, 

and the residual in each measurement. The latter, in time, also depends on different aspects, 

such as, the quality of the model w.r.t. the observations, the noise in the observations, or the 

number of outliers, among others. From the mentioned sources, two are known to a much finer 

accuracy: the number of measurements, and the expected error in the observations (see 

sections 2.3.1 and 2.8). Proportional variations in these two factors should intuitively yield 

similar optimisation results. 

The graphical representation of this methodology is rather dense and requires a detailed 

explanation. In the figures shown in this section, the colours labelled in the legend represent the 

penalty function that is active in the inner loop for each test, while the X-axis represents the 

function used to compute the corresponding optimal value (Y-axis) for each parameter 

estimation. This means, every group of three bars with the same colour are computed based on 

the same trajectory estimation. When convergence is not reached, the bars will not be 

displayed. Groups of nine bars (in red, green, and blue) refer to identical testing conditions, and 

when groups like these are concatenated, it means that the testing conditions where altered 

from one to another group, in order to obtain a comparative result. 

 

Figure 3.14 - Optimal Values for the different penalty functions with varying stochastic error magnitude. 

 

First of all, the stochastic noise level is evaluated, and results are shown in Figure 3.14. It can be 

seen that, as the trajectories estimated using each penalty function are indeed quite similar (as 

it will be shown in Figure 3.25, on page 65), the optimal values obtained with each function 

(indicated in the X-axis) are also practically constant for each active CO method (indicated by 

the colour). However, each penalty model has its own definition, as introduced in Section 2.5, 

                                                           
5 Bear in mind that, the optimal values calculated will not be exactly the ones that would appear if a 
different penalty function was used in the inner loop, because the estimated trajectory would be distinct. 
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and, therefore, the optimal values change from one function to another, even when the same 

trajectory estimation is used, e.g., HPF usually presents a higher optimal value than the rest of 

the penalty functions, for identic trajectory estimation results. 

The 𝜎 value is varied for the noise. In these tests, the L2-Norm is the only penalty function able 

to converge always. HPF finds a solution for the first two cases, and the L1-Norm is not able to 

reach convergence from the beginning. Ironically, the test-cases where the noise magnitude is 

larger, and where a more robust penalty function would be of more use, only the L2-Norm, 

which is known for being largely affected by the presence of outlying measurements, is able to 

yield results. This fact represents a need for an improvement in the convergence capabilities of 

the penalty functions. It can be observed that the optimal value of HPF escalates at a faster rate 

than the others as the noise grows bigger. 

If the stochastic noise level is maintained constant, but the number of measurements varies, the 

results shown in Figure 3.15 are obtained. There, five and ten times more observations are used. 

It is important to remark that, in order to maintain the same conditions for the testing while 

increasing the number of measurements, it is the observation frequency and not the timespan 

that should be increased. Both can virtually generate the same extra number of observations, 

however, when the timespan is increased, residuals tend to increase more, due to the fact that 

the longer a propagation lasts, the larger the repercussions in the residuals from small errors in 

the initial state become. Because of this, an increment in the timespan of the trajectory, when 

trying to increase the number of observations, would not only increase the optimal value 

because of the studied parameters, but also due to error drifts in time originated by small 

disturbances in the initial state. 

 

 

Figure 3.15 - Optimal Values for the different penalty functions with different number of observations. 

 

In the previous figures, it can be observed that the L1-Norm already fails to find convergence for 

the nominal case (𝜎 = 1 𝑚 and sampling frequency of 0.01 𝐻𝑧). HPF performs better in this 

sense but the optimisation tool also fails to converge for the most demanding cases. The L2-

Norm keeps yielding excellent results in this aspect. 
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3.3.1 Equivalent Problems: Scaling 

With this information, a different approach is necessary to improve the convergence capabilities 

of the studied penalty functions while leaving the final estimation unchanged. In (Boyd & 

Vandenberghe, 2009), equivalent problems are introduced as a way to deal with issues like this. 

One the most frequent (and most simple) ways to handle this situation is scaling. 

Scaling a minimization problem is nothing else than using non-negative scalar values to multiply 

the cost function and/or the constraints, to accomplish an easier resolution of the problem. 

Scaling is a way to deal with, for instance, large differences in the orders of magnitude between 

the optimised parameters and the solver’s tolerance levels. If a scaling factor is not finely tuned, 

the sensitivity of the solver can be negatively affected and a solution might be found that 

satisfies the tolerances but does not solve the original problem. In fact, a trade-off solution 

should be found that satisfies not only the convergence of the CVX toolbox, but also of the POD 

algorithm itself. With this technique, the scaling parameters will be kept within the  (0, 1] range, 

since there will be no need for augmentation, 0 values yield invalid solutions, and negative 

scalars are not allowed if convexity is to be preserved. 

Typically, space optimisation problems use scaling parameters to work with dimensionless 

quantities, such as the radius of the Earth, or the semi-major axis of the orbit; depending on the 

problem. In a POD algorithm, the problem to be solved is the linearization of the orbital 

dynamics that uses as parameters the residuals of an estimation and not the estimated values 

themselves (as explained in Section 2.3.3). For this reason, a proper value for the scaling process 

would not be the components of the state vector of the satellite but the initial estimation of the 

error existing in the observations. This concept is, in fact, related to another factor already 

discussed in this report: the covariance matrix (Section 2.3.1.1). 

If the covariance matrix is used in the formulation of a cost function for a POD algorithm, the 

solution obtained is known as the weighted method (example for the LSQ method in Section 

2.5.1). When a weighted method is used, convergence is improved, although some problems for 

large stochastic errors linger, mainly for the L1-Norm and HPF. Finally, and accounting for the 

number of observations, it has been observed that the number of observations (for a fixed 

timeframe) contributes to the optimal value as well. 

Taking all these aspects into account, a scaling factor, 𝑆, is chosen: 

𝑆 = √𝑄𝑦 𝑁𝑜𝑏𝑠 
(3.8) 

where 𝑄𝑦 is the covariance matrix, defined by Equation (2.50); 𝑁𝑜𝑏𝑠 is a scalar accounting for 

the number of observations: 

𝑁𝑜𝑏𝑠 =
1

𝑛𝑜𝑏𝑠
 

(3.9) 

Using this scaling method, new results are offered for the previous tests shown in Figure 3.14 

and Figure 3.15. 
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Figure 3.16 – Results for optimal values with scaling factors. 

 

Figure 3.16 shows that the scaling parameters improve hugely the convergence capabilities of 

the different penalty function minimisations. It can be observed that, thanks to the covariance 

matrix scaling, the magnitude of the noise does not affect anymore the optimal value, since an 

inversely proportional factor is used. For the sampling frequency scaling, the utilised factor 

reflects a similar behaviour.  

The last remarkable point is that, even though identical scaling parameters were applied to every 

penalty function, HPF experienced a much steeper reduction of its optimal value, mainly due to 

its mathematical definition and the way in which the scaling factors are applied.  

  

Figure 3.17 – Convergence criteria without (left) and with (right) the Pf scaling factor for 𝜎 = 103𝑚. 

 

When the test results are analysed, it is observed that, for the most demanding cases (tests with 

high 𝜎 values), HPF converges with a slower rate than the other penalty functions (as shown in 

the left-hand plot of Figure 3.17); something that does not happen for other noise magnitudes. 

This can be related to the mentioned reduction of its optimal value, that may result in a loss of 

sensibility of the minimisation process and, thus, a reduction in the convergence rates of the 

POD. 
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To compensate for this, an additional scaling parameter is defined, accounting for the different 

penalty functions used (𝑃𝑓). This parameter is empirically based on the behaviour shown above 

and is defined as 

𝑃𝑓 = (
𝐿2𝑛𝑜𝑟𝑚

𝐿1𝑛𝑜𝑟𝑚

𝐻𝑃𝐹
) = (

100

10−1

101

) 

(3.10) 

that would reshape the total scaling parameter to 

𝑆 = √𝑄𝑦 𝑁𝑜𝑏𝑠 𝑃𝑓. 
(3.11) 

With this extra parameter, the results for the optimal values are shown in Figure 3.18, where 

the expected effect is shown, resulting in an improvement on the convergence rates of the POD 

process (see the right-hand plot of Figure 3.17). 

3.3.2 A Posteriori Changes 

Further in this document, Section 4.2 will introduce the use of the SM as a way to estimate 

design parameters such as 𝑐𝐷, 𝑐𝑅, or manoeuvres6. When the tests were run, the CVX toolbox 

failed to find a solution for the minimisation of HPF. 

The reason for that might actually not be the introduction of the SM itself, but the introduction 

of parameter variations in the initial state of the trajectory that differ from the ones set for 

reference trajectory, and, therefore, the measurements. This initial gap creates an initially 

higher error in the estimation that result in a higher optimal value. When this optimal value is 

not low enough, the CVX toolbox labels the result as failed (see (Grant & Boyd, 2017, p. 47)), 

because it considers the progress made towards a solution not adequate. This can be indirectly 

fixed by applying a modification on the scaling factor, 𝑆, that acts when the SM is active (even 

though its activation is not the immediate reason). The component of HPF in 𝑃𝑓 needs to be 

reduced to make the optimal value fall within the same range it was falling in Figure 3.18. 

  

Figure 3.18 – Results for optimal values with scaling factors, including Pf. 

 

                                                           
6 It is recommended to read that section before this one, to properly understand the reasons for the 
change. The reader may skip this subsection for now, and come back when mentioned further in the 
report. 
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The same phenomena occurs when the model tests are run, in Section 4.3. The convergence of 

HPF turns out to be notably slower, even if the CVX toolbox does not fail this time. The 

explanation is the same as above. 

These facts raise a new consideration about the initially designed 𝑆 factor, mainly regarding 

the 𝑃𝑓 component. This component was adjusted so that HPF was able to reach fast 

convergence even for cases where the noise was extremely high, e.g., 𝜎 = 103 𝑚. Now, it has 

been observed that, when the initial parameters are not well defined, the optimal value for HPF 

grows too abruptly, causing the CVX toolbox to fail when minimising the cost function. To solve 

that, a reduction is needed. This is strictly opposite to the cases presented in Figure 3.16, where 

an augmentation in the scaling factor was required. 

After considering both case studies, it is concluded that the most relevant scenario is the 

situation in which the parameters are not accurately known (e.g., they are estimated), and a 

larger optimal value is generated by the larger gap existing in the first iterations. 

On the contrary, the scenarios where the noise magnitude rises up to 103 𝑚 are not so frequent, 

and, even if they were, do not cause the CVX toolbox to fail, but only to lose sensitivity and 

converge at a slower pace. 

According to this criteria, the 𝑆 factor is redefined by modifying its 𝑃𝑓 component to: 

𝑃𝑓 = (
𝐿2𝑛𝑜𝑟𝑚

𝐿1𝑛𝑜𝑟𝑚

𝐻𝑃𝐹
) = (

100

10−1

100

) 
(3.12) 

With that in mind, care must be taken if the noise magnitude is thought to be too large, to re-

adjust the scaling factors to more accurate values. Thus, on top of that definition, a temporary 

correction factor is included for the cases where the noise magnitude is above 𝜎 = 103 𝑚, 

increasing the scaling for HPF by a factor 10, to improve its sensitivity. 

3.4 ERROR ESTIMATION 
An aspect worth investigating is the error estimators available for each method. When out of 

the testing-shell, the “true” trajectory is not known and the observations are the only reference. 

From this information, it is not possible to calculate the actual error in the POD process for the 

estimated value of the parameters involved. However, if the expected accuracy of the 

measurements is known, statistical information can be obtained about the expected accuracy 

of the estimated parameters. 

In this section, error estimation techniques will be tested to assess whether its use can be 

considered within the developed POD algorithm. The methodology in these tests will be to 

obtain a first-estimate of the error using observations with outliers and after the latter are 

processed, assess the expected error again. For each step, the results will be shown in terms of 

error with respect to the reference trajectory because real values are needed to validate an 

error estimator. 

HPF will not be discussed, as it is a combination of both norms. 

3.4.1 L2-Norm 

As introduced in Section 2.5.1, the LSQ method allows for the use of an error estimation 

parameter referred to as formal error. This formal error, whose mathematical definition is given 

in Equation (2.52), depends on the covariance matrix of the observations, i.e., the expected 
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accuracies in the measurements; on the model, and, indirectly, on the number of samples 

available. 

In the developed algorithm, and as introduced in Section 3.3, the covariance matrix is initialised 

under the assumption of perfect awareness of the accuracy levels of the technology taking the 

measurements. Due to this, it is possible to apply the equation for the formal error with different 

noise magnitudes and test if the final errors still lie within this estimated range. 

  

Figure 3.19 –Estimated trajectory for the L2-Norm penalty function with (right) and without (left) outleir processing. 

 

The results are shown in Figure 3.19, where non-processed (left), i.e., observations including 

outliers, and processed (right) observations are used. While the processed measurements yield 

excellent results and error predictions that represent the actual errors (considering 1𝜎), the 

non-processed case presents errors that are considerably larger than their estimations. This is 

due to the fact that, for an error estimation to be accurate, the statistical information that is 

given as input has to be trust-worthy.  

When the observation data contains outliers, the estimation of the error in the observation 

(included in the observation´s covariance matrix) is not as truthful as it should be. However, the 

algorithm has no information about this fact, and calculates the formal error considering the 

measurements to be perfectly accurate and, therefore, underestimating the final error. 

Even though it is not visible in Figure 3.19, the value of the formal error increases after the 

measurements are processed. This implies that the predicted error increases after the outlying 

measurements are removed from the data. Although this could sound illogical at first glance, it 

is perfectly explained by the fact that when measurements are removed, the number of samples 

decreases, and, therefore, and based on the inversely proportional relation between the 

standard deviation of a distribution and the number of samples in the latter, the statistical 

information becomes poorer, yielding an increase in the expected error. 

3.4.2 L1-Norm 

Unlike the L2-Norm, the L1-Norm has no established error estimation method. In (Branham, 

1986), an attempt is made to obtain a suitable solution for this problem, but the conclusions 

extracted are rather vague and offer no clear solution other than using the L2-Norm error 

estimation to raise the robustness of the analysis. 
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When the outliers are processed, the L1-Norm usually presents higher errors (w.r.t. the 

reference trajectory) than the L2-Norm. However, these are not so much higher under normal 

scenario conditions. Due to this, no specific L1-Norm error estimator was implemented and the 

formal error (from the LSQ method) would be used in case an estimator for the L1-Norm was 

needed. 

3.5 ERRORS IN THE OBSERVATIONS 
Whenever a measurement is taken, there is an inherent error that distorts the actual values of 

the desired parameter. This is actually the main reason why POD algorithms are extremely 

important for data processing utilities or flight dynamic problems. In this section, the different 

errors that are usually present in sets of measurements are studied and the effect that they 

provoke in the final results is discussed. Furthermore, the outlier detection functions 

implemented within the POD method itself are put to test and the behaviour of different penalty 

functions is analysed. 

The tests run in this section will be compared to the reference trajectory computed from the 

scenario conditions shown in Table 2.3. This methodology applies as well for the results after 

the outliers are processed. The reason for that is that this section of tests has no interest in 

assessing the effectiveness of the algorithm but only in understanding how much different 

errors in the measurements distort reality and how much of this distortion can be avoided by 

processing the measurement errors, both through the POD algorithm and the outlier processing 

functions. 

3.5.1 Outliers 
In Section 2.7.1, it was mentioned that, for the processing of outlying measurements, a first 

estimation of the trajectory was needed. Of course, this first estimation of the trajectory 

depends on the penalty function to be optimised and, therefore, different methods will yield 

different results. Here, tests will be run to investigate how different cost functions generate a 

first estimation of the trajectory. 

  

Figure 3.20 - Example of the POD results. 

 

In the developed algorithm, the observations are processed at each iteration. To process the 

noise in the measurements, an initial estimation is computed and given as input to the outlier 

detection function, which identifies the outlying measurements and flags them as such. When 
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the initial estimation is not accurate enough, the processing function will not be able to perform 

adequately, but, as iterations go on, this accuracy is improved and the number of identified 

outliers converges. 

If the outliers found have not changed from the previous iteration and the improvement of the 

solution is below the required tolerance, an extra iteration is performed to ensure the results 

are stable. Else, the same iterative process is repeated until the processing function establishes 

the definitive number of outliers. This is exemplified in Figure 3.20, where convergence was 

found after five (four plus the final check) iterations. 

3.5.1.1 Trajectory Estimation without Outlier Detection 
First of all, the results obtained without processing outlying measurements will be discussed 

here, for each of the penalty functions. This is meant to give an idea about how accurate the 

first estimation is, and how dependent on that the outlier detection function is. The results for 

the nominal noise are shown in Figure 3.21, as a reference plot. 

 

Figure 3.21 - First estimation w.r.t. the reference trajectory for the nominal noise. 

 

It is clear that the LSQ method suffers much more from the existence of outliers, as it was 

expected. HPF, however, follows the L1-Norm solution and keeps the errors low.  

3.5.1.1.1 Magnitude of the Stochastic Error 

If the same test is repeated for noises one and two orders of magnitude larger, the same results 

are obtained, only scaled by a factor 10 and 100 respectively (see Figure 3.22). 

3.5.1.1.2 Number of Outliers. 

By varying the number of outliers from 233 to 413 and 630 (corresponding to probabilities 

of 10% and 20% respectively7), the results shown in Figure 3.23 are obtained. 

As expected, the L1-Norm is able to handle non-detected outliers in a much more accurate way 

than the L2-Norm. Similarly, HPF mimics again the behaviour of the L1-Norm, which has much 

more relevance in this case, due to the presence of outliers. 

                                                           
7 Recall that, as it was introduced in Subsection 2.7.1.4, the generation of an outlying measurement is 
based on a threshold probability, nominally set to 5%. This probability is evaluated for each of the six 
components of the state, and, therefore, the 233 outliers that are nominally introduced are not the 5% 
of the observations, but of the totality of the state components, i.e., six times the observations. 
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Figure 3.22 - First estimation w.r.t. the reference trajectory for different magnitudes for the stochastic error. 
Left, 𝜎 = 10; Right, 𝜎 = 100. 

  

Figure 3.23 - First estimation w.r.t. the reference trajectory for different number of outliers. 
 Left, 413 Outliers; Right, 630 Outliers. 

  

Figure 3.24 - First estimation w.r.t. the reference trajectory for different outlier magnitudes. 
 Left, 10-1.000; Right, 10-10.000. 
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3.5.1.1.3 Magnitude of the Outliers 

Varying the magnitude of the outliers yields the results shown in Figure 3.24. 

The L2-Norm penalty function is greatly perturbed by the presence of outliers and by its 

magnitude. The L1-Norm and HPF remain more accurate. 

3.5.1.2 Trajectory Estimation with Outlier Detection 

After the first estimations of the trajectory are calculated, they are given to the outlier detection 

functions along with the measurements, so that outliers could be detected. To assess this 

detection, two criteria will considered: the number of detected outliers (at the end of the 

process), and the accuracy of the final solution. Outliers in both position and velocity 

measurements will be considered for these tests. 

The nominal case yields the results shown in Figure 3.25, where all outliers are detected. This 

case, where it is possible to already see the huge improvement in the results coming from the 

L2-Norm when outliers are processed, shall be used as a reference solution. 

 

Figure 3.25 - Estimated trajectory w.r.t. the reference trajectory for the nominal noise. 

 

3.5.1.2.1 Magnitude of the Gaussian Noise 

In Table 3.3, it can be observed that every outlier is detected in each of the variations. After the 

outliers are detected, the trajectory is processed and the final results shown in Figure 3.26.  

 

Table 3.3 - Detected outliers for different noise magnitudes. 

 L2-Norm L1-Norm 
Huber’s 

Function 

Total 

Number 

Detected with 𝒏𝒐𝒊𝒔𝒆 = 𝟏 𝒎  / 𝟏
𝐦𝐦

𝒔
 233 233 233 

233 
Detected with 𝒏𝒐𝒊𝒔𝒆 = 𝟏𝟎 𝒎  / 𝟏𝟎

𝐦𝐦

𝒔
 233 233 233 

Detected with 𝒏𝒐𝒊𝒔𝒆 = 𝟏𝟎𝟎 𝒎  / 𝟏𝟎𝟎
𝐦𝐦

𝒔
 233 233 233 
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For the two variations of the noise layer, the final errors are exactly multiplied by a factor 10 

and 100, respectively.  

  

  

Figure 3.26 - Results for different magnitudes for the stochastic error. 
Left, 𝜎 = 10; Right, 𝜎 = 100. 

3.5.1.2.2 Number of Outliers 

In Table 3.4 the outlier detection performances are shown. Thanks to the iterative outlier 

processing method implemented in this algorithm, all outliers are detected. Trajectory errors 

are shown in Figure 3.27, where it can be observed that, unlike it was shown in Figure 3.23, the 

L1-Norm shows slightly worse accuracy levels, now that the outliers have been processed. 

 

Table 3.4 - Detected outliers for different number of outliers. 

 L2- Norm L1- Norm Huber’s Function 

Total outliers = 233 233 233 233 

Total outliers = 413 413 413 413 

Total outliers = 630 630 630 630 
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Figure 3.27 - Results for different number of outliers. 
Left, 413 outliers; Right, 630 outliers. 

 

3.5.1.2.3 Magnitude of the Outliers 

Lastly, the magnitude of the outliers was also altered. The nominal noise includes outliers 

between 10 − 100 times larger than the standard deviation of the stochastic noise. For these 

tests, this maximum factor was augmented by factors 10 and 100, i.e., outliers between 10 −

1.000 and 10 − 10.000 respectively. Additionally, two cases where the magnitude of the 

outliers is barely larger than the stochastic noise are provided, to test whether the outlier 

detector is able to also handle unclear outliers. These tests will be divided into outliers being 2 −

4 and 4 − 10 times the magnitude of the standard deviation of the stochastic noise. 

In Table 3.5, it is shown that every outlier is detected for the first three cases, and a number of 

outliers are missed when their magnitudes are much lower. However, the results for these last 

cases (see the bottom plots of Figure 3.28) present similar accuracy. This is due to the fact that 

the non-detected outliers are small enough to be considered stochastic noise, even if the 

detector fails to locate them. Also, a slightly better performance is observed when the L1-Norm 

is used (even better for HPF) w.r.t. the L2-Norm case, where three (and one) additional outliers 

are detected. This explains why in the bottom-right plot of Figure 3.28, the L2-Norm state error 

gets closer to the less accurate L1-Norm state error. The outlier detection evolution is shown in 

Figure 3.29. 
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Table 3.5 - Detected outliers for different outlier magnitudes. 

 L2- Norm L1- Norm Huber’s Function Total Number 

Outlier Factor: 𝟏𝟎 − 𝟏𝟎𝟎 233 233 233 

233 

Outlier Factor: 𝟏𝟎 − 𝟏. 𝟎𝟎𝟎 233 233 233 

Outlier Factor: 𝟏𝟎 − 𝟏𝟎. 𝟎𝟎𝟎 233 233 233 

Outlier Factor: 𝟐 − 𝟒 6 6 6 

Outlier Factor: 𝟒 − 𝟏𝟎 191 194 192 

 

 

  

  

Figure 3.28 - Estimated trajectory w.r.t. the reference trajectory for different outlier magnitudes. 
Upper-Left, 10-1.000; Upper-Right, 10-10.000; Bottom-Left, 2-4; Bottom-Right, 4-10. 

3.5.2 Data Sparsity (Gaps) 
Sometimes, and depending on the source of the observations, the measurement data present 

gaps where no valid information can be extracted. The most frequent reason for that is loss of 

tracking capabilities, e.g., when using range-angle measurements from only one ground station, 

most of the orbit of the satellite is not measured. 
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Figure 3.29 - Outlier detection evolution for different outlier magnitudes. 
Upper-Left, 10-1.000; Upper-Right, 10-10.000; Bottom-Left, 2-4; Bottom-Right, 4-10. 

 

After running the tests, no visible differences were observed for each of the penalty functions. 

The most relevant factor was found to be the moment in which these gaps were introduced. 

Thus, these tests were run using only HPF as penalty function, to serve as a further validation of 

the capabilities that this penalty function presents. The gaps will be set at the beginning, in 

between (after around a third of the observations), and at the end of the data set. The duration 

of the gaps will also vary from 10% to 40% of the observations. 

From the results shown in Figure 3.30, it can be concluded that the existence of a gap affects 

negatively the orbit estimation. Moreover, the epoch in which the gap takes place is clearly 

relevant. Gaps in the middle of the data will yield smaller errors in the final estimation, while a 

gap in the beginning or ending result in larger errors in the estimation. 

When compared with the gap-free case (upper-left plot), the magnitude of this increment in the 

error, it is relatively low for every case and does not strongly affect the final results when 

compared to the full measurement data case. 
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Figure 3.30 – Estimated trajectory w.r.t. the reference trajectory for different gap configurations. 
Upper-left, no gap; Upper-right, early gap; Bottom-left, mid-gap; Bottom-right, late gap. 

 

A more interesting case will be contemplated in Section 4.4, where angle measurements will be 

integrated in the algorithm, giving place to, not only gaps, but measurements that define the 

same partial arc of the trajectory. 

3.5.3 Random vs Normal Noise 

The way in which the low amplitude noise (stochastic error) is explained in Subsection 2.7.1.1. 

For modelling purposes, and as explained in Section 2.7.1, the nominal noise layer is generated 

using a random number generator based on the Normal distribution ~𝑁(0, 𝜎), where 𝜎 is the 

standard deviation, nominally set to 1 𝑚 and 1 𝑚𝑚/𝑠 for position and velocity measurements, 

respectively. 

On the other hand, the noise could also be generated using a random number generator that 

creates uniformly distributed numbers within a selected interval, which would be±𝜎 𝑚 

and ±𝜎 𝑚𝑚/𝑠. 

To further investigate the differences between both, a comparison was generated using nominal 

and augmented values for 𝜎. It is also relevant to remark that, even if the seed for the random 

generators remains constant, the small variation in the code, needed to generate a different 
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kind of stochastic error, resulted in a different distribution of the errors in time, as well as in a 

new number and location of outliers. 

  

Figure 3.31 - Estimated trajectory w.r.t. the reference trajectory for different stochastic distributions. 
Left, 𝑁(0, 1); Right, rand [−1, 1]. 

 

  

Figure 3.32 - Final solution for the outlier-free measurements w.r.t. the true trajectory for different stochastic error 
generators. Left, 𝑁(0, 10); Right, rand [−10, 10]. 

 

Results are shown in Figure 3.31 for 𝜎 = 1 and in Figure 3.32 for 𝜎 = 10. Both plots reflect 

similar behaviours only scaled by the value that 𝜎 takes for each case. It is clear that the accuracy 

of the solution for the Gaussian distribution is (approximately around three times) worse. This 

is due to the normal distribution not being limited to its standard deviation value, 𝜎, which only 

means that approximately 68% of the values will be within this range. Logically, larger errors 

yield lower accuracies. 

From a practical perspective, the differences in accuracy are only related to the final magnitude 

of the generated noise layer. However, what can be observed in these plots is the fact that the 

L2-Norm deals better than the L1-Norm with the normally distributed errors, and that HPF does 

even better than the L2-Norm. This goes in the same line of reasoning that explains why the L1-

Norm is able to deal better with outliers, i.e., distributions with large tails will be better managed 

by the L1- Norm, which is not so affected by higher cost function values. Therefore, for a 
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uniformly distributed stochastic error, the L1- Norm offers better results than the LSQ method 

(even when the outliers are successfully processed), and the other way around when the 

distribution has thinner tails. 

3.6 HUBER’S M PARAMETER 
As introduced in Section 2.5.3, HPF uses a threshold parameter, 𝑀, to define the limits where 

the functions changes its behaviour from L2-Norm to L1-Norm. Depending on where this 

threshold is established, the function acquires different properties, more similar to one or 

another penalty function. In this section, an investigation is carried out, trying to establish how 

varying this parameter affects the results of the POD algorithm, and whether there is some sort 

of proportional relation between 𝑀 and how close HPF gets to the L2- or the L1-Norm. 

For this sake, the mean Euclidean distance between the reference trajectory and the estimated 

trajectory was selected as the factor in charge of representing the results, because it represents 

well the general results and allows for a single-value-based evaluation. As it will be shown in 

Figure 3.33, it was observed that a variation of 𝑀 does not reflect a linear evolution of HPF to 

each of the two norm functions. Actually, its variation follows more of a logarithmic 

proportionality.  

This incremental method was applied for a range of 𝑀 = (0, 1]. To represent clearly the 

transition, eighteen values were logarithmically distributed in this interval. Additionally, the 

results for the L1- and L2-Norms were included and represented in Figure 3.33; resulting in a 

total of twenty case studies. A colour gradient was used to express the proximity of the 

parameter to each function. 

The results showed that the behaviour of the algorithm resembles the LSQ method already 

when 𝑀 ≅ 10−2. Also interesting is the fact that in the first cases, where HPF is more influenced 

by the L1-Norm, some instability appears in the evolution of the mean Euclidean distance. This 

was found to be mainly related to the random generation of the noise and the statistical nature 

of the POD method. Nevertheless, a trend can still be observed that represents a rather abrupt 

transition between both norms. This transition point was checked to be the moment in which 𝑀 

equals the standard deviation of the stochastic error introduced, once accounted for the scaling 

factor used. 

 

Figure 3.33 - Final estimation of the trajectory w.r.t. the reference trajectory for M = (0, 1]. 
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This agrees with what was introduced previously in Section 2.5.3 and serves as selecting criteria 

for an adaptive 𝑀 algorithm that will be tested in 3.6.1, based on the iterative calculation and 

assignment of the standard deviation of the observation residuals to 𝑀. 

It could be expected that the optimal values for HPF cases studied here showed a progression 

from the L1-Norm optimal value towards the L2-Norm value. However, this is not the case, 

because the definitions of the functions are not numerically equal, but only conceptually, i.e., 

the behaviour is reflected, but the magnitudes of the optimal values do not approach each of 

the norms when 𝑀 is closer to its limits. They do, nonetheless, decrease hugely when 𝑀 is 

shifted towards zero. 

3.6.1 Adaptive M Parameter 
As it was already introduced in Section 2.5.3, the 𝑀 parameter represents the threshold in which 

HPF changes its behaviour (see Equation (2.56)). A threshold set to 𝑀 means that values larger 

than 𝑀 times the standard deviation of the data will be treated following the L1-Norm, while 

the smaller ones will follow the L2-Norm. 

This concept was graphically proved before, and can be also very easily explained from a 

mathematical point of view. From (2.18), an expression for the misfit to be minimised can be 

written as 

𝜌 = 𝐻𝑥 − 𝑦 (3.13) 

whose components were introduced in Section 2.3. As convergence is approached by the batch 

algorithm, the term 𝑥 (accounting for the increment in the parameters) tends to 0, and the first 

term of the expression will cancel.  

𝑥 ~ 0 → 𝜌 ≅ 𝑦 

If the outliers were processed correctly from the observations, the standard deviation of 𝑦 

(representing the residual between the measurements and the estimated observations) will be 

the standard deviation of the Gaussian noise of the observations. 

𝑀 = 𝜎(𝜌) ≅ 𝜎(𝑦) (3.14) 

This concept, using Equation (3.14) after each iteration of the batch algorithm, will allow for the 

computation of an adaptive 𝑀 that will, a priori, help HPF vary its thresholds to fit the best the 

measured data. 

A comparison of both methods is shown in Figure 3.34. It can be observed that the accuracy 

remains practically the same but the convergence of the POD method takes place at a slower 

pace. In this set of tests, the initial 𝑀 value for the fixed HPF is now set to the estimation of the 

noise, i.e., the expected standard deviation of the stochastic noise coming from the measuring 

technique (see Section 2.7.1). 

This fact, of course, causes the fixed 𝑀 algorithm to converge faster because the value of 𝑀 

needs not to be estimated throughout iterations, but is already known. Therefore, a secondary 

set of tests was carried out, where 𝑀 was over and underestimated by a factor 10, and different 

stochastic noise magnitudes were implemented for each case. Also, the condition 𝑀 ≥ 1 was 

imposed to the algorithm after some testing, benefiting the convergence capacities of the POD8. 

                                                           
8 The value that HPF receives, nonetheless, is subject to the scaling factor used, so the scaled value of 𝑀 
may be smaller than 1. 
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Figure 3.34 – Adaptive M algorithm comparison. 

 

In Figure 3.35, the results for the case where 𝜎 = 103 𝑚 are shown. The rest of the stochastic 

noise magnitudes tested, yield exact results only scaled by a factor 𝜎, so they have not been 

included.  

As represented in Figure 3.34, adaptive HPF takes always one extra iteration to find 

convergence, except in the case where 𝜎 = 103 𝑚 and 𝑀 = 10𝜎, where the adaptive algorithm 

outperforms the fixed one largely. 

In terms of accuracy levels, the adaptive algorithm performs better when the noise is 

underestimated, and both stay levelled when overestimated, in the overall error (component-

wise, there are differences). 

Summing up, there is no clearly superior method and the selection of one or another depends 

entirely on the confidence on how certain the noise conditions are. The drawback for selecting 

an adaptive method will be the extra iteration that this method usually needs.  

This method will be included for some of the next tests, so that more insight can be gained on 

how this affects the results of the POD. 

3.7 CONCLUSIONS 
In this chapter, the performances and capabilities of the developed algorithm have been tested 

for computational aspects. 

The validation processes for the implementation of the manoeuvres, the STM, and the SM have 

yielded excellent results. Even if some interesting remarks were raised, the maturity of the tools 

is perfectly validated and its implementation in the POD algorithm is safe. 

The use of scaling factors to accommodate the problem to the tolerances and thresholds of the 

solver is vital here. For that sake, a scaling factor was defined that allows for a more consistent 

problem initialisation and, thus, better performances of the overall POD algorithm. 

Nevertheless, a more robust formulation of the problem might be of use for future 

investigations. 
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Error estimation has proven the implementation of the LSQ in this algorithm to be correct. 

However, for the other two penalty functions, no other (mature) error estimator has been 

found. For this reason, error estimators will not be considered as main reference for the results 

obtained in further tests. 

It has been shown that the LSQ method reports the best accuracies when the data is outlier-

free, and L1-Norm and HPF offer better performances when outliers are present. This 

constitutes one of the basic results of this research, and confirms L1-Norm and HPF penalty 

functions to clearly outperform traditional methods when the outliers are not (perfectly) 

processed. Additionally, HPF has proven itself to be both accurate and robust when needed to, 

at the price of a less efficient computational effort, offering the capability to be tuned to the 

required case making use of the 𝑀 parameter as well. 

The outlier detection function, which is implemented every loop in the POD algorithm, has been 

proved to offer satisfactory results and can be, thus, validated as well. 

 

  

  

Figure 3.35 – Errors and convergence rates for under- (left) and overestimated (right) M parameter for 𝜎 = 103 𝑚. 
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4 THE POD CHALLENGE 

In this chapter, a different testing approach takes place. The tests included here will be more 

focused on investigating how do the different penalty functions face real-world situations that 

may arise for a general POD tool, such as, different scenarios, parameter estimation, modelling 

errors, or use of AE measurements. 

The normal HPF will stablish 𝑀 = 𝜎, i.e., 1 for the nominal noise (as opposed to the previously 

assumed value of  1,35, see Section 2.5.3) while the adaptive version will estimate its value each 

iteration. This will offer a better comparison between both versions of HPF, since 𝜎 = 1 means 

a perfect estimation of the stochastic noise magnitude. The LSQ and L1-Norm will remain the 

same. The scaling parameters defined in Section 3.3 will be applied throughout this chapter. 

4.1 ORBITAL CONDITIONS 
In some cases, different scenarios offer observations that make the POD process much more 

difficult. The scenario that has been used up to this point is described in Section 2.8, and many 

results have been already shown in previous chapters. Here, tests will be run to show how the 

different penalty functions behave under different scenario settings, namely, Medium Earth 

Orbit (MEO), GEO, and high-eccentricity orbits, such as the classical GEO Transfer Orbit (GTO); 

described in Table 4.1. The noise will remain the same for every case, even if it may be 

unrealistic. 

 

Table 4.1 – Scenario conditions for different study-cases.  
𝒂 (𝒌𝒎) 𝒆 (−) 𝒊 (°) 𝛀 (°) 𝝎 (°) 𝜽 (°) Reference 

MEO 29599.8 0.0 56.0 197.632 0.0 345.153 Galileo 

GEO 42164.1 0.0 0.0 0.0 0.0 83.0 MTG-I 

GTO 24396.1 0.728 6.0 0.0 178.0 0.0 Ariane V 

 

After the tests are run, the results are gathered in Figure 4.1, where similar orders of magnitude 

for the errors are observed. More in detail, the GEO scenario seems to be the most favourable 

condition for orbit determination, even if the observations correspond only to one orbital 

revolution. This might be related to the slower dynamics involved in such a trajectory, where no 

atmospheric drag and much weaker irregular gravity field apply. The GTO scenario presents a 

more abrupt behaviour near the pericentre of the orbit, as expected. These peaks are, however, 

the orbital sections where the higher accuracy is reached. This is due to the changing dynamics 

of this particular trajectory, in which smaller errors near the pericentre will yield larger errors 

near the apocentre. 

Regarding the penalty functions, the L1-Norm presents the lowest accuracy levels, not 

surprisingly, whereas the L2-Norm and HPF fit the reference trajectory closer. However, the 

differences are relatively small and it is possible, thus, to conclude that the orbit in which the 

satellite flies should not affect the selection of the POD method to be used. 
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Figure 4.1 - Estimated trajectory w.r.t. the reference trajectory for different scenarios. 
Upper-left, LEO; Upper-right, MEO; Bottom-left, GEO; Bottom-right, GTO. 

 

4.2 ESTIMATION OF PARAMETERS 
Throughout this report, the objective of the POD algorithm has been to obtain the state vector 

that best fits a trajectory to the cloud of measured data. However, in reality, the estimation is 

usually not only focused on the state but also on other parameters of interest. 

These parameters are usually coefficients used to define the mechanical or structural properties 

of the satellite. In this section, three parameters will be used for this sake: the drag coefficient 

of the satellite, 𝑐𝐷, the SRP coefficient, 𝑐𝑅, and the manoeuvre commands. 

The reason why these parameters should be estimated as well is that they are defined 

theoretically but are affected by different empirical and unpredictable sources such as 

unexpected variations in the atmospheric density, imperfections in the construction of the 

thrusters, errors in the estimated attitude of the spacecraft, etc. Ultimately, they compensate 

for the unmeasurable imperfections that the modelling of the satellite or the force models might 

have. 

It is important to keep in mind, that the main target of the estimation of these parameters is not 

to improve the definition of the design characteristics of the satellite (even though this is also 
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interesting), but to accommodate these imperfections to be able to fit a more precise orbit 

estimation that could serve to obtain more accurate trajectory estimations. The estimation of 

these parameters can be independently activated, in case the user wants to leave some of them 

fixed while others are updated. 

 

Table 4.2 – Manoeuvre plan. 

Hill Frame 𝒎𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆[𝒎/𝒔𝟐] Start [Julian Date (JD)] Duration [s] 

𝑴𝟏 [10−3 10−3 10−3] 𝐽𝐷0 + 0.25 150 

𝑴𝟐 −[10−3 10−3 10−3] 𝐽𝐷0 + 0.75 200 

 

To estimate the manoeuvre commands, it is necessary to define a manoeuvre plan first. The 

plan that will be implemented in these tests will consist on two manoeuvres, applied in the RTN 

frame, as shown in Table 4.2. 

 

Table 4.3 – Initial parameters and increments applied. 

 𝑪𝒅 𝑪𝒓 𝑴𝟏[𝒎/𝒔𝟐] 𝑴𝟐[𝒎/𝒔𝟐] 

Reference 2.2 1.2 [10−3 10−3 10−3] −[10−3 10−3 10−3] 

Initial error in the 

parameters (𝚫𝟏) 
+0.4 +0.2 +[10−4 10−4 10−4] +[10−4 10−4 10−4] 

 

The magnitude of the acceleration was chosen under the assumption of chemical propulsion 

technology, defined by an 𝐼𝑠𝑝 = 220 𝑠; and a satellite’s mass of 2000 𝑘𝑔. Manoeuvres in these 

environments usually deliver 1 − 5 𝑁. If, for instance, 2 𝑁 is selected as the thrust level, the 

acceleration of the manoeuvre would be 10−3𝑚/𝑠2 of acceleration (based on information from 

(Airbus Safran Launchers, 2017)). The error for this acceleration was estimated to be a 10% of 

the acceleration itself. 

  

Figure 4.2 – Results for the POD solution when a manoeuvre plan is included. 
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The theoretical basis to implement this estimation is explained in Chapter 7 of (Montenbrück & 

Gill, 2000) and briefly introduced in this report in Subsection 2.3.4.1, where a validation process 

for the SM was also provided. With that information, tests will be run where the reference 

trajectory is obtained using the following altered parameters. 

First of all, manoeuvres will be introduced to the reference trajectory to assess how well the 

POD batch method can handle this kind of perturbations. Results are shown in Figure 4.2, where 

the manoeuvre plan described in the first row of Table 4.3 is applied. It is clear that the accuracy 

remains within the same levels of the nominal case (see Figure 3.25 for comparison). 

  

Figure 4.3 - Estimated trajectory w.r.t. the reference trajectory for perturbed parameters ( 𝛥1). 
Left, without SM; Right, with SM. 

 

If the perturbations are introduced and the usual POD process is executed, i.e., without the SM, 

results shown in the left-hand side of Figure 4.3 are obtained. It can be observed that the way 

in which the POD algorithm compensates for the variations of the parameters is by changing the 

initial semi-major axis. This makes perfect sense, because the reference trajectory will undergo 

larger drag and SRP accelerations (because of the applied increments), leading to a faster orbital 

decay. To compensate this decay (and its subsequent drift in the tangential direction), the POD 

algorithm places the initial state at a lower altitude that the reference trajectory. The SM is 

expected to fix this error. 

  

Figure 4.4 – Evolution of the estimated 𝐶𝐷 and 𝐶𝑅 parameters for 𝛥1. 
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When a POD process including SM is run to estimate these coefficients, the results shown in the 

right-hand side of Figure 4.3 are obtained. There is clearly a huge improvement in the accuracy 

for each penalty function. It is also worth remarking that the L2-Norm and both HPF’s are much 

closer to each other than to the L1-Norm. 

Also insightful, the evolution of the estimated coefficients is depicted in Figure 4.4. There, the 

estimation of the manoeuvre commands was not included because the results evolve in a similar 

manner, with relative errors well below 1% (as for the other coefficients shown in Figure 4.4). 

The parameters are successfully estimated by all penalty functions, with slight differences in the 

final value obtained. The convergence rates are represented in Figure 4.5, where the usual 

behaviour can be observed. 

 

Figure 4.5 – Convergence criteria for 𝛥1. 

 

According to the results shown, the estimation of the parameters is clearly validated. However, 

a tweak was needed for the scaling factor designed in Section 3.3.1. When the SM was included, 

the CVX toolbox failed to find a solution for HPF minimisation. To fix that, the scaling factor 

defined by 𝑃𝑓 (see Equation (3.10)) had to be readjusted from 10 to 1 for HPF, as it was 

explained in Section 3.3.2. 

4.3 ERRORS IN THE MODELS 
One of the main reasons why POD methods are so important is because the existing dynamic 

models are not accurate enough to predict the orbit of a satellite in the real world. Thus, 

observations help improving the quality of the trajectory estimation. 

This situation can also be simulated in a controlled environment. If the reference trajectory is 

computed using highly accurate models, but the POD is run setting its POP to low accuracy, there 

will be a gap of quality between both dynamic models that could simulate the gap that would 

exist between real observations and a sophisticated dynamic model. 

This intended reduction in the accuracy of the POD models can be applied mainly to the irregular 

gravity model, third body accelerations, SRP, or atmospheric drag (see Section 2.2.2). 

4.3.1 Irregular Gravity 

According to the validation document of the POP used in this POD method (Peñarroya, 2017), 

the differences between different degree and order levels affect quite substantially the output 
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of the POP, yielding up to kilometre errors after five days of propagation for a LEO, for instance. 

In this section, the reference trajectory will be generated using order and degree 20 for the 

EGM2008 (Pavlis, Holmes, Kenyon, & Factor, 2012). On top of that trajectory, the nominal noise 

layer will be implemented as usual, giving place to the observations. 

On the other hand, the POD process will be run setting the degree and order to 10, and the final 

estimation of the trajectory will be assessed. 

When the difference between both configurations is lowered (from 20 to 10), the results shown 

in Figure 4.6 are obtained. There, two plots are represented: on the left-hand side, the orbital 

error due to the difference in the EGM coefficients is represented (assuming equal initial state 

and conditions); on the right-hand side, the estimated trajectory coming from the POD method 

is shown. 

  

Figure 4.6 – Results for reduced accuracy model, orbital error (left) and POD error (right). 

 

The largest orbital error appears in the tangential component, where a drift represents the lower 

order EGM propagation being left behind by the higher order one. When the POD batch method 

is applied, the drift is compensated and the error is drastically reduced, proving the excellent 

performance of the algorithm against EGM errors, mainly reducing the drift. 

4.3.2 Atmospheric Model 

As it was introduced in Section 2.2.2, the atmospheric models are responsible for most of the 

propagation errors in LEO orbits. Even the most accurate models, as the NRLMSISE-00 model 

implemented in the POP used in this study, are unable to accurately describe the behaviour of 

the atmosphere. Sudden changes of temperature, for instance, may have a relevant effect on 

the drag force the satellite undergoes and, thus, affect severely the predictions yielded by the 

models. 

In order to simulate that, a varying 𝑐𝐷 will be defined and implemented. This variation will mimic 

the unexpected variations existing on the real atmosphere basing its definition on a sinusoidal 

signal, with magnitude 0.5, and centred on the reference value for 𝑐𝐷. Two frequencies will be 

tested: a frequency of 1 cycle per day, and a frequency of 1 cycle per orbit. These frequencies 

were selected to represent the two most realistic events: a variation having to do with the orbital 

position of the satellite around the Earth (and its position w.r.t. the Sun), and a variation due to 

the rotation of the Earth (and the atmosphere around it). These variations are shown in Figure 

4.7. 
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Figure 4.7 – Variations on the 𝑐𝐷 value: f=1 osc./day (left) and f=1 osc./orbit (right). 

 

When implemented in the original scenario, they generate an orbital error w.r.t. the non-

perturbed 𝑐𝐷 trajectories, shown in the figure below. It is easily noticeable that a drift in the 

tangential component exists. According to the plots, the trajectory corresponding to one 

oscillation per day gets ahead of the nominal trajectory, something that might result 

counterintuitive considering that the drag is larger (in mean). However, this is explained by the 

drift existing in the radial component. As the satellite is decelerated by the drag force, it loses 

altitude, resulting in the mentioned tangential drift. 

  

Figure 4.8 – Results for orbital error for varying 𝑐𝐷, f=1 osc./day (left) and f=1 osc./orbit (right). 

 

As always, the nominal noise layer is introduced on top of the trajectory obtained from the 

variation of the 𝑐𝐷 value, i.e., the reference trajectory for this test; and the POD process is run 

to estimate a solution. Results, shown in Figure 4.9, show a significant reduction (although no 

complete) of the error for the daily oscillation case, while the orbital oscillation case sees no 

reduction. 

It also interesting to mention that, for the case where the frequency of the oscillation was higher 

(of 1 cycle per orbit, right-hand plot of Figure 4.8), the orbital error generated was more stable. 

This is mainly due to two reasons: the negative and positive oscillation cancelling each other, 
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and bringing the mean 𝑐𝐷 closer to the reference value; and the cyclic character of the variation 

causing a resonance in the errors that is easier to absorb by adjusting the initial state. 

 

  

  

Figure 4.9 – Results for POD error for varying 𝑐𝐷, f=1 osc./day (left) and f=1 osc./orbit (right). 

 

When comparing the different penalty functions used, HPF and its adaptive variant (overlapped 

in the plots) show the best accuracy, but not by much. This improvement in accuracy is 

shadowed by the longer computational time and larger number of iterations (in the case of the 

adaptive HPF) needed. Overall, the results are not as accurate as it has been seen in other tests. 

This can be due to the use of a constant estimated value for the ballistic coefficient; something 

that could maybe be improved by proposing a polynomial expression for the evolution of this 

coefficient. This idea, however, has not been tested in this thesis. 

Something that might be counterintuitive is the fact that the errors represented in the upper 

half of Figure 4.9 are not clearly revolving around 0. This, however, is only an artefact of the 

frame selection (RTN), and when the results are plotted in ITRF, the expected behaviour appears 

(see Figure 4.10). 



Pelayo Peñarroya Rodríguez  September 2017 

84 
OHB System Bremen – We. Create. Space. 

  

Figure 4.10 – ITRF representation of the results, f=1 osc./day (left) and f=1 osc./orbit (right). 

 

4.4 AZIMUTH-ELEVATION MEASUREMENTS 
As it was introduced in Section 2.3.1, azimuth and elevation (AE) observations are used very 

often for space applications. Conceptually, they differ from PVT observations given by GPS 

tracking in the sparsity of the data, which is totally dependent on whether the satellite is visible 

from a certain tracking station and not so much on the epoch (differently from the tests 

performed in Section 3.5.2). 

For these tests, a few modifications were necessary: 

 The observations are given as AE, and transformed when needed (see (Montenbrück & 

Gill, 2000)); 

 A ground station was defined as observation point, of which the coordinates are shown 

in Table 4.4. 

 Observations whose observability from the defined ground station was null or yielding 

an elevation value lower than 10° were rejected. 

 A new model matrix needed to be defined regarding the partial derivatives of the 

observation magnitudes (azimuth and elevation) w.r.t. the state components (position 

and velocity), as introduced in Section 2.3.3 and explained in Section 7.4 from 

(Montenbrück & Gill, 2000). 

 An initial guess needs to be assumed for the first iteration. This guess is set to be 10σ 𝑚 

apart from the true state. 

 The observation frequency has been assumed to be 0.1 Hz, i.e., a measurement 

every 10 seconds. 

Once these changes are applied, some tests were run. Now, the visibility between the station 

and the satellite is vital for the observations, so tests were run using different scenarios. The 

adaptive HPF has not been implemented here because initial tests showed that its 

implementation was not mature enough to handle this kind of observations. Perfect 

atmospheric corrections have been assumed to ease the testing. 
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Table 4.4 – Ground Station Coordinates. 

𝝀 [°] 𝝓 [°] Altitude [𝒎] 

30 56 100 

 

Same as before, the LEO and MEO scenarios defined in Table 4.1 are used. It is worth remarking 

that GEO scenarios are not applicable for AE measurements, since the observations are 

practically constant. The observations obtained using these scenarios are described in Figure 

4.11, where the jumps in the azimuth observations are due to the data being ranged from 0 −

360°. 

  

  

Figure 4.11 – Information about the observations. Left, LEO; Right, MEO. 

 

As shown in Figure 4.12, the L1-Norm offers the best results in the LEO scenario, followed by 

HPF and the LSQ method. The LSQ, for instance, seems to find a more eccentric solution, which 

is mainly due to the orbital arcs being relatively short at each pass. Because of this, and due to 

the higher sensitivity of the LSQ method to outlying measurements, the L1-Norm is able to find 

a more accurate trajectory. 

In the MEO scenario, the number of observations is clearly superior (due to the longer orbital 

period and favourable location of the ground station), and the results do not differ that 
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significantly, although the L1-Norm seems to improve the results from the other penalty 

functions.  

  

Figure 4.12 - Estimated trajectory w.r.t. the reference trajectory for different scenarios. 
Left, LEO; Right, MEO. 

 

It is safe to conclude that, when the data is restricted to a small portion of the orbital arc, the 

L1-Norm offers better solutions.  

Specifically, for the LEO case (the most restrictive due to the lesser number of observations), 

after the observations with an elevation of less than 10° were rejected, a total of 15 outlying 

measurements remained in the observation data. All of them were detected in each penalty 

function implementation.  

Based on the results obtained so far, it seems logical that, if not every outlier is detected, the 

L1-Norm will offer better results. To try that, a similar test to what was shown in Subsection 

3.5.1.2.3 was run, where the magnitude of the outliers is ranged from 2 − 10𝜎 (as opposed to 

the nominal configuration with 10 − 100𝜎). Results are shown in Figure 4.13. 

For the LEO scenario, the number of detected outliers was still the same for all the penalty 

functions, although it saw a reduction, due to the blurrier frontier between the stochastic noise 

and the outlier’s magnitude. This led to clearly larger state errors, when compared to what was 

observed in Figure 4.12. 

The number of outliers detected for the MEO scenario was also the same for each penalty 

function. However, it was practically unaffected w.r.t. the previously obtained results. This is 

due to the larger number of observations making the outliers not so predominant in the 

optimisation process, and the magnitude of the latter being much more restrained. Interesting 

enough, the L1-Norm needs more iterations to converge. 

More sparse observations, thus, would represent a scenario where more robust methods would 

be required to improve the accuracy of the results. HPF ends up between the two norms, as 

happened in previous tests. 
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Figure 4.13 - Results for outlier magnitudes from 2 − 10𝜎. 
Left, LEO; Right, MEO. 

 

4.5 CONCLUSIONS 
Based on the additional tests carried out in this chapter, the adaptive 𝑀 HPF looks promising 

and the results obtained with this method are highly satisfactory. However, further 

developments and a dedicated study should be made to properly assess its applicability and, 

perhaps, figure out a better way to predict its value. 

The orbital conditions do not really affect the POD process and, given the needed observations 

and parameters, any orbit can be accurately predicted using any of the penalty functions studied 

here. 

When it comes to parameter estimation, all the penalty functions behave in a similar manner 

and, although it is true that differences exist, the results are too close to each other to proclaim 

a particular cost function to be better. 

On the other hand, in the tests regarding errors in the modelling (an exemplification of the gap 

existing between reality and a certain simulation environment), HPF, both adaptive and normal 

formulations, shows slightly more accurate results in the drag model. The differences are, again, 

not conclusive, but visible. 
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The most relevant test of this chapter comes with AE observations. This kind of observations is 

particularly interesting due to the orbital sparsity they present and its limited availability. When 

the number of observations is restricted and not uniformly distributed, finding the best 

trajectory estimation becomes more difficult for the algorithm. This leads to a not so accurate 

outlier detection and, thus, L1-Norm and HPF offering better performance.  
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5 REAL STUDY-CASE: GOCE 

At this point, the different functionalities of the POD batch methods have been extensively 

tested and evaluated. Many comparisons have been made and conclusions about the different 

characteristics of the penalty functions used have been extracted. 

However, all these case studies have taken place under a controlled and simulated environment, 

where every aspect is known and results can be biased by this fact. Thus, in this section, real 

data will be used as observations to serve as a final test for the POD algorithm developed during 

this thesis, and as a final comparison between the performances of the different penalty 

functions when real observations are used. 

The observations have been provided by the TU Delft and belong to the Gravity field and steady-

state Ocean Circulation Explorer (GOCE) satellite. This mission was launched on the 17th of 

March 2009 by ESA (European Space Agency) and it was the first Earth explorer mission in orbit. 

Its main objective was to unravel one of the most fundamental forces on Earth: the gravity field 

(ESA, 2017). 

 

Figure 5.1 - The GOCE geoid (ESA, 2017). 

 

As the objective was to measure the gravity field in a highly detailed manner, a small electrical 

ion thruster was used to compensate for the drag forces the satellite underwent. The results 

obtained are shown in Figure 5.1, obtained after the mission ended in October 2013, when the 

satellite ran out of fuel. 

The format in which the data is given is sp3, a standard format for orbital positions and 

sometimes velocities (more detailed information can be read in (Hilla, 2016)). For these tests, 

two different trajectories were provided: SPPLEO and Reduced-Dynamics Orbit Determination 

(RDOD). The former is a coarse-point positioning estimation of the position and clock of the LEO 

receiver using pseudo-range observations. Once this solution is obtained, a PosFit solution is 

estimated as the results of fitting a LSQ method and eliminate outlying measurements. Finally, 

a RDOD is obtained starting from the PosFit solution and including the precise GPS carrier-phase 

measurements. All the observations are given in ECEF. More information about this process and 

its nomenclature can be found in (DLR, 2017). 
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Always through this document, the obtained results have been compared to a reference 

trajectory that served as ground truth. In previous chapters, this was very simple, since the 

observations were artificially generated from that trajectory. Here, however, there is no “true” 

knowledge of the actual trajectory of the satellite, thus, the RDOD solution will be used as 

reference trajectory, while the SPPLEO will be the input, i.e., the measurements; for the POD 

batch method. Figure 5.2 shows the difference between both solutions. 

 

Figure 5.2 – Errors in the measurements (SPPLEO) w.r.t. the reference trajectory (RDOD). 

 

In (Bock, et al., 2007), it is explained which models were used in the POP for the orbit 

determination of GOCE. Table 5.1 shows a comparison of the simulation environment used there 

and the one configured for the results obtained in this test. 

 

Table 5.1 – Orbit determination environment comparison (Bock, et al., 2007). 

 (Bock, et al., 2007) MyProp 

Gravitational Forces EIGEN-5S (150 x 150) EGM2008 (100 x 100) 

Solid Earth, pole, and 

ocean tides 
Yes No 

Luni-Solar planetary 

gravity 
DE405 DE405 

Drag No Yes 

SRP No No 

Estimation Technique Batch LSQ LSQ, L1-Norm, HPF 

 

The coefficients used for the gravitational model, though lower order and degree are used, are 

high enough not to represent any problems in terms of accuracy. The 3rd body accelerations and 

the SRP are equally configured. Solid Earth, pole, and ocean tides have not been included in 

MyProp, which could lead to dynamical errors in the final results.  

The drag force was deactivated in the propagations run by (Bock, et al., 2007), accounting for 

the drag compensation that the ion thruster gives. However, in this test, the drag acceleration 
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has been left active, in order to make use of the SM to estimate the drag coefficient. If the 

estimation results in a value close to 0, the parameter estimation will be successfully validated, 

even for real data. 

The estimation of the parameters will be restricted to the drag coefficient estimation, i.e., the 

rest of the parameters will be blocked at their initial value. Results are shown in Figure 5.3. 

 

  

Figure 5.3 – Results for real data observations. 

 

The estimation of the drag coefficient converges to a value of 0, which agrees exactly with the 

design of the mission, as shown in Figure 5.4. 

 

Figure 5.4 – Estimation of the 𝑐𝐷 coefficient. 

 

This serves as an additional validation of the SM implemented in the POD method. 

Comparatively, L1-Norm and HPF seem to find the solution for this value already with high 

accuracy in the first iteration. 

However, the errors obtained (shown in Figure 5.3), are still in the order of the errors contained 

in the measurements (see Figure 5.2). The stochastic component is removed, but a lower 
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frequency error is clearly present. This error is due to the differences in the models implemented 

in the propagators used for this thesis and in TU Delft, and not to the POD method itself. Trying 

to fit a trajectory for a relatively long timespan becomes more difficult the more the models 

differ from reality. Further improvements in the models of the POP, such as solid tides, for 

example; would be needed to improve the results.  

When the data arcs are reduced to 12, 8, 4, and 2 hours, respectively; the following results are 

obtained: 

  

  

Figure 5.5 – Results for real data arcs of 12h (upper-left), 8h (upper-right), 4h (bottom-left), and 2h (bottom-right). 

 

Not surprisingly, when the data arcs are shorter, the magnitude of the errors is significantly 

reduced. This is due to the differences in the models spreading wider as time passes by. When 

the temporal dimension is restricted, these models have no time to differentiate themselves 

significantly, and a closer estimation can be obtained with the POP implemented in the 

developed algorithm. 

Interestingly enough, when the timespan is reduced, the tangential component starts to show 

small offsets every few seconds (already present before, but not easily visible). In the beginning 

the possibility of the jumps being due to the manoeuvres was considered but the magnitude of 

the accelerations generated by the thruster were too small to cause this effect. A second 

consideration included the update in the empirical acceleration by the feedback loop on-board. 
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Again, the update frequency and the magnitudes (shown in (Bock, et al., 2007)) did not agree 

with the observed behaviour. When the plots are generated using the ITRF, Figure 5.6 is 

obtained. There, the 2-hour arc is plotted, because it is easier to distinguish the jumps. 

 

 

Figure 5.6 - ITRF representation of the results. 

 

The erratic behaviour is still there when the inertial reference frame is utilised, discarding, thus, 

the frame transformation to RTN as the cause of the error. 

After further investigation, the root of the problem was found to be related to the 

transformation from ECEF to ITRF that needs to be made in this test. As mentioned before, the 

observations are given in ECEF but, due to the design of the POP used in this algorithm, a 

transformation to ITRF was needed. This transformation was coded following the 

recommendation gathered in (IERS, 2016), but is unrelated to the libraries used within MyProp, 

which are taken from the NOVAS (Naval Observatory Vector Astrometry Software) libraries 

(NOVAS, 2011). This hypothesis has not been properly confirmed but early investigations point 

to the problem lying in the numerical resolution used for the epoch. NOVAS’ libraries usually 

require the user to give the epoch as two separate inputs: the integer part of the JD and the 

decimal part. This was not implemented in the used transformation and the order of magnitude 

of the errors derived from there are in accordance with the values observed in the tangential 

component. 

Summing up, the final solution is not as accurate as the RDOD solution offered by TU Delft. 

However, this was not expected from the developed algorithm, which was designed to serve as 

a shell to compare the different penalty functions studied along this report. From that point of 

view, the performances of the penalty functions used remain quite similar and no clear 

preference can be given. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

This research has served as a comparison between different penalty functions and its application 

to different orbit determination study-cases. Emphasis has been placed on how these penalty 

functions could be utilised for this sake, and on how well these different methods perform when 

applied to different situations. 

As a result of this main goal, a precise orbit determination (and propagation) tool has been 

developed, validated, and tested, yielding excellent results, yet where room for improvement 

exists. This represents a huge deal of work, considering that all these tools have been developed 

from scratch, and the level of readiness that they have reached after the tests performed in the 

timeframe of this thesis. 

6.1 CONCLUSIONS 
In this chapter, the research questions, as previously posed in Chapter 1, will be revisited and 

proper answers, based on the experience gathered during the thesis, will be provided, 

complemented with the different results obtained throughout this research. Note that the third 

sub-question has been slightly modified from its initial formulation. 

1. What are the main drawbacks of the currently used penalty functions in POD? 
 
The literature review showed that, currently, most of the POD methods implement the LSQ 

method to perform an orbit determination. This method has been used for several decades 

already and has always yielded excellent results, when complemented with the proper tools, 

e.g., for outlier detection. 

In Section 3.5.1, it was clearly observed that, when the observations present outlying 

measurements, the LSQ method suffers hugely from these outliers and fails to accomplish 

certain levels of accuracy. This is not related to the algorithm used, but to the definition of the 

penalty function itself, that weighs the errors according to the L2-Norm of the residuals, tilting, 

thus, towards values that are clearly apart from the trend of the data. 

While it is true that, nowadays, POD methods and algorithms are paired with powerful outlier 

detection functions, certain applications might present a restriction in this sense. The 

computational effort of running a outlier detection function usually increases the number of 

iterations used to reach convergence and, while a more accurate solution is found afterwards, 

there will be a trade-off depending on the application. 

It was also observed that, when the data set features very sparse observations, the LSQ method 

also struggles finding an accurate solution for the estimated trajectory. 

2. How can convex cost functions be applied to POD algorithms in an efficient and robust 
way? 

 
Modern optimisation techniques are becoming more and more popular, and CO is definitely 

among the most prolific optimisation topics these days. Thanks to the tool developed by (Grant 

& Boyd, 2017), applying these methods to different problems becomes much easier. 

Due to the nature of the penalty functions involved, which are all convex, the implementation 

was rather simple from the MATLAB environment used for this research (although a 

reformulation was needed for the L1-Norm). The CVX toolbox was implemented in the POD 
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algorithm in substitution of the usual LSQ formulation. Its interface is extremely user-friendly 

and easy to understand and implement. 

From a computational point of view, the fact that the toolbox is designed as a general problem 

optimiser, makes the computation last longer than with the LSQ solution. But only up to 7% for 

the same function definition. When other penalty functions are applied, the computational time 

also rises due to the optimisation process, but also to the definition of the function itself. For 

instance, the definition of a function such as HPF is much more delicate to implement due to its 

fragmented nature. 

On the other hand, the versatility offered by the tool clearly outweighs the rather small time 

differences, especially for implementation in a research environment, where tests needed to be 

run repeatedly and with different configurations. The results obtained in this report could be 

used as a first order conclusion, based on the performances instead of on the computational 

effort, and, once a method is chosen, a dedicated optimisation process can be designed, 

enhancing the computational performances of a generalised optimisation toolbox as CVX. 

Regarding its final application, some adjustments were needed to improve the minimisation 

process and reach convergence satisfactorily, especially for the L1-Norm and HPF. After some 

empirical tests, a relatively simple solution was found so that CVX was able to properly process 

the different penalty functions. 

 
3. How do the L1-Norm and the Huber penalty function perform in comparison to the current 

state of the art? 
 
After the application of the CO techniques to POD methods had been determined as feasible, a 

comparison between LSQ, L1-Norm, and HPF took place in the last three chapters of this report. 

The core of the research and the most relevant outcome came from this question. 

It was clearly observed that, when no outlier detection is present, the L1-Norm and HPF offer 

much better results than the traditional LSQ method, i.e., can be considered very robust 

functions in this aspect. This is also true when outliers are processed but the noise presents 

characteristics that make it difficult to process, such as outliers whose magnitudes do not differ 

that much from the stochastic noise. 

When the outliers are correctly processed, LSQ methods are slightly favoured and offer higher 

efficiency and accuracy. However, many tests resulted in HPF yielding the best results or, at 

least, at a similar level of performance compared to the LSQ methods. This is a great result, since 

HPF was also paired with the best penalty function when the outliers were not processed, i.e., 

the L1-Norm. Being able to use a penalty function that performs extremely well under very 

contrasting conditions is something to be taken into consideration when designing POD 

algorithms. 

The second drawback of the LSQ method was also that sparse data sets are more difficult to 

process by the algorithm. Again, this was shown to be solved by robust functions, which were 

able to improve the results and estimate a more accurate trajectory when AE observations were 

used. Especially in the LEO scenario, where the observations where more scattered. 

Regarding the rest of the tests carried out, the LSQ and HPF usually offer the best results, while 

the L1-Norm presents lower accuracy (given that outliers were processed). With that in mind, 

the recommendation would be very dependent on the application needed. 
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It is clear, and all these years of application to the space industry prove, that the LSQ offers high 

quality results when it comes to efficiency and accuracy, if the tool in use is adequately 

complemented with outlier processing tools and the quality of the measurements is also fine. 

HPF has offered excellent results throughout all the different tests carried in this report and, its 

adaptive form (although not finely tuned) is also able to obtain extremely good results both 

when the observations are processed and when not. 

The L1-Norm, on the other hand, has proven itself to be a great option when used with data 

containing outliers, where its robustness shines. However, when accuracy is a concern and 

processing tools are available (which is practically always), this penalty function is not the option 

to take. For this reason, there is no real advantage on using this penalty function over HPF. The 

computational efficiency is slightly higher for the L1-Norm, but the better results offered by HPF 

are clearly more significant in this trade-off. 

Be that as it may, the selection of a penalty function depends entirely on the target of its 

application. Processed and rich data should be paired with LSQ-like methods. Sparse and noisy 

observations need a more robust penalty function that could estimate the trajectory accurately 

enough not to be too bothered by the presence of outliers. If the computational effort is not a 

very restrictive constraint, as in on-ground applications, HPF will offer the versatility needed to 

obtain excellent results independently of the quality of the observations. If further 

developments and validations of this penalty function are conducted in the future, and its 

readiness level is accordingly risen, it could be a more robust replacement for traditional orbit 

determination methods even in a professional environment. 

6.2 RECOMMENDATIONS 
During this research, several topics arose as points where further investigation could be carried 

out to obtain interesting results. In this section, some of the main points of interest are gathered 

to propose a possible continuation to this topic. 

The scaling parameters defined in Section 3.3 were computed making use of an empirical 

process. This resulted in the desired convergence capabilities and the final results were obtained 

without major hindrances. However, after the first computation of these scaling parameters, in 

Section 4.2, convergence problems reappeared giving place to a slight reformulation of these 

parameters. A more reliable estimation of the scaling factors to be used in these problems (or a 

different technique to improve the convergence capabilities of the CVX toolbox) could add 

robustness to the algorithm. 

In Section 3.4, it was explained how the L2-Norm was the only penalty function that presented 

a properly defined error estimator (the formal error). An attempt of error estimation for the L1-

Norm was considered, but the proposed approach was not mature enough. From that point on, 

all the results were compared to the reference trajectory to assess the quality of the POD 

solution. It would have been, however, extremely interesting to be able to also compare the 

obtained results to the corresponding estimation of the error of each penalty function. Thus, 

the design of error estimators for the L1-Norm and/or HPF could give raise to new considerations 

to be taken into account when assessing which penalty function should be used for a certain 

application. 

Systematic errors other than gravity model and atmospheric model errors were not introduced 

in the generated noise in this research. This kind of errors could be very interesting to observe 

and test, since they would add a behaviour that is neither predicted by the models nor by the 
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parameters. A priori, and if the outlier processing function does not remove these observations 

subject to systematic errors by considering them outliers, they should represent another case 

where more robust penalty functions outperform traditional methods. 

When the tests concerning AE observations (see Section 4.4) took place, a single ground station 

was considered. This was mainly due to the fact that what was intended was to represent the 

sparsity that usually characterises this kind of data. Nevertheless, this is not usually the case in 

reality, where more than one ground facility is available. A priori, the results after adding more 

measurements should tilt the balance towards the LSQ side (as opposed as the L1-Norm), but to 

truly prove this, some tests could be run adding one or more ground stations. 

As was explained in Chapter 2, the POP implemented in the algorithm developed in this research 

included many different force models and perturbations (even eclipses were considered). 

However, there are still many upgrades to be made. Something that would have been interesting 

for the comparison made in this report using GOCE data is the inclusion of solid Earth, polar, and 

ocean tides. This could be implemented without much effort in the current POP, but the time-

frame did not allow for this, as it was not one of the main tasks of the thesis. 

The estimation of a ballistic coefficient as a constant value might be, according to the results 

observed in Section 4.3.2, an important limiting factor. Thus, it would be really interesting to 

estimate this parameter with a polynomial to check whether the final estimation sees any 

improvement or not. 

External accelerations could also be included in the POD process as they are taken by the 

accelerometers on-board the satellites. Their value could be estimated to compensate for errors 

that are not accurately defined by the rest of the parameters. 

Finally, further studies could be carried concerning the development and validation of a POD 

method featuring HPF as penalty function. Results from this thesis place this convex function as 

a not only accurate but also robust engine for any orbit determination process. As mentioned 

before, if its readiness level is sufficiently risen, applications including this cost function could 

be developed and applied to professional environments and should, therefore, be investigated. 
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8 ANNEXES 

8.1 GLOSSARY 
 Cost Function: mathematical function used to obtain the solution of an optimisation 

problem. See Section 2.5. 

 

 Estimated Parameters, 𝑿∗(𝒕): parameters describing the trajectory generated by running 

the POP using the outcome of the POD process as initial state, i.e., the product of the POD 

method. It is modified every iteration using: 

𝑋𝑘+1
∗ = 𝑋𝑘

∗ + 𝑥𝑘 

where 𝑥𝑘 is the 𝑥 that minimises the cost function. 

 

 Measurement Errors: the generated noise to be implemented on top of the generated 

observations, when needed (it is described in detail in the modelling section). It includes 

stochastic noise and outliers. 

 

 Misfit , 𝝆: the outcome of the linearized observational equation: 

𝜌 = 𝐻𝑥 − 𝑦 

where 𝑦 is the difference between the actual and the modelled measurements, i.e., the 

measurement residual; 𝑥 is the difference between the current estimation of the 

parameters and the previous estimation (see Estimated trajectory); and 

𝑯 = (

𝐻0 ×  𝑆𝑇𝑀(𝑡0, 𝑡0)

𝐻1 ×  𝑆𝑇𝑀(𝑡0, 𝑡1)
⋮

𝐻𝑛 ×  𝑆𝑇𝑀(𝑡0, 𝑡𝑛)

) 

is the design matrix that transforms the parameters to be estimated to its corresponding 
modelled observations. It is composed of 𝐻𝑘, containing the partial derivatives of the 
measurements w.r.t. the state vector; and 𝑆𝑇𝑀(𝑡0, 𝑡), the state transition matrix that 
contains the partial derivatives of the state vector at epoch 𝑡𝑘 w.r.t its values at a certain 
epoch 𝑡0. 
 

 Noise Layer: the generated noise to be implemented on top of the reference trajectory. Its 

nominal definition and parameters are included in Subsection 2.7.1.5. 

 

 Optimal Value: value obtained from giving a certain estimation to a penalty function. It is 

the value that the CVX toolbox minimises in the inner loop (see Section 3.3). 

 

 Reference Parameters, 𝑿(𝒕): parameters describing the trajectory generated by the POP 

as ground truth. When real data is used, this term refers to the RDOD solution. 

 

 Robustness: the capacity of a certain function or algorithm to reach a valid solution under 

constrained, disadvantageous, or uncertain conditions. 

 

 Test Configuration: set of settings imposed for a test, i.e., the penalty function to be used, 

the magnitude of the noise, etc. 


