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Nonlinear dynamics for estimating the tip radius in atomic force microscopy
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The Netherlands

(Received 21 June 2017; accepted 9 September 2017; published online 21 September 2017)

The accuracy of measurements in Amplitude Modulation Atomic Force Microscopy (AFM) is

directly related to the geometry of the tip. The AFM tip is characterized by its radius of curvature,

which could suffer from alterations due to repetitive mechanical contact with the surface. An

estimation of the tip change would allow the user to assess the quality during imaging. In this

work, we introduce a method for tip radius evaluation based on the nonlinear dynamic response of

the AFM cantilever. A nonlinear fitting procedure is used to match several curves with softening

nonlinearity in the noncontact regime. By performing measurements in this regime, we are able to

maximize the influence of the tip radius on the AFM probe response, and this can be exploited to

estimate with good accuracy the AFM tip radius. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4991471]

Atomic Force Microscopy (AFM) has evolved into one

of the most powerful tools in nanotechnology.1–3 Through the

introduction of different operating modes, AFM is increas-

ingly being used in metrology for industrial applications.4 The

force interaction between the AFM tip and the sample is used

to measure topography or other nanomechanical properties

such as roughness or hardness. In the Amplitude Modulation

mode (AM-AFM), surfaces are scanned with a resonating

microcantilever that is driven at or near its first resonance fre-

quency, and with every oscillation, the tip briefly touches the

sample. A feedback loop keeps the vibration amplitude con-

stant by adapting the distance between the sample and the

base of the cantilever.

The resolution that can be achieved with AM-AFM is

highly dependent on the tip sharpness. Difficulties in obtaining

a precise tip radius calibration method have been pointed out

in the literature.5 In order to provide commercially viable pro-

cesses with high quality measurements, it is desired to contin-

uously assess the tip condition in between or even during

measurements. By using a Scanning Electron Microscope

(SEM), high-precision images with nanometer resolution can

be obtained. However, the full reliability of the method is

affected by the uncertainty on the angle at which the two-

dimensional image is captured. The contamination of the

AFM tip is another important limiting factor of this

approach. A more realistic 3D tip-shape characterization

methodology is the “Blind Tip Reconstruction.”6 This tech-

nique has an increased risk of tip damage due to the addi-

tional tip-approach and scanning of the topographically

challenging surface. Therefore, an accurate and safe in-situ
estimation of the AFM tip radius is still an open research

question. Using static mode force-spectroscopy, the nonlin-

ear van der Waals forces have been analysed for fitting the

values of the tip radius by data obtained from force-distance

curves in the attractive regime.7,8 Dynamic mode AFM could

potentially be another nondestructive way of estimating the

tip radius during AFM measurements. In this mode, the

information is obtained directly from the vibrations of the

cantilever, which is essentially a repetitive approach curve.

The analysis of the probe-surface interaction can be done by

the acquisition of vibration amplitude vs. distance curves,

the use of amplitude-frequency response curves, or by

extracting the Fourier spectrum of the driving signal.9

Exploring the first option, Santos et al. developed a method

that is mostly empirical to identify the tip sharpness by

obtaining approach/retract curves and inspecting the transi-

tions from attractive to repulsive force regimes.10 A study

carried out by Holscher et al.11 shows that the tip-sample

potential can be experimentally obtained by measuring the

shift of the resonance frequency as a function of the reso-

nance amplitude of the AFM cantilever in frequency modu-

lation. Hu et al. showed that the nonlinear behaviour of

AFM cantilevers interacting with a sample can be exploited

for parametric studies estimating the Hamaker constant by

means of a harmonic balance based identification method.12

In this letter, we report a parametric study of the fre-

quency response of the oscillating cantilever in the noncon-

tact mode and its use for assessing the tip radius. In this

operating mode, the cantilever is periodically excited with a

dither piezo at a distance of a few nanometers above the

sample surface. The nonlinear response of the cantilever is

then directly related to the van der Waals interaction poten-

tial between the sample surface and the AFM tip, which is

proportional to the tip radius. Our theoretical study consists

of a lumped parameter model subjected to the harmonic

excitation and van der Waals tip-sample interaction.13 The

simulations in the attractive regime have been validated by

experiments, and the nonlinearity of the tip-sample interac-

tion has been demonstrated by experimental curves repre-

senting the amplitude-frequency relationship. A schematic

representation of the situation is illustrated in Fig. 1.

The tip of the AFM probe in its rest position has a dis-

tance zc from the sample. The amplitude of the oscillation

around this reference position is indicated by the variable z.

The interaction between the probe and the surface in the

attractive regime is given bya)Electronic mail: f.alijani@tudelft.nl
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Fint�vdW zð Þ ¼ �
HRð1þaÞ

6 zc þ zð Þð2þaÞ ; d � a0 (1)

in which a assumes a value 0 or 1 in the case of a (hemi-)

spherical or a flat circular tip,14 respectively. H represents

the Hamaker constant, R the tip radius, and a0 the intermo-

lecular distance, respectively. When the tip-sample distance

d¼ zc þ z is smaller than a0, other models apply for the

AFM cantilever oscillation such as the Derjaguin-Muller-

Toporov (DMT).15 The DMT model combines an attractive

van der Waals model governing the noncontact behaviour

(d� a0) and a Hertzian contact formulation (d< a0), which

is proportional to the square root of R. However, the tip sam-

ple force expressed in Eq. (1) is either linearly dependent on

R (a¼ 0) or quadratically dependent (a¼ 1), in the purely

attractive domain. Thus, the conformation of the dynamical

response as a function of the tip radius can be more easily

determined by exploiting the noncontact region.

In AFM experiments, a lock-in amplifier is used to mea-

sure the amplitude and phase of the cantilever deflection sig-

nal with no contribution from higher modes and the absence

of any internal resonance.16 It is therefore valid to model the

cantilever as a single-degree-of-freedom model as follows:

m
d2z

dt2
þ mxn

Q

dz

dt
þ kcz ¼ F cos ðxtÞ � HRð1þaÞ

6 zc þ zð Þð2þaÞ : (2)

The cantilever beam with effective mass m and spring

constant kc is actuated by a sinusoidal external signal with

amplitude F and angular frequency x; Q and xn are the qual-

ity factor and the angular resonance frequency, respectively.

To perform a parametric study, the nondimensional

form of Eq. (2) is considered

d2ẑ

ds2
þ ĉ

dẑ

ds
þ ẑ ¼ k cos ðX̂sÞ � b

1

1þ ẑð Þð2þaÞ ; (3)

in which the dimensionless deflection and dissipation coeffi-

cient are ẑ ¼ z
zc

and ĉ ¼ 1
Q, respectively. The dimensionless

time is s¼xnt, whereas k ¼ F
zckc

represents the coefficient of

the sinusoidal excitation with frequency X̂ ¼ x
xn

. The nonlin-

ear interaction is governed by the coefficient b ¼ HRð1þaÞ

6kcz
ð3þaÞ
c

.

Assuming R as a sole varying parameter in Eq. (2), the fre-

quency response of the system as a function of the tip-radius

is reported in Fig. 2. The presented frequency response curves

were calculated with a pseudo-arc length continuation and

bifurcation software package,17 which allows us to follow the

solution path and obtain stable and unstable solutions. The

simulation analysis begins at the zero force level where the

initial solution corresponds to the undeformed configuration

of the system by choosing the excitation amplitude (k) as the

continuation parameter at a fixed excitation frequency far

from resonance (e.g., x<xn). Once the desired force level is

reached, the solution continues by considering the dimension-

less excitation frequency (X̂) as the continuation parameter to

obtain the frequency-amplitude response of the cantilever.

The frequency response in the attractive regime is gov-

erned by a softening behaviour as shown in Fig. 2. The large

values of the tip radius affect the position of the saddle-node

points (points A and B, respectively), moving the peak of the

response towards lower frequencies. Here, we remark that

the implemented model analyses the motion only for the con-

figuration for which d� a0.

This theoretical behaviour has also been experimentally

investigated. A commercial AFM (Nanosurf FLEX operated

with the C3000 controller) was used to statically approach

the inspected AFM cantilever towards the sample and to

keep the reference distance zc of the tip with respect to the

surface constant during the remainder of the experiment. An

external multi-frequency lock-in analyzer (Intermodulation

Products AB), directly connected to the AFM unit, excited

the cantilever to allow the dynamic analysis. The cantilever

probes used in the experiments are commercially available

(NCLR, NanoWorld AG) with a nominal tip radius of 8 nm

as indicated by the supplier. The sample used was Highly

Oriented Pyrolytic Graphite (HOPG). For each experiment, a

calibration of the spring constant kc of the cantilever based

on a noninvasive method was performed18 and the relative

humidity was controlled (<10%).

In order to obtain the experimental frequency response

curves with a repeatable and systematic method, the follow-

ing steps were defined: (i) the cantilever was approached to

the sample in the static mode (approach phase); (ii) a force-

distance curve was acquired recording the effective deflec-

tion of the cantilever. The forward motion was stopped at a

small, arbitrarily chosen, cantilever deflection set point of

2 nm. The corresponding position was considered to be at the

FIG. 1. Schematic of the AFM and the sample. The rest position of the canti-

lever is the reference for the deflection z.

FIG. 2. Frequency response for different values of R for a (hemi-)spherical tip

(from left to right, R¼ {130, 110, 90, 70, 50, 30, and 10} nm). For the numeri-

cal simulation, we considered zc ¼ 20 nm and HSi-HOPG ¼ 2.9656� 10�20J. In

the normalized amplitude, a value in the ordinate equal to 1 indicates the posi-

tion of the sample surface (z¼�zc). Regions I–III are used for the fitting

procedure.
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surface, i.e., where d� a0; (iii) the cantilever was pulled

back from the sample with a fixed backward length (the

backward length corresponds to the distance from sample

zc); (iv) a closed-loop-controller on the z-axis motion was

activated to avoid drifting away from this position; (v) the

frequency was swept in the specified neighbourhood of the

estimated resonance frequency and the vibrational amplitude

was measured in order to obtain the experimental curves.

To investigate the tip-radius effect by minimizing the

dangerous and most often destructive repulsive interaction

with the sample, it is important to identify the noncontact

regime.19,20 This can be done by sweeping the excitation

frequency from below the resonance frequency to above

and back again. Instead of reducing zc in the free-air ampli-

tude while keeping the excitation F constant, also F can be

increased while zc is being kept constant. The experimental

results of the dynamical response with respect to the

increasing values of the excitation amplitude are reported

in Fig. 3.

The accuracy with which the responses were measured

permitted to clearly identify the transition from the purely

attractive to the repulsive region. It can be seen from the so-

called “backbone curve” (black line in Fig. 3) that the

response was first governed by the softening behaviour due

to the van der Waals forces, whereas it transitioned into

hardening when the amplitude of the tip surmounted the

intermolecular distance a0. With the information collected

by the backbone curve, it was possible to verify that the cho-

sen distance (zc) and the excitation force amplitude were in

the noncontact regime.

For the identification process, the properties of the canti-

lever and the Hamaker constant were assumed to be known.

The height of the frequency response curves (regions I and

III in Fig. 2) was primarily determined by F and the width

(region II) by Q. Next, the positions of the saddle-node

points (points A and B in Fig. 2) connecting the stable and

unstable motion were matched considering the tip radius R
as the fit parameter. Due to the softening nature of the

curves, obtaining the data from the backward sweep was cru-

cial for the fitting. An estimated uncertainty in a zc value of

61 nm was taken into account for the fitting procedure and a

Hamaker constant HSi-HOPG ¼ 2.9656� 10�20 J.12 In Fig. 4,

we report for three different cantilevers the experimental fre-

quency response curves and their corresponding fit interact-

ing with the HOPG sample. To finish the experiments, the

tip was removed without any additional approaching of the

probe towards the sample and inspected using a SEM.

The experimental curves shown in Fig. 4(a) are fitted

with a spherical tip radius of R¼ 19 6 6 nm. The obtained

value of the tip radius is in good agreement with the extracted

value from the SEM image that gives R¼ 18 6 2.7 nm. The

tip radius estimation in Fig. 4(b) was obtained, accounting for

a blunted tip interaction (R¼ 12 6 1.5 nm), and is in good

FIG. 3. Experimental frequency response curves with increasing excitation

amplitude. The color code indicates an increase in excitation (2 mV steps

were made). The solid line indicates the backbone curve, and the sample is

at zc ¼ 20 nm.

FIG. 4. Experiments using different

cantilevers. For figures (a)–(c), the the-

oretical model is depicted with a black

line and the experimental data are rep-

resented by grey dots (frequency

sweep forward) and blue dots (fre-

quency sweep backward). The inset

SEM image of the AFM tip is shown

for all cases. (d) The tip radius static

deflection fit corresponding to the van

der Waals force in the approach phase

of the cantilever in (c).
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agreement with the SEM measurement for a flat circular tip

(R¼ 10 6 2 nm). It should be noted that, by applying to this

set of experiments the (hemi-)spherical model, the order of

magnitude of the estimated value remains preserved (R¼ 60

6 18 nm), although there is a large discrepancy between the

SEM and the identified tip radius. This underlines that the

(hemi-)spherical model could be a precautionary model if an

in-situ tip estimation is to be performed since it provides a

safer threshold for avoiding undesired tip deterioration. In Fig.

4(c), a similar experiment was performed on a third cantilever

by finding the frequency response curve only in the backward

sweep. In this case, the tip radius (R¼ 22 6 8 nm) is also close

to the value by the SEM image (R¼ 18 6 4 nm). However, to

have a better comparison, the force-distance spectroscopy

measurement for the third cantilever is also obtained and pre-

sented in Fig. 4(d). As it can be observed, a static fit account-

ing for the interactions described in Eq. (1) could be achieved

for a range with an optimal R¼ 24 6 10 nm, which is within

the tolerances of the estimation obtained by the current

dynamic method. It is worth noting that, compared to the per-

formed force-distance measurement, our method assesses the

tip condition by looking solely at the frequency response

curves in the attractive regime and thus does not allow further

contact with the sample during tip assessment.

In summary, a methodology to determine the AFM tip

radius has been presented. The method consists of the acqui-

sition of frequency response curves in the attractive regime

where the influence of the tip radius is predominant. The

experimental frequency response curves are fitted to the

model that includes the van der Waals force. It is found that

exploiting the nonlinear dynamic response of the cantilever

is a safe method for tip assessment.

This work was performed within the aim4np project,

which was supported by the EC through a grant (Contract

No. 309558) within the 7th Frame-work Program.
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