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In this contribution, a small strain single crystal plasticity framework in the context of an infeasible pri-
mal–dual interior point method (IPDIPM) is discussed with a focus on the numerical treatment. Related
to rate-independent algorithms in the field of single-crystal plasticity, the use of the IPDIPM to solve the
constrained optimization problem offers the advantage that it handles the naturally arising redundancy
in the slip system intrisically through a barrier term. This formulation penalizes the approach of the
unfeasible domain, whereas the penalization term gradually approaches zero in the algorithm. This paper
focusses on the numerical treatment and presents different tangent operator formulations and compares
their convergency behavior in a numerical example.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The focus of this paper is the derivation and discussion of algo-
rithmic consistent and numerically derived tangent operators for
single crystal plasticity in the framework in a formulation based
on the infeasible primal–dual interior point method, which was
proposed in Scheunemann et al. (2020).

Since many decades, material modeling of crystalline solids is a
field of active research. Therein, the continuum slip theory, see e.g.
Mandel (1972), Havner et al. (1982) and references therein, builds
the well-established foundation for the phenomenological descrip-
tion of the mechanical response of crystal elasto-plasticity. On the
crystallographic lattice, slip systems are defined which are
described by their related continuum slip fields. For example, in
a face centered cubic (fcc) crystal, these slip systems are associated
to the densely packed planes in the atomic lattice, which are eight
111f g planes in the crystal reference frame. Each slip plane con-
tains three 110h i slip direction leading to a total number of 24 slip
systems. In relation to classical plasticity formulations, single crys-
tal plasticity can be recast into the format of multi-surface plastic-
ity, see e.g. Koiter et al. (1960) and Mandel (1972), such that a yield
criterion is associated to each slip system. The fundamental prob-
lem arising in the field of single crystal plasticity is that, unlike the
multisurface plasticity formulations, the yield functions on the slip
systems are linearly dependent, which leads to a non-uniqueness
of the active slip systems, see e.g. Taylor (1938), Kocks (1970),
Havner et al. (1982). There exist several approaches to handle
the problem of non-uniqueness, where one class aims at the iden-
tification of active slip systems and thereby leads to rate-
independent approaches, whereas rate dependent formulations
regularize the system of equations by introducing viscosity to the
slip rate formulation. Even when an active set of slip systems has
been determined, the linear dependency of the slip systems leads
to an ill-posed problem in the determination of the slip on the
active systems. A brief overview will be given here for the field
of rate independent approaches. In this field, Cuitiño and Ortiz
(1992), Miehe (1996), Simo et al. (1988) developed algorithms to
identify the active sets in different ways. An algorithm successively
determining the active set was developed in Borja and Wren
(1993) and extended in Borja and Rahmani (2012). In the problem
of solving the arising ill-posed problem when determining the slip
rates, Anand and Kothari (1996) use a generalized inverse formula-
tion based on singular value decomposition of the Jacobian matrix,
which has been extended to an alternative generalized inverse in a
reduced space in Schröder and Miehe (1997). Building up on this
work, a regularization approach based on a diagonal shift tech-
nique was introduced by Miehe and Schröder (2001). With the
aim to ensure uniqueness to the problem, Arminjon (1991) pro-
posed an approach using a smoothed yield surface whereas
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Gambin (1992) use a scalar yield condition instead of the classical
yield functions. An algorithm based on an augmented Lagrangian
formulation based on the principle of maximum dissipation was
proposed by Schmidt-Baldassari (2003). McGinty and McDowell
(2006) developed a sequential algorithm for rate-independent sin-
gle crystal plasticity which treats the identification of the active
slip systems and the computation of the shearing rates separately.
Miehe and Rosato (2007) propose a method for the determination
of slip activity in fcc crystals based on a pure geometric setup of the
slip systems and a fully implicit update strategy based on the con-
sistency condition was presented by Zuo (2011). Recently, a formu-
lation for small strain single crystal plasticity based on the
infeasible primal–dual interior point method was proposed in
Scheunemann et al. (2020). Among several works who discuss
and extend the developed algorithms, Busso and Cailletaud
(2005) compared different algorithms under multiaxial loading
paths. Prüger and Kiefer (2020) have discussed several formula-
tions in detail and evaluated their behavior in non-monotonous
loading scenarios and for anisotropic hardening relations.

As mentioned above, rate-dependent formulations are utilized
frequently to overcome the issues on non-uniqueness imposed
by the rate independent formulations. The viscous regularization
based on power-type creep laws, as discussed in e.g. Asaro and
Rice (1977), Asaro (1983), Peirce et al. (1982), Steinmann and
Stein (1996) and Mathur and Dawson (1989), circumvents the
active set search and all slip systems are considered to be active
simultaneously. A numerically robust implementation is provided
in the simulation framework Damask, see e.g. Roters et al. (2010)
and Shanthraj et al. (2015). The sensitivity of these algorithms in
anisotropic hardening scenarios with respect to a small misorien-
tation of the initial crystal orientation is discussed in Prüger and
Kiefer (2020), who point out that the rate independent formulation
and its description as a limit of the rate dependent case, i.e. vanish-
ing viscosity, does not necessarily yield similar results. A focus of
current research is the field of strain gradient plasticity, which con-
siders a contribution to the energy from geometrically necessary
dislocation, see e.g. Gurtin (2000), Reddy et al. (2012), Gurtin
et al. (2007), Forest and Gueninchault (2013), Wulfinghoff and
Böhlke (2013), Wulfinghoff and Böhlke (2015) and Lewandowski
and Stupkiewicz (2018), among other, however, this topic is not
in the scope of the presented work.

The notion of consistent algorithmic elastoplastic tangent mod-
uli is well-known for a discrete algorithmic problem when apply-
ing a Newton–Raphson scheme. The algorithmic consistent
elastoplastic moduli, which produce the exact Hessian of the dis-
crete problem, can be derived from the incremental stress state
with respect to the incremental strains. Many works, see e.g.
Simo (1998), Blaheta (1997) state the presenvance of quadratic
convergence properties of the Newton scheme for the iterative
solution of the initial boundary value problem in elastoplasticity.
However, Sauter and Wieners (2011) point out that the complexity
of the formulation rises when treating multi-yield phenomena
compared to single yield phenomena and nonsmoothness is
observed for rate-independent algorithms where convergence
properties cannot be deduced from standard Newton theory. The
authors show superlinear convergence for a Drucker-Prager type
elastoplasticity in the context of semismooth Newton methods.
For simple associated plasticity models, convergency properties
are shown in Alberty et al. (1999), whereas Blaheta (1997) shows
quadratic convergence for a correctly identified set of active con-
straints in multisurface plasticity. In the field of single crystal plas-
ticity, Miehe and Schröder (2001) provide a consistent algorithmic
tangent operator for a rate-independent formulation, also Prüger
and Kiefer (2020) provide such operators for different algorithms.
As an alternative to the algebraic derivation of algorithmic consis-
tent tangent operator based on the incremental stress strain rela-
2

tionship, numerical differentiation schemes can be applied.
Beside the well-known finite difference scheme, the complex-
step derivative approximation, which uses a Taylor series expan-
sion along the imaginary axis, has become more and more popular
in the last years due to the robustness with respect to the size of
the applied perturbation. A discussion of numerical tangent opera-
tors for localization analysis can be found in Hürkamp et al. (2015),
Tanaka et al. (2014) analyze different tangent operator formula-
tions for viscoelasticity. An incremental variational formulation
based on hyper-dual numbers can be found in Tanaka et al. (2016).

The focus of this paper is the derivation and discussion of an
algorithmic consistent tangent operator and its comparison to
numerically derived tangent operators for single crystal plasticity
in the framework in a formulation based on the infeasible pri-
mal–dual interior point method, which was proposed in
Scheunemann et al. (2020). The framework of small strain single
crystal plasticity in the framework of the infeasible primal–dual
interior point method is recapitulated first, before the tangent
operators are introduced. In numerical examples, the comparison
of the convergence is discussed and the orientation specific aniso-
tropy and resulting shear band evolution is shown.
2. Constitutive framework of single crystal plasticity at small
strains

The classical description of the constitutive behavior of face
centered cubic (fcc) single crystals at small strains is given in the
following. The elastic material behavior is assumed to be governed
by the free energy function

we ¼ 1
2
ee : Ce : ee with ee ¼ e� ep; ð1Þ

where ee describes the elastic part of the strains and ep describes the
plastic part. Here, the general anisotropic linear elastic response for-
mulation is governed by the fourth-order tensor Ce of elasticity
moduli. For an application to fcc crystals, we consider cubic elastic
symmetry with

Ce ¼ Ce ijklei � ej � ek � el ð2Þ
in the cartesian base eif gi¼1;3 aligned to the cubic crystal. Based on
the above defined elastic free energy, the Cauchy stress is defined as

r ¼ @we

@ee
¼ Ce : ee: ð3Þ

In crystal plasticity, the plastic behavior of the material is governed
by the anisotropic response from the crystalline structure. Therein,
a certain number of slip systems a 2 1 . . .m is defined, which are
described by the slip direction ma and the slip system normal na.
For fcc crystals, these slip systems form an octahedral shape, see
Fig. 1a for an illustration and a total number of 2� N slip systems,
N ¼ 12, can be defined. The definition of the first 12 slip systems is
given in Fig. 1b, where for slip system N þ 1, it holds that
mNþ1 ¼ �mN . The plastic slip on each slip system is described by
ca, whereas it must hold that _ca P 0, which is related to the rate
of the plastic part of the small strain tensor by

_ep ¼
XN
a¼1

Pa _ca; Pa ¼ sym ma � nað Þ; ð4Þ

where Pa is a projection tensor related to slip system a.
It has been observed in metals that plastic deformation on a slip

system only occurs when the stress level exceeds a certain limit
value, which justifies the definition of yield surfaces

/a :¼ sa � ga 6 0; where ga t ¼ 0ð Þ ¼ s0 ð5Þ



Fig. 1. (a) Octahedral arrangement of slip planes in fcc crystal unitcell. (b) Summary of slip systems of face centered cubic unitcell with numbering given by a and slip
normal- and slip direction vector given by na and ma , respectively. Taken from Scheunemann et al. (2020).
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wherein the resolved shear stress on the slip system is described by
sa ¼ r : Pa and the yield stress is given by ga with s0 as the intial
yield stress. For each slip system, the Karush-Kuhn Tucker
conditions

_ca P 0; Ua 6 0; Ua _ca ¼ 0 ð6Þ
must hold. ga can be understood as a work conjugate to the plastic
slip, related through an idealized energy storage mechanism gov-
erned by a plastic potential wp, i.e.,

ga ¼ @wp

@ca
: ð7Þ

In e.g. Ortiz and Stainier (1999), suitable approximations are given
for plastic stored energy functions. For nonlinear hardening models,
however, this description based on a plastic potential is in general
not possible and a classical rate form

_ga ¼
X
b

hab _cb ð8Þ

can be defined, where hab are the hardening moduli. In this work,
the classical assumption

hab ¼ ĥ Að Þ qþ 1� qð Þdab� �
; ð9Þ

is used, as suggested in Hutchinson (1976) and Peirce et al. (1982).
Therein, the strain-like interal variable A is given by

A ¼
X
a
ca; ð10Þ

and describes the interal hardening state of the single crystal by the
sum of accumulated slips on all slip systems. The type of hardening
behavior in this model is described by the parameter q 2 1; 1:4½ �,
which was experimentally investigated in Kocks (1970) for fcc crys-
tals. A value of q ¼ 1 describes isotropic (Taylor-type) hardening.

For the scalar-valued function ĥ Að Þ, different forms have been pro-
posed in the literature, see e.g. Chang and Asaro (1981).

The evolution of ep takes place according to the principle of
maximum dissipation, such that for ideal plastic behavior, using
Eq. (3) and (4),

Dred ¼ r : _ep ¼
X
a
Pa : Ce : ee _ca ð11Þ

and taking into account hardening effects

Dred ¼ r : _ep �
X
a
ga _ca ¼

X
a

Pa : Ce : ee � ga
� �

: _ca ð12Þ
3

needs to be maximized under consideration of the yield condition,
see Eq. (5). This leads to the constrained optimization problem

maximize Dred _ca
� �

subject to Ua 6 0 for a ¼ 1;2; . . . ;N;
subject to _ca P 0 for a ¼ 1;2; . . . ;N:

ð13Þ

The stated optimization problem in Eq. (13) can be treated using
different methods. The construction of a Lagrange functional leads
to a classical rate independent formulation, which has well-
known difficulties: The active set of slip systems need to be deter-
mined, which requires to solve an ill-conditioned problem. The
determination of the slip rates from the active systems is not
unique due to the redundancy in the constraint conditions. Pertur-
bation techniques or the generalized inverse techniques can be used
to overcome these difficulties. Other approaches include penalty
formulations, which regularize the formulation but, however, only
fulfill the constraint conditions in an approximate manner. An aug-
mented Lagrangian formulation was proposed in Schmidt-
Baldassari (2003). Here, the constrained optimization problem is
treated using the infeasible primal–dual interior point method, in
analogy to the formulation introduced in Scheunemann et al.
(2020), where details on the formulation can be found. A brief intro-
duction of the infeasible primal–dual interior point method is given
in the next section.

3. Infeasible primal–dual interior point method for single
crystal plasticity

As defined in the last section, the considered problem is the
maximum dissipation constrained by flow criteria and values of
plastic slip rates higher than zero. This is equivalent to a nonlinear
optimization problem with multiple inequality-constraints

min �Dred _cð Þ 8 �Dred _cð Þ 2 R�;

subject to / 6 0 8 / cð Þ 2 Rm;

with _c P 0 8 _c 2 Rm
þ :

ð14Þ

To implement the infeasible primal–dual interior point method,
based on the work in Scheunemann et al. (2020) and Nigro
et al. (2019), the addition of slack variables is necessary to
transfer inequality constraints to equality constraints, leading
to the alternative formulation of the optimization problem in
Eq. (14)
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min �Dred _cð Þ;
subject to /þ s ¼ 0;

with _c P 0 and s P 0:
ð15Þ

Now, the problem replaces the more complex inequality in Eq.
(14.2) by two simple inequalities in Eq. (15.3). To deal with these
inequalities, a continuous, differentiable, and smooth approach is
applied to ensure a limitation in the domain. Such an approach is
called barrier function. Then, based on the simple inequalities,
two barrier functions are required

min�Dred _cð Þ � l
Xm
i¼1

ln sið Þ � l
Xm
i¼1

ln _cið Þ 8 l 2 Rþ

subject to /þ s ¼ 0 8 s 2 Rm
þ

sT ¼ s1; . . . ; sm½ � 8 si 2 Rþ
s ¼ Sem 8 S ¼ diag sð Þ 2 Rmxm

ð16Þ

with m as the number of slip systems. Based on the mentioned
steps, the Lagrangian function is set up as

l _c; k; sð Þ ¼ �Dred _cð Þ þ kT /þ s½ � � l
Xm
i¼1

ln sið Þ

� l
Xm
i¼1

ln _cið Þ 8 l 2 R and k 2 Rm
þ ð17Þ

with kT ¼ k1; . . . ; km½ � 8 ki 2 Rþ ð18Þ
and k ¼ Kem 8 K ¼ diag kð Þ 2 Rmxm: ð19Þ
Please note that the same barrier parameter l is used here for the
two barrier functions. A consideration of two separate barrier
parameters and an independent reduction during the local iteration
may lead to a stagnation in the problem, compare Hinder and Ye
(2018). Next, it is possible to consider the classical Kuhn-Tucker
condition

ki P 0; / cð Þi 6 0 and ki / cð Þi ¼ 0: ð20Þ

Related to the formulation, the gradients are defined by

@l
@ _c
¼ � @Dred

@ _c
þ @/

@ _c

T

k� l _C
�1
em ð21Þ

@l
@k
¼ /þ s; ð22Þ

@l
@s
¼ k� lS�1em; ð23Þ

with _C ¼ diag _cð Þ 2 R
m�m and

@l
@ _c

;
@Dred

@ _c
2 R

m;
@/

@ _c
2 R

m�m.

For algebraic simplification, the gradient in Eq. (23) can be
replaced by

@~l
@s
¼ S

@l
@s
¼ Sk� lem: ð24Þ

The set of nonlinear equations given in Eq. (21), Eq. (22) and Eq. (23)
must be equated to zero. The system of equations is linearized using
Taylor series expansion, ignoring terms of second and higher order
and set the equation to zero, leading to

0 ¼ @l
@ _cþ @2 l

@ _c2
D _cþ @2 l

@ _c@kDkþ @2 l
@ _c@sDs;

0 ¼ @l
@k
þ @2 l

@k@ _cD _cþ @2 l
@k2

Dkþ @2 l
@k@sDs;

0 ¼ @l
@sþ @2 l

@s@ _cD _cþ @2 l
@s@kDkþ @2 l

@s2 Ds:

ð25Þ
4

Arranging Eq. (25) in matrix form and using the explicit values
yields

�@2Dred

@ _c2
þ @2/

@ _c2
kþl _C

�2 @/
@ _c

T
Om

@/
@ _c Om Im
Om S K

2
666664

3
777775

D _c

Dk

Ds

2
64

3
75¼ �@Dred

@ _c � @/
@ _c kþl _C

�1
em

�/�s
�Skþlem

2
64

3
75:

ð26Þ
The second and third line of Eq. (26) can be reformulated such that
the increment Ds can be expressed in terms of the increment of
Lagrange multiplier Dk and a reduction of the system size is
achieved. Hence, with the increment of the slack variable given as

Ds ¼ �K�1Skþ lK�1em � K�1SDk; ð27Þ
the final system follows with respect to the two variables _c and k

@2Dred

@ _c2
þ @2/

@ _c2
kþl _C

�2 @/
@ _c

T

@/
@ _c �K�1S

2
664

3
775 D _c

Dk

� �
¼ � @Dred

@ _c � @/
@ _c kþl _C

�1
em

�/�lK�1em

" #
:

ð28Þ
and the increment of the slack variable from Eq. (27)

Ds ¼ �K�1SDk� sþ lK�1em: ð29Þ
In the matrix of Eq. (28), the penalization term can generate unsta-
ble values, which lead in some cases to matrix singularity. Another
problem is the lack of control of the KKT condition related to the
primal variable _c. To deal with these two problems, the dual vari-
able of the variable _c is defined through the derivative of the barrier
function related to _c, such that

qc ¼
@ l

Xm
i¼1

ln _cið Þ
" #

@ _c
() qc ¼ l _C�1em or _Cqc ¼ lem

ð30Þ

Hc ¼ diag qc

� 	
2 Rmxm and _C ¼ diag _cð Þ 2 Rmxm ð31Þ

qc ¼ Hcem 2 R
m
þ and _c ¼ _Cem 2 R

m
þ : ð32Þ

As explained previously, with the dual variable of _c, it is possible to
control the penalization of _c. Related to the instability of the penal-
ization term in Eq. (28), it is possible to mitigate this problem with
the second derivative of Eq. (30), which yields

@qc

@ _c
¼ �l _C�2 but Hc ¼ l _C�1 ð33Þ

@qc

@ _c
¼ �Hc _C

�1 ð34Þ

with the first derivative of the dual variable of _c, the increment of
Eq. (30) is approximated by

Dqc ’
@qc
@ _c D _c ð35Þ

Dqc ’ �Hc _C
�1D _c ð36Þ

and finally, the update of Eq. (30) is deduced by

qc þ Dqc ’ l _C
�1
em �Hc _C

�1
D _c ð37Þ

Dqc ’ l _C�1en �Hc _C
�1D _c� qc ð38Þ
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The approximation described in Eq. (38) is applied in the matrix
diagonal of Eq. (28) and results in a numerical behaviour similar
to a pertubation approach. Lastly, the final system in the matricial
form becomes

�@2Dred

@ _c2
þ @2/

@ _c2
k�Hc _C

�1 @/
@ _c

T

@/
@ _c �K�1S

2
664

3
775 D _c

Dk

� �
¼ �@Dred

@ _c � @/
@ _c kþl _C

�1
em

�/�lK�1em

" #
:

ð39Þ

An alternative derivation of this formulation from the barrier prob-
lem can be found in the Appendix A.2.

4. Time integration algorithm

Based on the infeasible primal–dual interior point method
(IPDIPM) described in the last section and presented in detail in
Scheunemann et al. (2020), a time integration algorithm for the
evolution problem will be discussed in the following. For the sake
of brevity, a reduced notation as described in Scheunemann et al.
(2020) will be used throughout the remaining part of the paper.
Therein, a transition from tensorial notation to matrix notation is
made.

For the evolution of the plastic strains, respectively the plastic
slip rate, a time region of interest 0; T½ � is considered, with

0; T½ � ¼ [N
nþ1 tn; tnþ1½ � ð40Þ

considering a typical time interval tn; tnþ1½ � in the following. The
time discrete formulation of the reduced dissipation inequality,
see Eq. (13) yields

Dred Dcanþ1
� � ¼X

a
Pa : Ce : enþ1 �

X
b

Pa : Ce : Pbcbnþ1 � ganþ1

 !
Dcanþ1 P 0:

ð41Þ

where an implicit backward Euler scheme is used for the integra-
tion of the continuous variables. All variables at tn are assumed to
be known and for simplicity purpose, the subscript index nþ 1 is
omitted, such that all variables without index denote the evaluation
at the current time tnþ1. As initial conditions at t ¼ 0, we assume c
to be zero and ga ¼ s0 8 a ¼ 1;2; . . .m. In view of the application
of interior point method according to Eq. (39), the derivatives of the
objective function with respect to Dc will be given in detail in the
following. The derivation leads to

@Dred
@Dc ¼ @

@Dc ee;trial
T
CePDc

h i
þ @

@Dc �DcTPTCePDc
� �þ @

@Dc �gDc½ �

¼ PTCeee;trial � 2PTCePDc� g � @g
@DcDc

¼ PTCeee;trial � 2PTCePDcþ h Dcð Þ ð42Þ

with @Dred
@Dc 2 Rm. The trial elastic strain measure ee;trial is defined by

ee;trial ¼ enþ1 � epn . The second derivative leads to

@2Dred
@Dc2

¼ @
@Dc PT

Ceee;trial
h i

þ @
@Dc �2PT

CePDc
h i

þ @
@Dc � @g

@DcDc� g
h i

¼ �2PT
CeP � @2g

@Dc2
Dc� 2 @g

@Dc

¼ �2PT
CeP þ H Dcð Þ: ð43Þ

We define the functions related to derivatives of the slip resistance
function
5

h Dcð Þ ¼ � @g
@Dc

Dc� g; ð44Þ

see Eq. (42) and

H Dcð Þ ¼ � @2g
@Dc2

Dc� 2
@g
@Dc

ð45Þ

related to Eq. (43). The constraint function, as defined in Eq. (5)
written in matrix notation is denoted by

U ¼ PTr� g ð46Þ
with the Cauchy stresses in Voigt notation given by

r ¼ Ce ee;trial � PDc
� �

: ð47Þ

Eq. (47) inserted into Eq. (46) leads to

U ¼ PTCe ee;trial � PDc
� �� g; ð48Þ

with the according first and second derivative

@U
@Dc

¼ �PTCe P � @g
@Dc

ð49Þ

and

@2U
@Dc2

¼ � @2g
@Dc2

: ð50Þ

Inserting Eqs. (42), (43), (48), (49) and (50) into Eq. (39) yields the
final system of equations to be solved as

2PTCeP � H cð Þ � @2g
@Dc2 k�HcDC

�1 �PTCeP � @g
@Dc

T

�PTCeP � @g
@Dc

T
� 	T

�K�1 S

2
66664

3
77775

DDc

Dk

2
664

3
775

¼
PTCeee;trial � 2PTCePDcþ h Dcð Þ þ PTCe P þ @g

@Dc

h i
kþ lDC�1em

�PTCe ee;trial � PDc
� �þ g � lK�1em

2
6664

3
7775

ð51Þ
with DC ¼ diag Dcð Þ 2 Rm�m and the reformulation using the

Lagrange multiplier qc where Hc ¼ diag qc

� 	
2 Rm�m based on Eq.

(39), see also Appendix A.2. The increment of the slack variable is
given by

Ds ¼ �K�1SDk� sþ lK�1em ð52Þ
and the increment of the Lagrange multiplier to c, following Eq. (38)
is defined by

Dqc ¼ lDC�1em �HcDC
�1DDc� qc: ð53Þ

Comparing with the classical Kuhn-Tucker conditions from the
Lagrangian function, see Eq. (20.3), we obtain kiUi ¼ 0 8i ¼ 1;m.
These conditions replace the Kuhn-Tucker conditions from the
problem definition of plasticity theory, see Eq. (6.3), which result
as UiDci ¼ 0 in the discretized form. During the solution, the condi-
tion kiUi ¼ 0 is more simple to fulfill, since there is no direct depen-
dency of Ui and ki. The constraint condition Dci P 0 is ensured by
the barrier function.

In a classical Newton algorithm, the update of the variables is
done by

Dc Dcþ DDc; k kþ Dk; s sþ Ds; qc  qc þ Dqc

ð54Þ
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until convergence is obtained related to the residual of the full sys-
tem, compare Eq. (26), given by

r ¼
PTCeee;trial � 2PTCePDcþ h Dcð Þ þ PTCeP þ @g

@Dc

h i
kþ lDC�1em

�PTCe ee;trial � PDc
� �þ g � s

�Sk þ lem

2
664

3
775:
ð55Þ

The first and second derivatives of the incremental slip resistance,
@g
@Dc and @2g

@Dc2 are given by the hardening moduli hab and habf,

respectively,

hab ¼ @ga

@Dcb
¼
X
q

ĥ Að Þdqb þ ĥ0 Að ÞDcq
� 	

qþ 1� qð Þdaqð Þ ð56Þ

and

habf ¼ @2ga

@Dcb@Dcf

¼
X
q

ĥ0 Að Þdqb þ ĥ00 Að ÞDcq þ ĥ0 Að Þdqf
� 	

qþ 1� qð Þdaqð Þ ð57Þ

where a ¼ 1; . . . ;m;b ¼ 1; . . . ;m;q ¼ 1; . . . ;m and f ¼ 1; . . . ;m.

Here, the first and second derivative of the scalar function ĥ Að Þwith

respect to the increment of plastic slip is defined by ĥ0 Að Þ and ĥ00 Að Þ,
respectively. Finally, the Schur complement of the matrix of the
reduced system given in Eq. (51), as described in Scheunemann
et al. (2020), is used to solve the system of equations efficiently.

4.1. Algorithmic consistent material tangent moduli

In addition to the determination of the plastic slip cnþ1 and the
stresses rnþ1, the material tangent moduli need to be computed.
The consistent algorithmic tangent moduli, which relate the total
stress increment to the total strain incremenent with

Drnþ1 ¼ Cep : Denþ1 with Cep ¼ @rnþ1
@enþ1

: ð58Þ

can be derived for the here presented approach through a reformu-
lation of the stress increment as

rnþ1 ¼ Ce : eenþ1 ¼ Ce : enþ1 � epnþ1
� � ¼ Ce : enþ1 � epn � Depnþ1

� �
¼ Ce : etrialnþ1 � Depnþ1

� �
¼ Ce : etrialnþ1 � Ce :

X
b

Dcbnþ1P
b ð59Þ

which leads to the consistent tangent moduli depending on the
derivative of the slip increment with respect to the total strains by

Cep ¼ Ce �
X
b

Ce : Pb � @Dcbnþ1
@enþ1

: ð60Þ

Independently of the applied algorithm, this relation holds. The for-
mulation of the algorithm which is used to determine the slip incre-

ments Dca then yields the derivative
@Dcb

nþ1
@enþ1

, which here needs to be

derived from the formulation of the IPDIPM. As noted in
Scheunemann et al. (2020), the arising equation system at the
material point level can be solved using a Schur complement in
two different ways. The detailed derivation of the algorithmic con-
sistent tangent moduli for both Schur complement formulations can
be found in the Appendix A.1. Formulation 1 computes the deriva-
tive as
6

@Dcnþ1
@enþ1

¼ H11 � H12H
�1
22H21

h i�1
�PCe þ H12H

�1
22 PCe

h i
¼ H11 � H12H

�1
22H21

h i�1
�I þ H12H

�1
22

h i
PCe

¼ � H11 � H12H
�1
22H21

h i�1
þ H11 � H12H

�1
22H21

h i�1
H12H

�1
22

h i
 �
PCe

¼ CfactPCe

ð61Þ
with

H11 ¼ � @2D
@Dc2
þ @2U

@Dc2
kþ lC�2

¼ 2PT
CeP � @2Dg

@Dc2 Dc� 2 @Dg
@Dc � @2Dg

@Dc2 kþ lC�2

H12 ¼ @UT

@Dc ¼ �PCePT � @DgT

@Dc

H21 ¼ @U
@Dc ¼ �PT

CeP � @Dg
@Dc

H22 ¼ �K�1S

ð62Þ

which leads to the final statement for the tangent moduli in Voigt
notation

Cep ¼ Ce � Ce PTC factP Ce: ð63Þ
The second formulation of the Schur complement first computes
the increment of the Lagrange multiplier k and finally results in

@Dcnþ1
@enþ1

¼ H2 � H1
� �

PCe ¼ CfactP Ce ð64Þ

with

H1 ¼ H�111 þ H�111H12 H22 � H21H
�1
11H12

h i�1
H21H

�1
11


 �
ð65Þ

and

H2 ¼ H�111H12 H22 � H21H
�1
11H12

h i�1
 �
ð66Þ

and the resulting tangent moduli arise as according to Eq. (58) and
(63), in Voigt notation, respectively. The related algorithm for the
computation of C

ep
algo in a finite element framework is shown in

Algorithm 1.

Algorithm 1: Computation of algorithmic consistent material
tangent

1: Procedure On material point level
2: Solve local stress update algorithm based on the IPDIPM
3: Compute material tangent:
C
ep
algo ¼ Ce � Ce PTCfactP Ce ð67Þ
4: with Cfact according to Eq. (61) or (64)
5: end procedure
4.2. Numerical approximation of material tangent moduli and element
stiffness matrix

Beside the algorithmic consistent tangent, there exists the
framework of perturbation analysis based on a finite difference
scheme to compute the material tangent, where an alternative ver-
sion to the classical perturbation of the real space is provided by
the complex step derivative approximation, see e.g. Tanaka et al.
(2014), among others. Numerical approximation schemes for tan-
gent moduli can be obtained from finite difference (FD) schemes,
which are however governed by a well known sensitivity with
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respect to the perturbation, especially in highly nonlinear prob-
lems due to round off errors in floating point arithmetics. A way
to overcome such problems in numerical approximation schemes
was proposed by Lyness (1968) by the complex-step derivative
approximation (CSDA) scheme for scalar valued derivatives of first
order. The scheme uses perturbation along the imaginary axis of
complex numbers and thus avoids the direct addition of perturba-
tions along the same axis, which is the cause of round off errors in
FD schemes. Lai and Crassidis (2008) extended the scheme to
higher order scalar valued numerical derivatives. Applications of
the CSDA scheme to computational plasticity are shown in Pérez-
Foguet et al. (2000a,b), Tanaka et al. (2014) use the robust scheme
for the derivation of tangent moduli and localization analysis, tan-
gent moduli at finite strains were also discussed and derived in Sun
et al. (2008). The computation of the stiffness matrix in a finite ele-
ment problem based on a CSDA scheme is described in Kim et al.
(2011).

The CSDA technique uses a Taylor series expansion of a scalar
valued function f xð Þ along the imaginary axis, i.e.,

f xþ ihð Þ ¼ f xð Þ þ ihf 0 xð Þ � h2

2!
f 00 xð Þ � i

h3

3!
f 000 xð Þ þ . . . ð68Þ

where i2 ¼ �1 is the imaginary unit. The derivative f 0 xð Þ is obtained
considering only the parts along the imaginary axis yielding

I f xþ ihð Þ½ � ¼ hf 0 xð Þ þ O h3
� 	

ð69Þ

which leads to the approximation

f 0 xð Þ � I f xþ ihð Þ½ �
h

; ð70Þ

neglecting higher order terms. Since no subtraction operation is
included in the operations of Eq. (70), round off errors can never
occur. For higher order functions, following Tanaka et al. (2014),
the CSDA scheme extends to directional derivatives of tensor fields
with A defining an arbitrary tensor on R2�2 or R3�3. Then the direc-
tional derivative of a tensorial function Y Xð Þ of a tensor argument X
in the direction A is given by

DY Xð Þ A½ � :¼ lim
h!0

Y X þ hAð Þ � Y Xð Þ
h

¼ @Y
@X

: A: ð71Þ

where @Y
@X is a second-order tensor describing the gradient of Y with

respect to X. Using the CSDA scheme, this approximation of the
argument leads to

@Y
@X

: A � I Y X þ ihAð Þ½ �
h

: ð72Þ

For the application to the present case, the material tangent moduli
Cep will be approximated using the CSDA scheme to compute C

ep
CSDA.

Therefore, based on Eq. (58), we substitute r in Y ; e in X and con-
7

sider e
Iij

¼ ei � ej and thereby consider the approximation of the
derivative in the cartesian base. This reformulates Eq. (72) to

C
ep
CSDA : e

I ¼
I r eþ ih e

I

 �� �

h
: ð73Þ

The algorithmic realization of the computation of the approxima-
tion of the material tangent is given in detail in Algorithm 2.

Algorithm 2: Computation of material tangent using CSDA
scheme

1: Procedure Perturbation on material point level
2: loop perturbation: Kð Þ ¼ 1 . . .3; Lð Þ ¼ 1 . . .3

3: Calculate e
I ¼ e Kð Þ � e Lð Þ

4: Calculate stress response: r eþ ihe
I


 �
5: by based on stress update algorithm using IPDIPM
6: Evaluate material tangent:
 �� �
C
epIJ Kð Þ Lð Þ
CSDA ¼

I rIJ eþ ihe
I

h
ð74Þ
7: end loop perturbation
8: Evaluate undisturbed stress response: r eð Þ
9: end procedure

In the finite element formulation, the consistent tangent moduli
are required for the application of a Newton–Raphson scheme on
the global system of equations. Without explicitly computing the
material tangent moduli, another approximation scheme is possi-
ble. Following the work of Kim et al. (2011), the CSDA scheme
can be applied to derive the finite element stiffness matrices by dif-
ferentiating the internal force vector with respect to the displace-
ment vector. In this work, this idea is used to compute the
approximation of the element stiffness matrix ke

CSDA, the according
algorithm is given in Algorithm 3. The element vector of nodal dis-
placement is clasically defined as

de ¼ de
1 d

e
2 . . .d

e
tdof

� �T ð75Þ
with tdof = nen � ndf and the element force vector is defined by

pe ¼ pe
1 p

e
2 . . .p

e
tdof

� �T ð76Þ
Then, the element stiffness matrix is obtained based on

ke ¼ @pe

@de
1

j @p
e

@de
2

j . . . j @pe

@de
tdof

" #
: ð77Þ
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Algorithm 3: Computation of element stiffness matrix using
CSDA scheme

1: Procedure Perturbation on finite element level 2: loop
perturbation: J ¼ 1 . . .nen�ndf

3: Determine perturbed version of de:
4: loop K ¼ 1 . . . tdof
5: 8
d
�e d

�e
K ¼ de

K þ ih if K ¼¼ J

d
�e
K ¼ de

K else

>>><
>>>:

ð78Þ
6: end loop
7: loop for all Gauss points:

8: Compute ~pe ~de
� 	

based on perturbed displacement

vector
9: solving stress update algorithm based on IPDIPM
10: Compute column J of element stiffness matrix:
11:
ke I; Jð Þ ¼
X
GP

I ~pe Ið Þ½ �
h

ð79Þ
12: end loop Gauss
13: end loop perturbation
14: Evaluate undisturbed element force vector pe de� �
15: end procedure
5. Numerical examples

5.1. Study of an academic case: two perpendicular slip systems

As an academic example, a study of a crystal with two slip sys-
tems is performed in the following. This case is considered since it
simplifies the formulation with less slip systems but still captures
the property of linear dependent slip systems which is inherent to
face-centered cubic crystals. The orientation of the slip systems is
given by

s1 ¼ 1=
ffiffiffi
2
p

0 1=
ffiffiffiffiffiffiffi
2ð Þp �T n1 ¼ �1=

ffiffiffi
2
p

0 1=
ffiffiffiffiffiffiffi
2ð Þp �T;

hh
ð80Þ

s2 ¼ �1=
ffiffiffi
2
p

0 1=
ffiffiffiffiffiffiffi
2ð Þp �T n2 ¼ 1=

ffiffiffi
2
p

0 1=
ffiffiffiffiffiffiffi
2ð Þp �T:

hh
ð81Þ

A simulation of a homogeneous tension test in z-direction using one
hexahedral finite element is carried out. Thereby, the direct com-
parison of the computed material tangent moduli from Algorithms
Fig. 2. Tangent moduli from simple tension te

8

1 and 2 becomes possible. Algorithm 3 is not considered in the com-
parison, since it leads to the same result and convergence behavior
as Algorithm 2, as it is also shown in Section 5.2. Furthermore, the
comparison of Algorithm 3 with Algorithm 1 is only possible based
on the element stiffness matrix, since the material tangent is not
computed explicitly in Algorithm 3. Hence, in the comparison of
Algorithms 1 and 2 for the material tangent moduli, only minor dif-
ferences can be seen. The material tangent moduli for one Gauss
point are shown exemplarily to illustrate these differences in Fig. 2.

The difference in the values which can be seen is in the range
103. In order to examine this further, the plastic correction part
of the tangent moduli is considered, which can be described as

C
plas
CSDA ¼ Cep � Ce for Algorithm 2 or directly by

C
plas
algo ¼ CePTCfactP Ce for Algorithm 1. For the tangent moduli given

in Fig. 2, these are shown in Fig. 3.

The entries of Cplas
algo and C

plas
CSDA are in the range of 104. It should be

noted that in the case of Algorithm 1, for the computation of the
plastic corrector part, values in C fact which are in the range of
10�3, are multiplied with the remaining terms, which are in the
order of 109, and a summation of the products is carried out. Thus,
a difference in an entry in Cfact in the second decimal place, i.e.
10�5, will result in a change in the tangent moduli in the range
104. Due to the fact that Cfact requires several matrix inversions
of submatrices of the Hessian of the Interior Point problem, which
are not necessarily well-conditioned, such deficiancies of C fact may
occur and are assumed to be the root of the difference in the differ-
ences in the tangent moduli in addition to possible round-off errors
occuring during the summation. Additionally, a nonsymmetric rep-

resentation of Cplas
CSDA can be seen which cannot be described by the

algorithmic counterpart by definition.
The convergency of the norm of the residual for different time

steps is shown in Fig. 4. Quadratic convergence can be seen for
both algorithms. The norm of the increments of displacement are
in the range of 10�12 to 10�13 for Algorithm 1 and between 10�13

and 10�18 for Algorithm 2.
Regarding the information from the local algorithm solved

using the interior point method, a major difference is that Algo-
rithm 1 needs the information of the Hessian matrix, whereas
Algorithm 2 uses the result Dc through its relation to the stress
r. For the computation of the tangent moduli in Algorithm 1, the
computation of the inverse within the Schur complement is neces-
sary. The invertibility of the matrices have been checked through
the deviation of the matrix product with its inverse from the iden-
tity. The norm of this matrix product did not exceed the value of
10�10, leading to the assumption that the inverse is computed
appropriately. Regarding the eigenvalues, for the Hessian the
requirement is that the number of positive and negative eigenval-
st: Gauss point 10, t = 0.1, first iteration.



Fig. 3. Cplas
algo and C

plas
CSDA from simple tension test: Gauss point 10, t = 0.1, first iteration.

Fig. 4. Convergency of normalized residual of Algorithms 1 and 2 for (a) t = 0.01, (b) t = 0.05 and (c) t = 0.1.

L. Scheunemann, P.S.B. Nigro and J. Schröder International Journal of Solids and Structures 232 (2021) 111149
ues is identical in order not to loose the curvature of the problem,
which was also not violated. The condition number of the H11 and
the Schur complement, see Appendix A.1, which need to be
inverted range between 103 and 106 and 102 and 106, respectively.
The slip computed at the Gauss point as well as the resulting stres-
ses are identical, i.e.

r ¼

�27:8657E� 01
17:7636E� 16
17:2117Eþ 00
�51:7004E� 17
�53:4541E� 02
16:2669E� 17

2
666666664

3
777777775

c ¼ 11:7135E� 06
11:7135E� 06

� �
ð82Þ

and especially the result for c is in accordance with the theoretical
result of identical slip on both systems.

5.2. Uniaxial extension of solid with varying monocrystal orientations

Following Borja and Rahmani (2012), a displacement driven
uniaxial deformation of a cubic solid in 3D is considered. The cubic
solid measures 1 m�1 m�3 m and is meshed with 3�3�8 27-
9

noded hexahedral finite elements. On the bottom surface, the dis-
placement in all directions is restricted whereas on the top surface,
a vertical displacement of d tð Þwith a final displacement of d ¼ 0:03
m is applied. The displacement in x- and y-direction of the top sur-
face is free. A monocrystal is considered with different orientations
of the underlying crystalline structure with respect to the reference
frame, given by the angles /1;/2 and /3 related to the rotation
matrices

H1 ¼

cos /1 sin /1 0
� sin /1 cos /1 0
0 0 1

2
6664

3
7775;H2 ¼

cos /2 0 � sin /2

0 1 0
sin /2 0 cos /2

2
6664

3
7775;

H3 ¼

cos /3 sin /3 0
� sin /3 cos /3 0
0 0 1

2
6664

3
7775 ð83Þ

describing the rotation ei ¼ R �ei with R ¼ H3H2H1 of the reference
orthogonal axes �eif gi¼1;3. The crystalline structure induces aniso-
tropy which is why the cubic solid undergoes different deforma-
tions related to the orientation of the underlying crystalline



Fig. 5. Boundary value problem: Cubic solid with uniaxial extension in z-direction.
Fig. 6. Convergency of normalized residual of Algorithms 1–3 at t ¼ 0:3.

Fig. 7. Convergency of normalized residual of Algorithms 1–3 at t ¼ 0:4.
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structure. In the following, three orientation set ups will be consid-
ered: orientation 1 is described by /1;/2;/3ð Þ ¼ 0;0; 0ð Þ, orientation
2 uses /1;/2;/3ð Þ ¼ 0;20; 0ð Þ and orientation 3 is defined by
/1;/2;/3ð Þ ¼ 0;�20; 0ð Þ. Fig. 5a illustrates the boundary value prob-
lem. An isotropic elastic behavior is considered with the material
parameters given in Fig. 5b together with the initial yield strength
which is equal on all slip systems. Ideal plastic behavior, thus no
hardening was considered in the simulations. Note that in the pre-
sented algorithm, an update of the barrier parameter liþ1 ¼ 0:5li

has been used within the interior point method with l! lend

and a final value of lend ¼ 1� 10�8. The update scheme and the ini-
tial value have been chosen heuristically here. This choice has a
strong incluence on the problem, however a detailed investigation
is beyond the scope of this paper.

For orientation 1, the convergency of the global Newton–Raph-
son scheme based on the three algorithmic set ups described in
Section A.1 and Section 4.2 is shown in Table 1 for pseudo time
steps t ¼ 0:3 and t ¼ 0:4, a time increment of Dt ¼ 0:01 is used
here. The behavior is additionally illustrated in Fig. 6 and Fig. 7.
For t ¼ 0:3, approximately quadratic convergence can be seen for
all three algorithms, where convergence is obtained after four iter-
ations. For t ¼ 0:4, it can be seen that the convergency in this prob-
lem does not show quadratic behavior in all three algorithms. The
convergence behavior in the first seven steps is similar for all vari-
ants of the algorithm. Algorithms 2 and 3 are considered to have
converged after 11 steps. The convergence of Algorithm 1 based
on the analytical tangent is slower and reaches convergence after
34 iteration steps. This unexpected convergence behavior shows
similarities to the analysis which has been presented in Section 5.1
Table 1
Convergency of normalized residual norm in uniaxial extension of cubic solid.

prop iteration C
ep
analy

0.3 1 1.0000000E+00
2 2.3851323E-04
3 1.2060784E-07
4 4.6834707E-11
. . .

0.4 1 1.0000000E+00
2 3.4232050E-02
3 9.0620214E-02
4 6.1554008E-03
5 1.1742573E-03
6 7.4618707E-04
7 4.2267664E-04
8 2.5204991E-04
9 1.0362501E-04
10 4.1827178E-05
11 2.0624644E-05
. . . . . .

34 6.3138933E-10

10
for an academic crystal with two slip systems. It is interesting to
notice that the convergency of all three algorithms behaves very
similar in the first iteration steps. A detailed analysis of the matrix
inversions required for the computation of Cfact as well as the
eigenvalues and condition numbers, compare Section 5.1 did not
show a different behavior as described there.

Note that even though the convergence of the algorithmic tan-
gent formulation is slower compared to the other two, considering
the computing time it is favorable, since it needs overall less eval-
uations of the local problem formulation. Due to the application of
perturbations, the local algorithm computing the stress update
needs to be evaluated multiple times. In detail, for Algorithm 2,
C
ep
CSDA

KCSDA

1.0000000E+00 1.0000000E+00
2.3851323E-04 2.3851323E-04
9.8078069E-09 9.8078070E-09
1.0309639E-15 1.0982250E-15

1.0000000E+00 1.0000000E+00
3.4328684E-02 3.4328684E-02
2.4683139E-01 2.4683139E-01
8.7893006E-03 8.7893006E-03
1.3359071E-03 1.3359071E-03
6.7237895E-04 6.7237895E-04
3.5406731E-04 3.5406728E-04
5.8460422E-05 5.8460408E-05
2.7472888E-06 2.7472916E-06
5.0937466E-08 5.1039305E-08
1.4181227E-10 8.1489217E-11

- -
- -



Fig. 8. Top view of displacement in x-direction on deformed solid. The initial shape of the solid is shown in grey: Orientation 1 (left), orientation 2 (middle), orientation 3
(right).

Fig. 10. Perspective view of displacement in x-direction on deformed solid:
Orientation 1 (left), orientation 2 (middle), orientation 3 (right).

L. Scheunemann, P.S.B. Nigro and J. Schröder International Journal of Solids and Structures 232 (2021) 111149
the local interior point algorithm needs to be evaluated seven
times at each Gauss point, since the six entries of e need to be per-
turbed and one solution must be computed without any perturba-
tion. For Algorithm 3, the number of perturbation loops is number
of degrees of freedom plus an additional solution without any per-
turbation. This can also be seen from the loop counters in Algo-
rithms 2 and 3. If the time required to solve the local problem at
the material point level is low, this does not have a large impact
of the computing time, however, in the case of the local algorithm
used here, this has a major impact on the computing time. There-
fore, in the comparison of the different orientations, Algorithm 1
based on the algorithmic tangent moduli Cep

algo is used. The second
formulation given in Appendix A.1 is used, however, both formula-
tions lead to the same result and should be chosen in accordance
with the chosen Schur complement to solve the local problem.
Please note that the resulting activity of the slip does not depend
on the chosen tangent moduli formulation.

A comparison of the different orientation set ups is done in the
following. The anisotropy induced by the underlying crystalline
structure leads to specific deformation pattern of the cubic solid.
This is illustrated for all three considered orientations in Fig. 8
and Fig. 9, where the position of the initial shape of the top surface
is shown in grey. The deformed shape of the cubic solid at pseudo
time t ¼ 1 can be seen with the displacement scaled by a factor of
20 in all illustrations. In Fig. 8, the coloring indicates the displace-
ment in x-direction, Fig. 9 shows the displacement in y-direction.

For orientation 1, the applied displacement leads to an exten-
sion in z-direction and lateral contraction in x- and y-direction
such that no predominant shearing in one direction is seen. This
can be related to the equal activity on slip systems
1,2,4,5,7,8,10,12 in the homogeneous case. For orientation 2, from
Fig. 9. Top view of displacement in y-direction on deformed solid. The initial shape of t
(right).

11
the consideration of a homogeneous problem, a shearing of the
cubic solid with respect to e13 whereas e23 � 0 results, which
agrees the results shown here. In this orientation in a homoge-
neous deformation state, the maximum Schmid stress and thus
the dominant activated slip is found in slip system 4 and 10. This
activity leads to a shearing of the cubic solid in positive x-
direction, whereas the deformation in y-direction of the solid
results from the lateral contraction. In orientation 3, from the con-
sideration of a homogeneous deformation state, slip systems 1 and
7 are the dominant active systems and the deformation of the
cubic solid into the opposite direction of orientation 2 can be seen
with respect to the displacement in x-direction. Lateral contraction
in y-direction is observed similarly to orientation 2.
he solid is shown in grey: Orientation 1 (left), orientation 2 (middle), orientation 3
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Fig. 10 shows the displacement in x-direction in a perspective
view and reveals the arising shear bands in the deformed solid of
orientation 2 and 3. No such shear bands can be seen for orienta-
tion 1. Note that the shear bands arises solely from the orientation
of the crystal, no imperfection has been introduced.

6. Conclusion

The present work discusses different tangent operator formu-
lations for a single crystal plasticity algorithm based on the
infeasible primal–dual interior point method, which has been
first presented in Scheunemann et al. (2020). In addition to the
algorithmic tangent moduli, a numerical differentiation scheme
based on a perturbation along the imaginary axis, following
Tanaka et al. (2014), is used to compute the tangent moduli
and the element stiffness matrix. In the comparison of a
monocrystalline structure under uniaxial extension, the different
tangent formulations are compared regarding their convergence
behavior. It must be noted that no formulation led to quadratic
convergence of the norm of the residual of the finite element
formulation. Whereas the algorithms based on the CSDA scheme
lead to faster convergence, the algorithmic tangent here still lead
to faster simulations due to the lower number of evaluations of
the local algorithm based on the infeasible primal–dual interior
point method, which requires to solve a sequence of Newton
schemes with decreasing barrier parameter. The observed non-
quadratic convergence behavior of the solution based on the
algorithmic tangent may arise from the computation of the
inverse matrices of possibly ill-conditioned matrices and the
summation operation during the matrix multiplication to com-
pute Cfact. Small deficiancies in this matrix due to poor inversion
of the matrices lead to larger differences in the final tangent
moduli. A possibility to overcome this problem could be the con-
struction of a dimensionless formulation of the Lagrangian
function.

The algorithmic tangent formulation is used to evaluate the
numerical example under varying orientation of the underlying
monocrystal. Thereby, an orientation-specific forming of shear
bands in the solid can be shown when the crystal is rotated out
of its intial orientation. The observed shear bands arise from the
initial orientation of the crystal, no initial imperfection has been
included.
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Appendix A

A.1. Algorithmic consistent material tangent

First formulation
Following from the formulation of the Schur complement in

Scheunemann et al. (2020), one obtains for the increment of the
plastic slip

DDc ¼ H11 � H12H
�1
22H21

h i�1
r1 � H12H

�1
22 r2

h i
: ð84Þ

We seek the derivative

@Dcnþ1
@enþ1

¼ @Dcnþ1

@b
�

1

@b
�

1

@enþ1
¼ H11 � H12H

�1
22H21

h i�1 @b
�

1

@enþ1
ð85Þ
12
@b
�

1

@enþ1
¼

@ r1 � H12H
�1
22 r2

h i
@enþ1

¼ @r1
@enþ1

� H12H
�1
22

@r2
@enþ1

ð86Þ

with

r1 ¼ � @D
@Dc
� @U
@Dc

kþ lDC�1e and r2 ¼ �U� lK�1e:

ð87Þ
Using the derivative

@b1
@enþ1

¼ �PCe þ H12H
�1
22PCe ð88Þ

leads to

@Dcnþ1
@enþ1

¼ H11 � H12H
�1
22H21

h i�1
�PCe þ H12H

�1
22 PCe

h i
¼ H11 � H12H

�1
22H21

h i�1
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�1
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h i
PCe

¼ � H11 � H12H
�1
22H21

h i�1
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�1
22H21

h i�1
H12H

�1
22

h i
 �
PCe

¼ CfactPCe

ð89Þ

with

H11 ¼ � @2D
@Dc2
þ @2U

@Dc2
kþ lC�2

¼ 2PT
CeP � @2g

@Dc2 Dc� 2 @g
@Dc� @2g

@Dc2 kþ lC�2

H12 ¼ @UT

@Dc ¼ �PCe PT � @gT

@Dc

H21 ¼ @U
@Dc ¼ �PT

Ce P � @g
@Dc

H22 ¼ �K�1S:

ð90Þ

Second tangent formulation
From the Schur complement, one obtains

Dk ¼ H22 � H21H
�1
11H12

h i�1
r2 � H21H

�1
11 r1

h i
ð91Þ

which is substituted into

Dc ¼ H�111 r1 � H12 H22 � H21H
�1
11H12

h i�1
r2 � H21H

�1
11 r1

h i
 �� �
ð92Þ

and reformulated as

Dc ¼ H�111 þ H�111H12 H22 � H21H
�1
11H12

h i�1
H21H

�1
11


 �
r1

� H�111H12 H22 � H21H
�1
11H12

h i�1
 �
r2

ð93Þ

With the above mentioned derivations one obtains in this case
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@enþ1
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where

H1 ¼ H�111 þ H�111H12 H22 � H21H
�1
11H12

h i�1
H21H

�1
11


 �
ð95Þ

and
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H2 ¼ H�111H12 H22 � H21H
�1
11H12

h i�1
 �
ð96Þ
A.2. Complementary condition of slip rates

In primal–dual interior point methods, the formulation of a con-
strained optimization problem given by

minimize f xð Þ subject to g xð ÞP 0 ð97Þ
can be derived from the formulation of a logarithmic barrier
method

minimize bl xð Þ ¼ f xð Þ � l ln g xð Þð Þ ð98Þ
which is solved for a decreasing sequence of barrier parameters l.
Setting the gradient of the barrier function to zero, one obtains

rf xð Þ � lrg xð Þ
g xð Þ ¼ 0

$rf xð Þ � l
g xð Þrg xð Þ ¼ 0

$rf xð Þ � kgrg xð Þ ¼ 0

ð99Þ

with the Lagrange multiplier kg lð Þ ¼ l
g xð Þ. Following Griva et al.

(2009), the solution of the barrier problem is then also the solution
of the perturbed primal–dual system of equations given by

g xð ÞP 0
rxL x; kð Þ ¼ rf xð Þ � kgrg xð Þ ¼ 0

kg P 0
kgg xð Þ ¼ l

ð100Þ

with the Lagrangian of the problem being

L x; kð Þ ¼ f xð Þ � kg g xð Þ: ð101Þ
For this primal dual problem, in the classical primal–dual interior
point sense, the Newton directions Dx;Dkg

� �
can be found using a

Taylor series ignoring terms of second and higher order, leading to

r2
xxL x; kð Þ �rg xð Þ
kg g xð Þ g xð Þ

2
64

3
75 Dx

Dkg

� �
¼ rxL x; kð Þ
�kg g xð Þ þ l
� �

; ð102Þ

r2f xð Þ � kgr2g xð Þ �rg xð Þ
kg g xð Þ g xð Þ

2
64

3
75 Dx

Dkg

� �
¼ rxL x; kð Þ
�kg g xð Þ þ l
� �

: ð103Þ

This consideration of the Lagrange multiplier kg leads to additional
equations which need to be solved when a primal–dual formulation
is considered. Opposed to this, a purely primal formulation is
obtained considering the linearization of the gradient of Eq. (99),
leading to

r2
xxf xð Þ þ lr

2g xð Þ
g xð Þð Þ2

rg xð Þ
 !

Dx ¼ rf xð Þ � lrg xð Þ
g xð Þ : ð104Þ

A reformulation of the second line of Eq. (103) with respect to Dkg ,
i.e.,

Dk ¼ 1
g xð Þ �kg g xð Þ þ l� kgrg xð ÞDx� � ð105Þ

and inserting into the first equation yields

!r2
xxL x; kð ÞDxþ kg

g xð Þrg xð ÞDx ¼ �rxL� kþ l
g xð Þ ð106Þ

and the Lagrange multiplier is updated by

kg  kg þ Dkg ; Dkg ¼ �kg þ l
g xð Þ �

kgrg xð Þ
g xð Þ Dx: ð107Þ
13
Note that from Eq. (108), it can be seen that when the primal vari-
able converges, i.e. Dx! 0, the complementary condition related to
x, meaning kg ¼ l=g xð Þ is fulfilled and Dkg ! 0 converges.

The above formulation enables the possibility to consider the
Lagrange multiplier to the constraint condition on the problem
without introducing the additional equation in the equation sys-
tem directly. In the application of the above described reformula-
tion in the infeasible primal dual interior point method to the
problem of crystal plasticity, this has the advantage of having a
natural perturbation applied on the ill-conditioned Hessian of the
original problem, since the part of the hessian associated to c is
ill-conditioned, which was also discussed in Scheunemann et al.
(2020). From the consideration of the Lagrange multiplier associ-
ated to the constraint c P 0, a fully primal–dual formulation is
obtained, which is generally more stable than primal formulations,
compare Griva et al. (2009).

The Lagrange multiplier and the related complementary condi-
tion resulting from Eq. (13.3) can be considered in analogy to the
above described example. The complementary condition then
reads

qcc ¼ l; ð108Þ
where qc is the Lagrange multiplier, thus the dual variable arising
from the constraint _c P 0. For the system of equations to compute
the Newton directions, the above described handling results in the
modification

2PT
CeP � H cð Þ � @2g

@Dc2 kþHcDC
�1 �PT

CeP � @g
@Dc

T

�PT
CeP � @g

@Dc

T
� 	T

�K�1 S

2
64

3
75 DDc

Dk

� �
¼ . . .

PT
Ceee;trial � 2PT

CePDcþ h Dcð Þ þ PT
Ce P þ @g

@Dc

h i
kþ qc � qc þ lC�1em

�PT
Ce ee;trial � PDc
� �þ gnþ1 � lK�1em

2
4

3
5

ð109Þ
where the update of the Lagrange multiplier needs to be considered
with

qc  qc þ Dqc ¼ lDC�1em �HcDC
�1DDc ð110Þ

with Hc ¼ diag qc

� 	
. This treatment stabilizes the algorithm due to

the fully primal–dual treatment and can be seen as a damping on
the fulfillment of Hcc! 0 as l! 0.
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