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1  Introduction

With the rapid advancement of robotics and intelligent 
agents, the demand for automated behaviours has increased 
dramatically. However, as agents take on decision-making 
roles in automated systems, their explainability becomes 
critical for enabling end-users to make informed and 
accountable actions [1] in human-robot interaction (HRI) 
contexts. Explainable systems empower users to interact 
effectively by understanding the underlying mechanisms 
and decisions behind automated behaviours.

Despite progress in algorithmic transparency, current 
solutions often struggle to fully address end-user needs for 
practical, scenario-specific explanations in robotic systems. 
This gap becomes particularly significant when users are 
required to trust and collaborate with robotic systems in 
complex, dynamic environments. In such scenarios, trans-
parent explanations play a key role by bridging the gap 
between system complexity and user understanding. They 

	
 Sen Yuan
s.yuan-3@tudelft.nl

Ke Xu
kxu30@sheffield.ac.uk

Sanja Dogramadzi
s.dogramadzi@sheffield.ac.uk

Carlos Hernández Corbato
C.H.Corbato@tudelft.nl

1	 School of Electrical and Electronic Engineering, The 
University of Sheffield, Sheffield, UK

2	 Department of Microelectronics, Delft University of 
Technology, Delft, The Netherlands

3	 Department of Cognitive Robotics, Delft University of 
Technology, Delft, The Netherlands

Abstract
Robots are now pervasive, leveraging their automation capabilities to assist humans across a diverse range of tasks. 
Nevertheless, end-users may have a limited understanding of the robot’s operation and typically assume a passive role 
when interacting with the robot performing a particular task. In this study, we address the critical need for effective 
explainability in human-robot interaction. By comparing different methods of explaining robotic scenario information to 
end-users, the proposed methodologies use a labelled property graph-based chatbot that adheres to the IEEE Robotics 
Ontology Standards. In this study, we designed two virtual robotic scenarios and simulated their information flow using 
the Robot Operating System. A between-subjects experiment was conducted where participants engaged with the system 
through various interaction methods to understand the two scenarios. These methods included real-time Linux Command 
Line Interface outputs, querying a chatbot, exploring knowledge graphs, or a combination of chatbot and knowledge 
graphs. The study findings suggest that both the knowledge graphs and the chatbot significantly enhance the system’s 
explainability compared to a simple Linux terminal information output. Moreover, utilizing knowledge graphs alongside 
the chatbot has received better subjective evaluations concerning metrics such as clarity, usability, and robustness. This 
research made contributions towards the development of standardised labelled property graphs for representing scenario 
information in language-based human-robot interaction. The experiment design and evaluations also provided a solution 
for assessing the explainability of task-oriented dialogue systems both subjectively and objectively.

Keywords  Ontology · Knowledge representation · Knowledge graph · Chatbot · Human-robot interaction · Rasa

Received: 29 June 2024 / Revised: 11 September 2025 / Accepted: 19 December 2025 / Published online: 30 January 2026
© The Author(s) 2026

KG-Retailbot: A Knowledge Graph-Based Chatbot for Explaining 
Robotic Scenario Information in a Retail Setting

Ke Xu1 · Sen Yuan2  · Sanja Dogramadzi1 · Carlos Hernández Corbato3

1 3

https://doi.org/10.1007/s12369-025-01335-1
http://orcid.org/0000-0003-0175-6662
http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-025-01335-1&domain=pdf&date_stamp=2026-1-28


International Journal of Social Robotics (2026) 18:15

enable users to better comprehend, predict, and validate the 
actions of robotic agents, making explainability a critical 
component for improving both user trust and system adop-
tion. To address this gap, dialogue systems (DSs), leverag-
ing natural language, serve as a powerful tool. It enables 
interactive communication and clarification between users 
and robots, providing a natural and intuitive way to deliver 
scenario-specific explanations. This approach not only sup-
ports real-time information exchange but also serves as a 
bridge between complex system functionalities and user 
understanding, ensuring that robotic systems remain both 
accessible and comprehensible to diverse users.

To address the challenges of delivering explainable 
and scenario-specific information, this paper introduces 
a knowledge graph (KG)-based framework for dialogue-
driven interaction. By integrating structured knowledge rep-
resentation (KR) with natural language processing (NLP), 
the proposed system is designed to enhance user compre-
hension of both static and runtime robotic scenarios, with a 
case study in a retail setting.

Our contributions can be summarised as follows. 

1.	 Efficient Knowledge Representation: We propose 
the Integrated Ontology for Robotics and Automation 
(IORA)-labelled property graph (LPG) schema, derived 
from several standardized IEEE ontologies, to effec-
tively represent robotic scenario knowledge for task-
oriented applications.

2.	 KG-Integrated Dialogue System: We develop a task-
oriented chatbot that integrates KG-based structured 
knowledge representation with natural language inter-
action, enabling real-time scenario-specific explana-
tions in a retail environment.

3.	 Comprehensive System Evaluation: We conduct a 
between-subject study to assess the system’s effective-
ness, comparing different interaction methods through 
both subjective user feedback and objective perfor-
mance metrics, ensuring a well-rounded evaluation of 
usability and information retrieval efficiency.

2  Related Work

Explainability in Robotic Systems Explainability has 
become a critical focus in robotic systems, particularly in 
enabling users to trust and collaborate with autonomous 
agents [2]. Existing research has primarily focused on 
algorithmic transparency, with efforts to elucidate model 
structures and decision processes to mitigate the opacity of 
black-box algorithms [3, 4]. While effective in mitigating 
the opacity of black-box algorithms, these approaches often 

lack direct relevance to end-user interaction, especially in 
scenario-specific contexts.

The concept of “explanation-for-trust” [5] highlights the 
importance of revealing a system’s internal mechanisms 
to enhance user trust and understanding. In the context of 
robotic systems, this is particularly critical, as users often 
interact with complex, autonomous agents whose decisions 
and behaviours directly impact task outcomes. Providing 
transparent explanations ensures that users can comprehend 
these mechanisms, fostering a deeper understanding and 
confidence in the system’s operations. However, achieving 
this level of transparency requires practical and interac-
tive tools tailored to the unique needs of specific robotic 
environments.

Dialogue Systems in HRI DSs, for instance, can serve as 
an effective tool for achieving explainability in HRI, as ver-
bal interaction is widely recognized as the most natural and 
effective mode of communication [6]. These systems take 
advantage of advancements in NLP to facilitate seamless 
interaction between users and robots. Broadly, DSs in HRI 
can be categorized into two main applications: grounding 
natural language commands into robotic actions and serv-
ing as conversational assistants for chat or support purposes.

A key application of DSs is interpreting user instructions 
and mapping them to specific robotic actions. Early research 
explored task-specific NLP techniques such as deep seman-
tic role labelling [7] and conditional random fields [8], to 
extract structured task-related information from user inputs 
[9, 10]. These methods allowed robots to execute commands 
accurately in constrained environments, laying the founda-
tion for more advanced systems. Recent advances have 
incorporated large language models (LLMs) to enhance the 
flexibility of command interpretation. For example, Kou-
baa et al. [11] leveraged LLMs with prompt engineering to 
generate executable robotic tasks from unstructured user 
inputs. However, this system relies on predefined ontolo-
gies to align commands with robotic actions [12], limiting 
the adaptability in unanticipated scenarios. Therefore, the 
need for more flexible and standardized KR methods should 
be considered to support various task-oriented applications.

Beyond task execution, DSs function as conversational 
assistants, enabling robots to engage in meaningful interac-
tions for social and support purposes. These systems focus 
on conversational flow, making them ideal for applica-
tions like companionship and user assistance. For instance, 
Grassi et al. [13] used Google Dialogflow and its Natural 
Language API to capture user intents and facilitate conver-
sational interactions. Similarly, Fujii et al. [14, 15] devel-
oped a Rasa [16]-based dialogue system that transformed 
the Nao Robot into an interactive dining companion. PAL 
Robotics utilized the ROS4HRI standard [17], a frame-
work for developing interactive robots, to integrate the Rasa 
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framework with social robots for elderly care [18]. This 
implementation demonstrated how dialogue systems, when 
built on standardized frameworks, can enhance accessibil-
ity and engagement in non-task-specific contexts. However, 
these systems are primarily designed for general conversa-
tional assistance and lack the capacity to provide detailed, 
scenario-specific explanations, which are crucial in com-
plex robotic environments.

Knowledge Representation in HRI The effective rep-
resentation of scenario information is essential for enabling 
DSs to deliver meaningful and explainable interactions in 
HRI contexts. Task ontologies have been employed to orga-
nize domain knowledge into structured hierarchies. Jokinen 
et al. [19] employed a task ontology to structure caregiving 
tasks, providing users with detailed instructions for eight 
common caregiving actions. Similarly, the CARESSES 
framework [20] extended conversational diversity by 
employing runtime-extensible ontologies to facilitate cul-
turally adaptive dialogues across diverse user backgrounds 
[13]. However, these approaches primarily support task 
planning or conversational flow management, rather than 
serving as dedicated knowledge bases (KBs) capable of 
storing scenario information. Consequently, they fall short 
in equipping DSs with the comprehensive understanding 
needed to explain and interpret robotic scenarios effectively.

Building on the foundational use of ontologies, recent 
research has shifted towards KGs for representing domain 
knowledge in a more dynamic and scalable manner. Ait-
Mlouk et al. demonstrated the use of linked data [21]-based 
chatbot to convert natural language queries into SPARQL 
commands to retrieve information from KBs such as DBpe-
dia and Wikidata [22]. Meanwhile, Wilcock integrated 
Neo4j KGs [23] with Rasa-based dialogue systems, show-
casing improved dialogue flexibility in applications like 
tourism [24, 25] and later deploying the system on the Furhat 
Robots [26] for practical evaluation [27]. Although these 
studies demonstrate the utility of KGs in general-purpose 
applications, they do not fully meet the demands of task-
oriented HRI, particularly in addressing challenges such as 
runtime task execution and runtime adaptability. Advancing 
this area requires the development of standardized and flex-
ible KGs that can enable DSs to deliver scenario-specific 
explanations while adapting to diverse and evolving robotic 
environments.

3  Fundamentals

In this paper, a KG-based chatbot presents a promising 
method for implementing the system’s explainability of real-
time robotics scenarios. Generally, there are two approaches 
to building KGs: top-down and bottom-up [28]. The 

bottom-up strategy relies on automated extraction technolo-
gies to derive concepts and relationships from semi-struc-
tured data, prioritizing those with higher confidence levels 
for inclusion in the KB. This approach demands consistent 
access to high-quality data sources to manage and update 
the schema effectively. In contrast, the top-down approach 
entails defining the ontology and data schema of the KG as a 
prerequisite for incorporating entities to the KB. This neces-
sitates a group of experts possessing a profound comprehen-
sion of the domain-specific knowledge hierarchy.

Utilizing standardised ontologies for the KG-based chat-
bot is imperative to ensure semantic coherence, enabling 
efficient understanding and response generation across 
diverse user interactions. Recent research proposed sev-
eral standardised ontologies to model terminologies in the 
robotics domain: Core Ontology for Robotics and Automa-
tion (CORA) [29]-related ontologies (containing Suggested 
Upper Merged Ontology (SUMO) [30]-CORA, CORAX, 
PRARTS and POS) [31], ERAS ontology [32] and Task 
ontology (TO) [33]. 

	● SUMO-CORA: SUMO-CORA is a comprehensive top-
level ontology designed to define the fundamental onto-
logical categories in the real world.

	● CORA & CORAX & POS & RPARTS: CORA includes 
three main concepts: RobotGroup, Robot and RobotSys-
tem, while CORAX defines some not-so-generic but es-
sential robotic concepts. POS defines concepts related 
to objects’ pose, position, and orientation properties. 
RPARTS comprises concepts representing specific de-
vices that can constitute robot parts.

	● ERAS: ERAS ontology considers concepts regarding 
the ethical usage of robotic techniques based on CORA 
ontology.

	● TO: Task ontology focuses on the task implementation 
terminology as an extension of CORA ontology.

Due to these well-defined ontologies, the top-down approach 
was appropriate for constructing knowledge hierarchies in 
this work. Once the schema of KG is defined by ontologies, 
data can be stored graphically. Resource Description Frame-
work (RDF) [34]/Web Ontology Language (OWL) [35] 
(e.g., Jena [36]) and LPG [37, 38] databases (e.g., Neo4j) 
are emerging technologies for storing graph-structured data 
[39]. The LPG format offers a more compact representation 
of multiple properties using arrays compared to RDF [40]. 
Additionally, direct relationships between two entities are 
established, aligning closely with human KR patterns of 
real-world information. Therefore, we opted for LPG as the 
KG storage approach for our system, leveraging its efficient 
and intuitive structures.
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builds upon the work of Corrado et al. [41], which employed 
active inference for dynamic task execution. To integrate 
these processes with structured KGs, we developed a dedi-
cated ROS node, create_dynamic_kg, which subscribes 
to the relevant servers and continuously updates scenario 
information.

The extracted robotic scenario data is structured and 
stored in the KG module using a task-oriented LPG schema 
within a Neo4j database management system (DBMS). 
This transformation follows a structured pipeline (detailed 
in Sect. 4.2), enabling explicit representation of items, 
tasks, and execution concepts in robotics environments. 
The Py2neo library [42] facilitates dynamic updates as new 
data arrives. Users can also explore the structured KGs via 
the Neo4j Browser, providing an interpretable view of the 
stored scenario knowledge.

The DS module, built using Rasa, leverages a trained 
NLU model to process user queries. It performs intent clas-
sification and entity recognition before invoking action 
servers to retrieve relevant task-related knowledge from the 
KG module. These servers interface with the Neo4j DBMS 
to extract structured information, which is then processed 

4  Method

4.1  System Architecture

To achieve the goal of delivering scenario-specific expla-
nations in HRI, we develop KG-Retailbot, a knowledge-
driven dialogue system using a structured multi-module 
framework. Our approach integrates task-oriented KGs with 
a natural language DS to facilitate intuitive and accurate 
information retrieval. As depicted in Fig. 1, the proposed 
system comprises three core modules: the Robotic System 
(RS) module, responsible for collecting real-time robotic 
execution data; the KG module, which organizes and stores 
structured task-related knowledge; and the DS module, 
enabling knowledge retrieval for user interaction. These 
modules operate in a structured workflow to bridge the gap 
between raw robotic execution data and human-interpreta-
ble scenario explanations. 

The RS module acquires execution data from a runtime 
Robot operating system (ROS) environment, including task 
goals, planned actions, and execution status, retrieved via 
the ROS Action Servers and ROS Parameter Servers. This 

Fig. 1  System architecture of KG-Retailbot: two interactive methods 
are illustrated by black lines: chatbot (solid line) and KGs (dashed 
line). The directions of the arrows at the end of the black lines indicate 
the primary data flow between three modules: 1) robotic data in RS 
module is extracted as structural knowledge in Neo4j DBMS using the 

Py2neo library. 2) the generated KGs are accessed by Rasa action serv-
ers through Neo4j python Driver. 3) Rasa X provides a communication 
interface for users. 4) users can view generated KGs directly through 
Neo4j browser
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a property graph database optimized for structured queries 
and semantic reasoning.

As shown in Fig. 3, we first import CORA-related ontolo-
gies [43]2 into Neo4j DBMS using the neosemantics (n10s) 
toolkit [44], producing an initial graph structure with 147 
nodes and 249 relationships. To enable efficient querying 
and reasoning, we transform OWL classes and properties 
into LPG nodes and relationships using the Neo4j APOC 
library. This process restructures the ontology into a task-
oriented schema while preserving its semantic relation-
ships, as detailed in the following paragraph. To refine the 
representation, we manually filter concepts relevant to HRI 
scenarios, integrating key elements from ERAS and Task 
ontologies. The final IORA-LPG consists of 34 nodes and 
64 relationships, forming a structured schema for task-ori-
ented robot scenarios. 

To transform OWL ontologies into a task-oriented LPG 
schema, we implement a structured four-step process, as 
outlined in Algorithm 1, ensuring consistency and usability 
in downstream applications.

Step 1: Standardizing Imported Tags OWL ontologies 
imported via the n10s library in RDF/XML format generate 
predefined labels, relationships, and properties that require 
renaming to align with the OWL syntax. Node labels (e.g. 

2  CORA-related ontologies can be accessed by its open-source http://
GitHubrepository.

into scenario-specific natural language explanations. Dia-
logue Policies control the dialogue flow, while the Agent 
manages system integration and I/O operations, ensuring 
smooth user-robot communication.

By integrating structured KR with natural language inter-
action, this framework provides an explainable interface for 
users to query and interpret robotic operations. The KG, DS 
pipelines are further detailed in the following section.

4.2  Knowledge Graph

To structure knowledge for task-oriented robotic scenar-
ios, we develop a domain-specific Integrated Ontology for 
Robotics and Automation (IORA). The ontology integrates 
concepts from CORA-related, ERAS, and Task ontologies 
mentioned in Sect. 3, as outlined in Fig. 2. 

Ontology-based representations provide a formal struc-
ture for capturing domain knowledge. However, traditional 
OWL-based ontologies are not well suited for intuitive 
querying and adaptation of runtime scenarios. To enhance 
usability, we transform the OWL ontologies into a LPG 
schema, enabling efficient knowledge retrieval and task 
inference. This transformation is implemented using Neo4j1, 

1  Neo4j: Version 4.4.12 was used in this study.

Fig. 3  Pipeline to adapt OWL-
based ontologies to LPG-based 
schema

 

Fig. 2  Overview of main con-
cepts in Integrated ontology for 
robotics and automation (IORA)
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4.3  Dialogue system

In AIRLab Delft3, a mobile-based robotic manipulator is 
used to perform pick-and-place product tasks in a retail 
setting, as shown in Fig. 4. Using the previously described 
LPG-based framework, we developed a dialogue system tai-
lored to this specific robotic scenario. 

The system is implemented using the Rasa framework4, 
enabling users to query both static product properties (e.g., 
mass and position) and runtime robot task information, such 
as task details and execution status. Rasa was chosen for its 
modular architecture, supporting customizable NLU pipe-
lines, deep learning-based dialogue policies, and flexible 
action services for adaptive responses.

To ensure robust NLU within the constraints of limited 
hand-crafted training data, we employed multiple compo-
nents. SpacyNLP [45] was integrated for tokenization and 
word embedding via SpacyTokenizer and SpacyFeaturizer. 
The DIETClassifier [46] was used for both intent classifica-
tion and entity extraction, using transformer-based embed-
dings to improve generalization in limited training samples. 

3  This research was partially supported by Ahold Delhaize. All content 
represents the opinion of the authors, which is not necessarily shared 
or endorsed by their respective employers and/or sponsors.
4  Rasa: Rasa 3.1.4 and Rasa X 1.1.3 were used in this study.

class description) and relationship types (e.g. property axi-
oms) are reformatted to ensure semantic clarity for further 
transformation.

Step 2: Converting Property Restrictions OWL 
property restrictions, which define constraints on object 
properties, are incorporated into the LPG schema as node 
attributes. Value constraints and cardinality constraints 
are extracted and stored directly within the corresponding 
object attributes, maintaining the intended logical structure.

Step 3: Preserving Hierarchical Relations To 
retain the hierarchical organization of properties, 
⟨rdfs : subPropertyOf⟩ axioms are projected onto a sub-
graph before the ⟨owl : ObjectProperty⟩ are transformed 
into edges. This preserves the inheritance structure between 
properties, allowing for more structured reasoning.

Step 4: Generating Graph Relationships Finally, 
⟨owl : ObjectProperty⟩ and their associated domain-range 
relationships are converted into LPG constructs. Instead of 
treating object properties as independent nodes, they are 
transformed into direct edges between ⟨owl : Class⟩ nodes, 
facilitating efficient traversal and knowledge retrieval.

1 3
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When the user submits a query, the dialogue system pro-
cesses it through NLU pipeline and dialogue policies to 
determine the appropriate response. If knowledge retrieval 
is needed, Rasa action servers trigger Cypher queries [48] 
via the Py2neo library to extract relevant information from 
the Neo4j DBMS. The retrieved data is then formatted into 
natural language explanations and presented to the user.

The predefined user intents and their corresponding 
response examples are summarized in Table 1. Intents 
related to static environmental information are listed above 
the horizontal line, while those concerning runtime robot 
task information are listed below. Furthermore, seven entity 
types (object_type, object, attribute, property, furniture, 
task, and subtask) were defined to ensure the system accu-
rately extracts and stores task-relevant entity values. The 

Additionally, the FallbackClassifier handled low-confidence 
utterances, ensuring system robustness by triggering clarifi-
cation requests or fallback responses. To enhance entity rec-
ognition consistency, the EntitySynonymMapper was used 
to normalize synonymous terms, mapping variations of user 
input to unified entity labels.

Dialogue management relies on a combination of policies 
to maintain coherent and context-aware interactions. The 
MemoizationPolicy enabled the system to recall frequently 
occurring dialogue paths, allowing predefined conversations 
to be handled efficiently. TEDPolicy, a Transformer-based 
model [47], generalized beyond memorized paths, predict-
ing system responses based on contextual information. The 
RulePolicy defined fixed behaviours, such as fallback han-
dling, ensuring that ambiguous or unsupported queries trig-
gered appropriate system responses.

Table 1  NLU training data and response examples: square brackets [ ] indicate the text that represents an entity, while parentheses ( ) specify 
the entity type being labeled. The bracketed ellipsis […] is used to indicate omitted information while preserving the sentence structure
Intent NLU Training example Response Example
query_environment Give me some background on AIRLab. The AI for Retail Lab is a joint industry lab.
introduce_chatbot Who am I talking with? My name is Iris, a chatbot assistant for you […]
chatbot_capability What can you do? You can ask me the following things […]
query_product_in_env What [items](object_type) are in the environment? There are […] products in the environment: […]
query_product_property Tell me the [mass](attribute) of [yoghurt](object). Sure, [object]’s [attribute] is […]
query_specific_product Does the environment contain [flower](object)? It seems the environment doesn’t contain […]

Tell me [more](property) about [yogurt](object). No problem, let me tell you some properties […]
What type of [properties](property) can I ask? You could ask properties of products within […]

query_product_location Where could I find [juice](object)? I think [object] is located at […] on the [furniture].
query_product_furniture What products are on [shelf_1](furniture)? On [furniture], you can find product: […]
query_specific_task I want to know about [task2](task). [task]: the robot moves to the place where […]
query_current_task What is the current task? Sure! The Robot is performing [task]: […]
query_previous_task Give me an overview of previous tasks. [task]: moved to […]. [task]: picked [object].
query_current_action What are you doing now? No problem! The robot is placing [object].

Fig. 4  The retail environment in 
AIRLab Delft
 

1 3

Page 7 of 21  15



International Journal of Social Robotics (2026) 18:15

not significantly affect the results due to the relatively 
short duration of the interaction and recall period.

5.1  Scenario Design

5.1.1  Static Scenario (Scenario 1)

In the first scenario, participants need to acquire static infor-
mation about the products stored in a predefined KG. This 
KG contains four key properties (id, mass, grasping_posi-
tion, position) for six common products: hagelslag (choco-
late milk in Dutch supermarket), yoghurt, milk, tea_box and 
ice_cream. Here, grasping_position refers to the robot’s 
target coordinates for initiating a grasp action, while posi-
tion refers to the product’s actual location in the scenario. 
Both properties are represented as Cartesian coordinates 
(x, y, z) and stored in the KG. Product-related concepts 
(Object, PositionMeasure, PositionRegion, PoseMeasure) 
and their relationships (pose, positionAt, inPR) from IORA-
LPG were used to model this knowledge. For instance, as 
illustrated in Fig. 5, a fragment of product information dis-
played in the Neo4j browser shows detailed properties of a 
tea_box, including its mass (0.5 kg) and its position in the 
basket. During the experiment, participants could directly 
interact with the product KG to obtain information through 
the Neo4j browser. Besides, they could query the chatbot 
using natural language sentences, such as ’Tell me the mass 
of milk.’ to obtain these properties. 

5.1.2  Runtime Scenario (Scenario 2)

The second scenario involves three robotic tasks, each 
with a different final state: 1) the robot moves to the loca-
tion of the milk, 2) the robot picks up the hagelslag box, 
and 3) the robot places the tea_box in the basket. Task-
related concepts from the IORA-LPG (Agent, AgentP lan, 
PlanAction, Task, Subtask), along with their relationships 
(applies, contains, is_implemented_by, abstractPart) 
are used to store the details of the plan and the execution sta-
tus of these tasks. For instance, the pink and purple boxes in 
Fig. 6 illustrate task_3, involving three subtasks (actions): 
move to reach tea_box, pick tea_box and place it in bas-
ket, ultimately achieving the final state where the tea_box 
is in the basket. During the experiment, participants could 
access dynamically-generated KGs via the Neo4j browser 
to obtain detailed task information, including task goals, 
product states, and the planned action sequences. Addition-
ally, they could review the CLI outputs shown in Fig. 7, or 
query the chatbot using natural language phrases like ’What 
are you doing now?’. These methods allowed participants to 
efficiently comprehend the robotic tasks and their progress. 

full set of functional action servers used to retrieve back-end 
updated KGs is detailed in Table 9 in Appendix A. 

5  Experiments

A between-subject experiment is designed to evaluate the 
effectiveness and performance of our proposed KG-Retail-
bot in assisting users to comprehend two distinct retail 
scenarios: Scenario 1 (static) and Scenario 2 (runtime). In 
Scenario 1, a set of predefined retail products, along with 
their attributes such as location and quality, were stored 
in the product KG. In Scenario 2, we did not simulate the 
physical motion of the robot within the ROS environment. 
Instead, our focus was on simulating the information flow 
transmission of the RS module, as detailed in Sect. 4.1. Uti-
lizing ROS topics, services, and actions, runtime task goals 
and actions planned by the decision-making agent, as well 
as the robot’s motion status, were continuously updated and 
stored in the task KG. This approach enabled us to replicate 
the runtime interaction and data flow of the robotic system 
without requiring actual robot movements, effectively creat-
ing a “black box” retail scenario for the users.

In the two simulated scenarios, participants could only 
access and comprehend scenario information through dif-
ferent interaction methods provided at the front-end within 
a limited time frame, including Linux Command Line Inter-
face (CLI), KGs and the chatbot. The effectiveness of these 
interaction methods was assessed by the accuracy of par-
ticipants’ responses in information-recall questionnaires. 
Higher accuracy in these questionnaires indicates that our 
system can more efficiently convey scenario information to 
users within the designed retail environment. Additionally, 
a separate questionnaire was employed to capture users’ 
subjective evaluations of the chatbot’s performance. Some 
assumptions were held and given here when designing the 
experiment: 

	● Assumption 1: Participants with similar backgrounds 
were recruited for this study. They were provided with 
a comprehensive description of the experiment and the 
associated questionnaires prior to participation. Given 
this standardized preparation, we assume that the par-
ticipants’ levels of expertise in ROS or robotics do not 
introduce any bias in the results.

	● Assumption 2: Participants were required to recall re-
tail product and robot task information obtained during 
their interactions within a limited timeframe. All par-
ticipants were given the same amount of time to interact 
and to complete the information recall questionnaires. 
We assume that individual differences in memory will 
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scenarios involving the chatbot and KGs shown in Fig. 8. 
Participants were subsequently provided with specific ques-
tionnaires designed to evaluate both their understanding of 
the scenarios and the performance of the system. The ques-
tionnaires included the product information-recall assess-
ment (Questionnaire 1), task information-recall assessment 
(Questionnaire 2), and the chatbot satisfaction assessment 
(Questionnaire 3), as detailed in the Tables 2, 3 and 4, 
respectively. 

5.2  Participants

A between-subject study was conducted to mitigate poten-
tial carryover effects from learning and fatigue [49]. Four 
groups of participants, each consisting of 5–10 students 
and researchers with relevant backgrounds in Robotics and 
Electronic Engineering, were recruited from the university. 
These groups were tasked with interacting with the system 
to comprehend the information presented in the two scenar-
ios described previously. Each group was assigned a differ-
ent method of interaction, as illustrated by the experimental 

Fig. 6  One fragment of the task KG in Scenario 2: node labels and relationship types are detailed in the yellow box on the right. In the center, 
pink and purple nodes store plan details made by the decision-making agent, while blue nodes track the execution status of robot tasks and actions

 

Fig. 5  One fragment of the product KG in Scenario 1: In Neo4j 
browser, a “node” represents an entity with attributes, and an “edge” 
signifies a directional relationship between nodes with properties. The 
“overview” in the right bar provides a comprehensive visualization of 

the graph’s structure. For example, node labels and relationship types 
of Scenario 1 are summarized in the right yellow box. In the center, the 
green node contains all properties of the tea_box, while other nodes 
store its location information
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they completed Questionnaire 1 and Questionnaire 2 to 
evaluate their understanding based on the KG data.

	● Group 4: Participants in this group used both the chat-
bot and the static and runtime KGs. They interacted with 
the chatbot in the same manner as Group 2 and addition-
ally explored the KGs for 5 minutes. They completed the 
same set of questionnaires as Group 2 to assess their 
understanding and experience with the system.

6  Results

A total of 25 participants were recruited and randomly 
assigned to the different groups as detailed in Table 5. The 
distribution was: seven participants were in the Linux CLI 
group, four in the Chatbot group, seven in the KG group, 
and seven in the Chatbot+KG group. While participants 
were randomly assigned, their stated preferences were also 
considered in order to improve task engagement. Figure 9 
presents examples of chat history from Group 2 and Group 4 
during their interactions in Scenario 1 and Scenario 2. These 
examples illustrate how participants used the chatbot to 
query about product and task information in the experiment. 

To comprehensively analyze the experimental data, we 
focused on three main aspects: 

	● Consistency Assessment: We employed the Intraclass 
Correlation Coefficient (ICC) [50] to evaluate the con-
sistency of information recall accuracy within each 
group. ICC is a statistical measure that assesses how 
strongly units in the same group resemble each other. 
This approach allowed us to assess how consistently 
participants in each group could accurately recall infor-
mation, indicating the reliability of the interaction meth-
ods used.

	● System Effectiveness Evaluation: We assessed the effec-
tiveness of the system by comparing how accurately par-
ticipants recalled detailed product and task information 

	● Group 1: This group focused on viewing the real-time 
Linux CLI outputs to understand the robotic tasks in 
Scenario 2. They were allocated 5 minutes for this task 
and completed Questionnaire 2, which assessed their re-
call of the task-related information.

	● Group 2: Participants interacted exclusively with the 
chatbot for a total of 10 minutes, equally divided be-
tween Scenario 1 and Scenario 2. They used the chatbot 
to gather product and task information and completed all 
three questionnaires, evaluating their understanding of 
the scenarios and the chatbot’s performance.

	● Group 3: This group only accessed the static and run-
time KGs to comprehend Scenario 1 and Scenario 2, 
with a total interaction time of 10 minutes. Afterwards, 

Table 2  Questionnaire 1 - product information recall of Scenario 1
Item ID mass grasping_position position
Milk
Tea box
Hageslag
Yogurt
Juice
Ice cream

Fig. 8  Experimental scene showing interaction with (a) the chatbot &; 
(b) knowledge graphs

 

Fig. 7  One fragment of Linux CLI outputs in Scenario 3: Terminal_1 shows the action planed by the decision-making agent; Terminal_2 informs 
participants of completed actions; Terminal_3 prints completed task and updates product locations
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across different interaction methods for Scenario 1 and 
Scenario 2. This evaluation provided insights into which 
method or combination of methods most effectively 
supported users in understanding and retaining scenario-
specific information.

Table 3  Questionnaire 2 - task information recall of Scenario 2
1 What is robot’s first task? ⃝ Move ⃝ Pick ⃝ Place ⃝ Not sure
2 What is robot’s second task? ⃝ Move ⃝ Pick ⃝ Place ⃝ Not sure
3 What is robot’s third task? ⃝ Move ⃝ Pick ⃝ Place ⃝ Not sure
4 Which products are robot’s first task? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure
5 Which products are robot’s second task? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure
6 Which products are robot’s third task? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure
7 Which products are on the Table 1 at the end? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure
8 Which products are on the Table 2 at the end? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure
9 Which products are on the Shelf 1 at the end? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure
10 Which products are on the Shelf 2 at the end? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure
11 What’s your age Please write your answer:
level 1 2 3 4 5 6 7
12 What your professional level with ROS ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
13 What your professional level with Knowledge graph ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Table 4  Questionnaire 3 - chatbot evaluation
Question List Strongly Disagree Strongly Agree

1 2 3 4 5 5 7
Usability
1 The chatbot responds too slowly. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
2 It was easy to lose track of where you are in the interaction. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
3 It is easy to learn how to use the chatbot. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Clarity
4 The chabot’s responses were accurate. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
5 The chatbot didn’t always do what I wanted. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
6 The chatbot was organized and logical. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Naturalness
7 The chatbot was understandable. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
8 The interaction with the chatbot was consistent. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
9 The chatbot used everyday words. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Friendliness
10 The chatbot’s response sounded enthusiastic. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
11 I felt comfortable using the system. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
12 The chatbot seemed friendly. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Robustness to misunderstandings
13 I was able to recover easily from errors. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
14 The chatbot made a few errors. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
15 I felt in control of the interaction with the chatbot. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Willingness to use the system again
16 I would be likely to use this system again. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
17 The system was useful. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
18 The chatbot would help me be more productive. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Table 5  Intraclass correlation coefficient analysis of information recall 
consistency across four interaction groups
Group(Num) ICC Confidence probability
CLI (7) 0.8998 p < 4.61e − 7
Chatbot (4) 0.6917 p < 0.0034
KG (7) 0.7242 p < 3.07e − 4
KG+Chatbot (7) 0.8166 p < 1.090e − 6
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whether the system enabled users to obtain the exact posi-
tional information rather than approximate spatial proxim-
ity. For multi-answer questions in Table 3, accuracy was 
computed based on the number of correctly selected items 
(i.e., the intersection between the correct answers and the 
participant’s responses). The resulting accuracy percent-
ages for each attribute were then discretised into categorical 
scores to facilitate a more robust reliability analysis.

We used ICC(A, k), following the two-way random 
effects model with absolute agreement [52], to assess the 
consistency of group-level accuracy across conditions. 
This formulation was chosen because our objective was to 
determine whether different interaction groups, treated as 
independent raters, produced comparable accuracy scores 
for each question. Unlike models assessing rank-order con-
sistency, ICC(A,k) explicitly captures agreement in actual 
values, making it suitable for evaluating agreement in recall 

	● Chatbot Performance Evaluation: For the groups that 
interacted with the chatbot (Group 2 and Group 4), 
we used the PARAdigm for Dialogue System Evalua-
tion PARADISE [51] framework to evaluate its perfor-
mance. This framework uses subjective feedback from 
participants and objective measures like task success 
and dialogue efficiency to comprehensively evaluate the 
chatbot’s effectiveness and user experience.

6.1  Consistency Assessment

To compute the ICC, we first calculated the accuracy of 
participants’ responses for each attribute in the information-
recall questionnaires. For example, the accuracy of the ID 
attribute in Table 2 was based on the number of correctly 
identified items. The position attribute was counted as 
correct only when all three discrete coordinates (x, y, z) 
matched the ground-truth values, as the task was to assess 

Fig. 9  Chat examples to query (a) static information &; (b) runtime information.
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informed by participants’ response accuracy. This method 
ensures that questions with higher agreement (i.e., clearer 
and less ambiguous) contribute more to the final score, 
which reflects their informativeness in the experimental 
context. The weights are calculated as: 

weighti = 1
error_ratei + ϵ

� (2)

Where error_ratioi is the proportion of participants who 
answered questions i incorrect, ϵ is a smoothing constant 
and is set to 0.05.

The weights of questions in Scenario 1 are calculated 
as [0.3952, 0.2865, 0.1378, 0.1804], while the weights of 
the Scenario 2 are [0.1141, 0.1538, 0.1787, 0.1489 0.1340, 
0.0744, 0.1960]. The final accuracy scores are presented in 
Fig. 10. Overall, each group performed better in Scenario 
2 (runtime) compared to Scenario 1 (static). We attribute 
this difference to the inherent difficulty of the questionnaires 
rather than the effectiveness of the interaction methods, so 
this aspect will not be further discussed here. 

A one-way ANOVA [53] was performed to compare 
accuracy scores across the four experimental groups. The 
results indicated a significant main effect of interaction 
method in both Scenario 1 (F = 4.25, p = 0.035) and Scenario 
2 (F = 5.03, p = 0.009), suggesting that different interaction 
modalities influenced participants’ ability to recall scenario 
information.

To further analyze group-wise differences, Tukey’s 
HSD post-hoc test [54] was conducted. The results 
showed that in Scenario 1, the Chatbot+KG group 
(X = 0.6508, VAR = 0.0996) significantly outperform the 
KG group (X = 0.3100, VAR = 0.2816) (p = 0.029). These 
results indicate that our KG-Retailbot significantly enhances 
users’ understanding of static product information within a 
retail environment. However, the difference between the 
KG and Chatbot groups was not statistically significant 
(p = 0.63), suggesting that the efficiency of inquiring about 
product properties using simple sentences is comparable to 
directly accessing the product KG. This result indicates that 
while the KG method has advantages in presenting complex, 
multi-layered runtime tasks, both methods are similarly 
effective in aiding participants to retrieve static information.

In Scenario 2, the Chatbot+KG group 
(X = 0.7217, VAR = 0.1504) outperform the CLI group 
(X = 0.3875, VAR = 0.1048) (p = 0.011) as expected. No 
significant differences were observed between the other 
groups with (E(p) = 0.50). This was probably due to the 
small amount of experimental data collected plus some 
product properties that were not queried by the participants 
but were still included in the calculations for a fair compari-
son, making the differences smaller. Therefore, the effect 

performance. The ICC was then computed based on the fol-
lowing formulation:

ICC(A, k) = MSR − MSE

MSR + MSC−MSE

n + (k−1)MSE

k

� (1)

where MSR is the mean square for subjects, MSC indicates 
the mean square for answers, MSE is the mean square for 
residual error, n is the number of subjects, and k is the num-
ber of answers per subject.

The detailed ICC results are presented in Table 5. The 
ICC values for the CLI and KG+Chatbot groups were both 
above 0.75 (p < 0.001), indicating a high level of consistency 
in their ability to accurately recall the information presented 
in the scenarios. The KG group had a slightly low ICC of 
0.72 (p < 0.001), which still demonstrates good reliability 
in their recall performance. In contrast, the Chatbot group 
exhibited an ICC of 0.69 (p < 0.01), suggesting moderate 
consistency in recall accuracy. The relatively lower ICC in 
the Chatbot group may be attributed to its smaller sample 
size, which can limit the precision and stability of the statis-
tical estimates. For the KG group, the slightly reduced ICC 
could be due to the varied individual strategies participants 
employed in allocating their time between the static and 
runtime KGs within the 10-minute period. This variability 
in focus distribution might have introduced differences in 
their recall performance.

Overall, these ICC results demonstrate that the data col-
lected within each group is consistent. This consistency is 
crucial as it ensures that the subsequent analysis of system 
effectiveness, based on the accuracy of information recall 
questionnaires, is built on robust and dependable data. Thus, 
we can confidently proceed with comparing the effective-
ness of different interaction methods, knowing that the 
foundation of our data is statistically sound.

6.2  System Effectiveness

To evaluate the effectiveness of different interaction meth-
ods in assisting participants’ comprehension of scenario 
knowledge, we conducted a statistical analysis on accu-
racy scores obtained from Questionnaire 1 (Scenario 1) and 
Questionnaire 2 (Scenario 2).

Since the questionnaires were intentionally designed to 
include both simple fact-retrieval and more complex multi-
step reasoning questions, using equal weights would risk 
overvaluing trivial items and undervaluing more informa-
tive ones. Accuracy was computed by comparing partici-
pants’ responses against the ground truth using a weighted 
sum approach to account for varying question difficulty 
levels. Rather than assigning question weights arbitrarily 
or uniformly, we adopted a data-driven weighting scheme 
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costs were evaluated through two types of measures: effi-
ciency and qualitative aspects. Efficiency costs refer to the 
resource consumption required to complete a task, such as 
the number of dialogue turns, and other quantifiable metrics. 
Lower efficiency costs indicate that the chatbot can achieve 
task completion with minimal resource expenditure, reflect-
ing higher efficiency. Qualitative costs refer to the quality 
of conversational content, including aspects such as clarity 
and user engagement. Qualitative costs were assessed using 
questionnaires in which participants rated their conversa-
tional experience with the chatbot. Lower qualitative costs 
correspond to higher user satisfaction with the interaction. 
By combining these metrics, the PARADISE framework 
provides a comprehensive evaluation of the chatbot’s per-
formance, capturing both the success in task completion and 
the overall user experience during the interaction. 

6.3.1  Task Success

Task success was quantified using the accuracy rates of 
intent recognition and entity recognition. These metrics 
measure how accurately the chatbot identifies the user’s 
intent and correctly recognizes relevant entities within the 
conversation. It can be calculated by the Kappa coefficient κ 
[56], as shown in Eq. (3). 

k = P (A) − P (E)
1 − P (E) � (3)

size η2 [55] is calculated considering the small amount of 
samples, and it equals to 0.3606 and 0.4181 in Scenario 1 
and 2 respectively, demonstrating the large effect between 
the groups.

6.3  Chatbot Performance

The PARADISE framework was adopted to evaluate the 
chatbot performance by quantifying user satisfaction, which 
is contributed by two types of factors: task success and 
dialogue costs, shown in Fig. 11. Task success was mea-
sured by evaluating how effectively the chatbot understood 
and processed user input. Higher accuracy rates indicate 
a more effective chatbot in understanding and processing 
user inputs, leading to successful task completion. Dialogue 

Fig. 11  Structure of PARADISE Framework [51]

 

Fig. 10  Comparison of informa-
tion recall accuracy across four 
interaction groups
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about tasks in the runtime scenario were relatively straight-
forward, contributing to higher accuracy in intent recog-
nition. Overall, these findings indicate that the chatbot’s 
effectiveness is shaped by the type and complexity of user 
inquiries in both static and runtime contexts. The almost 
perfect agreement in most categories highlights the system’s 
robust understanding capabilities, particularly in runtime 
task-related interactions. 

6.3.2  Dialogue Costs

The metrics depicted in Table 8 were adapted from the work 
of Hung et al. [57] and cover both objective and subjec-
tive aspects of dialogue evaluation. The first four metrics 
represent objective measures, while the remaining metrics 
are subjective. 

To assess the subjective metrics (Usability, Clarity, 
Naturalness, Friendliness, Robustness to misunderstand-
ings, and Willingness to use the system again)-we designed 
Questionnaire, 3 shown in Table 4, containing 18 questions 
derived from prior validated chatbot evaluation studies [58, 
59]. Participants rated each item on a 7-point Likert scale 
[60], ranging from 1 (“strongly disagree”) to 7 (“strongly 
agree”).

As the subjective dimensions listed in Table 4 capture dis-
tinct aspects of dialogue quality, their relative contributions 
to overall evaluation cannot be assumed to be equal. Instead 
of relying on uniform weighting, we employed principal 
component analysis (PCA) [61] to the raw questionnaire 
responses, thereby extracting empirically grounded weights 
that reflect the underlying variance structure in participants’ 
evaluations. This data-driven method allowed us to com-
pute the relative weight of each item based on the variance 
structure in user ratings. Specifically, we used the loading 
coefficients from the first principal component (PC1), which 
captures the most variance and reflects the dominant fac-
tor in subjective dialogue evaluation. The resulting weights, 
normalised to sum to 1, are listed below:

Q1: 0.026, Q2: 0.0159, Q3: 0.060, Q4: 0.0885, Q5: 
0.0819, Q6: 0.1115, Q7: 0.0256, Q8: 0.1431, Q9: 0.0109, 
Q10: 0.0492, Q11: 0.0280, Q12: 0.0336, Q13: 0.0652, Q14: 
0.0144, Q15: 0.0765, Q16: 0.0984, Q17: 0.0100, Q18: 
0.0612.

Here, P(A) represents the observed accuracy, which is the 
proportion of times the chatbot correctly identifies intents 
and entities in all attempts. P(E) represents the expected 
accuracy, which is the proportion of correct recognitions 
that would be expected by chance. To calculate κ for intent 
recognition and entity recognition performance, we con-
structed confusion matrices for each participant, capturing 
their classification results in two scenarios. Each confusion 
matrix consists of predefined intent and entity categories 
that users might encounter during the dialogue, as listed in 
Table 6. These matrices provide a structured evaluation of 
the chatbot’s performance, offering insights into its ability to 
accurately interpret and process user input in both scenarios. 

The results in Table 7 indicate that our chatbot performed 
well in both scenarios. Specifically, entity recognition in 
both scenarios and intent recognition in the runtime sce-
nario demonstrated almost perfect agreement (κ > 0.81), 
underscoring the chatbot’s effectiveness in these areas. In 
contrast, intent recognition in the static scenario showed 
substantial agreement (0.61 < κ < 0.81), with a κ value of 
0.7296 (VAR = 0.028). Through the experiment, we observed 
that users were more likely to inquire about various aspects 
of the product in the static scenario, which sometimes led 
to classification errors by the chatbot. Conversely, inquiries 

Table 6  Categories used in confusion matrices for intent and entity recognition across two scenarios
Attribute Scenarios 1 (Static) Scenarios 2 (Runtime)
Intent query_product_property; query_perishable; query_product; 

query_specific_product; query_environment; chatbot_capability; 
introduce_chatbot; nlu_fallback

query_current_task; query_previ-
ous_task; query_specific_task; 
query_furniture; query_current_action; 
query_previous_action; query_predict; 
query_product_location; nlu_fallback

Entity object; attribute; object_type; None; property task; furniture; object; None; object_type

Table 7  Evaluation of task success using Kappa
Scenario Type Mean Variance
Scenario 1 (Static) Intention 0.7295 0.0280

Entity 0.9058 0.0285
Scenario 2 (Runtime) Intention 0.8208 0.0133

Entity 0.8912 0.0068

Table 8  Metrics for dialogue costs in chatbot evaluation
Metric Type Data Collec-

tion Method
Total number of user/system turns Efficiency Quantitative
Total elapsed time per turn Efficiency Quantitative
Number of re-prompts Qualitative Quantitative
Number of inappropriate responses Qualitative Quantitative
Usability Qualitative Questionnaire
Clarity Qualitative Questionnaire
Naturalness Qualitative Questionnaire
Friendliness Qualitative Questionnaire
Robustness to misunderstandings Qualitative Questionnaire
Willingness to use the system again Qualitative Questionnaire
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negative ratings. Notably, Clarity received the highest rat-
ing, underscoring the intuitive interpretability of KGs. These 
findings underscore the substantial benefits of integrating 
KGs with the chatbot, demonstrating marked improvements 
in user satisfaction across all evaluated metrics.

For the objective metrics of dialogue costs, including 
total User turns, total Elapsed time per turn, number of 
Re-prompts, and number of Inappropriate responses were 
calculated based on the experiment results. This objective 
evaluation focuses exclusively on the chatbot’s perfor-
mance, independent of the KGs, enabling a direct compari-
son between different scenarios. To ensure comparability 
across variables, all values were normalized using min-max 
normalization. The normalized results are presented in Fig. 
13. 

KS test was also implemented here for significance 
evaluation. The Total user turns decreased by 30.5% when 
transitioning from Scenario 1 to Scenario 2 within the same 
5-minute duration. However, due to the large VAR = 5.1841, 
KS test gives p = 0.14, not showing significant differences. 
This result reflects the increased complexity of robotic tasks 
in runtime scenarios, making them more challenging for 
users to interpret and memorize. This complexity is fur-
ther evidenced by the 1.8 times increase in the number of 
Re-prompts from Scenario 1 to Scenario 2 with significant 
differences (p = 0.0468), matching the results shown in Fig. 

Using these weights in a composite score ensures that 
dimensions with greater explanatory power (i.e., variance 
contribution) have a proportionally stronger impact on the 
final evaluation. To calculate the final subjective score of 
each participant, their responses were linearly mapped from 
the original 7-point scale to the interval [−3, 3], after which 
the weighted sum was calculated using the PCA-derived 
weights. This mapping facilitated interpretable and consis-
tent quantitative analysis across participants.

The scores for the six subjective metrics were based on 
the questionnaires filled out after the experiment, as shown 
in Fig. 12. Before analyzing the results, the Kolmogorov–
Smirnov (KS) test [62] was implemented to evaluate the dif-
ferences of the two groups. The test shows that the answers 
to the questionnaire come from different distributions with 
a p-value of 0.0186. Furthermore, the results of the Chatbot 
and Chatbot+KG groups were compared to better under-
stand the role of the proposed KGs in effectively conveying 
scenario information to the users. The scores illustrate par-
ticipants’ subjective evaluation of the two interaction meth-
ods under each metric. 

The results indicate a significant improvement in all 
evaluation metrics for the Chatbot+KG group compared 
to the Chatbot group. The introduction of KGs resulted in 
a positive shift in evaluations for both Robustness to mis-
understandings and Clarity, which had previously received 

Fig. 12  Comparison of par-
ticipants’ subjective evalua-
tion between the chatbot and 
Chatbot+KG group
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P = (α ∗ N (k)) −
∑

i

wi ∗ N (ci), i ∈ [1 : 4]� (4)

The ANOVA results, as shown in Fig. 14, indicate that the 
Chatbot+KG group (X = 0.5866, VAR = 0.5722) signifi-
cantly outperformed the Chatbot-only group (X = −1.0265, 
VAR = 0.4281; p = 0.0047). The performance score for the 
Chatbot group was negative and clustered near “Slightly 
Disagree”, reflecting limited user satisfaction. In con-
trast, the inclusion of KGs markedly elevated the perfor-
mance score to a satisfactory range. Notably, although the 
Chatbot+KG group exhibited slightly greater variance, its 
entire score range (except for a single outlier) remained 
higher than that of the Chatbot group. This demonstrates 
the substantial benefits of KG integration in improving the 
quality of task-oriented interaction. The relatively large 
variances observed in both groups may be attributed to indi-
vidual differences in user interaction behaviours. 

7  Conclusion

In this paper, we developed a KG-based dialogue system 
that integrates structured knowledge representation with 
natural language interaction to facilitate scenario-specific 

13. In contrast, the Total elapsed time per turn and the num-
ber of Inappropriate responses remained nearly constant, 
indicating that the chatbot maintained a consistent level of 
interaction quality regardless of task complexity or scenario 
type. The differences obtained from the KS-test between 
those two subgroups are not significant. These findings sug-
gest that while the chatbot’s interaction quality remains sta-
ble, the complexity of comprehending runtime information 
demands more user effort than static information.

6.3.3  Performance Score

The overall performance score was obtained using Eq. 4 
from PARADISE. Here, P represents the subjective score 
derived from Questionnaire 3, described in the subsection 
6.3.2. The coefficient k is derived from confusion matrices 
measuring intent and entity recognition accuracy. The terms 
ci, i ∈ [1 : 4] correspond to objective metrics of dialogue 
costs, normalized using the N  Z-Score normalization func-
tion. To determine the weights α and wi, individual partici-
pant scores Pi, N (k), and N (ci) for each group were used 
in a regression fitting process as per Eq. 4. Once the regres-
sion weights were obtained, the final performance scores for 
each group were calculated by applying these weights to the 
mean Z-Scores of k and ci. 

Fig. 13  Comparison of par-
ticipants’ objective evaluation 
between the Scenario 1 and 
Scenario 2
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and Robustness to misunderstandings. Objective mea-
sures showed that while the chatbot’s interaction quality 
remained stable across scenarios, runtime tasks led to a 
significant increase in user re-prompts (p < 0.05), high-
lighting the added cognitive demand in understanding 
dynamic task information. The final performance score 
further confirmed the benefits of the KG integration, dem-
onstrating its role in enhancing both task success and user 
experience.

In future work, improving bidirectional information 
exchange within this system could allow users to dynami-
cally modify scenario data through input channels. Addition-
ally, integrating a synchronized LLM + KG assistant could 
combine the generative capabilities of LLMs with the struc-
tured, domain-specific knowledge of KGs [63], enabling 
more flexible and context-aware explanations. Although our 
study used a default text-based CLI as a baseline for com-
parison, we acknowledge that enhanced CLI designs, incor-
porating structured command interfaces or visual elements, 
could provide more intuitive access to scenario information. 
Future work could explore these variations to provide a 
broader evaluation of interaction modalities in HRI. Finally, 
investigating the impact of human trust on system explain-
ability across different interaction modalities could offer 
valuable insights into optimizing user engagement and sys-
tem transparency.

explanations in HRI. Using concepts from several IEEE 
standardized ontologies, we designed the IORA-LPG 
schema to efficiently represent robotic knowledge, demon-
strated through a case study in the retail setting of AIRLab 
Delft. Unlike existing NLP-based dialogue systems pri-
marily focused on robot command execution, the proposed 
KG-Retailbot is specifically designed to interpret and com-
municate structured scenario knowledge using KGs within 
a standardized robotic knowledge hierarchy.

A between-subject study with 25 participants was con-
ducted to evaluate the effectiveness and performance of KG-
Retailbot. Statistical analysis, including ANOVA, Tukey’s 
HSD post hoc tests, and Kolmogorov-Smirnov tests, con-
firmed significant differences between experimental con-
ditions, ensuring the robustness of our results. The results 
demonstrated that integrating KGs with a chatbot signifi-
cantly enhanced users’ ability to recall task-related informa-
tion (p < 0.05) and improved product information retrieval 
accuracy compared to the Chatbot-only group. These results 
highlight the advantages of structured knowledge represen-
tation in facilitating information retrieval within HRI.

Beyond information retrieval accuracy, chatbot perfor-
mance was evaluated using both objective and subjective 
metrics within the PARADISE framework. Subjective 
evaluations revealed that the Chatbot+KG system signifi-
cantly improved user satisfaction, particularly in clarity 

Fig. 14  Notched boxplot of 
final performance scores for the 
chatbot and Chatbot+KG groups. 
The y-axis represents com-
posite scores mapped from the 
7-point Likert scale. The red line 
marks the median, the notch its 
confidence interval, and the red 
cross an outlier. The Chatbot+KG 
achieved significantly higher 
scores than the chatbot-only 
group (p = 0.0047)
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