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Abstract

Robots are now pervasive, leveraging their automation capabilities to assist humans across a diverse range of tasks.
Nevertheless, end-users may have a limited understanding of the robot’s operation and typically assume a passive role
when interacting with the robot performing a particular task. In this study, we address the critical need for effective
explainability in human-robot interaction. By comparing different methods of explaining robotic scenario information to
end-users, the proposed methodologies use a labelled property graph-based chatbot that adheres to the IEEE Robotics
Ontology Standards. In this study, we designed two virtual robotic scenarios and simulated their information flow using
the Robot Operating System. A between-subjects experiment was conducted where participants engaged with the system
through various interaction methods to understand the two scenarios. These methods included real-time Linux Command
Line Interface outputs, querying a chatbot, exploring knowledge graphs, or a combination of chatbot and knowledge
graphs. The study findings suggest that both the knowledge graphs and the chatbot significantly enhance the system’s
explainability compared to a simple Linux terminal information output. Moreover, utilizing knowledge graphs alongside
the chatbot has received better subjective evaluations concerning metrics such as clarity, usability, and robustness. This
research made contributions towards the development of standardised labelled property graphs for representing scenario
information in language-based human-robot interaction. The experiment design and evaluations also provided a solution
for assessing the explainability of task-oriented dialogue systems both subjectively and objectively.

Keywords Ontology - Knowledge representation - Knowledge graph - Chatbot - Human-robot interaction - Rasa

1 Introduction

With the rapid advancement of robotics and intelligent
agents, the demand for automated behaviours has increased
dramatically. However, as agents take on decision-making
roles in automated systems, their explainability becomes

= ss.il?lézlu-zré@tudelft.nl critical for enabling end-users to make informed and
accountable actions [1] in human-robot interaction (HRI)
E:ué((l)l@shefﬁ eld.ac.uk contexts. Explainable systems empower users to interact
. ) effectively by understanding the underlying mechanisms
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and decisions behind automated behaviours.

Despite progress in algorithmic transparency, current
solutions often struggle to fully address end-user needs for
practical, scenario-specific explanations in robotic systems.
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This gap becomes particularly significant when users are
required to trust and collaborate with robotic systems in
complex, dynamic environments. In such scenarios, trans-
parent explanations play a key role by bridging the gap
between system complexity and user understanding. They
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enable users to better comprehend, predict, and validate the
actions of robotic agents, making explainability a critical
component for improving both user trust and system adop-
tion. To address this gap, dialogue systems (DSs), leverag-
ing natural language, serve as a powerful tool. It enables
interactive communication and clarification between users
and robots, providing a natural and intuitive way to deliver
scenario-specific explanations. This approach not only sup-
ports real-time information exchange but also serves as a
bridge between complex system functionalities and user
understanding, ensuring that robotic systems remain both
accessible and comprehensible to diverse users.

To address the challenges of delivering explainable
and scenario-specific information, this paper introduces
a knowledge graph (KG)-based framework for dialogue-
driven interaction. By integrating structured knowledge rep-
resentation (KR) with natural language processing (NLP),
the proposed system is designed to enhance user compre-
hension of both static and runtime robotic scenarios, with a
case study in a retail setting.

Our contributions can be summarised as follows.

1. Efficient Knowledge Representation: We propose
the Integrated Ontology for Robotics and Automation
(IORA)-labelled property graph (LPG) schema, derived
from several standardized IEEE ontologies, to effec-
tively represent robotic scenario knowledge for task-
oriented applications.

2. KG-Integrated Dialogue System: We develop a task-
oriented chatbot that integrates KG-based structured
knowledge representation with natural language inter-
action, enabling real-time scenario-specific explana-
tions in a retail environment.

3. Comprehensive System Evaluation: We conduct a
between-subject study to assess the system’s effective-
ness, comparing different interaction methods through
both subjective user feedback and objective perfor-
mance metrics, ensuring a well-rounded evaluation of
usability and information retrieval efficiency.

2 Related Work

Explainability in Robotic Systems Explainability has
become a critical focus in robotic systems, particularly in
enabling users to trust and collaborate with autonomous
agents [2]. Existing research has primarily focused on
algorithmic transparency, with efforts to elucidate model
structures and decision processes to mitigate the opacity of
black-box algorithms [3, 4]. While effective in mitigating
the opacity of black-box algorithms, these approaches often
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lack direct relevance to end-user interaction, especially in
scenario-specific contexts.

The concept of “explanation-for-trust” [5] highlights the
importance of revealing a system’s internal mechanisms
to enhance user trust and understanding. In the context of
robotic systems, this is particularly critical, as users often
interact with complex, autonomous agents whose decisions
and behaviours directly impact task outcomes. Providing
transparent explanations ensures that users can comprehend
these mechanisms, fostering a deeper understanding and
confidence in the system’s operations. However, achieving
this level of transparency requires practical and interac-
tive tools tailored to the unique needs of specific robotic
environments.

Dialogue Systems in HRI DSs, for instance, can serve as
an effective tool for achieving explainability in HRI, as ver-
bal interaction is widely recognized as the most natural and
effective mode of communication [6]. These systems take
advantage of advancements in NLP to facilitate seamless
interaction between users and robots. Broadly, DSs in HRI
can be categorized into two main applications: grounding
natural language commands into robotic actions and serv-
ing as conversational assistants for chat or support purposes.

A key application of DSs is interpreting user instructions
and mapping them to specific robotic actions. Early research
explored task-specific NLP techniques such as deep seman-
tic role labelling [7] and conditional random fields [8], to
extract structured task-related information from user inputs
[9, 10]. These methods allowed robots to execute commands
accurately in constrained environments, laying the founda-
tion for more advanced systems. Recent advances have
incorporated large language models (LLMs) to enhance the
flexibility of command interpretation. For example, Kou-
baa et al. [11] leveraged LLMs with prompt engineering to
generate executable robotic tasks from unstructured user
inputs. However, this system relies on predefined ontolo-
gies to align commands with robotic actions [12], limiting
the adaptability in unanticipated scenarios. Therefore, the
need for more flexible and standardized KR methods should
be considered to support various task-oriented applications.

Beyond task execution, DSs function as conversational
assistants, enabling robots to engage in meaningful interac-
tions for social and support purposes. These systems focus
on conversational flow, making them ideal for applica-
tions like companionship and user assistance. For instance,
Grassi et al. [13] used Google Dialogflow and its Natural
Language API to capture user intents and facilitate conver-
sational interactions. Similarly, Fujii et al. [14, 15] devel-
oped a Rasa [16]-based dialogue system that transformed
the Nao Robot into an interactive dining companion. PAL
Robotics utilized the ROS4HRI standard [17], a frame-
work for developing interactive robots, to integrate the Rasa
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framework with social robots for elderly care [18]. This
implementation demonstrated how dialogue systems, when
built on standardized frameworks, can enhance accessibil-
ity and engagement in non-task-specific contexts. However,
these systems are primarily designed for general conversa-
tional assistance and lack the capacity to provide detailed,
scenario-specific explanations, which are crucial in com-
plex robotic environments.

Knowledge Representation in HRI The effective rep-
resentation of scenario information is essential for enabling
DSs to deliver meaningful and explainable interactions in
HRI contexts. Task ontologies have been employed to orga-
nize domain knowledge into structured hierarchies. Jokinen
et al. [19] employed a task ontology to structure caregiving
tasks, providing users with detailed instructions for eight
common caregiving actions. Similarly, the CARESSES
framework [20] extended conversational diversity by
employing runtime-extensible ontologies to facilitate cul-
turally adaptive dialogues across diverse user backgrounds
[13]. However, these approaches primarily support task
planning or conversational flow management, rather than
serving as dedicated knowledge bases (KBs) capable of
storing scenario information. Consequently, they fall short
in equipping DSs with the comprehensive understanding
needed to explain and interpret robotic scenarios effectively.

Building on the foundational use of ontologies, recent
research has shifted towards KGs for representing domain
knowledge in a more dynamic and scalable manner. Ait-
Mlouk et al. demonstrated the use of linked data [21]-based
chatbot to convert natural language queries into SPARQL
commands to retrieve information from KBs such as DBpe-
dia and Wikidata [22]. Meanwhile, Wilcock integrated
Neo4dj KGs [23] with Rasa-based dialogue systems, show-
casing improved dialogue flexibility in applications like
tourism [24, 25] and later deploying the system on the Furhat
Robots [26] for practical evaluation [27]. Although these
studies demonstrate the utility of KGs in general-purpose
applications, they do not fully meet the demands of task-
oriented HRI, particularly in addressing challenges such as
runtime task execution and runtime adaptability. Advancing
this area requires the development of standardized and flex-
ible KGs that can enable DSs to deliver scenario-specific
explanations while adapting to diverse and evolving robotic
environments.

3 Fundamentals

In this paper, a KG-based chatbot presents a promising
method for implementing the system’s explainability of real-
time robotics scenarios. Generally, there are two approaches
to building KGs: top-down and bottom-up [28]. The

bottom-up strategy relies on automated extraction technolo-
gies to derive concepts and relationships from semi-struc-
tured data, prioritizing those with higher confidence levels
for inclusion in the KB. This approach demands consistent
access to high-quality data sources to manage and update
the schema effectively. In contrast, the top-down approach
entails defining the ontology and data schema of the KG as a
prerequisite for incorporating entities to the KB. This neces-
sitates a group of experts possessing a profound comprehen-
sion of the domain-specific knowledge hierarchy.

Utilizing standardised ontologies for the KG-based chat-
bot is imperative to ensure semantic coherence, enabling
efficient understanding and response generation across
diverse user interactions. Recent research proposed sev-
eral standardised ontologies to model terminologies in the
robotics domain: Core Ontology for Robotics and Automa-
tion (CORA) [29]-related ontologies (containing Suggested
Upper Merged Ontology (SUMO) [30]-CORA, CORAX,
PRARTS and POS) [31], ERAS ontology [32] and Task
ontology (TO) [33].

e SUMO-CORA: SUMO-CORA is a comprehensive top-
level ontology designed to define the fundamental onto-
logical categories in the real world.

e (CORA & CORAX & POS & RPARTS: CORA includes
three main concepts: RobotGroup, Robot and RobotSys-
tem, while CORAX defines some not-so-generic but es-
sential robotic concepts. POS defines concepts related
to objects’ pose, position, and orientation properties.
RPARTS comprises concepts representing specific de-
vices that can constitute robot parts.

e ERAS: ERAS ontology considers concepts regarding
the ethical usage of robotic techniques based on CORA
ontology.

e TO: Task ontology focuses on the task implementation
terminology as an extension of CORA ontology.

Due to these well-defined ontologies, the top-down approach
was appropriate for constructing knowledge hierarchies in
this work. Once the schema of KG is defined by ontologies,
data can be stored graphically. Resource Description Frame-
work (RDF) [34]/Web Ontology Language (OWL) [35]
(e.g., Jena [36]) and LPG [37, 38] databases (e.g., Neo4;j)
are emerging technologies for storing graph-structured data
[39]. The LPG format offers a more compact representation
of multiple properties using arrays compared to RDF [40].
Additionally, direct relationships between two entities are
established, aligning closely with human KR patterns of
real-world information. Therefore, we opted for LPG as the
KG storage approach for our system, leveraging its efficient
and intuitive structures.

@ Springer
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4 Method
4.1 System Architecture

To achieve the goal of delivering scenario-specific expla-
nations in HRI, we develop KG-Retailbot, a knowledge-
driven dialogue system using a structured multi-module
framework. Our approach integrates task-oriented KGs with
a natural language DS to facilitate intuitive and accurate
information retrieval. As depicted in Fig. 1, the proposed
system comprises three core modules: the Robotic System
(RS) module, responsible for collecting real-time robotic
execution data; the KG module, which organizes and stores
structured task-related knowledge; and the DS module,
enabling knowledge retrieval for user interaction. These
modules operate in a structured workflow to bridge the gap
between raw robotic execution data and human-interpreta-
ble scenario explanations.

The RS module acquires execution data from a runtime
Robot operating system (ROS) environment, including task
goals, planned actions, and execution status, retrieved via
the ROS Action Servers and ROS Parameter Servers. This

User

() —

Query

Response

builds upon the work of Corrado et al. [41], which employed
active inference for dynamic task execution. To integrate
these processes with structured KGs, we developed a dedi-
cated ROS node, create _dynamic_kg, which subscribes
to the relevant servers and continuously updates scenario
information.

The extracted robotic scenario data is structured and
stored in the KG module using a task-oriented LPG schema
within a Neo4j database management system (DBMS).
This transformation follows a structured pipeline (detailed
in Sect. 4.2), enabling explicit representation of items,
tasks, and execution concepts in robotics environments.
The Py2neo library [42] facilitates dynamic updates as new
data arrives. Users can also explore the structured KGs via
the Neo4j Browser, providing an interpretable view of the
stored scenario knowledge.

The DS module, built using Rasa, leverages a trained
NLU model to process user queries. It performs intent clas-
sification and entity recognition before invoking action
servers to retrieve relevant task-related knowledge from the
KG module. These servers interface with the Neo4j DBMS
to extract structured information, which is then processed
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Fig. 1 System architecture of KG-Retailbot: two interactive methods
are illustrated by black lines: chatbot (solid line) and KGs (dashed
line). The directions of the arrows at the end of the black lines indicate
the primary data flow between three modules: 1) robotic data in RS
module is extracted as structural knowledge in Neo4j DBMS using the
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Py2neo library. 2) the generated KGs are accessed by Rasa action serv-
ers through Neo4j python Driver. 3) Rasa X provides a communication
interface for users. 4) users can view generated KGs directly through
Neo4j browser
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into scenario-specific natural language explanations. Dia-
logue Policies control the dialogue flow, while the Agent
manages system integration and I/O operations, ensuring
smooth user-robot communication.

By integrating structured KR with natural language inter-
action, this framework provides an explainable interface for
users to query and interpret robotic operations. The KG, DS
pipelines are further detailed in the following section.

4.2 Knowledge Graph

To structure knowledge for task-oriented robotic scenar-
ios, we develop a domain-specific Integrated Ontology for
Robotics and Automation (IORA). The ontology integrates
concepts from CORA-related, ERAS, and Task ontologies
mentioned in Sect. 3, as outlined in Fig. 2.

Ontology-based representations provide a formal struc-
ture for capturing domain knowledge. However, traditional
OWL-based ontologies are not well suited for intuitive
querying and adaptation of runtime scenarios. To enhance
usability, we transform the OWL ontologies into a LPG
schema, enabling efficient knowledge retrieval and task
inference. This transformation is implemented using Neo4j',

! Neo4j: Version 4.4.12 was used in this study.

a property graph database optimized for structured queries
and semantic reasoning.

As shown in Fig. 3, we first import CORA-related ontolo-
gies [43]% into Neo4j DBMS using the neosemantics (n10s)
toolkit [44], producing an initial graph structure with 147
nodes and 249 relationships. To enable efficient querying
and reasoning, we transform OWL classes and properties
into LPG nodes and relationships using the Neo4j APOC
library. This process restructures the ontology into a task-
oriented schema while preserving its semantic relation-
ships, as detailed in the following paragraph. To refine the
representation, we manually filter concepts relevant to HRI
scenarios, integrating key elements from ERAS and Task
ontologies. The final IORA-LPG consists of 34 nodes and
64 relationships, forming a structured schema for task-ori-
ented robot scenarios.

To transform OWL ontologies into a task-oriented LPG
schema, we implement a structured four-step process, as
outlined in Algorithm 1, ensuring consistency and usability
in downstream applications.

Step 1: Standardizing Imported Tags OWL ontologies
imported via the n10s library in RDF/XML format generate
predefined labels, relationships, and properties that require
renaming to align with the OWL syntax. Node labels (e.g.

2 CORA-related ontologies can be accessed by its open-source http://
GitHubrepository.

@ Springer



15 Page 6 of 21

International Journal of Social Robotics (2026) 18:15

Algorithm 1 Transformation Steps

Input: OWL ontologies
Output: LPG schema

Step Rename auto-generated tags during OWL files import to conform with OWL syntaz definitions.

Node labels:

(a) (ndsch__Class) — class description (owl : Class)

(b) (ndsch__Relationship) — object property (owl : Object Property)

Relationship types:

(a) [ndsch__SCO] — subclass axioms (rdfs : subClassO f)
(b) [ndsch__SPO] — property axioms (rdfs : subPropertyO f)
(¢) [ndsch-,SCO_RESTRICTION] — property restrictions (owl : Restriction)

Property keys:

(a) (owl : Class/Object Property).ndsch__name — (owl : Class/Object Property).name
(b) (owl : Class/ObjectProperty).ndsch__propCharacteristics
— (owl : Class/Object Property).propCharacteristics
Step Transform property restrictions (owl : Restriction) between classes (owl : Class) into properties of

nodes (owl : Class/Object Property).

(a) Value constraints: (owl : Restriction).restrictionType — (owl : Object Property).restrictionType
(b) Cardinality constraints: (owl : Restriction).cardinalityV al — (owl : Object Property).cardinalityV al
Step Project classes (owl : Object Property) and relationships (rdf s : subPropertyOf) onto a subgraph
to preserve subPropertyOf azioms before transforming (owl : Object Property) into edges in LPG.

Step Transform main RDFS
(owl : Class) into LPG constructs.

construct-relationships

(owl : ObjectProperty) between classes

({owl : Class)) « [(rdfs : range)] - ({owl : Object Property)) - [(rdfs : domain)] — ((owl : Class)) to
((owl : Class)) - ({owl : ObjectProperty)) — ((owl : Class))

class description) and relationship types (e.g. property axi-
oms) are reformatted to ensure semantic clarity for further
transformation.

Step 2: Converting Property Restrictions OWL
property restrictions, which define constraints on object
properties, are incorporated into the LPG schema as node
attributes. Value constraints and cardinality constraints
are extracted and stored directly within the corresponding
object attributes, maintaining the intended logical structure.

Step 3: Preserving Hierarchical Relations To
retain the hierarchical organization of properties,
(rdf s : subPropertyO f) axioms are projected onto a sub-
graph before the (owl : Object Property) are transformed
into edges. This preserves the inheritance structure between
properties, allowing for more structured reasoning.

Step 4: Generating Graph Relationships Finally,
(owl : Object Property) and their associated domain-range
relationships are converted into LPG constructs. Instead of
treating object properties as independent nodes, they are
transformed into direct edges between (ow! : Class) nodes,
facilitating efficient traversal and knowledge retrieval.

@ Springer

4.3 Dialogue system

In AIRLab Delft’, a mobile-based robotic manipulator is
used to perform pick-and-place product tasks in a retail
setting, as shown in Fig. 4. Using the previously described
LPG-based framework, we developed a dialogue system tai-
lored to this specific robotic scenario.

The system is implemented using the Rasa framework®,
enabling users to query both static product properties (e.g.,
mass and position) and runtime robot task information, such
as task details and execution status. Rasa was chosen for its
modular architecture, supporting customizable NLU pipe-
lines, deep learning-based dialogue policies, and flexible
action services for adaptive responses.

To ensure robust NLU within the constraints of limited
hand-crafted training data, we employed multiple compo-
nents. SpacyNLP [45] was integrated for tokenization and
word embedding via SpacyTokenizer and SpacyFeaturizer.
The DIETClassifier [46] was used for both intent classifica-
tion and entity extraction, using transformer-based embed-
dings to improve generalization in limited training samples.

3 This research was partially supported by Ahold Delhaize. All content
represents the opinion of the authors, which is not necessarily shared
or endorsed by their respective employers and/or sponsors.

# Rasa: Rasa 3.1.4 and Rasa X 1.1.3 were used in this study.
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P

Fig.4 The retail environment in
AIRLab Delft

Table 1 NLU training data and response examples: square brackets [ ] indicate the text that represents an entity, while parentheses ( ) specify
the entity type being labeled. The bracketed ellipsis [...] is used to indicate omitted information while preserving the sentence structure

Intent NLU Training example

Response Example

query_environment
introduce_chatbot
chatbot_capability
query_product_in_env
query_product_property
query_specific_product

Who am I talking with?
What can you do?

query_product_location
query_product_furniture
query_specific_task
query_current_task
query_previous_task
query current action

Where could I find [juice](object)?

I want to know about [task2](task).
What is the current task?

What are you doing now?

Give me some background on AIRLab.

What [items](object_type) are in the environment?
Tell me the [mass](attribute) of [yoghurt](object).
Does the environment contain [flower](object)?
Tell me [more](property) about [yogurt](object).
What type of [properties](property) can I ask?

What products are on [shelf 1](furniture)?

Give me an overview of previous tasks.

The Al for Retail Lab is a joint industry lab.

My name is Iris, a chatbot assistant for you [...]
You can ask me the following things [...]

There are [...] products in the environment: [...]
Sure, [object]’s [attribute] is [...]

It seems the environment doesn’t contain [...]
No problem, let me tell you some properties |[...]
You could ask properties of products within [...]
1 think [object] is located at [...] on the [furniture].
On [furniture], you can find product: [...]

[task]: the robot moves to the place where [...]
Sure! The Robot is performing [task]: [...]
[task]: moved to [...]. [task]: picked [object].
No problem! The robot is placing [object].

Additionally, the FallbackClassifier handled low-confidence
utterances, ensuring system robustness by triggering clarifi-
cation requests or fallback responses. To enhance entity rec-
ognition consistency, the EntitySynonymMapper was used
to normalize synonymous terms, mapping variations of user
input to unified entity labels.

Dialogue management relies on a combination of policies
to maintain coherent and context-aware interactions. The
MemoizationPolicy enabled the system to recall frequently
occurring dialogue paths, allowing predefined conversations
to be handled efficiently. TEDPolicy, a Transformer-based
model [47], generalized beyond memorized paths, predict-
ing system responses based on contextual information. The
RulePolicy defined fixed behaviours, such as fallback han-
dling, ensuring that ambiguous or unsupported queries trig-
gered appropriate system responses.

When the user submits a query, the dialogue system pro-
cesses it through NLU pipeline and dialogue policies to
determine the appropriate response. If knowledge retrieval
is needed, Rasa action servers trigger Cypher queries [48]
via the Py2neo library to extract relevant information from
the Neo4j DBMS. The retrieved data is then formatted into
natural language explanations and presented to the user.

The predefined user intents and their corresponding
response examples are summarized in Table 1. Intents
related to static environmental information are listed above
the horizontal line, while those concerning runtime robot
task information are listed below. Furthermore, seven entity
types (object type, object, attribute, property, furniture,
task, and subtask) were defined to ensure the system accu-
rately extracts and stores task-relevant entity values. The

@ Springer



15 Page 8 of 21

International Journal of Social Robotics (2026) 18:15

full set of functional action servers used to retrieve back-end
updated KGs is detailed in Table 9 in Appendix A.

5 Experiments

A between-subject experiment is designed to evaluate the
effectiveness and performance of our proposed KG-Retail-
bot in assisting users to comprehend two distinct retail
scenarios: Scenario 1 (static) and Scenario 2 (runtime). In
Scenario 1, a set of predefined retail products, along with
their attributes such as location and quality, were stored
in the product KG. In Scenario 2, we did not simulate the
physical motion of the robot within the ROS environment.
Instead, our focus was on simulating the information flow
transmission of the RS module, as detailed in Sect. 4.1. Uti-
lizing ROS topics, services, and actions, runtime task goals
and actions planned by the decision-making agent, as well
as the robot’s motion status, were continuously updated and
stored in the task KG. This approach enabled us to replicate
the runtime interaction and data flow of the robotic system
without requiring actual robot movements, effectively creat-
ing a “black box” retail scenario for the users.

In the two simulated scenarios, participants could only
access and comprehend scenario information through dif-
ferent interaction methods provided at the front-end within
a limited time frame, including Linux Command Line Inter-
face (CLI), KGs and the chatbot. The effectiveness of these
interaction methods was assessed by the accuracy of par-
ticipants’ responses in information-recall questionnaires.
Higher accuracy in these questionnaires indicates that our
system can more efficiently convey scenario information to
users within the designed retail environment. Additionally,
a separate questionnaire was employed to capture users’
subjective evaluations of the chatbot’s performance. Some
assumptions were held and given here when designing the
experiment:

e Assumption 1: Participants with similar backgrounds
were recruited for this study. They were provided with
a comprehensive description of the experiment and the
associated questionnaires prior to participation. Given
this standardized preparation, we assume that the par-
ticipants’ levels of expertise in ROS or robotics do not
introduce any bias in the results.

e Assumption 2: Participants were required to recall re-
tail product and robot task information obtained during
their interactions within a limited timeframe. All par-
ticipants were given the same amount of time to interact
and to complete the information recall questionnaires.
We assume that individual differences in memory will

@ Springer

not significantly affect the results due to the relatively
short duration of the interaction and recall period.

5.1 Scenario Design
5.1.1 Static Scenario (Scenario 1)

In the first scenario, participants need to acquire static infor-
mation about the products stored in a predefined KG. This
KG contains four key properties (id, mass, grasping posi-
tion, position) for six common products: hagelslag (choco-
late milk in Dutch supermarket), yoghurt, milk, tea_box and
ice_cream. Here, grasping position refers to the robot’s
target coordinates for initiating a grasp action, while posi-
tion refers to the product’s actual location in the scenario.
Both properties are represented as Cartesian coordinates
(z,y,z) and stored in the KG. Product-related concepts
(Object, PositionMeasure, PositionRegion, PoseMeasure)
and their relationships (pose, positionAt, inPR) from IORA-
LPG were used to model this knowledge. For instance, as
illustrated in Fig. 5, a fragment of product information dis-
played in the Neo4j browser shows detailed properties of a
tea_box, including its mass (0.5kg) and its position in the
basket. During the experiment, participants could directly
interact with the product KG to obtain information through
the Neo4j browser. Besides, they could query the chatbot
using natural language sentences, such as '7ell me the mass
of milk.’ to obtain these properties.

5.1.2 Runtime Scenario (Scenario 2)

The second scenario involves three robotic tasks, each
with a different final state: 1) the robot moves to the loca-
tion of the milk, 2) the robot picks up the hagelslag box,
and 3) the robot places the fea box in the basket. Task-
related concepts from the IORA-LPG (A4gent, AgentPlan,
PlanAction, Task, Subtask), along with their relationships
(applies, contains, is_implemented by, abstractPart)
are used to store the details of the plan and the execution sta-
tus of these tasks. For instance, the pink and purple boxes in
Fig. 6 illustrate task 3, involving three subtasks (actions):
move to reach tea_box, pick tea_box and place it in bas-
ket, ultimately achieving the final state where the fea_box
is in the basket. During the experiment, participants could
access dynamically-generated KGs via the Neo4j browser
to obtain detailed task information, including task goals,
product states, and the planned action sequences. Addition-
ally, they could review the CLI outputs shown in Fig. 7, or
query the chatbot using natural language phrases like "What
are you doing now?’. These methods allowed participants to
efficiently comprehend the robotic tasks and their progress.
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Fig. 6 One fragment of the task KG in Scenario 2: node labels and relationship types are detailed in the yellow box on the right. In the center,
pink and purple nodes store plan details made by the decision-making agent, while blue nodes track the execution status of robot tasks and actions

5.2 Participants

A between-subject study was conducted to mitigate poten-
tial carryover effects from learning and fatigue [49]. Four
groups of participants, each consisting of 5-10 students
and researchers with relevant backgrounds in Robotics and
Electronic Engineering, were recruited from the university.
These groups were tasked with interacting with the system
to comprehend the information presented in the two scenar-
ios described previously. Each group was assigned a differ-
ent method of interaction, as illustrated by the experimental

scenarios involving the chatbot and KGs shown in Fig. 8.
Participants were subsequently provided with specific ques-
tionnaires designed to evaluate both their understanding of
the scenarios and the performance of the system. The ques-
tionnaires included the product information-recall assess-
ment (Questionnaire 1), task information-recall assessment
(Questionnaire 2), and the chatbot satisfaction assessment
(Questionnaire 3), as detailed in the Tables 2, 3 and 4,
respectively.
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Product NOT placed: tea_box
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Current pick_status True
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[INFO] [1679695810.134888]: Pick action succeeded!
[INFO] [1679695815.533638]: Move action succeeded!
[INFO] [1679695820.904385]: Pick action succeeded!
[INFO] [1679695826.286727]: Place action succeeded!
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The products in Table 1: milk; Table 2: juice; Shelf 1: ice_cream, tea_box; Shelf 2: yogurt, hageslag; Basket: None

Fig. 7 One fragment of Linux CLI outputs in Scenario 3: Terminal 1 shows the action planed by the decision-making agent; Terminal 2 informs
participants of completed actions; Terminal 3 prints completed task and updates product locations

(a) Scenario with Chatbot (b) Scenario with KG

Fig. 8 Experimental scene showing interaction with (a) the chatbot &;

(b) knowledge graphs

Table 2 Questionnaire 1 - product information recall of Scenario 1

Item 1D mass grasping position position

Milk

Tea box
Hageslag
Yogurt
Juice

Ice cream

e Group 1: This group focused on viewing the real-time
Linux CLI outputs to understand the robotic tasks in
Scenario 2. They were allocated 5 minutes for this task
and completed Questionnaire 2, which assessed their re-
call of the task-related information.

Group 2: Participants interacted exclusively with the
chatbot for a total of 10minutes, equally divided be-
tween Scenario 1 and Scenario 2. They used the chatbot
to gather product and task information and completed all
three questionnaires, evaluating their understanding of
the scenarios and the chatbot’s performance.

Group 3: This group only accessed the static and run-
time KGs to comprehend Scenario 1 and Scenario 2,
with a total interaction time of 10 minutes. Afterwards,
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they completed Questionnaire 1 and Questionnaire 2 to
evaluate their understanding based on the KG data.

e Group 4: Participants in this group used both the chat-
bot and the static and runtime KGs. They interacted with
the chatbot in the same manner as Group 2 and addition-
ally explored the KGs for 5 minutes. They completed the
same set of questionnaires as Group 2 to assess their
understanding and experience with the system.

6 Results

A total of 25 participants were recruited and randomly
assigned to the different groups as detailed in Table 5. The
distribution was: seven participants were in the Linux CLI
group, four in the Chatbot group, seven in the KG group,
and seven in the Chatbot+KG group. While participants
were randomly assigned, their stated preferences were also
considered in order to improve task engagement. Figure 9
presents examples of chat history from Group 2 and Group 4
during their interactions in Scenario 1 and Scenario 2. These
examples illustrate how participants used the chatbot to
query about product and task information in the experiment.

To comprehensively analyze the experimental data, we
focused on three main aspects:

e Consistency Assessment: We employed the Intraclass
Correlation Coefficient (ICC) [50] to evaluate the con-
sistency of information recall accuracy within each
group. ICC is a statistical measure that assesses how
strongly units in the same group resemble each other.
This approach allowed us to assess how consistently
participants in each group could accurately recall infor-
mation, indicating the reliability of the interaction meth-
ods used.

e System Effectiveness Evaluation: We assessed the effec-
tiveness of the system by comparing how accurately par-
ticipants recalled detailed product and task information
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Table 3 Questionnaire 2 - task information recall of Scenario 2

1 What is robot’s first task? O Move O Pick O Place (O Not sure
2 What is robot’s second task? O Move O Pick QO Place (O Not sure
3 What is robot’s third task? O Move O Pick QO Place (O Not sure
4 Which products are robot’s first task? O Milk O Teabox (OHageslag O Yogurt (O Juice (O Ice cream () Not sure
5 Which products are robot’s second task? O Milk O Teabox (OHageslag O Yogurt (O Juice (O Ice cream () Not sure
6  Which products are robot’s third task? O Milk O Teabox (OHageslag O Yogurt (O Juice (O Ice cream () Not sure
7  Which products are on the Table 1 at the end? OMilk O Teabox (OHageslag O Yogurt (O Juice (O Icecream (O Not sure
8  Which products are on the Table 2 at the end? OMilk O Teabox (OHageslag O Yogurt (O Juice (O Ice cream (O Not sure
9  Which products are on the Shelf 1 at the end? O Milk O Teabox (OHageslag O Yogurt (O Juice (O Ice cream () Not sure
10 Which products are on the Shelf 2 at the end? O Milk O Teabox (OHageslag O Yogurt (O Juice (O Ice cream () Not sure
11 What’s your age Please write your answer:
level 1 2 3 4 5 6 7
12 What your professional level with ROS O O O O O O 0O
13 What your professional level with Knowledge graph (O O O @) @) @) O
Table 4 Questionnaire 3 - chatbot evaluation
Question List Strongly Disagree Strongly Agree

1 2 3 4 5 5 7
Usability
1 The chatbot responds too slowly. 0 O O O O O O
2 It was easy to lose track of where you are in the interaction. O O O O O O O
3 It is easy to learn how to use the chatbot. O O O O O O O
Clarity
4 The chabot’s responses were accurate. O O O O O O O
5 The chatbot didn’t always do what I wanted. O O O O O O O
6 The chatbot was organized and logical. O O O O 0 0 0
Naturalness
7 The chatbot was understandable. 0 O O O O O O
8 The interaction with the chatbot was consistent. 0 O O O O O O
9 The chatbot used everyday words. O O O O O O O
Friendliness
10 The chatbot’s response sounded enthusiastic. O O O O O O O
11 I felt comfortable using the system. O O O O O O O
12 The chatbot seemed friendly. O O O O O O O
Robustness to misunderstandings
13 I was able to recover easily from errors. O O O O O O O
14 The chatbot made a few errors. O O O O O O O
15 I felt in control of the interaction with the chatbot. 0 O O O O O O
Willingness to use the system again
16 1 would be likely to use this system again. O O O O O O O
17 The system was useful. O O O O O 0O 0)
18 The chatbot would help me be more productive. O O O @) @) O O

Table 5 Intraclass correlation coefficient analysis of information recall
consistency across four interaction groups

Group(Num) ICC Confidence probability
CLI (7) 0.8998 p<4.6le—7
Chatbot (4) 0.6917 p<0.0034

KG (7) 0.7242 p < 3.07e — 4
KG+Chatbot (7) 0.8166 p < 1.090e — 6

across different interaction methods for Scenario 1 and
Scenario 2. This evaluation provided insights into which
method or combination of methods most effectively
supported users in understanding and retaining scenario-
specific information.
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What products are in the environment

There are 6 products in the environment:

1: milk

2: juice ¢

what properties can | ask about

= You could ask properties of products
within this domain:

['perishable’, 'pose’, 'mass’, 'id', 'position’]

what is mass of ice cream

The mass of ice_cream is 1.5 kg.

is milk perishable

milk  is perishable, which is usually
recommended to refrigerate at 4°C.

(a) Chat example run of Scenario 1

What are you doing

= The current action is moving to reach
Shelf1.

What was the previous task

,~ task_1: moving to the place where milk
located.

task_2: picking hageslag.

What is current task

@ The current task is task_3: placing
tea_box into basket.

what is on shelf2 now

= | think Shelf2 contains product:

hagelslag ¥,

yogurt

(b) Chat example run of Scenario 2

Fig.9 Chat examples to query (a) static information &; (b) runtime information.

e Chatbot Performance Evaluation: For the groups that
interacted with the chatbot (Group 2 and Group 4),
we used the PARAdigm for Dialogue System Evalua-
tion PARADISE [51] framework to evaluate its perfor-
mance. This framework uses subjective feedback from
participants and objective measures like task success
and dialogue efficiency to comprehensively evaluate the
chatbot’s effectiveness and user experience.

6.1 Consistency Assessment

To compute the ICC, we first calculated the accuracy of
participants’ responses for each attribute in the information-
recall questionnaires. For example, the accuracy of the ID
attribute in Table 2 was based on the number of correctly
identified items. The position attribute was counted as
correct only when all three discrete coordinates (z,y, 2)
matched the ground-truth values, as the task was to assess

@ Springer

whether the system enabled users to obtain the exact posi-
tional information rather than approximate spatial proxim-
ity. For multi-answer questions in Table 3, accuracy was
computed based on the number of correctly selected items
(i.e., the intersection between the correct answers and the
participant’s responses). The resulting accuracy percent-
ages for each attribute were then discretised into categorical
scores to facilitate a more robust reliability analysis.

We used ICC(A, k), following the two-way random
effects model with absolute agreement [52], to assess the
consistency of group-level accuracy across conditions.
This formulation was chosen because our objective was to
determine whether different interaction groups, treated as
independent raters, produced comparable accuracy scores
for each question. Unlike models assessing rank-order con-
sistency, ICC(A,k) explicitly captures agreement in actual
values, making it suitable for evaluating agreement in recall
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performance. The ICC was then computed based on the fol-
lowing formulation:

MSr — MSEg
MSp + MSCZJWSE N (k—lLMsE (1)

ICC(A, k) =

where MSj is the mean square for subjects, MS. indicates
the mean square for answers, MSy is the mean square for
residual error, 7 is the number of subjects, and & is the num-
ber of answers per subject.

The detailed ICC results are presented in Table 5. The
ICC values for the CLI and KG+Chatbot groups were both
above 0.75 (p<0.001), indicating a high level of consistency
in their ability to accurately recall the information presented
in the scenarios. The KG group had a slightly low ICC of
0.72 (»p<0.001), which still demonstrates good reliability
in their recall performance. In contrast, the Chatbot group
exhibited an ICC of 0.69 (p<0.01), suggesting moderate
consistency in recall accuracy. The relatively lower ICC in
the Chatbot group may be attributed to its smaller sample
size, which can limit the precision and stability of the statis-
tical estimates. For the KG group, the slightly reduced ICC
could be due to the varied individual strategies participants
employed in allocating their time between the static and
runtime KGs within the 10-minute period. This variability
in focus distribution might have introduced differences in
their recall performance.

Overall, these ICC results demonstrate that the data col-
lected within each group is consistent. This consistency is
crucial as it ensures that the subsequent analysis of system
effectiveness, based on the accuracy of information recall
questionnaires, is built on robust and dependable data. Thus,
we can confidently proceed with comparing the effective-
ness of different interaction methods, knowing that the
foundation of our data is statistically sound.

6.2 System Effectiveness

To evaluate the effectiveness of different interaction meth-
ods in assisting participants’ comprehension of scenario
knowledge, we conducted a statistical analysis on accu-
racy scores obtained from Questionnaire 1 (Scenario 1) and
Questionnaire 2 (Scenario 2).

Since the questionnaires were intentionally designed to
include both simple fact-retrieval and more complex multi-
step reasoning questions, using equal weights would risk
overvaluing trivial items and undervaluing more informa-
tive ones. Accuracy was computed by comparing partici-
pants’ responses against the ground truth using a weighted
sum approach to account for varying question difficulty
levels. Rather than assigning question weights arbitrarily
or uniformly, we adopted a data-driven weighting scheme

informed by participants’ response accuracy. This method
ensures that questions with higher agreement (i.e., clearer
and less ambiguous) contribute more to the final score,
which reflects their informativeness in the experimental
context. The weights are calculated as:

1
ight) = —————
wetghts error_rate; + € &

Where error _ratio; is the proportion of participants who
answered questions 7 incorrect, € is a smoothing constant
and is set to 0.05.

The weights of questions in Scenario 1 are calculated
as [0.3952, 0.2865, 0.1378, 0.1804], while the weights of
the Scenario 2 are [0.1141, 0.1538, 0.1787, 0.1489 0.1340,
0.0744, 0.1960]. The final accuracy scores are presented in
Fig. 10. Overall, each group performed better in Scenario
2 (runtime) compared to Scenario 1 (static). We attribute
this difference to the inherent difficulty of the questionnaires
rather than the effectiveness of the interaction methods, so
this aspect will not be further discussed here.

A one-way ANOVA [53] was performed to compare
accuracy scores across the four experimental groups. The
results indicated a significant main effect of interaction
method in both Scenario 1 (F=4.25, p=0.035) and Scenario
2 (F=5.03, p=0.009), suggesting that different interaction
modalities influenced participants’ ability to recall scenario
information.

To further analyze group-wise differences, Tukey’s
HSD post-hoc test [54] was conducted. The results
showed that in Scenario 1, the Chatbot+tKG group
(X = 0.6508, VAR=0.0996) significantly outperform the
KG group (X = 0.3100, VAR=0.2816) (p=0.029). These
results indicate that our KG-Retailbot significantly enhances
users’ understanding of static product information within a
retail environment. However, the difference between the
KG and Chatbot groups was not statistically significant
(p=0.63), suggesting that the efficiency of inquiring about
product properties using simple sentences is comparable to
directly accessing the product KG. This result indicates that
while the KG method has advantages in presenting complex,
multi-layered runtime tasks, both methods are similarly
effective in aiding participants to retrieve static information.

In Scenario 2, the  ChatbottKG  group
(X =0.7217, VAR=0.1504) outperform the CLI group
(X = 0.3875, VAR=0.1048) (p=0.011) as expected. No
significant differences were observed between the other
groups with (E(p)=0.50). This was probably due to the
small amount of experimental data collected plus some
product properties that were not queried by the participants
but were still included in the calculations for a fair compari-
son, making the differences smaller. Therefore, the effect
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Fig. 10 Comparison of informa-
tion recall accuracy across four
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Fig. 11 Structure of PARADISE Framework [51]

size n? [55] is calculated considering the small amount of
samples, and it equals to 0.3606 and 0.4181 in Scenario 1
and 2 respectively, demonstrating the large effect between
the groups.

6.3 Chatbot Performance

The PARADISE framework was adopted to evaluate the
chatbot performance by quantifying user satisfaction, which
is contributed by two types of factors: task success and
dialogue costs, shown in Fig. 11. Task success was mea-
sured by evaluating how effectively the chatbot understood
and processed user input. Higher accuracy rates indicate
a more effective chatbot in understanding and processing
user inputs, leading to successful task completion. Dialogue

@ Springer

Chatbot only

KG KG+Chat
Group

costs were evaluated through two types of measures: effi-
ciency and qualitative aspects. Efficiency costs refer to the
resource consumption required to complete a task, such as
the number of dialogue turns, and other quantifiable metrics.
Lower efficiency costs indicate that the chatbot can achieve
task completion with minimal resource expenditure, reflect-
ing higher efficiency. Qualitative costs refer to the quality
of conversational content, including aspects such as clarity
and user engagement. Qualitative costs were assessed using
questionnaires in which participants rated their conversa-
tional experience with the chatbot. Lower qualitative costs
correspond to higher user satisfaction with the interaction.
By combining these metrics, the PARADISE framework
provides a comprehensive evaluation of the chatbot’s per-
formance, capturing both the success in task completion and
the overall user experience during the interaction.

6.3.1 Task Success

Task success was quantified using the accuracy rates of
intent recognition and entity recognition. These metrics
measure how accurately the chatbot identifies the user’s
intent and correctly recognizes relevant entities within the
conversation. It can be calculated by the Kappa coefficient x
[56], as shown in Eq. (3).

P(4) - P(E)

A S 105

(€)



International Journal of Social Robotics (2026) 18:15

Page 150f 21 15

Table 6 Categories used in confusion matrices for intent and entity recognition across two scenarios

Attribute Scenarios 1 (Static) Scenarios 2 (Runtime)

Intent query_product_property; query perishable; query product; query_current_task; query previ-
query_specific_product; query_environment; chatbot capability;  ous_task; query specific_task;
introduce_chatbot; nlu_fallback query_furniture; query current action;

query_previous_action; query_predict;
query product location; nlu_fallback

Entity object; attribute; object_type; None; property task; furniture; object; None; object type

Table 7 Evaluation of task success using Kappa

Scenario Type Mean Variance
Scenario 1 (Static) Intention 0.7295 0.0280
Entity 0.9058 0.0285
Scenario 2 (Runtime) Intention 0.8208 0.0133
Entity 0.8912 0.0068
Table 8 Metrics for dialogue costs in chatbot evaluation
Metric Type Data Collec-
tion Method
Total number of user/system turns Efficiency Quantitative
Total elapsed time per turn Efficiency Quantitative
Number of re-prompts Qualitative ~ Quantitative
Number of inappropriate responses Qualitative  Quantitative
Usability Qualitative ~ Questionnaire
Clarity Qualitative ~ Questionnaire
Naturalness Qualitative  Questionnaire
Friendliness Qualitative ~ Questionnaire
Robustness to misunderstandings Qualitative ~ Questionnaire
Willingness to use the system again ~ Qualitative  Questionnaire

Here, P(A) represents the observed accuracy, which is the
proportion of times the chatbot correctly identifies intents
and entities in all attempts. P(E) represents the expected
accuracy, which is the proportion of correct recognitions
that would be expected by chance. To calculate x for intent
recognition and entity recognition performance, we con-
structed confusion matrices for each participant, capturing
their classification results in two scenarios. Each confusion
matrix consists of predefined intent and entity categories
that users might encounter during the dialogue, as listed in
Table 6. These matrices provide a structured evaluation of
the chatbot’s performance, offering insights into its ability to
accurately interpret and process user input in both scenarios.

The results in Table 7 indicate that our chatbot performed
well in both scenarios. Specifically, entity recognition in
both scenarios and intent recognition in the runtime sce-
nario demonstrated almost perfect agreement (x>0.81),
underscoring the chatbot’s effectiveness in these areas. In
contrast, intent recognition in the static scenario showed
substantial agreement (0.61 < x < 0.81), with a x value of
0.7296 (VAR=0.028). Through the experiment, we observed
that users were more likely to inquire about various aspects
of the product in the static scenario, which sometimes led
to classification errors by the chatbot. Conversely, inquiries

about tasks in the runtime scenario were relatively straight-
forward, contributing to higher accuracy in intent recog-
nition. Overall, these findings indicate that the chatbot’s
effectiveness is shaped by the type and complexity of user
inquiries in both static and runtime contexts. The almost
perfect agreement in most categories highlights the system’s
robust understanding capabilities, particularly in runtime
task-related interactions.

6.3.2 Dialogue Costs

The metrics depicted in Table 8 were adapted from the work
of Hung et al. [57] and cover both objective and subjec-
tive aspects of dialogue evaluation. The first four metrics
represent objective measures, while the remaining metrics
are subjective.

To assess the subjective metrics (Usability, Clarity,
Naturalness, Friendliness, Robustness to misunderstand-
ings, and Willingness to use the system again)-we designed
Questionnaire, 3 shown in Table 4, containing 18 questions
derived from prior validated chatbot evaluation studies [58,
59]. Participants rated each item on a 7-point Likert scale
[60], ranging from 1 (“strongly disagree”) to 7 (“strongly
agree”).

As the subjective dimensions listed in Table 4 capture dis-
tinct aspects of dialogue quality, their relative contributions
to overall evaluation cannot be assumed to be equal. Instead
of relying on uniform weighting, we employed principal
component analysis (PCA) [61] to the raw questionnaire
responses, thereby extracting empirically grounded weights
that reflect the underlying variance structure in participants’
evaluations. This data-driven method allowed us to com-
pute the relative weight of each item based on the variance
structure in user ratings. Specifically, we used the loading
coefficients from the first principal component (PC1), which
captures the most variance and reflects the dominant fac-
tor in subjective dialogue evaluation. The resulting weights,
normalised to sum to 1, are listed below:

Q1: 0.026, Q02: 0.0159, Q3: 0.060, O4: 0.0885, Q5:
0.0819, Q6: 0.1115, Q7: 0.0256, O8: 0.1431, Q9: 0.0109,
010:0.0492, Q11:0.0280, Q12: 0.0336, Q13: 0.0652, Q14:
0.0144, Q15: 0.0765, Q16: 0.0984, Q17: 0.0100, QI8:
0.0612.
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Fig. 12 Comparison of par- 0.3
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Using these weights in a composite score ensures that
dimensions with greater explanatory power (i.e., variance
contribution) have a proportionally stronger impact on the
final evaluation. To calculate the final subjective score of
each participant, their responses were linearly mapped from
the original 7-point scale to the interval [—3, 3], after which
the weighted sum was calculated using the PCA-derived
weights. This mapping facilitated interpretable and consis-
tent quantitative analysis across participants.

The scores for the six subjective metrics were based on
the questionnaires filled out after the experiment, as shown
in Fig. 12. Before analyzing the results, the Kolmogorov—
Smirnov (KS) test [62] was implemented to evaluate the dif-
ferences of the two groups. The test shows that the answers
to the questionnaire come from different distributions with
a p-value of 0.0186. Furthermore, the results of the Chatbot
and Chatbot+KG groups were compared to better under-
stand the role of the proposed KGs in effectively conveying
scenario information to the users. The scores illustrate par-
ticipants’ subjective evaluation of the two interaction meth-
ods under each metric.

The results indicate a significant improvement in all
evaluation metrics for the Chatbot+KG group compared
to the Chatbot group. The introduction of KGs resulted in
a positive shift in evaluations for both Robustness to mis-
understandings and Clarity, which had previously received
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Group Type

negative ratings. Notably, Clarity received the highest rat-
ing, underscoring the intuitive interpretability of KGs. These
findings underscore the substantial benefits of integrating
KGs with the chatbot, demonstrating marked improvements
in user satisfaction across all evaluated metrics.

For the objective metrics of dialogue costs, including
total User turns, total Elapsed time per turn, number of
Re-prompts, and number of Inappropriate responses were
calculated based on the experiment results. This objective
evaluation focuses exclusively on the chatbot’s perfor-
mance, independent of the KGs, enabling a direct compari-
son between different scenarios. To ensure comparability
across variables, all values were normalized using min-max
normalization. The normalized results are presented in Fig.
13.

KS test was also implemented here for significance
evaluation. The Total user turns decreased by 30.5% when
transitioning from Scenario 1 to Scenario 2 within the same
5-minute duration. However, due to the large VAR=5.1841,
KS test gives p=0.14, not showing significant differences.
This result reflects the increased complexity of robotic tasks
in runtime scenarios, making them more challenging for
users to interpret and memorize. This complexity is fur-
ther evidenced by the 1.8 times increase in the number of
Re-prompts from Scenario 1 to Scenario 2 with significant
differences (p=0.0468), matching the results shown in Fig.
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Fig. 13 Comparison of par- 0.9 T
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13. In contrast, the Total elapsed time per turn and the num-
ber of Inappropriate responses remained nearly constant,
indicating that the chatbot maintained a consistent level of
interaction quality regardless of task complexity or scenario
type. The differences obtained from the KS-test between
those two subgroups are not significant. These findings sug-
gest that while the chatbot’s interaction quality remains sta-
ble, the complexity of comprehending runtime information
demands more user effort than static information.

6.3.3 Performance Score

The overall performance score was obtained using Eq. 4
from PARADISE. Here, P represents the subjective score
derived from Questionnaire 3, described in the subsection
6.3.2. The coefficient £ is derived from confusion matrices
measuring intent and entity recognition accuracy. The terms
¢i,1 € [1: 4] correspond to objective metrics of dialogue
costs, normalized using the A Z-Score normalization func-
tion. To determine the weights a and w;, individual partici-
pant scores P, N'(k), and N (c;) for each group were used
in a regression fitting process as per Eq. 4. Once the regres-
sion weights were obtained, the final performance scores for
each group were calculated by applying these weights to the
mean Z-Scores of £ and ¢;.

Re-prompt Time per turn Inappropriate response
Group Type

P:(a*N(k))—Zwi*N(ci),ie [1:4] @

The ANOVA results, as shown in Fig. 14, indicate that the
Chatbot+KG group (X = 0.5866, VAR=0.5722) signifi-
cantly outperformed the Chatbot-only group (X = —1.0265,
VAR=0.4281; p=0.0047). The performance score for the
Chatbot group was negative and clustered near “Slightly
Disagree”, reflecting limited user satisfaction. In con-
trast, the inclusion of KGs markedly elevated the perfor-
mance score to a satisfactory range. Notably, although the
Chatbot+KG group exhibited slightly greater variance, its
entire score range (except for a single outlier) remained
higher than that of the Chatbot group. This demonstrates
the substantial benefits of KG integration in improving the
quality of task-oriented interaction. The relatively large
variances observed in both groups may be attributed to indi-
vidual differences in user interaction behaviours.

7 Conclusion
In this paper, we developed a KG-based dialogue system

that integrates structured knowledge representation with
natural language interaction to facilitate scenario-specific

@ Springer
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Fig. 14 Notched boxplot of

final performance scores for the
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The y-axis represents com-
posite scores mapped from the 1+
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explanations in HRI. Using concepts from several IEEE
standardized ontologies, we designed the IORA-LPG
schema to efficiently represent robotic knowledge, demon-
strated through a case study in the retail setting of AIRLab
Delft. Unlike existing NLP-based dialogue systems pri-
marily focused on robot command execution, the proposed
KG-Retailbot is specifically designed to interpret and com-
municate structured scenario knowledge using KGs within
a standardized robotic knowledge hierarchy.

A between-subject study with 25 participants was con-
ducted to evaluate the effectiveness and performance of KG-
Retailbot. Statistical analysis, including ANOVA, Tukey’s
HSD post hoc tests, and Kolmogorov-Smirnov tests, con-
firmed significant differences between experimental con-
ditions, ensuring the robustness of our results. The results
demonstrated that integrating KGs with a chatbot signifi-
cantly enhanced users’ ability to recall task-related informa-
tion (p<0.05) and improved product information retrieval
accuracy compared to the Chatbot-only group. These results
highlight the advantages of structured knowledge represen-
tation in facilitating information retrieval within HRI.

Beyond information retrieval accuracy, chatbot perfor-
mance was evaluated using both objective and subjective
metrics within the PARADISE framework. Subjective
evaluations revealed that the Chatbot+KG system signifi-
cantly improved user satisfaction, particularly in clarity

@ Springer
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and Robustness to misunderstandings. Objective mea-
sures showed that while the chatbot’s interaction quality
remained stable across scenarios, runtime tasks led to a
significant increase in user re-prompts (p<0.05), high-
lighting the added cognitive demand in understanding
dynamic task information. The final performance score
further confirmed the benefits of the KG integration, dem-
onstrating its role in enhancing both task success and user
experience.

In future work, improving bidirectional information
exchange within this system could allow users to dynami-
cally modify scenario data through input channels. Addition-
ally, integrating a synchronized LLM+KG assistant could
combine the generative capabilities of LLMs with the struc-
tured, domain-specific knowledge of KGs [63], enabling
more flexible and context-aware explanations. Although our
study used a default text-based CLI as a baseline for com-
parison, we acknowledge that enhanced CLI designs, incor-
porating structured command interfaces or visual elements,
could provide more intuitive access to scenario information.
Future work could explore these variations to provide a
broader evaluation of interaction modalities in HRI. Finally,
investigating the impact of human trust on system explain-
ability across different interaction modalities could offer
valuable insights into optimizing user engagement and sys-
tem transparency.
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Table

Table 9 Query templates for different users’ intents

Action server Cypher template

action_response_product_in_env MATCH (o:{object_type}
{attrs}) RETURN o

action_response_product_property
action_response_specific_product

MATCH (0:Object)
WHERE o.name=?
RETURN properties(o)
MATCH (o:Object)-[r*2]-
>;(p:PositionRegion)
WHERE o.name=?
MATCH (0:Object)-[r*2]-
>;(p:PositionRegion)
WHERE p.value=?
MATCH (t:Task)<-[r*2]-
(a:Agent Plan) WHERE
t.name=? RETURN t,a
MATCH (t:Task)<-[r*2]-
(a:Agent Plan) Where
t.status="ACTIVE’
MATCH (t:Task)<-[r*2]-
(a:Agent Plan) Where
p.status="SUCCEEDED’
MATCH (a:Agent Plan)-
[r*3]->;(s:Subtask) WHERE
s.status="ACTIVE’

action_response_product_location

action_response_furniture

action_response_specific_task

action_response_current_task

action_response_previous_task

action_response_current_action
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