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The GI/G/1 queueing model is regarded as a functional which maps
the service and interarrival time distributions onto output quantities of
interest, such as the stationary waiting time distribution. For the case
where the input distributions have densities, techniques from infinite-
dimensional analysis are used to obtain derivatives and Taylor series
expansions for the functionals. These yield approximations to the output
distributions which can be viewed as nonparametric alternatives to para-
metric approximations such as those provided by infinitesimal perturbation
analysis or the phase method.

1. Introduction. The stochastic model under consideration in this paper
is that of the standard GI/G/1 queue. As the notation suggests, a precise
description can be given for this queueing model which fixes the mechanism by
which the queue evolves, while leaving the distributions of the times between
customer arrivals and of the customer service times unspecified. Quantities of
interest, for example, the distribution of customer waiting times, then depend
on these unspecified distributions and the GI/G/1 queueing model can be
regarded as a functional which maps the input distributions of interarrival and
service times onto the relevant output quantity.

Such an approach allows for investigation of probabilistic features of the
stochastic model through investigation of mathematical properties of the
functional. Continuity, with respect to an appropriate topology, corresponds to
a qualitative robustness result. Loosely, continuity implies that small changes
in the input give rise to small changes in the output (where small refers to the
topology in question). Robustness results are important in connection with
approximations which may be made in applications. Often an easy explicit
expression for the output is only available for certain special input, and in
practice a particular input may be approximated by a new input of this special
sort. Continuity of the functional is then required to justify using the new
output as an approximation for the original output.

In this paper, we establish a suitable differentiability result for the two
GI/G/1 functionals described in the next section. This gives a local approxi-
mation for the change in output arising from a small change in input, and thus
differentiability yields a quantitative robustness result.
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A natural further step is to consider higher derivatives in the hope of
obtaining better approximations, and this leads to the question of convergence
and whether asymptotic expansions can be found. Our results show that this
can be done, under conditions referring to the distance between the input
distributions to the original and the perturbed models.

Continuity for the GI/G/1 queue has been considered by Kennedy (1972)
and Borovkov (1976) among others. The idea of viewing a stochastic model as a
functional and then finding an appropriate derivative has been used for
renewal theory in Griibel (1989a) and for the random walk on the integers by
Griibel and Pitts (1989).

Two other main approaches to stability and perturbation aspects of stochas-
tic models, in particular, of queueing models, appear in the literature. These
are different from each other and also from the approach of the present paper.
The first of these alternative approaches also regards a stochastic model as a
functional relating an output quantity u,, to some input quantity wp;,. A
quantitative assessment of the stability of the model could then be of the form

(1) dz(/*"out’ /'L’out) < dl(:u'im /J',in)’

where d,, d, are metrics or other distance measures. The theory of probability
metrics, initiated by Zolotarev, can be used in this context if the u’s are
probability distributions. Two recent monographs, Kalashnikov and Rachev
(1990) and Rachev (1991), can serve as an introduction to this area of
research; each provides a comprehensive list of references.

The second approach is known as infinitesimal perturbation analysis. One of
the central ideas can be summarized as follows. Some measure of performance
of the stochastic model, for example, the expectation of the stationary waiting
time, depends on some system parameter, for example, the mean service time.
These parameters are real- or vector-valued so that the dependence can be
regarded as a function between finite-dimensional spaces. The local behaviour
of the dependence is then represented by the derivative of this function. Using
some ergodicity property of the model, estimators for the derivative can be
found which are based on a single path of the system. Again, a recent and
comprehensive survey, Suri (1989), is available.

The differentiability results obtained here for two GI/G/1 functionals go
beyond continuity and distance bounds such as (1). The functionals are, in
contrast to the situation considered in infinitesimal perturbation analysis,
mappings from and to infinite-dimensional spaces, that is, we avoid
parametrization of the perturbations. We should point out, however, that the
above methods are more easily adapted to other models (see also the conclud-
ing remarks at the end of the paper).

In Section 2 we give definitions for the GI/G/ 1 queue and for the two
quantities of interest. Our analysis of the functionals is based on the classical
coinection with random walks and turns on the easy access to the Wiener—Hopf
factors provided by harmonic renewal measures. Section 2 contains a brief
description of these two key steps; the second might be of interest in its own
right. In Section 3, we specialize to the case where the input distributions have
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densities and obtain expressions for the functionals as the compositions of
several easier maps. In Sections 4 and 5, we differentiate and expand the
functionals. The cumulants of the stationary waiting time distribution are
discussed in Section 6. Section 7 contains examples and discussion.

Our approach to the problem of obtaining approximations to the output
distributions is a nonparametric one, in contrast to the phase method, where
the input distributions are replaced by members of a parametric family for
which the output can easily be calculated. This means that our approach
necessitates the use of infinite-dimensional analysis, rather than analysis in
R¢. While this is not difficult in itself, it has not, in our experience, been
widely applied in queueing theory. It is hoped that the inclusion of sketches of
the mathematical details will encourage the adoption of these methods as
useful additions to the applied probability toolbox.

2. GI/G /1 queue and associated random walk. The GI/G/1
queueing model consists of a single server queue, where customer number zero
arrives at ¢ = 0 to an empty system and enters service immediately. For n in
N, customer number n arrives at time L7_,T;, where the interarrival times
{T,}, .. are independent identically distributed positive random variables with
distribution w, and with E(T;) < «. The customers are served in order of
arrival, the service time of customer n being S,, where {S,}, ., are indepen-
dent identically distributed positive random variables with distribution ug and
with E(S;) < «. The service times are assumed to be independent of the
interarrival times. This description fixes the GI/G /1 setup, or mechanism,
and hence the functionals.

Let W, be the waiting time of customer n from the moment of arrival up to
the beginning of service. The traffic intensity p is defined to be E(S,)/E(T)).
If p is smaller than 1, then the queue is stable and as n — =, the W, converge
in distribution to a proper random variable W, called the stationary waiting
time. [For these and the standard results below for the GI/G /1 queue and the
associated random walk, see Asmussen (1987), Chapters VII and VIII.] Write
uy for the distribution of the stationary waiting time W. This is our first
quantity of interest.

The server’s time is composed of busy periods and idle periods. Write I for
the first period of time (> 0) for which the server is idle and write u; for its
(possibly defective) distribution. The times when a customer arrives to an
empty system are regeneration points for the queue so that the lengths of
successive idle periods are independent identically distributed random vari-
ables, distributed as I. The distribution wx; is our second quantity of interest.

From a functional point of view, we have two maps, the first taking (ug, up)
to uy and the second taking (ug, up) to u;.

Let {X;}; cx be independent identically distributed random variables, with
the distribution wx of X; the same as that of S; — T,. Put Z, = 0 and, for n

'in N, put Z, = ¥7_,X;. Let M denote the maximum of the random walk
{Z,}, . 0; M is finite (for almost all sample paths) because of E(X;) < 0. Then

W=_9 M,
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where =, means has the same distribution as. This relation arises from
Lindley’s equation [see, e.g., Asmussen (1987), IIL.7].

The analysis of the distribution of M is facilitated by the analysis of the
distributions of the ladder variables. These will also provide access to the idle
period distribution. The first (strict) ascending ladder epoch 7, associated with
the random walk {Z,}, . , and the first (weak) descending ladder epoch 7_ are
defined by

r,=inf{n >0:Z, >0}, 7- =inf{n>0:Z, <0},

where inf & = . The first (strict) ascending ladder height Y, and the first
(weak) descending ladder height Y_ are given by Y,=Z,, on {r,< «} and
Y_=Z__ on{r_< o}, and are undefined otherwise. Write u, and u_ for the
(possibly defective) distributions of Y, and Y_, respectively. These are called
the (strong) right and (weak) left Wiener—Hopf factors of the step distribution
k. In the case of a stable queue, where the step distribution of the random
walk has negative mean, 7, and Y, are defective, while 7_ and Y_ are proper
[Feller (1971), XII.2]. Weak right and strong left Wiener—Hopf factors are
defined analogously and are denoted by u* and u_, respectively.

From Asmussen [(1987), IV, Proposition 2.6] we have that, for the random
walk associated with a stable queue, the distribution w,, of the maximum M
is given by

@ = (1= () T

where w** is the k-fold convolution of u . and u*® = 8,, the unit mass at zero.
This gives a simple explicit relation between the stationary waiting time
distribution and the right Wiener—Hopf factor of the associated random walk.

The idle period distribution u; is similarly related to the left Wiener—Hopf
factor,

(3) ‘ pr=(n2)",
where [1(B) = u({x: —x € B}) for B in the collection & of all Borel sets in R

[Feller (1971), VI.9].
Access to the Wiener—Hopf factors is achieved via their harmonic renewal
measures as explained below.

DerFiniTION 2.1. For any (possibly defective) probability measure u on
(R, #), define the associated harmonic renewal measure »(u) by

v(p) = X u/k.

k>1

There is a simple connection between the step distribution and the
. Wiener-Hopf factors given by

v(k4)(B) = v(ux)(B N (0,)),
v(u_)(B) = v(ux)(BN(-,0])
for all B in &%. This follows from the Spitzer—Baxter equations and is

(4)
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discussed in Griibel (1989b). Hence v(w ,) and v(u_) are the traces of »(uy)
on the positive and nonpositive half-lines, respectively. Similar relations exist
for the weak right and strong left factors.

Putting these ideas together, we find that the stationary waiting time
functional can be decomposed as follows:

(%) (Hsymur) »ux = v(px) 2 v(ky) = B Ly

Similarly, for the idle period functional,

(6) (Bsspr) = ux = v(px) = v(pl) = pg.

The details for the decompositions remain to be given. In particular, since
the step distribution and the left Wiener—Hopf factor are nondefective for a
stable queue, their harmonic renewal measures are infinite measures and
appropriate normalizations will be required.

3. Decomposition of the functionals. When the input distributions to
the queue have densities, a normalization is available which handles the
infinite harmonic renewal measures. This is contained in Griibel (1986) and a
precise statement is given later in Lemma 3.1. Suppose that ug and w, have
densities fg and f;, respectively. These can be regarded as elements of

L'= {f: R - C: f is Borel measurable, || fll; = fl f(x)|dx < 00}.
With convolution * as multiplication,

frg(t) = [f(t —x)g(x) dx,

L' is a commutative Banach algebra without a unit; see Rudin [(1974, Chap-
ters 10 and 11] for the general theory of Banach algebras and further details.
Writing u, for the (complex-valued) measure with density f, we can embed Lt
in ‘

Al'= {,u,f+ ady: feLl,ac C}

which is a Banach algebra with a unit. We will repeatedly use the norm
inequality

(7N lla = bll; < llall1llblly for all @ and & in Al.

We will also often write f + ad, instead of u,+ ad,.

For analysis of mappings between Banach algebras, the Gelfand transform
is most important as it permits the representation of our algebra as a function
algebra. We give a brief sketch and, again, refer the reader to Rudin’s book for
details.

" Let .# be the space of maximal ideals I or, equivalently, the set of nonzero
complex homomorphisms ¢ on the Banach algebra A. If A is semisimple, then
each a € A is characterized by its Gelfand transform a: .#— C, where
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a(I) = y;(a). In the case of A!, # can be identified with R U {} and

‘I’I(o)(f‘f' ady) = (f+ a3O)A(0), for 0 € R,

(f+ady) (0) = Ui f+ ady) = a, for 6 = o,

where 4(0) = fe‘ox (dx) denotes the usual Fourier transform.
We require various subalgebras which, in probabilistic terms, are character-
ized by the existence of certain moments. Let

A" = (f+ady: fE LY a e C, I fllq <),

where

1l = [(1+121)"] £(x)] dx.

These spaces are commutative Banach algebras again, and their maximal
ideals arise as the respective intersections of the maximal ideals of Al

Multiplication together with the norm inequality (7) leads to power series in
A and analytic functions ¥: D -» A, D c A. The Gelfand transformation
provides a most useful connection between such a function and its C to C
counterpart W¢. In particular, for A! we have

(8) (W(f+ady)) (8) = ¥e((f+ady)™(6)),

provided that ¥ is analytic on an open subset containing ( f + a&o) (), 0 in
R U {e}. This means that if ¥, is analytic on an open subset  in C, then ¥
is defined on A, = {a € A": @(.#) c Q}. This will be used below for the
exponential function expg, with Q = C, the (principal branch of the) loga-
rithm, with Q = G = {z € C: Re(z) > 0 or Im(z) # 0} and the inverse function
z~ 1/z with Q ={z € C: z # 0}.

Several linear operators are also required. Let R,: A > Al, R_: A' —» Al
be given by

R+(f+ Cl‘50) =fI(0,oo)a R—(f+ aao) =fI(—oo,0)’

where I is the indicator function of the set B.
For f in L', let f be defined by

f(2) = f(-t)
for all ¢ in R. Define (f + a8,)" to be [+ ad,.
For f in LY, define 3 f by

[fxyde,  ife=o,
S ={"
. f(x) dx, otherwise.

For a = ady + f in AVl define 3a by
Sa=3f.
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Using Fubini’s theorem we obtain
(9 IS+ ado)lly < flelIF ()l dt <IIf + asoll,i,

which shows that 2 is a bounded linear map from Al! to Al Applylng the
first inequality in (9), we find for a in ALY

(10) 1Za + all; < llally, ;.

In the context of a stable GI/G/1 queue, the input (fg, f7) is regarded as
an element of A! X AL, From (5) and (6), the first stage in the decomposi-
tion of the functionals maps (fg, f;) onto f=fs* fp, a den31ty of the step
distribution of the associated random walk. Put v(f) = X3_, f**/k, so that
v(f): R - [0,»] and

v(ux)(B) = [ v(f)(%) d

for all B in &%, where we interpret the integral of a nonnegative function g,
say, which possibly takes the value infinity, as the supremum of the integrals
of simple functions s with 0 < s < g. Since, for a stable queue, if X, = S, — T,
we have E(|X;]) < ® and E(X;) < 0, Lemma 1 of Heyde (1964) implies that,
in this case, ¥(uy) is finite on compact sets. We can therefore select a version
of v( f) which is finite everywhere. However, v( f) is not in L! because, as f is
nondefective, v(u x) is infinite.

Restricting v( f) to the positive (negative) half-line gives a density for v(u )
(v(u®)). For any probability measure w, w(B) < v(u)(B) for all B in &%, so
that if »(u,) and »(u° ) have densities, then so do u, and u° , and it is not
necessary to distinguish between densities of strong and weak Wiener—Hopf
factors. Write f,, f_, v(f,) and v(f_) for densities of u_,, u®, »(u ) and
v(u’ ), respectively.

By (3) the idle period distribution has a density f; given by f; = (f_)".
From (2), the stationary waiting time distribution is of the form ay 8, + uw, ;,
where ay, is the limiting probability that customer n finds the queue empty
on arrival and where Ky, ¢ is concentrated on (0,%). The measure wy  is
(1 - u,RNZ;_,u** and is finite (because w, is defective). Arguing as for
v(uy) above, it has a density which we denote fy,. Thus if the input has
densities, then both our output quantities can be regarded as elements of A'.

The normalization anticipated at the beginning of this section is given in
the following lemma.

LEmMMA 3.1. Let f be a proper probability density function satisfying
(11) [y de <o
and

jtf(t) dt < 0.
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Let f, be a density of the exponential distribution with mean 1. Then
(-2f-f+ 50)*(fy1 - 50) =f—38,.

Further, v(f) — v(f,) is in A® with
v(f) —v(fi) = —log(=3f—f+3).

This follows easily from the proof of Theorem 1 in Griibel (1986). We need a
corresponding result for defective probability densities.

LEMMA 3.2. Let f be a defective probability density function. Then v(f) is
in A' and
v(f) = —log(do = f).
ProoF. Since ||fll; < 1, we have X5_, [ f**ll,/k < £3_,II fII¥/k < » using
(7), so that v(f)is in L',
For all 6 in R U {3}, |f(0)| < || fll. < 1 implies that Re[(§, — )" (6)] > 0 and
so (8, — f)"(#) C G. Thus §, — f is in A; and has a logarithm in A'. Using

(8), the fact that |f(6)] < 1 and the multiplicativity and continuity of W10y We
have

[—log(8, — £)]7(8) = X ($a( ) /% = (v(£))"(6).

k>1

This holds for all  in R U {«} and the result now follows because A! is
semisimple. O

In the case of a stable queue, f, is defective and, applying Lemma 3.2 and
(8), we find

(80— £+)7(0) = (exp{—v(f,)})" (0)
= expc{—v(f,)"(0)}.

Comparing this with (2), if w = a8, + fw is the element of A' correspond-
ing to the stationary waiting time distribution, then

(12) ay = (1= £(0)) = expe{—v(£.)" (0)}.

Spitzer’s identity [Feller (1971), XVIII, Theorem 2] applied to the random walk
associated with a stable queue yields

w(9) = [exp{v( ff) —u(f.)" (0)30}]~ (6)
for all # in R. Together with ( }2) and identification via transforms, this yields
| w = exp{v( f,) = v(f)"(0)5,}.

The stationary waiting time functional can then be decomposed as follows
for the case where fg and f; are densities satisfying (11) for the service and
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interarrival times of a stable queue:
(fSafT) - {1'_) _Ef f+60 —logv(f)_v(fl) '_)R+v(f+)
1,1 1,1 1 1
(13) Al X AL AY Al A A
i U(f+) _U(f+) (0)80 exp W
Al Al
The idle period functional can be written

(fs> fr) = =Sf—f+80 =g v(f1) —v(f) =r_v(f1) —v(f-)

(14) Al 1 X Al 1 A A1 Al
Pap “2f- [oF 80 = upimsg - 80 = f1= 8,
Al Al Al
where we have applied Lemma 3.1 to f_ for the fourth and fifth component
maps —g, and =,z

We are only interested’ 1n the values of the functionals in the case where
both arguments are probability densities. However, the functional is defined in
an open subset of A'! X A1, Observe that the composite maps are nonlinear,
since the exponential and logarithm maps are nonlinear, and they contain
steps (R, R_) which are not (1, 1).

4. Derivatives of the functionals. We consider differentiability of the
functionals in the sense of Fréchet differentiability of maps between Banach
spaces [see, e.g., 2.1 in Chapter 1 of Cartan (1971)]. Let B, and B, be Banach
spaces with norms |- [l; and || - llz, respectively and let U be a (nonempty)
open subset of B;. A map ®: U — B, is Fréchet differentiable at a¢ in U if
there exists a bounded linear operator @, such that for all € > 0, there exists
& > 0 such that [lyll; < § implies

|@(a +y) = ®(a) = Dy(y) [, <ellyll.

We say that ® has Fréchet derivative @, at a. The derivative of ® is a linear
operator which can be used in a local approximation to the nonlinear operator
®, that is, for y small, ®(a + y) = ®(a) + ®(y). If the map @’ sending a to
@/ is continuous, then we say that ® is continuously differentiable. If ®:
B, — B, is itself a bounded linear operator, then it is obviously differentiable
everywhere with derivative itself.

Since the Fréchet derivative obeys the chain rule [Cartan (1971), 1.2], we
can establish differentiability of the queueing functionals by showing that each
of the component maps in the decompositions (13) and (14) are differentiable.

Gelfand transforms can be used to find derivatives of certain functionals on
Banach algebras [see Rudin (1974), 10.36]. Let Q be open in C and ¥: 3 —» C
be analytic on Q. Put A, = {a.€ A" G(#) c Q}. If ¥: A, — A is such that,
for all @ in Ay, (¥(a)) (6) = ¥(a()) for all  in RU {x}, then ¥ is
differentiable at a with

(15) (Wi(x))"(8) = ¥g(G(0))%(8) forall x in Aland 9 inR U {o}.
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For the logarithm and exponential functions on Al, for example, this implies
exp,(x) = (expa)x and logy(x) =a* 'xz,

provided that log a is defined.

We are now in a position to prove theorems concerning the differentiability
of the queueing functionals. We only consider the functionals at points which
are pairs of probability densities. This leads us to consider what might be
called curves in the respective Banach spaces. In general, let ® map B; to B,,
where B; and B, are Banach spaces, and let x® be in B; for 0 <& < 1 and

1
;(x@) —x®) Sy

in B, as ¢ |0, so that x® approaches x® smoothly. As an example of a curve,
if x@ =0 —-¢ex@+ex® for 0 <e<1and x® and x® in B, then y =
x® — x©® and so x® approaches x©@ along y. The probabilistic interpretation
of this type of curve is that we have, for small ¢, an infinitesimal perturbation
of the queueing model corresponding to the x®-input in the direction of the
x®-input. Suppose that ® is differentiable at x@ with derivative @« there.
Then

(@) — D(x)) - Blo(y)

in B, as € 0.
In Theorem 4.1 we assume that we have one queue for each ¢, 0 < ¢ < 1,
and that, as £ | 0, (f§”, f{”) converges to (£§¥, £&”) in an appropriate way.

THEOREM 4.1. For 0 <e <1, let f§ and f§ be probability densities
satisfying (11). Let p‘® be the traffic intensity of the queue with service time
and interarrival time densities f§” and f{), respectively. Suppose that p® < 1
and let w'® give the associated stationary waiting time distribution.

Suppose

1 1
lim —( £ — FO) = d lim —(f® — fO) =
eli% E(fs fs ) 8s an 61?3 g(fT fr ) 8r

in Ab1, Then
1 A
lim —(w® - w®) = w®= [(R.h)"(0)8, — R.k] inAl,
el &
where h = (=5f@ — fO 4 5)* 1x(-3g —g), fO=FfO«f® and g=
gs* [+ [0« &r.

Proor. Write @ for the functional mapping (fg, f7) onto w. Then ® can
be decomposed as in (13). Write T'-for the map from A! to A, where, for a in
Al

T(a) =a—a(0)4,.

Then T is linear and bounded.
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The bilinear map from Ab! X AY! where (a,b) = a * b is differentiable
everywhere with derivative at (a, b) is given by (x,y) = x*b + a * for all
(x,y) in AV! x ALL,

The map

a= (-2 -1Id)(a-d), .
where Id is the embedding AY! — Al, is differentiable everywhere with
derivative at a given by
x> (-2 —1Id)x
for all x in ALY

The derivatives of the maps exp, log and the linear bounded maps R, and
T have been covered in the discussion preceding the theorem.

Write @, f© for the step density and first ascending ladder height
density of the queue with input £ and f£{°.

Since each of the component maps in the decomposition of the functional is
differentiable at the relevant elements of A! x Al ALY or A! (e.g.,, —log
is differentiable at —3 f@ — f@ + §,), the chain rule implies that ® itself is
differentiable at ( £§, f{¥) and

Do, rn(%,5)
= exp,T(v(fﬁP’)) oToR,_ o ( —logl_zf(o>_f(o>+50) °( -3 - Id)( féo) *y + x % f}o))

= exp(T(v(f)))* T(R+[—(—Ef(°) -fO+ 80)*_1 #(—=3z — z)]),

where z=fP+5 +x* 0, x,y € A4, Writing h for (-3f©@ —fO +
8o) " tx(—3g — g), where g is f{¥* g1 + g5 * [, and evaluating the deriva-
tive at (gg, g7) gives

D¢ s, f%°’)(gs’gT) = w®x [(R+h)A(0)5o - R+h]' o

Employing the same methods as for Theorem 4.1 we can prove the following
theorem for the idle period distribution for a stable queue.

THEOREM 4.2. For 0 <e <1, let f$? and f{ be probability densities
satisfying (11). Let p® be the traffic intensity of the queue with service time
and interarrival time densities f§° and f§, respectively. Suppose that p© < 1
and let f{ be the associated idle period distribution.

Suppose
lim l(f(s) ~f®)=gs and lim l(f(e) —fP) =g
10 & \Us s s o e\ T T
in AL, Then
1
' i — (e) _ £(0O)) — 0) _ M in Al
, ilf% g(fz fi ) (fI 50)*((R—h) ) in A,

where h = (=Sf©@ —fO 4 5 1s(=3Sg —g), fO=FfO«fO® and g=
gs* [0+ O« &r.
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Proor. Use the chain rule again, noting that the maps ~ and x —
x *(f; — 8,) are both linear and bounded. O

Note that p©® < 1 so that there exists &, > 0 such that sup, ..., p® < 1.

Since Fréchet differentiability of a functional at (£, f&”) implies its
continuity there, we obtain continuity of the queueing functionals (as maps
from Ab! x AVl to A!) as immediate corollaries to Theorems 4.1 and 4.2.

If the base point of the derivative is an M(1)/M(B)/1 queue (where B > 1
in order to have the traffic intensity p = 1/8 < 1), some straightforward
calculations show that (=3 f©@ — f©@ 4 §,)*' = §, + r, where r(x) = e ~#*
for x > 0, r(x) = 0 otherwise. This is due to the fact that the step distribution
of the associated random walk is a mixture of an exponential distribution and
an exponential distribution with mean 1 reflected at the origin. The latter is in
the kernel of the operator % + Id. Note that mean 1 for interarrival times can
be achieved for arbitrary queues by a simple time scaling.

5. Expansions for the functionals. Let ®: U — B, be differentiable
throughout U. We can then regard a — &, as a map on U with values in the
Banach space .Z(B;, B,) of bounded linear operators from B; to B,. If this
map is differentiable at a, then this derivative is called the second derivative
P of ¢ at a.

This process can be repeated to find higher derivatives of ®. The nth
derivative ®{™ of ® at a, if it exists, is a symmetric, bounded n-linear map
from B, X -+ X B; to B,; see Cartan [(1971), 1.5] for more details.

Suppose that ® has derivatives up to order n — 1 throughout U. Write
®~V for the (n — 1)st derivative of ® at a in U. Then the nth derivative
®{™ of ® at a can be regarded as a bounded n-linear form such that, given
e > 0, there exists § > 0 such that [lyll; < é implies

g (n—1) _ Hrnr-1
sup ||<Da+y (%15 eeerXy_y) — PP 2y, x,-1)
llxlli<1, I<i<n—1

_q)fzn)(xb A xn—l’y) I|2 s Slly”l

Bounded linear maps have zero second and higher derivatives everywhere.
The following lemma can be used to obtain higher derivatives of the exponen-
tial and logarithm maps on A’

LEMMA 5.1. Let Q be an open set in C and let Y¢: Q — C be analytic on
Q. Suppose that V: Ay — Al is such that for ain Ag,

(¥(a)) (8) = ¥c(a(0)) .
for all 8 in R U {x},. Then ¥ has derivatives of all orders at a in Aq with, for
nin Nand 0 in R U {«}, )

(16) (¥ (315 92)]7(0) = ¥E(E(8))54(8) -+ - F(6)
for all (yy,...,y,)in B; X -+ X B,.
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ProoF. The proof is by induction on n. Equation (15) gives the result for
the case n = 1. Now suppose that (16) holds for n = % in N. Let 6 be in
R U {«}. Since a is in A, @(6) must be in (. We know that ¥ is analytic in
Q and so it has a Taylor series expansion about a(#). Thus there exists R,
with 0 < R < o, such that, for z in C, |z| < R,

v(E(0) +2z) = Y, ¢z,
Jj=0
where ¢, = Y&*)(a(0))/j!. Note that, if 0 < R, < R, then
J C 1
RZ Y IcjlR{™2 < } IcjIR{ < o,
=2 Jj=0

so that 7_lc;|R{™? < o
Suppose £ > 0 is given, and y is such that a + y isin A, and

R, e (ZlchR{‘z) ,
=2

interpreting /0 as «. Then, because [7(8)| < llyll; < R,

(17) W(a(0) + 5(0)) — WE(a(6)) — WED(a(0))7(6) = ig(&(@))’l

llyll; < min

Because ¥ "V is analytic on (), Rudin [(1974), 10.26] implies that we can find
b in A! such that b(0) = \If(k“)(a(f))) for all # in R U {«}. We substitute this
into (17) and multiply each side by IT% ,%,(8), where x, is in A! with
ll,lli <1, L =1,..., k. Using the inductive hypothesis, we see that the left-
hand side of the resulting equation is the transform of

(18) ‘Ifé’i)y(xl,...,xk) —UB (g, 0,x,) —bryrx x - xx,,
The right-hand side of the resulting equation is the transform of
(19) Xy kg ryxy s Y ey,

j=2

because T%_,c;(5(8))/ 72 is the transform of £7_,c;y*V~?, an element of A
(since I|y||1 < R1 and X% J_chRJ =2 < ®), Since A1 is semlslmple we can iden-
tify (18) and (19). The norm of (19) is at most

nllxllllllylh Z le;IR{ ™2 < ellyl;.
j=2
Observe that the (£ + 1)-linear form

(Zgyee s Xy, y) P bxx * - c xx, %y

is bounded and hence so is ¥{**D(xy, ..., x;, ). Thus (16) holds for n = £ + 1.
Hence by induction it holds for all n in N. O
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LEMMA 5.2. Lety, bein A',1 <i <n.
(i) For ain A', exp((yy,...,5,) =(expa)*y * -+ xy .
(i) For a in Ag, logfl")(yl, cee ,y,,) =(-D"Yn - Da*™" Ky koo kY

The maps a — exp{” and a — log{* are continuous.

To calculate the nth derivatives of composite functionals we use the follow-
ing result which is Formula A in Fraenkel (1978). Let (B,,| - |;) be Banach
spaces for i =1, 2, 3 and let U and V be open subsets of B; and B,,
respectively. Let ®: U — B, and ¥: V — B, be continuously differentiable up
to order n throughout U and V, respectively. Let a be in U and ®(a) be in V.
Then V¥ o ® has nth derivative at a given by

(Vod)P(xy,...,x,)
n 1

(200 =X X X

Jolpit o 4B=n o J1By! - B!

X ‘I’g(zz)((béﬁl)(xa(l), ceey xa—(ﬁl))7 cees q)t(zﬁj)(xa(n—Bj+1)’ cees xa(n)))’
where Y denotes summation over the n! permutations of {1,...,n}. This

allows us to find higher derivatives of the queueing functionals.

Expansions are then obtained using Taylor’s theorem [see, e.g., Cartan
(1971), Chapter 1, Theorem 5.6.2]. Let (B, || - |l}) and (B,, |l - llz) be Banach
spaces and let U be an open subset of B;. Suppose ®: U — B, is (N + 1)-times
differentiable throughout U. Let a be in U and let 2 in B; be such that
a +thisin U for all 0 < ¢ < 1. Then, for all N in N,

(21) ®(a +h) = d(a) + g(d);")(h,...,h))/nHrN,

n=1

where

Irlls < 73357 sup (RSt [ AR
*telo,1]

We now apply the Taylor series expansion to the waiting time and idle
period functionals. To simplify calculations we consider these as starting with
input f=fg* fT; the resulting operators in the decomposition, except for exp
and log, then have zero second and higher derivatives. If we start with the pair
(fs, fr) and vary one component only, then the first step in the decomposition
is linear, too, and the results given below are easily adapted to this situation.
We need two preliminary results.

"LEMMA 5.3. Suppose B, is a Banach space and B, is a Banach algebra,
with multiplication in B, denoted *, and suppose a is in an open subset U of
B,. Let ¥ be a map from U to B, with derivatives up to and including order n
in U. ‘
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Then the map expe ¥ has nth derivative at a given by, for x,...,x, in By,
(expe \F)fzn)(xl’ ey Xp)

—ep(¥(a)r Y L L-

J=1Bi+ - +B,=n o -]'BI' BJ'

X‘I’éBl)(xo(l), ey xo(Bl)) *oroe ok \I’;Bj)(xa(n—Bj-Fl)’ et xtr(n)) ’

where ¥ denotes summation over the n! permutations of {1,...,n}.

Proor. This is obtained by substituting the expression for exp{® in Lemma
5.2 into (20). O

LEMMA 5.4. With notation as in Lemma 5.3,

(expe @) (x, ..., x)

1 .
= nlexp(®(a))* Z Y ]‘[ ((I)‘”t)(x X))

= r i=1
where Y. is summation over all positive integers n,,...,n, and ry,...,r; with
n,<ny< -+ <n, X_rn;,=nand Ti_,r, =j and T1 denotes multiplica-
tion in B,,.

Proor. Put x; = .-+ =x,=x in the expression in Lemma 5.3. Each
term in the inner sum gives the same value so
n!

(n) = 3
(expr @)"(x, .., 2) = exp(®(a)) + T . ”ij:nm

XOPI (g, .. x)% o« DPI(x, ..., x).
If {Bl,...,Bj} consists of r; copies of n;, i =1,...,1, where ¥!_,r, =j and
Yi_irn; = n, then any other {8,,... , B;} consisting of r; copies of n,, i =
1,...,1, will give rise to the same term. There are j!/r;!--- r,! such terms.

This gives the lemma. O

In the following, write

h=(=3f®—fO+5) " +(-3g —g),
where g = f® — f@, As in the proof of Theorem 4.1, write T for the map
taking a to a — 4(0)8,. For n in N, let v, be the element of A! defined by
(TR (h*™ ))*
Z )y E -

ip. |
Jj=1 = i=1 llrt‘

)

where ¥, denotes the same summation as in Lemma 5.4 and IT denotes
convolution product. The next theorem gives the Taylor series expansion for
the stationary waiting time functional.
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THEOREM 5.5. For i = 0,1, let f§”, £, w® and p® be service time and
interarrival time densities, stationary waiting time distribution and traffic
intensity, respectively, for a G1/G/1 queue, where f§” and f{ satisfy (11)
and p® < 1. Let f® =f@« f. Put fO =0 -)fO +tf® and suppose
that

e=8 sup |(=37O O+ 5 [P - Ol <1
0<t<

Then

N
w® =w® +w®x« Y (-1)"v, + ry with lIrylli = o(cV) as N > .
n=1

Proor. Write ® for the functional mapping f onto w. Then, from (13), ®
can be decomposed as

fro =Sf—Ff+80= 1 0(f) —v(f1) =g, v(fs)
or v(f2) = (0(£4)) " (0)8,—

where f; is an exponential density with parameter 1. Let
(22) ®;:a— —3a—-a+68, P,=-loged,, P3=T-R D

so that ® = expo ®@;. In order to apply (21) to ®, we need to find its nth
derivative. Assume that a is in the open subset {a € A¥!: —3a —a + §, €

Ag). By Lemma 5.4, for x in A1
n l 1
D(x,...,x) = nlexp(Py(a))* Z Y ]_[

(23) n)"r!
X (B ..,x))*’i.

Since T o R has first derivative itself and zero second and higher derivatives,
when we apply (20) to ®,, only the j = 1 term, when B, = n, is nonzero, and
each term in the inner sum is the same. We find

(24) O(x,...,x) =T o R, (PF)(x,...,x)).

Observe that @} (x) = —3x — x for all a and that ®, has zero second and
higher derivatives. Applying (20) to ®, = —loge @, (this time only the j =n
term is nonzero, when B; = --- =, = 1) and using Lemma 5.2(ii), we have

(25) dFU(x,...,x) = (-1)"(n—1)I(— Ea—a+80)* Pa(—3x —x)""
Substituting (24) and (25) into (23) gives

DM (x,...,x) = (—1)"n!®(a)* i )Y l_[

( [{( Sa—a+8) tx(— Ex—x)} ])*r’



1770 R. GRUBEL AND S. M. PITTS
Putting a = f© and with g and v, as defined before the statement of the
theorem, we find

P(g, .- 8) = (1) "nlw®xv,

for n in N. Substituting this into (21), we obtain the form of the expans1on as
stated in the theorem.
We now consider the remainder term. We have

DL (%, ..., %,)
=(-1)"(n—-DITR,[(-Sa —a+ §) " *(—-3x; — x,)
' *(_Exn _xn)]

for x,,...,x, in AbL
Using Lemma 5.3,

O(xy,..x) = (-1 D(a)x Y T T~

X(TR.[(~3a —a+80)" P x (=3 - Id)(x,0)
Cx (=3 = 1d) (%05}
*{TR+[(—Ea — @ +80)" % (=3 = Id)(2,np, +1))

% oo *(—2 — Id)(xa("))]}’

where Id is the embedding A! — Al
We have

ITR I <ITIRI =2
From (7),

o570 a4 <l(-37 - 0+
and, by (10) for x in ALY,

_1||k
1»

I = 2x — xlly < llxlly, 1.
We note that there are ( 11 ) ways to choose distinct B,,...,8; with g, > 0
for all i and B; + -+ +B; = n. Putting these observations together gives

||c1>;:;)>(x1,...,xn)||1
2/n!
< lw®|; i‘, J—:L(J _1 )”( SO - fO 4 30)* 1” gl - Nyl 1.
j=1 J

v

+ For lx;lli,1<1,i=1,...,n,

|9 s, ) [ < (r = D187 (=5 £ - FO 56)" [
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Substituting this into the bound on the norm of ry given in the Taylor series
expansion (21), we find [Iryll; = o(c¥)as N - ». O

The range of the curve ¢ — (=3 f® — f® + §,)* ! is a compact subset of
A!, which implies that the supremum in the definition of c is finite. In
particular, the condition of the theorem is satisfied if f©@ and f® are close
enough to each other. If both 3f@ + f@ and 3f® + f® have 1-norm
smaller than 1, then the supremum can be estimated by (1 — max{||Z f @ +
FOUL, IS F® + FO DL Note that if f is a step density for an M(1)/G/1
queue with mean service time mg, mg < 1, then |2 f+ fll; = mg. Thus if
f©@ and f® are both step densities for M(1)/G/1 queues with mean service
time mg, we have

sup ”( SFO—fFO 4 60)* 1” <1/(1-myg),
0<t<1
and applying the mean value theorem [see Cartan (1971)], we obtain

lw® — wOll; < 21 Ff® = FOl; 1/(1 — mg).
The approximation arising from the expansion with N = 2 is
w® + w®«[(R, k)" (0)8, — R h]
A A *
+%w‘°)*[R+(h*2) - (R+(h*2)) (0)6, + (R+h - (R.,h) (0)60) 2].

Thus we can obtain successive approximations to the stationary waiting time
distribution of a queue by expanding about, for example, an M/M /1 queue.
For the expansion of the idle period functional, define, for n in N,

h*n *r,
- £ e
Jj=1 7 i=1 i
where L, denotes summation as in Lemma 5.4 and [T denotes convolution
product. This is the same as v, with TR, replaced with B_ and with an extra
factor (—1)/, which arises because we have log rather than —log in the
decomposition of the idle period functional.

)

THEOREM 5.6. For i = 0,1, let f§°, f§, £ and p® be service time,
interarrival time and idle period densities and traffic intensity, respectively,
for a GI/G/1 queue, where ¥ and f& satisfy (11), and p® < 1. Let
fO=FOx fO Put fO =0 — ) f® + tf® and suppose that

c=2sup |(=2FO = FO+8) NFDO - FOlyy < 1.

0<t<1

Then
N

O = O+ (O -80)* X (_1)n((v;)v) +ry
n=1 .

with
lryls = o(c™) as'N — e,
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The first few terms are
O+ (F = 80)*((B-R)") + 3( £ = 80) * ([ ~B_(h**) + (B_R)™*]").

6. Cumulants of the stationary waiting time distribution. If the
stationary waiting time has E(|W|") < «, then the rth cumulant «, exists [«,
is the coefficient of (it)"/r! in the expansion of log E(e!*")]. From Stoyan
[(1983), (5.0.5)], «,, if it exists, is given by

© 1 0
= — | ¢p*(de).
k= L o), twn(dn)
Define &.: A" — C by
E(f+ad,) = [t'f(2) dt.

Then we have from (4),
K, = Gor[y(/’l’+)] ‘

Let ® denote the functional mapping ( fs, fr) onto «,. In decomposing P,
we need to consider the logarithm map A" — A", Since the maximal ideals
of AL7 are precisely the intersections of Al" with the maximal ideals of A, if
a in Ab7 c A! has a logarithm in Al, then it has a logarithm in A" and they
are the same.

We need a preliminary lemma extending (10).

LeMMA 6.1. Forall nin N and a in Ab"1,
IZa + alli,» < llall,n+1-
Proor. Since A"*! is a subset of Al'! for all n in N, Za is certainly in

A! for all @ in A¥"*! For any k in N and f in L%#**1,

[l )0l de < o [l i)l

by Fubini’s theorem, hence fe LY**! implies 3 f € L"*. We have for f in
Ll,n+1, .

”2f+f”1,n < ”Eflll,n + ”f”l,n
= [ X (3 )aaren + 1z 1)) ae
k=0

S/kgo(;:)“ﬂk e 1))Ifl(t)|dt |
< [f@ndi+ [ & (” + l)ltlklf(t)ldt + [iFe) e de
k=1

= [(1+ )" f ()l de
=1 fllxn+1.
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Now suppose a is in A¥"*! and a = f + ad,. Then
I%a + ally,, <IZf+ flin + lal < fllyner + lal =llall, 1. ]

In the course of the proof, we showed that, if a is in AY**! then Sa is
defined and is in A"" for n in N.
Then ® can be decomposed:

(fs, fr) = =3f=f+8) = g () —v(f1) =&, 0(f:) =g K.
ALTHL 5 ALT+1 ALT ALT ALT C

Note that &, is linear and bounded. Using the same methods of proof as
before, we obtain:

THEOREM 6.2. Letrbein N. For 0 <& < 1, let f{ and f{? be probability
densities with finite (r + 1)st moments. Let p® be the traffic intensity of the
queue with service time and interarrival time densities f§ and f{, respec-
tively, and suppose that p®© < 1,0 < & < 1. Let «'? be the rth cumulant of the
associated stationary waiting time distribution.

Suppose

1 1
lim —( & — FOY) = d lim —(f® — £O) =
61?3 E(fs fs ) 8s an 811'% E(fT fr ) 8r

in AY"*! Then

1
lim —(x® — K‘ro)) = —-¢&[R.h] inC,
el0 €&
where h =(=3f©@ —f©® 4 5 ) 1x(-3g —g), fO=FP«fO and g-=
gs* [ + [0+ &r.

Similarly, we have an expansion for the cumulants.

THEOREM 6.3. Let r be'in N. For i = 0,1, let f$, f&, k© and p® be
service time and interarrival time densities, rth cumulant of the stationary
waiting time distribution and traffic intensity, respectively, for a GI/G/1
queue, where f§” and f§ have finite (r + 1)st moments and p < 1. Let
fO=F@Px fO Put fO =0 - )fO + tf® and suppose that

c= sup [[(=SFO —FO+8,) | NFD = FOly iy < 1.

0<t<1
Then

v

N
KD =k®+ ¥
n=1

(-n"

- E[R ()] + ry with ryl =o0(cV) as N - o,

where h = (=3 f© — fO 4 5 ) ' x(-3g - g and g =f® — O,



1774 R. GRUBEL AND S. M. PITTS

Proor. Write ® for the map taking f onto k,. Let ®, be as in (22) and let
®; =R, o®, so that
(I) = Er o (1)3.
Second and higher derivatives of &, vanish, hence,
D%y, .0, x,) = E[PFUxy, .., x,)]
= (-1)"(n - DIGR.[(-3a —a+8) " *(-3x, —xy)
: *( _Exn - xn)] ’

using (25). When a is f©, inserting this into (21) gives the form of the
expansion as stated in the theorem.
For the remainder term, observe that

|&(f+ado)| < [lel] f(£)]dt <IIf + adoll, .
Hence, by Lemma 6.1,
'q))(r?t))(xb SRR xn)l

<(n=DY(=2F© - FO +5,) 77

n
S+ x5, + 2l

< (- (=270 - o+ oy

£ 21 PSR [ [y

Se]

q);z))” < (n - 1)1”( Ef“) — f(t) + 60)* 1|

On using the bound on |ry| given in (21), this gives the required result. O

Taking r =1 gives theorems for the derivative and expansion for the
expected stationary waiting time; taking r = 2 gives the corresponding results
for the variance.

7. Examples. The results of Sections 4 and 5 allow us to obtain approxi-
mations to the output, for example, the stationary waiting time distribution,
for queues near those with analytically tractable input. We give the name
0-queue to the queue at which derivatives are taken. The expansion theorems
yield successive approximations obtained by expanding the relevant functional
about the 0-queue. If we take f{” and f{” to be exponential densities with
mean 1/« and 1/, respectively, then the 0-queue is an M(a)/M(B)/1 queue
for which the output of our functionals is known explicitly. If the queue is
stable, that is, if @ < B, then, from Feller [(1971), VI.9],

w(o) = (1 — (a/,B))50 + (a/B) fB—a’

where f, is a density of an exponential distribution with mean 1/y. The idle
period dlstrlbutlon for this queue (or more generally for a stable M(a)/G /1
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queue) is known to be exponential with mean 1/a; see Asmussen [(1987), IX,
Theorem 2.2].

We can take advantage of these simple explicit expressions to approximate
the stationary waiting time and idle period distributions of a GI/G/1 queue
by taking the derivatives of the functionals at, or expanding them about, an
appropriate M/M /1 queue. A scaling argument shows that it is enough to
consider queues with mean interarrival time equal to 1.

In the first example, we expand the stationary waiting time functional about
an M(1)/M(1/p)/1 queue to obtain successive approximations to the station-
ary waiting time distribution for a GI/M(1/p)/1 queue with interarrival times
distributed as a gamma distribution with index 2 and parameter 2, so that
fi(t) = 4te=?" for t > 0 (zero otherwise).

From Theorem 5.5, we obtain approximations

zeroth order: w©®,
first order: zeroth order — w® * TR , h,
second order: first order + (1/2)w® «[(TR .h)** + TR (h*?)],
using the notation from the proof of that theorem. Write
a8, + fO,  a®Pls, + f2PL and  lPP25, + faP?

for the zeroth, first and second order approximations, respectively. In this
simple example w® = a{P5, + f$P can be found explicitly so that we can
compare our approx1mat10ns to the true distribution. From Asmussen [(1987),
IX, Theorem 1.2], if n is the smallest positive solution of

4
(2-(n-1)/p)%

n = E(exp{(n — D)T/p}) =

then
w® = aPdy + fP = (1= 1) + 1fa1—nyp-

For low to moderate p-values the second order approximation was found to
be almost indistinguishable from the true output. For p = 0.9, f{>, farrl
P2 and f{y are shown in Figure 1 by dotted, broken, chained and solid
lines, respectively. The atoms at zero and the approximations in the cases
p = 0.1, 0.5 and 0.9 are given in Table 1; Table 2 lists the successive approxi-
mations to the expectation of the stationary waiting time obtained with the
results of Section 6.

For our second example, let £ and f{” be the service and interarrival
time densities for an M(1)/M(1/p)/1 queue and let £ and f{" be uniform
densities on (0, 2p) and (0, 2), respectively. We aim to find an approximation to
the idle period density for a GI /G/1 queue with interarrival and service
. densities

FRD = (L/2)(F2 + 19), 87D = (/DO + £D).

Here each input distribution is an equal ‘mixture of an exponential and a
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0.00 ; i .
0 5 10 15
Fic. 1.
TABLE 1
Approximations to the atom at zero for the GI/M /1 queue
0.1 0.9 0.974380 0.970468 0.970820
0.5 0.5 0.611111 0.619341 0.618034
0.9 0.1 0.124931 0.130492 0.131783
TABLE 2
Approximations to expected stationary waiting time for the GI/M /1 queue
P Zeroth approx. First approx. Second approx. E(W®)
0.1 0.011111 0.001928 0.003057 0.003006
0.5 0.5 0.277778 0.299726 0.309017
0.9 8.1

5.856233 5.887224 5.929455
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uniform distribution. We call this the 1/2-queue and write f{/? for the idle
period density for this queue. Let f?*® be the approximation resulting from
Theorem 4.2,

2% = {9+ (1/2) {limit in theorem}.

For comparison, we need f!/?. However, there is no easy explicit expres-
sion for the idle period for such a GI/G/1 queue and f{/? is found
numerically using the methods of Griibel (1991).

Figure 2 shows f{?, f# and f{/? by dotted, broken and solid lines,
respectively, for p = 0.1. Even though the (1/2)-queue output is quite differ-
ent from the 0-queue output in this situation, our infinite-dimensional ap-
proach yields a first order approximation which reflects the shape of the true
output. Approximation via a parametric phase type family would not achieve
this. Notice that the approximations can take negative values. This is consis-
tent with Theorem 4.2 which claims that the [P are functions that are close
to f{1/? in an L'-sense, not that the approximations-themselves are densities.

In conclusion, we have exhibited derivative and expansion theorems for the
stationary waiting time and idle period distributions of the GI/G/1 queue.
Similar theorems for other quantities related to the Wiener—Hopf factors, for
example, the moments of the idle period distribution, the sojourn time, the
expected number of customers served in a husy period, can be derived from the
existing derivatives and expansions. The idle period distribution is also defined
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for a queue with traffic intensity greater than or equal to 1, and alternative
normalizations give rise to similar results in this case.

The idea of regarding a stochastic model as a functional or operator which
maps known input quantities onto output quantities of interest, and of using
modern analysis techniques to obtain approximations for the latter, is cer-
tainly not tied to the particular model of this paper. It should be pointed out,
however, that the success of the method depends on the tractability of the
operators; changing the queueing discipline, for example, seems to imply that
we have to start afresh. On the other hand, some of the building blocks of the
functionals considered here appear in connection with random walks, storage
processes, insurance models and many other stochastic models; in these cases
the results and techniques presented in this paper do carry over in a straight-
forward manner.
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