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Abstract

This thesis presents the design and implementation of a graphical user interface (GUI) for a real-
time brain-computer interface (BCI) system based on steady-state visual evoked potentials (SSVEP).
Developed as part of a larger collaborative project alongside Data Acquisition and Signal Processing
subgroups, the GUI enables users to control a computer cursor using brain activity. Core functionali-
ties include real-time EEG visualization, configurable data recording trials, visual stimulus presentation,
and a cursor control interface that provides feedback based on live classification results. The system
architecture allows the GUI to connect to the EEG headset via the Lab Streaming Layer (LSL) protocol,
stream EEG data to the back-end pipeline, and translate classification output into interactive visual
feedback. The integrated system successfully demonstrated real-time SSVEP-based control, validat-
ing both functional and technical requirements of the GUI subsystem. This work contributes to the
development of more intuitive and accessible GUI designs for future BCI applications.
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Preface

This paper marks the completion of our Bachelor’s graduation project, conducted as part of a collabora-
tive effort to develop a real-time Brain-Computer Interface (BCI) system. The project was carried out
by three dedicated groups: Graphical User Interface (GUI), Signal Acquisition, and Signal Processing.
Our group was responsible for the GUI, focusing on developing an interactive front-end that supports
real-time cursor control through brain activity.

Working on this project has been both challenging and rewarding. It provided us with the opportunity to
apply and expand our knowledge in designing and building a GUI, while also learning how to collaborate
effectively within a multidisciplinary team. The experience gave us valuable insights into the complexity
and potential of BCI technologies.

We would like to sincerely thank our supervisors, Tiago Costa and Dante Muratore, for their ongoing
support, guidance, and constructive feedback throughout the course of the project. Their expertise and
encouragement played a crucial role in helping us stay motivated and on track.

We hope that this work will contribute to further developments in the field of BCI and are excited to
see how future students and researchers will build on it.

Abdoulaye Demba Jalloh & Karim Tageldin
Delft, June 2025
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1
Introduction

1.1 State-of-the-Art Analysis
Brain-Computer Interfaces (BCIs) are systems that enable direct communication between the brain and
an external device by translating neural activity into actionable commands, bypassing peripheral nerves
or muscular control [1]. Non-invasive BCI systems, particularly those based on electroencephalography
(EEG), are very attractive due to their safety, portability, and relatively low cost [2]. BCIs have shown
promise in restoring communication or control abilities to individuals with severe motor impairments.
However, in recent years, BCI applications have expanded into broader domains, including entertain-
ment, neurofeedback training, and assistive technologies for the general population [3], [4].

Among various BCI paradigms, the Steady-State Visual Evoked Potential (SSVEP) approach stands out
for its robustness, minimal training requirements, and high information transfer rates. SSVEPs are brain
responses elicited when a user focuses on a visual stimulus flickering at a constant frequency, making this
paradigm particularly suitable for real-time applications [5]. Thanks to advances in signal processing
and machine learning, modern SSVEP-based BCIs now achieve significantly improved accuracy and
responsiveness, bringing real-time control applications closer to practical deployment [6]. However,
achieving seamless integration between signal acquisition, real-time processing, and graphical interface
design remains a key technical challenge [7].

1.2 Problem Definition
Although significant progress has been made in BCI signal processing and classification, many systems
still lack intuitive and user-friendly graphical interfaces that connect neural input with effective system
control [8], [9]. This gap is especially critical in real-time applications, where users must receive imme-
diate and clear feedback to interact reliably with the system. Without it, control becomes unintuitive
and prone to user error. Moreover, existing interfaces often overlook human-centered design principles,
leading to visual fatigue and increased cognitive load, particularly during tasks requiring sustained at-
tention to visual stimuli, such as SSVEP-based systems [10]. These issues reduce user engagement and
system effectiveness.

The goal of this thesis is to bridge this gap by designing and implementing a GUI subsystem that
enables reliable, real-time SSVEP-based cursor control. The interface must present visual stimuli while
minimizing fatigue, handle live EEG data, communicate with the classification back-end, and deliver
immediate and intuitive feedback, serving as both control environment and feedback platform.

The scope of the project is bounded by practical and academic constraints, including limited develop-
ment time, the need to ensure compatibility with the Unicorn Hybrid Black EEG headset – which has
a limited number of channels and restricted access to proprietary APIs – as well as ongoing back-end
changes from collaborating subgroups, all of which influenced system design and integration decisions.
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1.3. Thesis Synopsis 2

1.3 Thesis Synopsis
The thesis is structured as follows. Chapter 2 introduces a high-level system overview, describing
the overall architecture and the role of the GUI. Chapter 3 presents the program of requirements for
this project. Chapter 4 explores the literature foundations that informed design choices. Chapter
5 details the design and implementation of each GUI module. Chapter 6 describes how the GUI was
integrated with the data acquisition and signal processing subsystems and evaluates the real-time cursor
control. Chapter 7 presents the evaluation results, reflects on requirement fulfilment and suggests future
improvements. Finally, Chapter 8 concludes the thesis with key takeaways.



2
System Overview

This section presents a high-level overview of the SSVEP-based BCI system developed in this project.
It describes the overall system architecture, including its core subsystems and their interactions, and
clarifies the role of the Graphical User Interface (GUI) within the larger system. The objective is to
establish a clear conceptual understanding of the system’s structure and data flow before addressing
implementation details and integration strategies in later chapters.

2.1 Overall System Architecture
The BCI system is composed of three main subsystems: Graphical User Interface (GUI), Data Acqui-
sition, and Signal Processing. These components form an integrated loop that enables both various
EEG-driven functionalities and real-time cursor control.

As illustrated in Figure 2.1, the pipeline begins with the GUI, which initiates a connection to the EEG
headset using the Lab Streaming Layer (LSL) protocol. LSL is an open-source framework designed for
real-time collection, transmission, and synchronization of EEG data from devices such as the Unicorn
Hybrid Black headset and other biosignal devices. Once the stream is active, the headset continuously
transmits raw EEG data. This data is utilized by the GUI in multiple contexts, including live EEG
visualization and configurable recording trials for data collection.

In parallel, the streamed EEG data is forwarded to the back-end pipeline responsible for real-time
control. This begins with the Data Acquisition subsystem, which applies pre-processing techniques
including filtering and artifact removal. The cleaned EEG data is then passed to the Signal Processing
subsystem, where classification is performed to determine the user’s intended action by detecting SSVEP
responses associated with specific visual stimuli. The resulting classification output, consisting of the
predicted frequency and a confidence score, is returned to the GUI, which translates this output into
interactive feedback, including cursor movement and on-screen visual indicators.
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2.2. Role of the GUI Subsystem 4

Graphical
User Interface

EEG Headset

Data
Acquisition Signal Processing

Back-end

User Input

Start LSL stream EEG Data

EEG Data

Filtered Data

Classification Output

Figure 2.1: Overall System Architecture

2.2 Role of the GUI Subsystem
Within the system architecture, the GUI plays a central and dual role: it serves as both the entry point
for initiating EEG data flow and the interface through which feedback is presented to the user.

The GUI’s responsibilities include:

• Stream Management: Establishing the LSL connection with the EEG headset and managing live
data flow.

• Live EEG Visualization and Data collection: Displaying real-time EEG signals to help assess
signal quality and launching configurable EEG recording trials for offline analysis.

• Visual Stimuli Presentation: Rendering flickering targets to evoke SSVEP responses from the
user.

• Back-end Coordination: Extracting EEG segments at regular intervals and sending them to the
back-end pipeline for real-time classification.

• Feedback Translation: Receiving classification results and converting them into responsive visual
feedback such as cursor movements and prediction indicators.

Further details of the implementation of the GUI modules are presented in chapter 5, while the inte-
gration process and the real-time interaction with the back-end are discussed in chapter 6.



3
Programme of Requirements

This chapter outlines the system requirements, spanning high-level goals to GUI-specific specifications.

3.1 General Requirements
The following general requirements apply to the overall BCI system and define its intended context of
use:

• G1. The BCI system must allow users to control a cursor using SSVEP-based EEG signals.
• G2. The system must operate in real time, with an end-to-end latency (stimulus to feedback)

ideally below 1 second.
• G3. The BCI must support at least two distinct flicker targets for multi-class classification.
• G4. The system must be intuitive and accessible for first-time users without prior BCI experience.

3.2 GUI Subgroup Requirements
The following requirements are specific to the GUI subsystem and address its functional scope, perfor-
mance expectations, and integration constraints.

3.2.1 Functional Requirements
• F1. The GUI must render flickering visual stimuli at predefined frequencies to evoke SSVEP

responses.
• F2. The GUI must support configurable EEG recording trials for offline analysis and data collec-

tion.
• F3. The GUI must allow users to smoothly navigate through modules via intuitive control buttons.
• F4. The GUI must support live EEG visualization across all channels to help assess signal quality.
• F5. The GUI must provide real-time feedback upon classification, including visual indicators.
• F6. The interface must function independently of other subsystems to enable standalone validation

and testing using mock data or simulated streams.

3.2.2 Performance Requirements
• P1. Flickering stimuli must be rendered with frame-precise timing based on the screen refresh

rate.
• P2. The GUI must run smoothly on standard consumer-grade hardware without noticeable per-

formance degradation.
• P3. The real-time EEG plot must have a latency of less than 1 second.

5



3.2. GUI Subgroup Requirements 6

• P4. Cursor control classification must be triggered at fixed intervals, ensuring the GUI remains
responsive during processing.

3.2.3 Implementation and Integration Requirements
• I1. The GUI must be compatible with the Unicorn Hybrid Black EEG headset using LSL for data

streaming.
• I2. The GUI must be integrated with the data acquisition and signal processing subsystems.
• I3. The GUI must trigger EEG data acquisition and pass EEG segments to the back-end pipeline

for real-time classification.
• I4. The GUI must handle classification output and convert it into real-time visual feedback.



4
Literature Foundations for GUI Design

This chapter presents only the essential background needed to understand and justify the GUI design
choices made in this project. Rather than offering a broad or general literature review, it focuses on
design-relevant insights directly related to SSVEP-based BCIs. The chapter begins by briefly comparing
common BCI paradigms and explaining the rationale for selecting SSVEP. It then explores key interface
design considerations and concludes by linking specific design decisions in this project to key findings
from the literature.

4.1 BCI Paradigms and Motivation for SSVEP
Noninvasive EEG-based BCIs use different paradigms to interpret user intent. The most common ones
include motor imagery (MI), P300 event-related potentials, and steady-state visual evoked potentials
(SSVEPs). Each has unique strengths and limitations. MI requires users to imagine specific body move-
ments, often needing extensive training and offering slower feedback. P300 paradigms rely on detecting
responses to rare “oddball” stimuli, offering moderate performance, but their cognitive demands make
them less practical for fast interaction [11].

SSVEP-based systems, on the other hand, are driven by visual stimuli flickering at distinct frequencies.
When a user gazes at a flickering target, the corresponding frequency becomes prominent in their
EEG signal, enabling target identification. This paradigm is known for its high information transfer
rates (ITRs), intuitive interaction, and minimal user training requirements. For example, early systems
enabled real-time 2D cursor control by assigning directional movement to distinct flickering targets [12].
More recent designs using up to 40 visual targets have achieved ITRs of 267 bits/min, demonstrating
strong performance potential [13].

Importantly, SSVEP offers a favorable balance between speed, accuracy, and ease of use in real-time
applications. These characteristics make it particularly suited for the objectives of this project. Al-
though it requires thoughtful visual design to manage potential fatigue, SSVEP remains a strong fit for
developing intuitive and practical BCI interfaces [14], [15].

4.2 Interface Design and User-Centered Considerations
Designing an effective SSVEP-based BCI interface requires balancing technical performance with user
comfort and clarity. This section discusses key principles that shaped our GUI, including flicker fre-
quency selection, visual layout, and feedback mechanisms. All these factors influence how intuitive and
sustainable the interface is during real-time use.

7
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4.2.1 Visual Stimulus Design
SSVEP systems rely on flickering visual targets to trigger distinct EEG responses. Choosing the right
flicker frequencies is important. Technically, the display’s refresh rate limits which frequencies can be
shown smoothly. For instance, a 60 Hz screen reliably supports frequencies like 10 Hz or 15 Hz, which
are clean divisors [16].

From a perceptual standpoint, very low frequencies (< 6 Hz) tend to produce intense flickering that
is uncomfortable for users, while very high frequencies (> 30 Hz) often evoke weaker EEG responses.
Studies have shown that the 8–18 Hz range provides the best compromise between signal strength and
visual comfort [17].

Spacing between targets also matters. If visual elements are placed too close together, the brain signals
they trigger can interfere with each other. Moderate spacing, around a few degrees of visual angle, helps
prevent this and keeps the interface easy to use.

4.2.2 Visual Comfort and Cognitive Load
Staring at flickering targets for too long can be tiring. To reduce this strain, designers often use visual
patterns that are easier on the eyes, such as QR textures or checkerboard layouts [15]. These patterns
keep performance high while improving comfort.

Cognitive load is also an issue. When the interface is too crowded or too flashy, it becomes harder
to focus. Using simple icons, consistent layouts, and only showing what’s necessary helps users stay
focused and reduces mental effort [18]. A clean and predictable design goes a long way in making the
system easier to use.

4.2.3 Feedback Methods in SSVEP Interfaces
Effective feedback is vital in SSVEP interfaces to guide user attention and confirm system responses,
especially since control relies on gaze without physical input. One common approach is to apply external
modifications to the selected target, such as adding a border or overlaying a highlight. In cursor-based
applications, feedback is often presented through a moving cursor, offering continuous confirmation of
directional output and helping users stay oriented during control tasks [18].

Alternatively, rather than adding external feedback elements, some systems integrate feedback directly
into the stimulus itself by modifying its contrast, brightness, or size in real time. This method reinforces
user selections without crowding the interface with extra elements. Subtle changes like these have been
shown to improve the user experience while keeping the interface clear and focused [19]. The key is to
find a balance between clarity and comfort, ensuring the feedback supports the user without increasing
visual or mental fatigue.

4.3 Design Insights Applied in This Work
The literature review provided several practical insights that directly influenced the design of the GUI
system. One of the key takeaways was the importance of selecting appropriate flicker frequencies. A
range between 8–18 Hz was chosen, as this offered a strong balance between signal clarity and user
comfort. Frequencies were selected to align with the screen refresh rate and to avoid harmonics or
overlaps that could reduce classification performance.

Equally important was the visual layout. Rather than placing targets too close together, sufficient
spacing was ensured to reduce neural interference and visual fatigue. A clean, grid-based design was
adopted to make it easy for users to locate and focus on individual targets without feeling overwhelmed.

In terms of feedback, simple but effective visual cues such as a moving cursor and subtle highlighting of
selected targets were implemented. To support long-term usability, interface contrast was kept moderate,
consistent target sizes were used, and a minimalistic design was prioritized to reduce distractions and
help users stay focused during control tasks.



5
GUI Development and Implementation

This chapter presents how the Graphical User Interface (GUI) was designed and implemented to sup-
port real-time interaction in the SSVEP-based BCI system. The focus lies on practical aspects that
directly influenced development, such as the measurement context in which the GUI operates, key
technical decisions around framework and architecture, and a detailed walkthrough of the implemented
interface modules. While previous chapters discussed high-level design considerations and system ar-
chitecture, this chapter provides a closer look at how user-facing components were translated into a
working application.

5.1 Measurement Setup
To understand how the Graphical User Interface (GUI) integrates into the broader BCI workflow, it
is important to first describe the typical measurement environment in which it is used. Although
EEG data acquisition is handled by a separate subsystem, the GUI was developed and tested in close
coordination with GUI-driven EEG sessions. This subsection outlines the physical setup and conditions
under which participants interacted with the system.

The headset used throughout this project is the g.tec Unicorn Hybrid Black (see Figure 5.1a), a dry-
electrode, wireless EEG system offering 8 channels with a sampling frequency of 250 Hz. Its dry elec-
trodes are convenient for rapid setup and eliminate the discomfort associated with gel-based systems,
making it ideal for non-clinical testing environments. During sessions, the headset is positioned ac-
cording to the international 10-20 system [20], with electrodes placed primarily over the occipital and
parietal regions to target areas sensitive to SSVEP signals (see Figure 5.1b). Research indicates that
the strongest SSVEP responses are typically recorded at electrodes PO7, Oz, and PO8, making them
particularly reliable for detecting visual-evoked signals [21].

During each session, participants were seated comfortably at a distance of approximately 60–70 cm
from a computer screen displaying the visual interface. To minimize movement artifacts and enhance
signal quality, users were instructed to remain as still as possible, maintain a relaxed posture, and avoid
sudden head or eye movements. Sessions were conducted in a quiet, distraction-free environment with
dim lighting to reduce visual strain and enhance focus on the flickering targets.

By standardizing the recording conditions in this way, the team ensured consistency across trials and
provided a realistic context for testing the GUI under conditions that reflect its intended real-time use.
For more detailed information about the EEG acquisition procedures and signal recording setup, the
reader is referred to the work of the Data Acquisition subgroup [22].

9
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(a) Unicorn Hybrid Black EEG headset[23]
(b) Electrode placement (indicated in blue). Modified image

from[20]

Figure 5.1: Figures of EEG headset and electrode placement

5.2 Design Choices and Justifications
The graphical user interface (GUI) for this EEG-based brain-computer interface (BCI) was developed
with a strong focus on ease of use, responsiveness, real-time EEG visualization, and seamless integration
with a Python back-end. Key frameworks—PyQt, PyQtGraph, and Lab Streaming Layer (LSL)—were
selected for their ability to deliver an intuitive, robust, and efficient GUI:

• PyQt: Primarily motivated by its seamless integration with Python, PyQt simplifies the connec-
tion with back-end processing algorithms. Unlike JavaScript-based alternatives, which require
WebSockets or other bridging methods, PyQt directly interfaces with Python, eliminating inte-
gration barriers and streamlining the development process. PyQt excels in rapid prototyping,
facilitating quicker iterations and faster development cycles, while maintaining smooth perfor-
mance crucial for responsive user interactions.

• PyQtGraph: Selected as the logical extension following the choice of PyQt. PyQtGraph’s native
compatibility with PyQt and Python reduces integration complexity and potential compatibility
issues. It consistently demonstrated superior performance in real-time EEG visualization com-
pared to alternatives like Matplotlib or JavaScript plotting tools, with significantly lower latency
and higher frame rates essential for smooth and responsive EEG signal visualization.

• Lab Streaming Layer (LSL): Chosen for EEG data streaming due to its low-latency, synchronized
data transmission capabilities, critical for accurate real-time feedback. Additionally, LSL was
freely available within the Unicorn suite software, offering a cost-effective solution for the project.

While JavaScript and WebSockets offer flexibility and rapid deployment capabilities, their higher initial
setup complexity compared to the selected Python-based tools does not outweigh the straightforward
integration, superior real-time performance, and enhanced prototyping capabilities provided by PyQt,
PyQtGraph, and LSL.
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5.3 GUI Modules and Functional Implementation
The Graphical User Interface (GUI) consists of four interactive modules that structure the user experi-
ence across different stages of the BCI workflow: Main Menu, Training, Calibration, and Cursor Control.
Each module is implemented using a modular architecture supported by four internal components: the
Data Handler for managing EEG input and recording, the Visualization Engine for rendering real-time
plots and visual feedback, the Interface Controller for controlling timing and logic flow, and the User
Interaction Layer for handling visual elements and user interaction.

The following subsections describe each module in terms of its core functionality, visual design, and
conceptual implementation, highlighting how the internal components support their operation without
going into detailed code.

5.3.1 Main Menu
The main menu serves as the entry point of the system, where users are prompted to select their name
to begin a new session (see Figure 5.2). The interface is minimal by design, presenting a short welcome
message and two clearly labeled buttons for user selection. This focused layout supports ease of use
and sets a consistent starting point for all interactions.

After a user is selected, the system checks whether the EEG headset is properly connected and streaming
via the Lab Streaming Layer (LSL). This validation step is handled by the Interface Controller and
ensures that the user cannot proceed unless the device is active. A status message is shown during
the check. If the stream is found, the user receives a confirmation and advances to the next screen. If
not, an error message prompts the user to resolve the connection before continuing. This step adds
robustness by preventing access to modules that rely on live EEG data.

Upon successful connection, the user is directed to the Mindstream Hub (see Figure 5.3), a central
screen that presents the three core modules: Training, Calibration, and Cursor Control. Each module
is displayed as a card with a short description, allowing the user to select their next step with clarity.
This hub-based design offers a smooth transition into the BCI workflow and presents a clear overview
of available functions.

User interactions and transitions are managed by the User Interaction Layer, while the Interface Con-
troller oversees logic flow and connection handling. Together, these components ensure a smooth and
reliable start to the user experience.

Figure 5.2: Main menu with user selection. Names shown are for demonstration purposes
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Figure 5.3: Mindstream Hub for navigating between core modules

5.3.2 Training Module
The Training Module serves as the foundation for structured EEG data collection within the GUI. Its
primary purpose is to enable consistent signal recording during controlled visual stimulation. Although
the project did not implement user-specific model training, this module is flexible enough to accommo-
date such functionality in future iterations. Throughout development, it was actively used by the Data
Acquisition and Signal Processing teams to collect consistent datasets for testing and validating their
subsystems.

After entering the module, users begin by launching a configurable trial setup (see Figure 5.4). The
scrollable interface allows full control over the trial structure, including global settings (baseline duration
and flicker color) and up to five independent stimulus cycles. Each cycle can be toggled on or off
and includes parameters such as flicker duration, up to three simultaneous frequencies, the number
of repetitions, and rest durations between flickers. When multiple cycles are enabled, additional rest
intervals between them can also be defined.

Figure 5.4: Training Module configuration screen
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Once a trial begins and the EEG stream is detected, the interface transitions to an active trial view
(see Figure 5.5). During visual stimulation, the screen displays the configured flicker color and provides
real-time textual feedback about the current trial phase, frequency, and remaining time. The example
shown in Figure 5.5 captures the flickering screen as seen during a stimulation period.

Figure 5.5: Training Module during an active trial

This module integrates all four internal GUI components. The User Interaction Layer manages interface
logic, trial configuration inputs and screen transitions. The Interface Controller manages the sequence
and timing of trial events such as baseline, flicker, and rest periods. The Data Handler connects to
the EEG stream via LSL, records data in real time, and saves them to a CSV file that can be used by
other subgroups for further processing and analysis. The Visualization Engine renders flicker stimuli
and displays dynamic status updates, providing continuous visual feedback throughout the session.
Together, these elements enable the Training Module to support reliable and configurable EEG trials
while maintaining a responsive and user-friendly interface.

5.3.3 Calibration Module
The Calibration Module enables real-time visualization of EEG signals across all eight channels, allowing
users to assess overall signal quality and verify electrode placement prior to data recording or control
tasks. Upon activation, the module attempts to connect to the headset’s EEG stream using the Lab
Streaming Layer (LSL). If successful, it initiates continuous plotting of incoming signals using a 5-
second rolling time window, as shown in Figure 5.6. Each channel is rendered in a dedicated subplot
with color-coded traces, auto-scaling, labeled axes, and synchronized time alignment for clarity. These
plots are arranged in a 2-column-by-4-row grid layout to optimize space usage and improve readability.
In addition, users can click on an individual channel plot to zoom in for a detailed inspection, with
the option to revert to the full grid view. The plot refreshes every 50 milliseconds, providing low-
latency feedback that enables users to observe signal behavior in near real time without compromising
performance.
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Figure 5.6: Live EEG visualization interface

Unlike the official Unicorn software, this module does not include real-time indicators of signal stability
or electrode contact quality. These features depend on internal device diagnostics accessed via the
proprietary Unicorn Python API, which was not available for this project. As a result, replicating
hardware-level metrics such as impedance or contact status was not feasible, as this would require
complex signal inference and would still lack accuracy. Despite this limitation, visual inspection proved
to be a practical alternative. Through consistent use of the Unicorn software during earlier development
phases, the team became familiar with the typical visual characteristics of clean versus problematic
EEG signals. This enabled visual inspection to serve as a reliable indicator for verifying signal quality,
particularly to identify flat-lined channels, sudden artifacts, or unusual fluctuations.

From an implementation perspective, the Visualization Engine handles dynamic rendering using PyQt-
Graph, while the Data Handler manages LSL-based data streaming and short-term buffering for each
channel. The Interface Controller manages timing and refresh cycles through a lightweight update loop,
and the User Interaction Layer offers a simple toggle to start or stop the live view.

5.3.4 Cursor Control
The Cursor Control Module provides an interactive interface for real-time cursor movement based on
SSVEP classification. Its layout consists of a central circular cursor and two peripheral flickering blocks,
positioned on the left and right sides of the screen (see Figure 5.7). Each block flickers at a distinct
frequency (8.57 Hz and 12 Hz), selected to evoke frequency-specific brain responses corresponding to left
and right control commands, respectively. These frequencies were selected based on offline experiments
conducted with the Signal Processing subgroup using the Training Module, where they consistently
yielded the highest classification accuracy. For a complete explanation and evaluation of these results,
the reader is referred to their thesis [24].
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Figure 5.7: SSVEP-based Cursor Control Module interface

To guide user attention and reduce visual fatigue, each flickering block includes a centered plus-shaped
crosshair. As discussed in Section 4.2.2, such fixation markers support gaze stability and reduce signal
noise by helping users maintain consistent visual focus on the targets.

Initially, the module was tested offline using keyboard inputs (A/D keys) to simulate classification
outcomes. This approach allowed for validation of the layout, flicker logic, and cursor movement inde-
pendently of live EEG input. In the intended final implementation, the module connects to the headset’s
EEG stream via the Lab Streaming Layer (LSL). Once connected, classification runs periodically on
recent EEG samples, and if a predicted frequency matches a target and exceeds a confidence threshold,
the cursor is moved left or right accordingly. The transition to real-time functionality, including how
the cursor control interface was further developed and integrated with other subgroups to support live
BCI interaction, is discussed in more detail in Chapter 6.

The module integrates all four internal components. The User Interaction Layer manages input handling,
button controls and feedback labels. The Interface Controller handles timing, flickering logic and cursor
positioning. The Visualization Engine renders all interface elements using a custom paintEvent method,
while the Data Handler retrieves real-time EEG data and communicates with the classification pipeline.
Together, these components enable responsive and intuitive control based on SSVEP input.



6
System Integration and Evaluation

This chapter outlines how the separate subsystem components—Data Acquisition, Signal Processing,
and Graphical User Interface (GUI)—were integrated into a functioning real-time SSVEP-based BCI
system. The goal was to transition from an offline pipeline—where EEG data was recorded, pre-
processed, and classified in separate stages— to a real-time loop in which EEG data is continuously
streamed, processed, and used for immediate control actions through the Cursor Control Module. To
achieve this, careful coordination was required across teams and modules. The subsections that follow
outline the overall integration strategy, how the GUI was integrated with the other subsystems and an
evaluation of the complete real-time system.

6.1 Integration Strategy and Subsystem Coordination
The transition from an offline processing workflow to a real-time BCI system required careful coordi-
nation between the three subgroups. Initially, the system operated in a sequential, file-based fashion.
EEG data was recorded through the GUI’s Training Module and exported as CSV files. These were
handed over to the Data Acquisition subgroup for filtering and artifact removal. The cleaned signals
were then passed to the Signal Processing subgroup for classification. While this pipeline enabled early
validation of system components, it did not support live interaction.

To transition to real-time functionality, a staged integration approach was adopted to manage complex-
ity and isolate potential issues. This involved a bottom-up approach where the Data Acquisition and
Signal Processing subgroups first integrated their components. This allowed them to independently test
filtering and classification algorithms using previously recorded EEG data, ensuring functional correct-
ness and compatibility before GUI was involved. Once this back-end was stable, the GUI subgroup
proceeded to integrate the cursor control module with this shared pipeline.

Subsystem coordination was facilitated through shared interface definitions, collaborative discussions,
and incremental testing. The teams also made use of shared repositories and collaborative tools to align
on implementation details and troubleshoot integration issues.

6.2 Integration with the Back-end Pipeline
To enable real-time BCI functionality, the Graphical User Interface (GUI) was integrated with a shared
back-end pipeline developed by the Data Acquisition and Signal Processing subgroups. This pipeline
performs real-time EEG data retrieval, pre-processing, and classification, and communicates the results
back to the GUI for direct user feedback and control actions.

16
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Once the Cursor Control Module is activated, the GUI connects to the headset’s EEG stream using
Lab Streaming Layer (LSL) and continuously buffers incoming data. Every second, a 1-second segment
of recent EEG samples is retrieved from the internal buffer and passed to the back-end through the
process_live_eeg_segment function. This function serves as the main classification entry point: it
first applies pre-processing (bandpass filtering and notch filtering) to clean the data, then forwards
the processed segment to the classification algorithm implemented by the Signal Processing subgroup.
Only the most informative occipital and parietal channels—PO7, Oz, and PO8—are used, based on
their strong SSVEP response profile as discussed in section 5.1. The classification is triggered by a
QTimer (a PyQt component for scheduling repeated tasks) that executes every 1 s, forming a rolling
control loop with manageable computational load and consistent responsiveness.

The choice of a 1-second classification window reflects a trade-off between responsiveness and classifica-
tion reliability. This duration has been widely adopted in SSVEP-based BCIs as it provides sufficient
data for accurate frequency detection while maintaining acceptable latency for real-time interaction
[25].

Once classification is complete, the function returns three outputs: the predicted frequency, its index
relative to the configured stimulus frequencies, and a confidence score. This output is passed back
to the GUI and interpreted by the cursor control logic. If the confidence score exceeds a predefined
threshold of 0.2— determined based on classification performance insights from the Signal Processing
subgroup—the GUI maps the predicted frequency to one of the target commands: 8.57 Hz for left
movement, or 12 Hz for right movement. This mapping triggers several types of real-time feedback: the
cursor’s position is updated, the action (”BCI: Moving Left/Right”) is shown as a message on screen,
and the prediction details (frequency and confidence) are displayed numerically above the interface (see
Figure 6.1). Further details on how the confidence score is computed and evaluated are beyond the
scope of this section and can be found in the thesis of the Signal Processing subgroup [24].

This classification-to-feedback translation formed a key integration challenge, as it required careful
timing, visual responsiveness, and synchronization between back-end logic and front-end rendering.
With these elements successfully integrated, the system was ready for real-time testing and evaluation,
as discussed in the next section.

Figure 6.1: Cursor Control interface during real-time BCI operation
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6.3 Evaluation of Real-Time Cursor Control
To assess the system as a whole, a series of evaluations were performed under both controlled and
real-world conditions. Initial tests were conducted using artificial signals from a function generator
to isolate the classifier’s performance from real-world EEG noise and brain artifacts. This allowed for
precise tuning and verification of the end-to-end pipeline under known signal conditions before validating
performance on human subjects. To support this evaluation, the Cursor Control Module was further
developed to include a performance session feature, enabling users to review classification results and
corresponding confidence scores at each one-second interval after each session. Upon completion of a
session, users are presented with a summary plot and the option to export session data in CSV format
for further analysis.

6.3.1 Measurements with function generator
The performance of the EEG-based BCI for real-time cursor control was rigorously assessed through
a controlled measurement setup designed to simulate typical EEG voltages without interference from
noise and artifacts commonly found in actual EEG recordings.

A voltage divider circuit was constructed using a function generator to produce signals at frequencies
of 8.57 Hz and 12 Hz (see Figure 6.2). The EEG headset analog within the circuit was represented by
a voltage meter, with reference nodes connected to ground. Specifically, channel 7 of the EEG headset
was connected between two resistors. One resistor was fixed at 280Ω, while the other was a tunable
resistor ranging from 2.8kΩ to 25kΩ. This configuration enabled the adjustment of voltages recorded
across the EEG headset from approximately 0.1mV up to 10mV. However during testing, the lowest
achieved voltage was a few hundred microvolts.

This tunable voltage divider was necessary because the minimum amplitude achievable by the function
generator in question (AFG3021C) was limited to a minimum of 10mV, exceeding typical EEG signal
amplitudes observed in human brain recordings.

10mV
8.57/12Hz

280Ω

2.8kΩ − 25kΩ

V

EEG Headset

Figure 6.2: Measurement setup with function generator and tunable voltage divider

This setup allowed for evaluation of the system’s response to EEG-like signals within realistic amplitude
ranges, isolated from typical noise and artifact sources. The system demonstrated reliable functionality,
maintaining correct frequency classification even at these lower amplitudes.

Two distinct performance graphs depicting confidence scores associated with frequency classifications
were generated during the evaluation (Figures 6.3b and 6.3a). When the generated frequency was
set within approximately ±0.3Hz of the target classifiers (8.57 Hz or 12 Hz), the system consistently
identified the correct frequency with high confidence.
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(a) Recording with maximum amplitude at 0̃.1mV

(b) Recording with maximum amplitude at 1V

Figure 6.3

The first graph, characterized by relatively stable and flat curve, represents scenarios where the ampli-
tude measured by the EEG headset was around 1V. Each point in the graph is relatively close to the
maximum confindence level. This amplitude resulted in high confidence scores, indicating highly robust
system performance. Noticeable dips in the curves correspond precisely to periods of switching from
one frequency to the other.

The second graph, exhibiting a more dynamic and fluctuating pattern, corresponds to conditions with
amplitudes around 0.1mV. Although not achieving maximum confidence levels, the system still exhibited
significantly high confidence scores, demonstrating effective classification even at lower signal strengths.

These results affirm the BCI system’s effectiveness in accurately identifying EEG signal frequencies
under controlled conditions, reinforcing its potential for reliable real-time cursor control in practical
applications.
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6.3.2 Human Subject Measurements
Following the validation using function generator-induced signals, additional measurements were con-
ducted with EEG signals recorded directly from human subjects. These experiments aimed to evaluate
the system’s real-time performance under natural brain activity, including realistic levels of noise and
artifacts.

In these trials, the subject was instructed to focus attention on either the left or the right flickering
block in the graphical user interface. In one session, the subject was instructed to look first at the left
flicker target and then shift to the right. In another session, the order was reversed. Each of these
conditions was repeated to assess consistency and robustness of classification.

The resulting performance graphs of the 2 sessions, presented in Figures 6.4a and 6.4b, show significantly
more fluctuation in confidence scores compared to the function generator trials. The curves are notably
more fluctuating and more than half of the time do not satisfy the 0.2 confidence threshold. This
signifies that the classification algorithm is struggling with decreased the signal quality, mainly in part
from the brain artifacts caused by blinking and other processes. Moreover, physiological artifacts such
as eye-blinking, subtle head movements, and other involuntary muscle activity contribute additional
noise, degrading classification accuracy.

(a) Recording with subject looking first to the left

(b) Recording with subject looking first to the right

Figure 6.4
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Unlike the function generator trials, the system showed noticeably more difficulty consistently identi-
fying whether the subject was focusing on 8.57 Hz or 12 Hz targets. This observation highlights the
challenge of translating performance from idealized test setups to real-world applications and reinforces
the importance of robust artifact filtering and adaptive signal processing for future improvements.



7
Results and Discussion

7.1 Results and Requirement Fulfillment
The developed Graphical User Interface (GUI) for the SSVEP-based Brain-Computer Interface (BCI)
successfully meets nearly all specified requirements and performs reliably within the overall system
architecture. It was designed to support real-time responsiveness, intuitive user interaction, and seam-
less integration with signal processing and data acquisition subsystems—objectives that were largely
achieved.

During testing, the GUI demonstrated full functionality and operational independence. It reliably
processed EEG signals from all sources - whether from actual hardware, mock LSL data streams, or
artificial function generator signals - displaying them in real time. This confirms the interface itself is
not the system’s limiting factor, as classification accuracy depends primarily on the back-end processing

All core modules of the interface—Main Menu, Training, Calibration, and Cursor Control—performed
according to design specifications. The user interface offers intuitive navigation and does not require
prior BCI experience, making it accessible to first-time users. Visual stimuli are rendered with precise
timing control aligned to the screen refresh rate, and the Training Module supports configurable EEG
data recording trials for offline analysis. Real-time feedback, including cursor movement and prediction
indicators, accurately reflects classification output, ensuring a responsive and interactive user experience.

In line with the defined system-level and subgroup-specific requirements, latency has remained well
within acceptable limits. EEG data visualization happened almost instantaneously, and interaction
with the classification pipeline fits within the broader target of 1 second end-to-end latency. Real-time
operation, smooth interaction, and low-latency streaming were maintained across several trials.

The complete BCI system pipeline—from signal acquisition and stimulus presentation to real-time
streaming, classification, and user feedback—was successfully validated using artificial input. However,
when tested with real EEG signals, the system encountered significant performance limitations, partic-
ularly in the classification module. Despite extensive GUI-side optimizations—including adjustments
to the flicker stimulus design (e.g., color, size, layout, focus indicators) and even simplifying the inter-
face to a single flickering element—classification accuracy remained below acceptable levels for reliable
control.

The GUI modules did nonetheless interact correctly with other system components, consistently trans-
mitting control signals and receiving classification output. This confirms successful integration with
the data acquisition and signal processing modules and that the GUI is not the source of the system’s
shortcomings.

In conclusion, the GUI successfully serves as an intuitive, reliable interface for SSVEP-based cursor
control. Its modular and extensible design provides a strong foundation for future enhancements. With
improvements to signal quality and classifier performance, this system can evolve into a fully functional,
practical BCI system.
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7.2 Reflections and Future Work
Working on this project provided valuable hands-on experience in translating theoretical BCI concepts
into a functional, real-time system. Throughout the development process, the GUI subgroup gained
deeper insights into cross-disciplinary collaboration, iterative problem-solving, and user-centered inter-
face design. One key takeaway was the importance of modular implementation and early testing, which
allowed the interface to remain functional even before full integration with other subgroups. This flexi-
bility proved essential for debugging and validating GUI components independently. Overall, the project
highlighted both the challenges and rewards of engineering a working BCI pipeline in a collaborative
setting.

Potential improvements for the overall BCI system include:

• Implementing adaptive algorithms and machine learning to better handle individual variations in
EEG signals.

• Increasing robustness against EEG artifacts and signal noise to improve overall reliability.
• Enhancing the user interface for greater intuitiveness and accessibility.

Future development directions for the GUI include:

• Multiclass classification with three or four inputs, expanding the range and complexity of user
interactions. Also exploring the possibility of other known BCI paradigms and potentially com-
bining them could help in providing multiple ways to interact with the system.

• Extending functionality with user-specific settings to improve customization and user experience.
• Transitioning from a Python script into a full-fledged Windows application to enhance usability

for both individual users and commercial deployment, facilitating broader adoption.



8
Conclusion

This thesis presented the design and implementation of a user-focused graphical interface for a real-time
SSVEP-based brain-computer interface (BCI) system. Developed in collaboration with Data Acquisition
and Signal Processing subgroups, the GUI enabled users to control a computer cursor using only brain
activity, with key functionalities including real-time EEG visualization, visual stimulus presentation,
configurable data recording trials , and live feedback based on classification results.

Throughout development, emphasis was placed on creating an intuitive and modular interface that
could operate independently while integrating seamlessly into the broader BCI pipeline. The system
was successfully validated using both artificial input and human EEG recordings, demonstrating robust
real-time performance under controlled conditions. Despite challenges related to signal noise and clas-
sification reliability with real EEG data, the GUI subsystem itself fulfilled all functional, performance,
and integration requirements.

Importantly, the findings confirmed that the GUI was not a limiting factor in system performance.
Instead, the limitations observed in real-world classification accuracy were primarily linked to signal
quality and inherent EEG variability, reinforcing the need for more advanced signal processing and
adaptive algorithms in future work.

Ultimately, this project has laid a strong foundation for further development in accessible BCI applica-
tions. The GUI’s architecture allows for future enhancements such as multiclass control, personalization,
and broader integration into real-world assistive systems. With continued improvements to signal qual-
ity and classification robustness, this system has the potential to evolve into a reliable and practical
tool for non-invasive brain-computer interaction.
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A
Source Code

Click here to view the source code

A.1 Statement use of AI
AI tools were used to assist in writing this report. They helped summarize certain papers, clarify
complex methodologies, refine vocabulary, and improve the conciseness and readability of some self-
written sections.
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