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A brief prehistory of double descent

Marco Looga‘b‘1 , Tom Viering®®, Alexander Mey?, Jesse H. Krijthe®, and David M. J. Tax®

In their thought-provoking paper, Belkin et al. (1) illus-
trate and discuss the shape of risk curves in the context
of modern high-complexity learners. Given a fixed
training sample size n, such curves show the risk of a
learner as a function of some (approximate) measure
of its complexity N. With N the number of features,
these curves are also referred to as feature curves. A
salient observation in ref. 1 is that these curves can
display what they call double descent: With increasing
N, the risk initially decreases, attains a minimum, and
then increases until N equals n, where the training data
are fitted perfectly. Increasing N even further, the risk
decreases a second and final time, creating a peak at
N=n. This twofold descent may come as a surprise,
but as opposed to what ref. 1 reports, it has not been
overlooked historically. Our letter draws attention to
some original earlier findings of interest to contempo-
rary machine learing.

Already in 1989, using artificial data, Vallet et al. (2)
experimentally demonstrated double descent for
learning curves of classifiers trained through minimum
norm linear regression (MNLR; see ref. 3)—termed the
pseudo-inverse solution in ref. 2. In learning curves the
risk is displayed as a function of n, as opposed to N for
risk curves. What intuitively matters in learning behav-
ior, however, is the sample size relative to the measure
of complexity. This idea is made explicit in various
physics papers on leaming (e.g., refs. 2, 4, and 5),
where the risk is often plotted against a=4¢. A first
theoretical result on double descent, indeed using
such a, is given by Opper et al. (4). They prove that in
particular settings, for N going to infinity, the pseudo-

inverse solution improves as soon as one moves away
from the peak at a=1.

Employing a so-called pseudo-Fisher linear dis-
criminant (PFLD, equivalent to MNLR), Duin (6) was the
first to show feature curves on real-world data quite
similar to the double-descent curves in ref. 1. Com-
pare, for instance, figure 2 in ref. 1 with figures 6 and
7 in ref. 6. Skurichina and Duin (7) demonstrate exper-
imentally that increasing PFLD’s complexity simply by
adding random features can improve performance
when N=n (i.e., a=1). The benefit of some form of
regularization has been shown already in ref. 2. For
semisupervised PFLD, Krijthe and Loog (8) demon-
strate that unlabeled data can regularize but also
worsen the peak in the curve. Their work builds on
the original analysis of double descent for the super-
vised PFLD by Raudys and Duin (9).

Interestingly, results from refs. 4-7 suggest that
some losses may not exhibit double descent in the
first place. In refs. 6 and 7, the linear support vector
machine (SVM) shows regular monotonic behavior.
Analytic results from refs. 4 and 5 show the same for
the so-called perceptron of optimal (or maximal) sta-
bility, which is closely related to the SVM (5).

The findings in ref. 1 go, significantly, beyond
those for the MNLR. Also shown, for instance, is dou-
ble descent for two-layer neural networks and random
forests. Combining this with observations such as those
from Loog et al. (10), which show striking multiple-
descent learning curves (even in the underparameter-
ized regime), the need to further our understanding of
such rudimentary leaming behavior is evident.
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