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UP-SCALING OF THE ULTRASONIC WELDING PROCESS FOR CF/PEEK COMPOSITES

Abstract

The aerospace industry is looking to reduce their environmental impact through projects like the
Clean Sky Joint Technology Initiative. Two measures to help achieve this goal are to reduce the
aircraft weight so the emissions during flight decrease and to increase the manufacturing
efficiency. Composites often offer lighter solutions and new manufacturing possibilities. Especially
thermoplastic composites, which have the ability to melt and fuse, offer many interesting
possibilities in manufacturing and structural integration. Ultrasonic welding (USW) is a fusion
bonding process which utilizes the ability of thermoplastic composites to form a fusion bond.
USW has extremely short process cycles, does not introduce any foreign materials regardless of
the composition of the samples to be welded, is energy efficient and has the ability to be on-line
monitored, providing joint quality information during welding. With USW it is possible to create
fast, clean and consistent welds in lap shear samples. However the step to up-scaling of the
process has yet to be made. If found possible, USW might contribute to clean joints with strongly

reduced processing times and therefore reduce the environmental impact.

This research investigates the up-scaling of USW using sequential welding for the attachment of
recycled chopped carbon fibre PEEK hinges to continuous carbon fibre PEEK plates. This is
done for the Clean Sky Eco-Design Integrated Technology Demonstrator. Several steps were

taken to up-scale the process from lap shear sample welding to this specific Clean Sky case.

In this research first baseline data was collected by conventional welds as reference for the
subsequent experiments. It was found that the chopped fibre material could not be welded
properly if used as the top sample, close to the sonotrode. This would result in deconsolidation of
the material. Continuous fibre material was therefore used as top sample. It was also found that
for up-scaling using spot welding, restrictions made it impossible to weld using the well-
established travel controlled process. Instead the energy controlled process was used and

investigated.

To use the energy controlled process in a new setup, the influence of different factors on the
energy dissipation during welding was investigated. The results found however did not provide
enough information for accurate predictions and still need further research to be conclusive.

Experiments still provide the best insight in the welding energy needed.

Two new concepts and several practicalities were proposed and investigated. Experiments with
the energy controlled zero travel spot welding of a larger overlap proved unsuccessful. The
stiffness of the composite material caused welding of unintended parts of the overlap, introducing
lots of scatter in the results. For another experiment with dedicated area sized energy director
welding, this did not pose a problem and resulted in more consistent data and higher average
strength. Combined with pre-attached energy directors and the rectangular sonotrode, this

process was deemed to provide good welding conditions for up-scaling.

All the conclusions were used to up-scale the process and design a sequential USW procedure for
the Clean Sky case. This research presents the successful result of this newly proposed welding
procedure, showing welds which were stronger than the hinges. Now that the concept is proven to

work, several suggestions for optimizing the process are presented as well.
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UP-SCALING OF THE ULTRASONIC WELDING PROCESS FOR CF/PEEK COMPOSITES

1 Introduction

1.1 Motivation

The aerospace industry is paying increasing attention to the environmental impact of air
transportation, which is linked for a large part to the aircraft weight. The CO, emissions of this
industry are expected to increase by 50 [%] in 2050 if no action is taken (although this is only
from 2 [%] to 3 [%] of the total man-made CO, emissions) [1]. Lighter and more efficient
structures and materials, shorter and more efficient production processes (and less energy
consuming as a result), can help their bit in reducing the environmental impact. Projects like the
Clean Sky Joint Technology Initiative (JTI), a public private partnership between the European
Commission and the Aeronautical industry, are working on reducing the environmental impact of
aviation. Several new concepts are demonstrated by the production of Integrated Technology
Demonstrators (ITD). The faculty of Aerospace Engineering of Delft University of Technology is
one of the organizations involved in the eco-design airframe ITD, which, among other
technologies, is making use of thermoplastic composites (TPCs) and innovative design and

production methods.

In general the use of composites in (the aerospace) industry is continuously increasing due to the
many advantages composites have over conventional materials. Composites have the ability to be
tailored to meet specific design needs. They combine different materials and therefore different
material properties (high strength of the fibres, low density of the polymer). This results in, if
used properly, lighter solutions for the same structural purpose. Additionally, these composite
solutions often offer better fatigue and environmental resistance. Although thermosetting
composites (TSCs) are currently more common, TPCs (using new thermoplastic resins with
similar engineering properties as commonly used thermosetting resins) are gaining ground
because they offer several advantages. The most important advantages are, their cost effectiveness
in manufacturing (due to short production times and their joining possibilities), high impact
strength and fracture resistance. Even though higher temperature and pressure are needed in the
production of TPCs, other advantages are unlimited shelf-life, post formability, ease of repair and

ease of handling [2].

To profit from all the advantages composites offer, ideally completely integrated structures are
preferred. The higher temperature and pressure required in TPC processing and the higher
viscosity of the thermoplastic resin (500 — 5000 [Pa - s] for thermoplastic resins compared to 100
[Pa - s] for thermosets [3]), can make the manufacturing of more complex shapes difficult and
costly. This can limit the level of integration and calls for other (cheaper) integration techniques
[4]. Conventional integration techniques like mechanical fastening or adhesive bonding are labour
intensive and costly. Additionally, the use of mechanical fastening also results in problems with
stress concentrations. TPC composites however offer the possibility to be fusion bonded, which
potentially increases the cost effectiveness of manufacturing even more. For fusion bonding
techniques there is hardly need for surface treatment of the samples and they have the potential

to offer rapid, reliable and cost effective integration [4].
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Several fusion bonding techniques for TPC exist today, of which ultrasonic welding (USW) has
the highest potential for the very fast welding of small surfaces and is therefore the focus of this
research. USW is a high-frequency low-amplitude process which has several main advantages
compared to other processes. It has an extremely short process time (1-5 [s] total cycle) and is
therefore energy-efficient, it does not require any foreign materials regardless of the structure of
the TPC, on-line monitoring of the welding process is possible with modern USW machines
providing indirect feedback on the weld quality and is therefore well suited for automation 5],
[6]. The current practice produces fast, clean and consistent high quality welds in single lap shear
samples. However, except for a successful experiment of Benatar [7] with the sequential welding
for single and double lap shear specimen, virtually no research has been done in the up-scaling of

the process towards a practical application [4].

"This thesis will present a first investigation into identifying challenges for up-scaling. To this end,
new ultrasonic welding concepts are proposed and tested. Based on the results of these new
concepts, a sequential USW procedure for the welding of chopped fibre hinges to continuous fibre
frames in the Clean-Sky Eco-Design ITD is developed.

A Clean-Sky Eco-Design specific case

For the eco-design ITDs built in the Clean Sky Joint Technology Initiative (JTI) (the ITD F1)
considered in this research, USW can play an important role. The eco-design ITD is a skin panel
reinforced with frames and stringers, has one window cut-out and has two hinges as can be seen
in Figure 1-1. The ITD is used to research and demonstrate several cutting edge technologies
which could help increase structural efficiency, optimize production and reduce environmental
footprint. The faculty of Aerospace Engineering of Delft University of Technology is coordinating
the activities for the design and manufacturing of the F1 eco-design ITD. Other organisations
involved are Fokker Aerostructures, Nationaal Luchtvaart- en Ruimtevaartlaboratorium (NLR),
BEurocopter and the Fachhochschule Nordwestschweiz (FHNW) [8]. Some of the technologies
demonstrated are advanced laser assisted fibre placement, consolidation of the skin panel using
out-of-autoclave infrared heating, stiffener integration on the skin using induction welding, co-
consolidation of the window frame to the skin, microwave in-situ consolidation and recycling of
TPCs. For this last technology FHNW designed and produced helicopter door hinges from
recycled and chopped fibre TPCs (PEEK matrix).

The door hinges are designed to replace similar steel hinges and are compression moulded. The
new design offers a weight reduction from 134 [g] (steel) to 22 [g] (recycled/chopped CF/PEEK)
and is one-step recyclable (which means the material goes from the original hinge to recycling
and the recycled material can directly be used for production again, only needing one step). The
hinges made from recycled TPCs (produced using high voltage fragmentation) only show a 17 [%]
decrease of mechanical properties compared to the first generation hinges, which is promising [9].

A schematic view and a produced hinge can be seen in F igure 1-2.

This hinge will be attached to the edge of the C-frames (manufactured using CF/PEEK-UD), for
which USW can be very promising, making this an interesting application for research into up-
scaling of the process. USW can make the structure more efficient (no cut-outs, stress
concentrations, fasteners, foreign material, short cycle time <5 [s]), saving weight, energy, time
and improving recyclability [8]. This covers many of the goals set by the Clean Sky project [1].
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1) Skin

2) Hat Stiffeners
3) C-Frames

4) Clips

5) Window Frame
6) Hinges

Figure 1-1 | Schematic overview of the Clean Sky JTI Eco-Design ITD F1 — Thermoplastic Composite
Airframe Panel [8]

Figure 1-2 | Schematic view of the TPC helicopter door hinge (left) and actual view of the door hinge
produced of recycled CF/PEEK (right) by FHWN (8], [9]
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1.2 Background information

1.2.1 Thermoplastic composite materials, production and recycling

Many of the high performance technical applications of recent years ask for special material
properties that ave difficult to achieve by metal alloys, especially in aerospace, underwater and
transport applications. A composite material is generally considered to be made from two or
more constituent materials with significantly different properties, which combined provide a

material with better overall properties [10].

In TPC materials a thermoplastic polymer is used as matrix material. A thermoplastic polymer,
is a linear or branched polymer and will soften when heated and harden when cooled, which
offers advantages compared to thermosetting polymer (a thermosetting polymer is a network
polymer, once produced they become permanently rigid and do not soften upon heating). The
process for thermoplastics is reversible, which makes it amongst other things suitable for fusion
bonding (since two separate parts can be molten together) and offers more flexibility in (post-)
processing. Although the processing temperature for thermoplastics is generally higher compared
to thermosets, another advantage is the strongly reduced processing time [10].

Aerospace grade TPC matrix and fibre materials

In the production of TPCs several matrix materials and fibres can be selected. The combinations
are numerous and are driven by criteria like the mechanical properties required, the operation
environment of the material and the costs. Table 1-1 contains some of the aerospace grade high
performance thermoplastic polymer resins showing their structure (amorphous: no crystallisation,
or semi-crystalline: both with an amorphous and a crystalline region), their T, (glass transition
temperature: where an amorphous polymer, or the amorphous phase of a semi-crystalline
polymer, transforms abruptly from a rigid glass state to a soft rubbery state), their T,, (melting
temperature; note that amorphous polymers do not have a melting temperature since they don’t
possess ordered phases, with increasing temperature the polymer just becomes more viscous) and
their Tiaxsev. (Maximum service temperature, the temperature at which the polymer can be used

for an extensive time without significant problems) [11], [12].

Table 1-1 | List of high performance thermoplastic matrix materials and their properties, note that this
table only provides an indication since there are many variants within one polymer type (depending on
manufacturer, process, chain length etc.), providing different values for Ty T and Taxserv. [12], [2], [10],
[13]

Polymer Structure T, [°C] Ty [°C] j T—
PPS — PolyPhenylene Sulfide Semi-crystalline | 81 — 97 285 — 290 | 200 — 260
PEI — Polyether Imide Amorphous 215 - 217 | - 161 - 179
PEKK — PolyEtherKeytoneKeytone | Semi-crystalline | 153 — 170 | 347 — 373 | 250 — 260
PEEK —PolyEtherEtherKeytone Semi-crystalline | 143 — 157 | 322 — 346 | 239 — 260

For composites most of the structural strength and stiffness can usually be attributed to the
fibres embedded in the polymer matrix. Table 1-2 provides general information on strength and

stiffness properties of commonly used fibres in (thermoplastic) composites.
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Table 1-2 | List of commonly used fibre materials and their strength and stiffness properties [14], [15]

Fibre type Tensile Strength [GPa] Elastic Modulus [GPa]
Glass (S-glass) 4.48 85.6
Carbon (IM-7) 5.17 290
Graphite (GY-70) 1.73 517
Boron 3.66 4.14

The variation of thermoplastic matrix material combined with the various different fibre
materials gives the designer freedom to produce efficient composite structures, suited for each
individual application (light weight, cheap, recyclable, etc.). Next to the material choice the
designer can also vary the properties of the composite with the fibre length, stacking sequence
and production process. The fibre length can basically be divided in two groups, continuous and
discontinuous fibres (Figure 1-3). Looking at Figure 1-3, laminates consisting of continuous fibres
in a polymer matrix, like unidirectional (UD) fibres, are more difficult to manufacture but result
in higher strength/stiffness, where discontinuous fibres, like chopped fibres, are relatively easy to

produce but have far lower mechanical properties [2].

Continuous Discontinuous
Unidirectional (UD) Cloth Roving Chopped Mat
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[V 0'/90° (Woven) 130" Helical
Filament Wound

Figure 1-3 | Schematic view of continuous and discontinuous fibre configurations used in composites
(14]

The materials used for the structural parts of the Clean Sky ITD that are of special interest for
this research are the frames and the hinges. The frames are produced of UD continuous carbon
fibres in a PEEK matrix, whereas the hinges are made from chopped fibres (either virgin or

recycled) also embedded in a PEEK matrix.
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Production processes for TPCs

Figure 1-4 shows for both continuous and discontinuous fibres several common processes which

are currently used for the production of TPCs.

Thermoplastic Composites
Processing

l

[ =]
r =\ =)
Discontinuous ( Continuous Fibre
Fibre Composites Composites J
. | = l
~
* Injection (° Thermoforming
Moulding * Diaphragm
*  Blow Moulding Forming
*  Compression * Tape Winding
Moulding * Autoclave
J * Hot Press J
|4 S

Figure 1-4 | Thermoplastic composite processing techniques for continuous and discontinuous fibres [16]

Due to the virtually unlimited variation in shape, fibres and resin material, for most processes
several heating and pressure profiles are available depending on the configuration and material
selection (due to different melting temperatures, viscosity, etc.).

Recycling processes for TPCs

The need for feasible recycling processes for TPCs is increasing, due to the increasing production
and waste stream (12 [%] growth per year) [17], strict regulations (making landfilling more
expensive) [18] and relatively high cost of virgin material (up to 45[€/kg]) [17]. Common
recycling processes for TPCs can be classified in three main methods, as shown in Figure 1-5.

8 » Remoulding > Resin and fibres remoulding
Mechanical
' J Milling, Grinding }——> Fillers production

- g
Chemical > Fibres and chemicals
J
( 2) Combustion ~ }—> Energy and material
Thermal é Fluidisedbed ~ |——> Fibres and energy
o J

j—> Fibres, chemicals and energy

Figure 1-5 | Overview of recycling processes for thermoplastic composites [19]

Pyrolysis

Most of these processes have significant drawbacks and / or are energy intensive and costly.
Although sometimes the mechanical properties of the fibres are sufficient, the whole process is
not deemed (financially) feasible.
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A new technique showing promising results is electro dynamical fragmentation, or high voltage
fragmentation. In this process the chopped fibre TPC is placed in a tank filled with liquid (water)
and is shredded by high voltage discharges between an anode and cathode in the tank. These
discharges form an electric arc (plasma channel) which produces a shockwave and shreds the
material. An advantage of this process is that it is already industrialized for the mining industry.
Tests by FHNW [18] with chopped fibre samples show that most of the recycled fragments,
although similar in composition as in mechanical recycling (fibre chunks / fibrous material with
resin still attached to the fibres), do not contain broken or damaged fibres. This is due to the fact
that the discharges mainly affect the matrix material which has a lower mechanical strength than
the fibres. This is a major advantage compared to mechanical shredding. Also there is practically
no wear on the equipment (only the anode and cathode have to be replaced after a long time),
and there are no issues with small dust particles. There are no dust particles due to the fact that
the process takes place in water (or another liquid). A downside is that the retrieved fragments
need to be dried. Finally the fibre length of the recycled material can be reasonable controlled by
the length of the recycling process (longer time, smaller parts). Initial experiments performed by
the FHNW institute of polymer engineering show promising results in using this technique for the
recycling of chopped PEEIK/Carbon TPC [18].

1.2.2 Ultrasonic welding of thermoplastic composites

Although commonly used in the plastic industry, USW is still in the early stages for the welding
of TPCs. This section will provide in depth background knowledge on the current understanding

and possibilities of the USW process.

Recent developments and process setup

USW uses ultrasonic low-amplitude high-frequency vibrations perpendicular to the contact area
to generate heat at the interfaces. At the interfaces of the samples to be welded, an extra layer of
polymer is applied called the energy director (ED). As a result of the generated heat the ED
melts, which eventually welds the parts together. A schematic overview of the common setup
used in USW can be found in Figure 1-6. The pneumatic piston is used to move the ultrasonic
train (converter, booster and sonotrode) to the specimen and apply pressure. As explained in
[20], the electric power (typically 60 [Hz] in Europe) is converted to high frequency mechanical
vibrations (20-40 [kHz]) by the converter. The sonotrode or horn is used to transfer these
vibrations to the parts that need to be welded, and the shape of the horn (its mass distribution
with respect to the nodal plane) determines its amplification. Often a booster is used in between
the converter and the horn to vary the amplitude of vibration without the need of reshaping the
horn. The horn and booster together provide the total amplification ratio of the welding setup as

can be seen in Figure 1-6.

Another important part in the setup is the welding fixture. The fixture should be designed in
such a way that it can clamp the parts to be welded, it perfectly aligns them and makes sure that
they do not shift horizontally under the applied vibration. Looking at the schematic overview in
Figure 1-6, it can be seen that during the process some vertical travel should be allowed to cope
with the melting (and flow) of the ED, preferably in such a way that it minimizes bending of the

top part.
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The maximum area that can be welded by this setup in one shot is limited by the shape of the
sonotrode and (more importantly) by the maximum welding power of the machine. This means
that for larger areas sequential welding (the use of multiple spot welds to connect two parts) can
be used, which most likely would be the technique used for the hinge attachment of the Clean
Sky ITD. During sequential welding the first weld will present some constraints to the two parts
(by connecting them at one spot). This might cause problems as some of the vibration within the
top part can result in heating in other (not yet welded) points in the overlap, which can result in
overheating and / or delamination of these points [7]. Some preliminary analysis discussed by
H.M. Lu and A. Benatar [7] shows that such issues might be controlled with the use of dampers
on both sides of the horn. This reduced the vibration substantially elsewhere in the specimen
while not significantly affecting the vibration under the sonotrode. The research on that topic,
however, is very limited. Another option might be to use continuous welding. However,
considering that the size of the specific application (or other general structural parts, like clips
and brackets) is relatively small, spot welding is deemed more suitable. Also virtually no research

on continuous USW of TPCs has been performed so far.

Pneumatic
w b Piston
= © Electric 60 [Hz] Amplitude
£ || 3 ||Converter G o
8 = enerator
= 2040 [kHz]
Booster
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E

Samples to be welded /71

Base & Welding Jig

Figure 1-6 | Schematic view of an ultrasonic welding machine showing amplification steps (6], [20]

Another development in USW of TPCs concerns the EDs used. Formerly the EDs used in USW
were manufactured like V-shaped protrusions. These protrusions heat up preferentially as a result
of higher cyclic strains and concentrate the heat generation at the interface between the parts.
Recent research by I. F. Villegas, however, has shown that the need of such complex EDs is not
necessary for the welding of TPC [20], [5], [21]. One simple flat layer of ED material (which is
basically the thermoplastic matrix material), will suffice in obtaining the desired weld. Instead of
attaching / moulding V-shaped protrusions to the specimen, the flat ED can simply be taped to
one of the parts. The lack of need for V-shaped protrusions can be attributed to the fact that the
stiffness of the simple, one-layer, ED is already much lower than the stiffness of the parts to be
welded, due to their lack of reinforcement. Therefore the flat layer will already experience higher
cyclic strains. For the Clean Sky project however, the hinges are produced using chopped fibres
which have a different stiffness than the UD carbon fibre reinforced TPCs used in the specimens
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created by LF. Villegas. Welding these to the frames, which are produced using continuous UD
fibres, might result in the need for more complex EDs.

Process monitoring and the effect of process parameters

With modern USW machines, it is possible to monitor the joint quality by measuring the
dynamic mechanical impedance of the parts during welding, which is done by indirectly
measuring the power dissipation [4], [5]. The USW machine available in the DASML, is controlled
by a microprocessor unit, the Advanced Control Unit (ACU), which provides the dissipated
power as output (next to usually the force and the displacement during the welding process),
which is recorded by the computer software AcuCapture and can be easily exported and analysed
in software like Microsoft Excel. Figure 1-7 shows an output of a typical weld. In the graph
shown in Figure 1-7, three phases of the complete USW process can be distinguished. The initial
phase, I, where the sonotrode travels to the samples and builds up to the welding force, the
vibration phase, II, where the actual welding is done, and the solidification phase, III, in which
(usually) the pressure is increased quickly and is kept constant for several seconds as the meld

solidifies.
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Figure 1-7 | Typical output of the USW process, showing travel, force and dissipated power as well as
displaying other welding information, as produced by the AcuCapture software coupled to the ACU of
the Rinco Dynamic 3000 USW machine used by the faculty of Aerospace Engineering DASML.
Showing the, I) initial (built-up) phase, II) vibration phase, III) solidification phase

Using the power dissipation and the displacement curve, different (although coupled) steps in the
vibration phase (II) of the USW process can be identified, which is clarified in Figure 1-8 from
the research of LF. Villegas [22]. Note that the displacement curve starts at 0 [mm] at the
beginning of the process (Figure 1-8), and is corrected for the travel in phase I of the USW (by
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subtracting the already travelled distance of the sonotrode in phase I from the other values in
this phase) showing only the relative travel during this phase.
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Figure 1-8 | Typical evolution of the power dissipation and displacement curves for the different
welding steps during the vibration (welding) phase of the USW process. The displacement of the
sonotrode is relative to its position at the beginning of the phase and positive values indicate downward

displacement. [22]
The different steps that can be distinguished in Figure 1-8 are explained here briefly: [22]

1. Stage 1: Beginning of the process, characterized by a strong increase in power dissipation
and a slightly negative (upward) displacement of the sonotrode to accommodate for the
vibration at the start of the process.

2. Stage 2: The ED continues to heat up and melt through the nucleation and growth of
random hot spots, characterized by a slow decrease in power dissipation (related to the
progressive reduction of the solid area of the ED) and no significant displacement (no
flow of the ED).

3. Stage 3: Beginning of the squeeze flow of the ED, this can be clearly seen by the positive
(downward) displacement of the sonotrode. The increase in power comes from the
increase of mechanical impedance of the interface when all melt fronts (growth of the hot
spots) meet.

4. Stage 4: Approximately constant power dissipation in this phase, is believed to come from
two counteracting effects which are the flow of the ED (causing power increase) and the
beginning of melting the matrix in the composite parts (causing power decline). This can
be seen by the flat power curve in this area, referred to as the power plateau.

5. Stage 5: At this stage the ED is completely squeezed out (practically no existence of resin
at the weld line) and the power dissipation drops again. In this phase the matrix of the
composite parts continues to melt and squeeze flow starts, squeezing out the matrix resin

along with the reinforcing fibres.
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The best quality weld is obtained if flow of the ED reaches the point where the melting of the
composite matrix starts (in the power plateau) [5]. This area can be identified using the feedback
of the USW machine, which makes it easy to identify the optimum welding conditions for various

types of welding setups and materials [5], [22].

In the USW process there are various parameters that can be directly controlled (settings on the
USW machine), like amplitude of vibration, welding (trigger) force, build-up rate for the welding
force, travel of the sonotrode and the solidification force. Research done at the Aerospace
Engineering faculty of Delft University of Technology by several authors ( [22], [21]) describes the
effect of these parameters on the mechanical quality of the welds, the vibration time, the

maximum required power and the welding energy.

The experiments were done using CF/PEI TPC material, and the results indicated that none of
the parameters had a significant effect on the mechanical quality of the welds [21], meaning that
the processing window for this material is broad. This is due to the fact that PEL is an
amorphous polymer, which allows for a relatively broad processing temperature range with no
sudden phase changes [21]. The research also indicated that the build-up rate and the
solidification force were never the first or second significant influencing factor of the process. The
two most important parameters affecting the maximum dissipated power were 1) amplitude of
vibration and 2) welding force, increasing those two parameters leads to an increase in the
maximum power. For the vibration time these were found to be 1) welding force and 2)
amplitude of vibration, increasing those two parameters leads to a reduction in vibration time.
Influencing the welding energy, 1) travel of the sonotrode and 2) welding force were found to be
the most significant parameters. Here increasing those parameters leads to an increase in welding

energy [22].

Looking in more detail at the effect of the amplitude of vibration and the welding force on the
different stages of the power curve displayed in Figure 1-8, several conclusions can be found in
literature [22]. In the first stage, changing the amplitude has more effect than changing the
welding force, although increasing them means an increase in the power peak in both cases. That
changing the amplitude has (slightly) more effect in this stage can be attributed to the fact that
the amplitude affects both the viscoelastic and the interfacial friction and the welding force only

the interfacial friction. [22]

In the second stage changing the welding force has far more effect on the duration of this stage
than changing the amplitude of vibration. This stage consists of the initiation and growth of hot
spots. Increasing the amplitude (mainly) increases the growth rate of the hot spots, while
increasing the welding force increases the amount of initiation sites for the hot spots. The latter
has more effect on the duration of this stage and causes faster heat generation. The faster heat
generation results in a continuous power drop instead of a step-like drop seen for lower welding
forces. [22]

It is not stated in literature which affects the third stage more, but looking at the graphs shown
in Figure 1-9 from the research of LF. Villegas [22] it can be seen that for a higher (1500 [N])
welding force the difference in amplitude has less influence on the duration of this stage than if
the welding process is performed with a low (300 [N]) welding force. Since flow already starts at
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this stage, and squeeze flow rates are higher for a higher force, the welding force might be the

most important factor.
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Figure 1-9 | Influence of the amplitude of vibration (A1 = 51.8 [um], A9 = 86.2 [um]) on the power
curves for a low welding force (300 [N], top) and a high welding force (1500 [N], bottom) [22].
Depicting less change considering duration of stage 3 in the 1500 [N] welds with varying amplitude
compared to the 300 [N] welds.

Also for the fourth stage the welding force is the most important factor. Increasing the welding

force significantly decreases the duration due to the faster flow of the molten ED.

For the final stage it has been noted that a low welding force provides a better defined stage
(using the same total displacement as in a higher welding force process). It is normally considered
to stop welding before this stage (namely at stage 4 as explained), therefore this is deemed less

important.

All the process parameters described thus far are directly controllable by the settings of the USW
machine. In the welding process however, other factors influence the result as well. Although
virtually no research is found in literature on some the following parameters and their influence
on the USW process, they might be important in further development and up-scaling of the

process.
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Firstly the effect welding two different material configurations to each other is not been
researched yet. H. Potente mentions briefly that some different polymers are compatible and can
be welded to each other [23]. The research of A. Benatar also showed that in some cases this was
possible with dissimilar composites (J polymer graphite and PEEK graphite composites). [24]
The effect of welding short fibre TPC to continuous fibre TPC however, has not been researched
yet. The difference in stiffness and heat dissipation might form some issues in producing high
quality welds; although literature suggest that if the ED has a lower stiffness than the composite

parts it will be sufficient to promote preferential heating at the interface [5].

Secondly the welding setup itself has influence on the process as well. Two main parts of the
setup that can be readily changed (or need to be changed to change the welding configuration),
are the sonotrode and the jig (or welding fixture). The effect of different sonotrodes has been
studied for plastic welding and it can be shown that changing the shape and / or size of the
sonotrode affects the energy dissipated during the process [25]. Therefore the temperature
developed at the interface can change for the same settings (since the energy dissipation changes,
a different amount of energy can be utilized in the heating of the ED). Also the amplitude differs
per sonotrode (different sonotrodes have different gains) [25]. However, using different settings in
the USW machine can counteract some of these changes. No research on the effect of the welding
jig is found in literature, except for the fact that it has some influence on the welding process
[22], [24]. Tt is stated for example in the research by I. F. Villegas that the welded samples

showed some preferential heating at one of the edges of the overlap due to the jig design [22].

Mechanics and modelling of the joining process

As explained by A. Benatar and T. G. Gutowski the USW process is very complex and is still not
completely understood. The process however can be divided in 5 separate yet highly coupled sub-
processes (not to confuse with the 5 stages of USW process). The mechanics (and proposed

modelling) of these sub-processes are described here:
1. Mechanics and vibrations of the parts

To evaluate the strain distribution in the parts (from which the heating can be determined), a
mechanics and vibrations model of the entire setup is needed. In the research of A. Benatar and
T. G. Gutowski a lumped parameter model was used (however with triangular EDs moulded to
the substrates). An overview of this can be seen in Figure 1-10. It is important to note that all
masses and their mechanical properties of all the parts in the entire welding column (from the
converter to the fixture on the base) play a role in this model for USW. This means that when
one or several parts are changed, it influences the mechanics and vibrations of the entire welding

setup.
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Figure 1-10 | Schematic overview of an USW system (A) and the corresponding lumped parameter
model (B) as described by A. Benatar and T. G. Gutowski. [24] The masses mz, ms, m, describe the
triangular ED used in this parameter model, were the other masses represent all the other separate

parts in the welding column for this setup.
2. Viscoelastic and interfacial friction, heating of the ED

If the USW process is well designed, the energy is focussed on the ED. Viscoelastic materials (like
thermoplastic ED) subjected to this energy (the sinusoidal strain from the vibrations under the
applied pressure) dissipate some of it into heat through intermolecular friction. This process is
called viscoelastic heating. The average viscoelastic heating rate (Qavg) is described by Equation
1-1, in which w is the frequency of vibration, €, is the (cyclic) amplitude of strain of the ED and
E" is the loss modulus of the thermoplastic (viscoelastic) resin material (this material property is
dependent on temperature and frequency, so it needs to be determined for different welding
frequencies along the entire temperature range) [24].

i wegE” Equation 1-1 [24]
Qavg = )
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Although viscoelastic heating is an important parameter in the heating of the ED, recent research
performed by Zhang et al. [26] shows that the viscoelastic heating is only the dominant heating
mechanism above the Ty. Not considered in the study of A. Benatar and T. G. Gutowski is the
interfacial friction (combined with thermal conduction), which is dominant below the Ty and
causes the initial temperature rise. The interfacial heating is higher at the edges (causing a faster
temperature rise at the edges) due to stress concentrations and a high relative sliding velocity.
The experimental results published in the research of Zhang et al. [26] confirm the theory that
interfacial friction rather than viscoelastic heat starts the welding process. It is only above the Ty

that viscoelastic heating becomes dominant.

Another important factor to consider is the so called hammering effect. For ideal welding
conditions the sonotrode stays in contact with the upper sample, transferring all energy to the
ED (which has the lowest stiffness and deforms most significantly). However, it has been observed
that during welding of TPCs contact between the upper sample and the sonotrode has been lost
(negative / upward travel seen in the travel curves), making the sonotrode ‘hammer’ on the parts
to be welded. For the vis