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Abstract We study a new process, which we call ASEP(q, j), where particles
move asymmetrically on a one-dimensional integer lattice with a bias determined by
q ∈ (0, 1) and where at most 2 j ∈ N particles per site are allowed. The process is con-
structed from a (2 j + 1)-dimensional representation of a quantum Hamiltonian with
Uq(sl2) invariance by applying a suitable ground-state transformation. After showing
basic properties of the process ASEP(q, j), we prove self-duality with several self-
duality functions constructed from the symmetries of the quantum Hamiltonian. By
making use of the self-duality property we compute the first q-exponential moment
of the current for step initial conditions (both a shock or a rarefaction fan) as well as
when the process is started from a homogeneous product measure.

Mathematics Subject Classification 60K35 · 82C22 · 82C26

1 Introduction

1.1 Motivation

The Asymmetric Simple Exclusion Process (ASEP) on Z is one of the most popular
interacting particle system. For each q ∈ (0, 1], the process is defined, up to an
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irrelevant time-scale factor, by the following two rules: (1) each site is vacant or
occupied; (2) particles sitting at occupied sites try to jump at rate q to the left and at rate
q−1 to the right and they succeed if the arrival site is empty. The ASEP plays a crucial
role in the development of the mathematical theory of non-equilibrium statistical
mechanics, similar to the role of Ising model for equilibrium statistical mechanics.
However, whereas the Ising model—defined for dichotomic spin variables—is easily
generalizable to variables taking more than two values (Potts model), there are a-priori
different possibilities to define the ASEP process with more than one particle per site
and it is not clear what the best option is.

In the analysis of the standard (i.e., maximum one particle per site) Exclusion
Process a very important property of the model is played by self-duality. First
established in the context of the Symmetric Simple Exclusion Process (SSEP) [16],
self-duality is a key tool that allows to study the process using only a finite number
of dual particles. For instance, using self-duality and coupling techniques Spitzer and
Liggett were able to show that the only extreme translation invariant measures for the
SSEP on Zd are the Bernoulli product measures and to identify the domain of attrac-
tion of them. The extension of duality to ASEP is due to Schütz [23] and has played
an important role in showing that ASEP is included in the KPZ universality class, see
e.g. [3,10]. As a general rule, the extension of a duality relation from a symmetric to
an asymmetric process is far from trivial.

It is the aim of this paper to provide a generalization of the ASEP with multiple
occupation per site for which (self-)duality can be established. A guiding principle in
the search of such process will be the connection between Exclusion Processes and
Quantum Spin Chains. The duality property will then be used to study the statistics of
the current of particles for the process on the infinite lattice.

1.2 Previous extensions of the ASEP

Several extensions of the ASEP model allowing multiple occupancy at each site have
been provided and studied in the literature. Among them we mention the following.

(a) It is well known that the XXXHeisenberg quantum spin chain with spin j = 1/2 is
related (by a change of basis) to the SSEP. In thismapping the spins are represented
by 2 × 2 matrices satisfying the sl2 algebra. By considering higher values of the
spins, represented by (2 j + 1)-dimensional matrices with j ∈ N/2, one obtains
the generalized Symmetric Simple Exclusion Process with up to 2 j particles per
site (SSEP(2 j) for short), sometimes also called “partial exclusion” [5,12,24].
Namely, denoting by ηi ∈ {0, 1, . . . 2 j} the number of particles at site i ∈ Z, the
process that is obtained has rates ηi (2 j − ηi+1) for a particle jump from site i to
site i + 1 and rate ηi+1(2 j − ηi ) for the reversed jump. For such extension of the
SSEP, duality can be formulated and (extreme) translation invariant measures are
provided by the Binomial product measures with parameters 2 j (the number of
trials) and ρ (the success probability in each trial).
The naive asymmetric version of this process, i.e., considering a rate q ni+1(2 j −
ni ) for the jump of a particle from site i + 1 to site i and a rate q−1ni (2 j − ni+1)

for the jump of a particle from site i to site i + 1, with q ∈ (0, 1), loses the
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A generalized asymmetric exclusion process… 889

sl2 symmetry and has no other symmetries from which duality functions can be
obtained. In fact in this model it is unknown if a self-duality property exists, except
in the case j = 1/2 where it coincides with ASEP [23].

(b) Another possibility is to consider the so-called K-exclusion process [20] that sim-
ply gives rates 1 to particle jumps from occupied sites together with the exclusion
rule that prevents more than K particles to accumulate on each site (K ∈ N).
Namely, denoting by 1A the indicator function of the set A, the K -exclusion
process on Z has rates 1{ηi>1, ηi+1<K } for the jump from site i to site i + 1 and
1{ηi+1>1, ηi<K } for the jump from site i + 1 to site i . For the symmetric version
of this process it has been shown in [20] that extremal translation invariant mea-
sures are product measures (with truncated-geometric marginals). The asymmetric
version of this process obtained by giving rate q to (say) the left jumps and rate
q−1 for the right jumps, has been studied by Seppäläinen (see [26] and references
therein). For the asymmetric process, invariant measures are unknown, and non-
product, nevertheless many properties of this process (e.g. hydrodynamic limit)
could be established. Again, both in the symmetric and asymmetric case, no duality
is known for this process.

1.3 Informal description of the results

The fact that self-duality is known for the Symmetric Exclusion Process for any
j ∈ N/2 [12] and it is unknown in all the other cases (except ASEP with j = 1/2) can
be traced back to the link that exists between self-duality and the algebraic structure
of interacting particle systems. Such underlying structure is usually provided by a Lie
algebra naturally associated to the generator of the process. The first result in this
direction was given in [24] for the symmetric process, while a systematic and general
approach has been described in [6,12]. When passing from symmetric to asymmet-
ric processes, one has to change from the original Lie algebra to the corresponding
deformed quantum Lie algebra, where the deformation parameter is related to the
asymmetry. This was noticed in [23] for the standard ASEP, which corresponds to a
representation of the Uq(sl2) algebra with spin j = 1/2.

In this paper we further explore the relation between the deformedUq(sl2) algebra
and a suitable generalization of the Asymmetric Simple Exclusion Process. For a
given q ∈ (0, 1) and j ∈ N/2, we construct a new process, that we name ASEP(q, j),
which provides an extension of the standard ASEP process to a situation where sites
can accommodate more than one (namely 2 j) particles. The construction is based on
a quantum Hamiltonian [4], which up to a constant can be obtained from the Casimir
operator and a suitable co-product structure of the quantum Lie algebra Uq(sl2). For
this Hamiltonian we construct a ground-state which is a tensor product over lattice
sites. This ground-state is used to transform the Hamiltonian into the generator of
the Markov process ASEP(q, j) via a ground-state transformation. As a result of
the symmetries of the Hamiltonian, we obtain several self-duality functions of the
associated ASEP(q, j). Those functions are then used in the study of the statistics of
the current that flows through the system for different initial conditions.
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For j = 1/2 the ASEP(q, j) reduces to the standard ASEP. For j → ∞, after
a proper time-rescaling, ASEP(q, j) converges to the so-called q-TAZRP (Totally
Asymmetric Zero Range process), see Remark 3.3 below and [3] for more details.

We mention also [19] and [18] for other processes with Uq(sl2) symmetry. In par-
ticular the process in [18] is a (2 j+1) state partial exclusion process constructed using
the Temperley–Lieb algebra, in which multiple jumps of particles between neighbor-
ing sites are allowed. We remark that for j = 1 the process depends on a parameter β

and for the special value β = 0 it reduces to ASEP(q, 1).

1.4 From quantum Lie algebras to self-dual Markov processes

By analyzing in full details the case of theUq(sl2) we will elucidate a general scheme
that can be applied to other algebras, thus providing asymmetric version of other
interacting particle systems (e.g. independent random walkers, zero-range process,
inclusion process). We highlight below the main steps of the scheme (at the end of
each step we point to the section where such step is made for Uq(sl2)).

(i) (Quantum Lie Algebra): Start from the quantization Uq(g) of the enveloping
algebra U (g) of a Lie algebra g (Sect. 4.1).

(ii) (Co-product): Consider a co-product � : Uq(g) → Uq(g) ⊗ Uq(g) making the
quantized enveloping algebra a bialgebra (Sect. 4.2).

(iii) (Quantum Hamiltonian): For a given representation of the quantum Lie algebra
Uq(g) compute the co-product �(C) of a Casimir element C (or an element
in the centre of the algebra). For a one-dimensional chain of size L construct
the quantum Hamiltonian H(L) by summing up copies of �(C) over nearest
neighbor edges. (Sect. 4.3).

(iv) (Symmetries): Basic symmetries (i.e. commuting operators) of the quantum
Hamiltonian are constructed by applying the co-product to the generators of
the quantum Lie algebra (Sect. 4.4).

(v) (Ground state transformation): Apply a ground state transformation to the quan-
tum Hamiltonian H(L) to turn it into the generatorL (L) of a Markov stochastic
process (Sect. 5).

(vi) (Self-duality): Self-duality functions of the Markov process are obtained by act-
ing with (a function) of the basic symmetries on the reversible measure of the
process (Sect. 6).

Whereas steps (i)–(iv) dependon the specific choice of the quantumLie algebra, the last
two steps are independent of the particular choice but require additional hypotheses.
In particular whether step (v) is possible depends on the specific properties of the
Hamiltonian and its ground state. They are further discussed in Sect. 2.

The method introduced in this paper is a fairly general way to construct particle
systemswith dualities from quantum algebras. Recently it has been applied to algebras
with higher rank, such asUq(gl(3)) [2,15] orUq(sp(4)) [15], yielding two-component
asymmetric exclusion process with multiple conserved species of particles. In [7] we
also applied the method to non-compact algebras such as Uq(su(1, 1)), finding new
diffusion processes of heat transport with duality.
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A generalized asymmetric exclusion process… 891

We also mention the recent work [9] on dualities for higher-spin vertex models.
In this work the authors introduced a four-parameter family of interacting particle
systems which enjoy Markov dualities and which can solved by Bethe ansatz. This
general family include many of the known exactly solvable models in the Kardar–
Parisi–Zhang universality class, in particular the ASEP and the q-TASEP. Besides
these two cases, the higher spin model in [9] seems to be different than our system.
In particular the model in [9] is constructed from stochastic versions of the R-matrix
related to the six-vertex model, from which integrability is inherited. It is an open
question to provide a general scheme for the construction of systems with both duality
and integrability from quantum algebras.

1.5 Organization of the paper

The rest of the paper is organized as follows. In Sect. 2 we give the general strategy to
construct a self-dual Markov process from a quantum Hamiltonian, a positive ground
state and a symmetry. In the case where the quantum Hamiltonian is given by a finite
dimensional matrix the strategy actually amounts to a similarity transformation with
the diagonal matrix constructed from the ground state components.

In Sect. 3 we start by defining the ASEP(q, j) process. After proving some of
its basic properties in Theorem 3.1 (e.g. existence of non-homogenous product mea-
sure and absence of translation invariant product measure), we enunciate our main
results. They include: the self-duality property of the (finite or infinite) ASEP(q, j)
(Theorem 3.2) and its use in the computation of some exponential moments of the
total integrated current via a single dual asymmetric walker (Lemma 3.1). The explicit
computation are shown for the step initial conditions (Theorem 3.3) and when the
process is started from an homogenous product measure (Theorem 3.4).

The remaining Sections contain the algebraic construction of the ASEP(q, j)
process by the implementation of the steps described in the above scheme for the
case of the quantum Lie algebraUq(g). In particular, in Sect. 4 we introduce the quan-
tum Hamiltonian and its basic symmetries on which we base our construction of the
ASEP(q, j). In Sect. 5 we exhibit a non trivial q-exponential symmetry and a positive
ground state of the quantum Hamiltonian that allows to define a Markov process. In
Sect. 6 we prove the main self-duality result for the ASEP(q, j). In Sect. 7 we explore
other choices for the symmetries of the Hamiltonian and, as a consequence, prove the
existence of an alternative duality function that reduces to the Schütz duality function
for the case j = 1/2.

2 Ground state transformation and self-duality

In this section we describe a general strategy to construct a Markov process from a
quantum Hamiltonian H . Furthermore we illustrate how to derive self-duality func-
tions for that Markov process from symmetries of the Hamiltonian. The construction
of a Markov process from a Hamiltonian and a positive ground state has been used at
several places, e.g. the Ornstein–Uhlenbeck process is constructed in this way from
the harmonic oscillator Hamiltonian, see e.g. [25]. In Lemma 2.1 below we recall
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the procedure, and how to recover symmetries of the Markov process from symme-
tries of the Hamiltonian. In general, in order to apply this procedure, one requires
some condition on the Hamiltonian. In the discrete setting this condition boils down
to non-negative out-of-diagonal elements and the existence of a positive ground state.
In the more general setting the Hamiltonian has to be a Markov generator up to mass
conservation (cfr. (1) in Lemma 2.1 below). In particular ifH is of the form (1) then
as a consequence the semigroup etH preserves positive functions.

2.1 Ground state transformation and symmetries

Lemma 2.1 Let H be an operator of the form

H f = L f − h f (1)

where L is the generator of a Markov (Feller) process on a metric space � and h is a
bounded continuous function on the same space � . Suppose that there exists ψ such
that eψ is in the domain of H , and

H eψ = 0. (2)

Then the following holds:

(a) The operator defined by
Lψ f = e−ψH (eψ f ) (3)

is a Markov generator.
(b) There is a one-to-one correspondence between symmetries (commuting operators)

ofH and symmetries of Lψ : [S,H ] = SH −H S = 0 if and only if [Lψ, Sψ ] =
0 with Sψ = e−ψ Seψ .

(c) If H is self-adjoint on the space L2(�, dα) for some σ -finite measure α on �,
then Lψ is self-adjoint on L2(�, dμ) with μ(dx) = e2ψ(x)α(dx). In particular,
if
´
e2ψ(x)α(dx) = 1 then μ is a reversible probability measure for the Markov

process with generator Lψ .

Proof For item (a): for every ϕ such that eϕ is in the domain of L , the operator

Lϕ f = e−ϕL(eϕ f ) − (e−ϕL(eϕ)) f (4)

defines a Markov generator, see e.g. [11, section 1.2.2], and [21]. Now choosing
ϕ = ψ , we obtain from the assumption (2) that

e−ψ Leψ = h

123
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Hence,

Lψ f = e−ψ L(eψ f ) − (e−ψ L(eψ)) f

= e−ψ L(eψ f ) − h f = e−ψ(L − h)(eψ f )

= e−ψH (eψ f )

For item (b) suppose that S commutes withH , then

Lψ Sψ = e−ψH eψe−ψ Seψ

= e−ψH Seψ = e−ψ SH eψ

= Sψ Lψ

For item (c), we compute

ˆ
gLψ( f )dμ =

ˆ
g(e−ψH (eψ f ))e2ψdα

=
ˆ

eψgH (eψ f )dα

=
ˆ

H (eψg)(eψ f )dα =
ˆ

(Lψg) f dμ

where in the third equality we used H = H ∗ in L2(�, dα). ��

The following is a restatement of Lemma 2.1 in the context of a finite state space �

with cardinality |�| < ∞. In this case the condition H = L − h just means that H
has non-negative off diagonal elements.

Corollary 2.1 LetH be a |�|× |�| matrix with non-negative off diagonal elements.
Suppose there exists a column vector eψ := g ∈ R

|�| with strictly positive entries and
such that H g = 0. Let us denote by G the diagonal matrix with entries G(x, x) =
g(x) for x ∈ �. Then we have the following

(a) The matrix

L = G−1H G

with entries

L (x, y) = H (x, y)g(y)

g(x)
, x, y ∈ � × � (5)

is the generator of a Markov process {Xt : t ≥ 0} taking values on �.
(b) S commutes withH if and only if G−1SG commutes withL .
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(c) If H = H ∗, where ∗ denotes transposition, then the probability measure μ on
�

μ(x) = (g(x))2
∑

x∈�(g(x))2
(6)

is reversible for the process with generator L .

Proof The proof of the corollary is obtained by specializing the statements of the
Lemma 2.1 to the finite dimensional setting. In particular for item (a), the operator Lϕ

in (4) reads

(Lϕ f )(x) =
∑

y∈�

L(x, y)eϕ(y)−ϕ(x)( f (y) − f (x)).

Putting ϕ(x) = ψ(x) and using the condition
∑

y∈� L(x, y)eψ(y) = h(x)eψ(x) one
finds

(Lψ f )(x) =
∑

y∈�

H (x, y)eψ(y)−ψ(x) f (y)

from which (5) follows. ��
Remark 2.1 Notice that for every column vector f we have that ifH f = 0 then for
any S commuting with H (symmetry of H ) we have H S f = SH f = 0. This
will be useful later on (see Sect. 5.3) when starting from a vector f with some entries
equal to zero, we can produce, by acting with a symmetry S, a vector g = Sh which
has all entries strictly positive.

2.2 Self-duality and symmetries

For the discussion of self-duality, we restrict to the case of a finite state space �.

Definition 2.1 (Self-duality) We say that a Markov process X := {Xt : t ≥ 0} on �

is self-dual with self-duality function D : � × � → R if for all x, y ∈ � and for all
t > 0

Ex D(Xt , y) = Ey D(x,Yt ). (7)

Here Ex (·) denotes expectation with respect to the process X initialed at x at time
t = 0 and Y denotes a copy of the process started at y.

This is equivalent to its infinitesimal reformulation, i.e., if the Markov process X
has generator L then (7) holds if and only if

L D = DL ∗ (8)

where D is the |�| × |�| matrix with entries D(x, y) for x, y ∈ �. We recall two
general results on self-duality from [12].
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(a) Trivial duality function from a reversible measure.
If the process {Xt : t ≥ 0} has a reversible measure μ(x) > 0, then by the
detailed balance condition, it is easy to check that the diagonal matrix

D(x, y) = 1

μ(x)
δx,y (9)

is a self-duality function.
(b) New duality functions via symmetries.

If D is a self-duality function and S is a symmetry ofL , then SD is a self-duality
function.

We can then combine Corollary 2.1 with these results to obtain the following.

Proposition 2.1 LetH = H ∗ be a matrix with non-negative off-diagonal elements,
and g an eigenvector of H with eigenvalue zero, with strictly positive entries. Let
L = G−1H G be the corresponding Markov generator. Let S be a symmetry of H ,
then G−1SG−1 is a self-duality function for the process with generator L .

Proof By item (c) of the Corollary 2.1 combined with item (a) of the general facts
on self-duality we conclude that G−2 is a self-duality function. By item (b) of Corol-
lary 2.1 we conclude that if S is a symmetry of H then G−1SG is a symmetry
of L . Then, using item (b) of the general facts on self-duality we conclude that
G−1SGG−2 = G−1SG−1 is a self-duality function for the process with generatorL .

��

3 The asymmetric exclusion process with parameters (q, j)
(ASEP(q, j))

Notation. For q ∈ (0, 1) and n ∈ N0 we introduce the q-number

[n]q = qn − q−n

q − q−1 (10)

satisfying the property limq→1[n]q = n. The first q-number’s are thus given by

[0]q = 0, [1]q = 1, [2]q = q + q−1, [3]q = q2 + 1 + q−2, . . .

We also introduce the q-factorial

[n]q ! := [n]q · [n − 1]q · · · · · [1]q ,

and the q-binomial coefficient

(
n

k

)

q
:= [n]q !

[k]q ![n − k]q ! .
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896 G. Carinci et al.

Fig. 1 Schematic description of the ASEP((q, j)). The arrows represent the possible transitions and the
corresponding rates cq (η, ξ) are given in (14) below. Each site can accommodate at most 2 j particles

3.1 Process definition

We start with the definition of a novel interacting particle systems (Fig. 1).

Definition 3.1 (ASEP(q, j) process) Let q ∈ (0, 1) and j ∈ N/2. For a given vertex
set V , denote by η = (ηi )i∈V a particle configuration belonging to the state space
{0, 1, . . . , 2 j}V so that ηi is interpreted as the number of particles at site i ∈ V . Let
ηi,k denotes the particle configuration that is obtained from η by moving a particle
from site i to site k.

(a) The Markov process ASEP(q, j) on [1, L] ∩Z with closed boundary conditions
is defined by the generator

(L (L) f )(η) =
L−1∑

i=1

(Li,i+1 f )(η) with

(Li,i+1 f )(η) = qηi−ηi+1−(2 j+1)[ηi ]q [2 j − ηi+1]q( f (ηi,i+1) − f (η))

+ qηi−ηi+1+(2 j+1)[2 j − ηi ]q [ηi+1]q( f (ηi+1,i ) − f (η)) (11)

(b) We call the infinite-volume ASEP(q, j) on Z the process whose generator is
given by

(L (Z) f )(η) =
∑

i∈Z
(Li,i+1 f )(η) (12)

(c) The ASEP(q, j) on the torus TL := Z/LZ with periodic boundary conditions is
defined as the Markov process with generator

(L (TL ) f )(η) =
∑

i∈TL

(Li,i+1 f )(η) (13)

Here η = (ηi )i∈{1,...,L} denotes a particle configuration belonging to the state space
{0, 1, . . . , 2 j}L , ηi is interpreted as the number of particles at site i , and ηi, j denotes
the particle configuration that is obtained from η by moving a particle from site i to
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site j .

cq(η, ξ) =
⎧
⎨

⎩

qηi−ηi+1−(2 j+1)[ηi ]q [2 j − ηi+1]q if ξ = ηi,i+1

qηi−1−ηi+(2 j+1)[2 j − ηi−1]q [ηi ]q if ξ = ηi,i−1

0 otherwise
(14)

Remark 3.1 (The standard ASEP) In the case j = 1/2 each site can accommodate at
most one particle and the ASEP(q, j) reduces to the standard ASEP with jump rate
to the left equal to q and jump rate to the right equal to q−1.

Remark 3.2 (The symmetric process) In the limit q → 1 the ASEP(q, j) reduces to
the SSEP(2 j), i.e. the generalized simple symmetric exclusion process with up to 2 j
particles per site (also called partial exclusion) (see [5,12,13,24]). All the results of the
present paper apply also to this symmetric case. In particular, for q → 1, the duality
functions that will be given in Theorem 3.2 below reduce to the duality functions of
the SSEP.

Remark 3.3 (Connectionwith the q-TAZRP) Consider the process y( j)
t :={y( j)

i (t)}i∈Z
obtained from the ASEP(q, j) after the time scale transformation t → (1−q2)q4 j−1t
(i.e. y( j)

i (t) := ηi ((1 − q2)q4 j−1t)) then, in the limit j → ∞, y( j)
t converges to the

q-TAZRP (Totally Asymmetric Zero Range process) in Z whose generator is given
by:

(L (q−TAZRP) f )(y) =
∑

i∈Z

1 − q2yi

1 − q2
[ f (yi,i+1) − f (y)], f : NZ → R (15)

see e.g. [3] for more details on this process.

3.2 Basic properties of the ASEP(q, j)

We summarize basic properties of the ASEP(q, j) in the following theorem.We recall
that a function f is said to be monotonous if f (η) ≤ f (η′) whenever η ≤ η′ (in
the sense of coordinate-wise order) and a Markov process with semigroup S(t) is
said to be monotonous if, for every time t ≥ 0, S(t) f is monotonous function if
f is a monotonous function. In this paper we do not investigate the consequence of
monotonicity which is for instance very useful for the hydrodynamic limit (see [1]).

Theorem 3.1 (Properties of ASEP(q, j) process)

(a) For all L ∈ N, the ASEP(q, j) on [1, L] ∩ Z with closed boundary conditions
admits a family (labeled by α > 0) of reversible product measures with marginals
given by

P
(α)(ηi = n) = αn

Z (α)
i

(
2 j

n

)

q
· q2n(1+ j−2 j i) n = 0, 1, . . . , 2 j (16)
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for i ∈ {1, . . . , L} and

Z (α)
i =

2 j∑

n=0

(
2 j

n

)

q
· αnq2n(1+ j−2 j i) (17)

(b) The infinite volume ASEP(q, j) is well-defined and admits the reversible product
measures with marginals given by (16)–(17).

(c) Both theASEP(q, j)on [1, L] ∩Zwith closed boundary conditions and its infinite
volume version are monotone processes.

(d) For L ≥ 3, the ASEP(q, j) on the Torus TL with periodic boundary conditions
does not have translation invariant stationary product measures for j = 1/2.

(e) The infinite volume ASEP(q, j) does not have translation invariant stationary
product measures for j = 1/2.

Remark 3.4 Notice that of course we could have absorbed the factor q2(1+ j) into
α in (16). However in Remark 5.2 below we will see that the case α = 1 exactly
corresponds to a natural ground state.

Proof (a) Let μ be a reversible measure, then, from detailed balance we have

μ(η)cq(η, ηi,i+1) = μ(ηi,i+1)cq(η
i,i+1, η) (18)

where cq(η, ξ) are the hopping rates from η to ξ given in (14). Suppose now that
μ is a product measure of the form μ = ⊗L

i=1μi then (18) holds if and only if

μi (ηi − 1)μi+1(ηi+1 + 1)q2 j [2 j − ηi + 1]q [ηi+1 + 1]q
= μi (ηi )μi+1(ηi+1)q

−2 j [ηi ]q [2 j − ηi+1]q (19)

which implies that there exists β ∈ R so that for all i = 1, . . . , L

μi (n)

μi (n − 1)
= βq−4 j i [2 j − n + 1]q

[n]q (20)

then (16) follows from (20) after using an induction argument on n and choosing
β = αq2( j+1).

(b) The fact that the process is well-defined follows from standard existence criteria
of [16], chapter 1, while the proof of the statement on the reversible product
measure is the same as in item (a).

(c) This follows from the fact that the rate to go from η to ηi,i+1 is of the form
b(ηi , ηi+1) where k, l �→ b(k, l) is increasing in k and decreasing in l, and the
same holds for the rate to go from η to ηi,i−1, and the general results in [8].

(d) Wewill prove the absence of homogeneous productmeasures for j = 1, the proof
for larger j is similar. Suppose that there exists a homogeneous stationary product
measure μ̄(η) = ∏L

i=1 μ(ηi ), then, for any function f : {0, . . . , 2 j}Z → R

0 =
∑

η

[L (TL ) f ](η)μ̄(η) =
∑

η

f (η)[L (TL )∗μ̄](η) (21)
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where

[L (TL )∗μ̄](η) =
∑

i∈TL

F(ηi , ηi+1)μ̄(η) (22)

with

F(ξ1, ξ2) = qξ1−ξ2−2 j+1[ξ1 + 1]q [2 j − ξ2 + 1]q μ(ξ1 + 1)μ(ξ2 − 1)

μ(ξ1)μ(ξ2)

+ qξ1−ξ2+2 j−1[ξ2 + 1]q [2 j − ξ1 + 1]q μ(ξ2 + 1)μ(ξ1 − 1)

μ(ξ1)μ(ξ2)

− qξ1−ξ2
(
q−(2 j+1)[ξ1]q [2 j − ξ2]q + q2 j+1[ξ2]q [2 j − ξ1]q

)

(23)

Then, from (21) and (22) we have that μ̄ is a homogeneous product measure if
and only if, for all f ,

∑

η

f (η)μ̄(η)

⎛

⎝
∑

i∈TL

F(ηi , ηi+1)

⎞

⎠ = 0 (24)

which is true if and only if

G(η) :=
∑

i∈TL

F(ηi , ηi+1) ≡ 0 (25)

Let �i be the discrete derivative with respect to the i-th coordinate, i.e. let f :
{0, . . . , 2 j}N → R, for some N ∈ N, then �i f (n) := f (n + δi ) − f (n),
n = (n1, . . . , nN ). From (25) it follows that, for any i ∈ {1, . . . , L},

0 = �i G(η) = �2F(ηi−1, ηi ) + �1F(ηi , ηi+1) for any ηi−1, ηi , ηi+1

(26)

this implies in particular that �2F(ξ1, ξ2) does not depend on ξ1 and that
�1F(ξ1, ξ2) does not depend on ξ2. Therefore, necessarily F(ξ1, ξ2) is of the
form

F(ξ1, ξ2) = g(ξ1) + h(ξ2) (27)

for some functions g, h : {0, . . . , 2 j} → R. By using again (25) it follows
in particular that F(ξ1, ξ1) = 0, then, from this fact and (27) we deduce that
h(ξ1) = −g(ξ1). As a consequence (25) holds if and only if there exists a function
g as above such that, for each i ∈ TL ,

F(ηi , ηi+1) = g(ηi ) − g(ηi+1) (28)
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(the opposite implication following from the fact that the sum
(∑

i∈TL
F(ηi , ηi+1)

)

is now telescopic and hence zero because of periodicity).
We are going to prove now that (28) cannot hold for the function F given in (23).
Denote by

γ := μ(1)2

μ(2)μ(0)
and α := q3 + q − q−1 − q−3, (29)

fix i and define η̄ := (ηi , ηi+1); then, for j = 1 the expression in (23) becomes

α(1η̄=(1,0) − 1η̄=(0,1)) + α(1η̄=(2,1) − 1η̄=(1,2))

+
[
γ q3 − q − 2q−1 − q−3

]
1η̄=(2,0) −

[
q3 + 2q + q−1 − γ q−3

]
1η̄=(0,2)

+
[
γ −1(q3 + 3q + 3q−1 + q−3) − q3 − q−3

]
1η̄=(1,1)

= g(ηi ) − g(ηi+1) (30)

The condition (30) for η̄ = (1, 1) yields that the coefficient in front of 1η̄=(1,1)
has to be zero, which gives

γ = q3 + 3q + 3q−1 + q−3

q3 + q−3 (31)

with this choice of γ (30) gives

α(1η̄=(1,0) − 1η̄=(0,1)) + α(1η̄=(2,1) − 1η̄=(1,2)) + δ(1η̄=(2,0) − 1η̄=(0,2))

= g(ηi ) − g(ηi+1) (32)

with

δ := γ q3 − q − 2q−1 − q−3. (33)

This yields g(1) − g(0) = g(2) − g(1) = α, g(2) − g(0) = δ from which we
conclude δ = 2α which is in contradiction with (29), (31) and (33).

(e) The proof is analogous to the proof of item (d), but it requires an extra limiting
argument. Namely, we want to show that the assumption of the existence of a
translation invariant product measure μ̄ implies that

´
L (Z) f dμ̄ = 0 for every

local function f . This leads to

∑

i∈Z

ˆ
f (η)F(ηi , ηi+1)dμ̄(η) = 0

for every local function f and where F(ηi , ηi+1) is defined in (23). In the same
spirit of point (d), the proof in [22] implies that F(ηi , ηi+1) has to be of the form
g(ηi ) − g(ηi+1) which leads to the same contradiction as in item (d).

��
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3.3 Self-duality properties of the ASEP(q, j)

The following self-duality theorem, together with the subsequent corollary, is themain
result of the paper, whose proof is given in Sects. 6 and 7.

Theorem 3.2 (Self-duality of the finite ASEP(q, j)) The ASEP(q, j) on [1, L] ∩ Z

with closed boundary conditions is self-dual with the following self-duality functions

D(L)(η, ξ) =
L∏

i=1

(
ηi
ξi

)

q
(2 j
ξi

)

q

· q(ηi−ξi )
[
2·1{i≥2}

∑i−1
k=1 ξk+ξi

]
+4 j iξi · 1ξi≤ηi (34)

and

D′
(L)(η, ξ) =

L∏

i=1

(
ηi
ξi

)

q
(2 j
ξi

)

q

· q(ηi−ξi )
[
2·1{i≥2}

∑i−1
k=1 ηk−ηi

]
+4 j iξi · 1ξi≤ηi (35)

Corollary 3.1 (Self-duality of the infinite ASEP(q, j)) The ASEP(q, j) on Z is self-
dual with the following self-duality functions

D(η, ξ) =
∏

i∈Z

(
ηi
ξi

)

q
(2 j
ξi

)

q

· q(ηi−ξi )
[
2
∑

k≤i−1 ξk+ξi
]+4 j iξi · 1ξi≤ηi (36)

and

D′(η, ξ) =
∏

i∈Z

(
ηi
ξi

)

q
(2 j
ξi

)

q

· q(ηi−ξi )
[
2
∑

k≤i−1 ηk−ηi
]+4 j iξi · 1ξi≤ηi (37)

for configurations η and ξ with a finite number of particles.

Remark that only a finite number of factors is different from 1 in the infinite product
in (36) and (37). The following rewriting of the duality function in (36) will be useful
in the analysis of the current statistics.

Remark 3.5 (Rewriting of the duality function) For l ∈ N, let ξ (i1,...,i�) be the config-
urations such that

ξ (i1,...,i�)
m =

{
1 if m ∈ {i1, . . . , i�}
0 otherwise.

(38)

Define
Ni (η) :=

∑

k≥i

ηk , (39)

then

D(η, ξ (i)) = q4 j i−1

q2 j − q−2 j · (q2Ni (η) − q2Ni+1(η)) (40)
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and more generally

D(η, ξ (i1,...,i�)) = q4 j
∑�

k=1 ik−�2

(q2 j − q−2 j )�
·

�∏

k=1

(q2Nik (η) − q2Nik+1(η))

Remark 3.6 (Duality of q-TAZRP ) In Remark 3.3 a scaling limit j → ∞ has been
considered so that the ASEP(q, j) process scales to the q-TAZRPprocess. In the limit
j → ∞ the self-duality functions in Theorem 3.2 go to zero. No obvious renormal-
ization of the self-duality function in order to obtain a non-trivial self-duality in this
limit seems to be possible. We remark that, as explained in Sect. 2.2, our self-duality
is constructed by acting with a symmetry on a trivial self-duality function given by the
reversible measure. The q-TAZRP process, being totally asymmetric, does not have
a reversible measure. On the other hand, from [3] we know that the q-TAZRP does
have a duality (but no self-duality) property. More precisely the q-TAZRP process
with asymmetry to the right is dual to the q-TAZRP process with asymmetry to the
left with the following duality function

D(η, ξ) =
∏

i∈Z
q2ξi Ni (η) (41)

We can fit this duality in our scheme by a slight adaptation of the approach in Sect. 2.2.
We instead have to start from a trivial duality between forward an backwards process
based on the stationary (but non-reversible) measure and then act with a symmetry on
this. More precisely, if (i) a process with generator L has a stationary measure μ; (ii)
the process has a symmetry S, i.e. [L , S] = 0. Then, the process with generator L is
dual to the reversed process with generator

Lrev(η, η′) = L(η′, η)
μ(η′)
μ(η)

(42)

with the duality function D = Sd where d(η, η′) = δη,η′ 1
μ(η)

.
We now apply this to the q-TAZRP with generator (15). A stationary measure is

given by

μ(η) =
∏

i∈Z

1

{ηi }q2 !
(43)

where here we use the q-numbers defined by {n}q := 1−qn

1−q . Formula (42) gives that the
reversed process of q-TAZRP is obtained by a space inversion. Finally the q-TAZRP
has a symmetry S with elements

S(η, ξ) =
∏

i∈Z

1

{ξi }q2 !
q2ξi Ni (η) (44)

123



A generalized asymmetric exclusion process… 903

When acting with such a symmetry on the trivial self-duality function produced from
(43), then the duality function (41) is found.

3.4 Computation of the first q-exponential moment of the current
for the infinite volume ASEP(q, j)

We start by defining the current for the ASEP(q, j) process on Z.

Definition 3.2 (Current) For a trajectory (η(s))0≤s≤t , the total integrated current Ji (t)
in the time interval [0, t] is defined as the net number of particles crossing the bond
(i − 1, i) in the right direction. Namely, let (ti )i∈N be sequence of the process jump
times. Then

Ji (t) =
∑

k:tk∈[0,t]

(
1{η(tk )=η(t−k )i−1,i }

)
−

∑

k:tk∈[0,t]

(
1{η(tk )=η(t−k )i,i−1}

)
(45)

where we assume both sums to be finite.

Let � f the set of all configurations with a finite number of particles. Then, for
η(0) = η ∈ � f it follows that the total integrated current is given by

Ji (t) := Ni (η(t)) − Ni (η(0)) (46)

where Ni (η) is defined in (39). This relation (46) does not make sense for infinite
configurations, but the current Ji (t) is well-defined for a trajectory of infinite config-
urations, as long as only a finite number of particles crossed the edge (i − 1, i) in the
interval [0, t]. Also, for a well-defined current Ji (t) the relation (46) holds in the limit
where the infinite configuration is approximated by a sequence of finite configurations.

Lemma 3.1 (Current q-exponential moment via a dual walker) Let η = η(0) be finite
configuration. The first q-exponentialmoment of the currentwhen the process is started
from η at time t = 0 is given by

Eη

[
q2Ji (t)

]
= q2(N (η)−Ni (η))

−
i−1∑

k=−∞
q−4 jk Ek

[
q4 j x(t)

(
1 − q−2ηx(t)

)
q2(Nx(t)(η)−Ni (η))

]
(47)

where N (η) := ∑
i∈Z ηi denotes the total number of particle (that is conserved

by the dynamics), x(t) denotes a continuous time asymmetric random walker on Z

jumping left at rate q2 j [2 j]q and jumping right at rate q−2 j [2 j]q and Ek denotes
the expectation with respect to the law of x(t) started at site k ∈ Z at time t = 0.
Furthermore, the result extends to infinite configurations, where N (η) − Ni (η) =∑

k<i ηk if this sum is finite and where the first term on the right hand side of (47) is
defined to be zero when there are infinitely many particles to the left of i ∈ Z in the
configuration η.
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Proof To prove (47) we start from the duality relation

Eη

[
D(η(t), ξ (i))

]
= Eξ (i)

[
D(η, ξ (x(t)))

]
(48)

where ξ (i) is the configuration with a single dual particle at site i (cfr. (38)). Since the
ASEP(q, j) is self-dual the dynamics of the single dual particle is given an asymmetric
randomwalk x(t)whose rates are computed from the process definition and coincides
with those in the statement of the lemma. By (40) the left-hand side of (48) is equal
to

Eη

[
D(η(t), ξ (i))

]
= q4 j i−1

q2 j − q−2 j Eη

[
q2Ni (η(t)) − q2Ni+1(η(t))

]

whereas the right-hand side gives

Eξ (i)

[
D(η, ξ (x(t)))

]
= q−1

q2 j − q−2 j Ei

[
q4 j x(t)(q2Nx(t)(η) − q2Nx(t)+1(η))

]

As a consequence, for any i ∈ Z

Eη

[
q2Ni (η(t))

]
= Eη

[
q2Ni+1(η(t))

]
+ q−4 j i Ei

[
q4 j x(t)(q2Nx(t)(η) − q2Nx(t)+1(η))

]

(49)

Divide both sides of (49) by q2Ni (η) in order to obtain a recursive relation for the
current. Then we get from (46)

Eη

[
q2Ji (t)

]
= q−2ηi Eη

[
q2Ji+1(t)

]

+q−4 j i Ei

[
q4 j x(t)(q2(Nx(t)(η)−Ni (η)) − q2(Nx(t)+1(η)−Ni (η)))

]
(50)

By iterating the relation in (50) andusing the fact that limi→−∞ Ni (η(t)) = N (η(t)) =
N (η) we obtain (47). The extension to infinite volume configurations follows by
approximation by finite configurations, using that the process is well-defined in infinite
volume. ��

Remark 3.7 The duality of Theorem 3.2 can also be used with more than one dual
particle, but then one should understand better the dynamics of ASEP(q, j) with a
finite number of particles, which is more difficult than in the classical ASEP(q, 1/2)
case because the corresponding quantum spin chain is not integrable, and so explicit
formulas for the k-particles transition probabilities (as in Tracy-Widom) cannot be
expected.
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3.5 Step initial condition

Theorem 3.3 (q-Moment for step initial condition) Consider the step configurations
η± ∈ {0, . . . , 2 j}Z defined as follows

η+
i :=

{
0 for i < 0
2 j for i ≥ 0

η−
i :=

{
2 j for i < 0
0 for i ≥ 0

(51)

then, for the infinite volume ASEP(q, j) we have

Eη+
[
q2Ji (t)

]
= q4 j max{0,i} {1 + q−4 j i Ei

[(
1 − q4 j x(t)

)
1x(t)≥1

]}
(52)

and
Eη−

[
q2Ji (t)

]
= q−4 j max{0,i} {1 − Ei

[(
1 − q4 j x(t)

)
1x(t)≥1

]}
(53)

In the formulas above x(t) denotes the random walk of Lemma 3.1 and

Ei ( f (x(t)) =
∑

x∈Z
f (x) · Pi (x(t) = x)

with
Pi (x(t) = x) = P(x(t) = x | x(0) = i)

= e−[4 j]q tq−2 j (x−i) Ix−i (2[2 j]q t) (54)

and In(t) denotes the modified Bessel function.

Proof We prove only (52) since the proof of (53) is analogous. From the definition of
η+ and (47), we have

Eη+
[
q2Ji (t)

]
= q2(N (η+)−Ni (η

+)) − (1 − q−4 j )

i−1∑

k=−∞
q−4 jk

∑

x≥0

q4 j x q2(Nx (η
+)−Ni (η

+)) Pk (x(t) = x)

where N (η+)− Ni (η+) = 2 j max{0, i} and Nx (η
+)− Ni (η

+) = 2 j (max{0, i}− x)
for any x ≥ 0. Then we have

Eη+
[
q2Ji (t)

]
= q4 j max{0,i} {1 + (q−4 j − 1)Fi (t)

}

with

Fi (t) :=
i−1∑

k=−∞
q−4 jk Pk (x(t) ≥ 0) =

i−1∑

k=−∞
q−4 jk P0 (x(t) ≥ −k)
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=
+∞∑

r=−i+1

+∞∑

�=r

q4 jr P0 (x(t) = �) =
+∞∑

�=−i+1

�∑

r=−i+1

q4 jr P0 (x(t) = �)

= q−4 j (i−1)

1 − q4 j

+∞∑

�=−i+1

(
1 − q4 j (�+i)

)
P0 (x(t) = �)

= q−4 j (i−1)

1 − q4 j
Ei

[(
1 − q4 j x(t)

)
1x(t)≥1

]
.

Thus (52) is proved. ��
Remark 3.8 Since for q ∈ (0, 1)

lim
t→∞ Ei

[(
1 − q4 j x(t)

)
1x(t)≥1

]
= 1 (55)

from (52) and (53) we have that

lim
t→∞Eη+

[
q2Ji (t)

]
= q4 j max{0,i} (1 + q−4 j i

)
(56)

and

lim
t→∞Eη−

[
q2Ji (t)

]
= 0 (57)

The limits in (56) and (57) are consistent with a scenario of a shock, respectively,
rarefaction fan. Namely, in the case of shock for a fixed location i , the current Ji (t)
in (56) remains bounded as t → ∞ because particles for large times can jump and
produce a current only at the location of the moving shock. On the contrary, in (57)
the current Ji (t) goes to ∞ as t → ∞, i.e. the average current Ji (t)/t converges to
its stationary value.

It is possible to rewrite (52), (53) as contour integrals. We do this in the following
corollary in order to recover in the case j = 1/2 the results of [3].

Corollary 3.2 The explicit expression of the q-moment in terms of contour integrals
reads

Eη+
[
q2Jk (t)

]
= q4 j max{0,k}

2π i

‰
e
− q2 j [2 j]3q (q−1−q)2 z

(1+q4 j z)(1+z)
t
(

1 + z

1 + q4 j z

)k dz

z
(58)

where the integration contour includes 0 and −q−4 j but does not include −1, and

Eη−
[
q2Jk (t)

]
= q−4 j max{0,k}

2π i

‰
e
− q−2 j [2 j]3q (q−1−q)2 z

(1+q−4 j z)(1+z)
t
(

1 + z

1 + q−4 j z

)k dz

z
(59)

where the integration contour includes 0 and −q4 j but does not include −1.
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Proof In order to get (58) and (59) it is sufficient to exploit the contour integral formula
of the modified Bessel function appearing in (54), i.e.

In(x) := 1

2π i

‰
e(ξ+ξ−1) x2 ξ−n−1 dξ (60)

where the integration contour includes the origin. From (54) and (60) we have

Ek

[(
1 − q4 j x(t)

)
1x(t)≥1

]
=
∑

x≥1

(1 − q4 j x )e−[4 j]q tq−2 j (x−k) Ix−k
(
2[2 j]q t

)

= q2 jk

2π i
e−[4 j]q t

‰
e[2 j]q (ξ+ξ−1)t ξ k−1

∑

x≥1

(
1 − q4 j x

) 1

(ξq2 j )x
dξ (61)

In order to have the convergence of the series in (61) it is necessary to assume |ξ | ≥
q−2 j . Under such assumption we have

∑

x≥1

(
1 − q4 j x

) 1

(ξq2 j )x
=

(
1 − q4 j

)
ξ

(
q2 jξ − 1

) (
ξ − q2 j

) (62)

and therefore

Ek

[(
1 − q4 j x(t)

)
1x(t)≥1

]
= q2 jk

2π i

‰

γ

fk(ξ) dξ, (63)

with fk(ξ) := e{[2 j]q (ξ+ξ−1)−[4 j]q }t
(
1 − q4 j

)
ξ k

(
q2 jξ − 1

) (
ξ − q2 j

) (64)

where, from the assumption above, the integration contour γ includes 0, q2 j and q−2 j .
From (52), (53) and (63) we have

Eη±
[
q2Jk (t)

]
= q±4 j max{0,k}

{

1 ± q∓2 jk

2π i

‰

γ

fk(ξ) dξ

}

(65)

It is easy to verify that q±2 j are two simple poles for fk(ξ) such that

Resq±2 j ( fk) = ∓q±2 jk (66)

then

Eη±
[
q2Jk (t)

]
= ±q±4 j max{0,k} 1

2π i

‰

γ±
q∓2 jk fk(ξ) dξ (67)
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where γ± are now two different contours which include 0 and q∓2 j and do not include
q±2 j . In order to get the results in (58) it is sufficient to perform the change of variable

ξ := 1 + z

1 + q4 j z
q2 j (68)

to get

Eη+
[
q2Jk (t)

]
= −q4 j max{0,k}

2π i

fi

γ̃+
e
− q2 j [2 j]3q (q−1−q)2 z

(1+q4 j z)(1+z)
t
(

1 + z

1 + q4 j z

)k dz

z
(69)

where now the integral is done clockwise over the contour γ̃+ which includes 0 and
q−4 j but does not include −1. This yields (58); formula (59) is obtained similarly
from (67) after performing the change of variables ξ := 1+z

1+q−4 j z
q−2 j . ��

Remark 3.9 In the case j = 1/2 formula (58) coincides with the expression in Theo-
rem 1.2 of Borodin, Corwin, Sasamoto [3] for n = 1. Indeed defining

Jk(t) = −N BCS
k−1 (η(t)) + N BCS

k−1 (η(0)), N BCS
k (η) :=

∑

i≤k

ηi (70)

then, if η(0) = η+ it holds Jk(t) = −N BCS
k−1 (η(t))+ 2 j max{0, k}. As a consequence,

from (58), for j = 1/2 we have

Eη+
[
q−2N BCS

k−1 (t)
]

= 1

2π i

‰
e
− (q−1−q)2 z

(q−1+qz)(1+z)
t
(

1 + z

1 + q2z

)k dz

z
(71)

where the integration contour includes 0 and −q−2 but does not include -1. Notice
that (71) recovers the expression in Theorem 1.2 of [3] for τ = q−2, p = q−1 (up to
a shift k → k − 1 which comes from the fact that in η+ the first occupied site is 0 in
our case while is it chosen to be 1 in [3]).

3.6 Product initial condition

We start with a lemma that is useful in the following.

Lemma 3.2 Let x(t) be the random walk defined in Lemma 3.1, a ∈ R and A ⊆ R

then

lim
t→∞

1

t
logE0

[
ax(t) | x(t) ∈ A

]
= sup

x∈A
{x log a − I (x)} − inf

x∈A
I (x) (72)

with

I (x) = [4 j]q −
√
x2 + 4[2 j]2q + log

⎡

⎣q2 j

⎛

⎝ x

2[2 j]q +
√(

x

2[2 j]q
)2

+ 1

⎞

⎠

⎤

⎦ (73)
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Proof From large deviations theory [14] we know that x(t)/t , conditional on x(t)/t ∈
A, satisfies a large deviation principle with rate functionI (x) − inf x∈A I (x) where
I (x) is given by

I (x) := sup
z

{zx − �(z)} (74)

with

�(z) := lim
t→∞

1

t
logE

[
ezx(t)

]
= [2 j]q

((
ez − 1

)
q−2 j + (

e−z − 1
)
q2 j
)

(75)

from which it easily follows (73). The application of Varadhan’s lemma
yields (72). ��

We denote by E⊗μ the expectation of the ASEP(q, j) process on Z initialized with
the homogeneous product measure on {0, 1, . . . 2 j}Z with marginals μ at time 0, i.e.
E

⊗μ[ f (η(t))] = ∑
η (⊗i∈Zμ(ηi ))Eη[ f (η(t))].

Theorem 3.4 (q-Moment for product initial condition) Consider a probability mea-
sure μ on {0, 1, . . . 2 j}. Then, for the infinite volume ASEP(q, j), we have

E
⊗μ
[
q2Ji (t)

]
= E0

[(
q4 j

λq

)x(t)

1x(t)≤0

]

+E0

[
q4 j x(t)

(
λ
x(t)
1/q − λ1/q + λ−1

q

)
1x(t)≥1

]
(76)

where λy := ∑2 j
n=0 y

2nμ(n) and x(t) is the random walk defined in Lemma 3.1. In
particular we have

lim
t→∞

1

t
logE⊗μ[q2Ji (t)] = sup

x≥0

{
x logMq − I (x)

}− inf
x≥0

I (x) (77)

with Mq := max{λq , q4 jλ1/q} and I (x) given by (73).

Proof From (47) we have

E
⊗μ
[
q2Ji (t)

]
=

ˆ
⊗μ(dη)Eη

[
q2Ji (t)

]

=
ˆ

⊗μ(dη)q2(N (η)−Ni (η)) +
i−1∑

k=−∞
q−4 jk

ˆ
⊗μ(dη)Ek

×
[
q4 j x(t)

(
q−2ηx(t) − 1

)
q2(Nx(t)(η)−Ni (η))

]
.

Since
ˆ

⊗μ(dη)q2(Nx (η)−Ni (η)) = λi−x
q 1{x≤i} + λx−i

1/q 1{x>i} (78)
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then, in particular,
´ ⊗μ(dη)q2(N (η)−Ni (η)) = 0 since λq < 1, where we recall the

interpretation of N (η) − Ni (η) from Lemma 3.1. Hence

E
⊗μ
[
q2Ji (t)

]
=

i−1∑

k=−∞
q−4 jk

∑

x∈Z
Pk (x(t) = x) q4 j x

×
ˆ

⊗μ(dη)
[
q2(Nx+1(η)−Ni (η)) − q2(Nx (η)−Ni (η))

]

=
(
λ−1
q − 1

)
A(t) + (

λ1/q − 1
)
B(t) (79)

with

A(t) :=
∑

k≤i−1

q−4 jk
∑

x≤i

Pk (x(t) = x) q4 j xλi−x
q (80)

and

B(t) :=
∑

k≤i−1

q−4 jk
∑

x≥i+1

Pk (x(t) = x) q4 j xλx−i
1/q (81)

Now, let α := q4 jλ−1
q , then

A(t) =
∑

k≤i−1

q−4 jkλiq

∑

x≤i

Pk (x(t) = x) αx

=
∑

n≥1

λnq

∑

m≤n

P0 (x(t) = m) αm

=
∑

m≤0

αmP0 (x(t) = m)
∑

n≥1

λnq +
∑

m≥1

αmP0 (x(t) = m)
∑

n≥m

λnq

= 1

1 − λq

{
λq E0

[
αx(t) 1x(t)≤0

]
+ E0

[
q4 j x(t) 1x(t)≥1

]}
(82)

Analogously one can prove that

B(t) = 1

λ1/q − 1

{
E0

[
βx(t) 1x(t)≥2

]
− λ1/qE0

[
q4 j x(t) 1x(t)≥2

]}
(83)

with β = q4 jλ1/q then (76) follows by combining (79), (82) and (83).
In order to prove (77) we use the fact that x(t) has a Skellam distribution with

parameters ([2 j]qq−2 j t, [2 j]qq2 j t), i.e. x(t) is the difference of two independent
Poisson random variables with those parameters. This implies that

E0

[(
q4 j

λq

)x(t)

1x(t)≤0

]

= E0

[
λx(t)
q 1x(t)≥0

]
.
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Then we can rewrite (76) as

E
⊗μ
[
q2Ji (t)

]
= E0

[(

λx(t)
q +

(
q4 jλ1/q

)x(t)
)

1x(t)≥1

]

+ P0 (x(t) = 0)

+
(
λ−1
q − λ1/q

)
E0

[
q4 j x(t)1x(t)≥1

]

= E0

[
Mx(t)

q 1x(t)≥0

]
(1 + E1(t) + E2(t) + E3(t)) (84)

with

E1(t) :=
E0

[(
λ
x(t)
q + (

q4 jλ1/q
)x(t)

)
1x(t)≥1

]

E0

[
Mx(t)

q 1x(t)≥0

] , E2(t) := P0 (x(t) = 0)

E0

[
Mx(t)

q 1x(t)≥0

]

and

E3(t) :=
(
λ−1
q − λ1/q

)
E0
[
q4 j x(t)1x(t)≥1

]

E0

[
Mx(t)

q 1x(t)≥0

] . (85)

To identify the leading term in (84) it remains to prove that, for each i = 1, 2, 3 there
exists ci > 0 such that

sup
t≥0

|Ei (t)| ≤ ci (86)

This would imply, making use of Lemma 3.2, the result in (77). The bound in (86) is
immediate for i = 1, 2. To prove it for i = 3 it is sufficient to show that there exists
c > 0 such that

λ−1
q E0

[
q4 j x(t)1x(t)≥1

]
≤ cE0

[(
q4 jλ1/q

)x(t)
1x(t)≥1

]

. (87)

This follows since there exists x∗ ≥ 1 such that for any x ≥ x∗ λ−1
q ≤ λx

1/q and then

λ−1
q E0

[
q4 j x(t)1x(t)≥1

]
≤ λ−1

q E0

[
q4 j x(t)11≤x(t)<x∗

]
+ E0

[
q4 j x(t)λx(t)

1/q 1x(t)≥x∗
]

≤ λ−1
q E0

[
q4 j x(t)11≤x(t)

]
+ E0

[
q4 j x(t)λx(t)

1/q 1x(t)≥1

]

≤
(
1 + λ−1

q

)
E0

[(
q4 jλ1/q

)x(t)
1x(t)≥1

]

. (88)

This concludes the proof. ��
The rest of our paper is devoted to the construction of the process ASEP(q, j)

from a quantum spin chain Hamiltonian with Uq(sl2) symmetry of which we show
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that it admits a positive ground state. The self-duality functions will then be con-
structed from application of suitable symmetries to this ground state and application
of Proposition 2.1.

4 Algebraic structure and symmetries

4.1 The quantum Lie algebra Uq(sl2)

For q ∈ (0, 1) we consider the algebra with generators J+, J−, J 0 satisfying the
commutation relations

[J+, J−] = [2J 0]q , [J 0, J±] = ±J± , (89)

where [·, ·] denotes the commutator, i.e. [A, B] = AB − BA, and

[2J 0]q := q2J
0 − q−2J 0

q − q−1 . (90)

This is the quantum Lie algebra Uq(sl2), that in the limit q → 1 reduces to the Lie
algebra sl2. Its irreducible representations are (2 j + 1)-dimensional, with j ∈ N/2.
They are labeled by the eigenvalues of the Casimir element

C = J− J+ + [J 0]q [J 0 + 1]q . (91)

A standard representation [17] of the quantum Lie algebra Uq(sl2) is given by (2 j +
1) × (2 j + 1) dimensional matrices defined by

⎧
⎨

⎩

J+|n〉 = √[2 j − n]q [n + 1]q |n + 1〉
J−|n〉 = √[n]q [2 j − n + 1]q |n − 1〉
J 0|n〉 = (n − j) |n〉.

(92)

Here the collection of column vectors |n〉, with n ∈ {0, . . . , 2 j}, denote the stan-
dard orthonormal basis with respect to the Euclidean scalar product, i.e. |n〉 =
(0, . . . , 0, 1, 0, . . . , 0)T with the element 1 in the nth position and with the symbol T

denoting transposition. Here and in the following, with abuse of notation, we use the
same symbol for a linear operator and the matrix associated to it in a given basis. In
the representation (92) the ladder operators J+ and J− are the adjoint of one another,
namely

(J+)∗ = J− (93)

and the Casimir element is given by the diagonal matrix

C |n〉 = [ j]q [ j + 1]q |n〉.
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Later on, in the construction of the q-deformed asymmetric simple exclusion process,
we will consider other representations for which the ladder operators are not adjoint
of each other. For later use, we also observe that the Uq(sl2) commutation relations
in (89) can be rewritten as follows

q J0 J+ = q J+q J0

q J0 J− = q−1 J−q J0

[J+, J−] = [2J 0]q
(94)

4.2 Co-product structure

A co-product for the quantum Lie algebraUq(sl2) is defined as the algebra homomor-
phism acting as follows on the generators � : Uq(sl2) → Uq(sl2) ⊗Uq(sl2)

�(J±) = J± ⊗ q−J 0 + q J 0 ⊗ J±,

�(J 0) = J 0 ⊗ 1 + 1 ⊗ J 0.
(95)

As a consequence the co-product satisfies

[�(J+),�(J−)] = [2�(J 0)]q , [�(J 0),�(J±)] = ±�(J±). (96)

Moreover the co-product satisfies the co-associativity property

(� ⊗ 1)� = (1 ⊗ �)�. (97)

Since we are interested in extended systems we will work with the tensor product over
copies of the Uq(sl2) quantum algebra. We denote by J+

i , J−
i , J 0i , with i ∈ Z, the

generators of the i th copy. Obviously algebra elements of different copies commute.
As a consequence of (97), one can define iteratively �n : Uq(sl2) → Uq(sl2)

⊗(n+1),
i.e. higher power of �, as follows: for n = 1, from (95) we have

�(J±
i ) = J±

i ⊗ q−J 0i+1 + q J 0i ⊗ J±
i+1

�(J 0i ) = J 0i ⊗ 1 + 1 ⊗ J 0i+1,
(98)

for n ≥ 2,

�n(J±
i ) = �n−1(J±

i ) ⊗ q−J 0n+i + q�n−1(J 0i ) ⊗ J±
n+i

�n(J 0i ) = �n−1(J 0i ) ⊗ 1 + 1 ⊗ . . . ⊗ 1︸ ︷︷ ︸
n times

⊗J 0n+i .
(99)
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4.3 The quantum Hamiltonian

Starting from the quantum Lie algebra Uq(sl2) (Sect. 4.1) and the co-product struc-
ture (Sect. 4.2) we would like to construct a linear operator (called “the quantum
Hamiltonian” in the following and denoted by H(L) for a system of length L) with the
following properties:
1. it isUq(sl2) symmetric, i.e. it admits non-trivial symmetries constructed from the

generators of the quantum algebra; the non-trivial symmetries can then be used to
construct self-duality functions;

2. it can be associated to a continuous time Markov jump process, i.e. there exists
a representation given by a matrix with non-negative out-of-diagonal elements
(which can therefore be interpreted as the rates of an interacting particle systems)
and with zero sum on each column.

We will approach the first issue in this subsection, whereas the definition of the related
stochastic process is presented in Sect. 5.

A natural candidate for the quantum Hamiltonian operator is obtained by applying
the co-product to the Casimir operatorC in (91). Using the co-product definition (95),
simple algebraic manipulations (cfr. also [4]) yield the following definition.

Definition 4.1 (Quantum Hamiltonian) For every L ∈ N, L ≥ 2, we consider the
operator H(L) defined by

H(L) :=
L−1∑

i=1

Hi,i+1
(L) =

L−1∑

i=1

(
hi,i+1

(L) + c(L)

)
, (100)

where the two-site Hamiltonian is the sum of

c(L) = (q2 j − q−2 j )(q2 j+1 − q−(2 j+1))

(q − q−1)2
1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

L times

(101)

and

hi,i+1
(L) := 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

(i−1) times

⊗�(Ci ) ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
(L−i−1) times

(102)

and, from (91) and (95),

�(Ci ) = �(J−
i )�(J+

i ) + �([J 0i ]q)�([J 0i + 1]q). (103)

Explicitly

�(Ci )

= −q J 0i

{

J+
i ⊗ J−

i+1 + J−
i ⊗ J+

i+1+
(q j +q− j )(q j+1+q−( j+1))

2
[J 0i ]q ⊗ [J 0i+1]q

+[ j]q [ j + 1]q
2

(
q J 0i + q−J 0i

)
⊗
(
q J 0i+1 + q−J 0i+1

)}

q−J 0i+1 (104)
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Remark 4.1 The diagonal operator c(L) in (101) has been added so that the ground
state |0〉(L) := ⊗L

i=1|0〉i is a right eigenvectorwith eigenvalue zero, i.e. H(L)|0〉(L) = 0
as it is immediately seen using (92).

Proposition 4.1 In the representation (92) the operator H(L) is self-adjoint.

Proof It is enough to consider the non-diagonal part of H(L). Using (93) we have

(
q J 0i J+

i ⊗ J−
i+1q

−J 0i+1 + q J 0i J−
i ⊗ J+

i+1q
−J 0i+1

)∗

= J−
i q J 0i ⊗ q−J 0i+1 J+

i+1 + J+
i q J 0i ⊗ q−J 0i+1 J−

i+1

= q J 0i +1 J−
i ⊗ J+

i+1q
−J 0i+1−1 + q J 0i −1 J+

i ⊗ J−
i+1q

−J 0i+1+1

where the last identity follows by using the commutation relations (94). This concludes
the proof. ��

4.4 Basic symmetries

It is easy to construct symmetries for the operator H(L) by using the property that the
co-product is an isomorphism for the Uq(sl2) algebra.

Theorem 4.1 (Symmetries of H(L)) Recalling (99), we define the operators

J±
(L) := �L−1(J±

1 ) =
L∑

i=1

q J 01 ⊗ · · · ⊗ q J 0i−1 ⊗ J±
i ⊗ q−J 0i+1 ⊗ . . . ⊗ q−J 0L ,

J 0(L) := �L−1(J 01 ) =
L∑

i=1

1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
(i−1) times

⊗J 0i ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
(L−i) times

. (105)

They are symmetries of the Hamiltonian (100), i.e.

[
H(L), J

±
(L)

]
=
[
H(L), J

0
(L)

]
= 0. (106)

Proof We proceed by induction and prove only the result for J±
(L) (the case J 0(L) is

similar). By construction J±
(2) := �(J±) are symmetries of the two-site Hamiltonian

H(2). Indeed this is an immediate consequence of the fact that the co-product defined
in (96) conserves the commutation relations and the Casimir operator (91) commutes
with any other operator in the algebra:

[
H(2), J

±
(2)

]
= [

�(C1),�(J±
1 )
] = �

([
C1, J

±
1

]) = 0.

For the induction step assume now that it holds [H(L−1), J
±
(L−1)] = 0. We have

[
H(L), J

±
(L)

]
=
[
H(L−1), J

±
(L)

]
+
[
hL−1,L

(L) , J±
(L)

]
(107)

123



916 G. Carinci et al.

In the above, with abuse of notation, the subscript means acting in the relevant tensor
space. The first term on the right hand side of (107) can be seen to be zero using (99)
with i = 1 and n = L − 1:

[
H(L−1), J

±
(L)

]
=
[
H(L−1), J

±
(L−1)q

−J 0L + q J 0
(L−1) J±

L

]

Distributing the commutator with the rule [A, BC] = B[A,C]+ [A, B]C , the induc-
tion hypothesis and the fact that spins on different sites commute imply the claim. The
second term on the right hand side of (107) is also seen to be zero by writing

[
hL−1,L

(L) , J±
(L)

]
=
[
hL−1,L

(L) , J±
(L−2)q

−�(J 0L−1) + q J 0
(L−2)�(J±

L−1)
]

= 0.

��
Remark 4.2 In the case q = 1, the quantum Hamiltonian in Definition 4.1 reduces to
the (negative of the) well-known Heisenberg ferromagnetic quantum spin chain with
spins Ji satisfying the sl2 Lie-algebra. With abuse of notation for the tensor product,
the Heisenberg quantum spin chain reads

HHeis
(L) =

L−1∑

i=1

(
J+
i J−

i+1 + J−
i J+

i+1 + 2J 0i J
0
i+1 − 2 j2

)
, (108)

whose symmetries are given by

J±,Heis
(L) =

L∑

i=1

J±
i and J 0,Heis

(L) =
L∑

i=1

J 0i .

5 Construction of the ASEP(q, j)

In order to construct a Markov process from the quantum Hamiltonian H(L), we apply
item (a) of Corollary 2.1 withH = H(L). At this aim we need a non-trivial symmetry
which yields a non-trivial ground state. Starting from the basic symmetries of H(L)

described in Sect. 4.4, we could use J±
(L), however such a choice would not yield a

product ground state. In order to have a factorized ground state, and also inspired
by the analysis of the symmetric case (q = 1), it will be convenient to consider the
exponential of those symmetries.

5.1 The q-exponential and its pseudo-factorization

Definition 5.1 (q(-exponential) We define the q-analog of the exponential function
as

expq(x) :=
∑

n≥0

xn

{n}q ! (109)
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where

{n}q := 1 − qn

1 − q
(110)

Remark 5.1 Theq-numbers in (110) are related to theq-numbers in (10) by the relation
{n}q2 = [n]qqn−1. This implies {n}q2 ! = [n]q ! qn(n−1)/2 and therefore

expq2(x) =
∑

n≥0

xn

[n]q ! q
−n(n−1)/2 (111)

One could also have defined the q-exponential directly in terms of the q-numbers (10),
namely

ẽxpq(x) =
∑

n≥0

xn

[n]q ! (112)

The reason to prefer definition of the q-deformed exponential given in (109), rather
than (112), is that with the first choice we have then a pseudo-factorization property
as described in the following.

Proposition 5.1 (Pseudo-factorization) Let {g1, . . . , gL} and {k1, . . . , kL} be opera-
tors such that for L ∈ N and for all 1 ≤ i < j ≤ L [gi , g j ] = [ki , k j ] = [ki , g j ] = 0
and r ∈ R

ki gi = rgi ki for i = 1, . . . , L . (113)

Define

g(L) :=
L∑

i=1

k(i−1)gi , with k(i) := k1 · · · · · ki for i ≥ 1 and k(0) = 1, (114)

then
expr (g

(L)) = expr (g1) · expr (k(1)g2) · · · · · expr (k(L−1)gL) (115)

Moreover let

ĝ(L) :=
L∑

i=1

gi h
(i+1), with h(i) := k−1

i · · · · · k−1
L for i ≤ L and h(L+1) = 1,

(116)
then

expr (ĝ
(L)) = expr (g1 h

(2)) · · · · · expr (gL−1 h
(L)) · expr (gL) (117)

In this section we prove only (115) since the proof of (117) is similar. We first give a
series of Lemma that are useful in the proof.

Lemma 5.1 Let

Binr {n,m} := {n}r !
{m}r !{n − m}r ! (118)
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then
rmBinr {n,m} + Binr {n,m − 1} = Binr {n + 1,m} (119)

Proof It follows from an immediate computation ��
Lemma 5.2 For any n, L ∈ N, L ≥ 2

(
g(L)

)n =
n∑

m=0

Bin{n,m}r
(
g(L−1)

)n−m
(k(L−1)gL)m (120)

Proof We prove it by induction on n. For n = 1 it is true because for each L ≥ 2

g(L) = g(L−1) + k(L−1)gL (121)

By (113), for any � ∈ N

(
k(�)

)m
g(�) = rmg(�)

(
k(�)

)m
(122)

Suppose that (120) holds for n for any L ≥ 2, then, using (119) and (122) we have

(
g(L)

)n+1 =
(
g(L−1) + k(L−1)gL

)n+1

=
n∑

m=0

Binr {n,m}
(
g(L−1)

)n−m (
k(L−1)gL

)m ·
[
g(L−1) + k(L−1)gL

]

=
n∑

m=1

[
rmBinr {n,m} + Binr {n,m − 1}]

(
g(L−1)

)n+1−m (
k(L−1)gL

)m

+
(
g(L−1)

)n+1 +
(
k(L−1)gL

)n+1

=
n+1∑

m=0

Binr {n + 1,m}
(
g(L−1)

)n+1−m (
k(L−1)gL

)m
(123)

that proves the lemma. ��
Lemma 5.3 For any n, L ∈ N, L ≥ 2 we have

(
g(L)

)n = {n}r !
n∑

mL=0

n−mL∑

mL−1=0

· · ·
n−∑L

i=3 mi∑

m2=0

g
n−∑L

i=2 mi
1

{n −∑L
i=2 mi }r !

·
L∏

i=2

(k(i−1)gi )mi

{mi }r !
(124)

Proof We prove it by induction on L . From (120), for any n ∈ N we have

(
g(2)

)n = (g1 + k1g2)
n = {n}r !

n∑

m=0

(g1)n−m

{n − m}r !
(k1g2)m

{m}r ! (125)
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thus (124) is true for L = 2, n ∈ N. Suppose that it holds for L for any n ∈ N then,
using (120) we have

(
g(L+1)

)n =
(
g(L) + k(L)gL+1

)n

=
n∑

mL+1=0

Binr {n,mL+1}
(
g(L)

)n−mL+1
(
k(L)gL+1

)mL+1

=
n∑

mL+1=0

Binr {n,mL+1}
⎛

⎝{n − mL+1}r !
n−mL+1∑

mL=0

. . . · · ·
n−mL+1−∑L

i=3 mi∑

m2=0

g
n−mL+1−∑L

i=2 mi
1

{n − mL+1 −∑L
i=2 mi }r !

·
L∏

i=2

(k(i−1)gi )mi

{mi }r !

⎞

⎠ ·
(
k(L)gL+1

)mL+1

= {n}r !
n∑

mL+1=0

n−mL+1∑

mL=0

· · ·
n−∑L+1

i=3 mi∑

m2=0

g
n−∑L+1

i=2 mi

1

{n −∑L+1
i=2 mi }r !

·
L+1∏

i=2

(k(i−1)gi )mi

{mi }r !

this proves the lemma. ��

Lemma 5.4 Let L ∈ N, L ≥ 2 and for any i = 1, . . . , L let Xi ∈ R
N a sequence of

real numbers, Xi = {Xi (m)}m∈N, then

∞∑

n=0

n∑

mL=0

n−mL∑

mL−1=0

· · ·
n−∑L

i=3 mi∑

m2=0

X1(n −
L∑

i=2

mi ) ·
L∏

i=2

Xi (mi ) =
L∏

i=1

∞∑

mi=0

Xi (mi )(126)

Proof It is sufficient to prove it for L = 2, the proof of (126) follows by an analogous
argument. By performing the change of variable n := m1 + m2 we obtain

∞∑

mi=0

2∏

i=1

Xi (mi ) =
∞∑

m1=0

∞∑

m2=0

X1(m1)X2(m2)

=
∞∑

m2=0

∞∑

n=m2

X1(n − m2)X2(m2) =
∞∑

n=0

n∑

m2=0

X1(n − m2)X2(m2)

that yields (126) for L = 2. ��
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Proof of Proposition 5.1. From (124) we have

expr (g
(L)) =

∞∑

n=0

(
g(L)

)n

{n}r ! (127)

=
∞∑

n=0

n∑

mL=0

n−mL∑

mL−1=0

· · ·
n−∑L

i=3 mi∑

m2=0

g
n−∑L

i=2 mi
1

{n −∑L
i=2 mi }r !

·
L∏

i=2

(k(i−1)gi )mi

{mi }r !
(128)

=
L∏

i=1

∞∑

mi=0

(k(i−1)gi )mi

{mi }r ! (129)

=
L∏

i=1

expr (k
(i−1)gi ) (130)

where the passage from (128) to (129) follows from Lemma 5.4. ��

5.2 The exponential symmetry S+
(L)

In this Section we identify the symmetry that will be used in the construction of the
process ASEP(q, j). To have a symmetry that has quasi-product form over the sites we
preliminary define more convenient generators of the Uq(sl2) quantum Lie algebra.
Let

E := q J 0 J+, F := J−q−J 0 and K := q2J
0

(131)

From the commutation relations (89) we deduce that (E, F, K ) verify the relations

K E = q2EK and K F = q−2FK [E, F] = K − K−1

q − q−1 . (132)

Moreover, from Theorem 4.1, the following co-products

�(E1) := �(q J 01 ) · �(J+
1 ) = E1 ⊗ 1 + K1 ⊗ E2 (133)

�(F1) := �(J−
1 ) · �(q−J 01 ) = F1 ⊗ K−1

2 + 1 ⊗ F2 (134)

are still symmetries of H(2). In general we can extend (133) and (134) to L sites, then
we have that

E (L) := �(L−1)(E1)

= �(L−1)(q J 01 ) · �(L−1)(J+
1 )

= q J 01 J+
1 + q2J

0
1 +J 02 J+

2 + · · · + q2
∑L−1

i=1 J 0i +J 0L J+
L

= E1 + K1E2 + K1K2E3 + · · · + K1 · · · · · KL−1EL (135)

F (L) := �(L−1)(F1)
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= �(L−1)(J−
1 ) · �(L−1)(q−J 01 )

= J−
1 q−J 01 −2

∑L
i=2 J 0i + · · · + J−

L−1q
−J 0L−1−2J 0L + J−

L q−J 0L

= F1 · K−1
2 · · · · · K−1

L + · · · + FL−1 · K−1
L + FL (136)

are symmetries of H .
To construct our process we use the symmetries obtained by q-exponentiating

E (L) and F (L) because these operators “pseudo-factorize” (see Proposition 5.1 and

Lemma 7.1 below). These symmetries are the “correct” analogues of e
∑L

i=1 J
±
i in the

symmetric case q → 1 because they give rise, aswewill see, pseudo-factorized duality
functions when applied to the trivial duality function.

Lemma 5.5 The operator
S+
(L) := expq2(E

(L)) (137)

is a symmetry of H(L). Its matrix elements are given by

〈η1, . . . , ηL |S+|ξ1, . . . , ξL〉

=
L∏

i=1

√(
ηi

ξi

)

q

(
2 j − ξi

2 j − ηi

)

q
· 1ηi≥ξi q

(ηi−ξi )
[
1− j+ξi+2

∑i−1
k=1(ξk− j)

]

(138)

Proof From (132) we know that the operators Ei , Ki , copies of the operators defined
in (131), verify the conditions (113) with r = q2. As a consequence, from (135), (137)
and Proposition 5.1, we have

S+
(L) = expq2(E

(L))

= expq2(E1) · expq2(K1E2) · · · expq2(K1 · · · KL−1EL)

= expq2
(
q J 01 J+

1

)
· expq2

(
q2J

0
1 q J 02 J+

2

)
· · · expq2

(
q2
∑L−1

i=1 J 0i +J 0L J+
L

)

= S+
1 S+

2 · · · S+
L (139)

where S+
i := expq2

(
q2
∑i−1

k=1 J
0
k +J 0i J+

i

)
has been defined. Using (111), we find

S+
i |ξ1, . . . , ξL 〉 =

∑

�i≥0

1

[�i ]q !
(
q2
∑i−1

k=1 J
0
k +J 0i J+

i

)�i
q− 1

2 �i (�i−1)|ξ1, . . . , ξL〉

=
∑

�i≥0

√(
2 j − ξi

�i

)

q
·
(

ξi + �i

ξi

)

q

·q�i (1− j+ξi )+2�i
∑i−1

k=1(ξk− j)|ξ1, . . . , ξi + �i , . . . , ξL〉 (140)
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where in the last equality we used (92). Thus we find

S+
(L)|ξ1, . . . , ξL〉 = S+

1 S+
2 . . . S+

L |ξ1, . . . , ξL〉

=
∑

�1,�2,...,�L≥0

L∏

i=1

(√(
2 j − ξi

�i

)

q
·
(

ξi + �i

ξi

)

q

· q�i (1− j+ξi )+2�i
∑i−1

k=1(ξk− j)
)

|ξ1 + �1, . . . , ξL + �L〉 (141)

from which the matrix elements in (138) are immediately found. ��

5.3 Construction of a positive ground state and the associated Markov process
ASEP(q, j)

By applying Corollary 2.1 we are now ready to identify the stochastic process related
to the Hamiltonian H(L) in (100).

We start from the state |0〉 = |0, . . . , 0〉 which is obviously a trivial ground state of
H(L). We then produce a non-trivial ground state by acting with the symmetry S+

(L) in
(137), as described in Remark 2.1. Using (141) we obtain

|g〉 = S+
(L)|0, . . . , 0〉 =

∑

�1,�2,...,�L≥0

L∏

i=1

√(
2 j

�i

)

q
· q�i (1+ j−2 j i) |�1, . . . , �L 〉

Thereforewe arrived to a positive ground state (cfr. Remark 2.1). Following the scheme
in Corollary 2.1 we construct the operator G(L) defined by

G(L)|η1, . . . , ηL 〉 = |η1, . . . , ηL〉〈η1, . . . , ηL |S+|0, . . . , 0〉 (142)

In other words G(L) is represented by a diagonal matrix whose coefficients in the
standard basis read

〈η1, . . . , ηL |G(L)|ξ1, . . . , ξL 〉 =
L∏

i=1

√(
2 j

ηi

)

q
· qηi (1+ j−2 j i) · δηi=ξi (143)

Note that G(L) is factorized over the sites, i.e.

〈η1, . . . , ηL |G(L)|ξ1, . . . , ξL〉 = ⊗L
i=1〈ηi |Gi |ξi 〉 (144)

As a consequence of item (a) of Corollary 2.1, the operator L (L) conjugated to H(L)

via G−1
(L), i.e.

L (L) = G−1
(L)H(L)G(L) (145)
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is the generator of a Markov jump process η(t) = (η1(t), . . . , ηL(t)) describing
particles jumping on the line {1, . . . , L}. The state space of such a process is given by
{0, . . . , 2 j}L and its elements are denoted by η = (η1, . . . , ηL), where ηi is interpreted
as the number of particles at site i . The exclusion rule is due to the fact that on each
site can sit no more than 2 j particles. The asymmetry is controlled by the parameter
0 < q ≤ 1.

Proposition 5.2 The action of theMarkov generatorL (L) := G−1
(L)H(L)G(L) is given

by (11).

Proof From Proposition 4.1 we know that H∗
(L) = H(L), hence we have that the

operator H̃(L) := G(L)H(L)G
−1
(L) is the transposed of the generator L (L) defined by

(145). Then we have to verify that the transition rates to move from η to ξ for the
Markov process generated by (11) are equal to the elements 〈ξ |H̃(L)|η〉.

Since we already know thatL (L) is a Markov generator, in order to prove the result
it is sufficient to apply the similarity transformation given by the matrix G(L) defined

in (143) to the non-diagonal terms of (104), i.e. q J 0i J±
i J∓

i+1q
−J 0i+1 . We show here the

computation only for the first term, since the computation for the other term is similar.
We have

〈ξi , ξi+1|GiGi+1 · q J 0i J+
i J−

i+1q
−J 0i+1 · G−1

i G−1
i+1|ηi , ηi+1〉

= 〈ξi |Giq
J 0i J+

i G−1
i |ηi 〉 ⊗ 〈ξi+1|Gi+1 J

−
i+1q

−J 0i+1G−1
i+1|ηi+1〉 (146)

Using (143) and (92) one has

〈
ξi |Giq

J 0i J+
i G−1

i |ηi
〉
= qηi+2−2 j i [2 j − ηi ]q 〈ξi |ηi + 1〉 (147)

and

〈
ξi+1|Gi+1 J

−
i+1q

−J 0i+1G−1
i+1|ηi+1

〉
= q−ηi+1+2 j−1+2 j i [ηi+1]q 〈ξi+1|ηi+1 − 1〉

(148)

Multiplying the last two expressions one has

〈
ηi+1,i |H̃(L)|η

〉
= qηi−ηi+1+(2 j+1)[2 j − ηi ]q [ηi+1]q (149)

that corresponds indeed to the rate to move from η to ηi+1,i in (11). This concludes
the proof. ��
Remark 5.2 From item (c) of Corollary 2.1, we have that the product measure μ(L)

defined by

μ(L)(η) =
〈
η|G2

(L)|η
〉

(150)
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is a reversible measure of L (L). Notice that it corresponds to the reversible measure
P

(α) defined in (16) with the choice α = 1. ��

6 Self-duality results for the ASEP(q, j)

We now use Proposition 2.1 and the exponential symmetry obtained in Sect. 5.2 to
deduce a non-trivial duality function for the ASEP(q, j) process. We first have the
following remark on trivial duality functions.

Remark 6.1 From (9) and item (a) of Theorem 3.1 it follows that all the functions

dα(η, ξ) =
L∏

i=1

((
2 j

ηi

)

q
· αnq2ηi (1+ j−2 j i)

)−1

· δηi=ξi (151)

are diagonal duality functions for the Markov process with generatorL (L).

We then deduce the main result, i.e. a non-trivial duality function.

Proof of (34) in Theorem 3.2 From Proposition 4.1 we know that H(L) is self-adjoint,
then, using Proposition 2.1 with H = H(L), G = G(L) given by (143) and S = S+

(L)

given by (138) it follows that

G−1
(L)S

+
(L)G

−1
(L) (152)

is a self-duality function for the process generated byL (L). Its elements are computed
as follows:

〈η|G−1
(L)S

+
(L)G

−1
(L)|ξ 〉 (153)

=
L∏

i=1

(√(
2 j

ηi

)

q
· qηi (1+ j−2 j i)

)−1

〈η|S+
i |ξ 〉

(√(
2 j

ξi

)

q
· qξi (1+ j−2 j i)

)−1

=
L∏

i=1

√(
ηi

ξi

)

q

(
2 j − ξi

2 j − ηi

)

q

/(
2 j

ηi

)

q

(
2 j

ξi

)

q

·q(ηi−ξi )
[
2
∑i−1

k=1(ξk− j)+ξi

]
+(2 j i− j−1)(ηi+ξi ) · 1ξi≤ηi

= q
∑L

i=1(( j−1)ηi−(3 j+1)ξi )
L∏

i=1

[2 j − ξi ]q ![ηi ]q !
[2 j]q ![ηi − ξi ]q !

· q(ηi−ξi )
[
2
∑i−1

k=1 ξk+ξi

]
+4 j iξi · 1ξi≤ηi (154)

Since both the original process and the dual process conserve the total number of
particles it follows that D(L) in (34) is also a duality function.
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7 A second symmetry and associated self-duality

Up to now we worked with the symmetry S+
(L) defined in (137). In this Section we

explore other choices for the symmetry and their consequences.

7.1 Construction of alternative symmetries

We already observed that the operator F (L) defined in (136) is a symmetry of H(L).
The following Lemma gives the exponential symmetry that is further obtained.

Lemma 7.1 The operator
S−
(L) := expq−2(F (L)) (155)

is a symmetry of H(L). Its matrix elements are given by

〈
η1, . . . , ηL |S−

(L)|ξ1, . . . , ξL
〉

=
L∏

i=1

√(
ξi

ηi

)

q
·
(
2 j − ηi

2 j − ξi

)

q
· 1ηi≤ξi q

−(ξi−ηi )
[
2
∑L

k=i+1(ηk− j)+ηi− j+1
]

(156)

Proof From (132) we know that the operators Fi , Ki , copies of the operator defined in
(131), verify the conditions (113) with r = q−2. Then, from (164) and Proposition 5.1

S−
(L) = expq−2(F (L))

= expq−2(F1K
−1
2 . . . K−1

L ) · · · · · expq−2(FL−1K
−1
L ) · expq−2(FL)

= expq−2

(
J−
1 q−J 01 −2

∑L
i=2 J 0i

)
· · · · · expq−2

(
J−
L−1q

−J 0L−1−2J 0L
)

·expq−2

(
J−
L q−J 0L

)
= S−

1 S−
2 . . . S−

L (157)

where S−
i := expq−2(J−

i q−J 0i −2
∑L

k=i+1 J
0
k ). Using (111) and the fact that [x]q−1 =

[x]q , we have

S−
i |ξ1, . . . , ξL〉 =

∑

�i≥0

1

[�i ]q !
(
J−
i q−J 0i −2

∑L
k=i+1 J

0
k

)�i
q

1
2 �i (�i−1)|ξ1, . . . , ξL 〉

=
∑

�i≥0

√(
ξi

�i

)

q
·
(
2 j − ξi + �i

�i

)

q

q−2�i
∑L

k=i+1(ξk− j) q�i (�i−ξi+ j−1)|ξ1, . . . , ξi − �i , . . . ξL〉 (158)
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then

S−
(L)|ξ1, . . . , ξL〉 = S−

1 S−
2 . . . S−

L |ξ1, . . . , ξL〉

=
∑

�1,�2,...,�L≥0

L∏

i=1

(√(
ξi

�i

)

q
·
(
2 j − ξi + �i

�i

)

q

·q−2�i
∑L

k=i+1(ξk−�k− j) q�i (�i−ξi+ j−1)
)

|ξ1 − �1, . . . , ξL − �L〉

From this the matrix elements in (156) immediately follows. ��

Other symmetries can be obtained as follows. Similarly to Sect. 5.2, we consider

Ẽ := J+q−J 0 , F̃ := q J 0 J− and K̃ := q2J
0

(159)

and notice that (Ẽ, F̃, K ) (as (E, F, K ) in Sect. 5.2) verify the commutation relations

K̃ Ẽ = q2 Ẽ K̃ and K̃ F̃ = q−2 F̃ K̃ [Ẽ, F̃] = K̃ − K̃−1

q − q−1 . (160)

Therefore the following co-products

�(Ẽ1) := �(J+
1 ) · �(q−J 01 ) = Ẽ1 ⊗ K̃−1

2 + 1 ⊗ Ẽ2 (161)

�(F̃1) := �(q J 01 ) · �(J−
1 ) = F̃1 ⊗ 1 + K̃1 ⊗ F̃2 (162)

are symmetries of H(2). In general we can extend (161) and (162) to L sites, then we
have that

Ẽ (L) := �(L−1) Ẽ1

= �(L−1)(J+
1 ) · �(L−1)(q−J 01 )

= J+
1 q−J 01 −2

∑L
i=2 J 0i + · · · + J+

L−1q
−J 0L−1−2J 0L + J+

L q−J 0L

= Ẽ1 · K̃−1
2 · · · · · K̃−1

L + · · · + ẼL−1 · K̃−1
L + ẼL (163)

F̃ (L) := �(L−1) F̃1

= �(L−1)(q J 01 ) · �(L−1)(J−
1 )

= q J 01 J−
1 + q2J

0
1 +J 02 J−

2 + · · · + q2
∑L−1

i=1 J 0i +J 0L J−
L

= F̃1 + K̃1 F̃2 + K̃1 K̃2 F̃3 + · · · + K̃1 · · · · · K̃L−1 F̃L (164)

are symmetries of H(L).
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Remark 7.1 Notice that Ẽ(L) (respectively F̃(L)) is related to F(L) (respectively E(L))
by a transposition. More precisely, using (94), one has

(Ẽ (L))∗ = q−J 01 J−
1 q−2

∑L
i=2 J 0i + · · · + q−J 0L−1 J−

L−1q
−2J 0L + q−J 0L J−

L

= q
(
J−
1 q−J 01 q−2

∑L
i=2 J 0i + · · · + J−

L−1q
−J 0L−1q−2J 0L + J−

L q−J 0L
)

= qF (L) (165)

(F̃ (L))∗ = J+
1 q J 01 + q2J

0
1 J+

2 q J 02 + · · · + q2
∑L−1

i=1 J 0i J+
L q J 0L

= q−1
(
q J 01 J+

1 + q2J
0
1 +J 02 J+

2 + · · · + q2
∑L−1

i=1 J 0i +J 0L J+
L

)

= q−1E (L) (166)

By exponentiating Ẽ(L) and F̃(L) the following two symmetries S̃+
(L) and S̃−

(L) are
obtained.

Lemma 7.2 The operator
S̃+
(L) := expq2(Ẽ

(L)) (167)

is a symmetry of H(L). Its matrix elements are given by

〈η1, . . . , ηL |S̃+
(L)|ξ1, . . . , ξL 〉

=
L∏

i=1

√(
2 j − ξi

2 j − ηi

)

q
·
(

ηi

ξi

)

q
q

−(ηi−ξi )
[
2
∑L

k=i+1(ηk− j)+ηi− j−1
]

· 1ξi≤ηi (168)

Proof From (160)we know that the operators Ẽi , K̃i , copies of the operators defined in
(159), verify the conditions (113) with r = q2. Then, from (163) and Proposition 5.1

S̃+
(L) = expq2(Ẽ

(L))

= expq2(Ẽ1 K̃
−1
2 . . . K̃−1

L ) · · · · · expq2(ẼL−1 K̃
−1
L ) · expq2(ẼL)

= expq2
(
J+
1 q−J 01 −2

∑L
i=2 J 0i

)
· · · · · expq2

(
J+
L−1q

−J 0L−1−2J 0L
)

· expq2
(
J+
L q−J 0L

)

= S̃+
1 S̃+

2 . . . S̃+
L (169)

where S̃+
i := expq2(J

+
i q−J 0i −2

∑L
k=i+1 J

0
k ). Using (111), we have

S̃+
i |ξ1, . . . , ξL〉 =

∑

�i≥0

1

[�i ]q !
(
J+
i q−J 0i −2

∑L
k=i+1 J

0
k

)�i
q− 1

2 �i (�i−1)|ξ1, . . . , ξL 〉

=
∑

�i≥0

√(
2 j − ξi

�i

)

q
·
(

ξi + �i

ξi

)

q
q−2�i

∑L
k=i+1(ξk− j)

q−�i (ξi+�i− j−1)|ξ1, . . . , ξi + �i , . . . ξL〉 (170)
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then

S̃+
(L)|ξ1, . . . , ξL 〉 = S̃+

1 S̃+
2 . . . S̃+

L |ξ1, . . . , ξL 〉

=
∑

�1,�2,...,�L≥0

L∏

i=1

(√(
2 j − ξi

�i

)

q
·
(

ξi + �i

ξi

)

q

· q−2�i
∑L

k=i+1(ξk+�k− j) q−�i (ξi+�i− j−1)
)

|ξ1 + �1, . . . , ξL + �L〉

Hence the matrix elements of S̃+
(L) are given by (168). ��

Lemma 7.3 The operator
S̃−
(L) := expq−2(F̃ (L)) (171)

is a symmetry of H(L). Its matrix elements are given by

〈
η1, . . . , ηL |S̃−

(L)|ξ1, . . . , ξL
〉

=
L∏

i=1

√(
ξi

ηi

)

q

(
2 j − ηi

2 j − ξi

)

q
· q(ξi−ηi )

[
2
∑i−1

k=1(ξk− j)−ξi+1+ j
]

· 1ηi≤ξi (172)

Proof From (160)we know that the operators F̃i , K̃i , copies of the operators defined in
(159), verify the conditions (113) with r = q−2. Then, from (163) and Proposition 5.1

S̃−
(L) = expq−2(F̃ (L))

= expq−2(F̃1) · expq−2(K̃1 F̃2) · · · · · expq−2(K̃1 · · · · · K̃L−1 F̃L)

= expq−2

(
q J 01 J−

1

)
· expq−2

(
q2J

0
1 q J 02 J−

2

)
· · · · · expq−2

(
q2
∑L−1

i=1 J 0i +J 0L J−
L

)

= S̃−
1 S̃−

2 . . . S̃−
L (173)

where S̃−
i := expq−2

(
q2
∑i−1

k=1 J
0
k +J 0i J−

i

)
. Using (111) and the fact that [x]q−1 = [x]q ,

we have

S̃−
i |ξ1, . . . , ξL 〉 =

∑

�i≥0

1

[�i ]q !
(
q2
∑i−1

k=1 J
0
k +J 0i J−

i

)�i
q

1
2 �i (�i−1)|ξ1, . . . , ξL〉

=
∑

�i≥0

√(
2 j − ξi + �i

�i

)

q
·
(

ξi

�i

)

q
·

q�i (1+ j−ξi )+2�i
∑i−1

k=1(ξk− j)|ξ1, . . . , ξi − �i , . . . ξL〉 (174)
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then

S̃−
(L)|ξ1, . . . , ξL〉 = S̃−

1 S̃−
2 . . . S̃−

L |ξ1, . . . , ξL〉

=
∑

�1,�2,...,�L≥0

L∏

i=1

(√(
2 j − ξi + �i

�i

)

q
·
(

ξi

�i

)

q

· q�i (1+ j−ξi )+2�i
∑i−1

k=1(ξk− j)
)

|ξ1 − �1, . . . , ξL − �L〉

Hence the matrix elements of S̃−
(L) are given by (172). ��

As it was donewith the ground state S+
(L)|0, . . . , 0〉, one couldwonder whatMarkov

process is obtained if one uses the ground state S̃+
(L)|0, . . . , 0〉. One can check by an

explicit computation (not reported here) that if H(L) is transformed by a similarity
transformation G̃(L) given by

G̃(L)|η1, . . . , ηL〉 = |η1, . . . , ηL 〉〈η1, . . . , ηL |S̃+
(L)|0, . . . , 0〉 (175)

one recovers the ASEP(q, j) Markov jump process.

7.2 Construction of alternative self-duality functions

One can wonder what other dualities are found using the other symmetries of the
previous Section.Using S−

(L) one finds a duality functionwhich is the transpose of (34).

In the same way S̃+
(L) and S̃

−
(L) give duality functions that are related by a transposition.

Such duality function is different from (34) and is given by (35) that we are going to
prove below.

Proof of (35) in Theorem 3.2 From Proposition 4.1 we know that H(L) is self-adjoint,
then, using Proposition 2.1 with H = H(L), G = G(L) given by (143) and S = S̃−

(L)

given by (138) it follows that

G−1
(L) S̃

−
(L)G

−1
(L) (176)

is a self-duality function for the process generated byL (L). Its elements are computed
as follows:

〈η|G−1
(L) S̃

−
(L)G

−1
(L)|ξ 〉 (177)

=
L∏

i=1

(√(
2 j

ηi

)

q
· qηi (1+ j−2 j i)

)−1

〈η|S̃−
i |ξ 〉

(√(
2 j

ξi

)

q
· qξi (1+ j−2 j i)

)−1

=
L∏

i=1

√(
ξi

ηi

)

q

(
2 j − ηi

2 j − ξi

)

q

/(
2 j

ηi

)

q

(
2 j

ξi

)

q
·
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q
(ξi−ηi )

[
2
∑i−1

k=1(ξk− j)−ξi

]
+(2 j i− j−1)(ηi+ξi ) · 1ηi≤ξi

= q
∑L

i=1(( j−1)ξi−(3 j+1)ηi )
L∏

i=1

[2 j − ηi ]q ![ξi ]q !
[2 j]q ![ξi − ηi ]q ! ·

q
(ξi−ηi )

[
2
∑i−1

k=1 ξk−ξi

]
+4 j iηi · 1ηi≤ξi (178)

Since both the original process and the dual process conserve the total number of
particles it follows that D′

(L) in (35) is also a duality function.

7.3 Comparison with the Schütz duality in the case j = 1/2

Consider the duality matrix D′ computed in (35), then the associated duality function
is

D′
(L)(η, ξ) =

L∏

i=1

(
ηi
ξi

)

q
(2 j
ξi

)

q

· q
(ηi−ξi )

[
2
∑i−1

k=1 ηk−ηi

]
+4 j iξi · 1ξi≤ηi

For j = 1/2 both ξi and ηi take values in {0, 1} then

η2i ≡ ηi and for ξi ≤ ηi , ξiηi ≡ ξi (179)

hence, assuming that ξi ≤ ηi for all i , we have

L∑

i=1

(ηi − ξi )ηi =
L∑

i=1

η2i −
L∑

i=1

ξiηi =
L∑

i=1

ηi −
L∑

i=1

ξi = N − M

where N and M are the total numbers of particles respectively in the configurations η

and ξ . Thus

L∏

i=1

(
ηi
ξi

)

q
(2 j
ξi

)

q

· q−(ηi−ξi )ηi · 1ξi≤ηi = q−∑L
i=1(ηi−ξi )ηi ·

L∏

i=1

1ξi≤ηi = c · 1{ξi≤ηi ,∀i}

On the other hand, assuming that ξi ≤ ηi , we have

ηi − ξi = 1ηi=1,ξ1=0, then
L∏

i=1

q2(ηi−ξi )
∑i−1

k=1 ηk =
∏

i :ηi=1,ξi=0

q2
∑i−1

k=1 ηk

then, for j = 1/2

D′(η, ξ) = c · 1{ξi≤ηi ,∀i} · q2
∑L

i=1 iξi
∏

i :ηi=1,ξi=0

q2
∑i−1

k=1 ηk
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Now, using the Schütz notation, one may represent a given M-particles configuration
by the set C of occupied sites. More precisely, let M be the total number of the
configuration ξ , we denote by C := {k1, . . . , kM } the set of occupies sites ki ∈
{1, . . . , L} ki ≤ ki+1. With this notation we have

L∑

i=1

iξi =
M∑

m=1

km

On the other hand, for the configuration η we denote by Ni , i = 1, . . . , L the number
of particles at the left of i (with site i included):

Ni :=
i∑

k=1

ηk

With this notation we have

D′
(L)(η, ξ) = c · 1{ξi≤ηi ,∀i} · q2

∑M
m=1 km q2

∑
i :ηi=1,ξi=0 Ni−1 (180)

Now, assuming that ξi ≤ ηi for all i , we have

∑

i :ηi=1,ξi=0

Ni−1 =
∑

i :ηi=1

Ni−1 −
∑

i :ηi=1,ξi=1

Ni−1 (181)

Let now N be the total number of particles in the configuration η, then we prove that

∑

i :ηi=1

Ni−1 = N (N − 1)

2
(182)

We have

∑

i :ηi=1

Ni−1 =
∑

i :ηi=1

ηi Ni−1 =
∑

i :ηi=1

i−1∑

k=1

ηiηk

On the other hand

N 2 =
(

L∑

i=1

ηi

)2

=
L∑

i=1

L∑

k=1

ηiηk

=
L∑

i=1

i−1∑

k=1

ηiηk +
L∑

i=1

η2i +
L∑

i=1

L∑

k=i+1

ηiηk

= 2
L∑

i=1

i−1∑

k=1

ηiηk + N
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where the last identity follows because

L∑

i=1

i−1∑

k=1

ηiηk =
L∑

i=1

L∑

k=i+1

ηiηk

and since , from the left identity in (179),

L∑

i=1

η2i =
L∑

i=1

ηi = N

then (182) is proved. On the other hand, from the right identity in (179) we have

∑

i :ηi=1,ξi=1

Ni−1 =
L∑

i=1

ηiξi

i−1∑

k=1

ηk

=
L∑

i=1

ξi

i−1∑

k=1

ηk

=
M∑

m=1

km−1∑

k=1

ηk

=
M∑

m=1

Nkm−1 (183)

Finally from (181), (182) and (183) we have

∑

i :ηi=1,ξi=0

Ni−1 = N (N − 1)

2
−

M∑

m=1

Nkm−1 (184)

Finally we have that ξi ≤ ηi for all i if and only if all the sites {k1, . . . , kM } are
occupied sites for the configuration η, then from (180) and (184) we have

D′((L)η, ξ) = c′ · 1{ξi≤ηi ,∀i} · q2
∑M

m=1 km q−2
∑M

m=1 Nkm−1

= c′ ·
M∏

m=1

q2km q−2Nkm−1 · ηkm (185)

that is the Schütz self-duality function (up to a sign, i.e. q2km instead of q−2km ).
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