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Empirical Analysis of Confounding Bias in Feature

Representations for Average Treatment Effect Estimation

Marco van Veen

Abstract

Causal inference methods are often used for estimating the effects of an action on an
outcome using observational data, which is a key task across various fields, such as medicine
or economics. A number of methods make use of representation learning to try to obtain more
informative feature representations, which are then used for effect estimation. However, such
feature representations can introduce confounding bias in the results if they lose confounding
information contained within the original features. In this work, we evaluate an existing metric
for measuring confounding bias in representations and use this metric to study two representation
learning methods in terms of their biases in settings with low overlap between treated and control
populations. We show that the metric is a suitable measure for the amount of confounding bias
in a representation and representation learning methods that minimise this bias lead to better
average treatment effect estimation in our experiments. The code used for the experiments can
be found on GitHub.

1 Introduction

Determining the causal effects of actions on outcomes is a crucial task across many fields, such as
medicine or economics. In medicine, for example, researchers are often interested in understanding
the effect of some newly developed treatment on the recovery of a patient. Or, in economics for
instance, a central bank would want to understand what the effect of a new interest rate policy would
be.

One method for estimating the causal effect of some treatment in medicine is to perform a
randomised controlled trial. Here, patients are randomly assigned either treatment or no treatment
in order to create two separate groups, the treated and control groups. Since treatment was assigned
randomly, the two groups should have relatively similar characteristics on average if enough patients
were sampled. Taking the difference in average outcomes between the groups should then reflect the
effect of the given treatment.

However, such randomised trials are not always feasible to perform due to costs or ethical concerns.
Therefore, observational datasets, such as anonymised patient records from a hospital, often have to
be used instead. In such datasets, treatments are not randomly assigned and often depend on the
specific patient characteristics. For example, it might happen that younger patients are assigned
treatments more frequently. This can lead to an imbalance in the treated and control groups, as the
treated group consists of a relatively larger amount of young patients compared to the control group.
Additionally, age likely also has an effect on the outcomes, as younger people tend to be healthier
overall. Features which affect both treatment assignment and the outcome, such as age in this case,
are also known as confounders. All of these confounding features must be taken into account when
estimating causal effects, since unobserved confounders may lead to correlations between treatments
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and outcomes that can be wrongly interpreted as causal effects. The bias arising due to failing to
account for all confounding factors is also known as confounding bias.

To estimate causal effects from observational datasets, treatment effect estimators, such as inverse
probability of treatment weighting (IPW), have been developed to try to weigh the samples in order
to achieve balance across the covariate distributions, which reflect the two groups’ characteristics. A
common choice for the weights is the reciprocal of the propensity score introduced by Rosenbaum
and Rubin (1983), which is the probability of an individual to receive treatment conditioned on all
covariates. However, obtaining weights using estimated propensity scores can lead to instability in
the estimators in case of poor overlap between the covariates of the treated and control groups, in
which case mostly, or exclusively, samples from only one of the groups are observed in certain regions
of the distributions. This causes the propensity scores to have values close to 0 or 1. Instability in
the estimators then occurs, because the samples are divided by these propensity scores during the
weighing process.

D’Amour and Franks (2021) introduced the idea of deconfounding scores with the goal of improving
the stability of the estimators under such poor overlap settings. Deconfounding scores are feature
representations that can be used to obtain more stable weights, without introducing additional biases
in the estimates. These deconfounding scores represent all functions of the covariates that lead to
unbiased estimates of the treatment effects as long as the original covariates are unconfounded. The
covariates are considered unconfounded if they contain all information relevant to confounding.

The authors additionally derived a formulation for the confounding bias which could be introduced
when using an alternative representation of the original covariates, as using such alternative
representations may lead to a loss of confounding information contained within the original features.
Using this formulation, the authors managed to analytically derive a family of deconfounding scores
for a simplified setting with low overlap. In that specific setting, using some of the obtained
deconfounding scores to calculate the weights can lead to significant improvements over the commonly
used propensity scores.

Besides weighting-based estimators, deep learning methods which utilise representation learning
have also been developed for estimating treatment effects (Shalit et al., 2017; Johansson et al.,
2022; Shi et al., 2019; Chernozhukov et al., 2022). These methods use neural networks to obtain
feature representations for the original data which are then used for the outcome predictions. In
order to improve the treatment effect estimation, some of these methods also incorporate additional
constraints for the learned representations to achieve better balance between the treated and control
groups within these learned representations compared to the original features.

However, the feature representations learnt by such deep learning models might also lead to a
loss of confounding information contained within the original confounders (Melnychuk et al., 2023).
While some methods may include additional balancing constraints on the feature representations,
they do not explicitly enforce that no confounding bias is introduced by using the representations.
So, this may lead to the resulting treatment effect estimates being affected by confounding bias due
to the learned representations.

Since the previous work on deconfounding scores, which minimise confounding bias, showed that
several of these scores can lead to better treatment effect estimation for weighting methods, especially
in low overlap settings, understanding whether this effect also carries over to representation learning
methods can provide valuable insights into whether prioritising confounding bias minimisation may
be a desirable objective for representation learning.

Therefore, the goal of this paper is to answer two main questions: (1) Is the confounding bias
formulation from D’Amour and Franks (2021) a suitable metric for the confounding bias introduced
by feature representations? (2) Do feature representations which lead to lower average treatment
effect bias and variance in low overlap settings, also exhibit a lower amount of measured confounding
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bias within the representations? To address these questions, we take an empirical approach by
constructing specific simulation experiments to understand how accurately the confounding bias can
be measured using feature representations and to what extent measures of confounding bias can be
used to explain the performance of representation learning methods.

The rest of the paper is structured as follows. Section 2 will show an overview of the related
works. Next, Section 3 introduces the problem of estimating average treatment effects, including
two estimators which can be used for this, and finishes with the main problem setting considered in
this work. Section 4 will then explain how confounding bias can be measured within representations
and give an overview of the two representation learning models considered in this work. After this,
Section 5 presents the setup for the experiments and Section 6 will show the obtained results. Then,
Section 7 provides a discussion of the results. Finally, Section 8 summarises the resulting conclusions.

2 Related Work

Deconfounding scores are feature representations of the covariates that can be used to obtain weights
for weighing estimators, without losing any information related to confounding, which could otherwise
introduce confounding bias in the estimates (D’Amour and Franks, 2021). They belong to a rich
literature on balancing scores that try to find weights, such that the covariate distributions are more
balanced among the treated and control samples. These works generally find balancing weights
through some optimisation problem where constraints are added for the weights such that they match
the moments of the distributions between the groups. For example, Athey et al. (2018) find weights
which approximately match the means of the distributions in order to weigh the outcome regression
residuals. Hainmueller (2012), on the other hand, introduced the entropy balancing method, which
explicitly maximises the entropy of the weights such that moments of the distributions are exactly
matched. Finally, Imai and Ratkovic (2014) uses the balancing property of the IPW estimator to
obtain the weights which balance the covariate distributions.

Only Clivio et al. (2023) seem to build further upon the concept of deconfounding scores. They
make use of approximate deconfounding scores, which are deconfounding scores that allow for some
fixed amount of confounding bias to be introduced due to the representation. The goal is then
to learn feature representations, using e.g. a RieszNet (Chernozhukov et al., 2022), which bound
the amount of confounding bias allowed. These are then used to obtain the optimal weights which
balance the feature distributions according to some probability distance.

While our work also makes use of the notion of deconfounding scores, they are used for
different purposes compared to Clivio et al. (2023). Instead of using deconfounding scores to learn
representations which allow for a certain level of confounding bias, here they are used to measure
the confounding bias in existing representation learning methods in order to better understand
whether minimising the confounding bias in learned representations is actually a desirable objective.
Furthermore, understanding the role of the confounding bias specifically in low overlap settings is
the main interest of this work, while this setting was not further explored by Clivio et al. (2023).

In this study, we are considering confounding bias in representations learned using neural-network
based methods for causal effect estimation. One of the most popular neural network-based methods
is the TARNet introduced by Shalit et al. (2017), which contains shared layers to learn a feature
representation for the original features and uses two different output heads for predicting the outcomes
for the treated and control groups. In order to improve the performance under heavy imbalance
between the groups, they also add a balancing objective in the form of an Integral Probability
Metric (IPM) to minimise the distance between the treated and control samples in the learnt feature
representation (Müller, 1997). The TARNet with the IPM objective is known as the Counterfactual
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Regression (CFR). Another extension to the TARNet, called DragonNet, was proposed by Shi
et al. (2019). They add an additional treatment prediction head in order to ensure that the feature
representation only captures confounding information from the original covariates, while discarding
all other information which is not relevant for confounding. For example, information from prognostic
features, which only affect the outcome, but not treatment, could be ignored when learning a
representation due to the treatment prediction objective, if the representation does not have the
capacity to retain all information from the original covariates. They showed that focusing on only the
confounding information in the representation layers improves the performance for smaller sample
sizes compared to the TARNet. A variant of the DragonNet, called RieszNet, was recently proposed
by Chernozhukov et al. (2022). The model can be seen as a generalisation of the DragonNet and
manages to outperform the DragonNet when estimating average treatment effects.

A recent work which also deals with confounding bias in representation learning methods is
Melnychuk et al. (2023). They provide a framework which allows for estimating lower and upper
bounds on the bias in the final treatment effect estimates which comes from introduced confounding
bias due to the learned representations. In our work, however, the confounding bias is measured
directly from the learned representations and compared to the overall bias in the final treatment
effect estimates, which may contain biases from other sources such as lack of overlap, which is the
specific setting considered here. Additionally, the estimand of interest in Melnychuk et al. (2023) is
the conditional average treatment effect, which looks at treatment effects within subgroups of the
population, while this work focuses on population-level average treatment effects.

3 Problem Formulation

Before we can understand whether the confounding bias metric from D’Amour and Franks (2021) is
a suitable measure and how it can be used for measuring confounding bias in feature representations,
we have to introduce the specific problem setting in this work. To do this, the treatment effect of
interest in this work, namely the Average Treatment Effect (ATE), is first defined. After this, two
estimators for the ATE are presented, including the assumptions that are required for correct causal
effect estimation from observational data. Finally, ATE estimation using feature representations is
discussed, along with the potential issues arising from using such representations, which leads to the
main problem of interest in this work.

3.1 Average Treatment Effects

The effect we are interested in here is the Average Treatment Effect (ATE) of a binary treatment
using observational data. Such a dataset consists of n samples with features X, binary treatments
T , and outcomes Y which are independently and identically distributed as (Xi, Ti, Yi) ∼ P for
i = 1, ..., n. The features X can affect the treatment assigned to each sample, the outcome, or both.
Here, capitalised letters represent random variables, while lower case letters, which appear later in
this work, represent actual values.

In order to estimate average treatment effects, the Rubin-Neyman potential outcomes framework
is used (Splawa-Neyman et al., 1990; Rubin, 1974). Here, it is assumed that each sample in the
dataset has two potential outcomes Y (1) and Y (0) which represent the outcomes if the sample had
or had not received treatment. Furthermore, the stable unit treatment value (SUTVA) assumption
is commonly made, which essentially states that if a sample x receives treatment (t = 1), then its
observed outcome Y equals Y (1). Conversely, if it received no treatment, then its observed outcome
Y equals Y (0). So, the observed outcome for each sample matches the correct potential outcome
according to the assigned treatment.
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Now, the ATE can be formulated:

τATE = E[Y (1)− Y (0)]

which is the difference in the expected outcome in the population, if every individual received
treatment, and no individual received treatment.

3.2 Estimators For Average Treatment Effects

The problem with estimating the ATE is the fact that only one of the potential outcomes can
be observed for each sample. Therefore, the strong ignorability conditions are used in order to
make the ATE identifiable from observed data (Rosenbaum and Rubin, 1983). These conditions
consist of two separate assumptions. The first is the unconfoundedness assumption which states
(Y (0), Y (1)) ⊥⊥ T | X. This means that, conditioned on the observed features X, the treatment
assignment is essentially random. The second is the overlap assumption 0 < P (T = 1|X) < 1,
where e(X) = P (T = 1|X) is also commonly known as the propensity score. This ensures that
each individual with features X has some non-negative probability to either receive treatment or no
treatment. Under these assumptions, the ATE can be estimated from the data by conditioning on X
and T :

τATE
cond = E[E[Y |X,T = 1]− E[Y |X,T = 0]]

By defining two functions for the conditional expectations as mt(X) = E[Y |X,T = t] for t = 0, 1,
it is possible to estimate the ATE using the parametric G-formula (Robins, 1986). The functions
m0 and m1 can, for instance, be estimated using regression and be used to estimate the ATE by
averaging the predicted the outcomes under treatment and no treatment over all samples, and taking
the difference to obtain the treatment effect.

A commonly used, non-parametric method for estimating the ATE is the Inverse Probability of
treatment Weighting (IPW) estimator. The IPW reweighs the observed outcome of each sample by
dividing the outcomes with the propensity scores. Rosenbaum and Rubin (1983) showed that using
the propensity scores e(X) as weights allows for unbiased treatment effect estimation as long as the
strong ignorability conditions hold for the features X. The IPW then takes the following form:

τATE
IPW = E

[(
T

e(X)
− 1− T

1− e(X)

)
Y

]
From the formulation above, it is clear that the IPW estimator can be heavily affected by poor
overlap through the division by the propensity scores e(X). In the extreme case of structural overlap
violations, where e(X) can attain values of 0 or 1, the estimator breaks down completely. This is
also the case for the first estimand τATE

cond when estimated non-parametrically.

3.3 Estimation Using Feature Representations

While the previous estimators directly make use of the features X, many works are actually
interested in finding feature representations of the original features to use for effect estimation instead.
Alternative feature representations may, for instance, help with the generalisation capabilities when
using models to predict the counterfactual outcomes of the treated and control samples. So, they try
to learn feature representation d(X) which map the original features X to another space, which may
have either a higher or lower dimensionality compared to the original feature space. Additionally,
different objectives can be used for learning these representations, such as trying to enforce more
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balance between the treated and control groups within the feature space. The representations d(X)
are then used to estimate the ATE using τATE

d = E[E[Y |d(X), T = 1]− E[Y |d(X), T = 0]]. They
can also be used to obtain weights for the IPW estimator τATE

IPW by estimating the propensity scores
using the feature representations d(X) instead of the original features X.

However, such feature representations may lose confounding information contained within the
original features X. Losing such confounding information causes the unconfoundedness assumption to
be violated, so then (Y (0), Y (1))⊥̸⊥ T | d(X). This violation leads to the introduction of confounding
bias in the ATE estimates, which is defined as τATE

d − τATE .
This confounding bias introduced by feature representations directly leads to the main problems

investigated in this work. First, we are interested in how to measure the amount of confounding bias
introduced by using a feature representation d(X). Then, the effect of different methods for learning
representations d(X) on the introduced confounding bias and other biases in the ATE is investigated.
This will be done specifically for the case where there is low overlap between the treated and control
distributions, which will help us to understand whether focusing on confounding bias minimisation
when learning representations could be more desirable in these challenging settings compared to, for
example, focusing on learning a more balanced representation instead.

4 Methodology

This section will provide an overview of the method that will allow us to measure confounding bias
in feature representations and two different methods for learning feature representations. First,
a formulation for confounding bias is presented, which can be used to measure the amount of
confounding bias introduced by using a feature representation. Then, two representation learning
methods that have two different objectives for learning the representations will be shown. These
will be used to understand the effect of different representation learning objectives on the amount
of introduced confounding bias, and how they affect the overall bias from different sources in the
resulting treatment effect estimates.

4.1 Measuring Confounding Bias

As previously stated, using a feature representation d(X) can potentially introduce confounding bias
in the ATE estimates if the representation leads to a loss of confounding information. D’Amour and
Franks (2021) derived a formulation which can measure the amount of confounding bias introduced
by using a feature representation:

τATE
d − τATE = E

[
Cov(Y (1), T |d(X))

ed(X)
+

Cov(Y (0), T |d(X))

1− ed(X)

]
where ed(X) = P (T = 1|d(X)) is known as the reduced propensity score. Feature representations
d(X) which do not introduce any confounding bias, i.e., set the above equation to 0, are called
deconfounding scores by D’Amour and Franks (2021).

It has to be noted that the formulation above differs slightly from the one presented in the original
paper, since they used τATE − τATE

d for the left hand side of the equation, while keeping the same
expectation on the right. That, however, appears to be a small mistake in the formulation, as the
expectation should be negative in that case. This is shown by providing an overview of the proof for
the confounding bias formulation in Appendix A, which is based on the one provided in D’Amour
and Franks (2021).
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This bias formulation will lead to a strategy for estimating how much confounding bias is
introduced in the ATE estimates, without actually using the obtained ATE estimates themselves, but
only the feature representations d(X). To do this, the covariances between the potential outcomes
and treatments must be measured for each level of d(X).

There are, however, two problems with this approach to measure the confounding bias.
First, only one of the potential outcomes is generally observed for each sample, while both are

required in order to measure the confounding bias. So, the true bias can only be measured from d(X)
in synthetic data experiments where both potential outcomes are known. It is, however, possible to
estimate the confounding bias by instead using models to estimate the propensity scores and the
outcomes under treatment and no treatment, which can be done by learning the functions for the
conditional expectations mt(X) = E[Y |X,T = t] for t = 0, 1. Under the assumption that the strong
ignorability conditions hold for the original X, the confounding bias can then be estimated from the

observed data using E
[
Cov(m1(X),e(X)|d(X))

ed(X) + Cov(m0(X),e(X)|d(X))
1−ed(X)

]
(D’Amour and Franks, 2021).

Second, since these covariances are conditioned on d(X), they must be estimated at each level of
d(X), which is generally continuous and possibly high-dimensional. One strategy for dealing with
this issue, which will be used in this work, is to divide the space of the feature representation into a
number of small bins and estimate the covariance for each bin. This requires a sufficient number of
samples per bin in order to accurately estimate the covariances. This can especially be problematic
if d(X) is high dimensional, as the number of bins then increases exponentially.

4.2 TARNet

The TARNet is a neural network-based model for estimating treatment effects introduced by Shalit
et al. (2017). An overview of the architecture can be seen in Figure 1a.

Instead of fitting two separate models on the treated and control groups to estimate the potential
outcomes Y (0) and Y (1), it tries to combine feature information from both groups by passing all
samples through a number of shared layers in order to learn a more informative feature representation
d(X). After these shared layers, the samples are divided into two separate outcome heads depending
on the samples’ assigned treatments in order to learn two models h0(d(X)) and h1(d(X)) for the
potential outcomes Y (0) and Y (1). The objective function to be minimised then consists of some loss
function, in this case the mean squared error (MSE), between the predicted and observed outcomes:

OTARNet(h0, h1, d) =
1

n

n∑
i=1

(hti(d(xi))− yi)
2

The two obtained outcome models can then be used to estimate either the conditional average
treatment effect (CATE) or the ATE, which is the estimand of interest in this work. The ATE can
be estimated using the two learned outcome models through τ̂ATE = 1

n

∑n
i=1(h1(d(xi))− h0(d(xi))).

4.3 Counterfactual Regression

An extension to the basic TARNet, which adds a balancing objective, was also proposed by Shalit
et al. (2017) and is known as Counterfactual Regression (CFR). This model additionally minimises an
Integral Probability Metric (IPM) (Müller, 1997) between the treated and control distributions with
the goal of learning a feature representation d(X) that is more balanced compared to the original
features X. This representation d(X) with smaller distances between the treated and control features
should then lead to better generalisation performance when predicting counterfactual outcomes
between the treated and control samples.
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(a) TARNet architecture. The features X are
put through a number of shared layers and
then go through one of two separate output
heads depending on the assigned treatment
per sample. The outcomes h1(d(X)) and
h0(d(X)) represent the predicted outcomes
under treatment or no treatment.

(b) DragonNet architecture. The archi-
tecture is similar to the TARNet, but
it includes an additional propensity head
g(d(X)) and estimates the probability of
treatment for each sample based on its
learned feature representation.

Figure 1: Architectures for the TARNet and DragonNet.

Shalit et al. (2017) proposed two different IPMs which could be used, namely the Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012) and Wasserstein distances (Villani et al., 2009). Here,
only the Wasserstein distance is considered, as this was shown to perform better than the MMD in
their experiments. As it can be expensive to repeatedly compute the Wasserstein distance due to a
linear program which has to be solved every time, the Wasserstein distance can be approximated
using Sinkhorn distances (Cuturi, 2013), which may be minimised instead. An overview of how the
Wasserstein distance is approximated in this case can be found in Shalit et al. (2017). The algorithm
contains a parameter λ that has to be set, which scales the calculated distances between the treated
and control samples in order to assign higher or lower weight to more distant treated and control
samples.

The objective function of the CFR to be minimised is then:

OCFR(h0, h1, d) =
1

n

n∑
i=1

(hti(d(xi))− yi)
2 + α · IPMWass({d(xi)}i:ti=0, {d(xi)}i:ti=1)

where IPMWass represents the Wasserstein distance between the representations of the control
samples {d(xi)}i:ti=0 and the treated samples {d(xi)}i:ti=1. The strength of the IPM term can be
modified by changing the value of α, where setting α = 0 reduces CFR to the basic TARNet.

4.4 DragonNet

Another extension to the basic TARNet, called DragonNet, was proposed by Shi et al. (2019)
and introduces an additional propensity head g(d(X)) for predicting treatment assignment. The
architecture of the DragonNet is shown in Figure 1b.

The additional propensity head is added to the model in order to force the representation d(X)
to only keep information relevant for confounding, which could, for example, be beneficial if the
representation lacks the capacity to preserve all information from the original features X. The
reasoning behind this is that other information, such as from prognostic features that only affect the
outcome, is not relevant for correct causal effect estimation, since only confounders have to be taken
into account. So, it can be seen as additional noise when adjusting for confounders when estimating
the treatment effects, which may especially degrade estimation performance in smaller samples.

8



With the additional propensity head, the objective function for the DragonNet is:

ODragonNet(h0, h1, g, d) =
1

n

n∑
i=1

[
(hti(d(xi))− yi)

2 + α · CrossEntropy(g(d(xi)), ti)
]

where α determines the strength of the treatment prediction objective and setting α = 0 returns the
basic TARNet.

5 Experimental Setup

To study whether the covariance metric is a good measure of confounding bias, and to investigate
the effects of the two different representation learning approaches on different sources of causal
bias, we need to construct a number of simulation scenarios that have various levels of confounding
bias, overlap, and complexity. First, we will describe a setting that contains a hidden confounder,
which will allow us to evaluate how well the covariance metric is able to capture this introduced
confounding bias. Next, the setting used for the different representation learning methods will be
presented to understand their effects on the biases. Then, we will describe how additional prognostic
and instrumental variables are added to the previous setting, which allows us to assess how different
non-confounding features affect the two different models. Since the covariance metric is formulated in
terms of potential outcomes, which are not known in practice, we also show a setting where we will
evaluate how well the covariance metric can be estimated using predicted outcomes instead. Finally,
the implementation details for the different models and covariance metric are given.

5.1 Evaluating the Covariance Metric

To be able to evaluate how good the covariance metric is able to measure the amount of confounding
bias in a representation, we construct a simple linear setting which contains a hidden confounder.
In this simple linear setting, the only source of bias is the hidden confounder and the amount of
confounding bias is reflected by the amount of bias in the final ATE estimates, which are calculated
as τ̂ − τ , where τ̂ is the estimated ATE and τ is the true ATE. In these experiments, two linear
regression models are fitted on the observed confounders to predict the outcomes under treatment and
no treatment. These models can then be used to estimate the ATE by taking the difference between
the average predicted outcomes under treatment and no treatment. By increasing the strength of the
hidden confounder to increase the amount of expected confounding bias, we can evaluate how well
the metric is able to measure confounding bias by comparing the bias measured by the covariance
metric against the bias in the final ATE estimates.

For this and all other experiments, we have T ∼ Ber(0.5), so around half of the population is
expected to be treated on average. The confounders are generated according to Xi | T = t ∼ N(µt, 1)
for t = 0, 1, where µ0 = 0 and µ1 = 1. The hidden confounder U is generated in the same way. This
leads to a scenario that closely resembles a situation with structural overlap violations due to the
very small probabilities of observing samples in the tails of the distributions, which is visualised in
Figure 2. Finally, the outcome model used is Y (t) = 0.75X1 +X2 + βU + 2t+N(0, 0.5), where X1

and X2 are the observed confounders and U is the hidden confounder with varying strength β.
A different setting with non-linear effect modification, where the treatment effect also depends on

the value of some feature, is also considered to understand the effect of concurrent misspecification
bias. To do this, we now consider an outcome model of the form Y (t) = 0.75X1 +X2 + βU + t(2 +
0.5X2

1 ) +N(0, 0.5).
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In these two scenarios, we do not yet learn feature representations. Instead, the two observed
confounders X1 and X2 serve as a feature representation that forgets all confounding information
contained within the hidden confounder U . So, in this setting, we have a feature representation
d([X1, X2, U ]) = [X1, X2].

Figure 2: Graph showing the distributions of treated and control samples. The confounders follow
standard normal distributions, but the distributions for the treated samples are shifted to the right
by varying amounts to decrease the amount of overlap during the experiments.

5.2 Biases from Representation Learning Methods

For these experiments, we will compare the CFR and DragonNet models in a more complex setting
to understand the effects of their two different objectives on the confounding bias in their learned
representations, and the total bias in the ATE estimates, under decreasing levels of overlap. Here, the
covariance metric will be used to measure the confounding bias in the representations. Additionally,
the learned representations will also be used as inputs for an IPW estimator in order to understand
whether the different objectives of the models can lead to more stable weights in low overlap settings
by looking at their ATE biases. This will be done by estimating the propensity scores using the
feature representations instead of the original features. A logistic regression is used to fit a model for
the propensity scores ed(X) = P (T = 1|d(X)), which will be used as the weights.

The confounders in this scenario are again distributed as Xi | T = t ∼ N(µt, 1) for t = 0, 1.
However, now µ0 = 0 and we let µ1 vary from 0 to 2, where larger values lead to a decrease in
overlap between the treated and control groups. The outcome model is now more complicated due to
non-linear terms and has the form Y (t) = X1 + 0.25X2

2 + 0.5X2
3 + 0.3X3

4 + 2t+N(0, 0.5).
A scenario with non-linear effect modification is also used. Here, the outcomes are generated by

Y (t) = 0.75X1 +X2 + βU + t(2 + 0.5X2
1 +X2) +N(0, 0.5).

5.3 Effect of Additional Prognostic and Instrumental Variables

Since the above experiments only consider confounding variables, we will also evaluate the effects of
additional, non-confounding variables on the different representation learning models under decreasing
overlap. Two types of non-confounding variables are considered, namely prognostic and instrumental
variables. Prognostic variables only affect the outcome and do not affect the treatment assignment,
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while instrumental variables only affect the treatment assignment, but not the outcomes. Two
experiments are performed where either a prognostic or an instrumental variable is added to the
previous setting, which will allow us to understand the effect both types of variables have on the
measured biases under decreasing overlap.

The confounders Xi are again generated as Xi | T = t ∼ N(µt, 1) for t = 0, 1, with µ0 = 0 and µ1

varying from 0 to 2. The additional instrumental variable (IV) is also generated as XIV | T = t ∼
N(µt, 1) for t = 0, 1, where the µ0 = 0 and µ1 also changes from 0 to 2, depending on the overlap
setting. The outcome function remains unchanged, since this variable does not affect the outcome,
and is again defined as Y (t) = X1 + 0.25X2

2 + 0.5X2
3 + 0.3X3

4 + 2t+N(0, 0.5).
The prognostic variable is generated as Xprog ∼ N(0, 1), such that it has the same distribution

for both treated and control groups. The outcome function in this case is Y (t) = X1 + 0.25X2
2 +

0.5X2
3 + 0.3X3

4 + 0.5X2
prog + 2t+N(0, 0.5).

5.4 Estimating the Covariances from Observed Data

The covariance metric is formulated in terms of potential outcomes, which can be available in synthetic
datasets, but never in real-world settings. Therefore, we will also try to estimate the covariance
metric using only the data that can be observed and compare the results to the covariance metric
which is estimated using potential outcomes. As described in subsection 4.1, the potential outcomes
are replaced by predictions from linear regression models for the treated and control outcomes, and
the treatments are replaced by the estimated propensity scores using logistic regressions. Additionally,
these models must be fitted on the original unconfounded features.

The setting for this experiment will be the same as the setting with the hidden confounder from
before (subsection 5.1), where we have a representation d([X1, X2, U ]) = [X1, X2]. Since the models
for the outcomes and propensity scores must be learnt using all confounders to correctly estimate the
conditional covariances, we fit these models on both the observed confounders X1 and X2, and the
hidden confounder U .

5.5 Implementation of Estimators

The CFR and DragonNet models used during the experiments consist of 2 shared layers for learning
the representations and 1 layer for each of the two output and single propensity heads. As described
in Shalit et al. (2017), the layers within the shared representation and outcome blocks are connected
using the exponential linear unit activation functions, and batch-normalisation is applied on the
outputs of the shared representation. The hidden dimensions are set to 5 and the dimensions of the
shared feature representations is set to 2. For approximating the Wasserstein distances when using
the IPM, λ is set to 1 for the algorithm which approximates the Sinkhorn distances.

The train and test sets both consist of 10,000 samples for all experiments. If a different test set
size is used, it will be clearly specified when presenting the results. A batch size of 512 is used during
training along with the Adam optimizer. The number of epochs is set to 25 per run and all results
are obtained over 25 runs. The learning rate is set to 0.1, as the IPM often did not seem to converge
within the number of epochs when using a lower learning rate.

In order to estimate the covariance term for calculating the confounding bias when dealing with
continuous variables, the outputs from the feature representations have to be binned in order to
estimate the covariance at each level of the representations. The overall confounding bias is then
obtained by averaging over all the non-empty bins. Since the values of the feature representations are
not bounded, the obtained representations are first standardised to center them around the origin
and all values between -2.5 and 2.5 for each dimensions are considered, since this contains the vast
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majority of the samples. The number of bins along each dimension of the representation is set to
40 to allow for relatively fine-grained bins. A test set of size 10000 is used to allow for a sufficient
number of samples in the bins for estimating the covariances. Additionally, since the confounding
bias formulation uses the covariance between the potential outcomes and treatment assignments, the
true potential outcomes are included for the test samples.

6 Results

The results from the experiments are discussed in the following sections. First, the results for the
case with hidden confounding will be shown in order to evaluate how well the covariance metric
can measure confounding bias in representations. Next, results obtained from using the CFR and
DragonNet models are presented, which will allow us to compare the effects these two different
representation learning approaches have on the measured biases. To understand how different,
non-confounding features could affect the models, the following section will show the results for the
CFR and DragonNet in the settings with an additional prognostic or instrumental variable. The
results up until this point make use of the potential outcomes to estimate the covariances. However,
since these are not available in real-world datasets, some results will also be provided in the last
section where we try to estimate the covariance term using only observed data instead.

Figure 3: Graphs showing the confounding bias measured in the observed confounders and the bias
in the resulting ATE estimate while increasing the weight of the hidden confounder in the outcome
model. In this specific setting, the bias in the ATE is solely due to the unobserved confounding.
The two graphs present the results when 10,000 (left) or 100,000 (right) samples to evaluate
the covariance-based measure for confounding bias. Here, it can be seen that as the strength of the
confounder increases, meaning a larger amount of confounding bias introduced, a larger difference is
observed between the true and measured confounding bias. This difference decreases as the sample
size increases.

6.1 Evaluating the Covariance Metric

In order to understand whether the covariance between potential outcomes and treatment assignments
is a suitable measure for the confounding bias, we consider a simple linear setting with 2 observed
confounders and one hidden confounder, whose strength on the outcomes is gradually increased. This
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increase in strength of the hidden confounder leads to more confounding bias being introduced. For
estimating the ATE, two linear regression models are fitted to the treated and control samples to
predict the counterfactual outcomes. We do not make use of the representation learning methods
in this experiment, because simple linear regression models can accurately predict the ATE in this
linear setting and we are considering a manually constructed feature representation from the observed
features.

In this specific setting, we have a feature representation d([X1, X2, U ]) = [X1, X2], which loses
the confounding information from the hidden confounder U . So, the confounding bias measured in
this “feature representation” can be compared to the bias measured in the ATE estimates to test
how well the covariance-based measure can estimate the expected amount of confounding bias as
observed in the ATE estimates.

In the case with no unmeasured confounder, the well-specified regression model should be able to
accurately predict the average treatment effect due to the simple linear outcome function that allows
for perfect extrapolation across non-overlapping regions of the treated and control distributions. So,
it is expected that the effect of introducing an unmeasured confounder should be reflected by an
increase in the covariance-based metric for measuring confounding bias, especially as the strength of
the hidden confounder increases. Additionally, this should be reflected in the resulting ATE bias, as
this unmeasured confounder should be the only source of bias in this simple setting.

The results for the setting with unmeasured confounding when using 10,000 and 100,000 samples
for estimating the bias are shown in Figure 3. It can be seen that the unmeasured confounder indeed
leads to a confounding bias being measured in the two observed confounders which increases as the
strength of the hidden confounder on the outcome increases. However, a gap between the expected
confounding bias in the ATE and the measured confounding bias can be observed which increases
as the amount of confounding bias added through the hidden confounder increases. This difference
between the measured and expected bias appears to decrease as a significantly larger number of
samples is used. The number of samples required likely depends on a number of factors, such as the
amount of confounding bias, specific outcome function used, and binning procedure for estimating
the covariances.

This experiment shows that the covariance metric is able to measure confounding bias introduced
by using a feature representation which loses confounding information. However, the number of
samples required to accurately estimate the bias seems to significantly increases with the amount of
confounding bias that is being introduced. We have also considered a setting which contains other
concurrent biases, specifically bias through model misspecification. These results can be found in
Appendix B, which shows that in certain cases, such as quadratic effect modification in this scenario,
different biases may cancel out each other’s effects.

6.2 Biases from Representation Learning Methods

In these experiments the more challenging, non-linear outcome model is used for the CFR and
DragonNet models. The goal in this setting is to understand the effect of their two different objectives
on the confounding bias in the learned representations and the total bias in the resulting ATE
estimates in low overlap settings. This will be done by first examining the results for both the CFR
and DragonNet models in order to see whether there are differences in their measured biases, and
how large these differences are. Next, the learned feature representations from both models are also
used as inputs for an IPW estimator instead of using them in the outcome models. The goal of this
is to see whether representations with certain characteristics, such as lower measured confounding
bias or more balance, lead to differences in IPW performance in this difficult setting with overlap
violations.
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6.2.1 Estimation using CFR and DragonNet

Figure 4: Graphs showing the biases for the different CFR and DragonNet models under decreasing
levels of overlap. The first graph shows the confounding biases measured within the representations,
while the second graphs shows the total biases measured in the ATE estimates.The different lines show
the values of α for each model which correspond to the weights of the IPM or treatment prediction
terms in the objective functions for CFR and DragonNet, respectively. These graphs show how the
balancing objective in CFR adds a significant amount of confounding bias in the representations in
order to perform the balancing. When looking at the ATE biases, it appears that this additional
balancing does not manage to lead to better effect estimates, indicating that representations with
lower confounding bias appear to be more beneficial.

Since the goal of the IPM in CFR is to achieve more balance between the treated and control
groups through the feature representation, this means that the learned representation may lose some
information regarding the outcome prediction which is present in the original covariates in favour of
better balance. Since retaining treatment assignment information within the representation is also
not one of the objectives of the CFR, it is expected that this loss of outcome information might
lead to some confounding bias being introduced in favour of more balancing. However, this should
still lead to better ATE estimates when dealing with imbalanced groups, as moving the treated and
control samples closer together in the representation space by using the IPM should make it easier to
generalise the counterfactual outcomes between the two groups.

On the other hand, the goal of the DragonNet is to get rid of all information which is not relevant
for confounding due to the outcome and propensity heads in the model. Therefore, the expectation
is that for all the different representations obtained for different levels of α, which determines the
strength of the treatment prediction objective, the measured confounding bias will be relatively low.
Additionally, this low confounding bias in the representations is then expected to lead to relatively
good ATE estimates. While all DragonNet models should lead to low biases, we expect that in these
low overlap settings, DragonNet models with low treatment assignment weights α in the objective
functions should perform slightly better compared to the other versions. Focusing more on predicting
the (mostly) extreme propensity scores in favour of outcome prediction is not expected to be a
worthwhile trade-off.

The confounding biases measured in the representations and the biases in the final ATE estimates
can be found in Figure 4, with the results for both models separately shown in Appendix C. In
the first graph it can be seen that all the models which do not try to balance using an IPM, which
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are all DragonNet models and CFR for α = 0, manage to learn unbiased feature representations,
as they can fully focus on either accurate outcome prediction, or a combination of both outcome
and treatment prediction in the case of DragonNet. These specific models also seem to lead to the
ATE estimates with the lowest amount of bias, which can be seen in the graph on the right. When
increasing the strength of the IPM in CFR, the confounding bias within the learned representations
also seems to increase accordingly. This is also the case in the final ATE estimates, where most of
the bias can be explained by the significant confounding bias introduced through the representations.
Some additional bias is also present, which most likely comes from the structural overlap violations.

Surprisingly, the DragonNet models with the highest α weights for the treatment prediction
objective appear to also lead to the lowest observed biases in the ATE estimates. So, this seems to
indicate that keeping some treatment assignment information inside the learned representation may
actually be beneficial in these very low overlap settings, which was not initially expected to be the
case.

The poor performance of the balancing objective in CFR is somewhat surprising. It was expected
to improve the ATE estimation through better generalisation performance when predicting the
counterfactual outcomes by moving the treated and control samples closer together in the learned
representations, even though it comes at a cost of factual outcome prediction accuracy due to the
additional objective. Appendix D shows the IPM and MSE values for the different models, where it
can be seen that achieving lower IPM losses also indeed leads to a loss in prediction accuracy, since
the MSE values go up. This trade-off between balancing and loss of outcome prediction information,
which leads to confounding bias in this case, therefore, does not seem to be worth it in this scenario.

So, the results from this experiment clearly show that using a balancing objective, such as an
IPM, when learning representations can lead to a considerable amount of confounding bias in the
learned representations. This additional bias in favour of more balancing does not lead to better ATE
estimates, indicating that in the specific settings considered here, confounding bias minimisation
seems to be a more suitable objective for learning representations. Additional results for the case
with non-linear effect modifications can be found in Appendix E. These results are in line with the
previous observations, showing that the introduced confounding bias due to balancing also does not
seem to be worth the trade-off in that setting.

6.2.2 Estimation using IPW with Learned Representations

In this experiment, the representations obtained using the different learning objectives in the CFR
and DragonNet models are used instead as inputs to an IPW estimator, rather than using outcome
models for the effect estimation. The propensity scores are calculated using these representations
and are then used as weights for the IPW. This could be interesting, as the IPW estimator tends to
become quite unstable when using propensity scores obtained from features with very low overlap
due to the division by propensity scores close to 0 or 1 during the weighing. By comparing the use
of unbiased representations from the DragonNet, or more balanced representations from CFR, we
can see which objective could also lead to more suitable representations for IPW estimators. Since
extreme propensity scores can lead to very unstable and biased ATE estimates when using weighting
estimators, it is expected that the representations which focus only on outcome prediction should
lead to the best ATE estimates in this case.

Figure 5 shows the biases obtained using either the CFR representations (left) or the DragonNet
representations (right). First, a large amount of variance can be observed for all of the models,
which is to be expected for an IPW estimator in such low overlap conditions. Second, it can be seen
that, in this case, most of the biases are negative compared to the positive biases in the previous
cases. Additionally, for both models, the biases seem to slowly change direction when using the
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worst overlap setting (at 2 on the x-axis). The negative bias from using the IPW estimator could
potentially be due to the combination of the location of the confounder distributions and the specific
outcome function used. Appendix F shows the confounder and observed outcome distributions for
the treated and control groups. For the control samples, higher values for the covariates lead to
smaller propensity weights and higher outcomes due to the outcome function used in this experiment.
This leads to rather large values after the weighing because of the division by weights close to 0.
Since we estimate the ATE by subtracting the weighed control outcomes from the treated outcomes,
such large control values could lead to the negative biases we see in Figure 5.

Finally, it is also worth noting that in the previous experiment, including more treatment
assignment information lead to better ATE estimates for the DragonNet. When using these
representations for the IPW estimator, it again seems to be the case that the representations
which incorporate more treatment assignment information lead to better ATE estimates. This is
surprising, as IPW estimators using propensity scores generally don’t perform well in such low
overlap settings. A possible explanation could be that the propensity scores obtained from these
representations are not as extreme as for the original features, since the learned representations still
lose some treatment assignment information due to the additional outcome prediction objective.

Figure 5: Graphs showing the biases when using the representations obtained by the CFR (left)
and DragonNet (right) models as inputs for an IPW estimator. The different lines show the values
of α for each model, which correspond to the weights of the IPM or treatment prediction terms in
the objective functions for CFR and DragonNet, respectively. Large amounts of variance can be
observed, which is to be expected for an IPW estimator under such poor overlap. Additionally, in
the case of DragonNet, representations which focus on keeping treatment prediction information
seems to perform relatively well compared to the other models.

6.3 Effect of Additional Prognostic and Instrumental Variables

For these experiments, either an additional prognostic or instrumental variable is added to the original
non-linear setting used in the previous experiments. For the DragonNet, not much is expected to
change compared to the original setting without the extra features. This is due to the outcome and
propensity heads which try to get rid of information not related to confounding. In the case of very
strong or a larger number of instruments, a high α weight for the treatment prediction objective
could potentially lead to a loss of performance, as the model might focus too much on these undesired
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features. For the CFR, the addition of an instrumental variable could also lead to even worse results,
as a strong instrumental variable with very low overlap could be a significant factor in the balancing
using the IPM, while the variable actually has no effect on the outcome.

The results for the experiments with the prognostic variable can be found in Appendix G and
for the instrumental variable in Appendix H. In both cases, the results are very similar to the ones
obtained in the original non-linear setting without the additional variables. This is mainly surprising
for the CFR, as the instrumental variables were expected to play a larger role. One interesting thing
to note, is that the addition of the instrumental variable leads to the DragonNet models that focus
more on treatment prediction to now be worse than the other DragonNet versions, which focus less on
treatment prediction, both in terms of bias and variance in the ATE results, which was not the case
before. While this was initially expected, the differences are relatively small. For this specific scenario,
the lack of significant differences could be due to the effect of one additional instrumental variable
not being strong enough compared to the other confounders to show any significant differences in the
results.

6.4 Estimating the Covariances from Observed Data

The experiments until this point made use of the potential outcomes and treatments in order to
estimate the covariances. The potential outcomes, however, are not observable in practice and can
only be used in synthetic data experiments where the true outcome models are known. Therefore,
we also experiment with predicting the outcomes under treatment and no treatment, and use these
instead of the potential outcomes. Additionally, propensity score models are fitted to obtain treatment
predictions to be used in the covariance-based metric. For this experiment, the same linear setting
with a hidden confounder from before is used.

Figure 6 visualises the results from running the experiment, which show the confounding biases
measured using either the potential or predicted outcomes for increasing strengths of the hidden
confounder. The results indicate that it is possible to obtain good estimates of the covariances using
only observable data, which means that the covariance-based metric could also potentially be used in
real datasets. However, in this setting we considered a well-specified model for the linear outcomes.
Model misspecification could lead to worse estimates for the confounding bias, depending on the
severity of the misspecification.

7 Discussion

The results from the first experiments show that the bias formulation from D’Amour and Franks
(2021) can be used to accurately measure the confounding bias introduced by using some feature
representation. However, in order to measure the bias, the space of the representation must be
separated into small enough bins to allow for measuring the covariances at different levels of the
continuous space. This requires choosing how large of an area within the space should be considered
for binning and how many bins should be used. Additionally, the number of samples required to
accurately estimate the confounding bias seems to grow as the true amount of confounding bias in the
representation increases, which might additionally be affected by the complexity of the specific setting
at hand. These binning and sample size choices can affect how accurate the measured confounding
biases are, which in turn may affect the conclusions drawn from experiments. Therefore, in the
performed experiments, a large number of bins were used with a relatively large number of samples,
such that most bins contain enough samples for accurate covariance estimation. However, it has to
noted that it is difficult to judge how accurate the measured confounding biases actually were in the
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Figure 6: Graph showing the confounding bias when measured using the potential outcomes and
treatments (blue), and when using the models to predict the outcomes and propensity scores instead
(red). The results are obtained using 10k samples and presented for increasing weights of the hidden
confounder on the outcome function, which increases the amount of confounding bias in this setting.
The graph shows that the covariance metric can be estimated accurately by using the predicted
outcomes and propensity scores.

representation learning experiments due to these issues. But, while there may have been inaccuracies
in the estimations, the fact that the exact same estimation settings were used for all models and
significant differences in magnitude were observed between the measured biases, it is reasonable to
assume that there are indeed significant differences between the different representation methods due
to the different representation learning objectives.

The results for the representation learning methods showed clear differences between the balancing
objective in CFR and the treatment prediction objective in DragonNet. Across all experiments,
the balancing objective introduces a significant amount of confounding bias as the overlap becomes
extremely low. The additional balancing that this achieves, however, also does not lead to good ATE
estimates. The DragonNet, which manages to consistently show very low levels of confounding bias,
also leads to the best ATE estimates in all of the settings. So, the large differences in the obtained
biases suggest that confounding bias minimisation could potentially be a more suitable objective
for learning representations compared to a balancing objective when estimating average treatment
effects in low overlap settings.

From the results for the DragonNet, which manages to consistently achieve low confounding bias
in the representations, it appears that including treatment assignment information proves to be
beneficial for the ATE estimation. This also seems to be the case when using the representation as
input for a weighting estimator. These results are surprising, as D’Amour and Franks (2021) showed
in their experiments that using all prognostic information from the confounders, and from other
prognostic variables if present, lead to the best weighting estimator results in low overlap settings.

A possible reason for the poor performance of the balancing method could be due to the specific
effect of interest here, namely the ATE. CFR with its balancing objective was specifically created by
Shalit et al. (2017) to achieve better generalisation capabilities for estimating individual treatment
effects through the balancing objective. However, in this work, we were interested in the overall
ATE instead of individual treatment effect estimations, which could have lead to the additional
generalisation capabilities being less useful. Shi et al. (2019), which introduces the DragonNet, also

18



focuses on ATE estimation and their results showed worse performance by CFR as well. So, those
results and the results in this work could indicate that the balancing objective is simply not as
suitable for ATE estimation.

While the experiments were performed for a number of different scenarios, such as with various
levels of overlap or more complicated, non-linear outcome functions, the results could have changed
under certain different settings. For example, if a significantly more complicated outcome function
with high dimensional features was used, the increased generalisation performance of CFR could
potentially have lead to better results, as the DragonNet could struggle with this in the low overlap
scenarios we considered. Furthermore, due to the binning procedure used, we only considered
2-dimensional feature representations, as a higher dimensionality would require significantly more
samples to evaluate the conditional covariances. This means that the CFR and DragonNet models
had to learn representations with a lower dimensionality than the original features, while they are
often used to learn more informative, higher dimensional representations (Shalit et al., 2017; Shi et al.,
2019). The CFR model, with its additional balancing objective, may have performed better in such
higher dimensional settings for the representations, as the higher capacity could allow for retaining
more confounding information, while simultaneously increasing the balance in the representations.

Overall, the covariance-based metric can be useful to understand how different representation
learning objectives affect the confounding bias introduced in the learned representations and how this
impacts the final ATE estimates. This allows for a better overview of the trade-offs being made in the
representations in terms of added bias in favour of some alternative goal, such as increased balance in
the representations, which can help with understanding whether such objectives are actually helpful.
Although the metric is originally defined in terms of potential outcomes, experiments showed that it
can still be estimated from the data, which allows it to potentially be used on real-world datasets to
get some understanding of the amount of confounding bias that is introduced.

However, the way of estimating the conditional covariances in this work, by binning the
representation space, lowers the applicability of the metric, as only low dimensional representations
can feasibly be used without enormous amounts of data. An alternative method for estimating
these conditional covariances without binning could significantly increase the use of this metric,
allowing it to, for example, also directly be used as an objective in representation learning methods.
Such an alternative could be to model the conditional covariances, which would require making
parametric assumptions about the variables in the covariances, including the feature representations.
This, though, is difficult, or even impossible, to do outside of a very simplistic setting. Exploring
non-parametric options for modelling the conditional covariances could be a more suitable approach
to increasing the applicability of the covariance metric.

8 Conclusion

The aim of this work was to find a way to measure confounding bias introduced by feature
representations and use this to understand the biases introduced by two different representation
learning methods for causal inference, namely CFR and DragonNet, in low overlap settings. The
covariance-based metric seems to be a suitable method to estimate the amount of confounding bias
being introduced by a feature representation. Using this metric, it appears that applying a balancing
objective when learning feature representations leads to a large amount of confounding bias, and
the additional balance in the representations is not able to lead to better average treatment effect
estimates compared to methods that focus on keeping the confounding bias low. So, gaining a better
understanding of confounding bias introduced by different methods will allow us to make more
confident choices for future causal inferences.
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A Proof of Covariance Metric for Confounding Bias

Here, we will provide the proof for the covariance metric as shown in D’Amour and Franks (2021).
First, note that τATE can be formulated as

τATE = E[Y (1)− Y (0)]

= E[E[Y (1)|d(X)]]− E[E[Y (0)|d(X)]]

= µ(1) − µ(0)

Second, we formulate an estimand τATE
d for the ATE when conditioning on d(X) as

τATE
d = E

[
TY (1)

ed(X)

]
−
[
(1− T )Y (0)

1− ed(X)

]
where ed(X) = P (T = 1|d(X)) is the reduced propensity score. Then, we can rewrite both terms:

E

[
TY (1)

ed(X)

]
= E

[
E[TY (1)|d(X)]

ed(X)

]
= E

[
Cov(T, Y (1)|d(X))

ed(X)
+

E[T |d(X)]E[Y (1)|d(X)]

ed(X)

]
= E

[
Cov(T, Y (1)|d(X))

ed(X)

]
+ E[E[Y (1)|d(X)]]

= E

[
Cov(T, Y (1)|d(X))

ed(X)

]
+ µ(1)

Similar steps can be taken for the other term to find
[
(1−T )Y (0)
1−ed(X)

]
= −E

[
Cov(T,Y (0)|d(X))

1−ed(X)

]
+ µ0.

We then obtain τATE
d = µ(1)−µ(0)+E

[
Cov(Y (1),T |d(X))

ed(X) + Cov(Y (0),T |d(X))
1−ed(X)

]
. Taking the difference

between τATE and τATE
d gives the amount of confounding bias introduced by using a feature

representation d(X):

τATE
d − τATE = E

[
Cov(Y (1), T |d(X))

ed(X)
+

Cov(Y (0), T |d(X))

1− ed(X)

]
In case d(X) contains all confounding information from the original unconfounded features X,

then the unconfoundedness assumption also holds for d(X), i.e., (Y (0), Y (1)) ⊥⊥ T | d(X). This leads
to the conditional covariances and, thus, the entire expectation becoming 0, showing that the feature
representation does not introduce any confounding bias.
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B Confounding Bias With Effect Modification

Figure 7: Graphs showing the confounding bias measured in the observed confounders and the bias
in the resulting ATE estimate while increasing the weight of the hidden confounder in the outcome
model. Additionally, some non-linear effect modification is also present in the outcome model, which
causes some model misspecification bias in the outcomes. Here, it can be seen that the ATE bias
can be decomposed into confounding bias and model misspecification bias, as for x = 0 there is no
confounding bias, but a misspecification bias occurs instead in the ATE that persists throughout
the graph. Additionally, the combination of these biases may cancel each other out and lead to no
overall bias in the ATE (observed around x = 0.3).
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C Full CFR and DragonNet results in Non-linear Case

Figure 8: Graphs showing the biases for the CFR models under decreasing levels of overlap. The
first graph shows the confounding biases measured within the representations, while the second
graphs shows the total biases measured in the ATE estimates. The different lines show the values
of α for each model which correspond to the weights of the IPM terms in the objective functions.
The graphs show that more focus on the balancing objective leads to more confounding bias in the
representations and in the resulting ATE estimates.
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Figure 9: Graphs showing the biases for the DragonNet models under decreasing levels of overlap.
The first graph shows the confounding biases measured within the representations, while the second
graphs shows the total biases measured in the ATE estimates. The different lines show the values of α
for each model which correspond to the weights of the treatment prediction in the objective functions.
Relatively high confounding biases with large variances are measured in the representations, while
the ATE estimates don’t show these biases. The results could be due to inaccuracies in the covariance
estimation.
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D CFR Losses in Non-linear Case

Figure 10: Graphs showing the values of the IPM and MSE’s for the CFR models with different
IPM strengths α. While a value for the IPM is also shown for the basic TARNet (α = 0), the model
does not actually use an IPM while training. A trade-off can be seen between lower IPM values,
indicating more balance in the representations, and outcome prediction accuracy in the MSE’s.
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E Full CFR and DragonNet results with Non-linear Effect
Modification

Figure 11: Graphs showing the biases for the CFR models under decreasing levels of overlap with
additional non-linear effect modification present. The first graph shows the confounding biases
measured within the representations, while the second graphs shows the total biases measured in
the ATE estimates. The different lines show the values of α for each model which correspond to
the weights of the IPM terms in the objective functions. The graphs show that more focus on the
balancing objective leads to more confounding bias in the representations and in the resulting ATE
estimates.

27



Figure 12: Graphs showing the biases for the DragonNet models under decreasing levels of overlap
with additional non-linear effect modification present. The first graph shows the confounding biases
measured within the representations, while the second graphs shows the total biases measured in
the ATE estimates. The different lines show the values of α for each model which correspond to the
weights of the treatment prediction in the objective functions.

28



F Example of Covariate and Outcome Distributions in Non-
linear Case

Figure 13: Graphs showing the distributions of the covariates (left) and observed outcomes (right) for
the treated and control groups for the IPW experiment. The values are shown for the overlap setting
with a distance of 1 between the means of the control and treated distributions for the confounders.
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G CFR and DragonNet with Additional Prognostic Variable

Figure 14: Graphs showing the biases for the CFR models under decreasing levels of overlap with
an additional prognostic factor added to features. The first graph shows the confounding biases
measured within the representations, while the second graphs shows the total biases measured in
the ATE estimates. The different lines show the values of α for each model which correspond to the
weights of the IPM terms in the objective functions.
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Figure 15: Graphs showing the biases for the DragonNet models under decreasing levels of overlap
with an additional prognostic factor added to features. The first graph shows the confounding biases
measured within the representations, while the second graphs shows the total biases measured in
the ATE estimates. The different lines show the values of α for each model which correspond to the
weights of the treatment prediction in the objective functions.
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H CFR and DragonNet with Additional Instrumental Variable

Figure 16: Graphs showing the biases for the CFR models under decreasing levels of overlap with an
additional instrumental variable added to features. The first graph shows the confounding biases
measured within the representations, while the second graphs shows the total biases measured in
the ATE estimates. The different lines show the values of α for each model which correspond to the
weights of the IPM terms in the objective functions.
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Figure 17: Graphs showing the biases for the DragonNet models under decreasing levels of overlap
with an additional instrumental variable added to features. The first graph shows the confounding
biases measured within the representations, while the second graphs shows the total biases measured
in the ATE estimates. The different lines show the values of α for each model which correspond to
the weights of the treatment prediction in the objective functions.
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