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Abstract 
Background.   Approximately half of the isocitrate dehydrogenase (IDH)-wildtype glioblastomas (GBMs) exhibit 
EGFR amplification. Additionally, genomic changes that occur in the extracellular domain of EGFR can lead to 
ligand-hypersensitivity (R108K/A289V/G598V) or ligand-independence (EGFRvIII). Unlike in lung adenocarcinoma 
(LUAD), clinical trials with epidermal growth factor receptor (EGFR) inhibitors showed no survival benefit for GBM 
and it remains unclear why. We aimed to elucidate differences in molecular mechanisms of EGFR activation and 
regulation between GBM and LUAD.
Methods.   We used RNA-sequencing (RNA-seq) data to find EGFR co-regulated genes and pathways in GBM and 
compare EGFR signaling patterns between GBM and LUAD. Cellular origins of expression signals were determined 
by analyzing single-cell RNA-seq data.
Results.   We identified 2 ligands (BTC/EREG) among the significant EGFR predictor genes (TCGA-GBM: n = 169, 
Intellance-2: n = 166). Their expression was inversely correlated with EGFR amplification and incidence of ligand-
sensitive mutations. Ligands were expressed by nonmalignant cells and differed in their primary source of expres-
sion (BTC: neurons, EREG: myeloid). High expression of MDM2 and CDK4 was less common in EGFR-amplified 
GBMs with ligand-sensitive mutations compared with those without these mutations. Our analyses revealed dis-
tinct transcriptional profiles between GBM and LUAD when comparing tumors carrying activating mutations.
Conclusions.   BTC and EREG are negatively associated with EGFR expression in GBM. These findings emphasize 
the role of ligands in regulating EGFR, where EGFR activation seems to be modulated by the highly varying levels 
of EGFR amplification, the sensitivity of the receptor toward ligands, and ligand expression levels. Ligand expres-
sion levels and EGFR mutations could refine patient stratification for EGFR-targeted therapies in GBM.

Key Points

•	 Ligands BTC and EREG show negative associations with EGFR in GBM.

•	 High MDM2/CDK4 were less common in EGFR-amplified GBMs with a ligand-sensitive 
mutation.

•	 EGFR-activating mutations in GBM and LUAD show distinct transcriptomic profiles.

Transcriptomic analysis of EGFR co-expression and 
activation in glioblastoma reveals associations with its 
ligands  
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Glioblastoma, isocitrate dehydrogenase (IDH)-wildtype 
(GBM) is the most malignant type of primary brain tumor and 
in spite of extensive chemo-radiotherapy treatment schemes 
and surgical resection, the median survival remains limited to 
approximately 8 months.1 Understanding the molecular pro-
file of GBM might guide treatment options by revealing pu-
tative targets and so improve patient survival. The epidermal 
growth factor receptor (EGFR) is the most frequently altered 
oncogene in GBM, amplified in around half of all tumors.2 
High-copy number amplification of EGFR is common in GBM 
and often takes the form of extrachromosomal circular DNA 
(eccDNA) fragments.3 EGFR (hyper)amplification can be fol-
lowed by additional genomic molecular abnormalities in the 
gene, mainly in its extracellular domain (ECD). These include 
in-frame deletion of exons 2-7 (EGFRvIII), resulting in a ligand-
independent receptor with constitutive activity. Additionally, 
there are activating missense mutations in the ECD (A289, 
G598, and R108),4 which make the receptor hypersensitive to 
(low-affinity) ligands.5,6

The high incidence of EGFR alterations in GBM, in com-
bination with the presumed oncogenic driver role of the 
protein, make EGFR an appealing target for inhibition. 
Indeed, the patient benefit of treatment with EGFR inhibi-
tors in EGFR-mutated lung adenocarcinoma (LUAD) is 
well established.7 Unfortunately, attempts to inhibit EGFR 
signaling in GBM have not yet proven to be beneficial.8,9

It is interesting to note that there are differences in the 
types of genomic EGFR alterations between GBM and 
LUAD. As mentioned, in GBM, EGFR alterations coexist 
with EGFR wildtype (EGFRwt), with tumors showing not 
only highly variable EGFR copy numbers, but also vari-
able variant allele frequency of ECD missense mutations 
and EGFRvIII expression level. Epidermal growth factor re-
ceptor amplification occurs at a much lower incidence in 
LUAD (~5%).10 Additionally, the EGFR mutations respon-
sive to EGFR inhibitors are typically found in the intracel-
lular tyrosine kinase domain.11 These EGFR mutations in 
LUAD result in a constitutively active form of the receptor 
protein which, in contrast to ECD missense mutations in 
GBM, are ligand-independent.

To examine pathway differences between GBM and LUAD, 
we compared co-regulated EGFR genes between these 
tumor types. We specifically investigated the dynamics of 
EGFR expression levels in relation to common mutations 
therein (EGFRvIII and the ligand-sensitive mutations). Using 
multiple large-scale datasets, our work helps understand 

the molecular mechanisms of EGFR activation that are spe-
cific to GBM, which might benefit clinical practice.

Materials and Methods

Data Collection

For both IDH-wildtype (IDHwt) GBM and LUAD, The Cancer 
Genome Atlas (TCGA) read counts profiled using poly-A+ 
enriched RNA-sequencing (RNA-seq) were obtained from 
the Genomic Data Commons (GDC) data portal.12 EGFR/
IDH mutation, amplification status calls, and a fraction of 
EGFRvIII counts for TCGA-GBM were collected from the re-
spective TCGA publication.13 EGFR mutation and amplifica-
tion status for the TCGA-LUAD dataset were retrieved from 
cBioPortal (http://cbioportal.org/). Sequencing data collec-
tion, preprocessing, and single nucleotide variant (SNV)/
copy number variant (CNV) calling of samples from the 
Intellance-2/EORTC_1410 (EGAS00001005437) phase II trial 
on EGFR-amplified recurrent GBM are described elsewhere.4,5

Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) 
IDHwt GBM data (n = 34) were obtained from 3 publicly 
available datasets. The Van Hijfte (n = 1, EGAD00001009871) 
and peri-tumoral neuronal-rich Bolleboom-Gao (n = 1, 
EGAD00001009964) datasets were generated in-house.14 
Additional sc/snRNA-seq datasets were obtained from 
CPTAC-3 (n = 18) and the Diaz/Wang (n = 14) public reposi-
tories.15,16 tSNE values and relative metamodule scores for 
adult IDHwt GBM scRNA-seq samples (n = 21) from the Neftel 
study were obtained from the Single Cell Portal at the Broad 
Institute (https://singlecell.broadinstitute.org/single_cell).17

EGFR Amplifications and Mutations

GBM samples of both bulk datasets were considered to 
harbor an EGFR-activating mutation in case of an ECD mu-
tation in R108, A289, G598, or EGFRvIII.5 Using the splice-
variant specific junction counts, tumors were classified 
as EGFRvIII expressing for read count ratios (EGFRvIII/
(EGFRvIII + EGFRwt)) greater than 0.01.18 High-copy 
number amplification regions and associated enhancers 
were obtained elsewhere.4,19 In LUAD, in-frame deletions 
in exon 19 (E746_A750del/L747_E749del/L747_T751del), 
L858R and G719C have shown clinical response to tyrosine 

Importance of the Study

Glioblastoma (GBM) is the most malignant type of pri-
mary brain tumor. The high incidence of epidermal 
growth factor receptor (EGFR) alterations in these tu-
mors, combined with its role as driver mutation, make 
EGFR an appealing target for treatment. Unfortunately, 
inhibition of EGFR signaling in GBM has not proven to be 
beneficial so far, which contrasts the strong clinical re-
sponses observed in EGFR-mutated lung adenocarci-
noma (LUAD) patients. Therefore, we aimed to elucidate 

different mechanisms of activating EGFR signaling by 
examining co-expressed genes in relation to tumor 
type and type of mutation. We find little overlap in the 
genes co-expressed with EGFR-activating mutations 
between GBM and LUAD, suggesting distinct activation 
pathways. However, in GBM, the expression of several 
ligands is inversely correlated with the level of EGFR 
amplification, highlighting the importance, and potential 
targetability, of ligand-induced activation of EGFR. D
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kinase inhibitors and were considered EGFR-activating 
mutations (https://www.mycancergenome.org/).

Bulk RNA-seq Data Processing

Samples with a library size containing less than 750 000 
counted reads were considered of insufficient resolution, 
and were therefore excluded. Low count genes with a 
mean count per sample of less than 3 were excluded. Only 
ENSEMBL protein-coding genes were used for all ana-
lyses. Median-of-ratios normalization implemented in the 
DESeq2 package (v1.36.0) was applied to normalize RNA-
seq data.20 The vst function in the DESeq2 package was 
used for variance-stabilizing transformation.

Differential Gene Expression Analysis

Differentially expressed genes were screened with the 
Wald test for hypothesis testing as implemented in the 
DESeq2 package (v1.36.0).20 Contribution of variables to 
the fitted model was assessed with the coef function from 
the DESeq2 package. For each gene, the log2 fold change 
divided by its standard error was used to compare the out-
come of different DESeq2 tests between LUAD and GBM. 
g:Profiler was used for pathway analysis of differentially 
expressed genes (https://biit.cs.ut.ee/gprofiler/).

Sc/snRNA-seq Analysis

Normalization, preprocessing, and cell cluster identifica-
tion were performed as described earlier.14 Cell types were 
assigned to their corresponding cell clusters based on 
expression values of established marker genes.21,22 Only 
samples with sufficient neuronal marker expression (n > 25 
cells), cell types, and of high depth were included in further 
analyses (van Hijfte n = 1, Bolleboom-Gao n = 1, Diaz/Wang 
n = 1, CPTAC-3 n = 7).

Random Forest Model

Random forest regression models for predicting EGFR 
expression levels were built using the ranger method as 
implemented in the caret R package.23 Prior to training re-
gression models, gene selection steps were performed to 
reduce model complexity. The workflow for gene selec-
tion using correlation filtering, median absolute deviation, 
and the Boruta algorithm is detailed in Supplementary 
Methods. Genes identified by the Boruta algorithm as 
putative (no convergence after 100 runs) and confirmed 
(P < .01) important were considered predictive for EGFR 
expression (significant EGFR predictor [SEP] genes). To 
increase the robustness of our findings, results were aver-
aged over 90 models. Our complete modeling workflow is 
described in Supplementary Methods.

Cell Culture

We tested 2 patient-derived IDH-wildtype GBM cell lines, 
GS-216 and GS-1191.24,25 The use of patient tissue was ap-
proved by the Medical Ethical Review Committee Erasmus 

MC, code MEC-2013-090, and all patients provided in-
formed consent in accordance with institutional guidelines. 
The cell culture procedures were adopted from a published 
protocol.26,27 Cells were cultured in Dulbecco’s modified 
Eagle medium/Nutrient Mixture F-12 (DMEM/F-12, 11320-
033, Gibco, USA). Unless stated otherwise, the experi-
ment utilized 20 ng/mL of basic fibroblast growth factor, 
20 ng/mL of EGF, and 5 µg/mL of heparin in the medium. 
Extracellular matrix (ECM) coating (Cultrex Reduced 
Growth Factor Basement Membrane Extract, PathClear, 
R&D Systems) solution (1:100, diluted in culture media) 
was used to cover the surface of flasks.

Internalization Experiments and Image Analysis

To study the internalization of EGFR, cells were first seeded 
in 96-well plates. After the cells were attached, the me-
dium was taken off and replaced by a medium without 
ligands (starve medium, 24 hours). Afterward, cells were 
stimulated (200 ng/mL, diluted in culture media) with EGF 
(GibcoTM Human EGF Recombinant Protein, PHG0311, 
Fisher Scientific), BTC (Betacellulin human, B3670, Sigma-
Aldrich), EREG (Recombinant Human Epiregulin Protein, 
1195-EP-025/CF, R&D Systems), or PBS as negative control. 
Cells were fixed with paraformaldehyde (PFA) solution 
(4%, buffered, pH 6.9, 1.00496.5000, Sigma-Aldrich) at dif-
ferent time points after stimulation (0 minutes, 15 minutes, 
and 2 hours). To visualize EGFR presence and localization, 
fixed cells were stained with anti-EGFR (M3563, DAKO, 
1:400 dilution) and Alexa Fluor 647 (A21240, Invitrogen, 
1:500 dilution). Nuclei were stained with Hoechst 33342 
(1:5000 dilution). Images were acquired using an Opera 
Phenix high-throughput high-content confocal microscope 
(PerkinElmer). At least 10 images were obtained per well, 
which maximized accurate quantification. Image analysis 
was conducted with Harmony software (PerkinElmer), ap-
plying uniform settings for all conditions in each experi-
ment. Using the software, we used a multistep algorithm 
to quantify the number of intracellular EGFR spots. These 
spots were detected by finding the nucleus of the cell. 
Included parameters were nearest object distance, spot 
area, spot roundness, and spot intensity value.

Data Processing and Visualization

Data processing and visualization were performed using 
the R programming language within Rstudio (v4.2.1) 
and the tidyverse R package (v1.3.2).28 The EGFR locus 
was plotted using the gggenes R package. Correlation 
plots were made with the recursive correlation-based 
clustering method (https://github.com/yhoogstrate/
recursiveCorPlot).14

Results

Sample Overview

An overview of the EGFR mutational burden in the 3 
datasets: IDHwt TCGA-GBM (n = 142), Intellance-2 (n = 211), 
and TCGA-LUAD (n = 508) is presented in Table 1. Sample 
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selection steps for the TCGA-GBM and TCGA-LUAD 
datasets are described in Supplementary Figure 1.

EGFR amplifications were detected in 50% of the TCGA-
GBM and 89% of the Intellance-2 samples.29 This difference 
fits with the patient selection criterion from these cohorts 
since EGFR amplification was an inclusion criterium for 
the Intellance-2 phase II trial. The TCGA-GBM dataset 
was therefore better suited to analyze molecular differ-
ences between EGFR amplification and EGFRwt, while the 
Intellance-2 dataset was suitable for associations with the 
level of EGFR amplification.

Within the EGFR-amplified TCGA-GBM samples, 35% car-
ried the ligand-independent EGFRvIII mutation. The A289 
(18%) and G598 (15%) activating missense mutations oc-
curred at a similar but higher frequency compared with the 
R108 mutation (6%). EGFRvIII mutations were detected in 
45% of the EGFR-amplified Intellance-2 samples. Also in this 
dataset, A289 was the most abundant activating missense 
mutation (14%) compared with G598 (7%) and R108 (3%).5

EGFR amplification was present in 5% of the TCGA-LUAD 
samples. In line with our expectations, the TCGA-LUAD 
dataset contained a high number of samples without EGFR-
activating alterations (89%) compared with the TCGA-GBM 
dataset (46%). Of all EGFR mutations in LUAD samples, 
the L858R mutation was the most abundant (51%) com-
pared with in-frame deletions in exon 19 (41%) and G719S/
A/C (7%). The proportion of TCGA-LUAD tumors with an 
EGFR-activating mutation was significantly higher in the 
EGFR-amplified group (38%) compared with the EGFR non-
amplified group (6%) (P = 8.05e−06, Fisher’s exact test). The 
co-occurrence of EGFR amplification and exon 19 deletions 
has been described earlier.30

Random Forest Reveals Genes Associated With 
EGFR Expression

We first aimed to find genes co-regulated with EGFR and 
performed random forest regression modeling to predict 
EGFR expression. Models were devised on each dataset 
separately. The purpose was to elucidate which genes 
mainly contributed to the prediction of EGFR expression 
and therefore might exhibit a strong association with 
EGFR. In our unadjusted models devised on the TCGA-GBM 
dataset, the strongest contributing genes (R2 = 0.73) were 
those neighboring EGFR, including SEC61G and LANCL2 
(Supplementary Figure 2A). SEC61G, but not LANCL2, was 
also considered of importance in models devised on the 
Intellance-2 dataset (R2 = 0.66, Supplementary Figure 2A). 
Neighboring genes of EGFR are often co-amplified on the 
ecDNA fragment. These genes may not contribute func-
tionally to the EGFR network as they may be bystanders 
of the co-amplification (Figure 1A). While identification of 
these genes confirms the validity of our approach, they 
diminish insight into the effect of co-expressed genes by 
other regulatory mechanisms. Neighboring genes of EGFR 
(chr7p11.2) were therefore excluded from our analysis 
(Supplementary Data).

The co-amplification revised model reported 169 and 
166 SEP genes as important in predicting EGFR expres-
sion, respectively, on the TCGA-GBM and Intellance-2 
datasets (Figure 1B and C, Supplementary Data). The 
co-amplification revised performance was 0.67 on the 
TCGA-GBM dataset and 0.66 on the Intellance-2 dataset. 37 
SEP-genes were overlapping between both models (boot-
strapped P-value <.0001, Monte Carlo simulation). Since 

Table 1.  Incidence of EGFR Amplification and Activating Mutations Across the TCGA-GBM, Intellance-2, and TCGA-LUAD Datasets

EGFR-Activating SNV EGFRvIII BTC Expression EREG Expression n

TCGA (GBM) EGFR amplified Absent Negative 4.76 4.78 28

R108/A289/G598 Negative 5.33 4.82 18

Absent Positive 4.82 4.82 18

R108/A289/G598 Positive 5.23 4.74 7

EGFR non-amplified Absent Negative 6.42 5.14 64

R108/A289/G598 Negative 7.94 4.94 5

Absent Positive 8.39 5.40 2

Intellance-2 (GBM) EGFR amplified Absent Negative 3.81 3.90 76

R108/A289/G598 Negative 3.77 3.95 27

Absent Positive 3.79 3.93 68

R108/A289/G598 Positive 3.44 3.96 17

EGFR non-amplified Absent Negative 5.15 4.67 22

R108/A289/G598 Negative 4.80 6.11 1

TCGA (LUAD) EGFR amplified Absent 8.74 8.13 16

ex19_del/L858R/G719S/A/C 8.48 8.46 10

EGFR non-amplified Absent 8.82 7.24 451

ex19_del/L858R/G719S/A/C 8.71 6.70 31

Median expression levels of the ligands BTC and EREG are also indicated. Abbreviations: EGFR, epidermal growth factor receptor; GBM, glioblas-
toma; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; VST, variance-stabilizing transformation.

 

D
ow

nloaded from
 https://academ

ic.oup.com
/noa/article/7/1/vdae229/7934173 by guest on 17 M

arch 2025

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae229#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae229#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae229#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae229#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae229#supplementary-data


N
eu

ro-O
n

colog
y 

A
d

van
ces

5Ghisai et al.: EGFR activation in glioblastoma

Intellance–ll

E4

54M 55M 55.5M
Chromosome 7 position (M)

56M 56.5M

VSTM2A SEC61G EGFR LANCL2 VOPP1 SEPTIN14 ZNF713

NUPR2

E1 P E3 E*

A

Log C
opy N

um
ber

6

4

2

M
edian Z

–S
core B

oruta

6

4

2

0

TCGA–GBM

CHCHD2

P
H

K
G

1

S
U

M
F

2

C
C

T
6A

P
S

P
H

N
IPSN

AP2

MRPS17

Z
–S

co
re

6

4

Significant gene both data sets Significant gene Intellance-ll Significant gene TCGA-GBM

2

0

S
LC

4A
4

M
E

O
X

2

E
YA

2

A
C

S
B

G
1

F
G

F
R

3

S
O

X
9

V
A

V
3

S
P

R
Y

2

D
E

N
N

D
2A

E
LO

V
L2

A
B

LI
M

1

S
A

LL
1

P
PA

R
G

C
1A

P
T

P
R

A

LH
F

P
L6

C
D

H
4

PA
X

6

M
Y

O
5C

A
R

N
T

L

B
Intellance–ll

TCGA–GBM

Intellance-ll

129

37

132

TCGA–GBM

C

Zinc finger

CL gene

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

EGFR ligand

Zinc finger

CL gene

Gene importance score

EGFR ligand

Top 30 predictors

BTC
LHFPL6

KLHL4
COL11A1

PIPOX
COL19A1

PPFIA2
PAX6

ZNF521
ARHGAP28

SOX9
TACR1

B3GLCT
UBE2E2
ZNF302
LRP12
LFNG
GAS1

ZNF180

MTARC2
COL8A1

RFX4
EVA1A

ZNF181
VAT1L

COL28A1
MASP1
SOCS2

TRAM1L1

DKK1
TRIM9
NTRK3

RFX4
TMEM131
SLC24A3

RNLS
LFNG

GXYLT2
SLC1A2
SPRED2

BTC
GALNT12
FAM181B

P2RY1
POPDC3

FGFR3
ATP13A4
C2orF72
ACSBG1

EYA2
DPF3
NHS

SOCS2
EVA1A

ROBO2
NPAS3

MEOX2
SLC4A4
ARAP2

ZNF776

Figure 1.  (A) (From bottom to top) Overview of the EGFR locus with common amplifications and putative enhancer locations. Median Boruta 
Z-scores from our predictive modeling approach on the TCGA-GBM and Intellance-2 datasets, with EGFR neighbors still included in the re-
spective models. Amplification is skewed toward SEC61G, a gene highly contributing to the predictive models. (B) Median Boruta Z-scores of 
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we noted considerable overlap in SEP-genes across the 
models, we wanted to elucidate the level of correlation of 
the signal by the nonoverlapping genes. To achieve this, 
we selected SEP-genes specific per dataset and performed 
principal component analysis (PCA) on these in both 
datasets (Supplementary Figure 2B). Independent PCA on 
the 2 lists of SEP-genes revealed a high Spearman cor-
relation (>0.80) between their respective first principal 
components. Despite models for each dataset considered 
different genes for prediction of EGFR levels, both SEP-
gene sets showed similarity in terms of their expression 
pattern.

To get an impression of possible shared mechanisms 
behind the genes responsible for predicting EGFR ex-
pression levels, we performed pathway enrichment anal-
ysis. Significant EGFR predictor-genes obtained from the 
TCGA-GBM were mainly involved in transcription regu-
lation, while enrichment for negative regulation of signal 
transduction was found on SEP-genes from the Intellance-2 
dataset.

Transcriptional GBM subtype clustering on bulk RNA-seq 
data is based on a 50-gene signature and distinguishes 3 
classes, namely the classical, mesenchymal, and proneural 
GBM subtypes.31 Eleven (11/169) and fifteen (15/166) clas-
sical subtype genes were among the SEP-genes, respec-
tively, on the TCGA-GBM and Intellance-2 datasets. The 
list of 37 overlapping SEP-genes contained a high pro-
portion (n = 7) of classical subtype genes (bootstrapped 
P-value = .01, Monte Carlo simulation) including ABLIM1, 
ELOVL2, FGFR3, LHFPL6, PPARGC1A, SOX9, and VAV3. 
This relatively large intersect is likely because classical 
subtype genes are associated with high-level amplification 
of EGFR.32 Classical subtype genes considered SEP-gene in 
either one of the datasets (n = 19) showed distinct associ-
ations with EGFR (Figure 1B).

Recent single-cell RNA-seq data have identified 4 distinct 
phenotypic states of GBM cells.17 Out of 169 SEP-genes 
obtained from models devised on the TCGA-GBM dataset, 
EDNRB was the only gene associated with the astrocyte 
(AC)-like state. On the Intellance-2 dataset, HEPN1, HOPX, 
BCAN, AQP4, and NDRG2 were members of genes in-
volved in the AC-like state. The AC-like state (n = 39 genes) 
is associated with strong upregulation of EGFR and largely 
encompasses genes expressed by AC.17 In conclusion, tra-
ditional bulk and single-cell-based signatures only partially 
explained putative associations of the SEP-genes.

We observed that 1 gene in particular, namely 
Suppressor of Cytokine Signaling (SOCS2), was consist-
ently identified as SEP-gene on both the Intellance-2 (90/90 
models) and TCGA-GBM (88/90) datasets. SOCS2 is posi-
tively correlated with EGFR (Figure 2A). SOCS2 is reported 
to be a negative regulator of cytokine receptor signaling 
through the JAK/STAT pathway.33 It is therefore possible 
that such a negative feedback mechanism between EGFR 
and SOCS2 exists.

Tumor cells enriched in the AC-like state showed a high 
expression of SOCS2, although SOCS2 is not a member of 
the published AC-like signature genes (Figure 2B and C).17 
Differential gene expression (DGE) analysis also showed 
a strong upregulation of SOCS2 in EGFR-amplified TCGA-
GBM samples (logarithmic fold change [LFC] = 1.99, false 
discovery rate [FDR]-adjusted P-value = 1.90e−22). To explore 
whether H3K27ac might play a role in regulating SOCS2 in 
the context of EGFR amplification, we interrogated H3K27 
acetylation ChiP-seq data from GBM (Supplementary 
Methods). We found no significant differences in H3K827ac 
read counts across the investigated SOCS2 regions be-
tween EGFR-amplified (n = 9) and EGFRwt (n = 32) 
patient-derived cell cultures (Supplementary Table 1 and 
Supplementary Figure 3).34

EGFR Ligands BTC and EREG Inversely Correlate 
With EGFR Amplification

Interestingly, 2 EGFR ligands were identified as SEP-
genes: betacellulin (BTC) and epiregulin (EREG) (Figure 3A 
and B). BTC was identified in both TCGA and Intellance-2 
datasets whereas EREG was identified only in the 
Intellance-2 dataset (Figure 1). Samples with high BTC ex-
pression showed a significantly lower EGFR copy number 
(P = 8.33e−9, Wilcoxon test on median expression level 
TCGA-GBM) and EGFR-amplified samples showed signif-
icant downregulation of BTC in a DGE analysis in both the 
TCGA-GBM (LFC = −2.51, FDR-adjusted P-value = 6.74e−15) 
and Intellance-2 datasets (LFC = −3.07, FDR-adjusted 
P-value = 2.45e−08). EREG showed a negative and non-
linear relationship with EGFR where very high EREG ex-
pression (95th percentile) was almost exclusively found 
in samples with low EGFR expression (below the median 
expression) (Supplementary Figure 4). Although EREG 
was identified by random forest regression only in the 
Intellance-2 dataset, the gene was downregulated in EGFR-
amplified samples in both the TCGA-GBM (LFC = −1.92, 
FDR-adjusted P-value = 1.24e−06) and Intellance-2 
(LFC = −2.53, FDR-adjusted P-value = 1.16e−05) datasets 
using DGE. None of the other 4 EGFR ligands were differ-
entially expressed (FDR-adjusted P-value <.01 and |LFC| 
>1.5) in either dataset (Supplementary Data).

In addition, we found that EGFR-activating mutations were 
less frequently observed at high EREG and BTC expression 
(Figure 3A). The inverse correlation of EGFR amplification 
levels with the expression of EGFR ligands and the inverse 
correlation of EGFR ligand expression with the presence of 
ligand-sensitizing mutations indicate tumors employ various 
modes to activate the receptor. These results imply that re-
ceptor activation remains important after tumor initiation.

We performed snRNA-seq and screened public-domain 
data to determine the source of expression of the different 
EGFR ligands. For each of the ligands, average expression 

classical subtype genes (N = 19) from co-amplification revised models on the TCGA-GBM and Intellance-2 datasets. (C) Venn diagram indicating 
the number of SEP-genes on the Intellance-2 (N = 166) and TCGA-GBM (N = 169) datasets (37 overlapping). Gene importance scores for the top 
30 predictors are depicted. Zinc finger genes, classical subtype genes, and EGFR ligands are highlighted. Abbreviations: EGFR, epidermal growth 
factor receptor; SEP, significant EGFR predictor.
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values per cell type are visualized in Figure 3C. In agree-
ment with Guo et al., we find that the expression of the 
EGFR ligands is low.35 We also find that the source of ex-
pression differed between different EGFR ligands and 
was not specific to tumor cells. Neurons were the primary 
source of BTC expression, with expression predominantly 
in excitatory neurons (Figure 3D). EREG was mainly ex-
pressed by (tumor-associated) macrophages/microglia.

To examine potential differences in EGFR internalization 
following activation by the various ligands, we cultured pri-
mary GBM (GS.1191 and GS.0216) and stimulated them with 
ligands EGF, EREG, or BTC. After ligand stimulation (15 min-
utes and 2 hours) we observed receptor internalization as 
seen by the appearance of intracellular EGFR protein ‘spots’ 
(Figure 4A). Internalization after ligand stimulation was also 
confirmed in earlier work using FACS, where a significant 
decrease in cell surface EGFR levels was observed upon 
ligand binding.36 We observed that the number of EGFR 
protein spots was markedly lower for EREG, which is con-
sistent with its low binding affinity and resulting in weaker 

activation, as noted in our previous work.5 Despite the lower 
number of spots, the internalization route seemed sim-
ilar across all ligands. We quantified the number of spots 
per nucleus and did not observe substantial differences 
in internalization patterns between ligands (Figure 4B). 
Furthermore, in our earlier work, we tested receptor acti-
vation across a broader spectrum of EGFR ligands in ECD 
mutation constructs. This included high-affinity ligands (EGF, 
TGFα, HB-EGF, and BTC) and low-affinity ligands (AREG, 
EREG, and EPGN). While EGFRwt showed strong activation 
only with high-affinity ligands, ECD-mutated variants exhib-
ited enhanced sensitivity and strong activation even with 
low-affinity ligands, such as AREG, EREG, and EPGN.

Key p53/rb1 Pathway Genes Are Downregulated 
in Samples With an EGFR-Activating SNV

Since activating EGFR-activating point mutations results 
in a receptor that is more sensitive to ligand stimulation,5 
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Figure 4.  (A) Representative confocal microscopic images of EGFR at multiple time points (0 minutes, 15 minutes, and 2 hours) after stimula-
tion with EREG, BTC, EGF, and PBS as negative control. The right panel displays zoomed-in images showing intracellular accumulation of EGFR 
(spots) after 15 minutes and 2 hours of ligand stimulation. (B) quantitative analysis of microscopic images by a multistep algorithm showing the 
PBS-normalized number of spots per nucleus for each condition. Results are averaged across 2 cell lines, with each experiment conducted in 
replicate. Abbreviation: EGFR, epidermal growth factor receptor.

EGFR ligand expression in neurons (NE), oligodendrocytes (OD), tumor cells (T), (tumor-associated) macrophages/microglia (TAM/MG), and 
astrocytes (AC) across multiple sc/sn-RNA-seq datasets. (D) Expression levels of the neuron marker RBFOX3, inhibitory and excitatory neuron 
markers, and BTC in the Bolleboom-Gao snRNA-seq dataset. Abbreviations: EGFR, epidermal growth factor receptor; VST, variance-stabilizing 
transformation.
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Figure 5.  (A) Left: Volcano plot of the differential gene expression test between EGFR-amplified samples with or without EGFR-activating 
missense mutations. The x-axis indicates the log2 fold change of each gene and the y-axis the logarithmic FDR-adjusted P-value. Significant 
genes from this test and an external EGFRvIII study are indicated. Right: Regression coefficients of multivariate differential expression tests for 
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Key findings on EGFR activation and its associated expression patterns as described in this study. Abbreviations: EGFR, epidermal growth factor 
receptor; VST, variance-stabilizing transformation.
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we further explored the effect of these mutations. For this, 
we performed DGE analysis on EGFR-amplified tumors 
from the Intellance-2 dataset to find EGFR-activating 
mutation-specific differential expression. In total, 32 
genes were differentially expressed (|LFC| >0.5, FDR-
adjusted P-value <.05) between EGFR-amplified tumors 
with and without an EGFR-activating point mutation 
(Figure 5A, Supplementary Data). Key negative regu-
lators of the p53 (CDKN2A and MDM2) and RB1 (CDKN2A 
and CDK4) signaling pathways were significantly 
downregulated. There were fewer samples with very high 
CDK4/MDM2 expression values in samples with an EGFR-
activating SNV (Figure 5A). Interestingly, many (11/32) 
of these differentially expressed genes were also found 
in earlier work investigating the specific transcriptomic 
profile of EGFRvIII-mutated GBMs (n = 741).4 The mul-
tivariate regression coefficients for both EGFRvIII and 
EGFR-activating SNVs on the 32 identified genes indi-
cated that both types of activating mutations contributed 
to the downregulation of CDK4 and MDM2, as evidenced 
by their negative regression coefficients (Figure 5B). We 
thus observed similarity in terms of the associated ex-
pression patterns between EGFRvIII and activating SNVs, 
suggesting homologous functionality. This is further sum-
marized in Figure 5C, which encapsulates our key findings 
on EGFR activation and its associated expression patterns 
from this study.

High EGFR Ligand Expression Is Associated With 
Response to Depatux-m + TMZ

In our previous work, we identified that the presence of 
ligand-sensitive EGFR SNVs was associated with a fa-
vorable response to the combination of depatux-m and 
temozolomide (TMZ).5 Building upon these and our cur-
rent findings, we investigated whether overall ligand 
expression correlates with treatment response. Our uni-
variate analysis revealed that EGFR-amplified tumors 
with high overall ligand expression (above the median) 
showed a better response to depatux-m combined with 
TMZ compared with the control arm receiving TMZ or 
lomustine (CCNU)  (hazard ratio [HR]: 0.53; 95% CI [0.31-
0.91], P = .021). This was not observed in the group with 
low ligand expression (HR: 0.91; 95% CI [0.53-1.55], P = .73). 
The association between ligand expression and treat-
ment response remained significant after adjusting for 
the known prognostic factors age and O6-methylguanine-
methyltransferase (MGMT) methylation status (HR: 0.51; 
95% CI [0.30-0.87], P = .015).

EGFR-Activating Alterations Exhibit a Distinct 
Pattern Between GBM and LUAD

Since EGFR-activating mutations are also prevalent in 
LUAD, we performed similar analyses between mutation-
positive and -negative samples in this tumor type 
(Supplementary Figure 5). Interestingly, our DGE anal-
ysis showed little overlap of identified genes between 
LUAD and GBM. Correlation between the outcome of 
their test statistics, that is the effect on the transcriptome 

of activating EGFR point mutations in GBM and LUAD, 
was surprisingly low (R = 0.081). Genes co-amplified 
with EGFR and its ligands showed concordant test sta-
tistics (Supplementary Figure 5). Conversely, whereas 
SOCS2 was strongly associated with activating mutations 
in GBM (LFC = 1.91, FDR-adjusted P-value = 1.94e−15), 
it showed an inverse association to mutations in LUAD 
(LFC = −0.68, FDR-adjusted P-value = .007). This finding 
suggests a tissue-type-dependent association between 
SOCS2 and EGFR. In conclusion, our results indicate that 
EGFR-activating alterations are associated with distinct 
EGFR-associated transcriptional programs between GBM 
and LUAD.

Discussion

EGFR is an interesting potential treatment target in GBM 
due to the high incidence of EGFR alterations and the 
success of EGFR-targeted therapy in LUAD, where in-
hibitors are effective for specific types of mutations. This 
work aimed to deepen the understanding of EGFR activa-
tion and regulation mechanisms in GBM by revealing the 
complexity of its activation pathways, highlighting the 
challenges in targeting EGFR in GBM, particularly when 
compared with its more successful inhibition in LUAD. We 
modeled the co-regulation patterns of EGFR and exam-
ined their association with amplifications and activating 
mutations.

EGFR-activating mutations in LUAD lead to a ligand-
independent constitutively active receptor. In GBM, the 
primary event is high-copy receptor amplification fol-
lowed by either gain of missense mutations that result in 
ligand-hypersensitivity or deletions of exons 2-7 resulting 
in a ligand-independent constitutively active mutation. 
Both mutation types suggest a requirement for EGFR ac-
tivation in GBMs. Moreover, ligand-independent consti-
tutive signaling may also arise from high levels of EGFR 
amplification. In such cases, EGFR overexpression can lead 
to constitutive autophosphorylation without the need for 
ligand binding. The high abundance of EGFR receptors 
might hereby promote spontaneous receptor dimeriza-
tion and activation.37 Besides ligand-independence and 
ligand-hypersensitive mechanisms, our results point to-
ward a third, ligand-driven mechanism for EGFR activa-
tion through ligand expression. Out of more than 20 000 
genes, our modeling workflow captured a negative asso-
ciation between EGFR and its ligands BTC and EREG. This 
finding was further confirmed by our DGE analysis. Our 
sc/sn-RNA-seq analyses indicated nonmalignant cells as 
the primary source of expression for these ligands. The 
negative association suggests a complex interplay be-
tween EGFR-expressing tumor cells and ligand-expressing 
stromal cells.

Earlier work noted similar EGFR-ligand levels for EGFR-
amplified and non-EGFR-amplified GBMs.35 The clinical rel-
evance of EGFR ligands was underlined since high ligand 
expression was associated with an improved prognosis 
in EGFR-amplified GBM.35 The same work also discovered 
that an increased ligand availability resulted in smaller tu-
mors, decreased invasion, and improved survival in mice. 
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Additionally, we and others have demonstrated that ECD 
mutations enhance receptor sensitivity to low-affinity lig-
ands, leading to a stronger activation compared with 
EGFRwt.5,38 This enhanced activation seems not solely 
driven by increased ligand binding of low-affinity ligands 
in EGFR-mutated variants.39 Our retrospective analysis 
of data from the Intellance-2 trial, along with our previous 
study,5 demonstrates that both high EGFR ligand expres-
sion and EGFR SNVs are significantly associated with im-
proved patient responses to depatux-m combined with TMZ 
in EGFR-amplified recurrent GBM. These findings indicate 
the preserved significance of ligands despite high expres-
sion levels of EGFR. Nevertheless, prospective studies are 
needed to evaluate the prognostic value of EGFR ligand ex-
pression in GBM.

EGFR activation in GBM seems to be modulated by 
the highly varying level of EGFR amplification, the sensi-
tivity of the receptor toward the different ligands, and li-
gand expression levels. These factors likely determine 
whether EGFR oscillates between ligand-dependent and 
-independent models of activation, further increasing the 
complexity of the signaling dynamics in GBM. We hypothe-
sized that activating mutations may result in a unique ex-
pression profile, as activating EGFR missense mutations 
show a distinct ligand-receptor binding affinity, have tu-
morigenic potential, and specific mutations are associ-
ated with survival.38–40 We found that oncogenes CDK4 and 
MDM2 involved in the p53/Rb pathways were specifically 
downregulated in the presence of EGFR-activating SNVs. 
A similar effect was observed in the presence of EGFRvIII.4 
Neftel et al. suggested that specific genetic alterations lead 
to a favored state where amplification of EGFR leads to the 
AC-like state as the dominant state, and AC-like cells pro-
liferated more upon overexpression of EGFR than CDK4. 
Activating mutations in EGFR, typically characterized as 
late events, might lead to a tumor that is more associated 
with the AC-like state leading to redundancy in high CDK4 
expression levels. However, since our analysis focused 
only on the most common A289, R108, and G598 muta-
tions, it remains uncertain whether these findings extend 
to other ECD mutations, such as those in domain IV.41 
Further studies are needed to explore their impact as the 
incidence in this cohort was too low to draw meaningful 
conclusions.

Although this study does not fully explain the differ-
ential response to EGFR inhibitors between LUAD and 
GBM, it provides valuable insights into the complexity 
of EGFR activation in GBM. In LUAD, EGFR inhibitors 
target constitutively active mutations, which are respon-
sive to these treatments. In contrast, GBM exhibits a 
distinct EGFR activation landscape, also demonstrated 
by the different EGFR-associated signaling pathways. 
EGFR-activating alterations between both tumor types 
differ in their ligand dependence, meaning that the effect 
of EGFR ligands in GBM should receive more attention 
in follow-up studies. Our findings provide new insights 
into EGFR-associated transcriptional programs in GBM 
and suggest that a better understanding of the interplay 
between EGFR, its ligands, and other signaling pathways 
could be used for patient stratification and personalized 
treatment approaches.
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