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Abstract. Numerical schemes for wave propagation over long distances need good

wave propagation properties with low dispersion and low dissipation errors. Suitable nu-

merical methods are methods with high order of accuracy in space and time. For space

discretization on structured grids, high order finite difference schemes are efficient, and, if

a complicated computational domain requires an unstructured grid, discontinuous Galerkin

methods are recently employed with success.

The time integration is often performed by a Runge-Kutta scheme. These schemes

need for the order of accuracy O > 4 more than O stages, which reduces performance

concerning CPU-time as well as storage requirements, because the numerical solution of

more than one stage has to be stored. However, it is interesting to use schemes of accuracy

order higher than 4, especially to capture wave propagation over long distances or if very

accurate computations are needed. In this paper we consider a time integration approach

for linear wave problems based on a Taylor expansion. Here we construct and analyze

schemes of arbitrary high order accuracy in space and time using this time integration

technique within the finite difference as well as the discontinuous Galerkin framework.

We present a stability analysis as well as performance comparisons with schemes relying

on other time integration methods. A modification for the DG schemes is presented that

accentuates the computational performance. Numerical experiments are realized for the

system of linearized Euler Equations, but the formulation allows an application of the

proposed schemes to any linear hyperbolic system.

1 INTRODUCTION

For the numerical simulation of wave propagation over long distances highly accurate
numerical methods with minimal dissipation and dispersion have to be used. This was
recognized in the field of computational aeroacoustics (CAA) as well as in computational
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electromagnetics or in geophysics. Several approaches have been proposed that include
explicit finite difference (FD) schemes, compact schemes and pseudo-spectral schemes,
see e.g., the recent overview in.8 One of the frequently used concepts in CAA is that of
Tam and Webb proposed in.9 They constructed a simple finite difference scheme of high
order accuracy which is optimized not only with respect to the order of accuracy, but with
respect to preserve wave propagation properties on coarse grids, too. They introduced a 7
point stencil for the difference formulae approximating the first order derivatives as in the
case of a sixth order accurate finite difference approximation in space. They determined
two of the coefficients in order to improve the wave propagation properties. Their criterion
was to minimize the dispersion error, i.e., the difference between the effective and the exact
wave number. Hence, this class of schemes are called the dispersion relation preserving
schemes (DRP).

The DRP schemes are widely used in CAA. The original DRP scheme with the seven
point stencil is fourth order accurate in space and is usually combined with a fourth order
Runge-Kutta time discretization. Further development has been performed by several
authors. Hu et al.5 improved the Runge-Kutta time approximation and proposed low-
dissipation and low-dispersion Runge-Kutta schemes. Bogey and Bailly2 extended the
spatial stencil and achieved further improvements in the wave propagation properties.
They also presented Runge-Kutta schemes that are optimized with respect to these prop-
erties. Hu et al.5 also described a time integration technique as considered in this paper
and call it a low-storage Runge-Kutta scheme, despite the fact that it has important
differences to usual Runge Kutta schemes. We will address this in the following. A DG-
scheme for non-linear problems using a similar time integration technique was described
by Shu and Dumbser in.6

The principal disadvantage of finite difference schemes is that it is difficult or even
impossible to mesh complex geometries using smooth, structured grids. For this reason,
there is an interest in numerical schemes that are able to simulate linear wave propagation
problems on unstructured grids. Very promising results were obtained using discontin-
uous Galerkin (DG) space discretization often also combined with Runge-Kutta time
integration. In,4 Dumbser presented promising results using the DG space discretization
in combination with the ADER time discretization.

In this paper we consider the alternative time discretization to the usual Runge-Kutta
time discretization for the class of dispersion relation preserving schemes proposed by
Tam in7 as well as for DG schemes. We show how construct those schemes to obtain
arbitrary order in space and time and show their stability.
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2 DESCRIPTION OF THE TIME INTEGRATION TECHNIQUE

2.1 The Governing Equations

A general system of linear hyperbolic partial differential equations in two dimensions
is given by

U t = −A Ux − B U y + F , (1)

where U = U(x, y, t) denotes the vector of the physical variables. The matrices A and B

as well as the right hand side F = F (x, y, t) do not depend on U .

2.2 The Discretization in Time

The numerical solution of equation (1) is represented in form of degrees of freedom
(DOFs) of a space discretization. The DOFs are approximate values of the exact solution
at some discrete points for a FD scheme and the coefficients of local polynomials for
a DG scheme. The DOFs are a functions of the time t, and we use the abbreviation
Û

n
= Û(tn), with n being the index of the time step. In the following, expressions of

the form ∂
∂(·)

Û have to be understood as DOFs representing derivatives of a numerical

solution represented by Û .
Instead of using the ordinary differential (ODE) approach, e.g. a Runge-Kutta scheme,

we base the time discretization on the Taylor expansion (2)

Û(tn + ∆t) = Û(tn) +

∞
∑

k=1

∆tk

k!

∂k

∂tk
Û(tn). (2)

The expansion (2) about time tn is truncated at the desired accuracy order k = O.
The time evolution of the discrete solution vector Û may then be expressed as

Û
n+1

= Û
n

+

O
∑

k=1

∆tk

k!

∂k

∂tk
Û

n
, (3)

where ∆t := tn+1− tn is the time step between the discrete time levels tn and tn+1. In this
expansion all time derivatives ∂k

∂tk
Û

n
have, for an explicit scheme, to be approximated in

an appropriate way from the given discrete solution Û
n
.

In the case of the considered linear systems, we have Jacobian matrices A and B which

do not depend on U (and not on Û). The application of the differential operator ∂k

∂tk
on

equation (1) directly yields:

(
∂k

∂tk
U)t = −A(

∂k

∂tk
U)x − B(

∂k

∂tk
U)y +

∂k

∂tk
F . (4)

Hence, the differential equation for U also holds for any of its time derivatives. On a
discrete level, we can therefore write

(
∂k

∂tk
Û)t = −A(

∂k

∂tk
Û)x − B(

∂k

∂tk
Û)y +

∂k

∂tk
S, (5)
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F. Lörcher, G. Gassner and C.-D. Munz

where S is the discretization of the source terms.
We define a discrete operator Θ such that it yields DOFs representing the right hand

side of the equation (1) and hence the approximation of the time derivative when applied
on Û :

∂

∂t
Û = ΘÛ . (6)

Consequently, ∂k

∂tk
Û can be obtained from ∂k−1

∂tk−1 Û using equation (5). Thus, we can
write

∂k

∂tk
Û = ΘkÛ . (7)

Using equation (7) in equation (3), we can write

Û
n+1

= Û
n

+
O

∑

k=1

∆tk

k!
ΘkÛ . (8)

So in order to evolve the numerical solution Û of a linear problem with arbitrary high
order of accuracy in time, the only thing we still have to do is to define the discrete space
operator Θ which has to perform a high order accurate differentiation, if applied on Û .

For linear problems, the time integration scheme of order 4 has identical properties
as a standard 4-stage Runge-Kutta time integration, that is, the modified differential
equations which are solved by the 2 schemes are identical.

We note that we can even reduce the order of the spatial approximation in every step.
For a scheme of designed order O, only the first time derivative of Û has to be of accuracy
order O, the second order derivative ∂2

∂t2
Û may be of the order of accuracy O − 1 due

to the fact that the time derivative is multiplied by ∆t2. So we could reduce the spatial
accuracy of the operator Θ step for step in the Taylor expansion.

3 ARBITRARY HIGH ORDER FINITE DIFFERENCE SCHEMES

Some general definitions concerning the finite difference approach are given in this
section. We restrict ourselves to the two-dimensional case, but the extension to three
space dimensions is straightforward. For simplicity we consider in this section equally
spaced Cartesian grids in a rectangular domain only. Extension to curvilinear structured
grids can easily be achieved when a smooth mapping from the physical to a Cartesian
logical grid is given.

The computational domain [a, b] × [c, d] is covered with grid points

Pi,j ≡ (xi, yi), with 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, (9)

where

a +
∆x

2
= x1 < ... < xN = b −

∆x

2
(10)
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and

c +
∆y

2
= y1 < ... < yN = d −

∆y

2
. (11)

Furthermore, ∆x = xi − xi−1 = constant and ∆y = yj − yj−1 = constant denote the grid
sizes.

The degrees of freedom in a FD scheme are point values Û i,j(t) which approximate the
exact solution U at point Pi,j at discrete time levels.

An algorithm that yields a high order approximation of first the time derivative ∂
∂t

Û

from a given Û is:

1. Approximate the first order space derivatives ∂
∂x

Û
n

i,j and ∂
∂y

Û
n

i,j. This is done with
arbitrary high order of accuracy using sufficiently large stencils into every space
direction. Several authors (e.g.7 or2) propose finite difference formulas that are not
only optimized with respect to the order of consistency, but also with respect to
wave propagation properties. Widely used is for example the DRP-scheme of Tam.7

2. Using equation (5) we can write:

Û t = −AÛx − BÛ y + S, (12)

where S is the discretization of the source terms. So the time derivatives are easily
computed once the space derivatives have been approximated by a finite difference
formula.

Formally, the steps 1 and 2 describe the operator Θ, such that

∂

∂t
Û = ΘÛ , (13)

and we can immediately apply the previously proposed time evolution technique.

3.1 High order accurate approximation of space derivatives

An important part of the schemes described in the previous section is the computation
of the space derivatives of a field Û into the different space directions.

The simplest way to derive a finite difference formula for the approximation of a space
derivative is to use an interpolating polynomial of an order O, and differentiate it with
respect to the space coordinate. The interpolation necessitates O + 1 stencil points for
symmetric stencils of even order O. In the DRP-scheme a finite difference formula is used
which minimizes the dispersion error, while it keeps a certain order of accuracy. We tested
our time integration scheme with such dispersion-optimized finite difference formulas of
arbitrary high order that have one minimized integral wavenumber error over one range of
wavenumbers, see e.g.7 for differentiation of such stencils. These stencils are constituted
of O + 3 points, and the used coefficient sets are presented for some orders in Table 1.
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Table 1: Wave number space optimized high order 1-D coefficient sets. The value η is the upper limit of
the wave number range over which the integral error is minimized. The coefficients are antisymmetric to
the interpolation point, so we present only one-sided coefficients.

order η Displacement coefficient
4 1.1 +1 .7708823805182131

+2 -.1667059044145704
+3 .2084314277030928e-1

6 1.3 +1 .8204601252356066
+2 -.2204601252356066
+3 .4686386319621235e-1
+4 -.5032866088257614e-2

8 1.5 +1 -.8543189294654197
+2 .2620787765319082
+3 -.7301454989443648e-1
+4 .1391789132674661e-1
+5 -.1293307844414755e-2

10 1.7 +1 .8795439639390204
+2 -.2958585263523470
+3 .9803266836188213e-1
+4 -.2532417845586396e-1
+5 .4294456142566486e-2
+6 -.3500805348915692e-3

12 1.8 +1 .8958592609066766
+2 -.3194790145422356
+3 .1180814831288988
+4 -.3662873256081292e-1
+5 .8463524379799489e-2
+6 -.1263351509433068e-2
+7 .9024802742149065e-4

3.2 Stability Analysis of the Finite Difference schemes

For stability analysis, we consider the scalar advection equation

ut + aux = 0 (14)

We expressing the discrete solution in form of point values Û and equation (8) defines our
time stepping scheme. Note that the finite difference formulae for the approximation of
the first order space derivatives are skew symmetric and therefore, if periodic boundary
conditions are assumed, the matrix operator Θ is skew symmetric, that is, ΘT = −Θ. So
all eigenvalues of the matrix Θ are purely imaginary.
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Assuming that the matrix Θ has full rank, any vector Û can be expressed as a lin-
ear combination of the eigenvectors Vj of Θ. The scheme is therefore stable, if all the
eigenvectors of Θ do not increase in the L2-norm, when the scheme is applied. For one
eigenvector and the corresponding eigenvalue we can write equation (??) as

Vj
? =

O
∑

k=0

∆tk

k!
λkVj, (15)

where Vj
? denotes the eigenvector modified in one step of the scheme.

By replacing λ∆t by α we get

Vj
? =

O
∑

k=0

αk

k!
Vj. (16)

For a stable scheme, the expression

|

O
∑

k=0

αk

k!
| ≤ 1.0 (17)

should hold.
In Figure 4.3, the stability regions with respect to α are shown for the orders 2, 4, 6,

and 8 of the scheme. The stability region of the second order time integration scheme
doesn’t contain the imaginary axis, so the second order scheme would be unstable as Θ
has imaginary eigenvalues. For the same reasons, the schemes of order 6, 10, 14, and so
on are unstable. The stability region of the fourth order scheme contains a part of the
imaginary axis, so we could expect a conditionally stable scheme for sufficiently small
modulus of α, that is, for sufficiently small ∆t. The stability regions of schemes of order
4, 8, 12, and so on, contain a part of the imaginary axis.

We carried out numerically the von Neumann stability analysis (for the system of
linearized Euler Equations in two and three space dimensions) and found indeed that the
schemes of order 2, 6, 10, and so on, are unstable, whereas the schemes of order 4, 8, 12,
and so on, are stable under the usual CFL-condition (CFL=1.0).

3.3 Numerical Studies in Two and Three Dimensions

In order to get an idea of the performance of the high-order time integration DRP-
schemes applied to the linearized Euler equations (LEE), we performed numerical compu-
tations with the convective transport of a density Gauss pulse in a domain with periodic
boundaries. We chose the domain as [0, 100]3 in three space dimensions and as the initial
condition a pulse in density with ρmax = 1.0, the halfwidth 5.0, and the center in the
domain center. The other state variables were set to zero at t = 0. This Gauss pulse is
transported diagonally across the domain by setting the velocity of the reference state of
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Figure 1: Stability regions according to equation (17) for α = a + bi
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Figure 2: L2 error over mesh size for 3-D Gausspuls convection
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the LEE to (vx, vy, vz) = (1, 1, 1). At t = 100, the pulse should be transported to exact
the same position as it was at t = 0, so we know the exact solution and can compute a
norm of the error.

The described problem is effectively only a scalar transport, but in order to get an
idea of the performance of the schemes in acoustics, the problem was computed using
the complete linearized Euler equations. Figure 2 shows the L2-norm of the error over
the mesh size for the schemes of order 4, 8, and 12. The results of the 4th order scheme
is identical to those of standard Runge-Kutta O4 time integration scheme. For space
interpolation, we used dispersion optimized stencils as given in Figure 1. One can see
that the higher order schemes are significantly more efficient, if highly accurate results
are desired.

In terms of storage requirement note that unlike in standard Runge-Kutta time dis-
cretization it is not necessary to store information for all stages: it is sufficient to use one
array for the successive time differentiation (on which the operator Θ is applied succes-
sively) and a second array for solution updating.

4 ARBITRARY HIGH ORDER DISCONTINUOUS GALERKIN SCHEMES

Again, we begin with some general definitions concerning the discretization in space.
The computational domain is divided in conforming triangular elements Qi being ad-
dressed by a unique index i. The numerical solution U of (1) is approximated inside each
Qi by a linear combination of time independent polynomial basis functions φl(x, y) of
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Figure 3: L2 error over CPU-time for 3-D Gausspuls convection
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degree N with support Qi and with time dependent degrees of freedom Ûi,l(t):

U i(t) =
N

∑

l=0

Û i,l(t)φl(x, y). (18)

We use orthogonal polynomial basis functions φl on each Qi.

4.1 Construction of the Time Differentiation Operator

Equation (1) is multiplied by a test function φm and is integrated over a triangle Qi:

∫

Qi

φm

∂

∂t
UdV +

∫

Qi

φm(A
∂

∂x
U + B

∂

∂y
U)dV = 0. (19)

Integration by parts yields

∫

Qi

φm

∂

∂t
UdV +

∫

∂Qi

φmGdS −

∫

Qi

∂φm

∂x
AU +

∂φm

∂y
BU)dV = 0, (20)

where a numerical flux G has been introduced as integrand in the surface integral, since
U may be discontinuous at an element boundary. We suppose rotational invariance of
system (1), so the flux can be written in a coordinate system which is aligned with the
outward pointing unit normal vector n = (nx, ny) on the boundary. The transformation
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of the vector U from the global system to the vector U ? in an edge-aligned coordinate
system is given by

U = TU ?. (21)

For the linearized two-dimensional Euler equations the transformation matrix is

T =









1 0 0 0
0 nx −ny 0
0 ny nx 0
0 0 0 1









. (22)

We use Godunov’s exact flux as a numerical flux between two triangles Qi and Qj. For
the global x − y system, we finally obtain

G =
1

2
T (A? + |A?|)(T )−1U i (23)

1

2
T (A? − |A?|)(T ))−1U j (24)

in the linear case, where U i and U j are the boundary extrapolated values of the numerical
solution from element Qi and element Qj which is adjacent to the considered side. A?

means the evaluation of matrix A in the local edge-aligned system.
Defining the mass matrix

M [m, l] =

∫

Qi

φlφmdQ, l, m = 1, .., N + 1, (25)

we can rewrite equation(20) to

∂

∂t
Û i = M−1(−

∫

∂Qi

φmGdS +

∫

Qi

∂φm

∂x
AU +

∂φm

∂y
BU)dV ). (26)

Expanding U in terms of DOFs (18) and comparing the resulting expression with equa-
tion (7), the operator Θ and therefore the numerical scheme are readily defined.

4.2 Reduction of Operations for the DG-scheme

So far, we use the same operator Θ in every substep of the scheme, that is, for any
time derivative. As already mentioned in section 2.2, it would be sufficient, in order to
get globally a scheme of order O, to compute only the first time derivative of Û with the
order of accuracy O and then to reduce successively the order with increasing order of the
time derivative: the second time derivative is sufficiently accurate, when computed with
order O − 1, and so on.

This order reduction can be used to increase the efficiency of the scheme, if we choose in
our DG framework a hierarchically ordered basis. Then we simply can take the reduction

11
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into account by ignoring all the terms representing the higher order test- or basis functions,
which are not needed for the computation of the high order time derivatives.

To illustrate the principle, we look at one part of the operator Θ, say a local volume
integral, which can be written as product of a matrix K with the local vector of degrees

of freedom (DOF) Û . We assume to have a hierarchical ordered basis. For a fourth order
scheme in 2D, we have 10 DOFs per element, so K is a 10 × 10 matrix. For the first
time derivative we have to use the whole matrix K, whereas it is sufficient for the second
time derivative to be of order O − 1. Hence, we can ignore the lines of K corresponding
to fourth order DOFs as result. So this operation would be a matrix multiplication by a
6×10 matrix (a complete polynomial basis of order 3 consists of 6 basis functions in 2D).
Similarly, in the next step, we would have a matrix multiplication by a 3 × 6 matrix.

This method reduces significantly the number of necessary operations of the DG oper-
ator. For a fourth order scheme we had 4 stages with 10 × 10 matrix operation, so 400
operations. Now we have 100 + 60 + 18 + 3 = 181 operations. Hence, we reduced the
number of operations by over 50%.

As described in the next subsection, the stability limit is slightly reduced by the reduc-
tion of operations as presented, but the error norms obtained by numerical experiments
got even better. We call the original scheme Taylor-DG scheme and the scheme with
reduced operations Taylor-DG-R scheme.

4.3 Stability Analysis

In this section we will give the maximal CFL numbers for the scheme applied to the
one-dimensional linear scalar advection equation

ut + aux = 0 (27)

with CFL = a∆t
∆x

. These stability limits hold, from our experience, for the system of
linearized Euler Equations as well.

The stability of a periodic problem with a computational domain of 3 elements is
analyzed. As the problem (27) is linear, one can construct a Matrix W such that

Ûn+1 = WÛn, (28)

where W = W (CFL).

Assuming that the matrix W has full rank, any vector Û can be expressed as a linear
combination of the eigenvectors V j of W . The scheme is therefore stable if all eigenvectors
of W do not increase in L2-norm when the scheme is applied. For one eigenvector V j and
the corresponding eigenvalue λj we can write Equation (28) to

V n+1
j = λjV

n
j , (29)

so the scheme is stable if the modulus of each eigenvalue λj of W is lower or equal to 1.

12



F. Lörcher, G. Gassner and C.-D. Munz

scheme order Taylor-DG Taylor-DG-R ADER-DG
1 1.00 1.00 1.00
2 0.333 0.333 0.3333
3 0.200 0.1875 0.171
4 0.145 0.115 0.104
5 0.118 0.10 0.076
6 0.095 0.075 0.050

Table 2: Stability limits of different DG schemes

Using a computer algebra system it is easy to compute, for any order, the largest
modulus of the eigenvalue spectrum of W for a given CFL. By varying CFL we can find
the stability region. In Table 4.3, the maximal CFL-condition is given for schemes with
and without operation reduction as described in the previous section.

In,3 another arbitrary high order DG scheme for linear problems is described, the
ADER-DG scheme. For comparison, we present the stability limit of the ADER-DG
scheme as well.

4.4 Numerical Results

We present in this section results obtained for a numerical experiment with the same
2D problem than described in section 3.3.

The mesh consists now of regular triangles. In Table 3, error norms and CPU-times
are presented for three different DG schemes. All computations have been done with the
maximal possible CFL-number of the respective scheme and order. Especially for higher
accuracy order, the Taylor time integration schemes with reduced operation number seem
to be interesting in terms of performance.

Atkins and Shu1 proposed a quadrature-free implementation for DG combined with
standard Runge-Kutta time integration. As the scheme of order 4 (without operation
reduction) has identical properties as a standard Runge-Kutta O4 time integration (in
terms of error norms and CPU cost), and as our implementations are quadrature-free, the
scheme Taylor-O4 corresponds to a fourth-order scheme as proposed by Atkins and Shu.1

5 Conclusions

We proposed a time integration technique of arbitrary high order which is especially
efficient for the solution of linear hyperbolic systems. We applied this approach based on
a Dimension-by-Dimension space discretization to finite difference schemes on structured
grids as well as to discontinuous Galerkin schemes on unstructured grids. For the resulting
finite difference schemes, the stability analysis showed that schemes of order 4, 8, 12, and
so on are stable under the usual CFL-condition.

Compared to standard Runge-Kutta time discretizations, it is much easier to obtain
arbitrary high order. For higher order, no additional storage amount is required. If very
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Nb cells Nb DOF ‖e‖L2
OL2

CPU [s] ‖e‖L2
OL2

CPU [s] ‖e‖L2
OL2

CPU [s]

O2 Taylor O2 Taylor-R O2 ADER

100 300 6,07E+00 0,48 5,69E+00 0,44 5,88E+00 0,32
400 1200 3,24E+00 0,9 3,82 2,85E+00 1,0 3,54 3,13E+00 0,9 2,46
1600 4800 1,16E+00 1,5 31,33 9,40E-01 1,6 29,25 1,13E+00 1,5 19, 33
6400 19200 3,00E-01 2,0 252,60 2,40E-01 2,0 235,00 3,10E-01 1,9 160,34

O3 Taylor O3 Taylor-R O3 ADER

100 600 3,01E+00 1,42 2,77E+00 1,23 3,15E+00 1,03
400 2400 7,20E-01 2,1 11,54 6,00E-01 2,2 10,20 8,20E-01 1,9 8,3 2
1600 9600 1,00E-01 2,8 95,90 8,10E-02 2,9 87,60 1,16E-01 2,8 67, 26
6400 38400 1,58E-02 2,7 769,10 1,20E-02 2,8 691,00 1,59E-02 2,9 546,80

O4 Taylor O4 Taylor-R O4 ADER

100 1000 1,29E+00 4,42 1,17E+00 3,09 1,40E+00 3,31
400 4000 1,40E-01 3,2 36,80 1,20E-01 3,3 26,60 1,53E-01 3,2 26, 63
1600 16000 1,04E-02 3,8 298,00 8,65E-03 3,8 226,60 1,03E-02 3,9 216,30
6400 64000 7,69E-04 3,8 2394,00 6,06E-04 3,8 1813,60 7,92E-04 3,7 1714,90

O5 Taylor O5 Taylor-R O5 ADER

100 1500 4,90E-01 9,28 4,40E-01 5,92 5,10E-01 8,84
400 6000 2,59E-02 4,4 77,80 2,14E-02 4,4 51,12 2,57E-02 4,3 71, 10
1600 24000 9,79E-04 4,7 628,00 7,98E-04 4,7 420,24 9,51E-04 4,8 570,00
6400 96000 3,79E-05 4,8 5023,30 2,85E-05 4,8 3344,80 3,53E-05 4,8 4533,60

O6 Taylor O6 Taylor-R O6 ADER

100 2100 1,60E-01 22,08 1,50E-01 12,56 1,60E-01 23,70
400 8400 4,62E-03 5,1 182,80 3,97E-03 5,2 109,00 4,48E-03 5,2 191,20
1600 33600 8,88E-05 5,7 1471,60 7,31E-05 5,8 904,80 8,46E-05 5,7 1529,00
6400 134400 1,65E-06 5,8 11709,70 1,28E-06 5,8 7177,30 1,56E-06 5,8 12070,70

Table 3: Results of numerical experiment for different DG schemes and the Gausspuls transport problem
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accurate results are required, the higher order schemes come out to be much more efficient
than the usually used 4th order Runge Kutta schemes in storage as well as in terms of
CPU-time.

For the scheme with DG space discretization, a technique was proposed how to reduce
the computational cost which lead to a significant acceleration of the numerical scheme
especially for high order.
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