
Finding Possible Receivers of Lightning Transactions by
Using Timing Information

Robin Kouwenhoven
Student number: 4695534

to obtain the degree of MSc. Computer Science
at the Delft University of Technology

Software Technology track, MSc Computer Science
Faculty EEMCS

Delft University of Technology
Thesis committee: Stefanie Roos, Zekeriya Erkin

Defence date: 23 February 2024



Finding Possible Receivers of Lightning
Transactions by Using Timing Information

Robin Kouwenhoven
4695534

Software Technology track, MSc Computer Science
Faculty EEMCS, Delft University of Technology

Supervised by Stefanie Roos
Thesis committee: Stefanie Roos, Zekeriya Erkin

Defence date: 23 February 2024

Abstract—Foremost among the challenges of the Bitcoin
blockchain is the scalability bottleneck. To address this issue, the
Lightning Network, a payment channel network, was created.
Lightning is a payment channel network that is source-routed
and uses onion routing, like Tor. However, unlike Tor, the routing
path is determined by optimizing a cost function, which uses
public information. In this paper, a timing attack is evaluated
by simulation of the Lightning Network. The goal of the attack
is for an adversary that is part of a payment to determine the
destination of the payment. The influence colluding adversaries
have on the performance of the attack is evaluated. Three types
of colluding adversaries (closest to destination, farthest from
destination, average of all adversaries) are compared to a simple
adversary that guesses the next hop in the payment is the
destination of the payment. It is found that the adversary closest
to the destination performs the best.

Furthermore, shadow routing, a mitigation against these types
of attacks, is evaluated against this attack. It is found that shadow
routing does not have a significant impact on the performance
of this attack.

I. INTRODUCTION

Recently, the Bitcoin price has touched new records [1]. As
of November 23rd, 2023 according to CoinMarketCap1 the
price of one Bitcoin lies around 37.000 USD. This indicates
the success of Bitcoin. However, the remarkable growth of
Bitcoin is not without its challenges. Foremost among these
challenges is the inherent scalability bottleneck within the
Bitcoin blockchain, impeding its ability to process a high
volume of transactions quickly [2]. Due to the proof-of-work
consensus protocol used by Bitcoin, only one block can be
mined approximately every ten minutes. Reducing this block
interval would reduce the computational work required to
rewrite the blockchain, making it less secure. Thus, the number
of transactions Bitcoin can handle is limited by the block
size and block interval [3] [4]. The maximum number of
transactions for Bitcoin lies at 10 transactions per second [2].
According to Visa, they process 269.8 billion transactions in
a year [5]. On average, that is 8555 transactions per second,
which does not account for traffic spikes.

To address the scalability issues in Bitcoin, payment chan-
nels can be used [6]. A payment channel is opened by

1https://coinmarketcap.com/currencies/bitcoin/

creating an opening transaction that sends funds to a 2-of-2
multi-signature address. The participants in the 2-of-2 multi-
signature transaction are the owners of the channel. Before the
transaction is recorded on the blockchain, another transaction
is created that spends this 2-of-2 multi-signature output and
sends funds back to the endpoints of the channel. Once
both parties have received and signed that transaction, the
opening transaction can be recorded on the blockchain. The
amounts sent back to the endpoints after recording the second
transaction on the blockchain represent their balances. The
second transaction is only recorded on the blockchain when
the payment channel needs to close. During the lifetime of the
payment channel, the parties can create a new transaction that
spends the opening transaction to change the balances of the
payment channel. They also need to revoke the earlier spend-
ing transaction. When the two endpoints have a dispute, one
of the endpoints can simply record the spending transaction
on the blockchain. Both parties will receive their balance back
according to the latest agreed state. This improves scalability,
as now only an opening and closing transaction need to
be recorded on the blockchain. Furthermore, in theory the
channel only needs to be closed when a dispute occurs or
when someone wants their money back. All other transactions
between the two endpoints will be handled off chain.

Still, users have to create a payment channel with everyone
they want to pay, leading to transactions on the blockchain.
The Lightning Network addresses this issue by allowing
payments to be routed over multiple hops of payment channels
[6]. This is achieved by using a cryptographic mechanism
called an Hashed Timelock Contract (HTLC) in the output
script of a transaction. An HTLC output can be spent in two
ways: either the spender has to present the preimage of a hash
specified in the HTLC, or the spender has to wait a few blocks
until the timelock expires. The waiting time is specified by the
first block index the transaction can be spent, called the block
height. In both cases, the spender must also present a signature
that can be validated by the specified public key. To allow the
payment to either completely fail or completely succeed, the
receiver of a transaction first shares a hash of a preimage only
known by the receiver with the sender of the transaction. The
sender creates an HTLC with the first hop, where the funds

1



are paid to the first hop upon showing the preimage of the
hash that was shared by the receiver, or the funds can be
reclaimed by the sender after a certain block height. The first
hop does the same with the second hop and so on until the
transaction reaches the destination. Now the destination claims
the funds by sharing the preimage that it has kept secret. By
sharing the secret, the last hop can also claim its funds. This
will continue until all hops have claimed their funds and the
payment is finished. In case one of the nodes acts malicious
by not sharing the preimage with the previous node, the funds
can be reclaimed after the block height specified in the HTLC.

Lightning uses source-routed onion routing [6]. The sender
of a payment decides which intermediary nodes are used to
forward the payment. Each intermediary charges a fee for
forwarding a payment since the transaction value will not be
spendable from their balance until either the HTLC timelock
has expired or the preimage of the hash is known. The sender
of the transaction therefore has to find a path where the fees
are low and at the same time the transaction amount is locked
for a short period in case a node acts malicious or the balance
of the channels is insufficient. The fees nodes charge to use
their channel are public knowledge, as well as the number
of blocks each node adds to the waiting time for forwarding
the payment. Although the protocol uses onion routing and the
complete payment path is not known to the intermediate nodes,
the routing algorithm tries to optimize for the fee amount and
lock time using public information resulting in the privacy
guarantees being worse than for example Tor2. Kumble et
al. [7] have already shown that it is effective to exploit the
public information of payment channels to find a transaction’s
sender or destination when that transaction is observed by the
adversary. Rohrer et al. [8] used a timing attack to find possible
senders and receivers.

A possible mitigation against the attack of [7] is shadow
routing [7]. With shadow routing, the timelock value in the
HTLC is changed by adding a random number to it obtained
by extending the payment route3. Another mitigation would be
to remove the ability to link messages to the same payment.
This is done by Malavolta et al. [9]. They have introduced
anonymous multihop locks (AMHLs). These locks could re-
place the HTLCs currently in use in the Lightning Network.
An AMHL does not use the same hash for the transactions
between different intermediate nodes. AMHLs would also
work against [8].

The HTLC used in the Lightning Network not only makes
it possible to link different messages to a payment but also
for multiple adversaries to decide if they took part in the
same payment. We built on the timing attack designed by
Rohrer et al. [8] to decide if shadow routing is an effective
mitigation against the attack and to evaluate how to effectively
collude when an adversary compromises multiple nodes. A
static honest-but-curious local internal adversary is considered
that can only execute (probabilistic) algorithms that run in

2https://www.torproject.org/
3https://github.com/lightning/bolts/blob/master/07-routing-gossip.md

polynomial time. The adversary is an on-path adversary,
meaning it will only try to find receivers of payments that
it forwards itself. The simplest strategy used to determine the
receiver of a payment assumes that the node the adversarial
node forwards the payment to is the receiver of the payment.
Additionally, the timing attack designed by Rohrer et al. [8] is
used as an attack strategy. However, in contrast to Rohrer et al.
[8], we use three different strategies for colluding adversaries
to assess how to effectively collude. In all three methods,
the nodes first execute the timing attack individually. In the
first method, the adversary assumes that the adversarial node
closest to the destination found the correct destination of the
payment. In the second method, the adversary assumes that the
adversarial node farthest from the destination found the correct
destination of the payment. In the last method, the probabilities
of a node being the destination of a payment assigned to
each node by the adversarial nodes are combined by taking
the average. The node with the highest average probability is
assumed to be the destination of the payment.

We found that the first timing attack method, where the
adversary assumes that the adversarial node closest to the
destination found the correct destination of the payment
always outperforms or equals the other strategies. This is
expected, as the probability distribution for nodes being the
payment destination has the lowest variance for this method.
In scenarios where there are not a lot of nodes compromised by
the adversary on the payment path, the strategies involving the
timing attack perform equally. When there are three or more
nodes compromised on the payment path, the methods start to
differ. The method where the payment destination is assumed
to be the next hop after the adversarial node performs the worst
when there are fewer than 10 nodes compromised. When there
are 10 or more nodes compromised, it performs better than
the method where the farthest node from the destination is
assumed to find the correct payment destination. However, it
still performs worse than the other methods. Shadow routing
seems to have little impact on the effectiveness of the timing
attack. However, in situations where it has an impact, it will
have a negative impact.

II. BACKGROUND

In this section, the workings of the Lightning Network
are described. First, payment channels are described. Next,
this idea is extended to payment channel networks. Last, we
describe how routing is done in the Lightning Network.

A. Payment channels

Poon et al. [6] introduced the Lightning Network. As
an off-chain scaling solution, payment channels address the
inherent limitations of conventional blockchain-based payment
systems, including high transaction fees and long transaction
confirmation times. These channels enable participants to
engage in multiple transactions, without necessarily recording
each transaction on the blockchain. Only a funding transaction
is recorded on the blockchain and when a dispute occurs or

2



upon closing the channel, a closing transaction is recorded on
the blockchain.

We now go over the transactions involved when creating a
payment channel as described by Lightning Networks BOLT
34. In the Lightning Network, a payment channel is established
by creating a funding transaction and recording it on the
blockchain. Initially, an unsigned funding transaction is gener-
ated, with as output a 2-of-2 multi-signature script, requiring
both parties to sign a spending transaction. Subsequently,
signed commitment transactions are created, which spend from
the 2-of-2 multi-signature output of the funding transaction. At
this stage, both parties can sign the funding transaction and
have it recorded on the blockchain without the risk of losing
their funds. The commitment transactions, however, are not
recorded on the blockchain, with their outputs denoting the
current channel balances.

Suppose Alice and Bob want to establish a payment channel
and create an unsigned funding transaction. Alice proceeds to
create a commitment transaction signed by her and shares the
signature with Bob. The commitment transaction spends the 2-
of-2 multi-signature output from the funding transaction. Since
Alice lacks Bob’s signature for the commitment transaction,
she is unable to utilize it, whereas Bob can sign and utilize the
transaction. One of the commitment transaction’s outputs can
be spent directly by Alice, representing her channel balance.
The other output can be spent either by a signature from
a new key held by Bob, known as a revocation key, along
with a signature from Alice, or by Bob after the commitment
transaction has been recorded on the blockchain for a specified
number of blocks, referred to as the timelock period. This
output represents Bob’s channel balance. Bob creates a similar
commitment transaction and shares its signature with Alice.
The only difference is that Bob can spend his balance directly
and Alice has to wait for the timelock period to spend
her balance or have Bob’s signature and the signature of
the revocation key. In addition, only Alice can publish this
transaction, as Bob is lacking Alice’s signature.

We now go over the messages involved when changing
the balance of a payment channel as described by Light-
ning Networks BOLT 25. New commitment transactions are
generated whenever adjustments to the channel balances are
required. Suppose Alice wants to pay Bob. Alice starts by
generating a new commitment transaction that reflects the new
channel balances and shares her signature with Bob through a
commitment_signed message. Subsequently, Bob shares
his revocation key with Alice in a revoke_and_ack mes-
sage, effectively cancelling the old commitment transaction.
Additionally, Bob generates a new commitment transaction
reflecting the same channel balances and shares the signature
with Alice through a commitment_signed message. Last,
Alice also shares her revocation key of the previous com-
mitment transaction with Bob through a revoke_and_ack
message. Consequently, when an old commitment transaction

4https://github.com/lightning/bolts/blob/master/03-transactions.md
5https://github.com/lightning/bolts/blob/master/02-peer-protocol.md

Fig. 1: A schematic overview of a payment from Alice to
Carol through Bob over the Lightning Network. Alice and
Bob share a payment channel A and Bob and Carol share a
payment channel B. R is the preimage of hash H . x is the
total timelock delta for Alice when paying Carol through Bob.
u is the timelock delta of Bob for channel B.

is recorded on the blockchain, the counterparty is provided
with a timelock period, during which they can spend the
transaction using a signature from the revocation key and their
key. This enables the counterparty to access all the funds in
the channel when a party is not acting honestly, while the
dishonest party’s funds are locked.

To close the channel, either party can record the latest
commitment transaction on the blockchain. However, the party
initiating the broadcast must wait for the timelock period to
elapse before being able to spend their output. Alternatively,
both parties can cooperatively close the channel by generat-
ing a new transaction without a timelock and revoking the
commitment transaction.

B. Payment channel networks

While payment channels offer immediate and efficient off-
chain transactions, they are limited to direct channels between
two parties, requiring a funding transaction for each recipient.
Payment channel networks, on the other hand, enable the
creation of a network of interconnected payment channels,
allowing for multi-hop transactions across the network. This
network-based approach introduces a new level of scalability,
enabling participants to transact with any other participant in
the network, regardless of direct channel connections, as long
as the recipient is somehow connected to the sender.

We now go over the basics of payment channel networks
as described by Lightning Networks BOLT 76. To enable a
network of payment channels, the Lightning Network employs
Hashed Timelock Contracts (HTLCs). To spend an HTLC, the
spender must provide a signature and a preimage of a hash (the
hash is included in the contract). Alternatively, the spender can
spend after a predetermined block height (also included in the
contract) when providing the correct signature. The key of the
signature for spending the output using the preimage of the
hash does not have to be the same as for spending the output
with the timelock.

Let’s consider a scenario where Alice shares a channel
with Bob (channel A), who, in turn, shares a channel with

6https://github.com/lightning/bolts/blob/master/07-routing-gossip.md

3



Fig. 2: A sequence diagram of the messages involved when
Alice pays Carol through Bob over the Lightning Network.

Carol (channel B), and Alice intends to make a payment
to Carol. See Figure 1 for a schematic overview of this
situation and Figure 2 for a sequence diagram of the involved
messages. The Lightning Network accomplishes this by having
Carol generate a hash H of a randomly selected preimage
R, which is then shared with Alice. Subsequently, Alice
sends a update_add_htlc message containing H to Bob
and negotiates a new commitment transaction for channel
A, featuring an additional output as HTLC. The amount in
the HTLC is the amount Alice wants to pay to Carol and
the sum of the transaction fees charged by the intermediate
nodes. The balance of Alice is lowered by this amount and the
balance of Bob is kept the same as in the previous commitment
transaction. The block height after which the HTLC can be
spent by Alice must be sufficient so that Alice, Bob, and Carol
have time to process the transaction. The HTLC can be spent
by Bob once he possesses the preimage R. Alternatively, Alice
can spend the HTLC after a specified block height.

Once Bob receives the revoke_and_ack message from
Alice, he sends an update_add_htlc message to Carol,
containing the same hash H . Bob then negotiates a new com-
mitment transaction with Carol for channel B, incorporating
an HTLC output. Carol can spend this output by using the
preimage R, while Bob cannot until a certain block height.
The amount in the HTLC is the same as the HTLC between
Alice and Bob but without the transaction fee Bob charges.
The balance of Bob is lowered by the amount of the HTLC and
the balance of Carol is kept the same. The block height after
which this HTLC (of channel B) can be spent must be lower
than the block height of the HTLC on channel A. This way,
Alice can not claim the funds of Bob back, before Bob can

claim the funds back from Carol. Note that this pattern can
continue until the payee receives the update_add_htlc
message.

As Carol is the payee and therefore possesses the preimage
R, she has the option to either close the channel and claim
the HTLC funds from Bob or transmit the preimage R to
Bob in a update_fulfill_htlc message. In the last
situation, Bob and Carol can also negotiate a new commitment
transaction for channel B where the funds of the HTLC are
added to Carol’s balance. In either case, Bob will possess the
preimage R and can claim the HTLC funds from Alice in the
same manner as Carol. In the event of unresponsiveness from
one of the parties, channels can be reset or closed without
incurring any fund loss. The closing party simply has to wait
until a certain block height before they can spend the HTLC
output and get their coins back.

C. Routing

We now go over the basics of routing in the Lightning
Network as described by BOLT 77. Nodes in the Lightning
Network use source routing, meaning that the payer determines
the route a payment takes to reach the payee. The payment
messages are sent using Onion Routing8, using the Sphinx
format [10].

A payment channel can either be private or public. Private
channels cannot be used for others’ payments, as the only
parties that know about the channel are the endpoints of the
channel. In contrast, public channels accept payments for other
destinations than the endpoints of the channel.

Once a public channel is fully created, which is af-
ter the funding transaction is recorded on the blockchain
and the block has propagated through the Bitcoin net-
work, the channel is announced to the network through a
channel_announcement message. The channel becomes
usable once at least one endpoint announces its policy in
a channel_update message. Nodes can announce them-
selves using a node_announcement message. All three
messages are broadcast to the network using gossip. If a node
wants to change the policy of one of its channels, it can send
a channel_update message again. A channel is identified
by the short channel id. This id contains the block height of
the funding transaction in the three most significant bytes, the
index of the transaction on the block in the middle three bytes
and the index of the output funding the channel in the two
least significant bytes.

The policy of a channel is directional and each endpoint of a
channel dictates its policy for forwarding a payment from the
node to the other endpoint. As in the case of a non-responding
node or a dispute, the funds of a node can be temporarily
locked in the HTLC and as a node needs to pay transaction fees
for the closing transaction to close a channel, nodes charge a
fee for forwarding transactions over one of their channels. The
parameters to calculate the fee are included in the policy. The

7https://github.com/lightning/bolts/blob/master/07-routing-gossip.md
8https://github.com/lightning/bolts/blob/master/04-onion-routing.md

4



fee consists of a fixed amount and a factor that is multiplied
by the amount of the payment.

Additionally, the policy contains the
cltv_expiry_delta. This is the amount the node
subtracts from the block height (cltv_expiry) in the
received HTLC when forwarding the payment. The higher
this value, the longer the forwarding node has to respond in
case of a dishonest counterparty that broadcasts a revoked
commitment transaction. However, a higher value also means
that funds will be locked for longer in case of a dispute.

When a node wants to send a payment, it tries to find a path
from itself to the destination. It can model the public channels
as a weighted directed multigraph, where the edges correspond
to the payment channels and the vertices correspond to the
nodes in the network. A cost function is used to determine
the weights on the edges. The goal of this function is to make
the final transaction fee and the total cltv_expiry_delta
low. The cost functions differ between Lightning clients,
although they all use the public information of the channels,
such as capacity, fees, and cltv_expiry_delta. The three
most prominent Lightning clients are LND9, Core Lightning10,
and Eclair11.

A path is only valid if the capacities of the payment channels
are sufficient, meaning that of a certain payment channel, the
capacity is at least the payment amount the payer wants to
pay plus the fees charged by the nodes owning the payment
channels after the current channel. Note that the channel
balances are not public knowledge. Therefore, payments can
fail if a channel along the path does not have a sufficient
balance in the correct direction. Nodes use an adapted version
of Dijkstra to construct the cheapest path according to the cost
function of the used client.

To increase privacy, nodes can use shadow routing.
With shadow routing, an additional value is added to
the cltv_expiry calculated for the payment path. This
value could be random, or it could be the sum of the
cltv_expiry_delta values along an extension of the
payment path. By making the cltv_expiry bigger, the
set of paths a payment can take to complete as seen by an
adversary observing the payment will be bigger. This will
increase the number of receivers of the payment, increasing
privacy.

III. RELATED WORK

In this section, an overview of the related work on attacks
targeting the privacy of transactions within the Lightning
Network is presented. Specifically, two prominent types of at-
tacks are discussed: sender/receiver identification and channel
balance probing attacks. Sender/receiver identification focuses
on uncovering the identities of the endpoints involved in a
transaction. Channel balance probing attacks aim to find the
balance of a channel in one or both directions.

9https://github.com/lightningnetwork/lnd
10https://github.com/ElementsProject/lightning
11https://github.com/ACINQ/eclair

Rohrer et al. [8] have introduced a timing attack to find the
sender and receiver of a transaction that an adversary takes
part in. An adversary first builds a probabilistic model for the
time it takes to send a message between two nodes from the
Lightning Network. To find the receiver, the time difference
between forwarding an update_add_htlc message and
receiving an update_fulfill_htlc message from the
same payment is measured. The adversary can know which
messages are from the same payment, since those messages
will contain the same hash in the HTLC. Next, the collection
of paths from the adversarial node to all other nodes is filtered
such that the remaining paths have sufficient channel capacities
for the transaction amount and the sum of the timelock delta’s
does not exceed the timelock value of the transaction. Last, the
remaining paths are ranked based on how likely it is for a path
to take the measured time using the probabilistic model. From
this ranked collection of paths, the most likely receiver can
be found. Finding the sender is done by failing the payment
the first time the adversary receives an update_add_htlc
message. The time it takes until an update_add_htlc
message with the same hash in the HTLC is received will be
measured. This time difference is used with the timing model
to rank paths from all nodes to the adversarial node on how
likely it is for that path to take that amount of time. Again,
from this ranked collection of paths, the most likely sender
can be found. Nodes should handle messages as soon as they
receive them, causing a possible correlation between payment
path length and payment completion time. A proof of concept
of the attack is evaluated on a separate partition on the testnet
of the Lightning Network, by creating Lightning nodes that
are connected to each other, but not to the rest of the network.
Furthermore, the attack is evaluated using a simulator. This
paper is an extension of the work done by Rohrer et al. [8]. We
extend the work by evaluating how effective shadow routing
is against the attack as a mitigation. Furthermore, we extend
the attack by evaluating how effective it is for an adversary to
compromise multiple nodes and collude in finding the receiver
of a transaction. We use different strategies to combine the
ranking of paths obtained by the different nodes.

In [11], [12], the time difference between forward-
ing an update_add_htlc message and receiving an
update_fulfill_htlc message is measured for different
payment path lengths to assess if it would be possible to do
a timing attack which finds the receiver of an observed trans-
action. The measurements were done on both a local network
and on the testnet of the Lightning Network. Nisslmueller et
al. [12] found that in the testnet of the Lightning Network, the
time difference between the two messages was long enough
for the volatility in the measurement to be negligible, making
it a possible attack vector. In contrast to this paper, they were
unable to do an actual timing attack.

Kumble et al. [7] have introduced an attack to find the
senders and receivers of a transaction that is routed through an
adversarial node. The adversary first finds all possible paths
an observed transaction could have taken based on the routing
algorithms of three popular Lightning clients. The paths are

5



found by using the cost functions and path-finding algorithms
from the three Lightning clients and reconstructing which
paths could have been found by each node such that the
adversarial node was part of that path. Additionally, multiple
adversarial nodes can collude by conducting the attack indi-
vidually and if the transaction has the same hash in the HTLC
combining the found paths Similarly to this paper, they try
to find the receiver of an observed transaction. However, this
paper uses a timing attack to achieve that.

Sharma et al. [13] have introduced an attack to find only
the receivers and not the senders of a transaction. Similar to
[7], they aim to find the receiver of a transaction that is routed
through an adversarial node. They evaluate the effectiveness
of the attack using a simulator of the Lightning Network for
different numbers of adversarial nodes. They also evaluate the
effectiveness of the attack when the Lightning Network grows,
and conclude that the anonymity when using the Lightning
Network suffers when the network grows.

Malavolta et al. [9] have introduced anonymous multihop
locks (AMHLs). These locks could replace the HTLCs cur-
rently in use in the Lightning Network. An AMHL does
not use the same hash for the transactions between different
intermediate nodes. Therefore, the timing attack from [8] will
not be possible. In addition, in the attack from [7], multiple
adversaries colluding will no longer be straightforward.

Kappos et al. [14] also introduced an adversary that tries to
identify the sender and the receiver of an observed transaction.
Their attack works by assuming the sender is always the
node that forwards the transaction to the adversarial node
and the receiver is always the node where the adversarial
node forwards the transaction to. This strategy is also used
in this paper to compare the performance of more advanced
strategies. In addition, they introduce an off-path adversary
who learns about transactions that it did not participate in.
The adversary uses a channel balance probing attack to find the
balances of all channels and creates a snapshot of the network
at regular time intervals. The difference in balances between
snapshots indicates that at least one transaction happened
between those nodes. This paper only focuses on an on-path
adversary.

Tikhomirov et al. [15] have quantified how likely it is for
an adversary to be able to identify the sender and receiver of
a transaction. Assumed is that a sender selects a path with
at most three intermediary nodes and the adversary controls
the first and last intermediary node. The node that sends the
transaction to the first adversarial node is assumed to be the
sender and the node that receives the transaction from the
last adversarial node is assumed to be the receiver of the
transaction. In this paper, no such assumptions are made.
Instead, a timing attack is used to estimate how far a receiver
is from the adversarial node.

In [16], [17], [14], channel balance probing attacks are
introduced. They work by first opening a channel with a node
A. Then, the adversary sends transactions to one of node A’s
neighbours B through node A. A binary search strategy is used
to find the minimum payment amount where the transaction

fails due to insufficient balance on the channel between the
other node A and its neighbour B. As the transactions use
a random hash in the HTLC, all transactions will fail, only
locking funds temporarily. The adversary uses the error code
to determine if the payment failed due to the incorrect hash
that is not known by the receiver, or due to insufficient balance
on the probed channel. Biryukov et al. [18] have extended the
probing attack to account for multiple channels between the
same nodes. In [11], [12], the authors introduce a probing
attack where the adversary does not need to have a direct
channel with one of the endpoints of a channel. Although
probing attacks are also attacks on a Lightning Network user’s
privacy, they are out of scope for this paper. We focus on
identifying the receiver of an observed payment only.

IV. ADVERSARIAL MODEL

It is essential to define and understand the adversarial model
to evaluate the privacy delivered by the Lightning Network
effectively. The adversary considered in this attack has the
following properties:

1) Honest-but-Curious: The adversary follows the pro-
tocol as described in the BOLT documents12. It does
not send malicious messages to other nodes. It can,
however, see all the messages sent and received by the
compromised node.

2) Local internal: The adversary only corrupts some nodes
and not all of them. The adversary does not corrupt
communication links. It knows all the information a
Lightning node would normally know. However, it does
know the private information of payment channels not
belonging to one of the compromised nodes. Therefore,
the adversary will not know the balances of the channels
not belonging to one of the compromised nodes.

3) Static: The adversary can only corrupt fixed nodes. It
cannot adapt by corrupting other nodes after learning
some information.

4) Probabilistic polynomial time: The adversary can only
finish algorithms with a polynomial runtime. The al-
gorithms can be probabilistic. Therefore, the adversary
can solve all problems in the PP complexity class. The
adversary cannot break encryption and thus cannot read
information hidden in the onion messages.

It is assumed that the nodes corrupted by the adversary
have been online long enough to gather all available public
information about the Lightning Network. The nodes also
collect this information during normal operation. For each
node which has at least one open public channel, the network
addresses are known together with its public key. These
addresses could be anonymous onion addresses through Tor
or could be IP addresses. For each public channel, the nodes
that form the endpoints of the channel and the capacity of
the channel are known. In addition, the timelock delta and fee
parameters for both directions are known.

12https://github.com/lightning/bolts/blob/master/00-introduction.md

6



With this information, the adversary can form a graph
G = (V,E), with V the set of nodes and E the set
of channels. Each node has associated with it a pub-
lic key and a set of addresses. Each channel has as-
sociated with it the capacity and for each endpoint the
cltv_expiry_delta, the fee_base_msat, and the
fee_proportional_millionths.

Once a transaction arrives at an adversarial node, the
adversary also learns some things about the transaction. In
addition to the node it receives the transaction from and the
node it has to forward the transaction to, it learns the payment
amount it will receive and needs to forward. It also learns the
timelock value for the incoming and outgoing transactions. All
this information is exploited to do the attack.

V. METHOD

In this section, the attack and the experiments to evaluate the
effectiveness of the attack will be explained. First, we explain
how to find the receiver of a payment using the adversary de-
scribed in the previous section. Next, we explain the different
variants of the attack. A simulator of the Lightning Network
is used to simulate the attack, which is explained next. After
describing the simulator, the way the data for the simulator
is collected is explained. Then, the metrics used to evaluate
simulations with and which simulations are run are given. Last,
the ethical considerations for the evaluation of the attack are
described.

A. Finding payment receiver

Finding the receiver of a payment is done using a timing
attack from [8]. The first step in finding the receiver involves
finding the latency distribution of the network connections
between all nodes. This can be done by sending payments
that will fail at a specific node. Since the payment messages
are in the Sphinx format, and the route for the payment is
decided by the sender, an adversary can craft payments such
that it is only discovered at the target that the payment is
invalid. The target will then send a message back to the
adversary that the payment has failed. The time between the
first update_add_htlc message sent by the adversary and
the last update_fail_htlc received by the adversary is
the latency of sending a payment to the target. Since nodes
are required to respond to messages immediately, there will
be a correlation between this latency and the path length of
the transaction.

The adversary will do this probing for nodes with an
increasing path length from the compromised node, meaning
the number of payment channels to travel until the payment
reaches the target is increased. By sending multiple probes to
the same node, the adversary can estimate a mean and variance
for a certain path length. The mean of the latency for the next
channel can then be estimated by estimating the latency for
the full path and subtracting the mean of the latency of the
previous path length. The variance can be estimated by adding
the variance of the previous path length. The distribution of the
latency is assumed to be a normal distribution, which makes

it possible to simply add the variances and means to get the
aggregated distribution.

Once the adversary has probed all the channels, it can
start de-anonymizing payments. Since each payment is
uniquely identified by a hash in the HTLC, the adver-
sary knows which update_add_htlc message corresponds
to which update_fulfill_htlc message. The adver-
sary has to record the time difference between forward-
ing the update_add_htlc message and receiving the
update_fulfill_htlc message. This time difference is
used to estimate the receiver of the payment.

Before estimating the receiver of the payment, the possible
paths the payment can take are filtered. The adversary knows
to which node it sends the update_add_htlc. Therefore,
the rest of the payment path starts with that node. Furthermore,
it knows the value of the payment. Thus it can remove any path
that does not have enough capacity to forward the payment
over. Last, the adversary knows the remaining timelock value.
It can therefore filter the paths that require a higher timelock
value. Note that when shadow routing is enabled, the timelock
value of the payment will be higher than when it is not
enabled, and therefore there will be fewer paths excluded.

Once the adversary has found the time difference
between the update_add_htlc message and
update_fulfill_htlc message and has a set of
possible remaining payment paths, it can estimate the receiver
of the payment. For each possible payment path, an aggregate
distribution for the latency is created. Using this aggregate
distribution, the probability that the observed time difference
was measured is determined. Since it is possible for multiple
paths to end at the same receiver, the probability that a node
is the receiver has to be determined next. This can be done
by summing the probabilities that a path was taken when
the paths end at the same destination. Now the nodes can
be ranked by this probability and the node with the highest
probability is most likely to be the receiver of the payment.

B. Type of attacks

As is done in [8], the simplest attack to determine the re-
ceiver of a payment is to assume the receiver of the payment is
the node where the adversary sends the update_add_htlc
to. This method is called the First spy method in the rest of
this paper. The timing attack described before as done in [8]
is a more complicated attack. As an extension of the attack,
three different methods are assessed in case there is more than
one adversarial node on the payment path. The adversary can
know the nodes are part of the same payment by comparing
the hash in the HTLC.

In all three methods, the adversarial nodes first execute the
timing attack individually. In the first method, the adversary
assumes that the adversarial node closest to the destination
found the correct destination of the payment. The adversary
can know which node is the closest by comparing the timelock
values or the amounts. The node observing the lowest timelock
value is the closest to the payment destination. This method
is called Timing closest in the rest of this paper. Since the

7



adversarial node is closest to the destination, the probability
distribution of how likely a node is the destination has the
smallest variance. Therefore, it will be interesting to see if
this method indeed performs best. Alternatively, the adversary
can assume that the adversarial node farthest from the desti-
nation found the correct destination of the payment. The node
observing the highest amount or timelock value is the farthest
away. This method is called Timing farthest in the rest of
this paper. It will be interesting to see if this method performs
worse because it is farther from the payment destination.

In the last method, called Timing collusion in the rest
of this paper, the adversary collects the probabilities the
adversarial nodes assign to all the nodes for them being
the destination of the payment. Then, for each node in the
network, the adversary takes the average of the probabilities
found by the different adversarial nodes. The node with the
highest average probability will be the estimated destination.
This method makes use of all the available data the adversary
has. Therefore, it will be interesting to see how it performs in
comparison with the Timing closest method.

C. Simulator

All experiments are run using a simulator. The simulator is
originally created by Rohrer et al. [8]. It is written in the Rust
programming language.

The simulator is run as a command line application. It simu-
lates a certain number of transactions which is specified when
starting the application using a command line argument. All
transactions will have the same amount, which is also specified
as a command line argument. The number of compromised
nodes by the adversary can also be specified as a command line
argument. The simulator implements different strategies for
adversaries. However, only the most central adversary strategy
is used. This strategy picks the nodes to compromise from a
list ordered by the betweenness centrality of the node.

A graph of the Lightning Network is used such that the
simulator knows which nodes and channels are present in the
network. This is supplied as a JSON file, which contains a
list of nodes and a list of channels. The node information
includes a timestamp of when the last update was received
from a node_announcement message, the public key of
the node, an alias, and a set of addresses the node can be
reached on. These addresses can be IPv4 or IPv6 addresses,
or a tor .onion address. The channel information includes the
channel ID, the short channel ID, a timestamp of when the
last update was received from a channel_announcement
message, and the capacity. The channel information also
contains the policies for both endpoints of the channel. A
policy includes the time_lock_delta, min_htlc,
fee_base_msat, fee_rate_milli_msat,
disabled, max_htlc_msat, and a timestamp of when
the last update was received from a channel_update
message. The min_htlc and max_htlc_msat specify
the minimum and maximum amount that can be forwarded
over the channel. fee_base_msat is the base fee and to
get to the total fee this value is added to the product of

the transaction amount and fee_rate_milli_msat. A
channel can be disabled, which is indicated by disabled.

The simulator will decide which nodes are compromised
using a list of node IDs ordered by descending betweenness
centrality. The IDs should be the indexes of nodes in the list
of nodes from the Lightning Network graph JSON file.

Last, a CSV file with measurements of latencies is used to
sample the latencies of sending a message. A measurement
should include from which continent to which continent a
message was sent, the IP address of the destination, number of
packets that were sent and received, the number of lost packets,
the minimum, maximum and average round trip time of the
batch of packets, and the standard deviation of the round trip
time. In [8], this information was obtained by sending ping
messages in batches. Each payment channel is assigned one
random measurement with the same regions as the endpoints
of the channel. This measurement is used to sample the
message latency when a message is sent between these nodes.
The distribution is assumed to be a normal distribution with
as mean the average round trip time and as standard deviation
the standard deviation of the round trip time. When a sample
from this distribution is higher or lower than the maximum or
minimum round trip time from the measurement, the sample
is capped.

The simulator is a discrete event simulator with a logical
timer that increments in steps of nanoseconds. It keeps track
of the current time and saves events to be executed in an event
queue which is a B-tree map with the time of the event as
the key and the event type as the value. There are two event
types: ScheduledPayment and MessageReceived.
A simulation starts by adding ScheduledPayment
events to the event queue spaced 12000 seconds apart.
Then it loops over the event queue, picking the nearest
event. If it is a ScheduledPayment event, it will
queue the messages needed to start a transaction using a
MessageReceived event. If it is a MessageReceived
event, it will check what type of message is received, change
channel states, and queue new messages if needed. The
simulator simulates UpdateAddHtlc, UpdateFailHtlc,
UpdateFulfillHtlc, CommitmentSigned, and
RevokeAndAck messages. The channel states include the
balance of the nodes of the channel and which nodes have
acknowledged and committed.

For this paper, a few additions are made to the simulator.
First, shadow routing is implemented, according to BOLT 713.
This is implemented by taking a random number between 1
and 8. Then a random walk is done with a length of that
random number from the destination of the payment. The
timelock values of the channels encountered are summed up.
This final value is added to the timelock values seen by the
nodes on the real path. The longer the random walk, the more
the original timelock value gets obfuscated. The maximum
length of the random walk is chosen to be 8, which is twice
the average payment path length (4) from the experiments. In

13https://github.com/lightning/bolts/blob/master/07-routing-gossip.md

8



addition, collusion between adversarial nodes using different
strategies is implemented as described in the previous section.

Some issues have been found in the simulator, which were
only encountered when it was extended. One shortcoming
of the simulator is that the channel state does not allow
commitments and acknowledgements per payment. A real
Lightning client will keep track of all the not-committed
payments separately. This is not a problem in a situation where
different payments are spaced in time. However, to estimate
the source of a payment, an incoming payment is failed by the
adversary and the sender retries the payment one more time.
Once this is extended to multiple adversarial nodes that fail
payments and combined with the fact that messages can hap-
pen out of order due to concurrency, a CommitmentSigned
or RevokeAndAck message can commit or acknowledge
the channel, while it is actually waiting for two commits or
acknowledgements. Now one of the payments is ignored and
will never be received by the receiver. This can be solved
by extending the channel state to commit and acknowledge
per payment. However, the channel state is one of the lowest-
level concepts in the simulator and is connected to everything.
When changing the channel state representation, the simulation
code of the Lightning Network also needs to change. When
the simulation code changes, the attack code also has to
change. Therefore, it takes a lot of time to implement this.
Furthermore, debugging issues in this code takes a lot of time,
since most of the issues are concurrency issues which do not
always happen and are hard to reproduce consistently.

D. Data collection

To start a simulation, the simulator has to know the layout
of the network. In addition, it has to know how long it
takes to send a message. The snapshot used is taken from a
GitHub repository that ran a Lightning node and recorded all
the messages needed for creating a graph of the Lightning
Network [19]. The messages are parsed by the code provided
by the repository and converted to a human-readable JSON
format. The channel_announcement messages are used
to link the short_channel_id to the public keys of the
endpoints. The channel_update messages are used to
obtain the policies of each endpoint of each channel. This
includes the cltv_expiry_delta, fee_base_msat,
and fee_proportional_millionths. The
node_announcement messages are used to obtain
the network addresses of each node.

There are 370552 channel_announcement mes-
sages, 29498954 channel_update messages, and 3377090
node_announcement messages in the snapshot. Not all
channel’s have both a channel_announcement and
channel_update. Similarly, not all nodes that appear in a
channel have a node_announcement and vice versa. This
results in 36798 nodes and 370553 (directional) channels.

The capacity is missing in the messages available in the
snapshot. This is, however, included in the opening transaction
of the channel on the Bitcoin blockchain. Therefore, to obtain
the capacities of the channels, the Bitcoin blockchain is

scanned. The short_channel_id property of a channel
contains in the three most significant bytes the block height,
in the next three bytes the transaction index and in the two least
significant bytes the output index of the spending transaction
funding the channel14. The value of this output is the capacity
of the channel. To obtain the capacities, a Bitcoin node is
created and queried for these transactions. The balances of the
nodes are not known to the public. Therefore, the simulator
assumes that at the beginning of a simulation, the capacity is
divided equally over both nodes.

The latency information is obtained by pinging nodes in the
snapshot and measuring the round-trip time. Only the nodes
with an IPv4 address and at least one active payment channel
were pinged. The nodes are divided into regions by their IP
address using the GeoIP2 Country15 database. The continents
where the IP addresses are located are mapped directly to a
region with the same name. One exception to this is the region
China, when an IP address is located in China it is not mapped
to the Asia region, but to the China region. This results in
the following seven regions: North America, South America,
Europe, Afrika, Asia, China, Oceania.

Each node is pinged from seven different locations. This is
achieved by deploying a T2 (Or T3 if T2 is not available in
that region) micro AWS node in each region. In Table I, the
deployed AWS nodes are summarized. The nodes are pinged
in batches of ten pings (one ping command with the number of
pings set to ten) in random order. This is repeated ten times
resulting in each AWS node pinging all Lightning nodes a
hundred times. For each batch of ten pings, the minimum,
average, and maximum round-trip times are measured together
with the number of lost packets and the standard deviation.

TABLE I: Deployed AWS instances for pinging LN nodes

Region City AWS region Instance type
NA North California us-west-1 t2.micro
SA Sao Paulo sa-east-1 t2.micro
EU Stockholm eu-north-1 t3.micro
AF Bahrain me-south-1 t3.micro
AS Mumbai ap-south-1 t2.micro
CN Hong Kong ap-east-1 t3.micro
OC Sydney ap-southeast-2 t2.micro

E. Metrics
To evaluate the effectiveness of the attacks, three metrics

will be measured using the simulator: precision, recall and F1-
score [8]. The precision is defined as the share of correctly
classified payments from the successful payments that are
observed by an adversary. The recall is defined as the share
of correctly classified payments from all successful payments.
The F1-score is the harmonic mean of the precision and recall
and is defined by the following formula:

F1 = 2 · Precision · Recall
Precision + Recall

14https://github.com/lightning/bolts/blob/master/07-routing-
gossip.md#definition-of-short channel id

15https://dev.maxmind.com/geoip/docs/databases/city-and-country

9



These metrics are chosen as they are easy to interpret. They
indicate how successful the adversary is in determining the
destination of a transaction in a value between 0 and 1. Here,
1 means that the adversary is always successful and 0 means
that it is never successful.

F. Simulations setup

All simulations are executed five times using different seeds
(1, 2, 3, 4, 5). Furthermore, the simulations are doing 200 pay-
ments each with a fixed value. This value is set to 1, 10, 1000,
10000, 100000 and, 1000000 satoshis. The simulations are also
run with and without shadow routing enabled. Last, the simula-
tions are done for different numbers of adversaries. The nodes
that are compromised by the adversaries are chosen from a list
ordered by betweenness centrality, picking the first n nodes.
The simulations are done for n ∈ {1, 2, 3, 4, 5, 10, 15, 20}. The
adversarial nodes are chosen to have high centrality to make
sure a significant number of transactions pass through at least
one adversary.

G. Ethical consideration

It is not ethical to deanonymize real transactions. Therefore,
all attacks are done using a simulator which simulates fake
transactions. The amounts of the transactions are chosen from
a fixed set of values that do not correspond to any real
transactions on the Lightning Network. Furthermore, senders
and receivers of transactions are chosen at random. All infor-
mation in the Lightning Network graph used by the simulator
is obtained from information that is public knowledge. The
balances of the channels are assumed to be split equally
from the total capacity of the channel at the start of a
simulation. Therefore, the balances also do not correspond to
real balances in the Lightning Network. The latencies used by
the simulator are obtained by sending ping messages to the
nodes. Sending ping messages does not produce enough load
to accidentally DoS a server or degrade its performance. The
network addresses from the nodes are public knowledge. No
messages were ever sent in the real Lightning Network.

VI. RESULTS

In this section, the results of the experiments will be
presented. First, the effectiveness of different methods of
colluding will be compared. Next, the different methods of
colluding will be compared for different payment amounts.
Last, the effectiveness of shadow routing as a mitigation
against the attack will be evaluated.

A. Effectiveness of collusion

In Figure 3a, the average number of compromised nodes
on a payment path is plotted for different numbers of total
adversaries in the network. In Figure 3b, the share of payment
paths that are compromised and the share of payment paths
where collusion is possible is plotted. In these plots, and
all subsequent plots, the error bars represent the standard
deviation. Collusion is possible when more than one node on
the payment path is compromised. With only two adversaries

in the network, it is almost impossible for adversaries to
collude. With five adversaries, the probability of more than
one compromised node on a payment path is already 15%
and for twenty adversaries this probability goes to 37%.

In Figure 4a, the precision for the different attack methods
is plotted for different numbers of adversaries in the network
when shadow routing is disabled. In Figure 4b this is done for
the recall and in Figure 4c this is done for the F1-score. In
the plots, the average for the different transaction amounts is
shown. For one or two adversaries in the network, the timing
methods all perform equally for all three measures, while the
First spy method performs a little bit worse. This can be ex-
plained by the fact that when there are one or two adversaries
in the network, there is on average only one compromised node
on the payment path. From three adversaries in the network
onward, the performance of the different methods starts to
divert. The Timing closest method has the highest precision,
recall and F1-score for all simulated numbers of adversaries.
Second is the Timing collusion method. The Timing farthest
method has the lowest precision, recall and F1-score for
ten adversaries in the network and higher. Even the simple
First spy method performs better in this case. For lower
numbers of adversaries, the Timing farthest method performs
better. This could be explained by that for lower numbers
of adversaries, there are not many compromised nodes on
the payment path and since the compromised nodes are the
most central nodes in the network, they will be close to the
destination of the payment. When there are more compromised
nodes, the farthest compromised node will be farther away
from the destination, making the attack perform worse.

In Figure 5a, the precision for the different attack methods
is plotted for different numbers of adversaries in the network
with shadow routing enabled. In Figure 5b this is done for
the recall and in Figure 5c this is done for the F1-score. In
the plots, the average for the different transaction amounts
is shown. These figures show the same correlations as when
shadow routing is disabled.

The Timing closest method achieves the highest precision,
recall and F1-score in all situations. The Timing farthest
method achieves the lowest precision, recall and F1-score of
all the timing methods in all situations. Therefore, it seems
that the closer a compromised node is to the destination, the
higher the probability that it will de-anonymize the destination
of a payment. The Timing collusion method, which takes the
average over the probabilities an adversary assigns to a node
being the destination, is not needed. It performs worse than
the Timing closest method, as it will also include probabilities
assigned to nodes estimated by adversaries far away from the
destination. In addition, the Timing closest method is easier
for adversaries to execute, as the adversaries just have to
determine which is closer to the destination by looking for
the lowest transaction value.

B. Comparison for different payment amounts

In Figure 6 the precision is plotted for the Timing closest,
Timing collusion, and Timing farthest methods with respect

10



(a) Compromised nodes (b) Collusion possible

Fig. 3: Average number of compromised nodes on payment paths and share of paths where collusion is possible for different
numbers of adversaries in the network

(a) Precision (b) Recall (c) F1-score

Fig. 4: Precision, recall and F1-score for different methods of attack without shadow routing

(a) Precision (b) Recall (c) F1-score

Fig. 5: Precision, recall and F1-score for different methods of attack with shadow routing

11



to the precision of the First spy method when shadow routing
is disabled. The precision is plotted separately for the payment
amounts of 1, 10, 100, 1000, 10000, and 100000 satoshis.

The Timing closest method has a higher precision than the
First spy method in all situations. Furthermore, the precision
of the Timing closest method does not differ much for dif-
ferent payment amounts. For the First spy method, however,
the payment amounts do have an impact on the precision.
Lower payment amounts lead to higher precision. A possible
explanation could be that when the payment amount is lower,
more channels have a sufficient capacity to route the payment
over. Therefore, the route from the transaction source to the
destination could be shorter than when the payment amount is
higher. A shorter route will make it more likely that the hop
after the adversary is the payment’s destination.

The Timing farthest method performs worse than the First
spy method when there are ten adversaries or more in the
network. Interestingly, the Timing farthest method shows the
same behaviour as the First spy method in that it has a higher
precision when the payment amount is low. This could also
be explained by that the transaction route may be longer for
higher payment amounts. On a longer route, the adversary
farthest from the destination will be farther away from the
destination than on a shorter path. This could result in a lower
precision.

The Timing collusion method has a higher precision than
the First spy method, but a slightly lower precision than
the Timing closest method. The difference in precision for
different payment amounts for the Timing collusion method
is smaller than for the Timing farthest and First spy methods.
However, there is a trend visible showing that higher payment
amounts result in lower precision. This could be explained by
the fact that the Timing collusion method averages over the
results of all the adversaries on the path, and that adversaries
farther away from the destination show such a trend.

In Figure 7 the precision is plotted for the Timing closest,
Timing collusion, and Timing farthest methods with respect
to the precision of the First spy method when shadow routing
is enabled. These plots show the same results as when shadow
routing is disabled. However, the precisions are consistently
lower.

C. Effectiveness of shadow routing

To assess the effectiveness of shadow routing on the attack,
the simulator is run with shadow routing enabled and disabled
using the Timing closest method. The Timing closest method
was the most effective method found in the previous section.
In Figure 8a, the precision of the attack is plotted with and
without shadow routing enabled. In Figure 8b this is done for
the recall and in Figure 8c this is done for the F1-score. For
all three measures, the attack works best with shadow routing
disabled for all simulated numbers of adversaries. However,
for recall, the biggest difference between the two is for ten
adversaries, where with shadow routing the recall is 0.22 and
without shadow routing, the recall is 0.25. These values differ
less than their standard deviations from each other. For the

precision, the difference is bigger, but only for three, four, and
five adversaries in the network. Therefore, it is not likely that
shadow routing has a significant impact on the performance
of the attack. However, it has an impact on the performance
of other attacks, such as done by [7].

VII. FUTURE WORK

A simple extension to this paper, is assessing the effec-
tiveness of the attack when determining the source of a
transaction when using the Timing closest, Timing collusion,
and Timing farthest methods for colluding adversaries. Only
the simulators’ channel state needs to be change to keep
track of the commit and acknowledge status per payment. It
would be interesting to see if the same conclusions hold for
determining the source of a transaction.

To find possible mitigations against the attack presented in
this paper, it would be interesting to see how effective the
attack is against other payment channel networks, such as
Raiden16. Some payment channel networks might deliver more
privacy against timing attacks, indicating that their technology
is better suited for higher levels of privacy.

Furthermore, it would be interesting to see if this attack
can be extended to work when AMHLs by Malavolta et al.
[9] are used. When AMHLs are used, messages that are sent
at different points in time for the same transaction cannot
be linked by comparing a hash in the messages. To have a
working attack, a statistical model that indicates the probability
of two messages belonging to the same transaction based on
the time between those messages needs to be constructed. It
would be interesting to see if the attack can still be effective.

Last, a possible mitigation will be to delay all messages
for a random amount of time. It would be interesting to
see how effective the attack will be against such a network.
Furthermore, it would be interesting to see what strategy of
mixing messages will be the best with regard to privacy of the
sender and receiver of a transaction.

VIII. DISCUSSION

In this paper, a few assumptions are made that make
the simulation simpler, but less like the real world. One of
these assumptions is the processing time of messages. The
processing time of a message is set to 10 ms per message.
In the real world, this value might differ. In addition, the
processing delay will not be a fixed value in the real world.
Therefore, to make the simulator more accurate, the processing
time should be a random variable of which the properties need
to be determined through experimentation.

The latency model for sending a message over a channel
is assumed to be a normal distribution. In the real world, this
might not hold. For this paper, ping measurements were taken
in batches of ten pings at once, meaning one ping command
did send ten ping messages. The ping command provides
statistics on the maximum, minimum and average round trip
time as well as the standard deviation. From this, a normal

16https://raiden.network/

12



(a) First spy (FS) and Timing closest
(TC) attack

(b) First spy (FS) and Timing collusion
(TC) attack

(c) First spy (FS) and Timing farthest
(TF) attack

Fig. 6: Precision for attacks without shadow routing for different payment amounts

(a) First spy (FS) and Timing closest
(TC) attack

(b) First spy (FS) and Timing collusion
(TC) attack

(c) First spy (FS) and Timing farthest
(TF) attack

Fig. 7: Precision for attacks with shadow routing for different payment amounts

(a) Precision (b) Recall (c) F1-score

Fig. 8: Precision, recall and F1-score of timing closest method with and without shadow routing enabled

distribution can easily be modelled. However, it is not possible
to see if a normal distribution fits the measurements. This can
be solved by doing individual measurements instead of batches
and checking what distribution the round trip time follows.

Furthermore, the round trip time of sending a ping message
will be different from sending a message of the Lightning
protocol. To be more accurate in the simulation, the round
trip time of real Lightning protocol messages needs to be
measured. Also, this round trip time may differ depending on
the size of the message. The correlation between round trip
time and message size needs to be investigated to have a more
realistic simulation. This only needs to be done for the sizes

of the messages used in the Lightning protocol.

The round trip time measurements were done only using
IPv4. However, some transactions might be sent over Tor
or over IPv6. To have more realistic simulations, a share of
the messages also needs to be sent over Tor and IPv6. The
latencies when using these protocols also need to be estimated.
While it may be hard to determine which share of transactions
is done over which protocol, some nodes will only have a
Tor or IPv6 address. In this case, we can be sure that the
transaction will be sent using that protocol.

Last, it is assumed that all nodes always respond. However,
as was observed when obtaining the latency measurements,

13



some nodes do not respond at all. The simulation will be more
realistic when some nodes do not respond. This will cause
some payments to fail and the sender to try again. Currently,
almost all payments succeed. The payments that do fail, fail
because of an insufficient balance, and these payments are
ignored in the evaluation.

IX. CONCLUSION

In this paper, we try to find the effect of colluding adver-
saries that try to de-anonymize the receiver of transactions
in the Lightning Network. The adversary is classified as an
honest-but-curious static local internal adversary. Only an on-
path adversary is considered, meaning the adversary only de-
anonymizes receivers of payments it takes part in.

Three methods for colluding are considered: Timing clos-
est, Timing farthest, and Timing collusion. These three
methods are compared to the baseline method First spy. When
there are one or two adversaries in the network, the timing
methods perform equally well in precision, recall, and F1-
score. The First spy method performs a little bit worse. When
there are one or two adversaries in the network, there will
on average only be one adversary on the payment path. This
results in the Timing closest, Timing farthest, and Timing
collusion methods doing the same thing, resulting in the same
scores.

The Timing closest method has the highest precision, recall,
and F1-score in all situations. The Timing collusion method
has the second-highest precision, recall, and F1-score in all
situations. The Timing farthest method performs better than
the First spy method when there are less than ten adversaries
in the network. When there are ten or more adversaries in
the network, the First spy method performs better than the
Timing farthest method. When there are more adversaries in
the network, there are also on average more adversaries on
the payment path. Since the adversaries are the most central
nodes in the network, when there are more adversaries on the
payment path, the adversary farthest away from the destination
can be farther away than when there are fewer adversaries
on the payment path. This indicates that the timing attack
performs better when the adversary is closer to the target.

For the First spy and Timing farthest methods, the pre-
cision is higher when the payment amount is lower. When
the payment amount is lower, more channels have sufficient
capacity to route the payment through. Therefore, the payment
routes can be shorter. A shorter payment route results in the
adversary being closer to the target. This indicates again that
the timing attack performs better when the adversary is closer
to the target.

This paper also assesses the effectiveness of shadow routing
against the timing attack. Enabling shadow routing does not
influence previous conclusions. Furthermore, the difference in
precision, recall and F1-score is not statistically significant
between when shadow routing is enabled or disabled, although
the scores are consistently lower when shadow routing is
enabled. Therefore, it seems that shadow routing is not a
sufficient mitigation against the timing attack.

REFERENCES

[1] S. V. Ward, “Why is bitcoin’s price surging?” https://www.forbes.com/
sites/digital-assets/2023/10/29/why-is-bitcoins-price-surging/, accessed:
2023-11-10.

[2] H. Yu, I. Nikolić, R. Hou, and P. Saxena, “Ohie: Blockchain scaling
made simple,” in 2020 IEEE Symposium on Security and Privacy (SP),
2020, pp. 90–105.

[3] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “{Bitcoin-
NG}: A scalable blockchain protocol,” in 13th USENIX symposium on
networked systems design and implementation (NSDI 16), 2016, pp. 45–
59.

[4] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 3–16.

[5] Visa, “Visa fact sheet a global payments technology company at a
glance,” https://usa.visa.com/dam/VCOM/global/about-visa/documents/
aboutvisafactsheet.pdf, accessed: 2023-11-10.

[6] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[7] S. P. Kumble, D. Epema, and S. Roos, “How lightning’s routing
diminishes its anonymity,” in Proceedings of the 16th International
Conference on Availability, Reliability and Security, ser. ARES 21. New
York, NY, USA: Association for Computing Machinery, 2021.

[8] E. Rohrer and F. Tschorsch, “Counting down thunder: Timing attacks
on privacy in payment channel networks,” in Proceedings of the 2nd
ACM Conference on Advances in Financial Technologies, ser. AFT ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
214–227.

[9] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous multi-hop locks for blockchain scalability and
interoperability,” Cryptology ePrint Archive, Paper 2018/472, 2018.

[10] G. Danezis and I. Goldberg, “Sphinx: A compact and provably secure
mix format,” in 2009 30th IEEE Symposium on Security and Privacy,
2009, pp. 269–282.

[11] U. Nisslmueller, K. Foerster, S. Schmid, and C. Decker, “Toward
active and passive confidentiality attacks on cryptocurrency off-chain
networks,” CoRR, vol. abs/2003.00003, 2020.

[12] U. Nisslmueller, K.-T. Foerster, S. Schmid, and C. Decker, “Inferring
sensitive information in cryptocurrency off-chain networks using probing
and timing attacks,” in Information Systems Security and Privacy,
S. Furnell, P. Mori, E. Weippl, and O. Camp, Eds. Cham: Springer
International Publishing, 2022, pp. 1–21.

[13] P. Kumar Sharma, D. Gosain, and C. Diaz, “On the anonymity of peer-
to-peer network anonymity schemes used by cryptocurrencies,” in The
Network and Distributed System Security Symposium. Internet Society,
2023.

[14] G. Kappos, H. Yousaf, A. Piotrowska, S. Kanjalkar, S. Delgado-Segura,
A. Miller, and S. Meiklejohn, “An empirical analysis of privacy in
the lightning network,” in Financial Cryptography and Data Security,
N. Borisov and C. Diaz, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2021, pp. 167–186.

[15] S. Tikhomirov, P. Moreno-Sanchez, and M. Maffei, “A quantitative
analysis of security, anonymity and scalability for the lightning network,”
in 2020 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), 2020, pp. 387–396.

[16] J. Herrera-Joancomartı́, G. Navarro-Arribas, A. Ranchal-Pedrosa,
C. Pérez-Solà, and J. Garcia-Alfaro, “On the difficulty of hiding the
balance of lightning network channels,” in Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security, ser. Asia
CCS ’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 602–612.

[17] S. Tikhomirov, R. Pickhardt, A. Biryukov, and M. Nowostawski,
“Probing channel balances in the lightning network,” CoRR, vol.
abs/2004.00333, 2020.

[18] A. Biryukov, G. Naumenko, and S. Tikhomirov, “Analysis and probing
of parallel channels in the lightning network,” in Financial Cryptography
and Data Security, I. Eyal and J. Garay, Eds. Cham: Springer
International Publishing, 2022, pp. 337–357.

[19] C. Decker, “Lightning network research; topology datasets,” https:
//github.com/lnresearch/topology#dataset-2022-08-23, accessed: 2023-
10-25.

14

https://www.forbes.com/sites/digital-assets/2023/10/29/why-is-bitcoins-price-surging/
https://www.forbes.com/sites/digital-assets/2023/10/29/why-is-bitcoins-price-surging/
https://usa.visa.com/dam/VCOM/global/about-visa/documents/aboutvisafactsheet.pdf
https://usa.visa.com/dam/VCOM/global/about-visa/documents/aboutvisafactsheet.pdf
https://github.com/lnresearch/topology#dataset-2022-08-23
https://github.com/lnresearch/topology#dataset-2022-08-23

	Introduction
	Background
	Payment channels
	Payment channel networks
	Routing

	Related work
	Adversarial model
	Method
	Finding payment receiver
	Type of attacks
	Simulator
	Data collection
	Metrics
	Simulations setup
	Ethical consideration

	Results
	Effectiveness of collusion
	Comparison for different payment amounts
	Effectiveness of shadow routing

	Future work
	Discussion
	Conclusion
	References

