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Abstract

A key practice in the development of unconventional hydrocarbon resources is to monitor
hydraulic fracturing operations and analyze in detail the induced microseismicity, for under-
standing the extent of the volume affected by the fractures. Even though microseismic data
are one of the few geophysical measurements that can be used for this purpose they are not
always used at their full potential: the common analyses are limited to the interpretation of
the locations of the induced seismic events in terms of fractured volume, while the propagation
and the dynamic evolution of the microseismic events that are directly related to the source
process are not studied. The source moment tensor can be used to describe the deformation
mechanism occurring at the seismic source and the corresponding geomechanical parameters,
which are relevant aspects for the monitoring of hydraulic fracturing operations. Its value
can be estimated through an inversion process using the P-wave and S-wave waveforms from
the observations at the seismic receivers. However, the limited aperture of the receiver arrays
in borehole acquisition is inadequate to solve the inverse problem.

The goal of this thesis project is study the feasibility of estimating the source moment tensor
with borehole microseismic data making use of machine learning algorithms. The task is
done by implementing a forward model to compute waveforms generated by known values of
the source moment tensor in a borehole acquisition geometry (forward problem). Forward
modeling was carried out using a modified version of the discrete wavenumber method. After-
wards, this data is used to train a neural network to estimate the moment tensor at the source
given the microseismic data (inverse problem). The neural network was designed, adapting
an existing architecture used in previous studies to solve similar inverse problems. The im-
plementation was done entirely in the Python programming language, using the Tensorflow
library for the machine learning parts. The network was trained with the dataset generated
in the forward model until reaching an optimal mean squared error minimum. Finally, the
capability of the network to invert microseismic measurements and retrieve acceptable values
of the source moment-tensor components was tested using synthetic data, resulting in an
average prediction accuracy of 0.997. Our results indicate that for this case, a neural network
is able to satisfactory invert for the full moment-tensor components. Additionally, the neu-
ral network was also trained to handle the presence of Gaussian noise, achieving an average
prediction accuracy of 0.990 for tested synthetic data with 10% Gaussian noise.
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Chapter 1

Introduction

1-1 Microseismic monitoring of unconventional reservoirs

Unconventional reservoirs in the present time contribute to an important amount of the hydro-
carbon production worldwide. The U.S. Energy Information Administration (EIA) estimates
that in 2019, about 2.81 billion barrels (or 7.7 million barrels per day) of crude oil were pro-
duced directly from tight oil resources in the United States. This represents about 63% of
total U.S. crude oil production in 2019. Hydrocarbon production in the U.S. has increased
significantly during the past 10 years, driven mainly by production from tight rock formations
developed using horizontal drilling and hydraulic fracturing to extract hydrocarbons (E.I.A.
(2020)).

Unconventional resources reside in tight formations, where the low reservoir quality obstructs
hydrocarbon extraction (Ma and Holditch (2016)). Therefore, most unconventional reservoirs
must be stimulated by hydraulic injection, creating fractures that serve as permeable channels
to move the fluids out of the reservoir. Hydraulic fracturing operations control the production
of the reservoir and a clear understanding of the fractures generated and their effect on the
reservoir is necessary (Warpinski (2009)).

Microseismic monitoring is an exceptional technique used to evaluate hydrofracturing opera-
tions in a reservoir (Ma and Holditch (2016); Baig and Urbancic (2010); Warpinski (2009)).
This tool is mostly used in hydrofracture mapping, but it has been applied recently in moni-
toring CO2 injections (Verdon (2011); Verdon et al. (2011)), geothermal reservoir stimulation
(Häring et al. (2008)), reservoir surveillance (McGillivray (2005); Maxwell et al. (2010); Clark-
son and Beierle (2011)) and mining (Urbancic and Trifu (2000)).

Microseismic events are very small-scale earthquakes (magnitude less than zero in a logarith-
mic scale (Young and Baker (2001))), which can be generated as a result of human activities
or industrial processes such as mining, hydraulic fracturing, enhanced oil recovery, geothermal
operations or underground gas storage (van der Baan et al. (2013)). The magnitudes of these
events are usually not properly detected by surface geophones, so it is common to place the
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2 Introduction

geophones in adjacent boreholes (Verdon (2011)). The goal of microseismic monitoring is to
detect, locate and characterize microseismic events that illuminate the fracture networks.

Rapid turnaround in microseismic monitoring of hydraulic fracturing operations is a high pri-
ority in the industry. Reducing microseismic processing and delivering analysis results in near
realtime is very important for decision making during completion operations. Therefore, fast
and robust techniques are necessary for rapid microseismic data evaluation (Verdon (2011);
van der Baan et al. (2013)).

The characterization of microseismic events provides information about the source defor-
mation mechanisms. The concept of the seismic moment tensor can be used to describe
microseismic point sources in general terms as a set of force couples (van der Baan et al.
(2013)). Thus, the moment tensor can be used as a mathematical representation of a certain
microseismic event.

1-2 Seismic moment-tensor inversion

The goal of seismic moment-tensor inversion is to identify the source mechanisms of the seismic
event from measurements. Inversion techniques to estimate moment tensors from seismic
recordings are well developed in earthquake seismology, and have been used in microseismic
monitoring applications since the last decade (Baig and Urbancic (2010)).

The moment-tensor inversion is used to retrieve the estimation of the moment-tensor com-
ponents and the fault plane solution. Understanding the source mechanisms of microseismic
observations can lead to a reduction in the uncertainty of fracture type, propagation, and
connectivity of a hydraulic fracture operation (Eyre and Baan (2017)).

There are numerous methods to perform the moment-tensor inversion. The inversion can
be done in the time or frequency domain (Jost and Herrmann (1989)) and different types
of measurements can be used as data (Pugh et al. (2016)). General methods to perform
moment-tensor inversion are described in the following sections.

1-2-1 Deterministic inversion

A conventional approach in geophysical data analysis is to construct different geological mod-
els and compare synthetic geophysical data computed for these models with the observed
data (Zhdanov (2015)). Therefore, we define a theoretical relationship between the geo-
physical data and a geological physical system (Tarantola and Valette (1982)). Modelling
geophysical data for a certain model is called the forward problem.

The purpose of acquiring geophysical measurements is to determine geological information
from the data. This is not an easy task considering the complexity of the Earth’s interior.
Therefore, it is common to approximate real geology to a more simple model and try to
determine the model parameters from the geophysical data. This is called the inverse problem.

For a forward problem the values of the model parameters are assumed known and the values
of some observable quantities (data) are unknowns. For an inverse problem the data resulted
of some measurements are known, and the unknowns are the values of the model parameters.

August 7, 2020



1-2 Seismic moment-tensor inversion 3

To solve an inverse problem it is important to determine if the mathematical setting of
a problem is well-posed or ill-posed (Denisov (1999)). Well-posedness of a mathematical
problem was first formulated by Hadamard (1902), where he stated that a problem was well-
posed if:

• The solution of the problem exists.

• The solution of the problem is unique.

• The solution is stable.

If at least of one the conditions fails the problem is considered ill-posed. Most of the problems
in geophysics are ill-posed but they are mathematically and physically meaningful, and can
be solved (Zhdanov (2015)).

The inverse problem in geophysical cases are generally non-linear (Denisov (1999)), meaning
that the function linking the model parameters to the data is non-linear. To solve this, in
practice, the inverse problem is often linearised and the final non-linear solution is obtained
through the iterative application of linearised solvers.

The linearisation requires an initial model to be applied. The variation of the data with
respect to the synthetic measurements calculated from the initial model, can be expressed
by the multiplication of the variation of the estimated model from the initial model, with
a Jacobian matrix, containing the first-order partial derivatives of the function linking the
model to the data. A linearised inversion can be therefore obtained by inverting the Jacobian
matrix and applying it to the variation of the data to obtain the variation of the model.

In our specific problem the model parameters are the moment tensor components and the
data are the seismic observations, while the Jacobian matrix corresponds to the derivatives
of the Green’s functions, which is the operator linking the model to the data (Mustać and
Tkalčić (2015), Vackář et al. (2017)).

More details about the deterministic inversion approach will be given in the next chapter.

1-2-2 Stochastic inversion

The solution of an inverse problem aims to find the best fitting model parameters explaining
the observed data. In the case of the stochastic inversion, the probability of obtaining a certain
set of measurements can be evaluated for possible values of the unknown model parameters.
The result of this analysis is a probability density distribution function (PDF) that describes
the likelihood of observing the data for a particular value of the model (Tarantola (2004)).

In a Bayesian approach the model parameters are treated as random variables, meaning that
we can sample an ensemble of models instead of looking for the one that provides the best-
fitting solution (Mustać and Tkalčić (2015)). In this framework the inversion method aims to
obtain the probability of the model given a set of observations, called posterior PDF, which
can be evaluated using the Bayes’ Theorem (Bayes and Price (1763)).

In the moment tensor inversion case, the posterior PDF of an ensemble of moment tensors,
given a set observed seismograms can be calculated as a multiplication of the likelihood of
the seismograms for a particular moment tensor with a prior moment tensor PDF.
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4 Introduction

Many previous studies successfully use stochastic inversion to infer the moment tensor from
seismic data, such as: Pugh et al. (2016), Mustać and Tkalčić (2015), Vackář et al. (2017)
and Käufl et al. (2015).

1-2-3 Prediction through Artificial Neural Networks

A brief introduction on artificial neural networks (ANNs) is given in appendix A.

ANNs can be trained using a set of synthetic microseismic events with known moment tensors
in a supervised learning manner (Binder (2018)). The primary advantage of the neural net-
work approach for moment tensor inversion is that expensive forward modelling operations
are only done at the beginning to generate the training dataset. Subsequently, the trained
neural network can predict moment tensors on new events, making this approach attractive
for evaluating large datasets of microseismic events or in real-time applications. It is also
common to include prior information on model uncertainties, for example in the velocity
model or source mechanisms, by sampling from the prior distribution when generating the
training dataset.

Previous evaluations using artificial neural networks in moment tensor inversion indicate that
main factors that can affect the network performance is the level of the noise in the data
and the accuracy of the velocity model (Binder (2018), Maity et al. (2014), Ovcharenko
et al. (2018)). However, many authors claim that ANNs are adaptive and noise tolerant
when properly trained with noisy data and therefore can generate effective models which can
provide robust results with respect to outliers and observational noise (Maity et al. (2014)).

1-3 Thesis objectives

The methods discussed previously can all been used to perform moment tensor inversion.
These approaches have advantages and disadvantages that must be considered when choosing
the most appropriate for a specific solution.

In the case of estimating the moment tensor from borehole microseismic measurements there
are several factors to consider:

1. Borehole microseismic measurements are usually acquired using small-aperture geome-
tries, making the inversion problem ill-posed (Grechka et al. (2016), Song and Toksoez
(2011)). Vavrycuk (2007) states that for single-well measurements, only up to 5 of all 6
moment tensor components could be resolved.

2. In the deterministic and stochastic inversion approach, the Green’s functions for each
moment tensor component must be evaluated (Binder (2018)). Evaluation of the Green’s
functions can be computationally expensive for inhomogeneous velocity models and may
require a 3D finite difference solution of the wave equation. This results in a challenge
for real-time moment tensor inversion.

3. Uncertainty regarding the velocity model affects largely the results of deterministic
moment tensor inversion. In the case of the stochastic moment tensor inversion the
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1-3 Thesis objectives 5

uncertainty can be included in the prior model information (Pugh et al. (2016), Maity
et al. (2014), Song and Toksoez (2011)).

4. According to several authors (Binder (2018), Pugh et al. (2016) and Ovcharenko et al.
(2018)), noise can have a major negative influence on the accuracy of the moment tensor
inversion on both deterministic and stochastic inversion.

Using ANNs in moment-tensor inversion provides advantages when considering these four
factors. Data-driven machine learning techniques, such as ANNs, are able to generate effec-
tive models for solving complex and ill-posed problems (Maity et al. (2014), Binder (2018)).
Additionally, ANNs do not require the estimation of the Green’s functions and/or the ve-
locity model during the prediction phase, making them practically inexpensive and ideal for
real-time applications, even with large datasets. The bulk of the computational efforts is only
carried out once, during the training phase of the network. Finally, it has been stated by
numerous authors that ANNs can yield acceptable results even with data contaminated with
high levels of noise when properly trained (Mira and Sanchez-Andres (1999)).

Ovcharenko et al. (2018) studied the use of ANNs while performing moment-tensor inversion
for a vertical borehole array of receivers and using peak amplitudes and polarization of P
and S wave measurements in a homogeneous velocity model. In this study the authors found
a neural network architecture successfully predicting the moment tensor components from
noisy data.

In this thesis we extend Ovcharenko’s study by evaluating a case of combining vertical and
horizontal arrays of borehole receivers and by considering full wavefield measurements under
the assumption of 1D layered velocity model. The main objective is to use an ANN to predict
the moment tensor associated to a microseismic event from the seismic data acquired through
an array of receivers in the borehole (inverse problem). The ANN is trained with synthetic
data generated by modeling (forward problem). The inversion technique is tested on synthetic
data corrupted by Gaussian random noise.

Chapter 2 will introduce the concept of the moment tensor, its decomposition as well as
commonly used inversion methods. The forward problem and the generation of the synthetic
dataset are described in Chapter 3, while the training and prediction of the ANN, and the
analysis of the inversion results is reported in Chapter 4. In Chapter 5 some conclusions and
possible future developments are discussed.
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Chapter 2

Seismic moment tensor

The application of physical forces at the location of a seismic event, due to the movement
of a fault, volume collapse or increase, produces rotational effects on the ground that can be
mathematically described by the seismic moment tensor. This tensor can be seen as a first
order approximation of the rotational effects induced by the equivalent forces, representing
the physical seismic forces (Jost and Herrmann (1989)). The concept of moment tensor was
introduced by Gilbert (1971) for calculating displacements at the surface as the sum of the
products of the moment-tensor elements with the corresponding Green’s functions (Aki and
Richards (2002)).

2-1 Derivation of the moment tensor

Let’s consider a local geographic coordinate system, centered at a seismic event location, with
positive X-axis being north, positive Y -axis eastward, and positive Z-axis downward (NED).
The NED coordinate system can be used to derive relations between the angles of a ruptured
fault (strike angle, φ, dip angle, ϕ, and rake angle, ψ) and the dislocation directions on the
rupture plane (normal n and slip s), as shown in Figure 2-1.

Using Aki and Richards (2002) representation theorem for the seismic source we can define the
ith component (i = 1, 2, 3, corresponding to P , SH and SV propagation modes, respectively)
of the displacement ui = ui(x, t) at the position x (of coordinates x, y and z) and at the time
t as the superposition of the equivalent body force densities fk multiplied by the Green’s
functions Gik, in the k direction (k = 1, 2, 3, corresponding to x, y and z, respectively):

ui(x, t) =

∫ ∞
−∞

∫
V
fk(ξ, τ)Gik(x, t; ξ, τ)dτdV (ξ) (2-1)

where the Green’s tensor Gik = Gik(x, t; ξ, τ) describes the propagation effects of the waves
along a path from the source to a receiver, between the source position ξ = (ξx, ξy, ξz) at the
time τ and the position x at the time t . The vector fk = fk(ξ, τ) represents the density of
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8 Seismic moment tensor

Figure 2-1: Coordinate system centered at the microseismic event location ξ (modified after
Aki and Richards (2002)). Strike φ is measured clockwise from north, dip ϕ from
horizontal down, and rake ψ counterclockwise from horizontal. Vectors s and n are
the slip and fault normal directions, respectively

the body forces acting at the source. The integration is performed over focal volume V and
time t. Equation (2-1) defines the solution of the motion for a single point force.

Actually, the body forces related to a seismic source are not distributed in a volume but along
a fault (Vavryčuk (2015)). Moreover, the seismic source is not described by single forces but
by dipole forces. The dipole forces cause the two blocks at opposite sides of the fault plane
to mutually move.

The moment tensor density components mkl = mkl(ξ, τ) represent the dipole forces that
define the motion at opposite sides of a fault along its plane Σ; the subscript l = 1, 2, 3,
corresponds to the coordinate axis x, y and z. From Aki and Richards (2002) we can define
the moment tensor density components mkl from the fault vector components as expressed
by:

mkl = cklpqspnq (2-2)

where the vector s = (sx, sy, sz) represents the unit vector in the slip direction and n =
(nx, ny, nz) the unit vector normal to the fault direction, the tensor cklpq corresponds to the
stiffness tensor containing the elastic parameters of the medium surrounding the fault, and
the subscripts p = 1, 2, 3 and q = 1, 2, 3 also correspond to the coordinate axis x, y and z.

Assuming an isotropic body, Jeffreys and Jeffreys (1972) define the stiffness tensor as:

cklpq = λδklδpq + µ(δkpδlq + δlpδkq) (2-3)

where δij represents the Kronecker delta:
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2-1 Derivation of the moment tensor 9

δij =

{
0 if i 6= j

1 if i = j
(2-4)

Combining (2-2) and (2-3) we can express the moment density component for a force couple
in an isotropic body, according to Aki and Richards (2002) as:

mkl = λnpspδkl + µ(nksl + sknl) (2-5)

where λ and µ are the Lame’s constants of the medium. Substituting in (2-1) the single force
fk with the moment tensor density components mkl of a fault displacement (defined in 2-5)
we obtain (Aki and Richards (2002)):

ui(x, t) =

∫ ∞
−∞

∫
Σ
mkl(ξ, τ)

∂

∂ξl
Gik(x, t; ξ, τ)dτdΣ(ξ) (2-6)

where ξl represents the displacement in the l direction. Furthermore, if the size of the fault
plane is small compared to the distance between source and receiver, (2-6) can be simplified
into:

ui(x, t) =

∫ ∞
−∞

Mkl(τ)
∂

∂ξl
Gik(x, t; ξ, τ)dτ = Mkl(t) ∗Gikl(x, t) (2-7)

where the symbol ”∗” represents the convolution operation, Gikl is the tensor of spatial
derivatives of the Green’s functions along the lth component for the ith displacement produced
by a force couple Mkl defined by:

Mkl =

∫
Σ
mkl(ξ, τ)dΣ(ξ) (2-8)

The moment tensor M can be represented by a 3 × 3 matrix whose elements describe the
nine couples of equivalent dipole forces required to define a point source (Aki and Richards
(2002)):

M =

Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz

 (2-9)

These nine generalized couples refer to pairs of vectors that act on points in space (see Figure
2-2). The diagonal elements represent linear vector dipoles, the off diagonal elements represent
the force couples with moment (Jost and Herrmann (1989)). The moment tensor is symmetric
due to the conservation of angular momentum: with no external force to act upon the system
at a point in time, the original angular momentum of the system is conserved (Vavryčuk
(2015)). Therefore, M is losing rank (rank = 2) and has only six independent components.

August 7, 2020



10 Seismic moment tensor

Figure 2-2: Force couples description of a moment tensor following Aki and Richards (2002).

2-2 Decomposition of the moment tensor

The equivalent forces that describe the source mechanism can be determined from an analysis
of the eigenvalues and eigenvectors of the moment tensor. The method to decompose the
moment tensor is based on the one proposed by Jost and Herrmann (1989).

The moment tensor can be represented as the sum of an isotropic part (the identity matrix
multiplied for a scalar value) and a deviatoric part. In order to derive a general formulation of
the moment-tensor decomposition, let’s consider its eigenvalues and orthonormal eigenvectors.

From Jost and Herrmann (1989), the moment tensor is first decomposed in the principal axes
system as:

M =

a1x a2x a3x

a1y a2y a3y

a1z a2z a3z


m1 0 0

0 m2 0
0 0 m3


a1x a1y a1z

a2x a2y a2z

a3x a3y a3z

 (2-10)

where ai represent the eigenvector associated with the eigenvalue mi. The eigenvectors a1 =
(a1x, a1y, a1z), a2 = (a2x, a2y, a2z) and a3 = (a3x, a3y, a3z) define the tension (T), intermediate
or neutral (N), and pressure (P) axes, respectively.

The result of the decomposition in (2-10) is that a new orthogonal coordinate system, given
by the eigenvectors, has been defined. In this new coordinate system, the source is described
by a linear combination of the orthogonal dipole sources, where Md, the diagonalized moment
tensor is:
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2-2 Decomposition of the moment tensor 11

Md =

m1 0 0
0 m2 0
0 0 m3

 (2-11)

The diagonalized moment tensor Md can also be expressed as:

Md =
1

3

tr(M) 0 0
0 tr(M) 0
0 0 tr(M)

 +

m∗1 0 0
0 m∗2 0
0 0 m∗3

 (2-12)

where tr(M) is the trace of the moment tensor; the first term on the right hand side describes
the isotropic part, the second term contains the purely deviatoric eigenvalues m∗i , defined as:

m∗i = mi −
1

3
tr(M) (2-13)

Using (2-12) the moment tensor M can now be expressed using the eigenvectors and purely
deviatoric eigenvalues as:

M =
1

3
tr(M)I + (m∗1a1a1

T +m∗2a2a2
T +m∗3a3a3

T) = MISO + MDEV (2-14)

where MISO = 1
3 tr(M)I represents the isotropic part and MDEV = m∗1a1a1

T + m∗2a2a2
T +

m∗3a3a3
T the deviatoric part. This decomposition is unique. MDEV often has no direct geo-

logical meaning and M is therefore further decomposed into different geologically meaningful
sources (Vavryčuk (2015)) as:

M = MISO + MDC + MCLV D (2-15)

where MDC represents the double-couple portion and MCLV D represents the compensated
linear vector dipole portion.

The isotropic portion (MISO) of the moment tensor represents a uniform volume change. Only
P-waves radiate from a purely isotropic source. A positive isotropic component corresponds
to an expansion/explosion. A negative component corresponds to a contraction/implosion
(Vavryčuk (2015)).

The double couple portion (MDC) represents the force equivalent of shear faulting on a planar
fault. It is referred as a double couple because there are two force couples and two conjugate
fault plane orientations that equally explain the displacement (Jost and Herrmann (1989)).

The compensated linear vector dipole portion (MCLV D) represents a normal dislocation on a
plane. The normal displacement from one linear vector dipole is ”compensated” by opposing
displacement from the other two linear vector dipoles so there is no net volume change (Jost
and Herrmann (1989)).

August 7, 2020



12 Seismic moment tensor

Non-double couple mechanisms (isotropic and compensated linear vector dipole) have been
associated with nuclear explosions, volcanic events, geothermal regions and induced seismic-
ity, including hydraulic fracturing (Vavryčuk (2015)). These non-double couple mechanisms
explain processes such as fracture collapse or fracture opening, possibly associated with fluid
movement.

(2-15) can be further decomposed into:

M = MISOEISO +MDCEDC +MCLV DECLV D (2-16)

where EISO, EDC and ECLV D are elementary base tensors, and MISO, MDC and MCLV D

are moment magnitudes. The values MISO, MDC and MCLV D can be further normalized and
expressed using scalar seismic moment M and relative scale factors CISO, CDC and CCLV D
as:

 CISO
CDC
CCLV D

 =
1

M

 MISO

MDC

MCLV D

 (2-17)

where M = |MISO| +|MDC | +|MCLV D| . The scale factors CISO, CDC and CCLV D satisfy:

|CISO|+ CDC +|CCLV D| = 1 (2-18)

where CDC is always positive and ranges from 0 to 1. Values for CISO and CCLV D range from
−1 to 1. This method for the decomposition of the moment tensor allows us to physically
interpret the set of nine dipole forces representing a general point seismic source and to
identify basic behaviours of the source in isotropic media (Jost and Herrmann (1989)).

In the following section are summarized basic rules to identify the source mechanisms in
isotropic media according to Vavryčuk (2015):

• An explosion/implosion is an isotropic source, it is characterized by CISO = ±1 and
by zero CCLV D and CDC . If CISO is positive, the isotropic component is due to an
explosion. The source is implosive if the value is negative.

• Shear faulting (displacement of blocks along the fault plane) is represented by the
double-couple force and characterized by CDC = 1 and by zero CISO and CCLV D.

• Pure tensile or compressive faulting (displacement of blocks normal to the fault plane) is
free of shearing and thus characterized by zero CDC . However, the non-DC components
contain both ISO and CLVD. The ISO and CLVD components are of the same sign:
they are positive for tensile faulting and negative for compressive faulting.

• Shear-tensile source, which combines both shear and tensile faulting is characterized by
nonzero ISO, CLVD, and DC components. The positive values of CISO and CCLV D
correspond to fault opening tensile mechanisms. The negative values of CISO and
CCLV D correspond to fault closing compressive mechanisms.
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2-3 Deterministic inversion 13

• Shear faulting on a non planar fault is characterized generally by a nonzero CDC and
CCLV D. The CISO is zero, because no volumetric changes are associated with this type
of source.

2-3 Deterministic inversion

As mentioned in section 1-2-1 deterministic inversion is a widely used approach to derive the
moment tensor values from microseismic measurements.

A general formulation for a forward modeling problem can be given by:

d = g(m) (2-19)

where d represents the data, m the model parameters (physical quantities we want to retrieve)
and the operator g represents the physical relations between model and data. If the problem is
linear, then the right hand side of (2-19) can be expressed as the matrix-vector multiplication
of a Jacobian matrix G with the vector m.

In the case of moment tensor inversion, the data values d correspond to the seismic mea-
surements u, the moment tensor components are expressed as m and the matrix operator G
contains the spatial derivatives of the earth’s impulse response (Green’s functions) (Vavryčuk
(2015)). This system of equations can be derived through the approach explained in the
following paragraphs.

The forward problem general formulation can be stated for our specific case starting from the
definition of the displacements according to a seismic moment tensor explained in section 2-1.
Let’s consider (2-7), that can be further simplified into (2-20) (from Koch (1991)):

ui(x, t) = Gikl(x, t) ∗Mkl(t) = Gin(x, t) ∗mn(t) (2-20)

where the six independent components Mxx, Mxy, Mxz, Myy, Myz, Mzz can be rearranged
into the vector mn(t) of values m1, m2, m3, m4, m5, m6. According to Sipkin (1982) and Aki
and Richards (2002), for a far-field approximation the six spatial derivatives of the Green’s
functions Gin(x, t) can be calculated as linear combinations of functions called ”elementary
seismograms” (elementary seismograms are further explained in Chapter 3).

Then, (2-20) can be described by a linear system of equations in matrix form as (Vavrycuk
(2015)):

u = Gm (2-21)

in which G is the K×6 matrix of the spatial derivatives of Green’s functions for K receivers:

G =


G11 G12 G13 G14 G15 G16

G21 G22 G23 G24 G25 G26

· · · · · · · · · · · · · · · · · ·
GK1 GK2 GK3 GK4 GK5 GK6

 , (2-22)
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14 Seismic moment tensor

m is the vector composed of the six independent components of the moment tensor M:

m =
[
m1 m2 m3 m4 m5 m6

]T
, (2-23)

and u is the vector of the full waveform measurements (seismograms) observed at the K
receivers:

u =
[
u1
x u1

y u1
z u2

x u2
y u2

z · · · uKx uKy uKz

]T
, (2-24)

where the subscript indicates the field component and the superscript indicates the receiver.
The deterministic inversion of the moment tensor can be performed by inverting (2-21) in the
time domain or in the frequency domain.

Frequency-domain moment-tensor inversion

From (Vavrycuk (2015)), we can write (2-20) in the frequency domain ω and obtain:

u′i(x, ω) = G′in(x, ω) m′n(ω) (2-25)

where u′i(x, ω), G′in(x, ω) and m′n(ω) are the Fourier transformations of measurements, spatial
derivatives of Green’s functions and moment tensor components, respectively. The previous
expression can be written in matrix form as:

u′ = G′m′ (2-26)

where the matrix of spatial derivatives of Green’s functions, G′, the vector of the moment
tensor, m′, and the measurements, u′, are all expressed in the frequency domain. The equation
corresponds to a linear system that can be solved for the estimated moment tensor m̂′, by
calculating G′p, the pseudoinverse of G′, and by applying:

m̂′ = G′pu′ (2-27)

The time-domain components of the moment tensor are then computed by applying an inverse
Fourier transform of the solution m̂′ to obtain the solution m̂.

Time-domain moment-tensor inversion

Time-domain moment-tensor inversion can be performed using the approximation of the
spatial derivatives of the Green’s functions as elementary seismograms Gin(x, t) (Vavrycuk
(2015)). For a point source, the time dependent moment tensor can be factorized as:

mn(t) = mn S(t) (2-28)
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2-3 Deterministic inversion 15

where S(t) is the source-time function, with the assumption that the focal mechanism is
independent of time. Given a known source function S(t), and factorizing as in (2-28), we
define now a function Sin(x, t) as:

Sin(x, t) = S(t) ∗Gin(x, t) (2-29)

We can rewrite (2-20) as:

ui(x, t) = [S(t) ∗Gin(x, t)]mn = Sin(x, t) mn (2-30)

(2-30) can be further expressed in matrix form as:

u = Sm (2-31)

where S contains the matrix of the convolution of the spatial derivatives of the Green’s
functions with the source function, m contains the moment tensor components and u contains
the measurements, all expressed in the time domain. Finally, the estimated seismic moment
tensor m̂ is obtained by inverting the previous equation as:

m̂ = Spu (2-32)

where Sp is the pseudoinverse of the matrix S.
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Chapter 3

Forward modeling problem

In this chapter the problem of calculating seismograms from a given moment tensor (forward
problem) is analyzed and solved by means of the Discrete WaveNumber (DWN) method as
described by (Bouchon and Aki (1977)). The forward modeling operation corresponds to the
solution of the equation:

u = Gm (2-21)

where the different components are explained in (2-21-2-24). The fault rupture geometry
(strike, dip, rake), the moment magnitude, the source-receiver geometry and the geophysical
properties of the propagation model (velocity and density) are used to define the moment
tensor m and the spatial derivatives of the Green’s functions G, necessary for the calculation
of the seismograms u.

The matrix G of the spatial derivatives of the Green’s functions can be calculated using
the DWN method. These calculations are performed in the frequency-wavenumber domain
(Bouchon and Aki (1977)). This approach assumes that the radiation from a source can be
represented as a cylindrical wave and it introduces a spatial periodicity of the sources to
discretize the radiated wavefield (Bouchon (2003)).

3-1 Discrete WaveNumber method

According to Bouchon and Aki (1977) the seismic wavefield radiated by an isotropic point
source in a homogeneous space can be expressed in the cylindrical coordinates system (r, z),
r being the radius and z the depth, by the potential Φ, using the Sommerfeld integral as:

Φ(r, z;ω) =
iVs(ω)

4π

∫ ∞
0

k

ν
J0(kr)e−iν|z|dk (3-1)
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18 Forward modeling problem

Figure 3-1: Physical interpretation of the DWN method. The original source is replaced by a
finite number of sources distributed horizontally with spatial interval L (Bouchon
(2003)).

where Vs(ω) is the volume change at the source, ω is the angular frequency, t is time, ν =√
ω2

α2 − k2 is the vertical wavenumber, Im(ν) < 0, α is the compressional wave velocity, k is

the horizontal wavenumber and J0 denotes the zeroth order Bessel function. The origin of
the coordinate system is located at the source position.

(3-1) can be discretized (DWN method) as:

Φ(r, z;ω) =
iVs(ω)

2

N∑
n=0

kn
νn
J0(knr)e

−iνn|z| (3-2)

with kn = 2π
L n. This can be physically interpreted as a substitution of the original source

radiating in all the directions with a set of N sources radiating planar waves and distributed
horizontally with spatial interval L (see Figure 3-1) (Bouchon (2003)). N is properly chosen
to minimize the discretization error to a negligible value.

The point source can be expressed as a force of Cartesian components F = (Fx, Fy, Fz).
The corresponding discretized P, SV and SH wave potentials (Φ,Ψ, χ) for this force can be
calculated in the cylindrical coordinate system (r, θ, z) as (Bouchon (2003)):

Φ(r, θ, z;ω) =
1

2Lρω2

[
sgn(z)Fz

N∑
n=0

knJ0(knr)e
−iνn|z|

− i(Fxcosθ + Fysinθ)
N∑
n=0

k2
n

νn
J1(knr)e

−iνn|z|

]
(3-3)

Ψ(r, θ, z;ω) =
1

2Lρω2

[
− iFz

N∑
n=0

kn
γn
J0(knr)e

−iγn|z|

+ sgn(z)(Fzcosθ − Fysinθ)
N∑
n=0

J1(knr)e
−iγn|z|

]
(3-4)
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3-2 Modified Discrete WaveNumber method for full-moment sources 19

χ(r, θ, z;ω) = i
Fycosθ − Fxsinθ

2Lρβ2

N∑
n=0

1

γn
J1(knr)e

−iγn|z| (3-5)

with

γn =

√
ω2

β2
− k2

n, Im(γn) < 0 (3-6)

and

sgn(z) = 1 for z > 0, sgn(z) = −1 for z < 0 (3-7)

where ρ and β are the model density and shear-wave velocity, and J1 is the Bessel function
of the first order.

Finally, the spatial derivatives of the Green’s functions G are obtained using the Helmholtz
potentials decomposition theorem (Aki and Richards (2002)) expressed in cylindrical coordi-
nates (Cotton and Coutant (1996)):

G(r, θ, z) = ∇Φ +∇× (ezΨ) +∇×∇× (ezχ) (3-8)

where ez is the vertical unit vector.

3-2 Modified Discrete WaveNumber method for full-moment
sources

In practice, the source is not a point and the previous equations must be modified to take
into account the effects of a more complex general source (full-moment source). The elastic
radiation of such a general source can be obtained by the superposition of elementary point
sources (Aki and Richards (2002)). This approach leads to a slightly modified version of the
DWN method as described in Cotton and Coutant (1996).

This method calculates the spatial derivatives of the Green’s functions (G) for six independent
moment tensor sources (five double couples (DC) and one isotropic (ISO)) in a homogeneous
source layer, expressed as:

M1 =

0 1 0
1 0 0
0 0 0

 M2 =

0 0 1
0 0 0
1 0 0


M3 =

0 0 0
0 0 −1
0 −1 0

 M4 =

−1 0 0
0 0 0
0 0 1


M5 =

0 0 0
0 −1 0
0 0 1

 M6 =

1 0 0
0 1 0
0 0 1


(3-9)
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The full moment tensor is simply a linear combination of the six elementary moment tensors
multiplied by trigonometric coefficients an (n = 1, 2, ..., 6):

M =
6∑

n=1

anM
n =

−a4 + a6 a1 a2

a1 −a5 + a6 −a3

a2 −a3 a4 + a5 + a6

 (3-10)

Since we assume that all elementary moment tensors Mn have no time dependence, these can
be convolved with the corresponding Green’s functions spatial derivatives, now expressed in
a Cartesian coordinates system, to generate six elementary seismograms Eni (x, t) :

Eni (x, t) =
∑
k,l

Gikl(x, t) ∗Mn
kl (3-11)

Finally, we can compute the full seismograms as a linear combination of the six elementary
seismograms with the same coefficients an, convolved with the known source function S(t),
as:

ui(x, t) =

 6∑
n=1

Eni (x, t)an

 ∗ S(t) (3-12)

The previous expression in frequency domain takes the form:

ui(x, ω) =

 6∑
n=0

Eni (x, ω)an

S(ω) (3-13)

The coefficients an are derived by the general moment tensor Mkl defined in (2-8) as (Cotton
and Coutant (1996)):

a1 = Mxy

a2 = Mxz

a3 = −Myz

a4 = (−2Mxx +Myy +Mzz)/3

a5 = (Mxx − 2Myy +Mzz)/3

a6 = (Mxx +Myy +Mzz)/3

(3-14)

The procedure to compute the full seismograms (from Cotton and Coutant (1996)) follows
these steps: first, we define the potentials of the sources at the earth model layer where the
source is located. We then propagate the potentials through the earth model calculating
their value at the different layers taking into account the transmission and reflection effects
at the interfaces through the reflectivity method of Kennett and Kerry (1979) (described
in Appendix B-3). The spatial derivatives of the Green’s functions can be computed at
every model layer by differentiating the corresponding potentials. This procedure is detailed
in Appendix B. Finally, the elementary and the full seismograms can be calculated at the
receiver position as in (3-11)-(3-13).
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3-3 Forward modeling algorithm

The calculations described in the previous paragraphs can be represented by the diagram of
Figure 3-2 and summarized by the following algorithm:

1. Initialize the source-receiver geometry: depths, azimuths and radial distances.

2. For each horizontal wavenumber kr:

(a) Calculate the Bessel functions J0 and the vertical wavenumbers ν and γ.

(b) Calculate the reflection/transmission coefficients (Appendix B-3).

(c) Derive upward and downward potentials radiated from the source layer. The ex-
pressions for the potentials (Φ, Ψ and χ) at the source layer are calculated for each
elementary moment tensor component (Appendix B-1).

(d) The potential fields for the six sources S1, S2, ..., S6 are propagated through the
model (Appendix B-2). At the receivers each of them results in upgoing and down-
going potentials, including possible conversions. Expressions for the potentials are
calculated for each elementary moment-tensor component.

(e) Previously calculated potentials (Φ, Ψ and χ) at the receivers, for each elementary
moment-tensor component, are differentiated to obtain the spatial derivatives of
the Green’s functions (Appendix B-4).

3. The spatial derivatives of the Green’s functions calculated for every horizontal wavenum-
ber are summed to obtain Gikl. The corresponding expressions are transfomed from
cylindrical coordinate system to a Cartesian coordinate system.

4. The elementary seismograms Eni are calculated from the elementary moment tensors
Mn
kl and spatial derivatives of the Green’s functions Gikl.

5. Calculate the trigonometric coefficients an of the elementary sources.

6. Multiply the source function S(ω) with the sum of the elementary seismograms Eni ,
weighed for the coefficients an, to obtain the final displacements ui(x, ω) at each receiver
as in (3-13).

7. Apply inverse Fourier transform to obtain the displacements for each component and
receiver in the space/time domain.

The algorithm has been implemented in Python language, and performs the calculations for
each frequency and horizontal wavenumber in parallel, using a meshgrid in the frequency/
horizontal wavenumber domain. A meshgrid is a rectangular grid, containing all the possible
combination of couples of values extracted by two given one-dimensional arrays representing
the frequency axis and horizontal wavenumber axis. The advantage of using a meshgrid relies
on the fact that the operations for all horizontal wavenumber and frequency values can be
performed simultaneously, reducing the computation time.

The main core of the code is listed in Appendix C.
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Figure 3-2: Forward modeling algorithm flowchart.
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Figure 3-3: Source-Receiver geometry in the homogeneous velocity model.

3-4 Benchmarking

The code implementing the 3D forward modeling algorithm previously described and used
in this thesis to generate synthetic datasets was benchmarked against a 2D reflectivity code
based on (Kennett et al. (1990), Frasier (1970), Hubral et al. (1980) and Wapenaar and
Berkhout (1989)). The proposed code is working with 3D models, while the pre-existing one
works with 2D models. For the comparison and benchmarking we consider a homogeneous
velocity model and a layered velocity model described in the following paragraphs. Moreover,
sources and receivers are placed in layers with identical medium parameters to ensure that
possible normalization differences between the two implementations do not interfere with the
comparison results.

In the first comparison example we consider one source and one receiver located in a 2D
space, characterised by a homogeneous velocity model as shown in Figure 3-3. We calculate
the displacements at the receiver for the P-wave component and the S-wave component by
using both methods. In Figure 3-4 the P-wave response for a P-wave source is displayed.
In the same manner, the S-wave response for an S-wave source is shown in Figure 3-5. The
resulting waveforms generated using the two methods are identical. The comparison of the
methods on the amplitude spectra shows slight differences at the higher frequencies. This can
be explained due a variation of the resolution in the wavenumber domain as a consequence
of the difference in implementation methods: the DWN method uses a variable horizontal
wavenumber sampling that can be set to a very fine resolution, while the pre-existing code
uses a fix horizontal wavenumber sampling, that in this example was set coarser in comparison
to the DWN.

In the second example we repeated the previous experiment but using the layered model
presented in Figure 3-6, leading to similar results (see Figures 3-7 and 3-8). This example
further validates that the code is suitable for modelling the synthetic data to train the ANN
as described in the next steps.
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Figure 3-4: Comparison of the new and the pre-existing codes for the upgoing PP wave com-
ponents in the homogeneous velocity model. Upper panel: Amplitude spectrum.
Middle panel: Phase spectrum. Lower panel: Displacement convolved with a 30 Hz
Ricker wavelet.
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Figure 3-5: Comparison of the new and the pre-existing codes for the upgoing SS wave com-
ponents in the homogeneous velocity model. Upper panel: Amplitude spectrum.
Middle panel: Phase spectrum. Lower panel: Displacement convolved with a 30 Hz
Ricker wavelet.

Figure 3-6: Source-Receiver geometry in a 1D layered velocity model.
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Figure 3-7: Comparison of the new and the pre-existing codes for the upgoing PP wave compo-
nents in the 1D layered velocity model. Upper panel: Amplitude spectrum. Middle
panel: Phase spectrum. Lower panel: Displacement convolved with a 30 Hz Ricker
wavelet.
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Figure 3-8: Comparison of the new and the pre-existing codes for the upgoing SS wave compo-
nents in the 1D layered velocity model. Upper panel: Amplitude spectrum. Middle
panel: Phase spectrum. Lower panel: Displacement convolved with a 30 Hz Ricker
wavelet.
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Layer Vp [m/s] Vs [m/s] ρ [kg/m3] Qp Qs
1 5000 2500 3000 1000 500

Table 3-1: Velocity model.

Figure 3-9: Source (orange marker) and receivers (blue markers) geometry.

3-5 Generation of a realistic synthetic dataset

A microseismic borehole synthetic dataset is generated using the forward modeling method
described, to be used in the training and testing stages of an ANN (see Chapter 4).

A homogeneous velocity model is considered as described in Table 3-1.

To simplify, we consider a single source characterized by a pure strike-slip event (100% DC)
with moment magnitude Mw = −2. We use 40 receivers geometrically distributed as shown
in in Figure 3-9: 20 receivers are located in a horizontal array and 20 in a vertical array.

The fault angles (strike φ, dip ϕ and rake ψ) are sampled uniformly every 5◦, generating
a set of 101,250 different possible fault geometries. This set is used to create synthetic
waveforms capturing the possible effects of the variation of the moment tensor components
on the acquired microseismic data.

Considering the 40 receivers with their three components, a total of 12,150,000 seismograms
have been generated. Two examples of these seismograms modeled for some specific fault
geometries are shown in Figures 3-10 and 3-11, respectively.

In these examples the P-wave and S-wave arrivals are clearly distinguishable. It is also clear
that different fault geometries are producing different radiation patterns, causing significant
variations in the amplitudes of the X, Y and Z components calculated at the receivers. For
example, the horizontal components of the P-wave arrivals show very low amplitude in most
of the receivers in 3-10 when compared with the ones observed in 3-11.

August 7, 2020



3-5 Generation of a realistic synthetic dataset 29

Figure 3-10: Seismograms generated for the fault geometry described by: strike φ = 70, dip
ϕ = 10, rake ψ = −125.

Figure 3-11: Seismograms generated for the fault geometry described by: strike φ = 235, dip
ϕ = 0, rake ψ = 155.
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Chapter 4

Inverse problem

The solution to the problem of estimating the moment-tensor components of a microseismic
event from the seismograms acquired by arrays of receivers (inverse problem) can be obtained
by inverting (2-21) as:

m̂ = Gpu (4-1)

where the moment-tensor components, m̂, can be estimated by multiplying the seismic data,
u, with the pseudo-inverse of the Green’s functions spatial derivatives matrix, Gp.

In this thesis, instead of solving (4-1) explicitly, we propose to train an ANN to recognize
the moment tensor components associated to specific seismograms. To achieve this goal, in
this chapter we design a specific ANN architecture, we train it and test it on the borehole
microseismic synthetic dataset created in the previous chapter. The ANN is created using the
deep learning programming framework Keras, written in Python language, running on top of
the machine learning platform TensorFlow (see more in Chollet et al. (2015)).

4-1 ANN architecture design

As explained in Appendix A an ANN architecture is defined by the number of inputs, outputs,
hidden layers, and a certain number of neurons in each hidden layer. The neurons connections
are defined by coefficients (weight and bias) and activation functions f(·), that introduce non-
linearity in the relation linking inputs and outputs.

The architecture of the neural network in this thesis project is based on the results of
Ovcharenko et al. (2018), where the authors used an ANN to derive the moment tensor
components from attributes (first-arrivals peak value and polarity for P and S waves) ex-
tracted from synthetic microseismic data in a vertical borehole array. Here we extend this
previous work by using synthetic full waveforms as input data, as well as using an additional
horizontal array of receivers. Considering the similarity of our problem with the one discussed
in the literature, we decided to adapt the existing ANN architecture for our specific needs.
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Layer Number Matrix Number Description
of Neurons shape of Parameters

(weights + bias)

Input 30720 1 × 30720 0 X, Y , Z × 40
receivers × 256 samples

Hidden 1 150 30720 × 150 4608150

Hidden 2 100 150 × 100 15100

Hidden 3 50 100 × 50 5050

Output 6 50 × 6 306 six independent
moment tensor components

Table 4-1: ANN architecture summary.

Layer Number Matrix Number Description
of Neurons shape of Parameters

(weights + bias)

Input 30720 1 × 30720 0 X, Y , Z × 40
receivers × 256 samples

Hidden 1 30720 30720 × 1 0 Gaussian noise layer

Hidden 2 150 30720 × 150 4608150

Hidden 3 100 150 × 100 15100

Hidden 4 50 100 × 50 5050

Output 6 50 × 6 306 six independent
moment tensor components

Table 4-2: ANN architecture summary including noise layer.

The ANN structure proposed for this project (modified from Ovcharenko et al. (2018)) is a
fully connected feed-forward network, containing 3 hidden layers with 150, 100 and 50 neurons
respectively, where the neurons are connected with hyperbolic tangent activation functions in
the hidden layers and linear functions in the output layer. The input layer comprises 30720
neurons (3 components seismograms × 40 receivers × 256 time samples), determining the
size of the input array. The output layer contains 6 neurons, one for each moment tensor
component.

The ANN architecture is summarized in Table 4-1, where in the first column is described the
type of the layers, in the second column the number of neurons in these layers, in the third
column we find the shape of the matrix described by the neurons connections in the upper
and current layer, in the fourth column are expressed the number of parameters defined by
the connections between the previous and the current layer (number of weights and bias) and
the last column contains a brief description.

To further evaluate the ANN with noisy input data we included in the architecture an addi-
tional layer, which adds zero-mean Gaussian noise to the inputs (this structure is summarized
in Table 4-2). This layer is only active during the training phase where the ANN learns how
to recognize and to properly address the noise.

After designing the ANN architecture we proceed with the training phase: the network learns
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Figure 4-1: ANN architecture diagram (modified from Tano et al. (2020))

how to predict the outputs from the inputs for a specific dataset where the outputs are known
by the network (training dataset). A validation phase is also necessary where the ANN
performances are checked against a dataset with outputs not seen by the network during the
training phase (validation dataset). Finally, we can use the network to predict the output
from the input for an unknown dataset (test dataset).

In the examples described in the next sections we randomly divided the dataset generated
in the previous chapter so that 40% of it is used for training, 10% for validation and 50%
for testing. Testing the ANN with another dataset generated with a different velocity model
and/or acquisition geometry could lead to network issues in generalization. A proper analysis
of the ability of the ANN to generalize might be considered in future developments of this
work.

4-2 ANN training and validation

The training phase in machine learning is a process where the neural networks learns the
predict outputs for specific inputs. The network training is an iterative procedure and be-
gins by setting random values for the weights and biases. Input arrays are presented to the
network one at a time. The network processes the inputs, and compares the resulting out-
puts against the desired outputs, and calculates the differences (defined as losses). Losses
are then backpropagated, so that weights and biases can be updated and reused in the next
iteration of training. After all the arrays are presented, the process might be repeated until
satisfactory results in terms of prediction accuracy are reached (Bishop (2006)). Each itera-
tion corresponding to a full evaluation of the training dataset is called an ”epoch” (Mitchell
(1997)).

The training process should be validated while updating the network parameters (Bishop
(2006)). For this purpose we use a validation dataset. During the validation step the network
parameters are not updated but it is checked that an increasing accuracy in the prediction
capabilities is observed not only in the training dataset but also in the validation one, never
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seen by the network before. If the prediction accuracy increases during the processing of
the training dataset but decreases or stay constant during the evaluation of the validation
dataset, then the prediction model implemented by the network is overfitting the data and it
is necessary to stop the training.

There are several techniques that can be applied to avoid overfitting (Bishop (2006), Mitchell
(1997)). The simplest one is to decrease the complexity of the model either reducing the
number of layers or the number of neurons per layer. Another easy technique is to use
”early stopping”, which means to stop the training process when the validation error starts
to increase. Overfitting can also be avoided by increasing the dataset size or including noise
which can be seen as a type of data augmentation. Additionally, more complex techniques
exist such as regularization (adding certain penalty terms in the loss function) and dropout
(randomly dropping neurons from the model in each training iteration).

4-2-1 Standardization of the data

An important step before training the ANN is to standardize the data to be used in the
training so that the value of each input set has a zero mean and unit variance. The final
purpose of this standardization is to have the input data spanning over the same range of
values, therefore simplifying the work of the optimization algorithm during the training phase.

We used a simple standardization scheme based on the calculation of the data min, max and
mean (Mean Standardization):

x′ =
x−mean(x)

max(x)−min(x)
(4-2)

where the standardized data x′ is computed by the not standardized data x.

4-2-2 Loss function

To improve the ANN, the prediction error at each training iteration must be estimated. This
requires the choice of an error calculation function, called loss function. The purpose of this
function is to estimate the loss of the algorithm so that the weights can be updated with the
purpose of reducing the loss on the next training iteration.

Since the neural network is trying to solve a regression, we tested two loss functions typically
used for these type of problems (Binder (2018), Mitchell (1997), Chollet et al. (2015)): the
mean squared error function and the cosine similarity function.

The mean squared-error function (MSE) calculates the average of the squared differences
between the true values yi and the predicted values ŷi:

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (4-3)

where N is the number of the elements of the predicted and true vectors, y and ŷ respectively.
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Figure 4-2: Loss-function history plot, while training the ANN with 8000 microseismic events.
Left panel: mean squared-error function. Right panel: cosine similarity function.
Blue line: training dataset error. Orange line: validation dataset error.

The result is always positive and a perfectly predicted value will produce a result equal to
zero. Moreover, the squaring operation penalizes more large errors than small errors (Chollet
et al. (2015)).

The cosine similarity function measures the similarity between two non-zero vectors of an
inner product space and can be defined as (Hazewinkel (1994), Bishop (2006)):

CS = cosθ =
y · ŷ
‖y‖‖ŷ‖

=

∑N
i=1 yiŷi√∑N

i=1 y
2
i

√∑N
i=1 ŷ

2
i

(4-4)

where θ is the angle between the predicted and true vectors and ”‖·‖” represents their L2
norm. CS ranges from −1 for opposite vectors, to 1 for equal vectors. A value of 0 indicates
that the vectors are orthogonal.

Figures 4-2 and 4-3 display the training results of the neural network, for 8000 and 16000
microseismic events, respectively, and in terms of losses vs. epochs for a mean squared error
function and for a cosine similarity function. In both cases convergence is obtained after
about 75 epochs and the network accuracy obtained with the two loss functions is practically
the same. Also, the training time is increasing almost linearly with the number of training
data and it does not change by using one loss function or the other (see Table 4-3).

In the following examples we use the mean squared error as the loss function for training
the ANN, which is usually recommended when trying to estimate real valued outputs
(Goodfellow et al. (2016)). However, it is possible to use the cosine similarity function as a
metric to evaluate the prediction results.

4-2-3 Optimizer

During the training phase an optimization algorithm (optimizer) has to be chosen to estimate
the network parameters that minimize the loss function (Mitchell (1997)).
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Figure 4-3: Loss-function history plot, while training the ANN with 16000 microseismic events.
Left panel: mean squared-error function. Right panel: cosine similarity function.
Blue line: training dataset error. Orange line: validation dataset error.

Events Mean Squared Error Cosine Similarity

8000 3.04 minutes 3.10 minutes
16000 5.93 minutes 6.06 minutes

Table 4-3: ANN Training Computation Time.

For complex non-linear problems iterative optimizers are normally chosen, typically based on
the gradient descent algorithm.

If we consider the neural network as a non-linear function y, applied to an input vector x
and we assume to use a mean square error loss function, the task of the training phase is to
find the weights w that minimize the function:

E(w) =
1

2

N∑
n=1

||y(xn,w)− tn||2 (4-5)

where N represents the number of samples used in the training, n = 1, ..., N , and t is the
target vector corresponding to the desired output.

Considering this error function as a surface, making a small step in the weight space from
w to w + δw will produce a change in the error function δE = δw∇E(w), where the vector
∇E(w) points to the direction with the greatest increase in the error function. A global or
local minimum value of the error function E(w) will correspond to a point in the weight space
where ∇E(w) = 0. Moreover, making a step in the direction −∇E(w) will decrease the error
value.

The error minimization problem can be solved iteratively, choosing an initial value w0 for the
weights and moving in small steps as:

w(τ+1) = w(τ) + δw(τ) (4-6)
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where τ represents a time step. The gradient descent method uses the gradient information
to choose the weight update in the direction of the negative gradient as follows:

w(τ+1) = w(τ) − η∇E(w(τ)) (4-7)

where the parameter η > 0 corresponds to the ”learning rate”, which represents the distance
of the step in the negative gradient direction. After every iteration the gradient is computed
for the new weight vector and the process is repeated.

Following the previous work of Ovcharenko et al. (2018) in this thesis we use a modification
of the gradient descent method called RMSprop optimizer which implements an adaptive
learning rate (Tieleman and Hinton (2012)) as:

v(τ) = βv(τ−1) + (1− β)∇E(w(τ))2 (4-8)

w(τ+1) = w(τ) − η√
v(τ) + ε

∇E(w(τ)) (4-9)

where the momentum v contains the ”history” of the values of the weights used in the previous
time steps, β determines the decay of v, and ε is a term to ensure stability. This approach
improves the learning process (Tieleman and Hinton (2012)).

In our ANN we set the values η = 0.001, β = 0.1 and ε = 1 × 10−7, following Ovcharenko
et al. (2018).

4-2-4 Batch size

The batch size defines the number of samples of the training dataset used in the estimate of
the error gradient. For each update the training dataset will be divided into subsets called
”batches”, in which the model evaluate and modify the weights (Bishop (2006)).

The batch size is a parameter that can affect the computation of the error gradient. A large
batch size typically increases the ANN prediction accuracy, but at the same time can produce
poor generalization behaviour of the network (not performing well on not seen data samples).
On the other side, a small batch size results in faster learning for the network, but also
increases the possibility of being trapped in local minima due to the limited amount of data
seen by the network at once (Goodfellow et al. (2016)).

Figure 4-4 shows the mean squared error as a function of the epochs, while training the ANN
using different batch sizes and 16000 microseismic events. With a red line we point at the
number of epochs needed to reach an acceptable mean squared error. We can observe that for
larger batch sizes the number of epochs necessary to obtain such an error is larger. Moreover,
we can observe that for all the batch sizes evaluated we have reached an equal mean squared
error asymptotic behaviour, which is an optimal minimum.

Additionally, we observed that the computation time of the training phase increases as we
decrease the batch size as shown in table 4-4. In 4-5 we show a summary of the analysis of the
batch size. In the following examples we use a batch size of 200 samples to train the ANN.
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Figure 4-4: Mean squared error as a function of the epochs, while training the ANN using
different batch sizes and 16000 microseismic events. The red lines indicate the
number of epochs necessary to reach an acceptable error.

Batch Size Computation Time of the training phase

100 9.50 minutes
200 5.83 minutes
500 3.71 minutes
1000 1.86 minutes

Table 4-4: ANN training computation time for different batch sizes, using 16000 events and 200
epochs.

August 7, 2020



4-2 ANN training and validation 39

Figure 4-5: Summary of the analysis of the batch size.

Training dataset size Computation time of the training phase

1000 events 1.52 minutes
8000 events 2.80 minutes
16000 events 6.02 minutes
32000 events 13.06 minutes

Table 4-5: Computation time for the training dataset size experiments.

4-2-5 Training data size

The amount of data necessary to train a neural network is hard to determine. It depends on
the complexity of the problem to perform (number of variables and linearity of the problem)
and the complexity of the ANN algorithm (Mitchell (1997)).

To study this factor we performed several experiments testing the accuracy of the ANN with
different training dataset sizes, keeping the same batch size and number of epochs. The results
are presented in Figure 4-6. Analyzing the history of error values per epoch we see that for
larger training datasets the number of epochs necessary to minimize the error decreases.

However, an increase in the training dataset also increases the computation time. In Table
4-5 are displayed the time taken to finalize the training in the different experiments for
comparison.

In Figure 4-7 a plot summarizing the results for the training dataset size experiments is
presented. In the following examples we are using a training dataset size of 16000 microseismic
events.

4-2-6 Training summary

After the analysis of the ANN training parameters we adopted the following configuration:
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Figure 4-6: Mean squared error values per epoch plots, while testing the training datasize. Red
lines indicate number of epochs to reach an acceptable error value.

Figure 4-7: Summary of the training dataset size experiments.
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• Loss function: mean squared error

• Optimization function: RMSprop

• Batch size: 200

• Training data size: 16000 events

We then trained with these parameters the network described in section 4-1 using data without
noise first, and then using data with added Gaussian noise. Finally, we tested the prediction
capabilities of the two trained networks as described in the next section.

4-3 ANN Testing

After training, the ANN has been used to predict the moment tensor components from mi-
croseismic data not previously used in the training or in the validation phases. The goal is to
confirm the actual predictive power of the network.

In order to evaluate the prediction capabilities of the ANN it is important to analyse its
robustness. In practice, this means to ensure that the ANN ignores perturbations, noise or
erroneous inputs and provides larger weights to the proper input features.

We performed several tests including noise in the inputs. The tests carried out evaluated the
accuracy of model while increasing signal-to-noise ratio in the data. These tests are described
in the following sections.

4-3-1 ANN trained without noise

A network trained using data without noise was created using the parameters discussed in
the previous sections. This network was tested using data with different levels of Gaussian
noise: 0%, 1%, 5% and 10%. The results are shown in Figures 4-8, 4-9, 4-11, 4-10 and 4-12.

In Figure 4-8 it is possible to visually compare an example of 10 randomly chosen events,
where the moment tensor components are represented as colored squares. The difference
between predicted and true moment tensor components are also displayed in colored squares.
From top to bottom are presented the test cases:

• Case A: Test using data with 0% added Gaussian noise

• Case B: Test using data with 1% added Gaussian noise

• Case C: Test using data with 5% added Gaussian noise

• Case D: Test using data with 10% added Gaussian noise

In Figure 4-9 the comparison of predicted and true moment tensor components are plotted
for all the cases tested. It is possible to observe that increasing the Gaussian noise added to
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the data results in a deviation of the predictions of the moment tensor from the true values.
Also, at the top of every plot the full test accuracy value is indicated.

The accuracy of the tests is measured using the following root mean squared-error function.
If ŷi is the predicted value of the i-th sample, and yi is the corresponding true value, then
the root mean squared error (ERMS) estimated over is defined as:

ERMS(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

√
||yi − ŷi||2 (4-10)

Furthermore, we computed from the predicted moment-tensors values the fault geometry
angles. These predicted fault geometry angles are compared to the true fault angles used in
the forward modeling stage. Comparisons of true vs. predicted fault angles are displayed for
dip (Figure 4-10), strike (Figure 4-11) and rake (Figure 4-12) for all cases predicted by the
network trained using data without noise. We can visually perceive, as was observed in the
MT components prediction plot (Figure 4-9), that the predicted values spread out from the
perfect prediction line (red line) as we increase the noise in the data. From these results we
can claim that the network performance is negatively affected by increasing noise levels in
the data.

Moreover, for any moment tensor there are two possible planes that can generate the same
focal mechanism. One plane will be the fault surface and the other is called an auxiliary
plane. This means that depending on rake and dip, a rotation of the strike by 180◦ can result
in an unchanged moment tensor (Käufl et al. (2015)), meaning an intrinsic non-uniqueness of
the fault angles given a single source.

Since there are auxiliary fault planes that can also correspond to the moment tensor solution
obtained through the neural network, we can observe secondary bands in the dip, strike and
rake plots in Figures 4-10, 4-11, and 4-12. It is not possible to determine the fault plane
solution solely from the moment tensor. We would need to add an additional constraint to
remove the ambiguity (Cronin (2010)).

4-3-2 ANN trained with noisy data

To increase the robustness of the ANN (ability of the network to ignore erroneous inputs), we
trained it including an amount of Gaussian noise in the input layer, as discussed in section
4-1. Three cases were created:

• ANN trained including a layer with 1% added Gaussian noise

• ANN trained including a layer with 5% added Gaussian noise

• ANN trained including a layer with 10% added Gaussian noise

The results in accuracy for the predicted moment-tensor components and predicted fault
angles are shown in Figure 4-13. The blue lines indicate the performance for the ANN that
was trained using synthetic data without noise. The figure shows the performance of this
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Figure 4-8: Comparison of True and Predicted Values for 10 randomly chosen faulting events.
Left column: Predicted MT components. Middle column: True MT components.
Right column: Prediction error for each MT component.
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Figure 4-9: True vs Predicted moment-tensor components using a network trained without noise.
Red line indicates perfect fit. Case A: 0 % noise in data, Case B: 1 % noise in data,
Case C: 5 % noise in data, Case D: 10 % noise in data.
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Figure 4-10: True vs Predicted dip-angle values using a network trained without noise. Red line
indicates perfect fit. Case A: 0 % noise in data, Case B: 1 % noise in data, Case
C: 5 % noise in data, Case D: 10 % noise in data.
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Figure 4-11: True vs Predicted strike-angle values using a network trained without noise. Red
line indicates perfect fit. Case A: 0 % noise in data, Case B: 1 % noise in data,
Case C: 5 % noise in data, Case D: 10 % noise in data.
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Figure 4-12: True vs Predicted rake-angle values using a network trained without noise. Red
line indicates perfect fit. Case A: 0 % noise in data, Case B: 1 % noise in data,
Case C: 5 % noise in data, Case D: 10 % noise in data.
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Figure 4-13: Accuracy of predicted moment-tensor components and calculated fault geometry
angles while increasing noise in the test dataset. Blue line: results for ANN trained
without noise, Orange line: ANN trained with 1% Gaussian noise, Gray line: ANN
trained with 5% Gaussian noise, Yellow line: ANN trained with 10% Gaussian noise.

ANN (trained without noise) decreasing for all the predicted variables with increasing noise
in the data, meaning the network model is not robust enough.

The results for the network trained including Gaussian noise are also plotted in Figure 4-13.
From the plots we can see that for an ANN trained with an certain percentage of noise in
the input data the performance is less affected as we increase noise levels in the test dataset,
with respect to the performance of the network trained without noise.

The network that shows the best performance is the ANN trained with a 10% Gaussian noise,
corresponding to the yellow line in the plots.

Similar conclusions can be obtained by analyzing the previous results with a different vi-
sualization tool, commonly used in earthquake seismology, and referred in the literature as
”beachball” plots (Cronin (2010)). In our case we can prove that the predicted moment ten-
sor components are accurate enough by visually comparing them with the corresponding true
values as shown in Figure 4-14.

The effect of the noise in the predictions can also be visually evaluated as depicted in Figures
4-15, 4-16, 4-17, 4-18. The visual plots for the networks trained without noise and 1 %
Gaussian noise show predictions that slightly deviate from the corresponding true values
while increasing the noise in the data. On the other side, the networks trained with 5 % and
10 % Gaussian noise show better accuracy even for high level of noise in the data.
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Figure 4-14: Example of visual comparison between true and predicted moment tensor compo-
nents for a single event.

Figure 4-15: Moment-tensor beachball plots for five random faulting events: true values (left)
vs. predicted values different noise levels in the data (right). The network was
trained without noise.
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Figure 4-16: Moment-tensor beachball plots for five random faulting events: true values (left)
vs. predicted values different noise levels in the data (right). The network was
trained with 1 % Gaussian noise.

Figure 4-17: Moment-tensor beachball plots for five random faulting events: true values (left)
vs. predicted values different noise levels in the data (right). The network was
trained with 5 % Gaussian noise.
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Figure 4-18: Moment-tensor beachball plots for five random faulting events: true values (left)
vs. predicted values different noise levels in the data (right). The network was
trained with 10 % Gaussian noise.

Training Dataset Predicted Events MT Strike Dip Rake
size size accuracy accuracy accuracy accuracy

8000 8000 0.995 0.864 0.758 0.734
16000 16000 0.997 0.878 0.741 0.761
32000 32000 0.998 0.867 0.722 0.751

Table 4-6: Accuracy values for predicted MT components and fault angles.

4-3-3 Additional tests on training data size

As supplementary experiments, we tested the ANN performance for network models trained
with 8000, 16000 and 32000 events (without added Gaussian noise). The measured accuracy
values for the different tests are presented in Table 4-6. The results show that for a larger
training dataset size the accuracy of the predicted moment-tensor components increases. The
better accuracy results for the predicted fault angles correspond to a network trained with a
dataset size of 16000 events.

4-4 Receiver geometry effects on the ANN performance

Using the same neural network architecture and training parameters defined in Subsection
4-2-6 and an 10% gaussian noise layer, we trained the network using only the seismograms
from the vertical array of receivers (3 components) shown in Figure 3-9. Then, we evaluated
the prediction power of this network as in the previous section. A predicted moment tensor
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Figure 4-19: Example of visual comparison between true and predicted moment tensor compo-
nents for a single event using only the vertical array

example is shown in Figure 4-19. The prediction results are presented for the moment-tensor
components and computed fault angles: dip, strike and rake in Figure 4-20. We observe
that for all the variables evaluated the values start to spread further from the perfect fit line
with increasing noise percentages in the tested data. Comparing these figures with the ones
corresponding to the combined array (4-9, 4-10, 4-11, 4-11) we can visually recognize that
the vertical array prediction performance is inferior compared to the combined array, since it
is clear that the predicted values are reaching further away from the perfect fit line.

We also repeated this procedure using only the seismograms of the horizontal array of 20
receivers (3 components) shown in Figure 3-9. A predicted moment tensor example is shown
in Figure 4-21. The prediction results are presented for the moment-tensor components, and
computed fault angles as well in Figure 4-22. The plots also depicts results with an inferior
prediction performance to those of the combined array. An analysis of the overall accuracy
of the networks is explained in the following paragraphs.

We analyzed the prediction power of the network using the combined array (using both
horizontal and vertical arrays), the vertical array and the horizontal array for increasing noise
percentages. The results are presented in Figure 4-23. From this graphical analysis it is
clear that the network trained using the combined array shows higher accuracy values for all
the evaluated variables, than the networks trained using only the vertical or the horizontal
receivers.

These differences in accuracy values for the three receiver geometries tested could be due to
several reasons. The most direct reason might be the fact that the combined array contains
40 receivers, instead of 20 as for the vertical and horizontal arrays, which means there are
more seismograms evaluated per event in the combined array case.

However, the horizontal and vertical arrays contain equal number of receivers (meaning an
equal number of seismograms evaluated per event), yet their accuracy values are quite different
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Figure 4-20: True vs Predicted scatter plots for moment tensor components and fault angles
using a network trained with a vertical array of receivers. Red line indicates perfect
fit. Left: 0% Gaussian noise in tested data, Right: 10% Gaussian noise in tested
data
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Figure 4-21: Example of visual comparison between true and predicted moment tensor compo-
nents for a single event using only the horizontal array

for all the variables. The accuracy values are higher for the horizontal array in all the variables.
This could be due to the differences in the geometry coverage from both arrays with respect
to the source radiation. In Figure 3-9 the horizontal receivers are all below the source, with 10
receivers located eastward of the source and 10 receivers westward of the source. The vertical
receivers are all located upwards and westward of the source, perhaps resulting in an lower
coverage of the wave radiation pattern of the microseismic event.

Furthermore, the combined array accuracy values could also be the consequence of a better
wave radiation pattern coverage, including the receivers in both the vertical and horizontal
configurations presented. These results arise new questions on how the position of the receivers
with respect to the source affect the prediction performance, pointing to more evaluations with
respect to the geometry of the arrays and the number of receivers.

Finally, from Figure 4-23 we can also assume that using the combined array for training
provides more robust predictions, since the accuracy values slightly decrease with increasing
noise percentages in the tested data. Contrarily, using only the vertical array or the horizontal
array, the results show a larger decrease, almost in a parallel manner with increasing noise
percentages.

In the same manner of the previous section, we also present the effect of the noise in the
predictions visually using the beachball plots as depicted in Figures 4-24 and 4-25. In these
plots we can identify how the beachballs are increasingly describing imprecise sources while
increasing noise in the tested data. The resulting plots also confirm the fact that the ANN
trained using the combined array has a superior predicting capability when comparing with
Figure 4-18.
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Figure 4-22: True vs Predicted scatter plots for moment tensor components and fault angles
using a network trained with a horizontal array of receivers. Red line indicates
perfect fit. Left: 0% noise in tested data, Right: 10% Gaussian noise in tested
data.

August 7, 2020



56 Inverse problem

Figure 4-23: Accuracy of predicted moment-tensor components and calculated fault geometry
angles while increasing noise in the test dataset. Blue line: results for ANN trained
using combined array, Orange line: ANN trained using horizontal array, Gray line:
ANN trained using vertical array

Figure 4-24: Moment-tensor beachball plots for five random faulting events: true values (left)
vs. predicted values different noise levels in the data (right). The network was
trained using a vertical array of 20 receivers
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Figure 4-25: Moment-tensor beachball plots for five random faulting events: true values (left)
vs. predicted values different noise levels in the data (right). The network was
trained using a horizontal array of 20 receivers
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Chapter 5

Conclusions and Discussion

Microseismic monitoring is an essential procedure in the development of unconventional re-
sources, compaction/subsidence, reservoir surveillance, CO2 injection, among other applica-
tions. Currently, this task is done using microseismic borehole data to evaluate the distri-
bution of seismic source locations and in some cases infer the fracture extension. However,
microseismic measurements can be analysed to invert for the seismic moment tensor, which
describes the fracture mechanisms in greater detail.

In this thesis we propose to carry out the inversion of microseismic borehole measurements
using neural networks. This approach has several clear advantages: we can solve ill-posed
problems so that small aperture acquisition data can be used, neural networks are quite
robust to noise when trained with proper noisy datasets, and results can be obtained in a fast
turnaround time.

To solve the inverse problem, we need a high amount of data to train the neural network
properly. For this purpose we used an algorithm based on the discrete wavenumber method
to generate full waveforms from known moment tensor sources. We created a dataset sampling
101,250 possible moment tensors, generating thus 12,150,000 waveforms corresponding to 3
components × 40 receivers in a deviated borehole array (vertical and horizontal receivers).

Subsequently, a neural network was designed with the purpose of using the synthetic seismo-
grams previously generated to obtain the six independent components of the moment tensor.
The network was trained using the previously generated synthetic dataset. Several training
options and network design parameters, such as the loss function and batch size were tested
manually to boost the learning process. Additionally, the network was also trained using a
Gaussian noise input layer to improve its performance in the presence of noisy data.

Finally, when the network was properly trained we proceeded to test its predictive power
using synthetic seismograms with different levels of Gaussian noise. The prediction outcomes
for the moment-tensor components is outstanding for data without noise. From the results
of noisy data it is clear that using Gaussian noise in the training phase distinctly improves
the robustness of the network and its predictions for noisy synthetic seismograms.
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We succesfully trained a fully connected feed-forward neural network to predict moment-
tensor components from synthetic seismograms in simulated microseismic monitoring borehole
arrays. This neural network is able to produce an approximation of the seismic source using
a set of synthetic seismograms, even in the presence of Gaussian noise.

Additional evaluations of the neural network using just a horizontal or a vertical array resulted
in inferior predicting performance with respect to the use of combining horizontal and vertical
arrays. The analysis also shows a faster decline in accuracy values with increasing noise levels
in the tested data when compared to the network of the combined array. The outcome of this
geometry analysis arises new considerations to be investigated in extensions of this research
study.

5-1 Future developments

The encouraging results presented in the previous chapters of this thesis make a number of
possible extensions of the method worthy of research in the future.

Further developments primarily include the application to datasets generated with different
(inhomogeneous) velocity models and varied acquisition geometries. In particular, we suggest
to extend the evaluation regarding the position of the arrays with respect to the source,
their aperture and the number of receivers. The effect of the source-receiver offset on the
predictions should be evaluated as well. In general, a reduction of the accuracy is expected
when reducing the arrays aperture or when increasing the offset.

The experiments performed in this thesis project used a 100% double-couple seismic events.
In future experiments the network architecture designed in this project could be trained and
tested for the prediction of moment tensor components related to non double-couple sources.

Regarding the neural network design choices, changes in the architecture parameters such
as the number of neurons and hidden layers, the activation functions and the connections
types, could be also considered. This represents an exhaustive task since it has to be done by
trial-and-error and there is not an exact procedure to follow.

Another possible option is to evaluate different optimization functions. There are numerous
methods for optimization available in machine learning which could lead to different outcomes
in terms of the prediction power of the network.

Moreover, an interesting future extension to this project could be done by additionally training
the network to predict other variables important to microseismic monitoring operations, such
as the magnitude of the microseismic event, source location and fault orientations.

Finally, the proposed approach has to be applied to field datasets. If proven successful, this
could have a significant impact in borehole microseismic monitoring, reducing the processing
workload and delivering results in near real-time, allowing the field operators to take quick
decisions during the completion operations.
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Appendix A

Artificial Neural Networks

The term ”neural network” has its origins in attempts to find mathematical representations
of information processing in biological systems (McCulloch and Pitts (1943)). One of the
key mechanisms for information processing in a human brain is the way that information is
processed by means of the connections (called synapses), of a large number of structurally
simple elements (called neurons). Artificial neural networks (ANNs) are a family of models
that mimic the structure of the neural system and learn patterns in observations (Suk (2017)).

The simplest artificial neural model is known as perceptron (Rosenblatt (1958)). It is struc-
tured with input visible units {vi}Di=1, trainable connection weights {wi}Di=1, a bias w0 and
an output unit y (See Equation A-1) (Suk (2017)). The observations are contained in vector
v ∈ RD, the value of the output unit y is obtained from an activation function f(·) by taking
the weighted sum of the inputs as in Equation A-1 (Bishop (2006)).

y(v; θ) = f

 D∑
i=1

viwi + w0

 = f(wᵀv + w0) (A-1)

where θ = {w, w0} denotes the parameter set, w = {wi}Di=1 ∈ RD is the connection weight
vector, and w0 is a bias.

Some popular activation functions are the ReLu activation function and the sigmoid function.
A typical example of sigmoid activation function is the hyperbolic tangent function defined
as:

tanh(x) =
ex − e−x

ex + e−x
(A-2)

where the input x is transformed into an output limited in the range [−1, 1].

A basic architecture consists of three types of neuron layers: input, hidden, and output layers
(See Figure A-1). In feed-forward networks, the signal flow is from input to output units,
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62 Artificial Neural Networks

Figure A-1: Architecture of an artificial neuron and a multilayered neural network (Abraham
(2005))

strictly in a feed-forward direction. The data processing can extend over multiple layers of
units, but no feedback connections are present. A neural network has to be configured such
that the application of a set of inputs produces the desired set of outputs. Various methods
exist to set the strengths of the connections. One way is to set the weights explicitly, using a
priori knowledge. Another way is to train the neural network by feeding it teaching patterns
and letting it change its weights according to some learning rule (Abraham (2005)).

For an ANN the learning process starts with random values of the weights to break the
symmetry of back-propagation. The goal of training is to minimize the error between true
output and predicted output by the network. Given multiple samples, the ANN adjusts
weights between layers in successive iterations. At the end, the trained network is just a set
of matrices whose elements were tuned to be able to solve a specific problem (Ovcharenko
et al. (2018)).

The neural network architecture plays a crucial role in the reconstruction of desired output
parameters. The number of hidden layers, amount of neurons in each of them, weight initial-
ization and type of activation function all have an important influence on the performance
of a neural network. An optimal layout of hidden layers is usually found by trial-and-error
techniques (Maity et al. (2014), Binder (2018), Ovcharenko et al. (2018)).

ANNs have proven to be a powerful tool in pattern recognition applications in geosciences.
Some examples are shown in: Röth and Tarantola (1994), Moya and Irikura (2010), Binder
(2018), Maity et al. (2014), Ovcharenko et al. (2018), Akram et al. (2017).
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Appendix B

Calculation of seismograms using a
modified DWN method

To compute the seismic waveforms corresponding to a known moment tensor source we follow
the steps explained in the next sections, as mentioned in Cotton and Coutant (1996).

B-1 Calculation of potentials at the source layer

From the expressions giving the potentials radiated by single forces (Bouchon and Aki (1977))
the upward and downward potentials radiated at the source layer for the wave modes P , SV
and SH are derived. Since we have three wave modes and upward and downward radiation,
we will have six different source potentials S1(z), S2(z), S3(z), S4(z), S5(z), and S6(z) whose
expressions are reported in the equations of Table B-1.

P-wave and S-wave vertical wavenumbers of the source potentials are respectively given by:

γ =
√
k2
α − k2

r (B-1)

Wave mode Vertical Direction Source potential
wavenumber

P γ Upward S1(z) = e−iγ|z−z0|

P γ Downward S2(z) = sign(z − z0)eiγ|z−z0|

SV ν Upward S3(z) = e−iν|z−z0|

SV ν Downward S4(z) = sign(z − z0)eiν|z−z0|

SH ν Upward S5(z) = e−iν|z−z0|

SH ν Downward S6(z) = sign(z − z0)eiν|z−z0|

Table B-1: Source potentials associated with the three wave modes and upward/downward ra-
diation.
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and

ν =
√
k2
β − k2

r (B-2)

with Im(γ) < 0 and Im(ν) < 0, kα = ω
α and kβ = ω

β the P and S wavenumbers (corresponding

to the P-wave and S-wave velocities, α and β), kr = 2πn
L the horizontal wavenumber, L is the

spatial period, and z0 the source depth.

We can then decompose the potentials Φ, Ψ and χ for the six moment tensor components
corresponding to the elementary moment tensors in 3-9, as derived by (Cotton and Coutant
(1996)), using the source definitions in Table B-1:

Mxy :Φ = CfF sin 2θcs2K1S1 Myz :Φ = CfF 2 sin θ(−k2
r)J1S2

Ψ = CfF sin 2θK1S4 Ψ = CfFsinθcs9J1S3

χ = −CfF cos 2θcs3K1S5 χ = CfF cos θk2
βJ1S6

Myy :Φ = CfFcs2(sin2 θK1 +K2)S1 Mxz :Φ = CfF 2 cos θ(−k2
r)J1S2

Ψ = CfF (sin2 θK1 +K2)S4 Ψ = CfF cos θcs9J1S3

χ = −Cf cos θ sin θcs3K1S5 χ = CfF sin θ(−k2
β)J1S6

Mxx :Φ = CfFcs2(cos2 θK1 +K2)S1 Mzz :Φ = CfF (−iνkr)J0S1

Ψ = CfF (cos2 θK1 +K2)S4 Ψ = −CfFJ0S4

χ = CfF cos θ sin θcs3K1S5 χ = 0

(B-3)

where Ji = Ji(kr, r) is the Bessel function of order i and the other variables are defined as:

Cf =
1

2ρω2L
K0 = krJ0

K1 = krJ0 − 2J1/r K2 = J1/r

K3 =
∂K1

∂r
= −2

r
K1 − kr2J1 K4 =

∂K2

∂r
=
K1

r

K5 =
∂J1

∂r
= krJ0 − J1/r

K6 =
∂K3

∂r
= −kr2K5 +

2

r2
K1 −

2

r
K3

K7 =
∂K4

∂r
= −3K1

r2
− kr2K2 =

K3 −K4

r
K8 =

∂K5

∂r
= K3 +

K1

r

K9 =
K3 − 4K4

r
K10 =

4K4 −K3

r
+K6 = K6 −K9

K11 =
K3

r
K12 =

K4

r

K13 =
K8

r
cs2 =

kr
2

iν

cs3 =
kβ

2

iγ
cs9 =

kβ
2 − 2kr

2

iγ

(B-4)

August 7, 2020



B-2 Propagation of potentials 65

B-2 Propagation of potentials

Afterwards, we propagate each of the six source potentials from the source layer through the
model: three modes Φ,Ψ and χ with upgoing and downgoing components (including possible
conversions of the P and SV waves) are reflected and transmitted at the interfaces, following
the scheme (from Cotton and Coutant (1996)):

S1 → SΦup
1 , SΦdown

1 , SΨup
1 , SΨdown

1

S2 → SΦup
2 , SΦdown

2 , SΨup
2 , SΨdown

2

S3 → SΦup
3 , SΦdown

3 , SΨup
3 , SΨdown

3

S4 → SΦup
4 , SΦdown

4 , SΨup
4 , SΨdown

4

S5 → Sχup5 , Sχdown5

S6 → Sχup6 , Sχdown6

with ”→” representing the split of the incident potential wavefield at the source interface into
reflected/transmitted potential wavefields for the different components, computed as:

SΦup
n = PΦup

n eiν(z−zi)

SΦdown
n = PΦdown

n e−iν(z−zi)

SΨup
n = PΨu

n eiγ(z−zi)

SΨdown
n = PΨdown

n e−iγ(z−zi)

Sχupn = Pχun eiγ(z−zi)

Sχdownn = Pχdownn e−iγ(z−zi)

where P ηn are the reflectivity coefficients, with n = 1, 2, ..., 6 and η pointing at the six modes
and upgoing/downgoing components. The reflectivity and transmissivity matrices, represent-
ing all the reflectivity coefficients at the different interfaces of the model are calculated using
the method of Kennett and Kerry (1979) (See Section B-3).

B-3 Reflectivity method

The reflectivity method is an algebraic scheme defined by Kennett and Kerry (1979). Suppose
there exists a linear translation rule Q that relates the components of 2-dimensional vectors
v between two points a and b as:

v(b) = Q(b, a)v(a) (B-5)

The arguments of the transfer matrix Q are read from right to left, meaning that Q(b, a)
propagates v from point a to point b.
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In the particular case of wave propagation, Q is mapping the wavefield v from one point to
another and can be partitioned into four (nXn) blocks, factorized into the product of two
matrices as follows:

Q(b, a) = L−1(a, b)U(b, a) (B-6)

where

L(a, b) =

[
T(a, b) 0
−R(a, b) I

]
, U(b, a) =

[
I −R(b, a)
0 T(b, a)

]
(B-7)

and I is the unit matrix. The matrices T and R represent the transmission and reflections
matrices, respectively. Moreover, we can decompose the wavefield vector v in upper and
lower terms, v = (vu,vd)

T , representing ”upwards” and ”downwards” propagation. Following
Kennett and Kerry (1979) it is also possible to define the transmission/reflection matrices for
a path a→ b→ c as:

T(a, c) = T(a, b)[I−R(c, b)R(a, b)]−1T(b, c) (B-8)

R(a, c) = R(b, c) + T(c, b)R(a, b)[I−R(c, b)R(a, b)]−1T(b, c) (B-9)

To obtain the transmission/reflection matrices T(c, a) and R(c, a) for the path c→ b→ a is
necessary only to interchange the arguments a and c.

B-4 Calculation of the spatial derivatives of the Green’s functions

In this step, we calculate the potentials in every layer (following Cotton and Coutant (1996))
and deduce the corresponding spatial derivatives of the Green’s functions (3-8) by differenti-
ating equations B-3, after substituting the source potentials with the propagated potentials
(calculated in Section B-2) at that specific layer. The differentiation of the potentials is
performed following the formulas:

Gr =
∂Φ

∂r
+
∂2Ψ

∂r∂z
+

1

r

∂χ

∂θ

Gθ =
1

r

∂Φ

∂θ
+

1

r

∂2Ψ

∂θ∂z
− ∂χ

∂r

Gz =
∂Φ

∂z
− ∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
− 1

r2

∂2Ψ

∂θ2
=
∂Φ

∂z
+ k2

rΨ

(B-10)
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Appendix C

Forward modeling code

In this appendix the forward modeling code using the DWN method is provided, as mentioned
in Chapter 3.

1 def MTforward(InputValues):

## Initialize geometry

r, nzs , nzr , cosr , sinr = initialize(nc, nr, ns, zr, zs)

6 ## Discrete WaveNumber Method

kaxis = np.arange(0, kmax , dk)

faxis = np.arange(0, fmax , df)

# Meshgrid

11 F, K = np.meshgrid(faxis , kaxis)

# Calculate Bessel functions and vertical wavenumbers

fj0 , fj1 , cgam , cnu , c2, cka2 , ckb2 = reflect0(nc, nr, ns, vp, vs, kr2 ,

omega , qp, qs)

16 # Calculate reflection and transmission coefficients

ru , rd , rush , rdsh , tu , td , tush , tdsh = reflect1(nc , kr2 , cka2 , ckb2 , cnu

, cgam , rho)

# Calculate reflectivity matrices for every layer

mt , mb , mtsh , nt , nb , ntsh = reflect2(ru , rd , rush , rdsh , tu , td , tush ,

tdsh)

21

# Calculate 6 sources of potentials at source layer

su1 , sd1 , su2 , sd2 , su3 , sd3 , su4 , sd4 , su1sh , sd1sh , su2sh , sd2sh =

reflect3(mt, mb, mtsh , nt, nb, ntsh)

# Calculate potentials at each receiver and spatial derivatives of Green’s

functions

26 pu , pd , push , pdsh , G = reflect4(su1 , sd1 , su2 , sd2 , su3 , sd3 , su4 , sd4 ,

su1sh , sd1sh , su2sh , sd2sh)

# Sum potentials for all horizontal wavenumbers
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68 Forward modeling code

G_sum = np.sum(G, axis = 4)

31 # Calculation of elementary seismograms in cartesian coordinate system

E = reflect5(nr , ns , G_sum , cosr , sinr , a1)

# Calculate moment tensor coefficients and full moment tensor

a, M = cmomentfull(strike , dip , rake , mu, lambd , mmoment , width , length ,

Ds , Dn)

36

# Calculate displacements for each receiver

ux , uy , uz = convm(E, a, fs)

return ux, uy, uz

Listing C.1: Main core of the forward modeling code.
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