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The response of a sound system in a room primarily varies with the
room itself, the position of the loudspeakers and the listening position.
The room boundaries cause reflections of the sound that can lead to
undesired effects such as echoes, resonances or reverberation. Knowl-
edge of the location of these large reflecting surfaces can help to better
estimate the sound field behavior inside the room. This work focuses
on exploiting the inherent information present in echoes measured by
microphones to infer the location of nearby reflecting surfaces. The
investigated application uses a loudspeaker to emit a known signal
and record the resulting sound field with a co-located microphone ar-
ray. A signal model is proposed which provides a relationship between
reflector locations and measured microphone signals. The locations of
reflections are estimated by fitting a sparse set of modeled reflections
with measurements. We present two novelties with respect to prior
art. First, the method is end-to-end where from raw microphones
measurements it outputs an estimate of the location of reflectors. For
the case of a compact uniform circular microphone array, the symme-
try can be exploited to reduce the computational complexity of the
inference process. Secondly, the model is extended to include a loud-
speaker model that is aware of the inherent directivity pattern of the
loudspeaker. The performance of the proposed localization method
is compared in simulation to the existing state-of-the-art localization
methods. An experimental study with real world measurements was
also conducted to investigate the performance of the model.
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Abstract

The response of a sound system in a room primarily varies with the room itself, the
position of the loudspeakers and the listening position. The room boundaries cause
reflections of the sound that can lead to undesired effects such as echoes, resonances
or reverberation. Knowledge of the location of these large reflecting surfaces can help
to better estimate the sound field behavior inside the room. This work focuses on ex-
ploiting the inherent information present in echoes measured by microphones to infer
the location of nearby reflecting surfaces. The investigated application uses a loud-
speaker to emit a known signal and record the resulting sound field with a co-located
microphone array. A signal model is proposed which provides a relationship between
reflector locations and measured microphone signals. The locations of reflections are
estimated by fitting a sparse set of modeled reflections with measurements. We present
two novelties with respect to prior art. First, the method is end-to-end where from raw
microphones measurements it outputs an estimate of the location of reflectors. For the
case of a compact uniform circular microphone array, the symmetry can be exploited
to reduce the computational complexity of the inference process. Secondly, the model
is extended to include a loudspeaker model that is aware of the inherent directivity
pattern of the loudspeaker. The performance of the proposed localization method is
compared in simulation to the existing state-of-the-art localization methods. An ex-
perimental study with real world measurements was also conducted to investigate the
performance of the model.
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Introduction 1
Experiencing sound can be a powerful tool to evoke emotions in the listener. We often
regulate our mood by listening to our music of choice. With the vast number of portable
loudspeaker systems on the market, the way one can experience sound is evolving. For
example, by placing several loudspeakers around a room, so-called (personal) sound
zones can be created [2]. The challenge in creating the sound zones is to minimize the
interference between two zones that are close together [3]. One thing to consider when
controlling the sound zones is that walls tend to echo back sound emitted into them
[4]. Thus, setting up acoustic zones within a room requires awareness of the positions
of the room walls and their acoustic properties. Similarly, in teleconference one wishes
to improve the intelligibility of speech by canceling out the echoes introduced by the
room. Another application that has recently gained momentum is that in recent years,
formats with object-based audio tracks are standardized [5]. In surround sound systems,
the group of loudspeakers can arrange the individual audio tracks that corresponds to
instruments in space to create a rich sound stage. Essentially moving the sound mixing
away from the studio and into the living room. These methods that compensate or
exploit room information are limited by the availability and reliability of the information
that can be acquired about the room [6]. Obviously, one could ask the user to provide
this information and to configure the device. However, as the complexity of these
multiple loudspeaker and multi-microphone systems increase, the burden to optimally
configure the device should not be placed at the user.

So how can a smart loudspeaker system automatically infer the room size and shape
and its relative positioning? Recently, intelligent loudspeakers that are equipped with
inexpensive microphones have entered the consumer market. These systems usually
consist of an enclosure with multiple loudspeaker drivers and a microphone array. With
the microphone array, the system is capable of recognizing speech commands from users
and has created a new interface between human and machine. It has been proposed to
use such microphones to also determine the location of the room walls.

The general principle is that when a loudspeaker emits a sound signal into the room,
it will be reflected (echoed) by the walls. The microphones will receive these echoes
in the form of delayed versions of the transmitted signal (filtered by the loudspeaker,
walls, and microphones). The direct path contribution (i.e. the emitted signal received
directly by the microphones, without reflection from the walls) is typically know, since
the relative position between loudspeaker and microphones is known and constant over
time, and can therefore be eliminated. Distances to the walls can then be determined
by estimating the precise delay of the echoes from the walls, and by using the relative
delay between microphones in the array to determine angles. In practice, such echo
detection is rather challenging, as the echoes of the transmitted signal are concealed
by the filtering of the loudspeaker, walls, and microphones.

In this thesis a novel measurement model is proposed that provides a relationship
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between microphone measurements and reflector locations. The signal model includes
the convolution with the excitation signal, a loudspeaker model and the microphone
array geometry. The influence of the room is modeled as a spatially varying linear
time invariant system that assumes specular reflections. The forward model treats the
location of the reflectors as input, and defines the microphone signals as the result of
the system (acoustic excitation signal, loudspeaker, microphone array) acting on this
input. The locations of the reflectors are identified by solving the inverse problem.

This work in this thesis has two novelties with respect to prior art. First, the method
is end-to-end, where from raw microphones measurements it outputs an estimate of
the location of nearby reflections. In particular, for the compact uniform circular
microphone array, the symmetry is exploited to create an algorithm that is of reduced
computational complexity. Secondly, it uses a loudspeaker model that is aware of the
inherent directivity of a loudspeaker. It is thus assumed that the loudspeaker under test
has been measured in free field conditions from various angles to infer an appropriate
model. The directivity aware model is then used to infer the locations of the echoes in
a more robust way.

1.1 Research statement and outline

In this thesis, the following general research question is addressed:
How can the location of reflecting surfaces in a room be estimated using a loudspeaker
system with co-located built-in compact microphone array? The rest of the thesis con-
tinues as follows. Chapter 2 provides an overview of the prior art, presents the contri-
butions of this thesis and provides the necessary background information. In particular
at the end of Chapter 2 a general signal model is presented. In Chapter 3 the pro-
posed design is presented. The signal model for the compact uniform circular array
is presented that provides a relationship between reflector location and microphone
observations. At the end of Chapter 3, an efficient method is presented to locate the
reflectors by fitting a sparse set of modeled reflections with measurements. Chapter
4 presents simulation results that evaluate the performance of the proposed methods
with state-of-the-art methods and investigates the performance of the model with real
world measurements. Finally, Chapter 5 presents the conclusions and future research
directions.

1.2 Notation

Throughout this thesis vectors are denoted by lowercase bold letters, i.e.y and matrices
with capital bold letters, i.e. M. Scalars are denoted by lowercase letters as c and
integers representing dimensions are denoted by capital letters such as T and L.

(Multivariate) signals are assumed discrete, unless otherwise specified. As an ex-
ample x(n) is a one dimensional discrete signal of length L. Zero based indexing is
used, therefor x(n) is defined for n = 0, 1, . . . , L− 1, sampled at fs. The ∗ denotes the
convolution operator and ⊗ denotes the Kronecker product. Finally, for some matrices
whose structure is important, the names are predefined. In particular we have that IM

2



is the identity matrix of size M ×M , FM denotes the unitary Discrete Fourier Matrix
of size M ×M . Λ is reserved for diagonal matrices and T, C are reserved for Toeplitz
and Circulant structured matrices respectively.
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Problem Background and
Related Work 2
A smart loudspeaker consists of at least one loudspeaker drive and a microphone in the
same enclosure. The problem is to sense the environment in which the system is placed.
More specifically, in domestic situations, one is interested in locating the boundaries
of the room. These walls cause acoustic reflections that influence the received signals
in the embedded microphones. Estimating the locations of these reflecting surfaces is
typically done in several stages. In the next section, these steps are explained and the
prior art for each of these submodule is discussed. In the remainder of this chapter,
background information is provided in room acoustics and loudspeaker modeling. At
the end of the chapter a general signal model is provided and it is explained how this
signal model can be used to locate reflecting surfaces.

2.1 Prior art

This thesis is focused on estimating the location of reflectors by using a loudspeaker with
embedded microphones. The literature on this topic can be group according to their
approach (and priors) and initial assumptions. To begin with, there is a tendency in
literature to group three distinct scenarios: i) the loudspeaker and microphone signals
are synchronized and the loudspeaker excitation signal can be freely chosen, ii) the
loudspeaker and microphone signals are synchronized and the loudspeaker signal is
predermined but observable (eg. a user is playing music) and iii) the loudspeaker and
microphone signals are unsynchronized and the loudspeaker signal is unknown. In this
thesis, scenario 1 is assumed.

In [10] three popular excitation signals are compared in performance. The expo-
nential sine sweep is used in the coming chapters, one reason for using this over the
maximum length sequence is that the non-linear effects of a loudspeaker are removed
more easily when excited with a sine sweep [11]. More information about the exponen-
tial sine sweep and its inverse is provided in Appendix B.

In general, when assuming that the excitation signal of the loudspeaker is a known
signal x(n), the problem of finding the wall locations can be seen as a sequence of steps.
In Fig. 2.1 these steps are given by:

1. Channel estimation - The channel of interest is convolved with the excitation
signal x(n). To estimate the channel, the excitation signal must be deconvolved
from the microphone measurements.

2. Loudspeaker removal - A loudspeaker model is used to remove the influence of the
loudspeaker response from the channel estimate. For an omnidirectionally sym-
metric loudspeake, the influence is removed using deconvolution. If one considers

5
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Figure 2.1: Typical processing stages from microphone measurements to wall locations. Here
RIR means Room Impulse Response, as explained in Section 2.2.2

a typical loudspeaker, then due to the innherent directivity this step is more com-
plicated and cannot typically be performed as an isolated step. The hope is that
this results in the room impulse response (explained in Section 2.2.2).

3. Detect/pick peaks - Assuming that the wall has no influence on the signal, clear
distinct pulses should be visible. The peaks from the room impulse responses
correspond to reflections and must be detected. This detection problem requires
knowledge on the number of peaks or needs an appropriate threshold. Inherently,
there is a trade-off between false positives and false negatives.

4. Echo sorting - Since we have multiple microphones, the acoustic echoes must be
labeled according to the wall which produced them. This sorting of delays is
a combinatorial problem (and NP-hard) [12] and depending on the microphone
geometry in the room, may have a large search space.

5. Reflector localization - Since all methods assume that the microphone locations
are known, if at least three microphone locations are combined with three times-
of-arrival then the origin of the reflection can be localized.

The problem that motivates the writing of this thesis is that in general detecting the
peaks in the room impulse response (step 3), that correspond to acoustic reflections,
is a major challenge. In domestic rooms one can find many smaller obstacles that
are reflective but are not acoustically dominant for most room exploitation strategies.
Thus, most of the peaks present in the room impulse responses do not correspond to
dominant reflectors, and the ones that do have been distorted. Often in literature white
noise is added to synthesize more challenging scenarios; however, in practice the peak
picking methods fail, even under high SNR scenarios [6].

For example, methods that seek to estimate the channel between acoustic transducer
and microphone based on adaptive filtering have been extensively researched [13, 14].
By assuming a power limited room impulse response, it was found that Tikhonov
regularization (`2-norm regularization) can improve the identification of the channel
and even be optimal. However, since these publications neglect to detect the delays
from reflectors, it provides no guarantees to be optimal in a processing chain to solve
the problem of this thesis.
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Similarly, to account for a more complete loudspeaker model, the image source
method [15] (explained in Section 2.2.1) has been extended for directive sources [16,
17, 18]. By modeling the loudspeaker’s directivity pattern using spherical harmonics,
an orthogonal basis is provided to model all loudspeakers, in theory. However, due
to computational complexity, the modeling of loudspeaker directivity using spherical
harmonics has not been included as step 2 in any processing chain to the best knowledge
of the author.

As mentioned previously, the echo sorting problem raised in step 4 can be solved
in many ways. First of all, if the loudspeakers are placed randomly in a room, the
problem is computationally much more demanding. Whereas if a microphone array
is used, beamforming techniques can be used that greedily assign groups of echoes by
computing the steered response power for all directions. The methods that seek to
solve the combinatorial problem in the echo sorting stage all assume that noiseless echo
delay timing information is available [12, 19]. Thus, if a set of delays is given that is
geometrically inconsistent, then the method will detect this inconsistency and try a
different group labeling of each echo. Fortunately, this means that the methods can
detect errors in the timing information. However, the mathematical framework from
that area of research cannot easily be adapted to work with noisy echo information nor
a probability distribution using a stochastic framework.

Recently, methods that combine the peak detection (step 3) in the multichannel
room impulse response with the image source localization (step 4) have been proposed.
These methods assume that the microphone array is compact with respect to the source
distances. This allows for a plane wave assumption for reflections. In [20] uniform
circular arrays are used to detect peaks from the multichannel response only if they are
geometrically consistent. The ideas developed there are inspirited from image signal
processing. The proposed method, however, loses performance as the number of wall
reflections increase. In general, the method is biased and performs poorly in separating
two wall reflections that arrive in close succession or from similar direction of arrival.

High-resolution techniques to resolve multiple (real) acoustic sources using compact
microphone array solves this problem [21, 22, 23]. By assuming a sparse number of
sources, the method can separate even closely placed sources by formulating the solution
as an inverse problem. The `1-norm is used as penalization to force a sparse solution.
The idea to use the sparsity prior on the room impulse response was an earlier idea. In
[24] it is argued that if the room impulse response is constructed from a sparse number of
nonnegative reflections, the linear deconvolution performs a pseudo-inverse on a matrix
that may be ill-conditioned. Instead given this prior the `1 penalization is a Bayesian
approach, within a probabilistic framework, leading to an expectation-maximization
(EM) procedure that infers the optimal regularization parameters..

The sparsity assumption on the image sources is a prior that is also used successfully
in more recent work for solving the room impulse response interpolation problem. This
problem seeks to extrapolate room impulse responses for different positions in a room.
Solutions based on compressive sensing use the `1 regularization to enforce a sparse
number of sound rays have shown to increase performance [25, 26, 27].

In [28] an end-to-end method is proposed that is aware of the loudspeaker directivity
model and uses the `1 penalization to regularize for priors. The method matches the

7



Virtual source

Reflected wave

Original source

θ∗
θ

Figure 2.2: Specular reflection is equivalently modeled with a virtual image (copy) of the
original source positioned at the far side of the reflective boundary. Source: [1]

measured signal with atoms in a dictionary. The dictionary is constructed from many
measurements in an anechoic chamber. The measurements are setup with a single
loudspeaker and wall. The loudspeaker is rotated for a total of 240 direction of arrivals.

An overview of the literature mentioned here is provided in Table 2.1. The papers
are categorized by the steps from Fig. 2.1 and a short summary is given.

2.2 Background information on room acoustics

The formal description of the evolution of the sound field in any fluid is given by the
acoustic wave equation. This equation is in the form of a second order partial differential
equation (PDE). In general solving the acoustic wave equation in practical scenarios is
challenging.

Numerous acoustic modeling techniques exist, derived from the governing PDE. In
particular, in room acoustics, so-called geometric acoustics can be useful. Instead of
wave-theory based methods that describe the dynamics of wave propagation and wave
refraction derived from the PDE, the idea behind geometrical acoustics is a simplified
theoretical description of the wave propagation. It replaces the concept of sound waves
with the concept of sound rays. Inspired from geometrical optics, the sound rays
propagate on a narrow straight path. This description fails to model room modes
at lower frequencies, but for higher frequencies can be a useful model. If the sound
ray encounters a surface larger than the wavelength, it is assumed that the sound ray
reflects specularly (Fig. 2.2). This is similar to a mirror-like reflection in optics. In
typical domestic rooms this assumption holds for frequencies higher than 1000 Hz. In
the next section the mirror image source method is explained and the room impulse
response is introduced. If the reader is interested in more room acoustics background,
then one is referred to work by Heinrich Kuttruff [34] and Finn Jacobsen [35].

2.2.1 Mirror Image Source Method

In 1979 Allen and Barkley introduced the mirror image source method (MISM). This
acoustic model is specific to modeling the sound field in a room with rigid walls. The
MISM seeks an expression of the sound field that is a superposition of one real source
and infinitely many image sources (IS). The image (or virtual) sources are sources that
model the mirror-like reflections that occur at room boundaries. The image source
method furthermore assumes that the acoustic properties of the wall are uniform. In
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Table 2.1: Literature from 20 sources. Most references focus on a single step in the processing
chain. Most notably is the difference in loudspeaker modeling.

Channel Estima-
tion

Loudspeaker
model

Echo detecting Delay sorting

Buchner [13],
Waterschoot [14]

Adaptive filter-
ing

Stan [10] Linear Deconvo-
lution

Torras-Rossel
[11], Farina [29]

Sweep measure-
ments

Non-linear arti-
facts removed

Chen [30] Generalized
Cross Correla-
tion

Lin [24] Sparse deconvo-
lution

`1 regularization

Antonacci [31] Linear deconvo-
lution

Matched filter
with omni-
directional
assumption

Peak picking Common tangent
Estimation of El-
lipses

Tervo [6] Overview of Gen-
eralized Cross
Correlation

Peak picking Beamforming:
Maximizing
steered response
power

Brooks 2006 [21],
Tiana-Riog [22],
Lyllof [23]

Real uncorre-
lated source
localization`1
regularization

Plane wave
decomposition
using template
mask

Tervo [32] Highly direc-
tional loud-
speaker

Only detect
peaks that are
spatially corre-
lated

Echoes are al-
ready grouped
in DOAs as the
room is probed
with highly
directional loud-
speaker

Samarasinghe[16],
Bu2017 [17] ,
Hafezi 2015 [18]

Spherical har-
monics - Image
source method

Dokmanic [12] Eucledian Dis-
tance Matrix
based approach

Coutino [19] Subspace based
filtering

Ribeiro [28] 100’s of
Loudspeaker-
wall mea-
surements as
dictionary atoms

`1 regularization Loudspeaker re-
sponse in dictio-
nary atoms

Remaggi [33] DYPSA Peak picking Overview on var-
ious geometric
methods

Torres [20] Maximum length
sequence - Linear
deconvolution

Image processing
based threshold-
ing

Plane wave
decomposition
using template
mask

Proposed
method

Sparse deconvo-
lution

two dimensional
loudspeaker im-
pulse response
model - Direc-
tivity aware
model

`1 regularization Plane wave
decomposition
using template
mask
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1st order

1st order

1st order

2nd order

2nd order

θt

θt
θt

θt

θt θt

Room walls

Figure 2.3: Top view of a loudspeaker and microphone in room. The image sources are
depicted in gray. The coordinate system of the image sources is reflected. The microphone
measurements are convolved with the loudspeaker impulse response evaluated at the transmit
angle (black arrow).

Fig. 2.3 three first and two second order image sources are depicted. Besides the direct
path (red), there are multiple paths that sound rays will travel to reach the microphone.
The acoustic echoes caused by these distinct reflections are characterized by a delayed
that is proportional to the total distance traveled.

The MISM has since been extended for directive sources [16, 17, 18]. In this litera-
ture, the directivity of any source is denoted by its spherical harmonic decomposition
coefficients. Each interaction with a wall applies a transformation to the coordinate
system, such that the coordinate system is reflected with respect to the wall. As can
be seen in Fig. 2.3 the transmit angle θt is defined at the source location with θt = 0
(depicted with the dotted line) to the right of it and by counting counter-clockwise (de-
noted by the arrow). Since, the coordinate system is reflected for each wall interaction,
the resulting axis on which θt is defined is depicted for each image source in the Figure.
It is important to realize that each sound ray (and consequently each virtual source)
in the room has its own transmit angle θt. The transmit angle is defined by the vector
connecting the image source location and the microphone position; however, the angle
must be projected on the coordinate system of the image source.

The image source method is often used to motivate that the room impulse response
consists of a sparse set of delays in the early part. In the next section, the room impulse
response is explained in further detail.
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2nd

2nd

(a) Top view of a room. A sound source and
microphone are placed. The room boundaries
reflect the sound rays to create multiple paths
to the microphone. Red: direct path, orange:
first order reflection, green: second order re-
flection.

E
n
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gy

Time

(b) Model of the early part of the room im-
pulse response according the the MISM. The
wall reflections cause delays, whose energy de-
creases with distance/time.

Figure 2.4: Early part of the room impulse response modeling.

2.2.2 Room Impulse Response

The room impulse response (RIR) can be defined by assuming that the room influence
on a measured signal can be modeled as a linear time invariant (LTI) system. In the
literature, sometimes the Acoustic Transfer Function (ATF) is used instead. The ATF
is the Fourier Transform of the RIR and is often used by acousticians. Measuring the
room impulse response using a loudspeaker and microphone is a challenge in itself, as
it is not trivial to remove all influence from the microphone and loudspeaker. Those
are typically not flat-frequency nor omni-directional. In early works, the room impulse
response was measured by exciting the room with a balloon pop or a toy gun. If
a loudspeaker is used instead, a known excitation signal can be used to identify the
impulse response of the LTI room system. An overview of pilot signals and methods is
given in [10, 29] and in Appendix B the exponential sine sweep method is explained.

More often, however, the room impulse response is used to impose some signal
model on measurements. The room impulse response can model the sound field in
enclosures using spatially varying LTI-systems. The RIR will change as a function of
wall locations, loudspeaker position and listening position. To understand how the
early part of the room impulse response relates to the geometry, in Fig. 2.4 an example
is given (not to scale). The length of the sound rays determines the delay of the echo
in the RIR. The energy of the echo is inversely proportional to the distance and tends
to decrease at each reflection, as the wall absorbs some energy. It must be noted
that second-order reflections may arrive earlier than some first-order reflections, as is
depicted in the example. The early part of the RIR can be seen as a superposition
of pulses, each of which corresponds to an attenuated delayed version of the original
signal. Let a denote the room impulse response, consisting of the direct path (dp) and
a superposition of Image Sources aIS. The location of these image sources are denoted
by R, θr. Furthermore, as depicted in Fig. 2.3, each IS has a particular direction facing
the microphone. This is needed to assign the correct loudspeaker impulse response
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for directive loudspeakers and is denoted as the transmission direction θt. Let a(dp)(n)
denote the direct path channel, assuming that there are S image sources we have

aroom(n) = a(dp)(n) +
S−1∑
i=0

ρia
(Ri,θ

t
i ,θ

r
i )

IS (n). (2.1)

From Eq. (2.1) one can see that following this model, the early part of the room impulse
response is a superposition of the direct path and S virtual sources. The contribution
of each virtual source is denoted to be a function of the source location Ri, θ

r
i and the

attenuation(s) of the wall(s) ρ(i). The reason for including θti is to model the correct
loudspeaker response, aware of directivity. This is explained in further detail in the
next section.

Of interest for the problem of this thesis is to estimate Ri, θ
r
i , from noisy microphone

measurements. If one assumes that the loudspeaker enclosure with the built-in micro-
phones is constant, then the direct path is time-invariant. Throughout this thesis, it is
assumed that the direct path channel a(dp)(n) can be measured a priori and is LTI and
its influence can be removed perfectly.

2.3 Loudspeaker modeling

A loudspeaker is an electroacoustic device that connects the realm of electronics with
the world of sound. A loudspeaker can convert an electric signal into pressure changes
in the air around it. Often of much interests is the frequency response of a loudspeaker.
The rule of thumb is that to reproduce music; one needs the full auditory band of
20Hz - 20kHz or even higher. Measuring the loudspeaker impulse response can be done
by placing the loudspeaker under test in an anechoic room. A pilot signal is emitted
and the response is measured with a microphone. The loudspeaker is assumed to be a
linear time-invariant system, whose impulse response is causal and finite. To identify
this system, typically a known signal is used to excite the loudspeaker, this is explained
in further detail in Appendix B

In the application of reflector localization, using a loudspeaker model is useful for
predicting the contribution of a reflector at a particular location, on the measured mi-
crophone signal. The more precise the loudspeaker model, the better the prediction and
thus the inverse problem of estimating the locations given measurements are also im-
proved. One naive way to do so is to include a measured loudspeaker impulse response,
as done in [31]. However, as is shown in Fig. 2.5 the loudspeaker impulse response is
not equal in each transmitted direction. In Fig. 2.5b it is shown that if a microphone
is circled around the loudspeaker in the horizontal plane, the magnitude frequency re-
sponse bandwidth is maximum when directly in front of the loudspeaker cone. One
can also observe that at the back of the loudspeaker, the bandwidth is reduced. This
makes the localization of the corresponding image source more challenging [6].

If we assume that the loudspeaker can be modeled as a linear time invariant system,
then the loudspeaker impulse response can be used to define the input/output relation-
ship of such a system. Before doing so, it must be noted that the loudspeaker response

12
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144◦
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216◦

252◦ 288◦

324◦

(a) Les formal drawing. Top view of a single
driver loudspeaker. Model is shown with P =
10 transmit angles. In general the impulse re-
sponse has higher power (red) in the on-axis
direction and lower in the back (green). Fur-
thermore the on-axis loudspeaker impulse re-
sponse is more spiky as it has higher frequen-
cies.

(b) Loudspeaker absolute frequency response
(dB) measured at 1 meter away for various an-
gles of transmission. One can see that the on-
axis angle 0◦ has a high response for high fre-
quencies above 10Khz. For off-axis angles the
bandwidth of the loudspeaker decreases sub-
stantially.

Figure 2.5: Figures depicting the inherent directivity that loudspeakers have

v(n) is a function of listening position v(n, r), in other words of the direction of trans-
mission and distance [36]. Furthermore, by our construction the loudspeaker response
v(n) does not include the propagation delay. Therefore, if the distance r0 is sufficiently
far, such that a far-field assumption can hold, then we have that for distances further
away r∗ ≥ r0 we have

vc(n, r∗, θ∗) =
r0

r∗
v(n, r0, θ∗) (2.2)

where c denotes a continuous signal in the spatial dimension. It must be noted that the
far-field distance is proportional to the wavelength. As a result, in broadband scenarios,
the far-field assumption may not hold for the lower frequencies. If one can disregard
a scalar ambiguity, then this far-field assumption can be used to model a loudspeaker
only as a function of the direction of transmission. It can therefore be argued that in the
far-field vc(n, r0, θi) for some grid of θi is sufficient to model the signal for that source
at any position in the room further away than r0. In the next chapter, the loudspeaker
model is given by a two dimensional discrete signal v(n, p) for n = 0, . . . , K − 1 and
p = 0, . . . NP − 1. Where p samples the direction of arrival uniformly, much like in
Fig. 2.5a.

In Eq. (2.1) one can see that the room impulse response can be decomposed in the

direct path a(dp)(n) and one contribution for each mirrored image source a
(Ri,θ

t
i ,θ

r
i )

IS (n).
The angle of arrival θri is used to compute the correct relative delays for each microphone
in the array, as is explained in the next section. The room impulse response and
loudspeaker model can be combined, by including the loudspeaker impulse response
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2nd order

1st order

1st order

loudspeaker system

Figure 2.6: Top view of compact microphone array and real loudspeaker placed in a corner.
The image sources are reflected at the wall. Because the walls form a 90◦ angle, the second
order reflection is received and transmitted at θr = θt = 7

8π.

in aIS. The number of wall reflections for an image source determines the order of
that source and may change the relationship between the direction of arrival θr and
loudspeaker transmit angle θt. In general, for first-order image sources, the situation
is similar to Fig. 2.6. No matter how the wall is oriented, the wall reflection always
occurs at the normal vector of the wall. This is a direct consequence of placing the
loudspeaker at the center of the microphone array. The same does not hold for second-
order reflections. However, if one assumes orthogonal walls, ie. a rectangular room,
then it holds that θt = θr for all second-order reflections. Remember that we defined
v(n, p) as a two-dimensional discrete signal, and we sample the angle NP times. If we
can assume some smoothness over the transmit angle θt such that the off-grid errors
are small, we have

vc(n, θ∗) ≈ v

(
n,

⌈
θ∗NP

2π

⌋)
. (2.3)

Finally, the observation model for a virtual source can be parameterized by Ri and θi

a
(Ri,θi)
IS (n) = δ

(
n− Ri

c

)
∗ v
(
n,

⌈
θiNP

2π

⌋)
. (2.4)

2.4 Compact Microphone Array response

Consider N microphones in an array near the origin of a polar grid and a single source at
rs =

[
Rs, θs

]ᵀ
as depicted in Fig. 2.7. The Figure also illustrated that each microphone

is bounded to be closer to the origin than r. In literature if r is sufficiently small with
respect to the source distance, than the microphone array is compact. In this subsection,
the linear response for the microphone array is defined. This thesis is focused on the
delay-and-sum beamformer idea. It is based on delaying the signals captured at each
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r
{Rs, θs}

Figure 2.7: Top view of compact microphone array on the left and a single source on the
right. The compact microphone array is bounded by the circle of radius r.

microphone by a specific amount and adding them up to focus the system to a specific
direction in space. In general the total delay is proportional to the distance from each
microphone to that point in space. Let the speed of sound be denoted by c, then the
time to travel a distance d is given by

t =
d

c
. (2.5)

To focus the discrete microphone measurements y(t, i) for t = 0, . . . , T and i =
0, . . . N − 1 into the point in space of rs a multichannel filter is used and the outputs
of each filter are summed.

q(rs) =
N−1∑
i=0

δ

(
t− di

c

)
∗ y(t, i) (2.6)

Where ∗ is the linear convolution operator in time and di is defined as the distance
between rs and the ith microphone.

The trick that is often applied in beamforming is to assume that the source is in
the far field, ie Rs >> r. Then the beamformer delay di can be decomposed in a
constant factor for all i and a relative component. We now define the relative distance
∆di(θs) = di(θ)−Rs. Please note that on average for half the microphones this value is
negative. As a consequence the angle θ and Rs are decomposed. By using the property
that δ(t− a) ∗ δ(t− b) = δ(t− a− b) we have

q(rs) = δ(t− Rs

c
) ∗

N−1∑
i=0

δ

(
t− ∆di(θs)

c

)
∗ y(t, i) (2.7)

The computation is reduced, as the impulse response that has to be applied for each

microphone is of low maximum order. This is because the maximum delay ∆di(θs)
c

is
bounded by the microphone radius r as r

c
.
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θr

Plane wave

Compact Microphone Array

Figure 2.8: A source in the far field causes a plane wave on the compact microphone ar-
ray. Depicted is a plane wave arriving from θr. The relative delays for the delay-and-sum
beamformer are only a function of θr.

2.5 Signal model

In the preliminaries, the concept of geometric acoustics and the image source method
were introduced. In this section, a complete measurement signal model is presented.
Figure 2.9 depicts the components in the signal model that are going to be considered.
The Figure is a top view. The ceiling and floor are not depicted in the Figure and are
disregarded in the signal model presented here.

Initially, the digital to analog converter generates an analog pilot signal x(n) for
the loudspeaker. The (active) loudspeaker is excited by this signal and emits a filtered
version of this signal to its surroundings. The loudspeaker impulse response provides a
model to calculate the acoustic output signal of the loudspeaker (in the far-field).

We make the fundamental assumption that source and receivers lie on the same plane
and the lying plane of the reflector is orthogonal to this plane. In this scenario, the
geometry of the acoustic scene is described by the plane in which sources and receivers
lie in two dimensions. In general, the impulse response function of the loudspeaker
depends on the angle of transmission θt. Since this model is only concerned with
modeling vertical walls, the azimuth angle is disregarded here. Once the sound ray
hits the wall, it is convolved with the wall impulse response, that is a function of wall
material and wall position. The signal is then convolved with a delay, to account for
the transmission distance. In other words, the delay contains information about the
distance of the wall and is characterized by a peak in the channel response. Lastly, the
sound ray arrives at the compact microphone array with angle θr. The array geometry
determines the relative measurements for each microphone.

Previously, in Eq. (2.4) the reflection of a single source is given as a function of
loudspeaker transmit angle. If we combine this Equation with the plane wave response
on a compact microphone array, given in Eq. (2.7) we obtain a measurement model for
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Digital to Analog converter

x(n)

Virtual Source

Loudspeaker system with uniform circular array

distance R

Plane wave from θr = 0◦

x(n) ∗ vc(n, θt = 0◦)

x(n) ∗ vc(n, θt) ∗ δ(n− R
c )

Figure 2.9: Top view of a loudspeaker with compact microphone array close to a wall. The
mirrored virtual source is depicted in gray. The measurement model for the plane wave of this
image source is given by the loudspeaker response in the on-axis direction vc(n, θt) delayed by
R/c, where R is the total distance. The array response for the plane wave is neglected here.

the kth microphone at time n:

y(n, k) = x(n)︸︷︷︸
Excitation signal

∗

adp(n) +
S−1∑
i=0

v

(
n,

⌈
θiNP

2π

⌋)
︸ ︷︷ ︸

Loudspeaker model

∗ δ
(
t− Ri

c

)
︸ ︷︷ ︸

Propagation delay

∗δ
(
t− ∆dk(θ

r
i )

c

)
︸ ︷︷ ︸
Mic Array response


(2.8)

where adp(n) is the direct path channel between the loudspeaker and built-in micro-
phones, v

(
n,
⌈
θiNP

2π

⌋)
denotes the loudspeaker impulse response transmitted at θi in

the far-field, Ri is the distance of the ith image source and ∆dk(θ
r
i ) is the relative

delay for the kth microphone for a plane wave arriving from θi and is determined by
the array geometry. It must be noted that it is assumed that θr = θt which holds for
geometries as depicted in Fig. 2.9. In the next chapter, Eq. (2.8) is evaluated for a
specific compact microphone array: The uniform circular array. It is shown that the
symmetry can be exploited, to efficiently compute the measurement model for many
Ri and θi on a uniform polar grid by restating the microphone array response as a two
dimensional (circular) convolution. Evaluating Eq. (2.8) for many candidate locations
is essential, as the problem is solved as an inverse problem. As explained in greater
detail in Section 2.6.
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2.6 Sparse deconvolution

Sparse deconvolution is a deconvolution technique that uses prior knowledge in the
model to increase performance. Suppose there is a LTI system that one wishes to
estimate . A pilot signal excites this system and the output is observed. One can write
the signal output as the convolution of the input with the system’s impulse response
function h(n)

y(n) =
k=L∑
k=0

x(k)h(n− k) (2.9)

Where x is of length L, h is of length T and y is of length T + L − 1. Since the
convolution is a linear operation, it can also be written down in matrix-vector notation
as

y = Txh, (2.10)

where we have that y and h are defined as

y =
[
y(0), y(1), . . . , y(T + L− 2)

]ᵀ ∈ RT+L−1, (2.11)

h =
[
h(0), h(1), . . . , h(T − 1)

]ᵀ ∈ RT , (2.12)

and Tx is an overdeterimned linear system of equations with a Toeplit structure of size
T + L− 1× T and is given by

Tx =



x(0) 0 . . . . . . . . . 0

x(1) x(0) 0
. . .

...
... x(1) x(0) 0

. . .
...

...
...

...
. . . 0

...
...

...
...

. . . 0
x(L− 1) x(L− 2) x(L− 3) . . . . . . x(0)

0 x(L− 1) x(L− 2)
. . . . . . x(1)

... 0 x(L− 1)
. . . . . .

...
...

...
...

...
. . .

...
0 0 0 . . . 0 x(L− 1))



. (2.13)

The Toeplitz matrix can also be defined as a column subset of a Circulant matrix. A
Circulant matrix must be constructed with a zero padded version of x. The relationship
with the Circulant matrix is useful, as it reveals the use of the Fast Fourier Transform
to perform the matrix-vector multiplications in O(n log2(n)) flops instead of O(2n2).
More information about Toeplitz and Circulant matrices and their properties can be
found in Appendix A. The least squares estimate of h is given by

ĥ = argmin
h
‖y −Txh‖2

2 , (2.14)
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which has the closed form solution of

ĥ =
(
T†xTx

)−1
T†xy, (2.15)

where (.)† denotes the Hermitian of the matrix. If the excitation is poor, then the
the matrix is ill-conditioned. In general, the bandwidth of the excitation signal x
determines the singular values of the Toeplitz matrix X.

Another method for channel estimation is the Matched Filter, which approximates
the matrix inversion. It is seen in practice when the pilot signal is too long to compute
the pseudoinverse. It is assumes that T†xTx ≈ αI. In Appendix B it is shown that for
some pilot signal (the exponential sine sweep), the Matched Filter approximates the
pseudoinverse very well.

Suppose now, that from the T filter taps, at most S are non-zero and S << T . This
prior information can be used to improve the estimate significantly.

ĥ =
argmin

h
‖y −Txh‖2

2

subject to ‖h‖0 ≤ S
(2.16)

This approach is referred to as sparse deconvolution and has application in channels
consisting of distinct multi-paths.
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Proposed Design 3
Consider a system that has at least one loudspeaker and a compact microphone array
with N microphones and known geometry. The system is placed in an unknown room
and the loudspeaker can actively probe the room by emitting a known signal. We
assume that the transmitter and receiver are synchronized and coincide geometrically.
The proposed design is based on a geometric acoustic model. The acoustic waves are
modeled as sound rays. For first order reflections we thus have that the reflection
points on the wall are orthogonal to the sound ray. Figure 3.1 depicts a top view of
a system placed in a rectangular room. The first order reflections probe the wall in
the green areas and it is assumed that the wall extends linearly with similar acoustic
characteristics.

Much like in [28] the microphone measurements are used in an `1-regularized least
squares to fit with synthetically generated echoes, where the reflector localization is
solved as an inverse problem. The measurement model is the forward model, that
can predict the microphone measurements for any room, given the wall locations. In
Eq. (2.8) one such model is provided. In this chapter, the forward signal model is
formulated to have as input a signal, rather than a summation over all the image
sources.

This chapter will first define the geometrical setup in the room, after which the
microphone array response is given for the uniform circular array in Section 3.1. the
forward measurement model is then presented and in order to solve the inverse problem
using known least squares matching programs, the candidate locations are discretized.
It is shown in Section 3.3 that if the candidate locations are defined on an uniform polar
grid, then the symmetry in the array can be exploited to efficiently compute the forward
model. Later, in Section 3.5 the forward measurement model is rewritten in matrix-
vector notation. Finally in the last section of this chapter, the convex optimization
problem that resolves wall locations from measurements is presented.

3.1 Problem scenario

Consider a loudspeaker system and a uniform circular array (UCA) of radius r with N
microphones. In Fig. 3.1 one can see such a system. We define the coordinate system
such that loudspeaker point source and center of the microphone array are at the origin
and θ = 0◦ corresponds with the direction at which the main loudspeaker transmits on
axis. Consequently, the sampled point on the wall is at half the distance {(Ri

2
, θi}.

The proposed method generalized for any number of vertical walls. Take as an
example the shoe-box shaped room, where we have four first order image sources and
four more second order image sources. One can observe that in Fig. 3.1 the systems
location with respect to the bottom left corner of the room is given by p = [5, 2]m and
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Figure 3.1: Top view of loudspeaker system with N = 10 microphones in a rectangular room.
The polar coordinate system originates at the center of the array. The red line indicate the
room boundaries. In gray all first and second order image sources are depicted. Following
the sound ray model, the first order reflections only probe the wall at the green locations.

Plane wave

θr

Uniform Circular Array

Figure 3.2: Uniform Circular Array with a plane wave arriving from θr

furthermore observe that the room size is L = [7, 6]m, we have the following Cartesian
coordinates for the image sources:[−2px, 0], [0,−2py], [2(Lx − px), 0], [0, 2(Ly − py].
The second order images sources are given by [−2px, 2(Ly− py)], [−2px,−2py], [2(Lx−
px),−2py], [2(Lx − px), 2(Ly − py)].
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3.2 Plane Wave on Uniform Circular Array

Remember how in Eq. (2.7) the general equation for a plane wave on a compact mi-
crophone array is given. By construction, the plane wave response of a compact micro-
phone array assumes that the source signal is in the far field. Therefore, the attenuation
of the signal is approximately equal for all microphones. This plane wave signal must
only be delayed appropriately to account for the array geometry. This is encapsulated
in the relative delays for each microphone if at t = 0 the plane wave hits the array.
In general these relative delays ∆di(θ) are only a function of angle of arrival. This
situation is depicted in Fig. 3.2. In this section it is shown that the Uniform Circular
Array has symmetry in θr that can be exploited to compute the array response for
many image sources on a uniform grid using the Fast Fourier Transform.

Consider an uniform circular array (UCA) consisting of N microphones. Remember
that the center of the microphone array denotes the origin of the coordinate system.
The microphone locations are denoted by {rm, θm} and we have a plane wave arriving
from θr at t = 0. This is depicted in Fig. 3.2. Where for a circular array, we have

rm,i = r∀i = 0, . . . , N − 1 (3.1)

θm,i =
2πi

N
∀i = 0, . . . , N − 1 (3.2)

Consider now a single source, whose location is {Rs, θs}. The distance from each
microphone to the source is given by

d(Rs, θs, rm, θm) =
√
R2
s + r2

m − 2Rsrm cos (θs − θm) (3.3)

Combining this Equation with the constraints from Eqs. (3.1) and (3.2) we obtain

d(Rs, θs, r, i) =

√
R2
s + r2 − 2Rsr cos

(
θs −

2πi

N

)
(3.4)

The goal here is to obtain an expression for the relative delays ∆d, which is independent
of source distance Rs. The reason for doing so, is that the input signal h already
captures the delay caused by Rs. Of interest, is to compute the microphone array
response for NP uniform steps between 0 and 2π, as is explained in further detail
in Section 3.3. We can decompose the total distance from source to microphone as
Rs + (∆di − r) where only the second part is a function of microphone index i. The
resulting ∆d will explain a plane-wave event on the microphone array, which will only
depend on the angle of arrival θs. In order to compute the response for a plane wave
from angle θs, the constant Rs may be subtracted and r is added to avoid negative
numbers (useful when we use this to define a discrete Finite Impulse Response (FIR)
filter)

∆d = d−Rs + r (3.5)
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If we furthermore assume that the source is in the far field, such that we have
Rs >> r

lim
Rs→∞

∆d(Rs, θs, i) = lim
Rs→∞

√
R2
s + r2 − 2Rsr cos

(
θs −

2πi

N

)
−Rs + r

=r

(
1− cos

(
θs −

2πi

N

)) (3.6)

The proof of is provided in Appendix C. So now we can approximate Eq. (3.4) by

d(Rs, θs, rm, i) ≈ Rs + r

(
1− cos

(
θs −

2πi

N

))
(3.7)

And so finally we obtain the relative measured delay’s for a plane wave arriving
from θs, which is not a function of source distance, but only of the source angle.

∆τi (θs, ri) =
r

c

(
1− cos

(
θs −

2πi

N

))
(3.8)

Observe that the maximum relative delay between two microphones is bounded by
2r
c

. We assume sampling rate in time of fs, thus the maximum length of a discrete

finite impulse response filter that captures the differences in delays ∆τ has W =
⌈

2rfs
c

⌉
taps.

The key observation is that one must remember that the microphone measurements
y(n, k), can be interpreted as a two dimensional sampled signal. Where n samples
in time and k samples in the microphone dimension. This microphone dimension is
the green dotted circle in Fig. 3.2 and is indeed uniformly sampled. A closer look at
Eq. (3.8) from the perspective of the ith microphone sample, shows that this is only a
function of the difference θs − 2πi

N
. If we wish to use the convolution theorem, we must

evaluate θs with uniform intervals. This creates a shift-invariant steering function that
only depends on the difference between the ith microphone and the source angle [23].

Similarly as in [20] define a template mask matrix M ∈ {0, 1}dfs
2r
c e×NP . At this

point it must be noted that although there are N microphones, if one wishes to have
NP candidate angle locations, then one must obtain a higher resolution template mask.
A two dimensional circular convolution with h and m, will then explain the plane wave
for NP microphone channels.

m is defined as follows

mn,p =

{
1 if n =

⌈
fs

r
c

(
1− cos

(
2πp
NP

))⌉
0 elsewhere

∀n, p (3.9)

As one can observe, the matrix m is essentially a delay and sum filter bank that is
steered in θ = 0. However, by circularly permutating(?) the columns of m one can
steer into NP directions (in uniform steps).

By using the farfield assumption, ∆τ has been constructed in such a way that it
is independent of source distance Rs. As a result, the two dimensional convolution

24



0 5

0

5

10

15

N = 8

0 5 10 15

0

5

10

15

N = 16

0 5 10 15 20 25 30

0

5

10

15

N = 32

Figure 3.3: Generated masks for c = 340m/s fs = 48kHz, r = 0.05m (gives W = 15) and
varying microphone N (P = 1 assumed). Blue dots are the non-zero entries of the matrices.
Each column has exactly one non-zero entry.

with the template, can be computed as the product of two convolutions. One
convolution is delay (temporal translation) that is proportional to the source distance.
The second convolution permutes the mask, such that any plane wave direction can be
modeled. Specifically, one can now write a circular convolution in the microphone index
dimension and a linear convolution in the microphone time dimension as a product of
two convolutions

f(t1, j) ,
NP−1∑
α=0

T−1∑
d=0

h(d, α)mt1−d,[j−α]mod NP
(3.10)

Observe how f is now defined for NP microphone channels, even though not all mi-
crophone channels will be used in the next section. In Eq. (3.10) there is a circular
convolution in the discrete microphone index dimension j and a linear convolution in
the microphone time dimension t1. A physically motivated interpretation of this con-
volution is that it maps source directions of arrival to the microphone index dimension,
which in our case is an uniform circular array. In other words it has input/output
dimensions:
(source direction of arrival × source distance)→(microphone channel × time).
Figure 3.3 depicts examples of this M mask for varying number of microphones.

3.3 Define a uniform polar grid of candidate image source lo-
cations

The signal model given in Eq. (2.8), although complete, has to iterate over all reflector
locations Ri, θi to evaluate the contribution of each echo. If one wishes to solve the
inverse problem, it may be beneficial to discretize R and θ and to define a grid of
candidate locations. The general idea is to create a large dictionary of Rotated Image
Source Impulse Responses (RISIR). The inverse problem is then solved by fitting a
sparse number of these RISIR in the dictionary, with the microphone observations.
Once the RISIR that are likely to be in the measured signal are estimated, they can be
mapped back to wall locations.
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Figure 3.4: Uniform polar grid with NP = 16 angle divisions and T = 50 radial divisions.
The lines intersect at the candidate points.

In this section, it is argued that using Eq. (2.8) the dictionary can be computed
efficiently, for candidate locations on a uniform polar grid. By exploiting the symmetry
of the uniform circular array, the image source responses can be evaluated for many
directions of arrival efficiently. As a consequence, instead of iterating over a set of
Ri, θi, an input signal h is defined. The length of h is equal to the number of discrete
points on the grid. The index of the nonzero values in h will then correspond to image
source locations.

Consider the set H that contains the location of S first and second order virtual
sources, that dominate the early part of the room impulse response. A signal model
of the room influence that only accounts for these S reflections can be parameterized
by S locations (in two dimensions) of the corresponding image sources. Much like in
the previous chapter, polar coordinates are convenient to use in this situation, denoted
by r =

[
R, θ

]ᵀ
for R ∈ [r, Rmax] and θ ∈ [0, 2π), where r denotes the radius of the

compact microphone array. For now, the S image source locations are denoted by
the set H = {ri}S−1

i=0 , where each element in H contains the location of the ith image
source in polar coordinates. To make use of matrix-vector operations though, the same
information can also be represented in a vector.

If we have that our microphone measurements y(n, k) and pilot signal x(n) have been
sampled in time with fs, we discretize R with steps of ∆R = c/fs. We denote the total
number of discrete steps in the distance by T = dRmaxfs/ce and we denote the discrete
angles by NP , where N is the number of microphones and P is a natural number that
determines the up-sampling factor. Thus we have a total of NPT candidate locations
for which we can compute the measurement model. An example of a polar grid is
depicted in Fig. 3.4. Next, we define a discrete signal h that contains all the NPT
weights for each of these image sources.
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The representation of the set H is mapped to a two dimensional discrete signal
h(n, p), where n = 0, . . . , T −1 is proportional to the image source distance (and delay)
and p = 0, . . . , NP − 1 which is proportional to the direction of arrival (DOA). The
index of the nonzero values in h(n, p) correspond to the distance and DOA of the image
sources. We have that

h(n, p) =
∑
r∈H

1

R
δ

(
n−

⌈
R

Rmax

T

⌋)
δ

(
p−

⌈
θ

2π
NP

⌋)
(3.11)

where r =
[
R, θ

]ᵀ
and where δ(n)δ(p) denotes the two dimensional indicator function.

Note that ρi in Eq. (2.8) is replaced by 1/R. The reason for scaling the nonzero entries
with the inverse of the source distance is because the contribution of a rotated image
source impulse response in the measurement model is proportional to the inverse of
the source distance. Observe how R and θ from the set H are rounded to the nearest
discrete grid point by using d.c. Throughout this thesis, it is assumed that the error
introduced by the discretization in space, is negligible.

Since the measurement model will be expressed using matrix-vector products, it is
convenient to now define a vector containing the elements of h(n, p). This is defined as
follows

hp =
[
h(0, p), h(1, p), . . . , h(T − 1, p)

]ᵀ ∈ RT (3.12)

h =


h0

h1
...

hNP−1

 ∈ RTNP (3.13)

The choice for stacking the p = 0 responses first, rather then the n = 0 is arbitrary.
However, the Equations defined in Section 3.5 follow this convention.

Observe the relationship between the number of image sources S and the vector h
as ‖h‖0 = S, where ‖.‖0 denotes the `0 norm. For a room model of a shoe-box shape,
the number first and second order reflections are S = 8. The input vector is sparse,
since in general we have that ‖h‖0 = S << NPT .

3.4 Evaluate the forward model for all candidate locations
weights

In this section a linear measurement model is proposed to map the input signal h(n, p)
to microphone measurements y(n, k). Remember that any two dimensional shoe-box
shaped room has 8 first and second order image sources. The locations of these image
sources are indicated by the nonzero indices of h(n, p). If we combine the signal model
from Chapter 2 given in Eq. (2.8) with the UCA response from Eq. (3.10) we obtain
the forward measurement model as a function of h. Remember that this is used to com-
pute a prediction on y to solve the inverse problem of locating walls from microphone
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measurements.

y(i, j) =
L−1∑
t1=0

x(i−t1)

[
adp(t1) +

NP−1∑
α=0

T−1∑
d=0

m
(
t1 − d, [jP − α]mod NP

)K−1∑
t2=0

v(d− t2, α)h(t2, α)

]
(3.14)

Please observe how Eq. (3.14) performs a two dimensional convolution on input
signal h(n, p). In particular since the first dimension of h denotes the distance Rs,
convolving in the time dimension will alter the delay of the rotated image source re-
sponse. Secondly, a circular convolution in the second dimension of h, will permuted
the microphone channels, such that any plane wave arriving from θr = 2π i

NP
∀i ∈ N

can be modeled.
Please remember that h is the input of the forward model and adp, v, m and x can

be considered as constants.

1. h(t, p) - Two dimensional grid, corresponding to an echo delay and directions of
arrival. In practical room acoustic scenarios. we assume this is sparse.

2. v(u, s) - Loudspeaker anechoic far-field impulse response as a function of transmit
angle. The loudspeaker impulse response is of length K and is modeled for NP
distinct transmit directions. As explained in Section 2.3.

3. m(t, n) - This multichannel filter is explained in Section 3.3. It exploits the sym-
metry in the uniform circular array response and its relative delays ∆dk(θr) for
the kth microphone.

4. x(t) - Acoustic excitation signal, can be a piece of music or a pilot signal. Sampled
at fs

In Fig. 3.5a a single image source is modeled. As one can see, the channel is
composed in three sequential steps: The loudspeaker impulse response is added, the
microphone plane wave response is added and finally (not shown in the figure) the
direct path is added and its convolved with x(t). The key observations are that i) as
the candidate location moves further away from the system, the signal is translated in
the time dimension and ii) if the source circles around the system then the loudspeaker
impulse response changes and the array template mask permutes circularly. In the next
section, Eq. (3.14) is reformulated in terms of matrix-vector multiplications.

3.5 Constructing the forward model matrix

Let Φ denote a matrix of size MN ×NPT , h the input and let y denote the output of
the forward model. The forward model can then be written as:

y = Φh, (3.15)
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(b) Second signal digram with a single source at the back of the loudspeaker. A different loudspeaker
impulse response is used and the plane wave on the UCA is circularly shifted.

Figure 3.5: The forward signal model: Going through various stages to end up with micro-
phone measurements that take into account the loudspeaker model, the microphone array
geometry and the excitation signal.

where y is

y =


y0

y1
...

yN−1

 ∈ R(T+K+L)N (3.16)
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Figure 3.6: Visualization of the matrices that construct Φ as defined in Eq. (3.25). The
linear convolutions in time are computed by zero padding all impulse responses up to length
M and performing a circular convolution instead (Circulant matrices denoted by C, all have
size M ×M here).

yi =
[
y(0, i), y(1, i), . . . , y(T +K + L− 1, i)

]ᵀ
. (3.17)

Remember that the size of y(t, p) is determined by the number of microphones and
the lengths of x, v and h which are L, K, and T respectively. The minimum samples
in time for the microphone measurements is given by:

M = L+ T +K. (3.18)

In this section,the convolution in terms of summations in Eq. (3.14) is reformulated
into this matrix-vector operations. The symbol ⊗ denotes the Kronecker product. The
main idea is to formulate the linear convolutions as appropriately zero padded circular
convolutions (see Appendix A about Toeplitz and Circulant matrices). For this, we
introduce the generalized discrete windowing/zero padding matrix

W(a×b) ,



[
Ia×a 0a×b−a

]
for a < b (Windowing)

[
Ib×b

0b×a−b

]
for a ≥ b (zero padding)

, (3.19)

where we have that W(a×b) ∈ {0, 1}a×b and I denotes the identity matrix.

Remember that the discrete signals h(t, p), x(t), v(t, s) and y(t, p) can be interpreted
as column vectors. We have that h is the column vector defined at Eq. (3.13), y is
defined at Eq. (3.16). x, m and v are defined similarly. We have that

x =
[
x(0), x(1), . . . , x(L− 1)

]ᵀ ∈ RL (3.20)
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h performs zero padding on h using Kronecker products. The result

is a column vector of length MNP

v =


v0

v1
...

vNP−1

 ∈ RKNP . (3.21)

where,
vi =

[
v(0, i), v(1, i), . . . , v(K − 1, i)

]ᵀ ∈ RK (3.22)

Furthermore, we stack each column of the matrix M such that we obtain a column
vector. The columns are given by

mi =
[
m1,i,m2,i, . . . ,mW,i

]ᵀ
, (3.23)

which are stacked on top of each other to obtain

m =

 m1
...

mNP

 ∈ RWNP . (3.24)

Observe how the convention in this thesis is to use zero-based numbering except when
denoting entries in a matrix, like M, where 1-based number is used instead.

The construction of Φ uses x, v and m and is given by

y = Φh = XAD
(
INP ⊗W(M×T )

)
h. (3.25)

The size of Φ is MN × NPT . The components will be explained in the remainder of
this Subsection. A visualization of Eq. (3.25) is given in Fig. 3.6.

First, the rightmost part of Eq. (3.25) is explained, where h is zero padded in the
time/distance dimension up to length M . In Fig. 3.7 it is shown how multiplying(
INP ⊗W(M×T )

)
with h results in a zero padded version of h, denoted by hzp. The

Kronecker product is used here to structure the matrix to work with these collapsed
vectors that represent two dimensions.
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Figure 3.8: Since h is zero padded to length M , the loudspeaker impulse responses vi are
also zero padded to length M . Here Cvi denote the Circulant matrix constructed from vi

Secondly, we have that X convolves all microphone channels with the excitation sig-
nal. Since we used a high resolution template mask for the microphone array, assuming
NP microphones, the downsampling to N is done in this matrix. The convolution is
repeated for all channels, which is achieved by the Kronecker multiplication with the
identity matrix. Let circ(.) denote the circulant matrix operator, whose first row is
given (this uniquely defines the matrix as explained in Appendix A). Alternatively, the
eigenvalue decomposition using the Discrete Fourier Transform matrices, denoted by
F, can be used to define these circulant matrices. Where F† = F−1 is a unitary matrix,
as explained in Appendix A. We can express X as

X = IN ⊗
[
1,0P−1

]
⊗ circ{W(M×L)x}

=
(
IN ⊗

[
1,0P−1

])
⊗
(
F−1
M ΛxFM

)
∈ RMN×MNP

(3.26)

where we have that
Λx = diag

{
FMW(M×L)x

}
, (3.27)

where diag{.} is a square diagonal matrix operator with the input vector as the diagonal
elements, if the input is of length M then the output is a diagonal matrix of size M×M .

The matrix D that includes the loudspeaker model, is constructed similarly. The
main difference is that in v many loudspeaker impulse responses are stacked. The
convolution will be dependent on the direction of arrival of the wall echo, as a different
loudspeaker impulse response must be used. Each loudspeaker impulse response vi is
first zero padded to length M . Using Kronecker products, the ith circulant matrix is
multiplied with the ith direction of arrival. We have that

D = (IN ⊗ FM)−1 ΛV (IN ⊗ FM) , (3.28)

where ΛV is a diagonal matrix that is given by

ΛV = diag
{(

INP ⊗ FMW(M×K)

)
v
}
. (3.29)

The matrix-vector multiplication Dhzp is visualized in Fig. 3.8. The result of Dhzp is
a column vector containing delayed loudspeaker impulse responses, where the direction
of arrival in h determines the transmit angle of the loudspeaker model and the wall
distance determines the delay.
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Lastly the matrix that performs the two dimensional (circular) convolution with the
template mask is constructed. Remember that the template mask is of size W in the
time dimension and NP in the microphone dimension. The template mask is only zero
padded in time, since the circular convolution is required in the microphone dimension.
The matrix A is therefore constructed as

A = (FN ⊗ FM)−1 ΛM (FN ⊗ FM) , (3.30)

where ΛM is a diagonal matrix of size MNP ×MNP and is given by

ΛM = diag
{

(FNP ⊗ FM)
(
IN ⊗W(M×T )

)
m
}
. (3.31)

Notice how m is zero padded with M −T zeros in the time dimension, but no zeros
are added in the microphone observation dimension.

Now that the measurement model has been reformulated in in matrix-vector nota-
tion, the inverse problem can be expressed as a convex optimization problem in standard
form. This is done in the next section.

3.6 Solving the inverse problem

Thus far in this chapter, the measurement model is explained. The far field assumptions
have let to a linearized measurement model that is expressed as

y = Φh + n. (3.32)

Where we have that y ∈ RMN , Φ ∈ RMN×NPT and both n and h are of length NPT .
Here n denotes the noise. Note how Φ is an overdetermined set of linear equations.

In this section, it is explained how to solve the inverse problem, ie. how to estimate
h from noisy observations of y. In literature, this problem is usually referred to as
deconvolution. Typical in those problems, is that the linear system is a convolution-
type kernel. This means that the kernel only depends on the difference between two
independent variables [37]. If an omni-directional loudspeaker model is assumed, i.e.
vivj∀i, j, this property holds. However, a loudspeaker impulse response that depends
on the wall echo direction of arrival breaks this property. Such deconvolution problems
can be solved in a robust way by using regularization.

When Φ is well conditioned and the noise is independent and identically distributed
Gaussian, the solution can be found by minimizing the quadratic loss between the
measurements and the model’s prediction ‖y −Φh‖2

2. However, Φ is ill-conditioned and
when dealing with real-world data, the presence of small reflecting surfaces, correlated
noise sources and model mismatches must be accounted for.

One approach to deconvolve the loudspeaker impulse response from the measured
signal in literature is the use of the matched filter (MF). The measurements are con-
volved with a conjugated time reversed version of the loudspeaker impulse response.
As an example, an omni-directional assuming loudspeaker model with matched filter
loudspeaker decorrelation is proposed in [31]. The decorrelation with the matched filter
is achieved by taking the Hermitian of the Circulant or Toeplitz matrix. Multiplying
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with D† and X† therefore correlates the measurements with these templates. The in-
verse does not need to be computed for these large matrices, as it is approximated by
its transpose. Similarly, the delay-and-sum steered response power can be evaluated
by multiplying with the Hermitian of A. The gain on candidate locations can therefor
be estimated by assuming Φ†Φ ≈ I, which is equivalent to matched filtered deconvolu-
tion and delay-and-sum (DAS) steered response power (SRP) beamforming. Therefore
the first proposed method to solve the inverse problem is the matched filter with a
delay-and-sum (MF-DAS) response given by

ĥMF-DAS = Φ†y. (3.33)

The second approach is computationally more intensive. It is inspired by high reso-
lution techniques in acoustic source localization. The main idea is to solve a constrained
optimization problem. As explained in Section 2.1, in room acoustics the idea to exploit
the sparsity of the arriving echoes is not new. The main idea is to fit measurements,
whilst constraining the necessary image source locations to be sparse. To measure the
sparsity of the solution, the `0 norm can be used. The optimization problem can be
constrained to have S contributing image sources, by solving the following constrained
optimization problem

minimize
h

‖y −Φh‖2
2

subject to ‖h‖0 ≤ S.
(3.34)

However, this leads to a non-convex optimization problem, that is NP-hard [38], so
what is often done in literature is to relax this to the `1 norm. The second estimator
ĥsparse can be found by solving the following optimization problem

minimize
h

‖y −Φh‖2
2

subject to ‖h‖1 ≤ β.
(3.35)

In statistics and machine learning, this optimization problem is called least absolute
shrinkage and selection operator (LASSO). β is the regularization term. Increasing
this value, yields a less sparse solution, that may fit better with measurements. A
smaller β will force the solution to be more sparse, at the cost of a worse fit.

It must be noted that Eq. (3.35) is the standard Lasso formulation, however most
solvers consider the so-called Lagrangian form

ĥsparse = arg min
h
‖y −Φh‖2

2 + λ ‖h‖1 , (3.36)

where the exact relationship between β and λ is data dependent. The standard Lasso
optimization problem works well, when the received echo power from each wall of
interest is approximately equal. However, if the loudspeaker is placed in the corner of
a room, it is expected that the first echoes have higher power, compared to the later
echoes from further walls. This is accounted for in the forward measurement model
by the gains of the active image sources in h. A second problem is that, for many
loudspeakers, the loudspeaker impulse response total energy varies with the angle of
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transmission. This influences the signal to noise ratio of the detection problem. It is
expected that an echo from a nearby wall, in the on-axis direction of the loudspeaker
has a higher influence on the microphone measurements compared to a wall facing the
back of the loudspeaker that is placed further away.

We have that the expected value for h is dependent on the distance of the wall
and the DOA and that the energy in y decays over time. Both influences can be
compensated for by having a weighted least squared and a weighted `1 norm. Let
Λls ∈ RMN×MN denote a diagonal weighting matrix for the total least squares and let
Λh denote a diagonal weighting matrix for the gain on the candidate locations. The
general optimization problem is then given by

ĥsparse = arg min
h

(y −Φh)†Λls (y −Φh) + ‖Λhh‖1 . (3.37)

In the next section, the proximal gradient method is explained. This method can be
used, to find a solution to the optimization problem.

3.6.1 Proximal Gradient Methods

Our general optimization problem stated in Eq. (3.37) does not have a differentiable
objective function due to the `l norm. One solution to overcome this problem is to
use subgradients instead. However, the convergence rate of subgradient based descent
methods are slow. In this section the Proximal Gradient Descent Method and the
Accelerated Proximal Gradient method are explained [39]. These methods have a
faster convergence rate than subgradient descent.

Observe that our objective function f(h) can be decomposed into two functions

f(h) = e(h) + g(h), (3.38)

where e(h) = (y −Φh)†Λls (y −Φh) is the total least squares function and g(h) =
‖Λhh‖1 is the sparsity enforcing penalization function. The first function is convex and
differentiable, whereas the second is convex and not differentiable. Let hk+1 denote the
updated estimate for h at iteration k + 1, the proximal gradient method is given by

hk+1 =arg min
u

(
g(u) + e(hk) +∇e(hk)† (u− hk) +

1

2t
‖u− hk‖2

2

)
=arg min

u

(
g(u) +

1

2t
‖u− hk + t∇e(hk)‖2

2 +

)
,

(3.39)

where t > 0 is the step size. At this point it may seem that one optimization problem
has been replaced by another. Because as states in Eq. (3.39), for each iteration a
different optimization problem must be solved to compute the update step. Fortunately,
the minimization in Eq. (3.39) can be computed analytically for some simple non-
differentiable functions g(h). In general the proximal mapping is defined as

proxt,g(h) = arg min
u

(
g(u) +

1

2t
‖u− h‖2

)
. (3.40)
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Note how the proximal mapping doesn’t depend on u, but is determined by the non-
differentiable function g and the stepsize.

For the weighted `1-norm, i.e. g(h) = ‖Λhh‖1, the proximal mapping can be com-
puted analytically. The solution is given by the Soft-thresholding operator. This func-
tion is computed easily. It is given as:

[SΛ(h)]i =


hi − Λi if hi > Λi

0 if − Λi ≤ y ≤ Λi

hi + Λi if i ≤ −Λi

, (3.41)

where Λi denotes the ith diagonal entry of Λh.
The Iterative soft-thresholding algorithm (ISTA) is a simple algorithm that can

calculate the lasso solution. The update function is by combining Eq. (3.39) with
Eq. (3.41):

hk+1 =SΛ (hk − t∇e(h))

=SΛ

(
hk − tΦ†Λls (y −Φh)

)
.

(3.42)

This method can be accelerated with Nestrov’s idea to use momentum [40]. Fast
ISTA (FISTA) does not evaluate the proximal map at hk−1 but adds a momentum
term. This allows for some of the history to be exploited for a faster convergence.
However, FISTA is not guaranteed to decrease the objective function at each step.

The update step for FISTA are given as

v = h(k) +
k − 2

k + 1

(
h(k) − h(k−1)

)
(3.43)

hk+1 = Sλtk
(
v + tkΦ

†(y −Φv)
)
. (3.44)

Observe how the update at step k + 1 is dependent on the previous solution k and the
one before that k − 1.
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Results 4
This chapter presents four experiments to show the performance of the proposed method
and to compare it to state of the art techniques. The first experiment assumes that
an omnidirectional loudspeaker is placed near a single wall. The experiment compares
the time-of-arrival estimates of the reflections for methods that i) have no microphone
geometry prior with ii) methods that exploit the array geometry to only estimate a
consistent set of TOA’s for all microphones. In experiment B an omnidirectional loud-
speaker is placed inside a rectangular room. It is shown that methods based on steered
response power maximization can not resolve closely sepatated reflections, especially
for mid-range loudspeakers with limited bandwidth. The third experiment is based on
a typical stereo loudspeaker model, that has the inherent directivity. Here it is shown
that methods that assume an omnidirectional loudspeaker will suffer from model miss
matches. The chapter concludes with a preliminary investigation using real world mea-
surements where the directivity model proposed is compared to measurements.

4.1 Experiment A: Single wall with omnidirectional loud-
speaker

The purpose of this isolated simulation experiment is to show that single channel time
of arrival estimation is less robust compared to TOA methods that use the microphone
array geometry as prior. For this, a simple single wall setup is used. The static
measurement y(n, k) is generated using the signal model presented in the previous
chapter. The signal contains a single Rotated Image Source Impulse Response (RISIR)
at some arbitrary position. The goal is to detect this source at increasingly challenging
Single to-Noise Ratio (SNR). To save time in computations, the signal model is reduced.
The exponential sine sweep is disregarded in the signal model. It is assumes that the
excitation signal is deconvolved perfectly. The microphone measurements y consist of
a delayed version of the loudspeaker impulse response.

in Fig. 4.2 the static microphone signal is depicted. Here one can observe the
loudspeaker impulse response, delayed by the microphone array response, for each
microphone channel. It is assumed that the direct path has been removed. As the
noise increases, the probability of detecting the image source decreases.

Two groups of methods are compared, as summarized in Fig. 4.1 we have:

• Two steps methods: First estimate the Time Of Arrival (TOA) using the loud-
speaker impulse response, then use the known microphone locations to geomet-
rically infer the source location. One such example of a single channel TOA
estimation methods is using the Generalized Cross Correlation with Phase Trans-
form (GCC-PHAT) [41]. The times-of-arrival (TOA) are then combined with the
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GCC-PHAT Trilateration

Steered Response Power

Matched Filter

ĥ = arg minh ‖y −ΦAh‖22 + λ1 ‖h‖1 argmax ĥ

argmax SRP

argmax

Correlation

argmax
per channel

TOA’s

θ

R
input:
y(n, k)

i)

ii)

iii) Point on grid

Figure 4.1: Experiment A: Three methods to compare. In green are the steps that make use
of the loudspeaker impulse response. Red are the steps that use the microphone geometry
and orange uses the single source assumption. The optimization problem in iii makes use of
both the loudspeaker impulse response as well as the microphone array in a single step.
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Figure 4.2: Experiment A: y(n, k) used, where a single wall reflection is present. Each figure
has six microphone channels.

known array geometry to compute the image source location using least squares
trilateration [42]. It must be noted that the microphone array geometry is not
used until after the TOA’s have been estimated.

• Single step method: Combine the Time Of Arrival estimation for distance, with
the Time Difference Of Arrival for Direction Of Arrival (DOA) estimation. There
are numerous multichannel methods, one such class relies on beamforming tech-
niques. The idea is to use a beamformer to steer the beam into a particular
direction. The Steered Response Power (SRP) is then evaluated for NP uni-
formly spaced directions of arrival. The direction of arrival is estimated as the
angle for which the SRP is highest.

In each Monte Carlo loop, a new realization of noise is added to y, after which
the noisy observation is run through the three methods. The resulting three estimated
locations are compared to the true wall location. The performance is measured with a
binary feature, the hitrate, where a hit is considered if the estimated location is within
the Voronoi region of the true location on the already defined polar grid. It must be
noted that all three methods assume that there is a single source to detect, therefore
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Table 4.1: Experiment A: The signal model assumes the excitation signal x(t) to be perfectly
removed and assumes the loudspeaker is omni-directional. Method i is a single channel method
whereas ii and iii use the array geometry.

Signal Model ΦA = AD
(
INP ⊗W(M×T )

)
h with loudspeaker response v(t) being the same

for all transmit directions

Room geome-
try

Single wall: h is zero everywhere except at R = 30c/fs and θ = 6
NP 2π, i.e.

h((6− 1)T + 30) = 1

Monte Carlo
setup 1: h← one source at R = 0.2125m and θ = π/2

2: y← ΦAh . Using omnidirectional model
3: for SNR do . Vary the noise power
4: for repeats do . Repeat for different realizations of noise
5: ynoise ← y + n . New realizatation of noise at SNR
6: τi ← GCCphat(ynoisy,i) . Repeated for all channels i

7: R̂, θ̂ ←trilateration(τ ) . Trilateration returns polar coordinate
8: ĥMF-DAS ← Φ†ynoise

9: ĥsparse ← arg minh ‖ynoise −Φh‖22 + λ ‖h‖1 . Solved using FISTA

10: R̂, θ̂ ← arg maxR,θ
ˆh∗(R, θ) . single source prior. Repeated for both

ĥ
11: hitrate ← compare(R̂, θ̂, R, θ) . Rounded to nearest polar grid point
12: end for
13: end for

Performance
metric

All estimated locations are rounded to the nearest grid point. Hitrate: If esti-
mated point corresponds to source location then 1, otherwise 0

Hypothesis Time-of-Arrival estimation that uses array geometry is more robust

Variables and
size

N = 6, P = 1, T = 64, K = 250, M = 313, r = 0.06m, fs = 48kHz, S = 1,
SNR= [0,−30]db

the detection problem in the peak-picking is reduced to extracting the highest value.
A summary of experiment A is given in Table 4.1.

The results of the Monte Carlo simulation are shown in Fig. 4.3. Here it is shown
that for a SNR larger than -7, all methods perfectly resolve the image source. The
single channel method starts to miss the estimated location for some noise realizations
at -7 db. The second and third method are more robust and succesfully resolve the
image source reliably until -10 db. In experiment A however, the difference between
maximizing the beamformers response and the proposed sparse reconstruction is not
shown. The difference only becomes clear once the loudspeaker system is placed in an
environment with multiple walls. This is shown in experiment B.
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Figure 4.3: Experiment A: Mean hitrate (with standard deviation errorbar) depicted for the
three methods for decreasing SNR. The mean is computed over 100 realizations of the noise.
The second and third method have equal mean hitrate.
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Figure 4.4: Experiment B: The loudspeaker is placed in a rectangular room, the locations of
the image sources are embedded in h(k, l) and are used to generate microphone measurements
y(n, k). The convolution with the excitation is disregarded.

4.2 Experiment B: Omnidirectional loudspeaker in rectangu-
lar room

In this experiment the same signal model is used as in experiment A. The difference
is that instead of a single wall, a shoebox shaped room is modeled. All first and
second order reflections (in two dimensions) are taken into account when generating h,
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resulting in 8 distinct reflections from image sources. A summary of this experiment
can be found in Table 4.2.

It is expected that method ii and iii will yield similar results under i.i.d. white
Gaussian noise, as long as the echoes do not overlap in time. To show the difference
between the two methods, one of three things can be done: i) realistic impulsive/cor-
related noise that is to be expected as interference in the real world can be added, ii)
the most challenging room geometries can be tested, or iii) the loudspeaker bandwidth
can be altered.

In this Monte Carlo results, the noise has been limited to additive white Gaussian
noise, however by placing the loudspeaker close to the center of the room, it is expected
that the echoes will overlap and be challenging to separate. The experiment is first
performed using a full range loudspeaker. In a second experiment, the bandwidth is
reduced to have a second order low pass cut-off frequency at 5kHz.

A small shoebox shaped room is generated. The size of this room is 1m by 1.25m.
In each loop, the loudspeaker system is moved around the room center, to a different
location. This region is depicted in green in Fig. 4.4a. The image source location are
computed in simulation and snapped to the nearest point on the polar grid (Fig. 4.4b).
If the distance to these image sources is approximately equal, then the echoes should
overlap in time (Fig. 4.4c). To best show the limitations of MF-DAS, the loudspeaker
is moved around the room, as some wall geometries are more challenging than others.
The experiment is also repeated for different realizations of noise for each position in
the green rectangle. The noise statistics are constant, a SNR of 0db is used throughout
the experiments.

To compensate for the decreasing power of the echoes, it is proposed to solve the
weighted least squares problem, as shown in Table 4.2. Here Λls scales the optimization
problem such that far away faint image sources are normalized when compared to a
close wall that echoes back higher power. Since the pressure is inversely proportional
to the distance (which is related to how h(n, p) is defined, see Eq. (3.11)), the proposed
weighting is given by:

Λls = diag
{[

1, 2, . . . ,M − 1
]}
⊗ IN ∈ RMN×MN . (4.1)

The results of the first experiment are shown in Fig. 4.5 and the repeated results
using a band limited loudspeaker are depicted in Fig. 4.6. In the first experiment,
the average hit rate over all simulations is 88% and 92% for the MF-DAS and sparse
method respectively. When using the mid range loudspeaker the difference is larger,
as MF-DAS has an average hit rate of 36% and the sparse solution 59%. This shows
that at limited bandwidth the time-smearing caused by the loudspeaker significantly
reduces the ability to resolve distinct reflections. Nevertheless, solving the inverse using
a sparse prior improves the robustness significantly.

One can also observe that the performance is dependent on the loudspeaker posi-
tioning in the room. In particular, one can see in Fig. 4.6a that if the loudspeaker is
placed equidistantly to two walls, that the hitrate is lower. This is to be expected, as
two reflections overlapping in time are harder to resolve accurately.

The MF-DAS method takes a few milliseconds to run whilst the sparse optimization
convergence takes anywhere from one up to four seconds. The same sparsity inducing
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Table 4.2: Experiment B: The signal model assumes a known sinesweep x(t) and assumes
the loudspeaker is omni-directional. Method i) has no sparsity prior whereas ii) is a high
resolution technique that seeks a sparse solution

Signal Model ΦB = AD
(
INP ⊗W(M×T )

)
h with loudspeaker response v(t, n) being the same

for all transmit directions

Room geome-
try

A static room of 1m by 1.25m is used. The loudspeaker is placed in the center
of the room and is moved around (Fig. 4.4a)

Monte Carlo
setup 1: for l dooudspeakermodel . Two loudspeakers: Full range, mid range

2: for x in grid do
3: for y in grid do . Move loudspeaker on cartesian grid
4: for repeats do . Repeat for different realizations of noise
5: {R, θ}i ← getImageSourceLocations(x, y) . Get 8 image

sources
6: h← constructGainVector(R,θ) . using Eq. (3.11)
7: y← Φh + n . Using Eq. (3.25). New noise realization
8: ĥMF-DAS ← Φ†Λlsy
9: ĥsparse ← arg minh (y −Φh)†Λls (y −Φh) + λ ‖h‖1 . Solved

using FISTA

10: R̂, θ̂ ← maxk
(
ĥ(R, θ), 8

)
. Knowledge on 8 sources used

here
11: hitrate ← compare(R̂, θ̂, R, θ) . Rounded to nearest polar

grid point
12: end for
13: end for
14: end for
15: end for

Performance
metric

All estimated locations are rounded to the nearest grid point. Hitrate: If esti-
mated point corresponds to source location then 1, otherwise 0

Hypothesis Matched Filter steered response maximization will suffer from overlapping re-
flections and reduced loudspeaker bandwidth. Using a sparse prior can increase
robustness to solve the inverse problem.

Variables and
size

N = 8, P = 1, T = 774, M = 1025 K = 250. Room size [1, 1.25m]. Loud-
speaker is moved around in a grid. λ = 68, x = y = [0.35, 0.64]m in 21 steps.
Repeats = 35. Static SNR = 0db.

parameter λ is used for all locations. The runtime for each experiment was about 12
hours on a high end consumer laptop using Matlab. However it must be noted that the
performance of the sparse optimization is heavily dependent on the correct estimation
of this parameter. A suboptimal λ will generally result in much worse performance
compared to MF-DAS that has no parameter to set. Conversely, the results on the
sparse optimization presented here are likely to be sub optimal because the λ was
picked heuristically to work well on average for all locations.
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(b) Mean hitrate using sparse optimization.
Average over all locations: 92%

Figure 4.5: Experiment B results: Mean hitrate for locations within the green rectangle of
Fig. 4.4a using full range loudspeaker
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(b) Mean hitrate using sparse optimization.
Average over all locations: 59%

Figure 4.6: Experiment B repeated for an omnidirectional loudspeaker limited to 5kHz.

4.3 Experiment C: Omni assuming versus directivity aware
models

At this point, it has been shown that solving multiple steps jointly can improve robust-
ness (experiment A) and that solving the inverse problem can benefit from a sparse
prior (experiment B). In this simulation experiment, we model a Genelec 1029A studio
monitor that has been placed inside a shoebox shaped room. The goal here is to com-
pare the omni assuming loudspeaker measurement model with the directivity aware
model. The omni assuming approach can be considered the current state of the art, as
all literature assumes an omnidirectional loudspeaker when localizing reflections from
measured room impulse responses. The sole exception is the approach presented in [28]
as was mentioned in Section 2.1. However that method relies on hundreds of special
anechoic measurements. Due to a lack of resources and time, those results are not
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Figure 4.7: Experiment C: An example of a room that is generated in which a loudspeaker is
placed with known directivity model.
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Figure 4.8: The loudspeaker impulse response of the Genelec 1029A, measured at 3 meter
distance. The response is given for six uniformly spaced angles.

reproduced.

The loudspeaker was measured from many different angles in anechoic conditions
at the Bang & Olufsen facilities in Struer, Denmark (Fig. 4.10a). The loudspeaker was
placed on a crane in the center of a large empty space. By rotating the loudspeaker,
the impulse response is measured at 3 meters away for many transmit directions (in the
horizontal plane). The resulting directivity is visualized in Fig. 4.10c. One can observe
here that this loudspeaker is highly directional and that the bandwidth is maximum in
the on-axis direction. This is typical for a single (or dual) loudspeaker system as the
high frequencies tend to leave the speaker in narrow beams.
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The directivity of the loudspeaker impulse response can also be interpreted in the
time domain. In Fig. 4.8 the loudspeaker impulse response is given for six uniform
angular steps. It shows that maximum pressure difference is a function of this angle.
Due to the reduced bandwidth in the 180◦ loudspeaker impulse response, it is expected
that resolving reflections from that direction will suffer from time-smearing.

The Monte Carlo simulation is setup similarly as with the previous experiment. A
loudspeaker is placed in a shoebox shaped room of size 2.5m by 2.5m and is moved
around the center. The image source locations are generated the same way. The dif-
ference is the signal model matrix ΦGenelec that is used to generate the measurements.
This has used the directivity measurements from Fig. 4.10c to generate D. The up-
sampling factor P is set to one. Therefore the measurement model is using the six
loudspeaker impulse responses from Fig. 4.8. In contrast with experiment B, the loud-
speaker is not only moved but is also rotated in 60◦ degree intervals. An example of a
channel response is shown in Fig. 4.7b. Here one can see that the front reflections are
dominating the channel response. The much fainter reflections from the back of the
loudspeaker can easily be obscured by these stronger reflections. A summary of the
experiment is provided in Table 4.3.

The results show much lower hit rates compared to experiment B. This is due to the
reduced power in some of the reflections. The hit rate averaged over all room positions
and orientations is lowest for the omnidirectional assuming methods. Both MF-DAS
and the sparse optimization using Φomni have 15% mean hit rate. Essentially only
reliably resolving the reflection from the wall facing the front of the loudspeaker. The
models that use the directivity model have a mean hitrate of 41% and 53% for the MF-
DAS and sparse estimation respectively. In Fig. 4.9 the mean hitrates are presented for
each direction of arrival of the reflector. The results show that resolving the reflections
arriving from 180◦ are most challenging.

4.4 Experiment D: Real world measurements

In this experiment, real world measurements are compared with the proposed signal
model. They are compared to the conventional model that assumes an omnidirectional
loudspeaker. The measurements are performed using the same Genelec studio monitor.

An uniform circular microphone array is placed on top of this loudspeaker, as seen
in Fig. 4.10b. The direct path is measured in anechoic conditions. The loudspeaker
was placed in front of a single large wall at 2 meter distance. In this experiment,
the loudspeaker is rotated with respect to the wall to show that the proposed forward
model that takes into consideration the directivity model of the loudspeaker can better
predict microphone measurements compared to omnidirectional assuming models.

Until thus far, it is assumed that the loudspeaker is placed in a two dimensional
room, i.e. a room limited to vertically reflecting surfaces. In practical scenarios, it is
expected to also receive reflections from the floor and ceiling. Rather than solving the
inverse problem directly using raw measurements, in this experiment the focus is laid
on comparing the two measurement models.

Since we have six microphones in the array, it was chosen to rotate the system
60◦ for each measurement. The first microphone is the microphone that is aligned for
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Table 4.3: Experiment C: The Genelec 1029A loudspeaker is placed in a shoebox room. The
signal model utilizes the measured directivity. Two classes of methods are compared: Those
that assume an omnidirectional loudspeaker and those aware of the directivity.

Signal Model Φgenelec = AD
(
INP ⊗W(M×T )

)
h with loudspeaker response v(t, n) from mea-

surements of Genelec 1029A

Room geome-
try

A static room of 2.5m by 2.5m is used. The loudspeaker is placed in the center
of the room and is moved around

Monte Carlo
setup 1: for x in grid do

2: for y in grid do . Move loudspeaker on cartesian grid
3: for orientation do . rotate 60◦ each
4: {R, θ}i ← getImageSourceLocations(x, y, orientation) . Get 8

image sources
5: h← constructGainVector(R,θ) . Using Eq. (3.11)
6: y← Φgenelech+ . Using Eq. (3.25). Noiseless

7: ĥMF-DAS-omni ← Φ†omniΛlsy

8: ĥMF-DAS-dir ← Φ†genelecΛlsy

9: ĥsparse-omni ← arg minh (y −Φomnih)†Λls (y −Φomnih) + λ ‖h‖1
10: ĥsparse-dir ← arg minh (y −Φgenelech)†Λls (y −Φgenelech) +

λ ‖h‖1
11: R̂, θ̂ ← maxk

(
ĥ(R, θ), 8

)
. for all 4 estimates

12: {hitrate, hitratePerDOA } ← compare(R̂, θ̂, R, θ)
13:

14: end for
15: end for
16: end for

Performance
metric

Mean hitrate (averaged over 8 sources) and the hit rate as a function of direction
of arrival

Hypothesis If a typical loudspeaker is used, one cannot assume that the loudspeaker is
omnidirectional as the true directivity will introduce model missmatches and
will decrease performance.

Variables and
size

N = 6, P = 1, T = 774, M = 1025 K = 250. Room size [2.5, 2.5m]. Loud-
speaker is moved around in a grid. λ = 55, x = y = [0.71, 1.77]m in 21 steps.
Repeated for 6 orientations. No Noise.

the on-axis loudspeaker direction. The exponential sine sweep was used as excitation
signal. In Fig. 4.11 one can see that the loudspeaker with uniform circular array is
placed near a large single wall. The loudspeaker is not placed on the floor, rather, it is
placed about 1 meter above the floor.

In Fig. 4.12 one can find the measurements performed in this setup. To better
interpret the results, the excitation signal has been removed and the direct path is
subtracted. One can observe however, that the direct path has not been fully removed,
as all channels have residuals around t = 1.5ms. At t = 6ms, in all orientations and
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Figure 4.9: Experiment C: Hitrate averaged over all room positions and orientations. The
reflections are grouped in direction of arrivals.

(a) Genelec 1029A positioned
on the crane at the cube
facility in Struer, Denmark.
The loudspeaker is rotated to
perform directivity measure-
ments.

(b) An uniform circular micro-
phone array with six micro-
phones is placed on top of the
loudspeaker. The direct path
is measured in anechoic condi-
tions.

(c) Magnitude frequency re-
sponse of the loudspeaker im-
pulse response for various
transmit angles.

Figure 4.10: Experiment C: The Genelec 1029A is measured to construct a directivity model.
In a separate measurements the direct path is measured for all microphones in the array.

in each channel, an event is picked up. The hypothesis is that this is the first order
reflection with the floor. One can observe that the reflection arrives roughly at the
same time for each channel, indicating that it may have arrived from a horizontal wall
parallel to the array’s plane. Most interesting, however in Fig. 4.12 is to compare the
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reflection that arrives at t = 12ms as this corresponds the the large wall at 2 meters.
Furthermore at t = 13ms, a second reflection is detected, with a similar shape as the
first. The hypothesis is that this is the second order reflection from the floor to the
wall, back to the microphone.

Most notably, the power and shape of the reflection at t = 12ms changes with the
orientation of the system. Upon closer look (top plot in Fig. 4.13), one can detect
the vertical sine shape over all microphone measurements, where the orientation of the
loudspeaker determines the first microphone to pick up the plane wave. One can also
observe that the amplitude of this reflection decreases as the loudspeaker is rotated.
This suggests that a forward measurement model benefits from loudspeaker directivity
awareness. In the experimental study that follows, the fundamental assumption that a
single Rotated Image Source Impulse Response can model the reflections in a practical
scenario is challenged.

The experiment starts by pre-processing the measured data. The exponential sine
sweep is again deconvolved and the channel is manually cut around 12ms to only capture
the reflection from the wall (as seen in Fig. 4.13). The inverse problem is then solved
and the single highest candidate location is picked and used as prediction reference.
The predictions ŷ can be interpreted as a single row of the respective Φ. This is
repeated for both the omnidirectional assuming as well as the directivity aware model.
The complete procedure is explained in pseudocode in Algorithm 1. The hypothesis
here is that the directivity aware model provides a better prediction compared to the
omnidirectional loudspeaker. The second objective is to challenge the sparseness that
we wish to enforce on our measurements.

In Fig. 4.13 one can see the sinus shape over the six microphones as the plane wave
propagates over the uniform circular array. The sparse optimization problem is solved
and the highest contributing row of Φ is selected as the prediction. This candidate
location correctly estimates the direction of arrival and to a high degree the distance
of the reflecting surface, for all loudspeaker orientation. This is to be expected, as a
single reflection is present in the measurements. Not surprisingly, when the loudspeaker
is placed in the front, as seen in Fig. 4.13a, the two predictions are identical. In this
case the loudspeaker impulse response for both models is equal for walls in the front
direction. The other predictions are different. To quantify this, let us denote the cut
measurements by yc and the predictions based on a single RISIR by ŷ. The normalized
model miss fit is defined as

ε = ‖yc − ŷ‖2
2/‖yc‖2

2. (4.2)

This error is computed for both the omnidirectionally assuming model as well as the
directivity aware model. The results are given in Table 4.4. There are two interest-
ing observations. First, the directivity aware model seems to reduce the least square
error the most, indicating that the model miss match is lower compared to the omni
directional assumption. Secondly, none of the predictions seem to match well. This
challenges the assumption that the inverse problem can be solved by constraining the
solution with ‖h‖0 ≤ S. One possible explanation is that the acoustic reflection at the
wall surface has altered the signal. If this influence on the signal could be modeled by
an LTI system that is identified by a finite impulse response filter, then the number of
non-zero entries to expect would be equal to that filter order. In this case, the inverse
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Table 4.4: Experiment D: The measured channel responses from Fig. 4.12 are compared with
the single best Rotated Image Source Impulse Response.

Wall orientation Omni assuming Directivity aware
0◦ 0.93 0.93
60◦ 0.92 0.73
120◦ 0.95 0.83
180◦ 0.95 0.74

Algorithm 1 Experiment C: Comparing the omnidirectional model with the directivity aware
model

1: for Orientation do
2: yc ← y(orientation, 11.5ms : 12.5ms, :) . Cut single reflection for all microphones
3: ĥdir ← arg minh ‖yc −Φdirh‖22 + λ ‖h‖1
4: ĥomni ← arg minh ‖yc −Φomnih‖22 + λ ‖h‖1
5: Ind1, Ind2 ← arg maxi homni(i) and arg maxi hdir(i) respectively
6: ŷomni ← h(Ind1)Φomni(Ind1) . Take the dominating row as your prediction
7: ŷdir ← h(Ind2)Φdir(Ind2) . Normalized by the gain found
8: modelMissfitOmni ← ‖yc − ŷomni‖22/‖yc‖22
9: modelMissfitDirectivity ← ‖yc − ŷdir‖22/‖yc‖22

10: end for

problem may benefit from a group sparsity constrain [43].

Figure 4.11: Genelec 1029A positioned in front of a large single wall. The microphone array
is approximately one meter from the floor.
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(d) Wall at 180◦.

Figure 4.12: Experiment D: The Genelec 1029A is placed in front of a single wall at 2 meters.
The excitation signal is deconvolved. The direct path from anechoic conditions is subtracted.
The microphone channels are ordered such that for a) the first , b) the second, c) the third
and d) the fourth microphone is closest to the wall.
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(d) Wall at 180◦.

Figure 4.13: Experiment D: The measurements (top) are manually cut to only include the
reflection from the large wall. Two different model predictions are made. One is aware of the
directivity of the loudspeaker (center) and the other assumes the front loudspeaker impulse
response uniformly for all angles (bottom).
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Conclusions 5
Inferring the location of reflecting surfaces is crucial in understanding the influence
that the room has on the listening experience. Sound field estimation is extremely
challenging, when a limited number of microphones are placed in a room. Knowing
where the room boundaries are is helpful for practical acoustic signal processing sce-
narios. A smart loudspeaker system can exploit the reflections in a room to create a
more rich sound stage by adjusting the mixing over the drivers. As a first step towards
sound field control, we have presented a general framework to better resolve the times
of arrival’s of these reflections using a practical loudspeaker with co-located compact
microphone array.

Contrary to prior art, the framework proposed in Chapter 3 is end-to-end, where
all prior knowledge is exploited in a single step. Furthermore the proposed method
does not have to assume an idealized acoustic point source nor an omnidirectional
loudspeaker model. The Matched Filter Delay-And-Sum has been extended with the
directivity aware loudspeaker model and a second estimation procedure that exploits
a sparse prior is presented. The methods are shown to outperform the prior art when
a typical loudspeaker is used. An experimental study with real world measurements
shows that the extended model reduces the model miss fit.

5.1 Future work

To conclude, in this section a list of ideas is presented for possible extensions and future
research topics:

• Extending the method for horizontal surfaces In my view, there are two
plausible ways to extend the presented method to account for horizontal surfaces.

– In the scenario where the microphone array geometry is limited to lie in the
horizontal plane, an extension of the model Φ can impact the conditioning
such that the inverse problem cannot be solved. However, most high end
loudspeaker systems are aesthetically designed to be placed in a living room
in a rather specific way. In particular, larger systems such as the Bang &
Olufsen Beolab 90’s are likely to be placed directly on the floor. Other smaller
products can be placed on a shelf or as table centerpiece. This prior knowl-
edge can be used in conjunction with the standardized ceiling height used in
construction. The distance to the floor and ceiling determines the location
of the first order image sources in the horizontal axis. This structure can be
exploited when solving the inverse problem. As was seen in the real world
measurements, it is expected that a floor reflection follows in quick succes-
sion from a first order wall reflection. The search space could be reduced
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drastically by including these priors.

– If one allows for a compact microphone array that can span in 3D, then the
preferred geometry would be that of the uniform spherical array. In this
situation the shift invariant property can be extended to three dimensions.
It is imagined that Φ can be extended to be a product of thee convolutions
without reducing the conditioning.

• Extending the signal model to multiple loudspeaker drivers
In the case where the loudspeaker system includes several drivers, the directivity
model may be a combined model, measured during simultaneous excitation of all
drivers. Alternatively, an individual directivity submodel may be determined for
each driver, and then superimposed.

A directivity model modeling each driver individually has the advantage that the
estimation process may involve selectively exciting one or several drivers, and iden-
tifying walls for each such measurement. Significantly reducing the interference
as was also shown using a single highly direction loudspeaker that was rotated
in [32]. In the application of sound staging of object based audio, the presented
forward model can also be used as a prediction. This could improve the mixing
process.

• Solving the inverse problem differently

– This thesis assumes that the candidate locations lie on the grid. Future
work could study the errors introduces by reflectors not lying on the grid.
One possible direction would be to reformulate the problem in a continuous
domain and to use total variation for sparse recovery.

– The proposed `1 regularization assumes that h(l, k) is sparse. As shown
in results, it is likely that a model miss match violates this assumption.
An investigation into the structure of the non-zero elements could improve
solving the inverse problem. One direction could be to assume group sparsity.

– The location of second order image sources are determined if the two first
order image sources are already located. This structure is currently not being
exploited when solving for h.

• Using a predermined but observable excitation signal
We wish to have an inference procedure that requires least effort from the user
of the product. It would be desirable to have that instead of an exponential sine
sweep, customer music is used as excitation. However two main problems arise:
The inverse of a large matrix must be computed (what was previously a closed
analytical solution) and secondly, the music will likely not be wide band and
contain periodicity. The research direction provided in this thesis may regularize
the channel identification that could potentially overcome some of these issues.
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Circulant Matrix A
A circulant matrix has the form A ∈ Cn×n

a1 a2 . . . an
an a1 a2 . . . an−1

an−1 an a1 . . . an−2
...

...
. . . . . .

...
a2 a3 . . . an a1

 (A.1)

Each row is the previous row cycled forward one step. A circulant matrix can thus be
uniqly defined by its first row, often denotes as A = circ (a) such that if we use the
cyclic permutation matrix Cn we have

Cn =


0 1 . . . 0
... 0 1

...
. . . . . . 0

0 1
1 0 . . . 0

 =

[
0n−1×1 In−1×n−1

1 01×n−1

]
(A.2)

A circulant matrix A can be written in the form

A =
n−1∑
k=0

ak+1C
k
n (A.3)

Observe how we have C0
n = I = Cn

n and the vector a is the first row of the matrix.
The polynomial representation reveals the commutative algebraic property of circulant
matrices: Linear combinations and products of circulants are also circulant. The inverse
of a nonsingular circulant is a circulant, any two circulants of the same size commute.

A.1 Eigenvectors and eigenvalues

The normalized eigenvectors of a circulant matrix are the Fourier modes. Thus any
circulant matrix can be diagonalized with the same unitary transformation

A = F−1
n ΛFn = F−1diag(Fna)Fn (A.4)

Where Fna is the Discrete Fourier Transform of the first row of A. The N point discrete
Fourier transform matrix is given as

FN(k, l) =
1√
N
e−2πjkl/N (A.5)
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Performing measurements
using the exponential sine
sweep B
Throughout this thesis the exponential sine sweep is used as the excitation signal for
the loudspeaker. The exponential sine sweep is an appropriate pilot signal for the
loudspeaker response, as it is easily invertible and separates the harmonics due to non-
linearities in time. As a consequence, the non-linearity can be removed easily. The
exponential sine sweep is defined by the start frequency f1, the end frequency f2 and
the total duration T as follows

x(t) = sin

 2πf1T

ln
(
f2
f1

) (e
t
T

ln
(

f2
f1

)
− 1

) (B.1)

To measure the loudspeaker impulse response, it is assumed that the loudspeaker is a
linear time invariant system. Thus the signal model is

y(n) = x(n) ∗ v(n) (B.2)

where v(n) is the loudspeaker impulse response. In matrix vector notation we have
that

y = Xv (B.3)

With
y =

[
y(0), y(1), . . . , y(T + L− 2)

]ᵀ ∈ RT+L−1 (B.4)

v =
[
v(0), v(1), . . . , v(L− 1)

]ᵀ ∈ RL (B.5)

x =
[
x(0), x(1), . . . , x(T − 1)

]ᵀ ∈ RT (B.6)

The matrix X is Toeplitz and of size T + L− 2× L and has the following structure

X =



x(0) 0 . . . . . . . . . 0

x(1) x(0) 0
. . .

...
... x(1) x(0) 0

. . .
...

...
...

...
. . . 0

...
...

...
...

. . .
...

x(T − 1) x(T − 2) x(T − 3) . . . . . . x(0)

0 x(T − 1) x(T − 2)
. . . . . . x(1)

... 0 x(T − 1)
. . . . . .

...
...

...
...

...
. . .

...
0 0 0 . . . 0 x(T − 1)



∈ RT+L−1×L (B.7)
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Another way to express this matrix is by using the Circulant matrix. In the thesis we
use I for the identity matrix and Wa×b for the zero-padding/windowing matrix. The
excitation signal column vector can be zero padded

xzp = WT+L−1×Tx =

[
x

0L−1

]
∈ RT+L−1 (B.8)

We construct a circulant matrix whose first column is xzp. The eigenvalue decompo-
sition of the circulant matrix is known and uniquely defines the circulant matrix, as
shown in Appendix A.

Cx = circ (xzp) = F−1
T+L−1ΛxFT+L−1 (B.9)

Where we have that Λx is a diagonal matrix, constructed from the (complex) Fourier
coefficients of the zero-padded excitation signal

Λx = diag (FT+L−1xzp) (B.10)

The loudspeaker impulse response can be estimated as

v̂ = X†y (B.11)

For the exponential sine sweep there is a closed form expression of the inverse filter
(psuedo inverse). The inverse filter is a frequency-equalized time-reversed version of
x(n). If we define the inverse filter to be z(n), we have that

z(n) ∗ x(n) = δ(n) (B.12)

z(n) = x(−n) log

(
f2

f1

)
n

T
∀n = 0, . . . , T (B.13)

v̂(n) = z(n) ∗ y(n) (B.14)

This technique can also be used to estimate the room impulse response. Remember that
the room impulse response is a function of loudspeaker position and listening position.
So, the loudspeaker is placed somwhere in the room and the microphone is placed at
the listening position. Or signal model now is

y(n) = x(n) ∗ h(n) ∗ v(n) (B.15)

However, often the loudspeaker impulse response v(n) is neglected. Thus to room
impulse response calculations are similar to that of the loudspeaker impulse response.
The difference being that the measurements are not taken in anechoic conditions but
rather a room under test.
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Proof of farfield limit C
Here we evaluate the following limit:

lim
Rs→∞

√
R2
s + r2 − 2Rsr cos

(
θs −

2πi

N

)
−Rs (C.1)

For ease of notation we observe that cos
(
θs − 2πi

N

)
is not a function of Rs and replace

it with the constant a. We rationalize the expression by multiplying it with 1.

lim
Rs→∞

((√
R2
s + r2 − 2arRs −Rs

) √R2
s + r2 − 2arRs +Rs√

R2
s + r2 − 2arRs +Rs

)
=

lim
Rs→∞

r2 − 2arRs

Rs +
√
r2 − arRs +R2

s

.

(C.2)

Using the product rule for limits we separate the equation and evaluate the limit for
one of them

lim
Rs→∞

r2 − 2arRs

Rs +
√
r2 − arRs +R2

s

= lim
Rs→∞

(
r2 − 2arRs

Rs

)
lim
Rs→∞

 1

1 +

√
r2−2arRs+R2

s

Rs


= −2ar lim

Rs→∞

 1

1 +

√
r2−2arRs+R2

s

Rs

 .

(C.3)

Next, R is inserted in the root to obtain:

−2ar lim
Rs→∞

 1

1 +

√
r2−2arRs+R2

s

Rs

 = −2ar
1

limRs→∞

(√
r2−2arRs+R2

s

R2
s

)
+ 1

. (C.4)

The limit is taken inside the square root and the fraction over R2 is evaluated:

−2ar
1√

limRs→∞
r2

R2
s
− 2ar

Rs
+ 1 + 1

. (C.5)

Now the limit of Rs →∞ can be evaluated to finally obtain:

−2ar
1√

limRs→∞
r2

R2
s
− 2ar

Rs
+ 1 + 1

= −2ar
1√

1 + 1
= −ar (C.6)
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Substituting the original expression for a we establish the relationship:

lim
Rs→∞

√
R2
s + r2 − 2Rsr cos

(
θs −

2πi

N

)
−Rs = −r cos

(
θs −

2πi

N

)
. (C.7)

Or as it is presented in the body of the thesis, we can add r to both sides of the equation
to establish

lim
Rs→∞

∆d(Rs, θs, i) = lim
Rs→∞

√
R2
s + r2 − 2Rsr cos

(
θs −

2πi

N

)
−Rs + r

=r

(
1− cos

(
θs −

2πi

N

))
.

(C.8)
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