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Chapter 1

Introduction

Systems with time-varying masses frequently occur in daily life. Many con-
structions and mechanisms such as for instance cable-stayed bridges and suspension
bridges contain parts for which the masses change in time. These constructions play
an important role in practice and must be reliable and safe. The vibrations of these
systems are the subject for many studies.

A single degree of freedom oscillator model will be used in this thesis as an
extremely simple model to study the stability of the vibrations of such systems with
periodically time-varying masses.

1.1 Short historical overview and motivation

The periodic behaviour of most constructions is determined by the periodicity of
the loading and by the periodic deformation of (parts of) supporting or connected
structures. The rotation of the rotor of a turbine or the crankshaft of a combustion
engine, the transverse movement of a beam or a string, and the rectilinear movement
of a car on a rough surface, can cause unexpectable periodic motion of the systems
in di�erent directions. Such a periodic motion � vibration or oscillation � can
also occur after an instantaneous disturbance of the system and without a visible
in�uence further.

Vibrations can be desirable or even necessary. For example, the vibrations of a
guitar string or the cone of a loudspeaker produce sounds. The transportation of
heavy objects on short distances can be done by using vibrations. The vibrating
ear drums transfer sound waves to the brain, and so on. But most of the vibrations
are undesirable. Building any system, either static or dynamic, requires thorough
study of the possible vibrations of this system.

The Tacoma Narrows suspension bridge in Washington State, USA, is a classical
example of a structure which looses its stability due to an incomplete study of the
dynamics of the system. This bridge was built in 1940 and after 4 months it collapsed
in not extremely bad weather conditions. The most trustful theory to explain the
collapse is that the pro�le of the deck of the bridge acted as a kind of airfoil, and
due to a wind�ow the bridge deck experienced strong drag-and-lift forces.

Another interesting example is the Erasmusbrug � a cable-stayed bridge in Rot-
terdam in the Netherlands. Several months after its opening in 1996 a signi�cant
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movement of the deck of the bridge was observed in windy and rainy weather. Nu-
merical analysis and experiments showed high amplitudes for the vibrations of the
cables of the bridge. The problem was studied in [7]. Hydraulic dampers were ap-
plied to the cables of the bridge, which reduced the amplitudes of the vibrations and
solved the problem.

In case of the Erasmusbrug, the movement of the deck of the bridge was caused
by the periodic movement of the cables. There were two major possibilities for such
cables' vibrations discovered in [7]. These were axial air-�ow and the formation
of water rivulets on the cable's surface. Similar phenomena were also observed by
engineers on many other bridges, see [12,13] for additional information. The �ow of
water rivulets on the inclined surface has also been studied in [2, 3] experimentally.

Vibrations are a complicated dynamical phenomenon. In particular, the stability
properties of the vibrations are usually di�cult to determine, but are important to
know. In engineering, numerical and experimental approaches are used to determine
the system's behaviour under certain conditions. Di�erent models based on for
instance the Finite Element Methods are used to simulate the system's dynamics.

Not only engineers are interested in the study of stability of vibrations, but also
theoretical studies of this interesting phenomenon are presented by many scientists.
Many analytical and numerical approaches to the problem of stability of vibrations
have been developed, see for example [16, 18,21,22], and many others.

The fast development of mechanics, mathematics and engineering in the XIX -
XX centuries allowed to build complicated structures and mechanisms. It turned
out to be not enough just to study the vibrations of those constructions, but it was
necessary to take into account many other factors. One of those important factors is
the changing masses of the constructions during operation. The Russian scientist I.
Meshchersky considered problems with changing masses in his Doctoral thesis [15]
published in 1897. His works on this subject became a basis for the development of
rockets and space �ights.

The process of change of mass of a body can be considered in general as either an
addition of new particles to the body or a separation of particles from the body. The
behaviour of the added and the separated particles is considered neither before the
addition nor after the separation of the particles. Only the in�uence of the particles
during the time-intervals when the particles are situated on the body is taken into
account. It is usually assumed that any particle situated on the body is considered
to be an essential part of the body, and has the same velocity and experiences the
same forcing as the body itself. So, every time when a particle either joins to or
separates from the body, the mass of the body changes and become constant again
for some time until the next particle changes the mass of the body.

According to the previous assumption the problem of the motion of a body with
a changing mass is usually studied �rst as a number of simpler sub-problems of the
motion of a body with a constant mass. Although the di�erential equation of motion
of a body with a changing mass is similar to the di�erential equation of motion of
a body with a constant mass, it is always easier to solve the latter one. The initial
conditions for this equation are usually taken from the solution of the initial value
problem solved for the previous interval when the mass of the body was constant but
di�erent. The moment of change of the properties of the system (when a particle
either joins to or separates from the body) is very short and is usually taken as
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an in�nitesimally small time-interval. It is sometimes a challenge to determine the
behaviour of the system on these small time-intervals, since the system is in�uenced
mostly at those moments.

1.2 The model

The model studied in this thesis is the following (see Fig. 1.1). The cross section
of a cable is represented by an elastically constrained symmetrical circular body.
The model is assumed to have one degree of freedom, since the main vibration of
the system is assumed to be in one (vertical) direction, and all the forces acting
in the other directions are relatively small and/or can be neglected. Several cases
are studied in this thesis, and include impulses, damping, harmonic excitations, and
drag-and-lift forces.

F (t)
w(t)

y(t)

δk

M(t)

wind�ow

Figure 1.1: Single degree of freedom oscillator with a time varying mass.

It is assumed in all cases that the oscillator is in�uenced by the raindrops falling
on and o� the surface of the oscillator. The masses of the raindrops are much smaller
than the mass of the oscillator itself. In some cases the raindrops' hits are considered
to be impulses which add some energy to the system in the moments of adding to
and separating from the oscillator.

It is rather di�cult to obtain the equation of motion for a system with a changing
mass. Such systems are usually described by a non-material volume inside a closed
surface. Such a non-material volume is called a control volume in �uid mechanics
and the surface of this volume is called a control surface. In case when the control
surface coincides with the material surface, the general balance law can be used
for the non-material volume, see [9] for details. Finally, the di�erential equation of
motion of the oscillator with mass M(t) can be determined, and is given by:

M(t)ÿ(t)− Ṁ(t)(w(t)− ẏ(t)) + δẏ(t) + ky(t) = F (t, y(t), ẏ(t)), (1.1)

where y(t) is the displacement of the centre of mass of the oscillator, w(t) is the
velocity at which a particle is added to or separated from the oscillator, δ is the
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damping coe�cient, k is the sti�ness coe�cient, and F (t, y(t), ẏ(t)) is a function
describing external excitations.

Eq. (1.1) was derived based on the principal of the conservation of energy and
the balance of linear momentum of a non-material volume in [9] with references
to Meshchersky [15], Levi-Civita, and others. According to [9], the particular case
of this equation (the velocity of the added masses is equal to zero) was published
by Levi-Civita in his work Sul moto di un corpo di massa variabile in 1928. The
equation of Levi-Civita was obtained for the case of a planet for which the mass
changes slowly due to the fall of meteorites on its surface. Some other scientists
obtained similar equations by the balance of linear momentum for the non-material
volume in other areas such as biology, chemistry, �uid mechanics etc, where a change
of mass frequently occurs.

1.3 Methods

Theoretical studies of the problem of stability are mostly based on a combination
of analytical and approximation methods depending on the considered problem.
These methods are described for instance in [4, 6, 30], and used for many problems,
such as in [1, 5, 20].

In this thesis the problem of stability of the vibrations of a single degree of
freedom oscillator with a time-varying mass will be considered. This work is based
on and employes the methods described in [25].

To determine the stability one �rst solves initial value problems for the di�er-
ential equation (1.1). By using the solutions of the initial value problems maps are
constructed. These maps, or equivalently systems of di�erence equations, are then
studied to determine �nally the stability properties of the solutions.

In case when the analytical solution is di�cult to obtain explicitly, most of
the researchers apply approximation methods. Such methods have been actively
developed during the last few decades, see for example [18, 24]. A straight forward
perturbation method will be used in this thesis.

In all cases of this research the solution of the initial value problem has been
found in matrix form. Often, this solution has a form which is di�cult to analyse
directly, and transformations are required. There are many methods described in
[4,10,17,29], and others, which may be applied to the equations in order to change
their form to perform the analysis. Several techniques, such as diagonalisation
and Jordan-form-matrices have been used in this thesis. In the non-linear case the
solution of the problem will lead to a system of two strongly non-linear algebraic
equations. Numerical techniques have been applied to this system to obtain the
stability characteristics of the solution. The search of equilibrium points of the
system has been done by roots-�nding algorithms for di�erential and di�erence
equations. Then, the phase-space diagrams around those �xed points have been
plotted and analysed in order to obtain the stability properties.

1.4 Reader's guide

This thesis is a collection of several modi�ed journal papers and conference papers
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which describe research on the particular cases studied during the PhD project. The
model used for each case is the same, except for the external excitations acting on
the system, which di�er from one case to another.

In chapter 2, the research results for the undamped linear case will be presented.
This chapter is a continuation of the research done in [25], where a linear homoge-
neous model has been considered, and where the stability of this model has been
studied. The oscillator studied in this chapter is in�uenced by two types of external
excitations, such as impulses and harmonic forcing. The change of the mass of the
oscillator is described by the periodic addition and separation of small masses. The
in�uence of rain has been modelled as a number of impulses which are due to small
masses hitting and leaving the surface of the oscillator. Wind acting on the system
has been modelled mathematically as an harmonic function. For both of these forces
the initial value problem has been formulated and solved. The obtained solution has
been studied for its stability by using some analytical techniques. In case of har-
monic forcing interesting resonance conditions have been found. These conditions
relate the properties of the system to the frequency of the external excitations. Also
the existence of periodic solutions has been investigated.

In chapter 3 a linear system with damping is studied. Three di�erent cases with
external excitations have been studied. The model is similar to the one considered
in chapter 2, so the initial value problem and the methods are rather similar. The
solution of this problem is more complicated, but the general analytical techniques
still can be applied to �nd the stability properties of the system. The solutions
have been studied in detail, and many interesting stability properties have been
found. There are graphs in chapter 3 which describe the behaviour of the system for
di�erent values of the parameters. Also optimal damping rates have been computed
for which the system is always stable.

In chapter 4 a non-linear case is investigated. The model is similar to the model
from chapter 2 but the external excitation (is a non-linear function) due to a wind
force. This non-linearity leads to non-linear sub-problems, and the application of nu-
merical techniques, and perturbation methods are required. The instability regions
in the parameter space and some phase-space �gures for the non-linear problem will
be computed numerically. Moreover, a lot of bifurcations will be presented.
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Chapter 2

A linear case without damping

Abstract: In this chapter the forced vibrations of a linear, single degree of
freedom oscillator (sdofo) with a time-varying mass will be studied. The forced
vibrations are due to small masses which are periodically hitting and leaving the
oscillator with di�erent velocities. Since, these small masses stay for some time
on the oscillator surface the e�ective mass of the oscillator will periodically vary in
time. Additionally, an external harmonic force will be applied to the oscillator with a
time-varying mass. Not only solutions of the oscillator equation will be constructed,
but also stability properties for the forced vibrations will be presented for various
parameter values.

2.1 Introduction.

Systems with time-varying masses frequently occur in practice. Examples of such
systems can be found in robotics, rotating crankshafts, conveyor systems, excava-
tors, cranes, biomechanics and in �uid-structure interaction problems [5, 9]. The
oscillations of electric transmission lines and cables of cable-stayed bridges with wa-
ter rivulets on the surface are also examples of time-varying dynamic systems [22].
For these mechanical constructions the 1-mode Galerkin approximation of the con-
tinuous model will lead to a sdofo-equation. These sdofos are considered to be
representative models for testing numerical methods and for studying forces which
are acting on the system [8].

In this chapter the forced oscillations of a linear sdofo with a (periodically and
stepwise changing) time-varying mass will be studied. The free oscillations have
been recently studied in [25].

Consider the oscillations of a sdofo with a linear restoring force and a mass which
varies in time according to a periodic stepwise dependence. This model is perhaps
the simplest model which describes the process of the vibrations of a cable with
rainwater located on it. Part of the raindrops hitting the cylinder (i.e. the cable)
will remain on the surface of the cylinder for some time, and will subsequently be
blown or shaken o� after some time. It will be assumed that when mass is added to

This chapter is a slightly revised version of [27]: W.T. van Horssen, O.V. Pischanskyy, J.L.A
Dubbeldam, On the forced vibrations of an oscillator with a periodically time-varying mass, Journal
of Sound and Vibration, 329 (6): 721-732, 2010
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or separated from the oscillator that the position of the center of the (total) mass of
the oscillator is not in�uenced. The following equation of motion for the sdofo can
now be derived (see for instance [9, p. 152]):

Mÿ = Ṁ(w − ẏ)− ky + F, (2.1)

where y = y(t) is the displacement of the oscillator (see Figure 2.1),M = M(t) is the
time-varying mass of the oscillator, w = w(t) is the mean velocity at which masses
(i.e. raindrops) are hitting or leaving the oscillator, k is the (positive) sti�ness
coe�cient in the linear restoring force, F = F (t) or F = F (t, y, ẏ) is an external
force, and the dot denotes di�erentiation with respect to t. The force F and the
velocity w are measured positive in positive y direction (see Figure 2.1).

w(t)

y(t)

k

F (t)

M(t)

Figure 2.1: The single degree of freedom oscillator.

In [25] the free vibrations (i.e. F ≡ 0 and w ≡ 0 in (2.1)) of the sdofo have been
studied, and in this chapter the forced vibrations will be studied. Following [25] it
turns out to be convenient to separate the mass M(t) into a time invariant part M0

and into a time-varying part m(t), that is,

M(t) = M0 −m(t), (2.2)

where M0 is a positive constant, and M0−m(t) > 0. By substituting equation (2.2)
into equation (2.1) it follows that (2.1) can be rewritten in:

d

dt

(
(M0 −m(t))

dy

dt

)
+ ky =

−dm
dt

w + F. (2.3)

Then, by introducing the time-rescaling t =
√
M0/k τ it follows that equation (2.3)

becomes

d

dτ

((
1− m̃(τ)

M0

)
dỹ(τ)

dτ

)
+ ỹ(τ) =

−w̃(τ)√
M0k

dm̃(τ)

dτ
+ F̃ (τ), (2.4)

where ỹ(τ) = y(
√
M0/k τ), m̃(τ) = m(

√
M0/k τ), w̃(τ) = w(

√
M0/k τ) and F̃ (τ) =

1

k
F (
√
M0/k τ). In this chapter it will be assumed that h(τ) = m̃(τ)/M0 with
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1− h(τ) > 0 is a periodic step function, that is,

h(τ) =

{
ε for 0 < τ < T0,
0 for T0 < τ < T,

(2.5)

and h(τ +T ) = h(τ), and ε is a constant (in practice usually small) with 0 < ε < 1.
Also w̃(τ) is assumed to be T -periodic. It should be observed that in the analysis ε
is de�ned to be the quotient m/M0, where m is the mass which added at time T0,
and where M0 is the mass of the oscillator. So, ε can be seen as a measure for the
relative mass which is added at time T0.

For the reasons of convenience the tildes in (2.4) will be dropped, and the prime
will be introduced to denote di�erentiation with respect to τ , yielding

((1− h(τ)) y′(τ))′ + y(τ) =
−w(τ)ω0

k
m′(τ) + F (τ), (2.6)

where ω0 =
√
k/M0 is the natural frequency of the oscillator. The initial displace-

ment and the initial velocity of y(τ) are given by

y(0) = y0 and y
′(0) = y′0 (2.7)

respectively.
The chapter is organized as follows. In section 2 of this chapter the initial value

problem (2.6) - (2.7) will be studied with F (τ) ≡ 0. In this case the small masses
which are periodically hitting and leaving the oscillator (with nonzero velocities) can
be seen as an external force acting on the oscillator. The stability of the solution(s)
of the initial value problem will be studied in detail, and the existence of periodic
solutions will be investigated. In section 3 of this chapter it will be assumed that
the external force F (τ) is a harmonic force, that is,

F (τ) = A cos(ατ + β),

where A and β are constants, and where α is the frequency of the external force.
Then the following initial value problem for y(τ) is obtained

((1− h(τ)) y′(τ))′ + y(τ) =
−w(τ)ω0

k
m′(τ) + A cos(ατ + β), (2.8)

with initial conditions (2.7).
The initial value problem (2.7) - (2.8) will be studied in detail in section 3.

The stability of the solutions will be studied as well as the existence of resonance
frequencies (depending on α). Finally, in section 4 of this chapter some conclusions
will be drawn, and remarks will be made about future research on this subject.

2.2 The case F ≡ 0.

In this section the initial value problem (2.6) - (2.7) with F ≡ 0 will be studied,
or equivalently

((1− h(τ)) y′(τ))′ + y(τ) =
−w(τ)

ω0

h′(τ), τ > 0, (2.9)
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with y(0) = y0, y
′(0) = y′0, ω0 =

√
k/M0, and where h(τ) is given by (2.5). This

section is organized as follows. In subsection 2.1 a representation for the solution y(τ)
of the initial value problem will be given. The stability properties of the solution(s)
will be discussed in the subsection 2.2, and in the subsection 2.3 the existence of
periodic solutions will be investigated.

2.2.1 A representation of the solution.

It is obvious that the derivative of h(τ) with respect to τ for 0 < τ < T0 and
T0 < τ < T is equal to 0. Thus, for 0 < τ < T0 equation (2.9) becomes:

(1− ε)y′′ + y = 0. (2.10)

The initial value problem for (2.10) can easily be solved for 0 < τ < T0, yielding:(
y(τ)
y′(τ)

)
= M1(τ)

(
y0
y′0

)
, (2.11)

where matrix M1(τ) is given by

M1(τ) =


cos

(
τ√

1− ε

) √
1− ε sin

(
τ√

1− ε

)

−1√
1− ε

sin

(
τ√

1− ε

)
cos

(
τ√

1− ε

)
 .

At τ = T0 the function h(τ) has a jump discontinuity. Consider the in�nitesimal
small time-interval T0

− ≤ τ ≤ T0
+, where T0

− = T0 − 0, T0
+ = T0 + 0. For this

interval the following conditions can be formulated: the displacement of the oscillator
is continuous, and the impulse of the system at τ = T+

0 is equal to the impulse of
the system at τ = T−0 plus the impulse of the raindrop (which hits the oscillator).
The continuity of the displacement at τ = T0 simply implies that y(T0

−) = y(T0
+),

and the impulse condition can be obtained by integrating (2.9) with respect to τ
from τ = T0

− to τ = T0
+, yielding

y′(T0
+)− (1− ε)y′(T0−) =

εw(T0)

ω0

.

And so, it follows for τ = T+
0 that y(τ)

y′(τ)

 = M2(τ)

 y(T0
−)

y′(T0
−)

+


0

εw(T0)

ω0

 =

= M2(τ) M1(T0)

 y0

y′0

+


0

εw(T0)

ω0

 , (2.12)

where M2(τ) is given by

M2(τ) =

 1 0

0 1− ε

 .
9



For T0 < τ < T equation (2.9) has the following form:

y′′ + y = 0 (2.13)

and the solution of equation (2.13) is given by:

 y(τ)

y′(τ)

 = M3(τ) M2(T0) M1(T0)

 y0

y′0

+ M3(τ)


0

εw(T0)

ω0

 , (2.14)

where matrix M3(τ) is given by

M3(τ) =

 cos (τ − T0) sin (τ − T0)
− sin (τ − T0) cos (τ − T0)

 .
At τ = T the function h(τ) has again a jump discontinuity. Consider the in-

�nitesimal small time-interval T− ≤ τ ≤ T+, where T− = T − 0, T+ = T + 0. For
this interval the following conditions can be formulated: the displacement of the
oscillator is continuous, and the impulse of the system at τ = T− is equal to the
impulse of the system at τ = T+ plus the impulse of the raindrop (which leaves
the oscillator). The continuity of the displacement at τ = T simply implies that
y(T−) = y(T+), and the impulse condition can be obtained by integrating (2.9) with
respect to τ from τ = T− to τ = T+, yielding

(1− ε)y′(T+)− y′(T−) =
−εw(T )

ω0

.

And so, it follows for τ = T+ that

 y(τ)

y′(τ)

 = M4(τ)

 y(T−)

y′(T−)

+


0

− εw(T )

ω0(1− ε)

 , (2.15)

where M4(τ) is given by

M4(τ) =

 1 0

0
1

1− ε

 .
So, the solution of equation (2.9) on the interval 0 < τ ≤ T+ has been constructed,
and at τ = T+ the solution is given by y(T+)

y′(T+)

 = M4(T+) M3(T+) M2(T0) M1(T0)

 y0

y′0

+

+ M4(T+) M3(T+)


0

εw(T0)

ω0

+


0

−εw(T )

ω0(1− ε)


or in a short form:  y(T+)

y′(T+)

 = A

 y0

y′0

+ W, (2.16)
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where

A = M4(T+) M3(T+) M2(T0) M1(T0) =

=


a b− c d

√
1− ε b c

√
1− ε+ a d(1− ε)

a d
−1

1− ε
− b c 1√

1− ε
c d

−1√
1− ε

+ a b

 , (2.17)

where

a = cos

(
T0√
1− ε

)
, b = cos(T − T0), c = sin

(
T0√
1− ε

)
, d = sin(T − T0), (2.18)

and

W = M4(T+) M3(T+)


0

εw(T0)

ω0

+


0

−εw(T )

ω0(1− ε)

 =

=


εw(T0)

ω0

sin(T − T0)

ε (w(T0) cos(T − T0)− w(T ))

ω0(1− ε)

 . (2.19)

To obtain the solution on the interval 0 < τ ≤ (n + 1)T+, the same procedure
should be applied to equation (2.9) n more times, yielding for τ = (n+ 1)T+: y((n+ 1)T+)

y′((n+ 1)T+)

 = An+1

 y0

y′0

+
n∑
r=0

Ar W. (2.20)

The properties of matrix A are known from [25]. For W = (0 0)T the oscillator is
unstable when at least one of the eigenvalues λ1 or λ2 is such that |λj| > 1, or when
λ1 = λ2 with |λj| = 1 and the dimension of the corresponding eigenspace is equal

to one. In all other cases the oscillator is stable for W = (0 0)T . These results are

summarized in Table 2.1, where λ1,2 =
1

2
tr(A)± 1

2

√
D with D = (tr(A))2 − 4, and

tr(A) is the trace of matrix A (see also [25]).
The stability of the oscillator when W 6= 0 will be determined in the next

subsection.

2.2.2 On the stability of the oscillator.

From the previous subsection (see (2.16) to (2.20)) it follows that the solution
of equation (2.9) at τ = (n+ 1)T+ and at τ = nT+ can be linked by(

yn+1

y′n+1

)
= A

(
yn
y′n

)
+ W, (2.21)
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stability properties

tr(A)

the oscillator for W = 0 is

−2 < tr(A) < 2

(|λ1,2| = 1)
stable

tr(A) < −2 or tr(A) > 2

(|λj| > 1 for j = 1 or j = 2)
unstable

tr(A) = 2

(λ1 = λ2 = 1)

only stable when c = d = 0

and ab = 1 in matrix A,

else unstable

tr(A) = −2

(λ1 = λ2 = −1)

only stable when c = d = 0

and ab = −1 in matrix A,

else unstable

Table 2.1: Stability properties of the oscillator when W = 0.

where yn+1 = y((n + 1)T+), y′n+1 = y′((n + 1)T+) and where A and W are given
by (2.17) and (2.19) respectively. The solution of the system of di�erence equations
(2.21) is given by (2.20). However, the representation (2.20) is not very convenient
to determine the stability of the oscillator (due to an external force, that is, due
to W 6= 0). Also the use of a fundamental matrix for system (2.21) will lead to a
representation from which it is not very convenient to determine the stability. In
fact the following representation (see [6, p. 124] or [17]) will be obtained

(
yn

y′n

)
= Φ(n, n0)

(
y0

y′0

)
+

n−1∑
r=n0

[Φ(n, r + 1)g(r)] ,

where g(r) is a particular solution of (2.9), and where the fundamental matrix
Φ(n, no) is given by

Φ(n, no) = [v1, v2] • diag [λn1 , λ
n
2 ] ,

in which v1, v2 are eigenvectors, and λ1, λ2 are eigenvalues of matrix A.

Now a diagonalization method will be used to obtain a representation of the
solution from which the stability of the oscillator can be determined immediately.
From [17, p. 6] it follows that if the eigenvalues λ1, λ2 of a 2×2 matrix A are distinct
or if the two eigenvalues are coinciding and the dimension of the corresponding
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eigenspace is 2, then from any set of linearly independent corresponding eigenvectors
v1, v2 a matrix P can be formed, which is invertible and

P−1AP = D = diag[λ1, λ2]. (2.22)

Let (
yn

y′n

)
= P

(
xn

x′n

)
, (2.23)

and substitute the transformation (2.23) into (2.21). Then, multiply the left- and
the right-hand sides of the so-obtained equation by the inverse matrix of P. So, we
can rewrite (2.21) in the following form:(

xn+1

x′n+1

)
=

(
λ1 0

0 λ2

)(
xn

x′n

)
+ G, (2.24)

where

G =

(
G1

G2

)
= P−1W. (2.25)

Divide the �rst equation in (2.24) by λn+1
1 , and the second equation in (2.24) by

λn+1
2 , yielding: 

xn+1

λn+1
1

=
xn
λn1

+
G1

λn+1
1

,

x′n+1

λn+1
2

=
x′n
λn2

+
G2

λn+1
2

.

(2.26)

Then xn and x′n can be obtained, yielding:(
xn

x′n

)
=

(
λn1 0

0 λn2

)(
x0

x′0

)
+

n−1∑
r=0

(
λr1 0

0 λr2

)
G. (2.27)

Substitute (2.27) into (2.23) and multiply the result by matrix P, to obtain for
λ1 6= 1 and λ2 6= 1:

(
yn

y′n

)
= P

(
λn1 0

0 λn2

)
P−1

(
y0

y′0

)
+ P


1− λn1
1− λ1

0

0
1− λn2
1− λ2

P−1W. (2.28)

For the eigenvalues λ1,2 = 1 and the dimension of the corresponding eigenspace is
two, it is obvious from (2.27) that the solution (2.21) is unbounded, and that the
oscillator is exponentially unstable for W 6= 0. In [25] it has been shown that for
W = 0 the solution of (2.9) is bounded in this case. Remind that this method can
be applied to 2×2 matrices which have two independent eigenvectors. From [25], eq.
(20)-(22) it can be seen that the eigenvalues λ1,2 of matrix A can be only coinciding
for λ1 = λ2 = 1, or λ1 = λ2 = −1, and if one of the eigenvalues is equal to 1 (or
−1) then the other eigenvalue is also equal to 1 (or −1). The case λ1,2 = 1 (and
the dimension of the corresponding eigenspace is two) has just been considered, and
for the case λ1,2 = −1 (and the dimension of the corresponding eigenspace is two)

13



it easily follows from (2.28) that the solution is bounded, and so for λ1 = λ2 = −1
(and the dimension of the corresponding eigenspace is two) the oscillator is stable.
For all other noncoinciding values of λ1,2 the stability properties of the oscillator
easily follow from (2.28).

Now the following case still has to be considered: matrix A has two coinciding
eigenvalues and the dimension of the corresponding eigenspace is one (implying that
matrix A cannot be diagonalized). For this case the Jordan-form matrix method
can be used as for instance described in [6, 17]. It can be shown (see [6, 17]) that
again an invertible matrix P exists such that

P−1AP = J =

(
±1 1

0 ±1

)
. (2.29)

Instead of (2.24) the following system will be obtained:(
xn+1

x′n+1

)
=

(
±1 1

0 ±1

)(
xn

x′n

)
+ G, (2.30)

For λ1,2 = 1 xn and x′n can be determined from (2.30), yielding:
xn = x0 + nx′0 + nG1 +

n(n− 1)

2
G2,

x′n = x′0 + nG2.

(2.31)

In (2.31) it can be seen that several terms are multiplied by n, so the vibrations of
the oscillator will grow in time. For λ1,2 = −1, xn and x

′
n can be obtained similarly:

xn = (−1)nx0 − (−1)n+1n
(
x′0 −

G2

2

)
+
(
G1 +

G2

2

)
cos2

(
π(n+ 1)

2

)
,

x′n = (−1)nx′0 +G2 cos2
(
π(n+ 1)

2

)
.

(2.32)

Again there are several unbounded terms in (2.32), so the vibrations of the oscillator
will also grow in time. All of the stability properties of the oscillator (for W 6= 0)
are summarized in Table 2.2.

2.2.3 On the existence of periodic solutions.

In this subsection the existence of qT -periodic solutions (with q ∈ Z+) for equa-
tion (2.9) will be investigated. Since a small mass hits and leaves the oscillator with
period T , it is natural to study the question whether qT -periodic solutions exist
or not. In [16] a uniqueness result about the existence of T -periodic solutions for
(2.9) has recently been presented. In this section the existence or non-existence, and
the uniqueness or non-uniqueness of qT -periodic solutions for equation (2.9) will be
discussed in detail. To study these properties the map (2.21) will be used, that is,

yn+1 = Ayn + W, (2.33)
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stability properties

tr(A)

the oscillator for W 6= 0 is

−2 < tr(A) < 2

(|λ1,2| = 1)
stable

tr(A) < −2 or tr(A) > 2

(|λj| > 1 for j = 1 or j = 2)
unstable

tr(A) = 2

(λ1 = λ2 = 1)
unstable

tr(A) = −2

(λ1 = λ2 = −1)

only stable when c = d = 0

and ab = −1 in matrix A,

else unstable.

Table 2.2: Stability properties of the oscillator when W 6= 0.

where yn = (y(nT+), y′(nT+))
T , and where A and W are given by (2.17) and

(2.19) respectively. For a T -periodic solution of (2.9) it follows from (2.33) that
yn+1 = yn = yn−1 = . . . = y, and so y follows from (2.33):

y = Ay + W ⇐⇒ (I−A)y = W. (2.34)

So, a unique, T -periodic solution of equation (2.9) exists when matrix I − A is
invertible, or equivalently det(I − A) 6= 0, or equivalently 1 is not an eigenvalue
of matrix A, or equivalently tr(A) 6= 2. When tr(A) = 2 or equivalently λ =
1 is an eigenvalue of matrix A then there are two possibilities: there are no T -
periodic solutions of equation (2.9), or there are in�nitely many T -periodic solutions.
From (2.27) and (2.31) it is obvious that for W 6= (0, 0)T that there are no T -
periodic solutions, and that for W ≡ (0, 0)T that there are in�nitely many T -periodic
solutions.

For a 2T -periodic solutions of (2.9) it follows from (2.33) that yn+2 = yn =
yn−2 = . . . = y, and so y follows from (2.33):

yn+2 = Ayn+1 + W = A(Ayn + W) + W =⇒

(I−A2)y = (A + I)W. (2.35)

So, a unique 2T -periodic solution of equation (2.9) exists when matrix I − A2 is
invertible, or equivalently det(I − A2) 6= 0, or equivalently 1 is not an eigenvalue
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of matrix A2, or equivalently those λ's with λ2 = 1 (that is, 1 and −1) are not
eigenvalues of matrix A, or equivalently tr(A) 6= 2 and tr(A) 6= −2. When λ = 1
(or equivalently tr(A) = 2) then the previous case of T -periodic solutions will be
obtained. When λ = −1 (or equivalently tr(A) = −2) it follows from (2.28) and
(2.32) that there are in�nitely many 2T -periodic solutions of equation (2.9) for all
vectors W. This can also be seen from (2.35) in the following way. Rewrite (2.35)
into

(A + I)((I−A)y −W) =

(
0
0

)
. (2.36)

Since λ = −1 is an eigenvalue of matrix A it follows that I+A is not invertible, and
that there is no eigenvalue equal to 1. So, I−A is invertible, and equation (2.36) has
at least one solution y = (I −A)−1W. Since I + A is not invertible, and equation
(2.36) has at least one solution, it follows that equation (2.36) has in�nitely many
solutions, that is, there are in�nitely many 2T -periodic solutions of equation (2.9)
for all vectors W.

For a qT -periodic solution of (2.9) with q ∈ Z+ and q ≥ 2 it follows from (2.33)
that yn+q = yn = yn−q = . . . = y, and so it follows from (2.33):

yn+q = Ayn+q−1 + W = A(Ayn+q−2 + W) + W = . . . =⇒

y = Aqy + (Aq−1 + . . .+ A + I)W ⇐⇒

(I−Aq)y = (Aq−1 + . . .+ A + I)W ⇐⇒ (2.37)

(Aq−1 + . . .+ A + I)(I−A)y = (Aq−1 + . . .+ A + I)W ⇐⇒

(Aq−1 + . . .+ A + I)((I−A)y −W) =

(
0
0

)
. (2.38)

So, a unique, qT -periodic solution of equation (2.9) exists (see (2.37)) when matrix
I − Aq is invertible, or equivalently det(I − Aq) 6= 0, or equivalently 1 is not an
eigenvalue of matrix Aq, or equivalently those λ's with λq = 1 are not eigenvalues
of matrix A. When λ is an eigenvalue of matrix A, and λq = 1, and λ 6= 1 (the case
of T -periodic solutions has already been studied) then Aq−1 + . . . + A + I is not
invertible, and equation (2.38) has at least one solution y = (I −A)−1W. And so,
equation (2.38) has in�nitely many solutions, that is, there are in�nitely many qT -
periodic solutions (with q ≥ 2) of equation (2.9) for all vectors W. It can be shown
in an elementary way that λq = 1 and λ is an eigenvalue of matrix A is equivalent

with tr(A) = 2 cos

(
2nπ

q

)
for at least one n in the set 0, 1, 2, . . . , q− 1. The results

obtained so far about the existence (and uniqueness) of qT -periodic solutions of
equation (2.9), can be summarized as follows. Let λ be an eigenvalue of matrix A,
and let q be an element in Z+. Then,

• If λ = 1 (⇔ tr(A) = 2) then there are only T -periodic solutions when W ≡
(0, 0)T .
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• If λq = 1 and λ 6= 1 for a certain q ≥ 2 (⇔ tr(A) = 2 cos

(
2nπ

q

)
for at least

one n in the set 0, 1, 2, . . . , q − 1) then there are in�nitely many qT -periodic
solutions of equation (2.9) for all vectors W.

• If λq 6= 1 then there is a unique qT -periodic solution of equation (2.9) for all
vectors W.

2.3 The case with an external, harmonic force and

w(t) ≡ 0.

In this section the initial value problem (2.7) - (2.8) with w(t) ≡ 0 will be studied,
that is,

((1− h(τ)) y′(τ))′ + y(τ) = A cos(ατ + β), τ > 0, (2.39)

with y(0) = y0, y
′(0) = y′0, ω0 =

√
k/M0, where h(τ) is given by (2.5), and where α,

A and β are constants. This section is organized as follows. In subsection 2.3.1 a
representation for the solution y(τ) of the initial value problem will be given. The
amplitude increase after one period T will be discussed in subsection 2.3.2, and in
subsection 2.3.3 the stability properties of the solution and the resonance cases will
be investigated.

2.3.1 A representation of the solution

As in the previous section a map will be constructed which relates the solution
at τ = (n + 1)T + 0+ to the solution at τ = nT + 0+. For simplicity the following
notation will be introduced: yn(0+) = y(nT + 0+), yn+1(0

+) = y((n + 1)T + 0+),
yn(τ ∗) = y(nT + τ ∗) with 0 < τ ∗ ≤ T + 0+. Starting at τ = nT + 0+ the solution
will now be constructed (leading to the solution at τ = (n + 1)T + 0+). For nT <
τ < nT + T0 or equivalently for 0 < τ ∗ < T0 equation (2.39) becomes

(1− ε)y′′ + y = A cos(ατ + β). (2.40)

For α2 6= 1

1− ε
a particular solution of (2.40) is given by:

yp(τ) = y1p cos(ατ + β), (2.41)

where

y1p =
A

1− α2

φ2

, (2.42)

and φ =
1√

1− ε
. The initial value problem (with α2 6= φ2) can easily be solved for

0 < τ ∗ < T0, yielding yn(τ)

y′n(τ ∗)

 = M1(τ ∗)

 yn(0+)

y′n(0+)

+ N1(τ ∗)

 cos(αnT )

sin(αnT )

 , (2.43)

17



where

M1(τ ∗) =

 a∗
c∗

φ

−φc∗ a∗

 ,

N1(τ ∗) =

 y1p

(
c∗j − α

φ
a∗l + f ∗

)
y1p

(
a∗l +

α

φ
c∗j − g∗

)

y1p (φc∗j + αa∗l − αg∗) y1p (αa∗j − φc∗l − αf ∗)

 ,
and where a∗, c∗, j, l, f ∗, g∗ are given by

a∗ = cos(φτ ∗), c∗ = sin(φτ ∗), j = cos(β),

l = sin(β), f ∗ = cos(ατ ∗ + β), g∗ = sin(ατ ∗ + β).
(2.44)

For α2 = φ2 a particular solution of (2.40) on the time-interval nT < τ < nT+T0
is given by:

yp(τ) =
A

2
φτ sin(φτ + β),

and an expression almost similar to (2.43) can be given. At τ ∗ = T0 the function
h(τ) in (2.39) has a jump discontinuity. As in section 2.2 of this chapter it follows
for τ ∗ = T+

0 that yn(τ ∗)

y′n(τ ∗)

 = M2M1(T0)

 yn(0+)

y′n(0+)

+ M2N1(T0)

 cos(αnT )

sin(αnT )

 , (2.45)

where

M2 =

 1 0

0
1

φ2

 .
For T0 < τ ∗ < T equation (2.39) is given by

y′′ + y = A cos(ατ + β), (2.46)

and for α2 6= 1 a particular solution of (2.46) can be written as:

yp(τ) = y2pcos(ατ + β), (2.47)

where

y2p =
A

1− α2
. (2.48)

The initial value problem (with α2 6= 1) can easily be solved for T0 < τ ∗ < T ,
yielding  yn(τ ∗)

y′n(τ ∗)

 = M3(τ ∗)M2M1(T0)

 yn(0+)

y′n(0+)

+

+ (M3(τ ∗)M2N1(T0) + N3(τ ∗))

 cos(αnT )

sin(αnT )

 , (2.49)

18



where

M3(τ ∗) =

 b∗ d∗

−d∗ b∗

 ,
N3(τ ∗) =

 y2p(αd
∗g − b∗f + p∗) y2p(αd

∗f + b∗g − q∗)

y2p(αb
∗g + d∗f − αq∗) y2p(αb

∗f − d∗g − αp∗)

 ,
and where b∗, d∗, p∗, q∗, f, g are given by

b∗ = cos(τ ∗ − T0), d∗ = sin(τ ∗ − T0), p∗ = cos(ατ ∗ + β),

q∗ = sin(ατ ∗ + β), f = cos(αT0 + β), g = sin(αT0 + β).
(2.50)

For α2 = 1 a particular solution of (2.46) on the time-interval nT + T0 < τ <
(n+ 1)T is given by

yp(τ) =
A

2
τ sin(τ + β),

and an expression almost similar to (2.49) can be given. At τ ∗ = T the function
h(τ) in (2.39) has again a jump discontinuity. As in section 2.2 of this chapter it
follows for τ ∗ = T that yn+1(0

+)

y′n+1(0
+)

 =

 yn(T+)

y′n(T+)

 = M4M3(T )M2M1(T0)

 yn(0+)

y′n(0+)

+

+(M4M3(T )M2N1(T0) + M4N3(T ))

 cos(αnT )

sin(αnT )

 , (2.51)

where

M4 =

 1 0

0 φ2

 .
From (2.51) the following map can be obtained: yn+1(0

+)

y′n+1(0
+)

 = A

 yn(0+)

y′n(0+)

+ Wn, (2.52)

where A is given by (2.17), and where Wn is given by

Wn = (M4M3(T )M2N1(T0) + M4N3(T ))

 cos(αnT )

sin(αnT )

 . (2.53)

Comparing (2.53) to (2.21) it should be observed that the nonhomogeneous term
now explicitly depends on n.

The solution of the system of di�erence equations (2.52) is given by: yn(0+)

y′n(0+)

 = An

 y0(0
+)

y′0(0
+)

+
n−1∑
r=0

ArWr. (2.54)
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For α2 6= φ2 and α2 6= 1 the vector Wr is given by:

Wr =

 w11 cos(αrT ) + w12 sin(αrT )

w21 cos(αrT ) + w22 sin(αrT )

 , (2.55)

where

w11 = y1pb

(
α

φ
cl − aj + f

)
+

+ y1p
d

φ2
(φcj + αal − αg) + y2p(αdg − bf + p),

w12 = y1pb

(
α

φ
cj + al − g

)
+

+ y1p
d

φ2
(αaj − φcl − αf) + y2p(αdf + bg − q), (2.56)

w21 = −y1pdφ2

(
α

φ
cl − aj + f

)
+

+ y1pb(φcj + αal − αg) + y2pφ
2(αbg + df − αq),

w22 = −y1pdφ2

(
α

φ
cj + al − g

)
+

+ y1pb(αaj − φcl − αf) + y2pφ
2(αbf − dg − αp).

For α2 = φ2 the vector Wr is given by (2.55) with

w11 = y1p2b(φT0g − cl) + y1p
2d

φ
(φT0f + cj) +

+ y2p(φdg − bf + p),

w12 = y1p2b(φT0f − cj)− y1p
2d

φ
(φT0g + cl) +

+ y2p(φdf + bg − q), (2.57)

w21 = −y1p2φ2d(φT0g − cl) + y1p2φb(φT0f + cj) +

+ y2pφ
2(φbg + df − φq),

w22 = −y1p2φ2d(φT0f − cj)− y1p2φb(φT0g + cl) +

+ y2pφ
2(φbf − dg − φp).

And for α2 = 1 the vector Wr is given by (2.55) with

w11 = y1pb

(
cl

φ
− aj + f

)
+ y1p

d

φ2
(φcj + al − g) +

+ y2p(2(T − T0)q + p− p1),
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w12 = y1pb

(
cj

φ
+ al − g

)
+ y1p

d

φ2
(aj − φcl − f) +

+ y2p(2(T − T0)p− q − q1), (2.58)

w21 = −y1pφ2d

(
cl

φ
− aj + f

)
+ y1pb(φcj + al − g) +

+ y2pφ
2(2(T − T0)p+ q + q1),

w22 = −y1pφ2d

(
cj

φ
+ al − g

)
+ y1pb(aj − φcl − f)−

− y2pφ
2(2(T − T0)q + p+ p1).

Coe�cients a, b, c, d are given by (2.18), j, l are given by (2.44), and:

p = cos(αT + β), q = sin(αT + β), p1 = cos(T − 2T0 − β), q1 = sin(T − 2T0 − β).

2.3.2 The amplitude increase after one period T due to har-

monic forcing.
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Figure 2.2: The maximum amplitude γ as function of α for A = 1, T0 = 100,
T = 200, δ = π/7, and ε = 0.3.

In this section the possible amplitude increase of the displacement function y(τ)
(after one period T ) due to the external, harmonic force will be studied. From (2.54)
and (2.55) it can easily be seen that this increase is completely determined by:

w11 cos(αnT ) + w12 sin(αnT ) =
√
w2

11 + w2
12 sin(αnT + δ), (2.59)

where δ - is given by sin(δ) =
w11

γ
and cos(δ) =

w12

γ
in which:

γ =
√
w2

11 + w2
12. (2.60)

21



The maximum amplitude response (in absolute value) is γ. Obviously, γ depends on
α,A, T0, T, δ, and ε. In Figure 2.2 γ as function of α is plotted for A = 1, T0 = 100,
T = 200, δ = π/7 and ε = 0.3.

In Figure 2.2 it can be seen that there are two peaks. These two peaks are a
consequence of the change of mass of the oscillator, and so the oscillator actually
has two resonance frequencies (1 and (1 − ε)−1/2). Since only one period T for
the amplitude response is considered these maximum amplitude responses are of
course bounded. In Figure 2.3 an optimization program has been used to show
the maximum amplitude responses when A = 1, T0 and T are varied such that
0 < T0 < T < 20, δ = π/7, and ε = 0.3. Similar results can be obtained for other
values of A, T0, T, δ, and ε. For instance, in Figure 2.4 the results have been shown
for A = 1, 0 < T0 < T < 100, δ = π/7, and ε = 0.3.

10.80.60.40.2
0
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6

γ
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14

21.81.61.40

α

1√
1−ε

Figure 2.3: The maximum amplitude γ as function of α for A = 1, 0 < T0 < T < 20,
δ = π/7, and ε = 0.3.

2.3.3 Stability properties of the solution, and resonance.

In this subsection the stability properties and boundedness of the solution of
(2.52) will be studied. In fact the solution has to satisfy yn+1(0

+)

y′n+1(0
+)

 = A

 yn(0+)

y′n(0+)

+

+(M4M3(T )M2N1(T0)M4N3(T ))

 cos(αnT )

sin(αnT )

 , (2.61)

where A and M4, M3(T ), M2, N1(T0), and N3 are de�ned in subsection 2.3.1.
It should be observed that in (2.61) the matrices A and M4M3(T )M2N1(T0) +
M4N3(T ) are both n independent matrices. For simplicity M4M3(T )M2N1(T0) +
M4N3(T ) will be denoted by B, and the system of two �rst order ordinary di�erence
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Figure 2.4: The maximum amplitude γ as function of α for A = 1, 0 < T0 < T < 100,
δ = π/7, and ε = 0.3.

equations (2.61) will be reduced to a single second order di�erence equation for
yn(0+) = yn, yielding:

yn+2 − (a11 + a22)yn+1 + (a11a22 − a12a21)yn =

= c0 cos(αnT ) + s0 sin(αnT )+

+c1 cos(α(n+ 1)T ) + s1 sin(α(n+ 1)T ),

(2.62)

where aij(i, j = 1, 2) are the components of matrix A, and

c0 = b21a12 − b11a22, s0 = b22a12 − b12a22,

c1 = b11, s1 = b12,

and where bij(i, j = 1, 2) are the components of matrix B = M4M3(T )M2N1(T0)+
M4N3(T ) which are explicitly given by (2.56) - (2.58). In (2.62) a11 + a22 = tr(A)
is the trace of matrix A, and a11a22 − a12a21 = det(A) is the determinant of matrix
A which is equal to 1 (see [25]). The solution yn of (2.62) can be written as:

yn = yh,n + yp0,n + yp1,n, (2.63)

where yh,n is the solution of the homogeneous equation (related to (2.62)):

yh,n+2 − tr(A)yh,n+1 + yh,n = 0, (2.64)

and where ypm,n (with m = 0, 1) are the particular solutions of (2.62) satisfying

ypm,n+2 − tr(A)ypm,n+1 + ypm,n = cm cos(α(n+m)T ) + sm sin(α(n+m)T ). (2.65)

The roots of the characteristic equation belonging to the homogeneous equation
(2.64) are given by:

λ1,2 =
1

2
tr(A)± 1

2

√
(tr(A))2 − 4,
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and are, of course, coinciding with the eigenvalues of matrix A. The corresponding
stability properties of the homogeneous solution yh,n can be found in Table 2.1 or
in [25].

The particular solutions ypm,n of (2.65) can be found in the following way. First
one looks for a particular solution ypm,n in the form:

ypm,n = C1m cos(α(n+m)T ) + C2m sin(α(n+m)T ), (2.66)

where C1m and C2m are constants to be determined. By substituting (2.66) into
(2.65), and then by collecting the coe�cients of cos(α(n+m)T ) and of sin(α(n+m)T )
it follows that C1m and C2m have to satisfy cos(2αT )− tr(A) cos(αT ) + 1 sin(2αT )− tr(A) sin(αT )

− sin(2αT ) + tr(A) sin(αT ) cos(2αT )− tr(A) cos(αT ) + 1

×
×

 C1m

C2m

 =

 cm

sm

 . (2.67)

The di�erence equation (2.62) has a unique solution when two initial conditions are
given. And so, the particular solutions ypm,n can be determined uniquely. To have
a unique particular solution ypm,n it follows from (2.67) that the determinant of the
coe�cient matrix in (2.67) should be nonzero. When the determinant is equal to
zero then there are in�nitely many solutions or there is no solution. This will occur
when:  cos(2αT )− tr(A) cos(αT ) + 1 = 0, and

sin(2αT )− tr(A) sin(αT ) = 0,
(2.68)

or equivalently when:

tr(A) = 2 cos(αT ). (2.69)

So, the particular solutions ypm,n can be determined uniquely when tr(A) 6= 2 cos(αT ).
When tr(A) = 2 cos(αT ) the particular solutions ypm,n will have the following form:

ypm,n = n(C̃1m cos(α(n+m)T ) + C̃2m sin(α(n+m)T )), (2.70)

where C̃1m and C̃2m are constants to be determined. By substituting (2.70) into
(2.65), and then by collecting the coe�cients of cos(α(n+m)T ) and of sin(α(n+m)T )
it follows that C̃1m and C̃2m have to satisfy: 2 cos(2αT )− tr(A) cos(αT ) 2 sin(2αT )− tr(A) sin(αT )

−2 sin(2αT ) + tr(A) sin(αT ) 2 cos(2αT )− tr(A) cos(αT )

×
×

 C̃1m

C̃2m

 =

 cm

sm

 . (2.71)

Again to have a unique particular solution ypm,n (in the form (2.70)) it follows from
(2.71) that the determinant of the coe�cient matrix in (2.71) should be nonzero.
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stability properties

tr(A)

the oscillator for Wn 6= 0 is

−2 < tr(A) < 2

(|λ1,2| = 1)

only unstable when tr(A) = 2 cos(αT ),
else stable

tr(A) < −2 or tr(A) > 2

(|λj| > 1 for j = 1 or j = 2)
always unstable

tr(A) = 2

(λ1 = λ2 = 1)

only stable when c = d = 0 and
ab = 1 in matrix A, and

αT is not an even multiple of π,
else unstable

tr(A) = −2

(λ1 = λ2 = −1)

only stable when c = d = 0 and
ab = −1 in matrix A, and

αT is not an odd multiple of π,
else unstable.

Table 2.3: Stability properties of the oscillator with a harmonic external force when
Wn 6= 0.

When the determinant is equal to zero there are in�nitely many solutions or there
is no solution. This will occur when: 2 cos(2αT )− tr(A) cos(αT ) = 0, and

2 sin(2αT )− tr(A) sin(αT ) = 0,
(2.72)

or equivalently when:

tr(A) = ±2 and sin(αT ) = 0. (2.73)

So, when tr(A) = 2 cos(αT ) and αT is not a multiple of π then the particular
solution ypm,n will grow linearly in n (see (2.70)). The condition (2.69), that is
tr(A) = 2 cos(αT ) will be called a resonance condition for that reason. The case
tr(A) = 2 cos(αT ) and αT is a multiple of π still has to be studied. When αT is an
even multiple of π the system of di�erence equations (2.61) becomes: yn+1(0

+)

y′n+1(0
+)

 = A

 yn(0+)

y′n(0+)

+ B

 1

0

 , (2.74)
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and tr(A) = 2 cos(αT ) = 2. System (2.74) with tr(A) = 2 already has been studied
in section 2.2.2 of this chapter. From Table 2.2 it follows that the solution of (2.74)
is unstable. Similarly, when αT is an odd multiple of π the system of di�erence
equations (2.61) becomes: yn+1(0

+)

y′n+1(0
+)

 = A

 yn(0+)

y′n(0+)

+ B

 (−1)n

0

 , (2.75)

and tr(A) = 2 cos(αT ) = −2. Since the eigenvalues of matrix A are both equal
to −1 it is not di�cult to see that the particular solution of (2.75) will contain
unbounded terms in n. So, also in this case the solution of (2.75) is unstable. All
of the stability properties of the solution of the oscillator equation (2.39) with an
external harmonic force are summarized in Table 2.3.

2.4 Conclusions and remarks

In this chapter the stability properties of the forced vibrations of a linear, single
degree of freedom oscillator with a periodically and stepwise changing time-varying
mass have been studied. Two types of forcing have been studied. First, a forcing
has been investigated, due to a mass which hits the oscillator, stays for some time
at the oscillator, and then leaves the oscillator. The stability properties of the
oscillator, and the existence and (non) uniqueness of periodic vibrations have been
studied in detail in section 2.2 of this chapter. Secondly, an external, harmonic
forcing has been studied for an oscillator to which a mass (with zero velocity) is
added for some time, and then is taken away (with zero velocity). For this case
an interesting resonance condition, which relate the properties of the system to the
frequency of the external excitations, has been found, and the stability properties
of the oscillator problem have been presented in section 2.3 of this chapter. When
both forcing types are applied to the oscillator the results as obtained in section
2.2 and in section 2.3 of this chapter can be combined, because the di�erential
equation describing the problem is linear. It is also interesting to see in section
2.3 that due to the changing mass and due to the external harmonic forcing the
instability region shows two peaks. For a similar oscillator equation with a constant
mass and an external, harmonic forcing one usually has one peak in the instability
region. This larger instability region might perhaps explain in part the instability
mechanism for rain-wind induced oscillations of cables in wind�elds. Usually cables
in wind�elds are stable, but due to rain these cables can become unstable. Water
addition to the cables, water drop o�, and water rivulets on these cables (and so,
changing aerodynamic forcing acting on the cable), and changing eigenfrequencies
of the cable system certainly enlarge the instability regions of these cables.

To obtain more realistic mathematical models for these rain-wind induced oscil-
lations of cables in wind �elds one might consider periodically and multi-stepwise
changing time-varying masses. Other external forces (such as nonlinear drag-and-
lift forces, damping forces, and so on) can also be included in the model equation.
The aforementioned extensions to the model equation can be interesting subjects
for future research.
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Chapter 3

A linear case with damping

Abstract: In this chapter the vibrations of a damped, linear, single degree of
freedom oscillator (sdofo) with a time-varying mass will be considered. Both the
free and forced vibrations of the oscillator will be studied. For the free vibrations
the minimal damping rates will be computed, for which the oscillator is always
stable. The forced vibrations are partly due to small masses, which are periodically
hitting and leaving the oscillator with di�erent velocities. Since these small masses
stay for some time on the oscillator surface the e�ective mass of the oscillator will
periodically vary in time. Additionally, an external harmonic force will be applied to
the oscillator. Not only solutions of the oscillator equations will be constructed, but
also stability properties for the free, and for the forced vibrations will be presented
for various parameter values. For the external, harmonic forcing case an interesting
resonance condition will be derived.

3.1 Introduction

In practice systems with time-varying masses frequently occur. These systems
can be found in conveyor systems, robotics, cranes, in �uid-structure interaction
problems, and in many other systems [5, 9, 22]. For these mechanical construc-
tions the 1-mode Galerkin approximation of the continuous model will lead to a
sdofo equation. These sdofo's are usually considered to be representative models
for studying forces which are acting on the system. In this chapter the free and
the forced oscillations of a damped, linear sdofo with a (periodically and step-wise
changing) time-varying mass will be studied. The free, undamped oscillations, and
the forced, undamped oscillations have been recently studied in [25] and [27] re-
spectively. Some �rst results on nonlinear vibrations of these sdofos can be found
in [8,16]. In this chapter the oscillations of a sdofo with a linear restoring force and
a mass which varies in time according to a periodic step-wise dependence will be
considered. This model is perhaps the simplest model which describes the vibrations
of a cable with rainwater located on it. Part of the raindrops hitting the cable will

This chapter is a slightly revised version of [26]: W.T. van Horssen, O.V. Pischanskyy, On the
stability properties of a damped oscillator with a periodically time-varying mass, Journal of Sound
and Vibration, 330 (13):3257-3269, 2011; and A. Pischanskyy, W.T. van Horssen, On a simple
model for the rain-wind induced oscillations of a cable, Proceedings of the 9th UK conference on

Wind Engineering, Bristol, 20-22 September 2010.
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remain on the surface of the cable for some time, and will subsequently be blown or
shaken o� after some time. It will be assumed when mass is added to or separated
from the oscillator that the position of the center of the (total) mass of the oscillator
is not in�uenced. The following equation of motion for the sdofo can now be derived
(see also for instance [9, p. 152]):

Mÿ = Ṁ(w − ẏ)− δẏ − ky + F, (3.1)

where y = y(t) is the displacement of the oscillator (see Fig. 3.1), M = M(t) is the
time-varying mass of the oscillator, w = w(t) is the mean velocity at which masses
(i.e. raindrops) are hitting or leaving the oscillator, δ and k are the (positive)
damping and sti�ness coe�cients, respectively, F = F (t) or F = F (t, y, ẏ) is an
external force (for instance, a windforce), and the dot denotes di�erentiation with
respect to t. In the model it is assumed that the mass of for instance the raindrop
which is hitting (or leaving) the oscillator, is the same mass which is added to (or
taken away from) the oscillator. The force F and the velocity w are measured
positive in positive y direction (see Fig. 3.1). Following [25, 27] it turns out to

F (t)
w(t)

y(t)
M(t)

δk

Figure 3.1: The single degree of freedom oscillator with damping.

be convenient to separate the mass M(t) into a time invariant part M0 and into a
time-varying part m(t), that is M(t) = M0−m(t), where M0 is a positive constant,
and M0 −m(t) > 0. Then it follows that Eq. (3.1) can be rewritten in

d

dt

(
(M0 −m(t))

dy

dt

)
+ δ

dy

dt
+ ky =

−dm
dt

w + F. (3.2)

Then, by introducing the time-rescaling t =
√
M0/kτ , 2p = δ/

√
kM0, ỹ(τ) =

y(
√
M0/kτ), m̃(τ) = m(

√
M0/kτ), w̃(τ) = w(

√
M0/kτ) and F̃ (τ) = 1

k
F (
√
M0/kτ)

Eq. (3.2) can be rewritten into

d

dτ

((
1− m̃(τ)

M0

)
dỹ(τ)

dτ

)
+ 2p

dỹ(τ)

dτ
+ ỹ(τ) =

−w̃(τ)√
M0k

dm̃(τ)

dτ
+ F̃ (τ). (3.3)
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Now it will be assumed that h(τ) = m̃(τ)/M0 is a periodic step function with
1− h(τ) > 0, that is,

h(τ) =

{
ε for 0 < τ < T0,
0 for T0 < τ < T,

(3.4)

and h(τ +T ) = h(τ), and ε is a constant (in practice usually small) with 0 < ε < 1.
Also w̃(τ) is assumed to be T -periodic. It should be observed that in the analysis ε
is de�ned to be the quotient m/M0, where m is the mass which added at time T0,
and where M0 is the mass of the oscillator. So, ε can be seen as a measure for the
relative mass which is added at time T0. For convenience the tildes in Eq. (3.3) will
be dropped, and the prime will be introduced to denote di�erentiation with respect
to τ , yielding

((1− h(τ)) y′(τ))′ + 2py′(τ) + y(τ) =
−w(τ)ω0

k
m′(τ) + F (τ), (3.5)

where ω0 =
√
k/M0 is the undamped natural frequency of the oscillator. The initial

displacement and the initial velocity of y(τ) are given by

y(0) = y0 and y
′(0) = y′0. (3.6)

The initial value problem (3.5) - (3.6) has (in our opinion) not been studied before
in the literature. Only when the damping parameter p is equal to zero the stability
properties of the oscillator have been presented in the chapter 2 and in [25, 27]. In
the literature a related, homogeneous equation has been studied extensively x′′(τ)+
(1 − h(τ)x(τ) = 0, where h(τ) is given by (3.4). This equation was introduced in
1918 by Meissner, and is nowadays known as Meissner's equation. The stability
diagrams for this oscillator equation with a periodically and step-wise changing
sti�ness coe�cient can for instance be found in [14, 23]. In this chapter a fairly
complete treatment of the initial value problem (3.5) - (3.6) for the damped, and
externally forced oscillator with a periodically and step-wise changing time-varying
mass will be given.

This chapter is organised as follows. In section 2 the initial value problem (3.5)
- (3.6) will be studied with w(τ) ≡ 0 and F (τ) ≡ 0, that is, the free vibrations of
the oscillator will be studied. Depending on the value of the damping parameter p
and mass ratio ε di�erent cases have to be considered in the section. For the free
vibrations the minimum value of the damping parameter p will also be determined
in the section 2, such that for a given value of ε the oscillator is stable for all values
of T0 and T . In section 3 the initial value problem (3.5) - (3.6) will be studied with
F (τ) ≡ 0. In this case the small masses which are periodically hitting and leaving
the oscillator (with nonzero velocities) can be seen as an external force acting on
the oscillator. The stability of the solution(s) of the initial value problem will be
studied. In section 4 it will be assumed that w(τ) ≡ 0, and that the force F (τ) is
a harmonic force, that is, F (τ) = A cos(ατ + β), where A and β are constants, and
where α is the frequency of the external force. The stability of the solutions will be
studied as well as the existence of resonance frequencies (depending on α). Finally,
in section 5 of this chapter some conclusions will be drawn, and remarks will be
made about future research on this subject.
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3.2 The free vibrations

In this section the initial value problem (3.5) - (3.6) with w(τ) ≡ 0 and F (τ) ≡ 0
will be studied, that is,

((1− h(τ))y′(τ))
′
+ 2py′(τ) + y(τ) = 0, (3.7)

with y(0) = y0, y
′(0) = y′0, p > 0, and h(τ) given by (3.4). To solve this initial value

problem on, for instance, the interval 0 < τ < T+ we have to split up this interval
into 0 < τ < T−0 , T

−
0 ≤ τ ≤ T+

0 , T
+
0 < τ < T−, T− ≤ τ ≤ T+, where T−0 = T0 − 0,

T+
0 = T0 + 0, T− = T − 0, and T+ = T + 0. On the �rst time-interval 0 < τ < T−0

Eq. (3.7) becomes

(1− ε)y′′ + 2py′ + y = 0 (3.8)

subject to the initial conditions y(0) = y0 and y
′(0) = y′0. The solution of this initial

value problem for Eq. (3.8) can readily be obtained, yielding on 0 < τ < T−0 y(τ)

y′(τ)

 = M1(τ)

 y0

y′0

 , (3.9)

where the fundamental matrix M1(τ) depends on p, that is on the roots r1,2 of the
characteristic equation of Eq. (3.8), where r1,2 are given by

r1,2 =
−p

1− ε
±

√
p2 − (1− ε)

1− ε
. (3.10)

On the second, in�nitesimal small time-interval T−0 ≤ τ ≤ T+
0 we have to observe

that the displacement of the oscillator is continuous, and that the impulse of the
system at τ = T+

0 is equal to the impulse of the system at τ = T−0 plus the impulse
of the raindrop (which hits the oscillator). The continuity of the displacement at
τ = T0 implies that y(T−0 ) = y(T+

0 ), and the impulse condition can be obtained
by integrating Eq. (3.7) with respect to τ from τ = T−0 to τ = T+

0 , yielding
y′(T+

0 )− (1− ε)y′(T−0 ) = 0. And so, y(T+
0 )

y′(T+
0 )

 = M2(T0)

 y(T−0 )(τ)

y′(T−0 )(τ)

 = M2(T0)M1(T0)

 y0

y′0

 , (3.11)

where M2(T0) is given by M2(T0) =

(
1 0
0 1− ε

)
. On the time-interval T+

0 < τ <

T− we have to solve

y′′ + 2py′ + y = 0 (3.12)

subject to the initial conditions at τ = T+
0 and given by Eq. (3.11). The solution

of this initial value problem for Eq. (3.12) can easily be obtained, yielding on
T+
0 < τ < T−  y(τ)

y′(τ)

 = M3(τ)M2(T0)M1(T0)

 y0

y′0

 , (3.13)
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where the `fundamental' matrix M3(τ) depends on p, that is, on the roots r1,2 of
the characteristic equation of Eq. (3.12), where r1,2 are given by

r1,2 = −p±
√
p2 − 1. (3.14)

On the in�nitesimal small time-interval T− ≤ τ ≤ T+ we have to observe again
that the displacement of the oscillator is continuous, and that the impulse of the
system at τ = T+ is equal to the impulse of the system at τ = T− plus the impulse
of the raindrop (which leaves the oscillator). The continuity of the displacement
at τ = T simply implies that y(T−) = y(T+), and the impulse condition can be
obtained by integrating Eq. (3.7) with respect to τ from τ = T− to τ = T+,
yielding (1− ε)y′(T+)− y′(T−) = 0. And so, y(T+)

y′(T+)

 = M4(T )

 y(T−)

y′(T−)

 =

= M4(T )M3(T )M2(T0)M1(T0)

 y0

y′0

 , (3.15)

where M4(T ) is given by M4(T ) =

(
1 0
0 (1− ε)−1

)
. So, the solution of Eq. (3.7)

on the interval 0 ≤ τ ≤ T+ has been constructed, and at τ = T+ the solution is
given by  y(T+)

y′(T+)

 = A

 y0

y′0

 , (3.16)

where
A = M4(T )M3(T )M2(T0)M1(T0). (3.17)

To compute the solution at 2T+, 3T+, . . . , (n+1)T+ the procedure can be repeated,
giving the following system of di�erence equations y((n+ 1)T+)

y′((n+ 1)T+)

 = A

 y(nT+)

y′(nT+)

 (3.18)

for n = 0, 1, 2, . . .. The stability properties of the oscillator are completely deter-
mined by the eigenvalues λ1,2 of matrix A. By putting

A =

(
a11 a12
a21 a22

)
, tr(A) = a11 + a22,

det(A) = a11a22 − a12a21, and ∆ = tr2(A)− 4 det(A)

(3.19)

it follows that the eigenvalues λ1,2 are given by

λ1,2 =
1

2
tr(A)± 1

2

√
tr2(A)− 4 det(A) =

1

2
tr(A)± 1

2

√
∆. (3.20)

Now we have to consider three cases: ∆ < 0, ∆ = 0, and ∆ > 0. When ∆ < 0 we
have two complex-valued eigenvalues, and |λ1,2|2 = 1

4
tr2(A)+ 1

4
(4 det(A)−tr2(A)) =
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det(A). So, when ∆ < 0 we have stability if and only if det(A) ≤ 1. When
∆ > 0 we have two real and distinct eigenvalues. To have stability in this case
the eigenvalues have to satisfy −1 ≤ λ1 ≤ 1 and −1 ≤ λ2 ≤ 1, or equivalently
−2 ≤ tr(A) +

√
∆ ≤ 2 and −2 ≤ tr(A) −

√
∆ ≤ 2. For ∆ > 0 it is obvious that

when tr(A) ≥ 2 or tr(A) ≤ −2 then |λ1| ≥ 1 or |λ2| ≥ 1. So, for |tr(A)| ≥ 2 the
system is unstable. Then, for |tr(A)| ≤ 2 we should have for stability: −2−tr(A) ≤√

∆ ≤ 2−tr(A) and −2+tr(A) ≤
√

∆ ≤ 2+tr(A), or equivalently
√

∆ ≤ 2−tr(A)
and
√

∆ ≤ 2+tr(A), or equivalently (after squaring and rearranging) −1−det(A) ≤
tr(A) ≤ 1 + det(A). When ∆ = 0 we have two real coinciding eigenvalues, that
is, λ1,2 = 1

2
tr(A). Obviously, we will have (asymptotic) stability for |tr(A)| < 2,

and instability for |tr(A)| > 2. When |tr(A)| = 2, or equivalently when λ1,2 = 1 or
λ1,2 = −1 we will have stability only when the dimension of the eigenspace of matrix
A is two, else we will have instability. All of the stability properties of the oscillator

Stability properties for

∆ = tr2(A)− 4det(A)

The oscillator for w(τ) ≡ 0

and F (τ) ≡ 0 is

∆ < 0
stable for det(A) ≤ 1, and

unstable for det(A) > 1

∆ > 0

stable for |tr(A)| < 2 and

−1− det(A) ≤ tr(A) ≤ 1 + det(A),

and unstable otherwise

∆ = 0

stable for |tr(A)| < 2, and for a12 = a21 = 0

and a11 = a22 = λ with λ = 1 or λ = −1,

and unstable otherwise

Table 3.1: Stability properties of the oscillator when w(τ) ≡ 0 and F (τ) ≡ 0.

for w(τ) ≡ 0 and F (τ) ≡ 0 are summarised in Table 3.1. It is also possible to depict
these stability properties in the (tr(A), det(A))-plane (see Fig.3.2, and also [31] for
a more extended �gure). To determine matrix A completely we have to compute
M1(T0) and M3(T ) in Eq. (3.17). These matrices will depend on the value of p (see
also Eqs. (3.10) and (3.14)). In fact we have to distinguish �ve cases:

(i) p2 < 1− ε, the under-damped case,

(ii) p2 = 1− ε, the partly critically damped and partly under-damped case,

(iii) 1− ε < p2 < 1, the partly over-damped and partly under-damped case,

(iv) p2 = 1, the partly over-damped and partly critically damped case,
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Figure 3.2: The stability diagram in the (tr(A), det(A))-plane when w(τ) ≡ 0 and
F (τ) ≡ 0 (grey colouring and �: stable, ◦: only stable in special cases (see Table
3.1), else unstable; dashed line indicates ∆ = 0).

(v) p2 > 1, the over-damped case.

For given values of p, ε, T0, and T the matrix A can be computed explicitly, and the
stability properties of the oscillator can be found in Table 3.1 or in Fig. 3.2. To get
more insight in the stability properties of the oscillator for di�erent values of p, ε,
T0, and T we will now consider the aforementioned �ve cases in more detail. In the

under-damped case p2 < 1 − ε the matrix A =

(
a11 a12
a21 a22

)
with the components

given by (see also Eq. (3.17)):

a11 =
ef1+f2

ψ1ψ2

((ψ2b− φ2d)(ψ1a− φ1c)− cd) ,

a12 =
ef1+f2

ψ1ψ2

(c(ψ2b− φ2d) + d(1− ε)(ψ1a+ φ1c)) ,

a21 =
ef1+f2

ψ1ψ2

(
−d(ψ1a− φ1c)− c(ψ2b+ φ2d)

1− ε

)
,

a22 =
ef1+f2

ψ1ψ2

(
(ψ2b+ φ2d)(ψ1a+ φ1c)−

cd

1− ε

)
,

(3.21)

where

φ1 =
−p

1− ε
, φ2 = −p,

ψ1 =

√
(1− ε)− p2

1− ε
, ψ2 =

√
1− p2,

a = cos(ψ1T0), c = sin(ψ1T0),

b = cos(ψ2(T − T0)), d = sin(ψ2(T − T0)),
f1 = φ1T0, f2 = φ2(T − T0).

(3.22)
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Figure 3.3: Stability and instability regions for the free vibrations of the oscillator
when p2 < 1 − ε (grey colouring and solid lines: unstable; white colouring, dashed
lines and ◦-points: stable). a) ε = 0.25, p = 0, b) ε = 0.25, p = 0.005, c) ε = 0.25,
p = 0.01, d) ε = 0.5, p = 0, e) ε = 0.5, p = 0.005, f) ε = 0.5, p = 0.01, g) ε = 0.75,
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In this under-damped case the determinant and the trace of matrix A are given by

det(A) = det(M4(T ))det(M3(T ))det(M2(T0))det(M1(T0)) = e2(f1+f2), (3.23)

tr(A) =
ef1+f2

ψ1ψ2

[
2ψ1ψ2ab+ cd

(
2φ1φ2 −

2− ε
1− ε

)]
. (3.24)

From the Eqs. (3.22) and (3.23) it follows that f1 + f2 = −p(T + T0
ε

1−ε) < 0, and
so 0 < det(A) < 1. The stability boundaries follow from Table 3.1 or Fig. 3.2,
and are given by tr(A) = −1− det(A) and tr(A) = 1 + det(A), where det(A) and
tr(A) are given by Eqs. (3.23) and (3.24) respectively. These stability boundaries
are determined by four parameters: p, ε, T0, and T . In Fig. 3.3 the instability
regions (indicated by a grey colouring) and the stability region (indicated by a white
colouring) in the (T0, T )-plane are given for some �xed values of p and ε. From Fig.
3.3 it is clear that for larger values of ε the instability regions also become larger, and
that for increasing value of p the instability regions become smaller. Moreover it can
be seen in Fig. 3.3 that for �xed p and ε values and for increasing T0, and T values
the instability regions become smaller, because the damping can act longer. The
stability / instability boundaries are plotted by using the `implicitplot' command in
the formula manipulation software package Maple.

T

14

4

14

12

80

6

8

12104

T0

10

2

0

62

T0

T

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

= 0.99ε p = 0.1

T

6

14

12

6

2 14

8

0

T0

2

10

12100 84

4

= 0.995ε

T0

T

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

p = 0.0707

T

14

12

6

146

8

0

4

T0

10

0

2

12

4

8 102

T0

T

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

= 0.98ε p = 0.1414

0 4 8 12
T0a)

12

T 8

4

0

12

8T

4

0
0 4 8 12

T0b)

12

8T

4

0
0 4 8 12

T0c)

Figure 3.4: Stability and instability regions for the free vibrations of the oscillator
when p2 = 1−ε (grey colouring: unstable; white colouring and dashed lines: stable).
a) ε = 0.995, 0.0707, b) ε = 0.99, 0.1, c) ε = 0.98, 0.1414.

In the partly critically damped and partly under-damped case p =
√

1− ε the

components of matrix A =

(
a11 a12
a21 a22

)
are given by:

a11 =
ef1+f2

ψ2

((ψ2b− φ2d)(1− ψ1T0)− dT0) ,

a12 =
ef1+f2

ψ2

(
(ψ2b− φ2d)T0 +

d(1 + T0)

φ1

)
,

a21 =
ef1+f2

ψ2

(
−φ2

1(1− φ1T0)− φ2
1T0(ψ2b+ φ2d)

)
,

a22 =
ef1+f2

ψ2

(
−φ2

1dT0 + φ1(1 + T0)(ψ2b+ φ2d)
)
,

(3.25)

35



where φ1, φ2, ψ2, b, d, f1, and f2 are given by Eq. (3.22) with p =
√

1− ε. In this
case the determinant and the trace of matrix A are given by

det(A) = e
−2
√

1− ε
(
T + T0

ε

1− ε

)
, and (3.26)

tr(A) =
ef1+f2

ψ2

[
2ψ2b+ dT0

(
2φ1φ2 −

2− ε
1− ε

)]
. (3.27)

Again we have 0 < det(A) < 1, and the stability boundaries are given by tr(A) =
−1 − det(A) and tr(A) = 1 + det(A), where det(A) and tr(A) are given by Eqs.
(3.26) and (3.27) respectively. In Fig. 3.4 the instability regions (indicated by a
grey colouring) and the stability regions (indicated by a white colouring) in the
(T0, T )-plane are given for some �xed values of ε (and p). The same conclusions as
for the case p2 < 1− ε more or less hold.

In the partly over-damped and partly under-damped case 1 − ε < p2 < 1 the

elements of matrix A =

(
a11 a12
a21 a22

)
are given by

a11 = g(ψ2b− φ2d)
(
(ψ1 − φ1)e

ψ1T0 + (ψ1 + φ1)e
−ψ1T0

)
−

− g d
(
eψ1T0 − e−ψ1T0

)
,

a12 = g(ψ2b− φ2d)
(
eψ1T0 − e−ψ1T0

)
+

+ g d(1− ε)
(
(ψ1 + φ1)e

ψ1T0 + (ψ1 − φ1)e
−ψ1T0

)
, (3.28)

a21 =
−g d
1− ε

(
(ψ1 − φ1)e

ψ1T0 + (ψ1 + φ1)e
−ψ1T0

)
+

+
−g

1− ε
(ψ2b+ φ2d)

(
eψ1T0 − e−ψ1T0

)
,

a22 =
−g d
1− ε

(
eψ1T0 − e−ψ1T0

)
+

+ g(ψ2b+ φ2d)
(
(ψ1 + φ1)e

ψ1T0 + (ψ1 − φ1)e
−ψ1T0

)
,

where g = ef1+f2

2ψ1ψ2
, ψ1 =

√
p2−(1−ε)
1−ε , and where φ1, φ2, ψ2, b, d, f1, and f2 are given

by Eq. (3.22). In this case the determinant and the trace of matrix A are given by

det(A) = e−2p(T+T0
ε

1−ε), and (3.29)

tr(A) = b ef1+f2
(
eψ1T0 + e−ψ1T0

)
+

+
d ef1+f2

2ψ1ψ2

(
2φ1φ2 −

2− ε
1− ε

) (
eψ1T0 − e−ψ1T0

)
. (3.30)
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As in the previous two cases we have 0 < det(A) < 1, and the stability boundaries
are given by tr(A) = −1 − det(A) and tr(A) = 1 + det(A), where det(A) and
tr(A) are given by Eqs. (3.29) and (3.30) respectively. In Fig. 3.5 the instability
regions (indicated by a grey colouring) and the stability regions (indicated by a white
colouring) in the (T0, T )-plane are given for some �xed values of ε and p. Again it
can be seen that the instability regions decrease in size for increasing values of the
damping parameter p.
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Figure 3.5: Stability and instability regions for the free vibrations of the oscillator
when 1 − ε < p2 < 1 (grey colouring: unstable; white colouring and dashed lines:
stable). a) ε = 0.99, p = 0.105, b) ε = 0.99, p = 0.15.

For the partly over-damped and partly critically damped case p2 = 1, and for
the over-damped case p2 > 1 the matrices A also have been computed. Again it
was found that 0 < det(A) < 1, and that the stability boundaries are given by
tr(A) = −1 − det(A) and tr(A) = 1 + det(A). For these two cases p2 = 1 and
p2 > 1 no instability regions were detected by using the software package Maple.

In the analysis so far it can be seen that the instability regions shrink for in-
creasing values of the damping parameter p. This raised the question whether it is
possible (or not) to determine the smallest value of p (called the critical value pcr(ε))
such that for all T0 and T , and for a given value of ε with (0 < ε < 1) the oscillator
is stable for p > pcr(ε). In Fig. 3.6 the critical value pcr is given for 0 < ε < 1. The
function pcr(ε) has been computed numerically in the following way. For a given
value of ε, and for a given value of p, and for 0 < T0 < T < 7 the matrix A, and its
determinant and trace have been computed. By using Table 3.1 the (in)stability can
be determined for all T0 and T . When for some T0 and T instability is detected, the
value of p is increased, and the procedure is repeated until p should be decreased.
When for all T0 and T stability is detected, the value of p is decreased, and the
procedure is repeated until p should be increased. From Fig. 3.6 it also follows that
for p2 ≥ 1 the oscillator will always be stable.

3.3 External forcing: F ≡ 0 and w 6= 0.

In this section the initial value problem (3.5)-(3.6) with F ≡ 0 will be studied,
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Figure 3.6: The curve pcr(ε). For p > pcr(ε) the oscillator is always stable, and for
p < pcr(ε) the oscillator is unstable for some speci�c values of T0 and T .

or equivalently

((1− h(τ)) y′(τ))′ + 2py′(τ) + y(τ) =
−w(τ)ω0

k
h′(τ), τ > 0, (3.31)

with y(0) = y0, y
′(0) = y′0, ω0 =

√
k/M0, and where h(τ) is given by Eq. (3.4). First

we will compute the solution of the initial value problem for the �ve di�erent cases:
p2 < 1 − ε, p2 = 1 − ε, 1 − ε < p2 < 1, p2 = 1, and p2 > 1. On the time-interval
0 < τ < T−0 it follows from Eq. (3.31) that we have to solve again Eq. (3.8) subject
to the initial conditions y(0) = y0, y

′(0) = y′0. The solution on 0 < τ < T−0 is
given by Eq. (3.10). On the in�nitesimal small time-interval T−0 < τ < T+

0 we
have to observe that the displacement of the oscillator is continuous, and that the
impulse of the system at τ = T+

0 is equal to the impulse of the system at τ = T−0
plus the impulse of the raindrop (which hits the oscillator). The continuity of the
displacement at τ = T0 implies that y(T−0 ) = y(T+

0 ), and the impulse condition can
be obtained by integrating Eq. (3.31) with respect to τ from τ = T−0 to τ = T+

0 ,
yielding y′(T+

0 )− (1− ε)y′(T−0 ) = εw(T0)/ω0. And so, y(T+
0 )

y′(T+
0 )

 = M2(T0)

 y(T−0 )

y′(T−0 )

+

 0

εw(T0)/ω0

 =

= M2(T0)M1(T0)

 y0

y′0

+

 0

εw(T0)/ω0

 , (3.32)

where M2(T0) is given by M2(T0) =

(
1 0
0 1− ε

)
. On the time-interval T+

0 < τ <

T− we have to solve again Eq. (3.12) subject to the initial conditions at τ = T+
0 and

given by Eq. (3.32).The solution can easily be obtained , yielding on T+
0 < τ < T− y(τ)

y′(τ)

 = M3(τ)M2(T0)M1(T0)

 y0

y′0

+ M3(τ)

 0

εw(T0)/ω0

 , (3.33)
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where M3(τ) is the `fundamental' matrix (see also Eq. (3.13)). On the in�nitesimal
small time-interval T− < τ < T+ it should be observed that the displacement of
the oscillator is continuous, and that the impulse of the system at τ = T+ is equal
to the impulse of the system at τ = T− plus the impulse of the raindrop (which
leaves the oscillator). The continuity of the displacement at τ = T simply implies
that y(T−) = y(T+), and the impulse condition can be obtained by integrating Eq.
(3.31) with respect to τ from τ = T− to τ = T+, yielding (1− ε)y′(T+)− y′(T−) =
−εw(T )/ω0. And so,

 y(T+)

y′(T+)

 = M4(T )

 y(T−)

y′(T−)

+


0

−εw(T )

ω0(1− ε)

 , (3.34)

where M4(T ) is given by M4(T ) =

(
1 0
0 (1− ε)−1

)
. So, the solution of Eq. (3.31)

on the interval 0 < τ ≤ T+ has been constructed, and at τ = T+ the solution is
given by  y(T+)

y′(T+)

 = A

 y0

y′0

+ W, (3.35)

where A is given by (3.17), and where W is a vector with constant elements and is
given by

W = M4(T )M3(T )


0

εw(T )

ω0

+


0

−εw(T )

ω0(1− ε)

 . (3.36)

To compute the solution at 2T+, 3T+, . . ., (n+1)T+, the procedure can be repeated,
giving the following system of di�erence equations y((n+ 1)T+)

y′((n+ 1)T+)

 = A

 y(nT+)

y′(nT+)

+ W (3.37)

for n = 0, 1, 2, . . .. The stability properties of the oscillator can be determined in
the following way.First we try to compute the equilibrium point(s) of system (3.37)

by assuming that such a point exists and is given by

(
yeq
y′eq

)
. Then,

 yeq

y′eq

 = A

 yeq

y′eq

+ W ⇒ (I−A)

 yeq

y′eq

 = W.

When I −A is invertible then the equilibrium is given by

(
yeq
y′eq

)
= (I −A)−1W,

and we put  y(nT+)

y′(nT+)

 =

 xn

x′n

+

(
yeq
y′eq

)
. (3.38)

By substituting Eq. (3.38) into Eq. (3.37) we obtain

 xn+1

x′n+1

 = A

 xn

x′n

. So,
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Figure 3.7: The stability diagram in the (tr(A), det(A))-plane when w(τ) 6= 0 and
F (τ) ≡ 0 (grey colouring and �: stable, white colouring and - - -: unstable, ◦: only
stable in special cases (see Table 3.2), else unstable).

when I − A is invertible the same stability properties for Eq. (3.37) hold as for
the case W = 0. The case when I − A is not invertible will now be considered.
It should be noted that when I − A is not invertible then matrix A has at least
one eigenvalue equal to 1. The characteristic equation for the eigenvalues belonging
to matrix A is given by: ch(λ) ≡ λ2 − tr(A)λ + det(A) = 0. And so, ch(1) =
1 − tr(A) + det(A) = 0 ⇔ det(A) = tr(A) − 1. From Eq. (3.20) it then follows
that the eigenvalues are given by λ1 = 1 and λ2 = tr(A) − 1. If the eigenvalues
λ1, λ2 of a 2× 2 matrix A are distinct or if the two eigenvalues are coinciding and
the dimension of the corresponding eigenspace is two, then from any set of linearly
independent corresponding eigenvectors v1, v2 a matrix P can be formed, which is
invertible and P−1AP = D = diag[λ1, λ2]. The solution of the system of di�erence
equations (3.37) can then readily be obtained (see also [27]) and is given by y(nT+)

y′(nT+)

 = P

 λn1 0

0 λn2

P−1

 y0

y′0

+ P
n−1∑
r=0

 λr1 0

0 λr2

P−1W. (3.39)

From Eq. (3.39) it is obvious that the oscillator is unstable when λ1 = 1.
Now the following case still has to be considered: matrix A has two coinciding

eigenvalues λ1 = λ2 = 1 and the dimension of the corresponding eigenspace is one
(implying that matrix A cannot be diagonalised). For this case the Jordan-form
matrix method can be used as for instance described in [6,17]. It can be shown that

again an invertible matrix P exists such that P−1AP =

(
1 1
0 1

)
. The solution of

Eq. (3.37) can again readily be obtained (see also [27]) and is given by y(nT+)

y′(nT+)

 = P

 1 n

0 1

P−1

 y0

y′0

+ P

 n n(n−1)
2

0 n

P−1W. (3.40)
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Stability properties for

∆ = tr2(A)− 4det(A)

The oscillator with w(τ) 6= 0

and F (τ) ≡ 0 is

∆ < 0
stable for det(A) ≤ 1, and

unstable for det(A) > 1

∆ > 0

stable for |tr(A)| < 2 and

−1− det(A) ≤ tr(A) < 1 + det(A),

and unstable otherwise

∆ = 0

stable for |tr(A)| < 2, and for a12 = a21 = 0

and a11 = a22 = −1,

and unstable otherwise

Table 3.2: Stability properties of the oscillator when w(τ) 6= 0 and F (τ) ≡ 0.

From (3.40) it is also obvious that the oscillator is unstable when λ1 = λ2 = 1 and
the dimension of the corresponding eigenspace is one. All of the stability properties
of the oscillator for W 6= 0 are summarised in Table 3.2, and in Fig. 3.7.

3.4 External harmonic forcing: w ≡ 0 and F (τ ) =

A cos(ατ + β).

In this section the initial value problem (3.5)-(3.6) with w(τ) ≡ 0 will be studied,
that is

((1− h(τ))y′(τ))
′
+ 2py′(τ) + y(τ) = A cos(ατ + β), τ > 0, (3.41)

with y(0) = y0, y
′(0) = y′0, where h(τ) is given by Eq. (3.4), and where α, A, and

β are constants. As in the previous section a map will be constructed which relates
the solution at τ = (n + 1)T + 0+ to the solution at τ = nT + 0+. For simplicity
the following notation will be introduced: yn(0+) = y(nT + 0+), yn+1(0

+) = y((n+
1)T + 0+), yn(τ ∗) = y(nT + τ ∗) with 0 < τ ∗ ≤ T + 0+. Starting at τ = nT + 0+ the
solution will now be constructed (leading to the solution at τ = (n+ 1)T + 0+). For
nT < τ < nT + T0 or equivalently for 0 < τ ∗ < T0 Eq. (3.41) becomes

(1− ε)y′′ + 2py′ + y = A cos(ατ + β). (3.42)

The initial value problem for Eq. (3.42) can easily be solved on 0 < τ ∗ < T0, and
by separating the homogeneous and nonhomogeneous parts in the solution, we can
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rewrite the solution on this interval into yn(τ ∗)

y′n(τ ∗)

 = M1(τ ∗)

 yn(0+)

y′n(0+)

+ N1(τ ∗)

 cos(αnT )

sin(αnT )

 , (3.43)

where the `fundamental' matrix M1(τ ∗) depends on p and ε, and where the matrix
N1(τ ∗) depends on p, ε, A, α, and β. These matrices can be computed explicitly
for given p, ε, A, α, and β. At τ ∗ = T0 the function h(τ) in Eq. (3.41) has a jump
discontinuity. As in the previous two sections of this chapter it follows for τ ∗ = T0
that  yn(T+

0 )

y′n(T+
0 )

 = M2(T0)M1(T0)

 yn(0+)

y′n(0+)

+

+ M2(T0)N1(T0)

 cos(αnT )

sin(αnT )

 , (3.44)

where M2(T0) =

(
1 0
0 1− ε

)
. For T0 < τ < T Eq. (3.31) is given by

y′′ + 2py′ + y = A cos(ατ + β). (3.45)

The initial value problem (3.44) - (3.45) can again easily be solved on T0 < τ ∗ < T ,
yielding yn(τ ∗)

y′n(τ ∗)

 = M3(τ ∗)M2(T0)M1(T0)

 yn(0+)

y′n(0+)

+

+ (M3(τ ∗)M2(T0)N1(T0) + N3(τ ∗))

 cos(αnT )

sin(αnT )

 , (3.46)

where the `fundamental' matrix M3(τ ∗) and the matrix N3(τ ∗) can be computed
explicitly for given p, ε, A, α, and β. At τ ∗ = T the function h(τ) in Eq. (3.41)
has a jump condition. As in the previous two section of this chapter it follows for
τ ∗ = T+ that (observing that yn+1(0

+) = yn(T+) and y′n+1(0
+) = y′n(T+)): yn+1(0

+)

y′n+1(0
+)

 = M4(T )M3(T )M2(T0)M1(T0)

 yn(0+)

y′n(0+)

+

+ (M4(T )M3(T )M2(T0)N1(T0) + M4(T )N3(T ))

 cos(αnT )

sin(αnT )

 , (3.47)

where M4(T ) =

(
1 0
0 (1− ε)−1

)
. From Eq. (3.47) the following map can be

obtained  yn+1(0
+)

y′n+1(0
+)

 = A

 yn(0+)

y′n(0+)

+ B

 cos(αnT )

sin(αnT )

 , (3.48)
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where A is given by Eq. (3.17), and B is given by

B = M4(T )M3(T )M2(T0)N1(T0) + M4(T )N3(T ). (3.49)

It should be observed that the elements of the matrices A and B are n-independent,
and only depend on T0, T , p, ε, A, α, and β. Now we will study the stability
properties of the solution of the system of di�erence equations (3.48). First the
system of two �rst-order ordinary di�erence equations (3.48) will be reduced to a
single second-order di�erence equation for yn(0+) = yn, yielding

yn+2 − (a11 + a22)yn+1 + (a11a22 − a12a21)yn =

= c0 cos(αnT ) + s0 sin(αnT )+

+c1 cos(α(n+ 1)T ) + s1 sin(α(n+ 1)T ), (3.50)

where aij(i, j = 1, 2) are the components of matrix A, and c0 = b21a12 − b11a22,
s0 = b22a12− b12a22, c1 = b11, s1 = b12, and where bij(i, j = 1, 2) are the components
of matrix B. The solution yn of Eq. (3.50) can be written as

yn = yh,n + yp0,n + yp1,n, (3.51)

where yh,n is the solution of the homogeneous equation (related to Eq. (3.50)):

yh,n+2 − tr(A)yh,n+1 + det(A)yh,n = 0, (3.52)

and where ypm,n (with m = 0, 1) are the particular solutions of Eq. (3.50) satisfying

ypm,n+2 − tr(A)ypm,n+1 + det(A)ypm,n =

= cm cos(α(n+m)T ) + sm sin(α(n+m)T ). (3.53)

The roots of the characteristic equation belonging to the homogeneous equation

(3.52) are given by λ1,2 = 1
2
tr(A) ± 1

2

√
(tr(A))2 − 4det(A), and are, of course,

coinciding with the eigenvalues of matrix A. The corresponding stability properties
of the homogeneous solution yh,n can be found in Table 3.1. The particular solutions
ypm,n of Eq. (3.53) can be found in the following way. First one looks for a particular
solution ypm,n in the form:

ypm,n = C1m cos(α(n+m)T ) + C2m sin(α(n+m)T ), (3.54)

where C1m and C2m are constants to be determined. By substituting (3.54) into
(3.53), and then by collecting the coe�cients of cos(α(n+m)T ) and of sin(α(n+m)T )
it follows that C1m and C2m have to satisfy cos(2αT )− tr(A) cos(αT ) + det(A) sin(2αT )− tr(A) sin(αT )

− sin(2αT ) + tr(A) sin(αT ) cos(2αT )− tr(A) cos(αT ) + det(A)

×
×

 C1m

C2m

 =

 cm

sm

 . (3.55)
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Figure 3.8: The stability diagram in the (tr(A), det(A))-plane when w(τ) ≡ 0 and
F (τ) = A cos(ατ + β) (grey colouring: stable, white colouring: unstable, and - - -:
only unstable in special cases (see Table 3.3)).

The di�erence equation (3.50) has a unique solution when two initial conditions
are given. And so, the particular solutions ypm,n can be determined uniquely. To
have a unique particular solution ypm,n it follows from (3.55) that the determinant
of the coe�cient matrix in (3.55) should be nonzero. When the determinant is equal
to zero then there are in�nitely many solutions or there is no solution. This will
occur when:  cos(2αT )− tr(A) cos(αT ) + det(A) = 0, and

sin(2αT )− tr(A) sin(αT ) = 0,
⇔ (3.56)

 cos(2αT )− tr(A) cos(αT ) + det(A) = 0, and

sin(αT )(2 cos(αT )− tr(A)) = 0,
⇔

 cos(2αT )− tr(A) cos(αT ) + det(A) = 0, and

αT = kπ with k ∈ Z, or tr(A)) = 2 cos(αT ).

When αT = kπ with k ∈ Z it follows from cos(2αT )− tr(A) cos(αT ) + det(A) = 0
that 1 − (−1)ktr(A) + det(A) = 0. And when tr(A)) = 2 cos(αT ) it follows from
cos(2αT )−tr(A) cos(αT )+det(A) = 0 that det(A) = 1. So, the particular solutions
ypm,n as given by Eq. (3.54) can be determined uniquely when Eq. (3.56) is not
satis�ed. When Eq. (3.56), however, is satis�ed the particular solutions ypm,n will
have the following form:

ypm,n = n(C̃1m cos(α(n+m)T ) + C̃2m sin(α(n+m)T )), (3.57)

where C̃1m and C̃2m are constants to be determined. By substituting Eq. (3.57)
into Eq. (3.53), and then by collecting the coe�cients of cos(α(n + m)T ) and of
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Properties of matrix A
The oscillator with w(τ) ≡ 0

and F (τ) = A cos(ατ + β) is
|tr(A)| < 2 and det(A) < 1 and
−1− det(A) < tr(A) < 1 + det(A)

stable

|tr(A)| < 2 and det(A) = 1
and tr(A) 6= 2 cos(αT )

stable

−2 < tr(A) < 0 and
tr(A) = −1− det(A)

and αT is not an odd multiple of π
stable

0 < tr(A) < 2 and
tr(A) = 1 + det(A)

and αT is not an even multiple of π
stable

a11 = a22 = 1 and a12 = a21 = 0
and αT is not an even multiple of π

stable

a11 = a22 = −1 and a12 = a21 = 0
and αT is not an odd multiple of π

stable

tr(A) = 0 and det(A) = −1
and αT is not a multiple of π

stable

all other cases unstable

Table 3.3: Stability properties of the oscillator when w(τ) ≡ 0 and F (τ) =
A cos(ατ + β).

sin(α(n+m)T ) it follows that C̃1m and C̃2m have to satisfy: 2 cos(2αT )− tr(A) cos(αT ) 2 sin(2αT )− tr(A) sin(αT )

−2 sin(2αT ) + tr(A) sin(αT ) 2 cos(2αT )− tr(A) cos(αT )

×
×

 C̃1m

C̃2m

 =

 cm

sm

 . (3.58)

Again, to have a unique particular solution ypm,n (in the form (3.57)) it follows
from Eq. (3.58) that the determinant of the coe�cient matrix in Eq. (3.58) should be
nonzero. When the determinant is equal to zero there are in�nitely many solutions
or there is no solution. This will occur when: 2 cos(2αT )− tr(A) cos(αT ) = 0, and

2 sin(2αT )− tr(A) sin(αT ) = 0.
(3.59)

When the determinant in the coe�cient matrix in Eq. (3.58) is nonzero, it is obvious
from Eq. (3.57) that the solution of Eq. (3.48) is unbounded (and unstable). For
that reason the condition tr(A)) = 2 cos(αT ) and det(A) = 1 or αT = kπ with
k ∈ Z and 1− (−1)ktr(A) + det(A) = 0 is called the resonance condition. The case
when this resonance condition and the condition (3.59) are satis�ed still has to be
studied. When tr(A)) = 2 cos(αT ) and det(A) = 1 it follows from Eq. (3.59) after
some elementary calculations that αT is a multiple of π. And when αT = kπ with
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k ∈ Z and 1− (−1)ktr(A) + det(A) = 0 it follows from Eq. (3.59) that det(A) = 1
and tr(A)) = 2(−1)k. So, we can conclude in this case that when αT is an even
multiple of π the system of di�erence equations (3.48) becomes yn+1(0

+)

y′n+1(0
+)

 = A

 yn(0+)

y′n(0+)

+ B

 1

0

 , (3.60)

where the eigenvalues of matrix A are coinciding and equal to one. System (3.60)
with tr(A)) = 2 and det(A) = 1 already has been studied in the previous section,
and from Table 3.2 it follows that the solution of Eq. (3.60) is unstable. Similarly,
when αT is an odd multiple of π the system of di�erence equations (3.48) becomes: yn+1(0

+)

y′n+1(0
+)

 = A

 yn(0+)

y′n(0+)

+ B

 (−1)n

0

 , (3.61)

and tr(A) = 2 cos(αT ) = −2. Since the eigenvalues of matrix A are both equal to
−1 it is not di�cult to see that the particular solution of Eq. (3.61) will contain
unbounded terms in n. So, also in this case the solution of Eq. (3.61) is unstable.
All of the stability properties of the solution of the oscillator equation (3.41) with
an external harmonic force are summarised in Table 3.3 and in Fig. 3.8.

3.5 Conclusions.

In this chapter the vibrations of a damped, linear, single degree of freedom
oscillator with a periodically and stepwise changing time-varying mass have been
considered. Both the free and the forced vibrations of the oscillator have been
studied. For the free vibrations the stability properties of the oscillator have been
determined, and the minimal damping rates have been computed numerically for
which the oscillator is always stable. Two types of forcing have been studied. First,
a forcing has been studied due to a mass which hits the oscillator, stays for some
time at the oscillator, and then leaves the oscillator. The stability properties for
this forced oscillator problem have been determined in Section 3 of this chapter. A
second forcing case has been considered in Section 4 of this chapter. In this section
an external, harmonic forcing has been studied which is applied to an oscillator to
which a mass (with zero velocity) is added for some time, and then is taken away
(with zero velocity). For this case the stability properties of the oscillator have
been presented, and an interesting resonance condition has been derived. When
both forcing types are applied to the oscillator the results as obtained in Section 3
and in Section 4 of this chapter can be combined, because the di�erential equation
describing the problem is linear.

The considered oscillator model is perhaps the simplest model which describes
the vibrations of a cable with rainwater located on it. To obtain more realistic
mathematical models for these rain-wind induced oscillations of cables in wind�elds
one might consider periodically and multi-stepwise changing masses. For these rain-
wind induced oscillations the formation of water rivulets on the cable surface should
also be taken into account, leading to a (usually small) increase of the constant mass,
because the constant component of water rivulet mass on the cable surface should
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be included. Other external forces (such as drag-and-lift forces, damping forces, and
so on) can also be included in the model equation. Moreover, instead of an ordinary
di�erential equation setting one can formulate the problem in a partial di�erential
equation setting. Then by expanding the solution of the partial di�erential equation
in a Fourier series, and by applying a Galerkin truncation method one obtains a
�nite system of ordinary di�erential equations. The ordinary di�erential equations
will be of the same structure as the di�erential equation studied in this chapter.
The aforementioned extensions to the model equation can be interesting subjects
for further research, and some preliminary results in this direction can be found
in [1, 28].
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Chapter 4

A non-linear case

Abstract: In this chapter the forced vibrations of an undamped single degree of
freedom oscillator with a time varying mass will be studied. An initial value problem
for an oscillator equation with a Rayleigh type of non-linearity will be formulated,
and by applying a straight-forward perturbation method the problem will be solved
approximately. The approximations of the solutions will be used to construct a map.
By using this map the stability properties of the solutions can be determined. The
stability properties of the non-linear problem will be compared to those for the linear
problem, which have been studied earlier in the literature. The instability regions
in the parameter space and some phase-space �gures for the non-linear problem will
be computed numerically. It will also be shown how the behaviour of the solutions
changes when the instability regions in the parameter space are crossed.

4.1 Introduction

Systems with time-varying masses frequently occur in practice. Examples of
such systems are excavators, cranes, water rivulets on cables of bridges, and so on
(see for instance [5,9,22]). The vibrations of such systems can usually be described
by initial-boundary value problems for partial di�erential equations. The 1-mode
Galerkin approximation of the solution for such problem will lead to a single degree of
freedom oscillator (sdofo) equation. The analysis for some of these (mainly) linear
oscillator equations has been presented in [16, 25�27]. In particular, the stability
properties of the solutions have been determined.

In bridge engineering it has been observed [12, 13] that under rainy and windy
conditions water rivulets are formed on the inclined cables of cable-stayed bridges
near the points of wind �ow separation. This results in a non-symmetrical pro�le of
the cross section of the cable, and consequently, in drag and lift forces acting on the
cable(s). Moreover, the wind �ow approaching the cable divides into three �ows: a
cross �ow, an axial �ow from the upwind side of the cable, and an axial �ow from
the downwind side. It has been observed that the downwind axial �ow results in
an e�ect called in the literature as `base bleed', which creates vacuum behind the

This chapter is a slightly revised version of: O.V. Pischanskyy, W.T. van Horssen, On the
non-linear dynamics of a single degree of freedom oscillator with a time-varying mass, Journal of
Sound and Vibration, DOI: 10.1016/j.jsv.2011.12.009, 23-12-2011.
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cable and an additional drag force, see for details, for example [12, 13]. It also has
been observed in the literature that the water rivulets �owing along the cables have
a periodic character.

a)

F (t)

wind�ow

b)

k

y(t) y(t)

w(t)F (t)w(t)

wind�ow

M(t)M(t)

k

Figure 4.1: The single degree of freedom oscillator for time-interval a) (0, T0) and
b) (T0, T ).

In this chapter an extremely simpli�ed model is considered for the above dis-
cussed rain-wind induced oscillations of a cable. From time t = 0 to time t = T0
a harmonic oscillator is considered, see Fig.4.1.a). At time t = T0 a rain droplet
instantaneously hits the oscillator with a velocity w(T0) and stays on the surface
until time t = T , when the droplet moves o� the oscillator with a velocity w(T ).
The impacts of the droplets can excite the oscillator. It is assumed in the model
that a wind �ow (which is perpendicular to the y-axis) is acting on the oscillator.
When no droplets are on the oscillator it is assumed that the pro�le of the oscillator
is symmetric, and when droplets are on the surface of the oscillator it is assumed
that a non-symmetric pro�le is obtained, see also Fig. 4.1.b).

The following equation of motion for the sdofo can now be derived ( [9, p.152]):

Mÿ − Ṁ(w − ẏ) + ky = F, (4.1)

where y = y(t) is the displacement of the oscillator, M = M(t) is the total time-
varying mass of the oscillator, w = w(t) is the mean velocity at which masses are
hitting or leaving the oscillator, k is the positive sti�ness coe�cient, F = F (t, y, ẏ)
is an external force, and the `dot' denotes di�erentiation with respect to time t. The
force F and the velocity w are measured positive in positive y direction (see Fig.
4.1). Following [25�27] it turns out to be convenient to separate the massM(t) into a
time invariant partM0 and into a time-varying part m(t), that isM(t) = M0−m(t),
where M0 is a positive constant, and M0−m(t) > 0. Then, it follows that Eq. (4.1)
can be rewritten in

d

dt

(
(M0 −m(t))

dy

dt

)
+ ky =

−dm
dt

w + F. (4.2)
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Then, by introducing the time-rescaling t = τ
√
M0/k, ỹ(τ) = y(τ

√
M0/k), m̃(τ) =

m(τ
√
M0/k), w̃(τ) = w(τ

√
M0/k) and F̃ (τ, ỹ(τ), dỹ(τ)dτ ) = 1

k
F (τ, y(τ), ẏ(τ))(τ

√
M0/k)

Eq. (4.2) can be rewritten into

d

dτ

((
1− m̃(τ)

M0

)
dỹ(τ)

dτ

)
+ ỹ(τ) =

−w̃(τ)√
M0k

dm̃(τ)

dτ
+ F̃ (τ, ỹ(τ),

dỹ(τ)

dτ
). (4.3)

Now it will be assumed that h(τ) = m̃(τ)/M0 is a periodic step function with
1− h(τ) > 0, that is,

h(τ) =

{
ε for 0 < τ < T0,
0 for T0 < τ < T,

(4.4)

and h(τ +T ) = h(τ), and ε is a constant (in practice usually small) with 0 < ε < 1.
Also w̃(τ) is assumed to be T -periodic in τ . It should be observed that in the
analysis ε is de�ned to be the quotient m/M0, where m is the mass which added at
time T0, and where M0 is the mass of the oscillator. So, ε can be seen as a measure
for the relative mass which is added at time T0. For convenience the tildes in Eq.
(4.3) will be dropped, and the prime will be introduced to denote di�erentiation
with respect to τ , yielding for τ > 0

[(1− h(τ)) y′(τ)]
′
+ y(τ) = F (τ, y(τ), y′(τ))− w(τ)

ω0

h′(τ), (4.5)

where ω0 =
√
k/M0 is the natural frequency of the oscillator.

To give a simple representation of the function F in (4.5) the following is ob-
served. For T0 < τ < T the droplet on the surface of the cable creates a non-
symmetric cross section as shown in Fig. 4.1. b). Due to the wind �ow drag and lift
forces in y direction are generated for T0 < τ < T . In [24] it has been shown that the
total wind force in y direction can be modelled by a Rayleigh type of non-linearity,
that is, by ay′ − b(y′)3, where a and b are small, positive constants. In this chapter
it will be assumed that a = b = ε. For 0 < τ < T0 only a drag fore will act on the
oscillator, and it will be assumed that the e�ect of the component of this force in y
direction is so small that it can be neglected. Then, F (τ, y(τ), y′(τ)) is T -periodic
in τ and is given by

F =

 0, for 0 < τ < T0,

ε(y′ − (y′)3), for T0 < τ < T.
(4.6)

The initial displacement and the initial velocity of y(τ) are given by

y(0) = y0 and y
′(0) = y′0. (4.7)

The initial value problem (4.4) - (4.7) has (in our opinion) not been studied before
in the literature. In this chapter approximations to the solutions of this problem
will be constructed, and stability properties of the solution will be presented.

This chapter is organised as follows. In section 2 of this chapter the solution of the
initial value problem (4.4) - (4.7) will be approximated. Since the problem is partially
non-linear a straight-forward perturbation method will be applied to approximate
the solution. By using these approximations the stability of the solutions will be
investigated in section 3 of this chapter. Also phase-space �gures for di�erent values
of the parameters will be presented. Finally, in section 4 some conclusions will be
drawn, and remarks will be made about future research on this subject.
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4.2 A representation of the solution

In this section the solution of the initial value problem (4.4) - (4.7) for y(τ)
will be determined by using a similar approach as presented in [25�27]. Starting
at τ = nT + 0+ the solution will be constructed (or approximated) on the interval
nT < τ ≤ (n+ 1)T + 0+ for all n = 0, 1, 2, . . ., assuming that

y(nT + 0+) = yn(0+), and y′(nT + 0+) = y′n(0+) (4.8)

for all n = 0, 1, 2, . . .. To solve this initial value problem the τ -interval has to be
split up into four parts: nT < τ < nT + T−0 , nT + T−0 ≤ τ ≤ nT + T+

0 , nT + T+
0 <

τ < nT + T−, and nT + T− ≤ τ ≤ nT + T+, where T−0 = T0 − 0, T+
0 = T0 + 0,

T− = T −0, and T+ = T +0. On the �rst time-interval nT < τ < nT +T−0 Eq (4.5)
becomes (1− ε)y′′+ y = −w

ω0
h′. By using the initial conditions (4.8) the solution can

be written in matrix form as follows:

Y(τ) =

 y(τ)

y′(τ)

 = M1

 yn

y′n

 , (4.9)

where

M1(τ) =

 a
√

1− ε c
−1√
1− ε

c a

 , (4.10)

with a = cos
(
τ−nT√
1−ε

)
, c = sin

(
τ−nT√
1−ε

)
. For convenience, the following notation is

introduced for Y(τ):

Yn(T−0 ) = M1(nT + T−0 ) Yn(0+), (4.11)

where Yn(0+) = Y(nT +0+) = (yn, y
′
n)T and Yn(T−0 ) = Y(nT +T−0 ) is the solution

of the initial value problem at τ = nT + T−0 . On the second, in�nitesimal small
interval nT + T−0 ≤ τ ≤ nT + T+

0 it should be observed that the displacement of
the oscillator is continuous, and that the impulse of the system at τ = nT + T−0 is
equal to the impulse of the system at τ = nT +T+

0 plus the impulse of the raindrop
(which hits the oscillator).

The continuity of the displacement at τ = nT + T0 implies that y(nT + T−0 ) =
y(nT +T+

0 ). The impulse condition can directly be obtained by integrating Eq (4.5)
with respect to τ from τ = nT + T−0 to τ = nT + T+

0 , yielding

y′(nT + T+
0 ) = (1− ε)y′(nT + T−0 ) +

εw(nT + T0)

ω0

,

where w(nT + T0) = w(T0) is the velocity of a raindrop falling on the oscillator on
time τ = nT +T0. The solution of the initial value problem for τ = nT +T+

0 is then
given by:

Yn(T+
0 ) = M2Yn(T−0 ) + εN2, (4.12)

where

M2 =

(
1 0
0 1− ε

)
, and N2 =

(
0

w(T0)
ω0

)
. (4.13)
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From eqs. (4.9)-(4.13) is then follows that the solution of the initial value problem
at τ = nT + T+

0 is given by:

Yn(T+
0 ) = M2 M1(nT + T0) Yn + εN2. (4.14)

On the third time-interval (nT + T+
0 < τ < (n + 1)T−) the following Rayleigh

di�erential equation has to be solved

y′′ + y = ε(y′ − (y′)3), (4.15)

subject to the initial conditions y(nT + T+
0 ) = yn(T+

0 ) and y′(nT + T+
0 ) = y′n(T+

0 ).
On the bounded time-interval nT + T+

0 < τ < (n+ 1)T− the solution of Eq. (4.15)
can be written as an in�nite series in powers of ε, that is,

y(τ) = f0(τ) + εf1(τ) +O(ε2),

y′(τ) = f ′0(τ) + εf ′1(τ) +O(ε2),

y′′(τ) = f ′′0 (τ) + εf ′′1 (τ) +O(ε2).

(4.16)

Then, by substituting eqs. (4.16) into Eq. (4.15) and by collecting terms of equal
powers in ε, the following problems for f0 and f1 can be obtained:

f ′′0 + f0 = 0 (4.17)

with as initial conditions:

f0(nT + T+
0 ) = yn(T+

0 ), f ′0(nT + T+
0 ) = y′n(T+

0 ), (4.18)

and
f ′′1 + f1 = f ′0 − (f ′0)

3, (4.19)

with as initial conditions:

f1(nT + T+
0 ) = 0, f ′1(nT + T+

0 ) = 0. (4.20)

The solution of the initial value problem (4.17) - (4.18) can easily be found and
written shortly as  f0

f ′0

 = M3(τ)Yn(T+
0 ), (4.21)

where

M3(τ) =

 b d

−d b

 , (4.22)

with b = cos(τ − nT − T0), d = sin(τ − nT − T0). By substituting Eq. (4.21) into
Eq. (4.19) the solution of the initial value problem (4.19) - (4.20) for f(τ) can be
determined, and at τ = nT + T− this solution is given by f1

f ′1

 =

 b5 b6

b′5 b′6

 yn(T+
0 )

y′n(T+
0 )

+

 b1 b4

b′1 b′4

 (yn(T+
0 ))3

(y′n(T+
0 ))3

+

+

 b2 b3

b′2 b′3

 yn(T+
0 )(y′n(T+

0 ))2

(yn(T+
0 ))2y′n(T+

0 )

 , (4.23)
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where

b1 =
9

32
d− 3

8
(T− − T+

0 )b+
1

32
l, b2 =

3

32
b− 3

8
(T− − T+

0 )d− 3

32
j,

b3 =
21

32
d− 3

8
(T− − T+

0 )b− 3

32
l, b4 =

5

32
b− 3

8
(T− − T+

0 )d+
1

32
j,

b5 =
−1

2
(d− (T− − T+

0 )b), b6 =
1

2
(T− − T+

0 )d,

b′1 =
−3

32
b+

3

8
(T− − T+

0 )d+
3

32
j, b′2 =

−15

32
d− 3

8
(T− − T+

0 )b+
9

32
l,

b′3 =
9

32
b+

3

8
(T− − T+

0 )d− 9

32
j, b′4 =

−17

32
d− 3

8
(T− − T+

0 )b− 3

32
l,

b′5 =
−1

2
(T− − T+

0 )d, b′6 =
1

2
(d+ (T− − T+

0 )b),

(4.24)

in which a and c are given by Eqs. (4.10) with τ = nT+T−0 , b and d are given by Eqs.
(4.22) with τ = nT + T−, and in which j = cos(3(T − T0)), and l = sin(3(T − T0)).
For convenience the right-hand side in Eq. (4.23) will be denoted by N3, that is, f1(nT + T−0 )

f ′1(nT + T−0 )

 = N3. (4.25)

The solution of the initial value problem for Eq. (4.15) at τ = nT + T− is now
given by:

Yn(T−) =

 y(nT + T−)

y′(nT + T−)

 = M3(nT + T−)Yn(T+
0 ) + εN3 +O(ε2). (4.26)

Since,the time-interval nT + T+
0 < τ < nT + T− is �nite and independent of ε it

is reasonable to neglect the O(ε2) corrections in the solution (4.26). By using eqs.
(4.14) and (4.26) it now follows that the solution of the initial value problem (4.4)
- (4.7) at τ = nT + T− is given by:

Yn(T−) = M3(nT + T−)M2M1(nT + T−0 )Yn(0+) +

+ ε
(
M3(nT + T−)N2 + N3

)
. (4.27)

On the fourth, in�nitesimal small time-interval nT + T− ≤ τ ≤ nT + T+ it
should again be observed that the displacement of the oscillator is continuous, and
that the impulse of the system at τ = nT +T+ is equal to the impulse of the system
at τ = nT + T− plus the impulse of the raindrop (which leaves the oscillator). The
continuity of the displacement at τ = nT+T implies that y(nT+T−) = y(nT+T+).
The impulse condition can directly be obtained by integrating Eq. (4.5) with respect
to τ from τ = nT + T− to τ = nT + T+, yielding

y′(nT + T+) =
1

1− ε
y′(nT + T−) +

εw(nT + T )

ω0(1− ε)
,
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where w(nT + T ) = w(T ) is the velocity of a raindrop leaving the oscillator at time
τ = nT + T . The solution of the initial value problem (4.4) - (4.7) at τ = nT + T+

is then given by:

Yn+1(0
+) = Yn(T+) = M4Yn(T−) + εN4, (4.28)

where

M4 =

(
1 0
0 1

1−ε

)
, and N4 =

(
0

w(T )
ω0(1−ε)

)
. (4.29)

So, the solution of the initial value problem (4.4) - (4.7) on the time-interval nT <
τ ≤ (n + 1)T + 0+ has been constructed, and at τ = (n + 1)T + 0+ the solution is
given by

Yn+1(0
+) = M4M3((n+ 1)T )M2M1(nT + T0)Yn(0+) +

+ ε (M4M3((n+ 1)T )N2 + M4N3 + N4) . (4.30)

Eq. (4.30) can be rewritten in the form of a map

Yn+1 = AYn + εW(Yn), (4.31)

where

A = M4M3((n+ 1)T )M2M1(nT + T0) (4.32)

is a 2× 2 matrix with constant elements, and

W(Yn) = M4M3((n+ 1)T )N2 + M4N3 + N4 (4.33)

is a 2× 1 vector which depends non-linearly on Yn due to the component N3 which
is given by:

N3 =

 a1yn + a2y
′
n + a3y

3
n + a4y

2
ny
′
n + a5yn(y′n)2 + a6(y

′
n)3

a′1yn + a′2y
′
n + a′3y

3
n + a′4y

2
ny
′
n + a′5yn(y′n)2 + a′6(y

′
n)3

 , (4.34)
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where

a1 = ab5 −
c√

1− ε
b6, a2 = c

√
1− εb5 + ab6,

a3 = a3b1 −
c3

(1− ε)3/2
b4 −

a2c√
1− ε

b2 +
ac2

1− ε
b3,

a4 = 3a2c
√

1− εb1 +
3ac2

1− ε
b4 + a(a2 − 2c2)b2 +

c√
1− ε

(c2 − 2a2)b3,

a5 = 3ac2(1− ε)b1 −
3a2c√
1− ε

b4 + c(2a2 − c2)
√

1− εb2 + a(a2 − 2c2)b3,

a6 = c3(1− ε)3/2b1 + a3b4 + ac2(1− ε)b2 + a2c
√

1− εb3,

a′1 = ab′5 −
c√

1− ε
b′6, a

′
2 = c

√
1− εb′5 + ab′6,

a′3 = a3b′1 −
c3

(1− ε)3/2
b′4 −

a2c√
1− ε

b′2 +
ac2

1− ε
b′3,

a′4 = 3a2c
√

1− εb′1 +
3ac2

1− ε
b′4 + a(a2 − 2c2)b′2 +

c√
1− ε

(c2 − 2a2)b′3,

a′5 = 3ac2(1− ε)b′1 −
3a2c√
1− ε

b′4 + c
√

1− ε(2a2 − c2)b′2 + a(a2 − 2c2)b′3,

a′6 = c3(1− ε)3/2b′1 + a3b′4 + ac2(1− ε)b′2 + a2c
√

1− εb′3,

(4.35)

where a and c are given by eqs. (4.10) with τ = nT + T0, and where bi and b
′
i are

given by eqs. (4.24).
All properties of matrix A have been determined in [25, 27]. The parameters in

matrix A can be such that the eigenvalues are both complex valued with moduli 1,
or such that the eigenvalues are real with one of the moduli larger then one or both of
the moduli equal to one. Vector W has a constant part M4M3((n+ 1)T )N2 + N4

(that is, a part which does not depend on yn and y′n), and a part M4N3 which
depends non-linearly on yn and y

′
n. The system of di�erence equations with N3 ≡ 0

has been studied in [25, 27]. In the next section, the weakly non-linear system of
di�erence equations (4.31) will be studied. Particularly, the stability of the solutions
will be investigated and the behaviour of the solutions in the phase-space will be
studied.

4.3 Stability analysis

In this section the system of di�erence equations (4.31) will be analysed numer-
ically, because hardly any analytical methods are available (see [6, 10]). Since, the
system is non-linear and contains many parameters the goal of the analysis presented
in this section is to give an idea of the rich dynamics of the problem. By numerically
computing the equilibrium points and the corresponding phase-space �gures it will
be shown that the system of di�erence equations (4.31) contains many interesting
bifurcations and stability properties.

First the equilibrium points can be computed by letting Yn+1 = Yn = Y in
(4.31), yielding

AY + εW(Y) = Y. (4.36)
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Figure 4.2: a) Fixed point near the origin, b) a map of system (4.31), c) �xed point
and a map of system (4.31) overlay, for ε = 0.1, ω0 = 1, w(T0) = w(T ) = 0.1,
T0 = 1.3, T = 13.9.

The equations in system (4.36) are non-linear, and the equilibrium points Y can be
found numerically. In this research the package Matlab has been used to compute
the Y's.
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Figure 4.3: Instability regions (grey) for ε = 0.1, ω0 = 1, w(T0) = w(T ) = 0 of a)
the linear homogeneous system (4.38), and b) the non-linear system (4.31).

For convenience, we let Yn = (xn, yn)T and Yn+1 = (xn+1, yn+1)
T , and we

rewrite system (4.31) into

xn+1 = a11xn + a12yn+

+ε(w1 + a1xn + a2yn + a3x
3
n + a4x

2
nyn + a5xny

2
n + a6y

3
n),

yn+1 = a21xn + a22yn+

+ε(w2 + a′1xn + a′2yn + a′3x
3
n + a′4x

2
nyn + a′5xny

2
n + a′6y

3
n),

(4.37)

where w1 and w2 are the constant �rst and second componenents, respectively, in
the vector W(Yn) as given by Eq. (4.33).

The search of the equilibrium points can be performed by solving numerically
system (4.36) for the range of values of ε, ω0, w, T0, T by using Matlab functions.
More programs have been written in Matlab to plot the phase-space diagrams for the
same parameters values, and these graphs will be discussed further in this section.
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Figure 4.4: Phase-space diagram of Eq. (4.37) for ε = 0.1, ω0 = 1, w(T0) = w(T ) =
0.1, T0 = 0.1, and a) T = 0.1, b) T = 1.2, c) T = 2.5, d) T = 3.116, e) T = 3.117, f)
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First of all the used algorithms will be discussed. The Matlab function `fsolve'
has been used to �nd the �xed point(s) of system (4.37). This function uses the
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`trust-region-dogleg' algorithm for solving systems of non-linear algebraic equations
like system (4.36). The `trust-region-dogleg' algorithm is based on Newton's �nding-
roots method but with a special Powell dogleg procedure, which allows one to avoid
the failure of Newton's method if the starting point is chosen too far from the
solution, see for details [11]. The �xed points of system (4.37) can be plotted
as shown, for example, in Fig. 4.2.a), where a single equilibrium point is found.
Separately, a code using the Matlab function `quiver' has been written to plot the
Poincare maps. The latter code plots arrows which start from the points with the
coordinates de�ned by the components of the vector Yn and end at the points with
the coordinates de�ned by the components of the vector Yn+1. There is a feature in
Matlab which scales the arrows to �t the image while plotting, which gives a clear
picture of the behaviour of the solutions of system (4.37). The map related to Fig.
4.2.a) is shown in Fig. 4.2.b). Overlaying these two graphs gives a coinciding result
of the two Matlab codes as shown in Fig. 4.2.c). Around 40,000 graphs for di�erent
values of coe�cients ε, ω0, w, T0, and T have been built up and have been analysed
in this way.

The further analysis of the phase-space diagrams is performed for 0 < ε � 1,
such that the O(ε) terms of Eq. (4.31) remain small. Then, the considered domain
for x and y is taken not larger than 10 × 10 from -5 to 5 for each of the x and
y. In this chapter any solution is considered to be `unstable' for a certain set of
parameters ε, ω0, w, T0, T if the phase-space diagram for this set of parameters
has at least either one unstable equilibrium point or an unstable limit cycle. If only
stable �xed points are found in the graph then the solution is considered as `stable'
for the given set of parameters ε, ω0, w, T0, T .

The instability regions of system (4.31) have been determined and shown in
Fig. 4.3.b. In comparison, the instability regions of the linear homogeneous system
considered in [25] and given by

Yn+1 = AYn, (4.38)

are shown in Fig. 4.3.a). The instabilities for both the linear and the non-linear
systems occur along the lines T = kπ, k = 1, 2, 3, . . .. The angle of inclination and
the width of the `instability lines' depend on the value of ε. The instability regions
for the non-linear system (4.31) are much wider and cover extra area along the line
T0 = T .

Following, for example, the line T0 = 0.1 from T = 0.1 with step 0.1 the be-
haviour of the solution can be studied more detailed. The other parameters are
assigned the following values: ε = 0.1, ω0 = 1, w(T0) = w(T ) = 0.1. It can be
observed that for T0 = T = 0.1 the phase-space diagram is similar to the diagram
of a mathematical pendulum, that is, the single equilibrium point is a centre point,
and it is shown in Fig. 4.4.a). Increasing T , the centre point changes smoothly into
a stable node (see Fig. 4.4.b)) all the way up to around T = 2.5, where an unstable
limit cycle with a stable equilibrium near the origin can be observed, see Fig. 4.4.c).
The �ow on the limit cycle is in the counter clockwise direction, and the maxi-
mum amplitude is around 4. The behaviour of the solutions changes signi�cantly
when approaching T = π. Two equilibrium points occur on the limit cycle around
T = 3.116, as shown in Fig. 4.4.d). These points will be discussed further. Each
of them separates into two points (Fig. 4.4.e)) which move along the limit cycle
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away from each other (Fig. 4.4.f)) for increasing values of T . Increasing T further,
it can be observed that the four points continue to move along the limit cycle and
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approach each other on the opposite sides of the limit cycle (Fig. 4.4.g) and h)).
Finally, they merge into two points (Fig. 4.4.i)) and then disappear around T = 3.5,
see Fig. 4.4.j). The unstable limit cycle smoothly dissapears and the �ow will be
directed to the equilibrium point near the origin forming a stable nodal point, see
Fig. 4.4.k) and l).

Moving up to T = 2π, it is observed that all the solutions are stable up to
T = 5.7, where the stable limit cycle starts to expand around the �xed point near
the origin, see Fig. 4.5.a) and b). The �ow on the limit cycle is to the counter-
clockwise direction as shown in Fig. 4.5.c). Two extra �xed points appear on the
limit cycle around T = 6.22, where the maximum amplitude of approximately 1.2 is
reached, Fig. 4.5.d). These extra points separate into two points each as is shown
in Fig. 4.5.e), and move along the limit cycle away from each other for increasing
values of T , Fig. 4.5.f). The speed of the movement is di�erent for the di�erent
points, so two of them meet faster than the other two (see Fig. 4.5.g)) and disappear.
The other two continue to move towards each other, merge, and �naly disappear
(Figs. 4.5.h) and i)). The �ow on the limit cycle changes to the clockwise direction
and the limit cycle smoothly shrinks. Stable �ow occurs after approximately T = 7
(Fig. 4.5.j) - l)), and all �ow is directed towards a single equilibrium point near the
origin.
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During the analysis it has been observed that the formation of stable and unstable
limit cycles with extra equilibrium points on them repeats with an interval of length
2π. The amplitude of the limit cycles and the number of extra �xed points on them
di�er from one instability region to another.

The nature of the extra �xed points in the diagrams for some values of the
parameters ε, w(T0), w(T ), T0, and T has not been studied yet. During the analysis
of the phase-space diagrams it was observed that up to six such �xed points situated
on the limit cycle can occur as shown for example in Fig 4.8.a). There may be even
more of them, since the system of equations (4.37) is a system of two cubic equations.

The analysis of the phase-space diagrams of system (4.31) showed several types of
instability of the solutions. Two types of unstable limit cycles are shown in Fig. 4.6.
Fig. 4.6.a) presents a regular unstable limit cycle with one stable �xed point near
the origin, typical for the solutions of Rayleigh-type equations. Fig. 4.6.b) presents
a similar unstable limit cycle but with �xed points on it. These �xed points can
be stable or unstable nodes, or saddle points. These types of limit cycles (unstable
both with and without �xed points on them) with di�erent amplitude occur in the
instability regions along the lines T = (2k − 1)π, k = 1, 2, 3, . . ., see Fig. 4.3.b).
Stable limit cycles with di�erent amplitudes, as for example shown in Fig. 4.7, occur
in the instability regions along the lines T = 2kπ, k = 1, 2, 3, . . ., see Fig. 4.3.b).
Similarly to the unstable limit cycles the stable ones have been observed having
up to six �xed points of di�erent types, like stable and unstable nodes, and saddle
points.

There are also other types of instability such as shown in Fig. 4.8.b) and c) with
di�erent number of �xed points. The �xed point near the origin is usually a stable
or unstable node, or a centre point, and other points are stable or unstable nodes,
or saddle points.

4.4 Conclusions

In this chapter the vibrations of a single degree of freedom oscillator with a
T -periodic and stepwise changing, time-varying mass have been considered. It is
assumed that the T -periodic and stepwise changing mass, and the air �owing along
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the oscillator lead to T -periodic drag and lift forces acting on the oscillator. In this
way a Rayleigh type of non-linearity is introduced in the initial value problem for
the oscillator equation. The time-varying mass and the drag and lift forces can be
both sources for instabilities. To investigate these instabilities the solution of the
initial value problem is approximated analytically in section 2 of this chapter on the
time-interval nT ≤ τ ≤ (n + 1)T . By doing this the solution at time τ = (n + 1)T
can be linked to the solution at time τ = nT , and in this way a map is constructed
from which the stability properties can be studied. The initial value problem, and
so the solution of the problem, contain a lot of parameters (ε, T , T0, ω0, w(T0),
w(T )). For certain choices of the parameters the rich dynamics of the problem has
been shown in section 3 of this chapter by using some numerical methods. Stable
and unstable equilibrium points and `limit cycle' behaviour can be seen. Moreover,
a lot of bifurcations can be noticed. To study these bifurcations in more detail (and
completely) the weakly nonlinear map (or equivalently the system of weakly non-
linear di�erence equations) should be studied analytically, for instance, by using a
multiple iteration-scales perturbation method. A preliminary research [19, Chapter
5] in this direction shows a good agreement with the numerical results as obtained
in this chapter.

The considered oscillator model is perhaps one of the simplest models which de-
scribes rain-wind induced vibrations of a cable. To obtain more realistic mathemati-
cal models for these rain-wind induced oscillations of cables one might formulate the
problem in a partial di�erential equation setting. Then by expanding the solution
of the partial di�erential equation in a Fourier series, and by applying a Galerkin
truncation method one obtains a �nite system of ordinary di�erential equations.
The ordinary di�erential equations will be of the same structure as the di�erential
equation studied in this chapter. Some preliminary results in this direction can be
found in [1, 28].
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Summary

In this thesis the free and forced vibrations of a single degree of freedom oscil-
lator with a periodically time-varying mass have been studied. Linear and weakly
non-linear oscillator equations have been considered. The forced vibrations of the
oscillator are partly due to small masses which are T -periodically hitting and leav-
ing the oscillator with T -periodic velocities. Since these small masses stay for some
time on the oscillator surface the e�ective mass of the oscillator and the shape of
the oscillator will periodically vary in time. The e�ect of a damping term (in the
linear oscillator equation) on the solutions also has been considered. For the free
vibrations the minimal damping rates have been computed for which the oscillator
is always stable. Also cases with external, harmonic forcing have been investigated
in detail for the linear oscillator equation, and interesting resonance conditions have
been found.

As simple model to describe the rain-wind induced oscillations of a cable, an
initial value problem for an oscillator equation with a Rayleigh type of non-linearity
has been studied.By applying a straight-forward perturbation method the problem
has been solved approximately on a time-interval of length T . In all cases studied
in this thesis initial value problems for oscillator equations have been formulated.
The constructed solutions on a time-interval of length T or the approximations of
the solutions on the same time-interval have been used to construct maps. By using
these maps (i.e. by using a system of di�erence equations) the stability properties of
the solutions have been determined. The instability regions in the parameter space
have been computed partly analytically and partly numerically. Some phase-space
�gures for the weakly non-linear problem have been computed numerically to show
a number of interesting bifurcations, and to show the rich dynamics of the problem.
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Samenvatting

In dit proefschrift zijn de vrije en gedwongen trillingen van een oscillator met
�e�en vrijheidsgraad bestudeerd. De massa van de oscillator varieert op een periodieke
wijze in de tijd. Lineaire en zwak niet-lineaire oscillator zijn beschouwd. De ged-
wongen trillingen van de oscillator zijn gedeeltelijk een gevolg van kleine massa's die
T -periodiek op en van de oscillator vallen met T -periodieke snelheden. Aangezien
deze kleine massa's voor enige tijd op het oscillator oppervlak blijven, zullen de
e�ectieve massa van de oscillator en de vorm van de oscillator periodiek in de tijd
veranderen. Het e�ect van een dempings-term (in de lineaire oscillator vergelijking)
op de oplossingen is ook beschouwd. Voor de vrije trillingen zijn de minimale demp-
ings co�e�ci�enten berekend waarvoor de oscillator altijd stabiel is. Ook zijn gevallen
met externe, harmonische krachten gedetailleerd onderzocht voor de lineaire oscilla-
tor vergelijking, en interessante resonantie voorwaarden zijn gevonden.

Als eenvoudig model ter beschrijving van de regen-wind ge��nduceerde trillingen
van een kabel, is een beginwaarde probleem voor een oscillator vergelijking met
een Rayleigh niet-lineariteit bestudeerd. Een directe, eenvoudige storingsmethode
is toegepast om de oplossing van het probleem te benaderen op een tijd-interval van
lengte T . Alle gevallen, die bestudeerd zijn in dit proefschrift, zijn geformuleerd als
beginwaarde problemen voor oscillator vergelijkingen. De geconstrueerde oplossin-
gen op een tijd-interval ter lengte T (of de benaderingen van die oplossingen) zijn
gebruikt om afbeeldingen te maken. Door gebruik te maken van deze afbeeldingen
(dit zijn stelsels di�erentie vergelijkingen) zijn de stabiliteits - eigenschappen van de
oplossingen bepaald. De instabiliteitsgebieden in de parameter ruimte zijn gedeel-
telijk analitisch en gedeeltelijk numeriek berekend. Enkele fase-ruimte �guren voor
het zwak niet-lineaire probleem zijn numeriek berekend om een aantal interessante
bifurcaties te tonen, en om te laten dat het probleem een rijke dynamica heeft.
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