
Technische Universiteit Delft

Faculteit Elektrotechniek, Wiskunde en Informatica

Delft Institute of Applied Mathematics

When is a deck of cards well shuffled?

(Nederlandse titel: Wanneer is een pak

kaarten goed geschud?)

Verslag ten behoeve van het

Delft Institute of Applied Mathematics

als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE

in

TECHNISCHE WISKUNDE

door

RICARDO TEBBENS

Delft, Nederland

Augustus 2018

Copyright © 2018 door Ricardo Tebbens. Alle rechten voorbehouden.

2

BSc verslag TECHNISCHE WISKUNDE

“When is a deck of cards well shuffled?”

(Nederlandse titel: “Wanneer is een pak kaarten goed geschud?)”

RICARDO TEBBENS

Technische Universiteit Delft

Begeleider

Dr. M.T. Joosten

Overige commissieleden

Dr. B. van den Dries Prof. Dr.ir. M.C. Veraar

Augustus, 2018 Delft

Abstract

When is a deck of cards shuffled good enough? We have to perform seven Riffle

Shuffles to randomize a deck of 52 cards. The mathematics used to calculate this,

has some strong connections with permutations, rising sequences and the L1 metric:

the variation distance. If we combine these factors, we can get an expression of how

good a way of shuffling is in randomizing a deck. We say a deck is randomized,

when every possible order of the cards is equally likely. This gives us the cut-off

result of seven shuffles. Furthermore, this gives us a window to look at other ways

of shuffling, some even used in casinos. It turns out that some of these methods

are not randomizing a deck enough. We can also use Markov chains in order to see

how we randomize cards by ”washing” them over a table.

5

Contents

1 Introduction 7

2 Why do we need to shuffle seven times? 8

2.1 Do we really need to shuffle more than once? 8

2.2 What is a shuffle? . 9

2.2.1 Permutations . 9

2.2.2 Shuffles . 10

2.3 The Riffle Shuffle . 12

2.4 Variation distance . 15

2.5 Rising sequences . 16

2.6 The a-shuffle . 17

2.6.1 Defining the a-shuffle . 17

2.6.2 Relation to rising sequences . 19

2.6.3 Specifying a particular a-shuffle 20

2.6.4 The multiplication theorem . 21

2.7 Combining all the results . 22

3 Discussing the analysis 24

3.1 Is seven really enough? . 24

3.2 Should we use the variation distance? . 25

3.3 Another way of computing variation distances 25

4 Different ways of shuffling 27

4.1 Simulations . 27

4.1.1 Top card test . 27

4.1.2 Estimating the variation distance 27

4.2 Reverse riffling . 28

4.3 Casino hand-shuffle . 29

4.4 Casino shelf-shuffle . 30

4.5 Washing cards . 32

4.5.1 Markov chains and the relation with card shuffling 32

4.5.2 Back to washing cards . 33

A Python-code 37

B Appendix 54

6

1 Introduction

Imagine you are playing a card game with friends, family or a complete stranger. If you

are on the winning side, you have nothing to worry about. However, if you are on the

losing side, you always get the question if the cards have been shuffled well enough. But

when is a deck of cards really shuffled enough? This question was answer by Dave Bayer

and Persi Diaconis in 1992 [1]. They came up with the answer that shuffling seven times

using a so called Riffle Shuffle should randomize a deck of cards. The result became well

known after it even appeared in the New York Times [5]. But how did they come up

with this result? And how can we use mathematics to solve something like card shuffling,

which, by the looks of it, is far away from mathematics. In this report we will take

a look at the analysis of how we can conclude that we need to shuffle a deck of cards

seven times before it is randomized. To do this, we have to find a way to define card

shuffling in a mathematical manner and find a way to express when a deck of cards is

well randomized. Furthermore, we will look at some different methods of shuffling, some

even used in places like casinos, and try to figure out if it is randomizing enough. We

will do this using simulations, or in some cases using Markov chains.

7

2 Why do we need to shuffle seven times?

In this part, we will make a reconstruction of a paper written by Brad Mann [2]. It

focuses mostly on the question how many times we should shuffle a deck of cards and

why the answer turns out to be seven.

2.1 Do we really need to shuffle more than once?

Before we start with the actual mathematical modelling and analysis of this problem, it

is good to get an intuition that we really have to shuffle multiple times. Even though

shuffling a deck of cards only once will not fully randomize it, we would expect at least

it should be difficult to find clear patterns. To check this feeling, we set up a little ex-

periment. We get a deck of cards and put it in new deck order. This is the order the

cards are in when you open the pack for the very first time. This is shown in Figure 1.

We shuffle this deck one time, using a Riffle Shuffle. This means we cut the deck in two

parts and riffle these together. Further explanation will follow in Section 2.3.

Figure 1: Our deck in new deck order.

The results we get from the shuffle is probably not what we expected or hoped. In

Figure 2, we see that the red cards are separated from the black cards. This shows that

our deck is not well shuffled at all, so it should boost the intuition that we need to shuffle

multiple times.

Figure 2: Our deck after one shuffle.

8

2.2 What is a shuffle?

In this subsection, we will see how to define a deck of cards and rearranging cards, in a

mathematical way. Furthermore, we will see some simple examples of shuffling and how

we define them mathematically. Before we do this, we need a change in notation. First,

we will talk about a deck with n cards. This is a more general approach. Further, it

is difficult to keep talking about specific cards, like ace of clubs, seven of diamonds ect.

From this point on we will label each card of the deck with the integers from 1 to n. So

before a deck is shuffled, its order always is 123 · · ·n. This is what we will call the natural

order. If a deck is reversed completely, it would look like n · · · 321.

2.2.1 Permutations

Now we will have to describe the shuffling in a mathematical manor, and our new notation

for a deck will help us. If we want to change 123 · · ·n to n · · · 321, we are actually

mapping the set of integers, between 1 and n, to itself. This means we can see a shuffle

as a permutation. A permutation is a bijection from one set to itself. This means that

a permutation sends a single element from a set to another element from that same set.

This can also be the same element, in this case we call the permutation the identity.

The set we will use is Sn, which stands for all the possible orderings of n numbers. We

write a single permutation as π. Let us look at an example. We take n = 5 and let the

permutation π1 be the reverse of the deck. The result will look like

i 1 2 3 4 5

π1(i) 5 4 3 2 1

Even though giving a table like is clear and easy to visualize, it is also a lot of work

and takes quite some space. Therefor it is easier to write just the second line of the table,

assuming the first line is the natural order. To show the difference between a permuta-

tion and the order of a deck, we use brackets in for the permutations. So we would write

π1 = [54321].

Before we proceed, it is important to point out the distinction between the ordering

of a deck and a permutation. When we talk about the ordering of a deck, we mean the

specific order the cards are in. A permutation only specifies a rearrangement. Let us take

for example our permutation π1 = [54321]. This changes the ordering 12345 to 54321,

but also 25431 to 13452.

We now know shuffling can be seen as a permutation π on a deck of cards. But since

we are trying to find out what happens when you shuffle multiple times, the question

arises what happens if we follow it by some other permutation τ . If we take a deck

ordering i, that would mean i changes to π(i), followed by applying τ , changing it to

9

τ(π(i)). We will call this a composition and write it as τ ◦ π, which is pronounced as τ

after π. Note that we write the τ first, even though we apply π before. For example, we

can take π1 defined as before and we define π2 = [23451], so we basically move the first

card to the back. If we apply π2 first, followed by π1, we can compute π1 ◦ π2 as follows.

i 1 2 3 4 5

π2(i) 2 3 4 5 1

π1 ◦ π2(i) 1 5 4 3 2

2.2.2 Shuffles

We now know how to define a permutation and what it does to the ordering of a deck.

But what if we are not sure which permutation we are using? This sounds odd, but this

in the essence what a method of shuffling is. We can define it as a probability density

on Sn, where each permutation is considered. In other words, we give each permutation

a certain fixed probability of happening. It is trivial that all these probabilities have to

sum up to one. Let us look at a very simple example: the top-in shuffle. We take the top

card off the deck and reinsert it in the deck at a totally random position. This means it is

even possible to put it back on top or on the bottom. The probability is uniform over all

the possibilities, which implies that every option has a chance of 1/n of occurring. Note

that this only counts for the permutations that can be perform. Let us take an example

with n = 3. We can see that for example the permutation [321] is not possible with only

one top-in shuffle, so this will have probability 0. The other probabilities are displayed

as follows

permutations [123] [213] [231] [132] [312] [321]

probability 1/3 1/3 1/3 0 0 0

.

Note that with this definition of a shuffle, shuffling multiple times leads to a random

walk on Sn. Let us say we look at a way of shuffling Q, this means each permutation π is

given a probability Q(π) of happening. Our starting point will be the identity of Sn, the

trivial permutation that leaves every card at the same position. Now we take a step in the

random walk, meaning that we choose a permutation π1, according to the probabilities

given by Q. Now we change arrange the deck as directed by the permutation π1. For

step two, we choose a permutation π2 according to the probabilities given by Q, and we

arrange the deck directed by it. In Section 2.2.1, we saw that this tells us that we used

the permutation π2 ◦ π1 on the deck we started with.

Now we are interested what density π2 ◦ π1 has. We call this density Q(2). Note that

the choices π2 and π1 are independent from each other, meaning that the probability of

10

first choosing π1, followed by π2, is equal to the product Q(π1) ·Q(π2). We can say this

for any particular permutation π, so Q(2)(π) is given by the sum of Q(π1) ·Q(π2) over all

pairs π1, π2 such that π = π2 ◦ π1. We have to use this sum, because in general there are

multiple ways of choosing π1 and π2 to get the same π = π1 ◦ π2. This way of combining

Q with itself, we call convolution and we write Q ∗Q:

Q(2)(π) = Q ∗Q(π) =
∑

π1◦π2=π

Q(π1)Q(π2) =
∑
π1

Q(π1)Q(π−11 ◦ π). (1)

The last equality follows form the fact that the equality π1 ◦ π2 = π is equivalent to

π2 = π−11 ◦ π, and we substitute π2 with this expression. With the term π−11 we mean the

inverse of π1, meaning that if you first use π1, followed by the inverse, we end up doing

nothing to the deck. So π1 ◦ π−11 and π−11 ◦ π1 are equal to the identity permutation. As

an example, let us take the permutation [536241]. If we want to find an inverse for this,

we have to find a permutation that can change the ordering 536241 to the natural order

123456. Finding this permutation, is fairly easy. The ith number in the inverse should

be the position of i in [536241]. Take for example i = 1. This is in position 6 in the

permutation, so the inverse should start with 6. If we do this for all the numbers, we get

that the inverse is [642513].

Now we have an expression for the probability density on Sn after two steps in the

random walk. In this case, in both steps we use the same way of shuffling Q. If we look at

it more generally, we can take two possibly different ways of shuffling Q1 and Q2. From

(1), we can now see that the density is given by:

Q1 ∗Q2(π) =
∑

π1◦π2=π

Q1(π1)Q2(π2) =
∑
π1

Q1(π1)Q2(π
−1
1 ◦ π).

We have looked at the case of shuffling twice, and we can expand this to an arbitrary

number k, with for each step i we have a density on Sn given by Qi. If we combine

all of these, we end up with the convolution Q1 ∗ Q2 ∗ · · · ∗ Qk. This means that first

shuffling with Q1, then Q2 up through Qk, is equal to shuffling with the shuffle specified

by Q1 ∗Q2 ∗ · · · ∗Qk. From this we can conclude that shuffling multiple times is the same

as shuffling only once after convoluting the densities. The convolution of these k densities

is very important for us, since it gives us the density after shuffling k times. Once we

have this density, we can see when it gets close to the uniform density. However, this way

with the convolutions is very complicated, especially when we start shuffling more than

twice. Take for example k = 3. We get

Q1 ∗Q2 ∗Q3(π) = (Q1 ∗Q2) ∗Q3(π) =
∑

π1◦π2=π

Q1(π1)Q2(π2)Q3(π
−1
2 ◦ π−11 ◦ π).

As we can see, this will get very complicated once we raise the value of k. However, in

Section 2.6.4, we will we see that there is an easier way to compute the density.

11

2.3 The Riffle Shuffle

To answer our main question how many times we should shuffle a deck of cards, we need

to know what method of shuffling we want to use. The method we will use, will be the

Riffle Shuffle, sometimes called the GSR shuffle, since it was developed by Gilbert and

Shannon [6], and separately by Reeds [7]. We use the Riffle Shuffle, because it one of the

most popular way of shuffling and it has some nice mathematical, what will talk about

soon. Before we do that, let us see how the shuffle goes. We begin by cutting the deck

into two packets, one containing k cards and the other containing n − k cards. Once

this is done, we interleave the cards from the two packets together. Here it is important

that the cards from both packets stay in their relative order, meaning that the cards on

positions 1, 2, . . . k will stay in the order if we eliminate the cards form the other packet,

from the shuffled deck. This can be seen in Figure 3. Once we interleave the two packets,

in the third row, we can see that the packets keep their relative order.

Figure 3: Schematic showing of the Riffle Shuffle, used in [1]. It shows that start with a

deck of cards and cut them into two packets. Then we interleave them, maintaining their

relative order.

Now we can take a deeper look on the mathematics behind this shuffle, starting with

the cut. It would be ideal to cut the deck perfectly in half, but assuming this will give

us two problems. First of all, what happens when n is odd? When this is the situation,

it is very hard to decide how to cut the deck perfectly in half. The biggest problem of

assuming this, is that this is not realistic. It is extremely difficult, especially when n is

a large number, to cut a deck perfectly in half. That is why we cut the deck according

to the binomial density, with parameter 1
2
. This will give us the probability of the cut

occurring after exactly k cards, is equal to
(
n
k

)
/2n. For the interleaving, we can assume

that every interleaving is equally likely of happening. So we only have to determine how

many possible interleavings are possible. To do that, it is smart only to look at one

packet. If we choose the positions of one of the packets, the other packet will just fill in

the empty spots. Then it follows that there are
(
n
k

)
possible interleavings, since we only

need to choose k of the n spots for the first packet. Note that
(
n
k

)
=
(

n
n−k

)
, so it does

12

not matter which of the two packets we look at. There follows that the probability for

a particular interleaving occurring, is equal to 1/
(
n
k

)
. If we now combine the results, we

find the probability of a particular cut, followed by a particular interleaving, is equal to(
n
k

)
2n
· 1(

n
k

) =
1

2n
.

Note here that this does not depend on k, meaning that every pair of a cut and a

possible interleaving is equally likely.

Now that we have defined a density for the probability, we can denote it as a density

R. We can find that the probability of a certain arrangement of the cards after a Riffle

Shuffle is the number of ways of riffling which give the arrangement.

Let us look at an example now. Take the case n = 3, with a deck starting in the

natural order.

k cut deck probability possible interleavings

0 |123 1/8 123

1 1|23 3/8 123, 213, 231

2 12|3 3/8 123, 132, 312

3 123| 1/8 123

Table 1

If we now take a look at the results in Table 1, we can compute a probability for every

possible interleaving. Note that the ordering 321 does not appear in the table, meaning

that the chance of occurring after one riffle shuffle is 0. Now let us take a look at for

example 132. It only occurs when we cut after 2 cards, which has a 3/8 chance. After this

cut, there are three possible interleavings, each with the same conditional probability of

1/3. So the probability for 132 is 3
8
· 1
3

= 1
8
. These same kind of arguments also hold for 213,

231 and 312, so they all have a probability of 1
8
. The interleaving 123 is more common; it

can appear after every cut. The probability of occurring is 1
8
· 1 + 3

8
· 1
3

+ 3
8
· 1
3

+ 1
8
· 1 = 1

2
.

Now we can write down the whole density for the Riffle Shuffle with n = 3, shown in

Table 2.

permutations π [123] [213] [231] [132] [312] [321]

probability R(π) 1/2 1/8 1/8 1/8 1/8 0

Table 2

It is also possible to say something about the density for the Riffle Shuffle for general

n. We get the following result.

Theorem 2.1. Suppose we have a deck with n cards, n ∈ N. Then we get the following

probabilities.

13

1. The identity has probability n+1
2n

.

2. Permutations that are not possible, have probability 0.

3. All other permutations have probability 1
2n

.

Proof. The proof for number 2 is trivial. For number 3, we need an assumption that will

be further explained in Section 2.5. The assumption is: Every permutation with probabil-

ity greater than 0, except the identity, is only possible after one particular cut. Knowing

this, it is easy to see that the probability should be equal to 1
2n

. This follows directly

from the fact that we need a particular cut, with a particular interleaving, and we know

this has probability 1
2n

.

Number 1, the identity, is a special case. We know that the identity is possible after

every cut. Again for every particular cut, we have that the probability for the identity is
1
2n

. Since there are n+ 1 different cuts, we have to add up the probabilities for all these

different cuts. We get
1

2n
+ · · ·+ 1

2n
=
n+ 1

2n
.

Hence our result is true.

If we look at the procedure of the shuffle again, there is still one vague aspect. We

say that after cutting the deck into two packets, we interleave them in any way. There is

an equivalent way of saying this, resulting in the next theorem.

Theorem 2.2. Interleaving two packets in any way is equivalent to dropping cards onto

one pile from the packets with probability proportional to the packet size.

Proof. First we have to explain when the ways of interleaving cards are equivalent. We

say that they are, when they have the same density. Since interleaving the two packets in

any way has probability 1/
(
n
k

)
, we have to prove that this is the same for dropping cards

with probability proportional to the packet sizes. Now let us see what we mean by drop-

ping cards from packets with proportional probability. We have two packets, one with

size k and the other with size n− k. For the first card this means that we have a chance

of k/n dropping from the first packet, and (n−k)/n for dropping from the second. Let us

say the first card drops from the first packet. The probability for the second card falling

form the first packet is (k−1)/(n−1) and (n−k)/(n−1) for the second packet. And so on.

Let us say we have a way of dropping cards, starting with the first packets, then the

second, first, first, second, first, and so on. This has probability of occurring given by

k

n
· n− k
n− 1

· k − 1

n− 2
· k − 2

n− 3
· n− k − 1

n− 4
· k − 3

n− 5
· · · .

14

If we look at the product of the denominators, we see that this will end up at n!, since

it is just a product of total cards left on the packets. The numerator is not that much

harder. We can see two decreasing sequences of numbers, that of k and of n − k, both

taking the product of every integer between itself and 1. So this will result to k!(n− k)!.

This will give us a probability of

k!(n− k)!

n!
=

1(
n
k

) .
Hence our result is true.

Now let R(k) stand for convoluting R with itself k times, meaning that we do the Riffle

Shuffle k times in a row. The question now is how big k has to be such that R(k) gives a

randomized deck.

2.4 Variation distance

When is a deck of cards truly randomized? If we look at this question really strictly, a

deck of cards is fully randomized when all the different arrangements of cards are equally

likely to occur. For a deck with n cards, we have a total of n! possible arrangements,

each having a chance of 1/n! of occurring. It turns out that for any fixed number of

cards, it is impossible having such a uniform density, since we would need to shuffle an

infinite number of times. This means we have to change our mindset. We were looking

how we can randomize a deck of cards, but instead we have to look how close we can get

to randomness. To measure how close densities are, we need a distance-measure, called

a metric. For our problem, we will use a metric called the variation distance, which is

essentially the L1 metric on the space of densities. Let us say we have two probability

densities Q1 and Q2. The variation distance between the two is defined as

‖Q1 −Q2‖ =
1

2

∑
π∈Sn

|Q1(π)−Q2(π)|. (2)

The 1
2
-term is only there to normalize the result, such that the distances are between

0 and 1.

Let us now look at the example n = 3 again. We take Q1 = R and take the density as

we calculated it in Table 2. For Q2 we take the complete reversal. This gives probability

1 to [321] and 0 to the rest. If we use (2) on these densities, we get the results from Table

3.

15

π Q1(π) Q2(π) |Q1(π)−Q2(π)|
[123] 1/2 0 1/2

[213] 1/8 0 1/8

[312] 1/8 0 1/8

[132] 1/8 0 1/8

[231] 1/8 0 1/8

[321] 0 1 1

Total 2

Table 3

We get that ‖Q1 −Q2‖ = 1
2

∑
π∈Sn
|Q1(π) − Q2(π)| = 1

2
· 2 = 1, meaning that these

densities are as far apart as possible.

Now we have to implement the densities we need: R(k) and U being the uniform

density. That means we can answer the question how many times we need to shuffle by

plotting
∥∥Rk − U

∥∥ versus k.

2.5 Rising sequences

Before we can determine the density of R(k), we have to look at a concept that will be

very important for us later. We are talking about rising sequences. A rising sequence of

a permutation is a maximal consecutively increasing subsequence, meaning that we are

looking for sequences of consecutive numbers, even though some different numbers can

be in between. But what does this mean for cards? Let us take a deck in any sort of

ordering. Start reading from the left till we find the card labeled by 1. Select that card

and move along to number 2. If we find 2, we select it and move along to 3. Repeat the

process, till we are at the end of the cards. We remove all the k selected cards and start

from the front, looking for card number k + 1. When there are no more cards left in the

deck, we count the number of times we removed selected cards from the deck. This is the

number of rising sequences of the deck.

Let us now look at an example. We take n = 8 and the ordering is 14256738. Start at

the left and look for a 1, then a 2 and so on. after going through the deck once, we have

14256738, where the overlined numbers are selected. If we remove those, we get 45678,

which is also a rising sequence, so we remove those and we are done. This means we

removed cards from the deck twice, meaning that the deck has two rising sequences. It is

also nice to notice that this ordering could be the result of a Riffle Shuffle with a cut after

3 cards. In fact, it is easy to see that any ordering with exactly two rising sequences, or

even only one, is a possible result of a Riffle Shuffle. This is because the cards in the two

16

packets maintain their relative order.

In the proof of Theorem 2.1, we made the assumption that every permutation with a

probability greater than 0, except the identity, is only possible after one particular cut.

Now we know about rising sequences, we have the knowledge to justify this assumption.

Let us say we use the Riffle Shuffling once, resulting in us performing a permutation π.

We know that, no matter the value of n, that this permutation has either one or two

rising sequences. If it has only one, the permutation must be the same as the identity, so

it does not count for the assumption. This means we only have a permutation with two

rising sequences. If we look at both of these sequences individually, we get the cut used

in the Riffle Shuffle. This follows from the fact that after interleaving the two packets,

they maintain their relative order. So by looking at the rising sequences, we find the cut

that was used. This means that every permutation, except for the identity, can only be

done with one particular cut.

2.6 The a-shuffle

It is now clear that when a deck in natural order undergoes a single Riffle Shuffle, it ends

up with either one or two rising sequences. But what can we say when shuffle multiple

times? To answer this question, it is better to look at a more general case of the Riffle

Shuffle: the a-shuffle.

2.6.1 Defining the a-shuffle

An a-shuffle is another probability density on Sn. The procedure is similar to that of the

Riffle Shuffle. We start with a being a certain positive integer. We cut the deck into a

different packets. Note that some of these packets can be empty. Now we interleave the

cards from the packets together in any way, as long as the relative order of packet are

maintained. Note that the Riffle Shuffle is a specific form of the a-shuffle with a = 2.

Now let us look at the mathematics behind this shuffle. For the cut, we make a

packets, with non-negative sizes p1, p2, . . . , pa. Since we used the binomial density for

the Riffle Shuffle, a 2-shuffle, we have to use a more general form here, namely the

multinomial density, with parameter 1/a. This will look like
(

n
p1,p2,...,pa

)
. The probability

of a particular cut will then be (
n

p1,p2,...,pa

)
an

.

Note that we must have p1 + · · ·+ pa = n. For the interleaving, we can again use the

same arguments as with the Riffle Shuffle. Every interleaving is equally likely, meaning

that it is only necessary to find the amount of possible interleavings. We need to know

how to how many different ways of choosing, among n positions in the deck, p1 for the

17

first packet, p2 for the second packet, and so on. We end up with a multinomial coefficient(
n

p1,p2,...,pa

)
, so the probability for one particular interleaving is 1/

(
n

p1,p2,...,pa

)
. If we combine

the cut and the interleaving, we find that the probability of a particular pair of a cut and

interleaving, is equal to (
n

p1,p2,...,pa

)
an

· 1(
n

p1,p2,...,pa

) =
1

an
.

Again we see, that we fill in a = 2, we get the same probability as with the Riffle

Shuffle. We will denote the density of an a-shuffle by Ra, with R = R2.

Interleaving the packets in any way, is not the only way to describe the riffling the

a different packets together. We have two equivalent descriptions. First, we have the

general form of Theorem 2.2, meaning that we drop cards on one pile form a packet with

probability proportional to its size. The proof of this is the same as the case a = 2. But

there is also a different description.

Theorem 2.3. An equivalent description of the a-shuffle is given by cutting multinomially

into p1, p2..., pa and riffling p1 and p2 together, then riffling the resulting pile with p3, and

so on.

Proof. Before we begin the proof, we have to define what we mean by an equivalent de-

scription. It means that the probability the probability for any cut with interleaving is

the same for both descriptions. Since we both cut with a multinomial density in both

cases, it is enough to proof that riffling the packets one by one has the same probability

as interleaving the packets in any way. in mathematical terms: we have to proof that

the chance of any interleaving is 1/
(

n
p1,p2,...,pa

)
when shuffling one by one. We will do this

proof with induction, for a ≥ 2.

Step 1

Take a = 2. This means p1 = p and p2 = n − p. From the Riffle Shuffle we know that

there are
(
n
p

)
possible interleavings. Hence there follows(

n

p

)
=

n!

p!(n− k)!
=

n!

p1!p2!
=

(
n

p1, p2

)
.

This means that the probability for any interleaving is 1/
(

n
p1,p2

)
. So it holds for a = 2.

Step 2

Assume for some a the probability for any interleaving is 1/
(

n
p1,p2,...,pa

)
= 1/

(∑a
i=1 pi

p1,p2,...,pa

)
.

We need to prove that for a + 1, the chance for a particular interleaving is equal to

1/
(∑a+1

i=1 pi
p1,p2,...,pa+1

)
.

Let us say that we first shuffle the first a packets together. By assumption, we know that

18

we get a certain interleaving with 1/
(∑a

i=1 pi
p1,p2,...,pa

)
chance. Than we shuffle packet a+ 1 with

the rest. If we want to know the probability for a certain interleaving after this shuffle,

we need to multiply 1/
(∑a

i=1 pi
p1,p2,...,pa

)
with the chance of any interleaving of shuffling the deck

with packet a+ 1, which we know is equal to 1/
(∑a+1

i=1 pi
pa+1

)
. Let us leave the ‘1 divided’ out

for a second, for readability purposes. Then this gives

(∑a
i=1 pi

p1, p2, . . . , pa

)
·
(∑a+1

i=1 pi
pa+1

)
=

(
∑a

i=1 pi)!

p1!p2! · · · pa!
· (

∑a+1
i=1 pi)!

pa+1!(
∑a

i=1 pi)!

=
(
∑a+1

i=1 pi)!

p1!p2! · · · pa+1!

=

(∑a+1
i=1 pi

p1, p2, . . . , pa+1

)
.

So the probability for any interleaving is equal to 1/
(∑a+1

i=1 pi
p1,p2,...,pa+1

)
. Hence it holds for

a+ 1.

From step 1 and 2 and the principle of induction, we obtain the asked result.

This description will be easy for simulating the shuffles.

2.6.2 Relation to rising sequences

You might ask why we should even consider a-shuffles, while we only need the answer

to a specific case of the a-shuffle, namely the Riffle Shuffle being a 2-shuffle. One of the

main reasons is its relation to rising sequences. For the a-shuffle, we have the following

nice result.

Theorem 2.4. The probability of achieving a permutation π when doing an a-shuffle is

given by
(
n+a−r
n

)
/an, where r is the number of rising sequences in π.

Proof. First note that if we fix where all the a − 1 cuts occur, then every permutation

that can obtained after interleaving, can only be obtained in one way: just drop the

cards in the same order the permutation tells us to. Thus we find that the probability of

obtaining any permutation is the number of ways we can cut the deck such that we can

still obtain that permutation, divided by the total number of ways of making cuts and

interleaving for an a-shuffle.

The denominator in the expression is easy to prove. We know this should be the

possible ways to cut and interleave the deck, and we know this should be equal to an,

since there are this many n digit base a numbers. The relation to n digit base a numbers

will become clear in Section 2.6.3.

The numerator needs a bit more work and some reasoning from taking a closer look at

the cards. Let us take a deck of cards in the natural order and we apply the permutation

π to it. If there are r rising sequences in the deck, we know where r − 1 cuts must

19

have been. This follows from the fact that they must have occurred between pairs of

consecutive cards in the original deck, such that the first card ends a rising sequence and

the second begins another. Hence we know that there (a − 1) − (r − 1) = a − r cuts

that are unspecified, meaning that it does not matter where they are. Now we have to

count the number of ways we can make a− r cuts in n cards. We can do this by a simple

principle. We make (a − r) + n spaces, where we can put either a cut or a card. If we

look from the perspective of the cards, there are
(
(a−r)+n

n

)
ways to do this. Hence we find

that our result is true.

2.6.3 Specifying a particular a-shuffle

There is a nice and easy way to specify how a particular a-shuffle is done, which will seem

useful in the next section. Let A be a n digit number, only containing base a numbers.

We count the number of 0’s in A, which will be the amount of cards in the first packet of

the a-shuffle, p1. Then p2 will be the amount of 1’s in A, and so on. When we have done

this, we cut the deck at the specified places p1, . . . , pa. From the first packet we start

placing to cards on the locations of the 0’s in A, while maintaining the relative order.

The same goes for the second packet with the 1’s and so on. This will give the particular

cut and interleaving corresponding to A. By reflection we can see that this code is a

bijective correspondence between n digit base a numbers and the set of all possible cuts

and interleaving a deck with n cards, according to the a-shuffle. If we choose the n digit

base a numbers according to the uniform density, we get the correct uniform density for

cutting and interleaving in an a-shuffle, meaning that we get the right probabilities for

an a-shuffle.

Let us look at an example. We take n = 9 and a = 4, and let A = 101321302.

From counting the specific numbers, we find p1 = 2, p2 = 3, p3 = 2 and p4 = 2, since

there are two 0’s, three 1’s, two 2’s and two 3’s. Thus we cut the deck as 12|345|67|89.

If we now place the cards their relative positions in A, we get a shuffled deck of 314865927.

With this way of specifying an a-shuffle, we also get a nice result when we try to shuffle

twice in a row, using different ways of shuffling. Let us say we have A is an n digit number

with base a and B an n digit number with base b. If we first apply A, and then follow it

by B, we get the same result as when we apply AB&B once. John Finn figured out this

formula, which we will not give a formal proof of in this report. The formula still needs

some explaining. First we take a look at AB. We basically apply B to A, meaning that

rearrange A according to the permutation B. The & is a bit more work, but still rather

straight forward. For AB&B, we change every ith digit in AB into ABi ·b+Bi, with base ab.

As said, we will not prove this formula formally here. But that this formula holds,

and how it works, can best be shown in an example. Suppose we have A = 210102 with

20

base 3 and B = 203100 with base 4. If we apply these to a deck in the natural order, we

get Table 4.

i 1 2 3 4 5 6

πA(i) 5 3 1 4 2 6

πB ◦ πA(i) 2 5 6 4 3 1

Table 4

Now we try to compute AB&B and see if get the same result. This computation is

shown in table 5.

A 2 1 0 1 0 2

B 2 0 3 1 0 0

AB 0 2 2 1 1 0

B 2 0 3 1 0 0

AB&B 2 8 11 5 4 0

Table 5

If we apply this to a deck with the natural order, we get 256431. So this gives the

same result as doing one shuffle after the other.

2.6.4 The multiplication theorem

We are close to constructing a graph for the variation distance. There is only one fun-

damental problem we have not faced yet: How can we describe a Riffle Shuffle when

we apply it multiple times, without having to convolute the densities? The answer lies

within the next theorem.

Theorem 2.5. An a-shuffle followed by a b-shuffle is equivalent to a single ab-shuffle.

Proof. To prove this, we have to find a formula that is actually a one-to-one correspon-

dence between a pair of one n digit base a number and one n digit base b number, and

the set of n digit base ab numbers. In Section 2.6.3, we already made such a formula.

The AB&B formula that we introduced, satisfies this criterion. This follows from the

fact that we combine an n digit base a number and an n digit base b number, and make

it into an n digit base ab number. Since the probability densities for a, b and ab-shuffles

are induced by the uniform densities on the sets of n digit base a, b or ab numbers, it is

implied by the properties of the one-to-one correspondence, that the densities on Sn of an

a-shuffle followed by a b-shuffle is the same as an ab-shuffle. Hence our result holds.

21

2.7 Combining all the results

We now have all the ingredients to answer the questions how many times we have to do a

Riffle Shuffle before a deck is randomized well enough. If we do a Riffle Shuffle k times, we

know that we are basically doing k times a 2-shuffle. By Theorem 2.5, this is equivalent

to a single 2 ·2 · · · 2 = 2k-shuffle. If we fill this in the formula we found in Theorem 2.4, we

find that in the R(k) density there is a chance of
(
2k+n−r

n

)
/2nk of getting a permutation π

with r rising sequences. Since in the uniform density U every permutation has the same

probability 1/n!, this gives us

|R(k)(π)− U(π)| =
∣∣∣∣(2k + n− r

n

)
/2nk − 1

n!

∣∣∣∣ . (3)

We want to find the variation distance between R(k) and U , given by

∥∥R(k) − U
∥∥ =

1

2

∑
π∈Sn

|R(k)(π)− U(π)|.

To compute this, we need to sum over all the possible permutations, but we have a

quicker way to do this. Note that if we fix n, (3) only depends the amount of rising

sequences. This means we only have to sum over the amount of possible rising sequences,

which is from 1 to n. There is only one problem left: Theorem 2.4 gives the probability

for specific permutation with r rising sequences, but we need the probability of any

permutation with r rising sequences. We can solve this by multiplying with the amount

of possible permutations with r rising sequences. These are exactly the Eulerian numbers.

We will specify these numbers by An,r, with n being the amount of cards in the deck and

r the amount of rising sequences. There are multiple formulas for these numbers, one of

them is

An,r =
r∑

k=0

(−1)k
(
n+ 1

k

)
(r + 1− k)n.

If we now take these Eurelian numbers into account, we get the variation distance we

want:

∥∥Rk − U
∥∥ =

1

2

n∑
r=1

An,r

∣∣∣∣(2k + n− r
n

)
/2nk − 1

n!

∣∣∣∣ .
Even though this formula still is difficult to calculate by hand, but it is now easy and

quick for computer program Python to compute its graph. We take here a standard deck

of cards with n = 52.

22

Figure 4: Graph of the variation distance versus k.

As can be seen in Figure 4, the variation distance starts to drop fast at k = 5, becomes

more horizontal again at k = 7 and almost reaches 0 at k = 12. Since k = 7 seems like a

good middle point for the cutoff, we can conclude that seven shuffle is said to be enough

for a deck of 52 cards.

We can also do this for different values of n. In Table 6, some different values of n

are shown for shuffling from 1 up to 10 times. One can choose for him or herself when

the variation distance is close enough to 0 for a saying that a deck is almost is fully

randomized. For now, we put the crossline at 0.5. Hence we need respectively 5, 6, 7, 8

and 8 shuffles to randomize deck of 25, 35, 52, 78 and 100 cards.

n 1 2 3 4 5 6 7 8 9 10

25 1.000 1.000 0.999 0.775 0.437 0.231 0.114 0.056 0.028 0.014

32 1.000 1.000 1.000 0.929 0.597 0.322 0.164 0.084 0.042 0.021

52 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043

78 1.000 1.000 1.000 1.000 1.000 0.893 0.571 0.307 0.153 0.078

100 1.000 1.000 1.000 1.000 1.000 0.982 0.747 0.429 0.224 0.112

Table 6

23

3 Discussing the analysis

In Section 2, we computed the answer for the question how many times we need to shuffle

a deck of cards. In this section we will look at some possible discussion points about this

analysis. These points are also mentioned in [2].

3.1 Is seven really enough?

Even though we concluded that shuffling a deck seven times should randomize a deck,

there is still room for some discussion about this number. There are examples where

seven times is not good enough. As presented in [2], Peter Doyle invented a game of

solitaire which shows, that we did not shuffle good enough.

It goes as follows. We start with a deck of 52 cards, turned face-down. We label

the cards from top to bottom with 123 . . . (25)(26)(52)(51) . . . (28)(27). Now perform the

Riffle Shuffle seven times, which should normally randomize the deck. We make three

piles A,B and C. Now take the top card. If it is number 1, we place it face up on pile

A. If it is 27, place it face up on pile B. If it is a different card, put it face up on C.

If the next card is the immediate successor of the top card from either A or B, place it

on the respective pile. Otherwise we place it on C. Once we placed all the cards from

the original deck on one of the three piles, We pick up C, turn it upside down and start

placing those cards. The game ends when either A or B is full, meaning that they contain

26 cards. The pile that is full first, wins.

Since shuffling seven times should randomize the deck, we would expect that both

piles win for half of the time. However when we compute this game into Python, we find

that A wins about 83% of the time. This has to do with rising sequences. We expect

them to come from both the first and second of the original deck in roughly the same

numbers and length. The only problem here is that these will be in a forward direction,

while we collect cards for B in a backward direction. This means that a rising sequence

for A can be picked up in one sweep through the deck, while for B we can only pick up

one card at a time.

The key here is that this game will turn out to be almost as far away from being a

fair game as possible. This is a consequence of an equivalent definition of the variation

distance,

‖Q1 −Q2‖ = max
S⊂Sn

|Q1(S)−Q2(S)|

where Q1(S) is defined as
∑

π∈S Q1(π). This actually means that the variation distance

is an upper bound for the difference between the probabilities of an event given by two

24

densities. This counts for this game. If we look at the percentage we expected A to

win, and how much it actually won, we see that this is really close to the variation

distance of seven Riffle Shuffles and the uniform density. The difference is probability is

|0.83− 0.50| = 0.33, while we know from Section 2.7 that the variation distance is equal

to 0.334. This shows us that this game is a worst case scenario.

3.2 Should we use the variation distance?

We introduced the variation distance as measure for the distance between two densities.

It looks reasonable to do, since we take the difference of all the probabilities and add

them up in the end. But is the variation distance not too strict? The next example

shows why this might be the case.

Let us say we have deck containing n cards, face down. We know the deck has been

perfectly randomized, meaning that you have the uniform density U(π) = 1/n! for all

π ∈ Sn. Now suppose we take of the top card and we see which one it is. You now put

it back in the deck in the top half of the deck, at random. Even though you changed one

position of only one card, the variation distance will be affected greatly by this. This is

because we cut the amount of possible orderings in half, since we know that one particular

card is in the top half of the deck and not in the bottom half. We call the new density

Ū , which is 2/n! in the top half of the deck and 0 in the bottom. This gives a variation

distance of

∥∥U − Ū∥∥ =
1

2

(
n!

2

∣∣∣∣ 2

n!
− 1

n!

∣∣∣∣− n!

2

∣∣∣∣0− 1

n!

∣∣∣∣) =
1

2
.

Since we set the line for ourselves at 0.5, that would mean that Ū is barely random

enough, while we know only the position of one card, and not even its exact position.

3.3 Another way of computing variation distances

In Section 2, we saw a way to calculate the variation distance. However, in the original

paper written by Bayer and Diaconis [1], a different approach is used. In this section we

will look at how they calculated the variation distances. The theorem we will introduce

in this section, will not be proven here. Furthermore, all the theorems and knowledge we

obtained in Section 2, are used.

The following theorem gives a different expression for the variation distance.

Theorem 3.1. Let Qk be the density after performing a Riffle Shuffle k times. Let U be

the uniform density. For k = log2(n
3/2c), with fixed 0 < c <∞, as n tends to ∞,∥∥Qk − U

∥∥ = 1− 2Φ

(
−1

4c
√

3

)
+Oc

(
1

n1/4

)
25

with

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

Using this theorem, we can calculate the variation distance first calculating c, and

then filling in k and c. When we do this, we get the same results as we get in Table 6

in Section 2.7. There some advantages and disadvantages to using this formula instead

of the one we used in Section 2.7. A big advantage is that we can compute the variation

distance for larger values of n. In the method we used, you have to multiply and divide

some very large number with each other, for example An,r, 2
nk and 1/n!. This can give

problems once the value of n is higher than 100. On the other hand, in the formula used

in Theorem 3.1 we assume that n tends to infinity. This might cause some inaccuracy

for smaller values of n, like 32 or 52.

Note that in Theorem 3.1, we have an expression for k, namely k = log2(n
3/2c). Here

counts that c = 2j, where j stands for the number of shuffles performed after 3
2

log2(n)

shuffles. If we set j = 0, we get an estimate of how many shuffle we need to perform to

mix up n cards, namely 3
2

log2(n). This estimates for some values of n are shown in Table

7. Note that these values are all higher than the results we obtained in Section 2.7.

n 25 32 52 78 100
3
2

log2(n) 6.97 7.50 8.55 9.43 9.97

Table 7

26

4 Different ways of shuffling

Now that we have found the solution to the problem how many times we should perform

a Riffle Shuffle till a deck of cards is randomized enough, we can ask ourselves what the

case is if we shuffle using a different method. A place where shuffling cards is of great

importance, is in a casino. In this chapter we will look at some different ways of shuffling,

including some used in casinos.

4.1 Simulations

To do this, it is not always possible to describe the shuffle in a mathematical attractive

way, like we did with the Riffle Shuffle. To still come up with a solution, we can simulate

a deck and the ways of shuffling, using Python. The code of these simulations is shown in

Appendix A. The simulations for this section will mostly consist of two tests to see if a

deck is well shuffled. We can only say that a method of shuffling is randomizing enough

when it passes both of the tests.

4.1.1 Top card test

The first little test is what we will call the top card test. As the name suggests, we

will look where the original top card of a deck goes after we shuffle it. Let us say we

have a deck containing n cards. If a deck is well randomized, one would expect that the

probability of the top card being in a specific position, is equal for every position, so

1/n. In this test we will count the amount of times the top card is still at the top after

performing the shuffle, which we will call t. We will do this 52.000 times, meaning that,

since in our case n = 52, we expect to find t to be around 1000.

4.1.2 Estimating the variation distance

In Section 2, we tried to estimate how random a deck is by calculating the variation

distance. This was possible because we there is a nice connection between the a-shuffle

and rising sequences. With most other shuffling methods, this connection is not there.

This means we have to try and simulate this connection. In Theorem 2.4 we got the

probability that we get a permutation π with r rising sequences. By simulation, we can

try to find this probability for other ways of shuffling. We do that as follows. We simulate

a deck of cards and perform a method of shuffling on it. Once it has been shuffled, we

count the amount of rising sequences and call this br. We do this 5000 times. After, we

have a list of the amount of times we have r rising sequences. If we divide those amounts

by 5000, we get a probability of any permutation with r rising sequences. This means

we have to divide these probabilities by their respective Eulerian number, giving us the

probability of a specific permutation with r rising sequences. We can fill these in the

27

formula we got for the variation distance, which will look like

‖Q− U‖ =
1

2

n∑
r=1

An,r

∣∣∣∣ br
5000 · An,r

− 1

n!

∣∣∣∣ . (4)

This gives us an estimate for the variation distance between a random density Q and the

uniform density. The exact results of the simulations, meaning the r rising sequences and

how many times it occurred, can be found in Appendix B.

To show that this works, it might be good to look at an example. Let us look at the

cases Q = R(6), Q = R(7) and Q = R(8), so we perform the Riffle Shuffle six, seven and

eight times. From Table 6, we know that the variation distances are respectively 0.614,

0.334 and 0.167. If we now simulate these shuffles and fill in the results in (4), we get the

estimate variation distances 0.622, 0.322 and 0.162. These are really close to the actual

values. If we look at the differences and use a 95 % confidence interval, we can conclude

that we have an estimated standard deviation of 0.028.

4.2 Reverse riffling

The first problem we will look at, is not really a different way of shuffling. It is presented

as an open problem in [3] and it tells us about a shuffling machine that is supposed to

perform a Riffle Shuffle. From Theorem 2.2, we know that we can describe riffling two

packets together as dropping the cards form a packet with probability proportional to

the packet size. This machine is not working properly though, since during the riffling,

it drops the cards from a packet with probability ”opposite” proportional to the packet

size. In mathematical terms, this means the if we have packets 1 and 2 with sizes k and

n − k, the probability that we drop a card from packet 1 is equal (n − k)/n, while it

should be k/n. Once all of the cards from one packet are dropped, the rest from the

other packet will be placed on top.

Now let us look the simulations and see what variation distance comes out. The

results are shown in Table 8.

We can see that the variation distance drops a lot slower then when we perform a

regular Riffle Shuffle. Also note that if we compare these variation distances with the

ones we found in Table 6 in Section 2.7, we almost need twice as many shuffles here for

the same result. This means that once the probability for the riffling is ”reversed”, we

need 12 shuffles, instead of seven.

28

k est. variation distance (±0.028)

6 0.987

7 0.953

8 0.882

9 0.784

10 0.675

11 0.555

12 0.440

13 0.343

14 0.257

15 0.208

16 0.150

17 0.121

18 0.090

19 0.067

20 0.052

21 0.031

Table 8

4.3 Casino hand-shuffle

Most big casinos shuffle using a machine. A lot of the smaller casinos on the other hand

still let the dealers shuffle the cards by hand. They do this in a fixed way, going as follows:

first perform a Riffle Shuffle three times, then a Strip Shuffle, followed by one more Riffle

Shuffle and ended by a full cut. There are two methods of shuffling that need a deeper

explanation. First being the Strip Shuffle. This is a special version of the 5-shuffle. We

cut the deck into five packets, using the multinomial density. Instead of interleaving the

packets, we take the packet that was first on top and put it on the bottom. Then we we

take the packet second from the top and place it on top of the other, and repeat this for

the other packets. We can see this schematically in Figure 5.

Figure 5: Schematic showing of the Strip shuffle.

29

Now we look at the full cut. This a simpler version of the Strip Shuffle. It is the same

method, but now only using two packets. So we cut the deck into two packets with the

binomial density, followed by putting the bottom packet on top of the other. In Figure

6, we can see how this looks schematically.

Figure 6: Schematic showing of the full cut.

Let us perform our two tests on this shuffle, beginning with the Top card test. Sim-

ulations show that the top card gets back on top 1079 of the times, where we expect

around 1000. This means that this is close to what we, meaning that we get the feeling

that the way of shuffling in casino really randomizes the deck. Now let us look at the

simulating of the variation distance. If we fill in the data from the simulating, we get a

value for the variation distance equal to 0.942 (±0.028), which is almost equal to perform

a Riffle Shuffle five times. This means that the shuffle used in casinos is not randomizing

enough, which is a surprising result.

4.4 Casino shelf-shuffle

As said, most big casinos use shuffling machines. One of this machines is presented in [4]:

the shelf shuffling machine. The shelf shuffler works in a very interesting way. Let us say

we have m shelves. Once we put the deck of cards in the machine, it starts dividing the

cards over the shelves. Every card can be dropped on a certain shelf with the uniform

density, meaning that the probability that a card goes to self i, is equal to 1/m. Once

in the machine, it can be placed in two ways: on top or on the bottom of the packet on

that shelf, both with probability 1/2. Once every card is placed on one of the shelves,

the machine drops it back to one pile. Every shelf had probability 1/m to be dropped

first. For the second, every remaining shelf has probability 1/(m − 1) to be dropped on

top of the first one, and so on. Let us look at a schematic example with m = 5 in Figure

7.

30

Figure 7: Schematic showing of the shelf shuffle with m = 5.

In the case represented in [4], we get m = 10. We will look at it a bit more general,

with multiple values of m, namely 5, 10, 50, 100 and 200. It is now time to look at the

results from the simulations, so that we can determine for which values of m, the shelf

shuffle is a randomizing shuffle. The results of the top card test are shown in Table 9.

m t

5 57

10 397

50 1030

100 936

200 965

Table 9

We can already see that t in the cases m = 5 and m = 10 is by far not close enough to

the expected value of 1000, while the cases 50, 100 and 200 are close enough. Meaning that

we can already conclude that the shelf shuffle with 5 and 10 shelves is not randomizing

enough. Let us now look at the estimations of the variation distance, displayed in Table

10.

m est. variation distance (±0.028)

5 0.040

10 0.029

50 0.013

100 0.016

200 0.024

Table 10

Even though we know the cases with 5 and 10 shelves are not randomizing enough,

we can see that their variation distance is very low. This seems weird, but can be ex-

plained rather easily. The variation distance as we calculate and estimate it, is purely

based on the number of rising sequences. However this does not tell us anything about

31

the locations. Take for example the ordering [(51)(52)(49)(50) . . . 3412]. This ordering

has 26 rising sequences, meaning that, according to the variation distance, it should be

a well randomized deck. However, we can see that this is not the case at all. So we can

conclude that the cases with 5 and 10 shelves are no randomizing shuffles, even though

they have a low variation distance.

The cases with 50, 100 and 200 shelves have both a low variation distance, and the

values from the top-card test all lie near the expected 1000. This means that we can

conclude that these are randomizing shuffles.

4.5 Washing cards

Not everyone is good at shuffling. Riffling two packets together, for example, can be a

very difficult task. But there is one method of shuffling that can be used by everyone,

even by little children. We are talking about washing cards. You spread the cards all over

the table and you start moving them around. The cards gets mashed up rather quickly

and it looks like there is no structure to be found in this way of shuffling. We will try

to simplify and actually put some kind of structure to this problem. Before we do this,

let us see how we will try to simulate this. Because of the lack of structure, it is very

difficult to actually simulate washing cards and putting them to the test like we did with

the examples before. In this case, it is better to look at a different, important aspect of

mathematics: Markov chains.

4.5.1 Markov chains and the relation with card shuffling

Before we start with discussing our problem in more detail, it might be better to do

fast introduction to Markov chains and show how we can use them in card shuffling. A

Markov chain is a stochastic process, that moves between a finite set of states S. This

can be described by a sequence of random variables X0, X1, . . . , each taking values in

S, where Xt = i means that the process is in state i ∈ S at time t. A Markov chain

is only dependent on its current state. What happened in the past does not have any

influence. That is why we call a Markov chain memoryless. The process goes as follows.

We start in a certain state, let us say X0. Then we can take a step to a different state,

based on a density defined over these states. Once we are in the new state, called X1,

we can take a step again to again a different state, again based on a density. And so

on. We can capture these density for the states in something that is called a transition

matrix p. The elements of the matrix are called transition probabilities pij. pij is defined

as P(Xt = j | Xt−1 = i). This means the probability that after t steps we are in state j,

given that we were in state i after t − 1 steps. Let us look at the example from Section

2.2.2, the top-in shuffle. We know that this had the following density if we start with the

natural order.

32

permutations [123] [213] [231] [132] [312] [321]

probability 1/3 1/3 1/3 0 0 0

But we can compute such a density for every beginning order. If we capture these

densities in a matrix, we get the transition matrix for the top-in shuffle.

p =

[123] [213] [231] [132] [312] [321]

[123] 1/3 1/3 1/3 0 0 0

[213] 1/3 1/3 0 1/3 0 0

[231] 0 0 1/3 0 1/3 1/3

[132] 0 0 0 1/3 1/3 1/3

[312] 1/3 0 0 1/3 1/3 0

[321] 0 1/3 1/3 0 0 1/3

On the left, next to the matrix, we can see the order that we start in. Above the matrix

are the possible orders of the deck after performing the shuffle. It is easy to check that

for other starting orders, these densities are indeed correct.

So now we have the probability for P(Xt = j | Xt−1 = i), but can we not do this for

more than one step? Meaning that if we know X0, can we say anything about Xt for

general t? It turns out that we only need the tth power of p for that. For example, we

take t = 7. We get

p7 =

[123] [213] [231] [132] [312] [321]

[123] 0.171 0.167 0.167 0.167 0.167 0.163

[213] 0.167 0.171 0.167 0.167 0.163 0.167

[231] 0.167 0.167 0.171 0.163 0.167 0.167

[132] 0.167 0.167 0.163 0.171 0.167 0.167

[312] 0.167 0.163 0.167 0.167 0.171 0.167

[321] 0.163 0.167 0.167 0.167 0.167 0.171

So if we start with 123, the probability we are in 213 after seven shuffles is equal to 0.167.

Note that the densities are close to the uniform density, meaning that shuffling a deck of

three cards seven times with the top-in shuffle, is randomizing the deck.

4.5.2 Back to washing cards

Now we know how to use Markov chains for card shuffling problems, we can try to bring

some structure to washing cards. Please note that this will be a strongly simplified

version and further research can be done in this case. Let us begin by defining the setup.

Normally when we wash cards, they are on a big pile, one laying over the other. We will

33

assume that all the cards are separate form each other, laying in a circle. This is shown

schematically in Figure 8.

Figure 8: Schematic showing of our setup for washing cards.

The reason we do this, is that this makes it easy for us to number the positions of

the cards, giving us an order of the deck. We also have to define one ”shuffle”. We say

that moving the cards in half a circle is one shuffle. This means that we place each card

somewhere in the next half of cards behind, and we do this for every card. If we look for

example at the card in position 1, with one shuffle, it can only move move to places 1

up to 27. We do this by a binomial density, basically meaning that it is more likely for

a card in position 1 to move to positions around 13 then moving to spots around 26 or

staying near position 1.

Now we have the densities per position, we can make our transition matrix p. This

will be a 52x52-matrix, which is too big to show on paper. To still give an idea of the

procedure, we show it with six cards. Our p would look like

p =

1 2 3 4 5 6

1 1/8 3/8 3/8 1/8 0 0

2 0 1/8 3/8 3/8 1/8 0

3 0 0 1/8 3/8 3/8 1/8

4 1/8 0 0 1/8 3/8 3/8

5 3/8 1/8 0 0 1/8 3/8

6 3/8 3/8 1/8 0 0 1/8

.

On the left are now the begin position of the cards, and on top are the possible positions

after a shuffle. If all these densities come close to the uniform density, then the position

of the cards is close to random, meaning that the deck is close to randomized. We say

that a the position of card is close to random, if the difference of the probabilities with

the uniform density is maximum 0.01. For this example, we get

34

p9 =

1 2 3 4 5 6

1 0.167 0.173 0.173 0.167 0.161 0.161

2 0.161 0.167 0.173 0.173 0.167 0.161

3 0.161 0.161 0.167 0.173 0.173 0.167

4 0.167 0.161 0.161 0.167 0.173 0.173

5 0.173 0.167 0.161 0.161 0.167 0.173

6 0.173 0.173 0.167 0.161 0.161 0.167

.

Meaning that we need nine shuffles to randomize a deck with six cards. If we now do

the same for 52 cards and we use the same criterion that the difference between the

probabilities and the uniform density is maximum 0.01, we find that we need 29 shuffles

before the deck is close to randomized.

35

References

[1] Dave Bayer and Persi Diaconis. Trailing the Dovetail Shuffle to its Lair. [Annals of

Applied Probability] 2(2), 294-313, 1992

[2] Brad Mann. How many times should you shuffle a deck of cards? [UMAP J.] 15(4),

303-332, 1994

[3] Persi Diaconis Mathematical developments from the analysis of riffle shuffling

[Groups, Combinatorics and Geometry] World Scientific, N.J., 73-97, 2003

[4] Persi Diaconis, Jason Fulman and Susan Holmes. Analysis of casino shelf shuffling

machines. [The Annals of Applied Probability] Vol.23, No.4, 1692-1720, 2013

[5] Gina Kolata In Shuffling Cards, Seven is Winning Number. [New York Times] Jan.

9. 1990

[6] Edgar Gilbert Theory of Shuffling [Technical memorandum] Bell Labs, 1955

[7] Jim Reeds unpublished manuscript 1981

36

A Python-code

1 #### Defining cards and shuffles ####

2

3 import random

4 from numpy import *

5

6 ####Defining a card

7 class Card(object):

8

9 suit_names = ['Clubs', 'Diamonds', 'Hearts', 'Spades']

10 rank_names = [None, 'Ace', '2', '3', '4', '5', '6', '7', \

11 '8', '9', '10', 'Jack', 'Queen', 'King']

12

13

14 def __init__(self, suit = 0, rank = 2):

15 self.suit = suit

16 self.rank = rank

17

18 def __str__(self):

19 return '%s of %s' % (Card.rank_names[self.rank], \

20 Card.suit_names[self.suit])

21

22 def __cmp__(self, other):

23 t1 = self.suit, self.rank

24 t2 = other.suit, other.rank

25 return cmp(t1, t2)

26

27 #### Defining a deck of cards

28 class Deck(object):

29

30 def __init__(self):

31 self.cards = []

32 for suit in range(4):

33 for rank in range(1, 14):

34 card = Card(suit, rank)

35 self.cards.append(card)

36

37 def __str__(self):

38 res = []

37

39 for card in self.cards:

40 res.append(str(card))

41 return '\n'.join(res)

42

43 def __repr__(self):

44 res = []

45 for card in self.cards:

46 res.append(str(card))

47 return '\n'.join(res)

48

49 ### Help functions

50

51 # Pick the top card

52 def pop_card(self):

53 return self.cards.pop()

54

55 # Add a card to the deck

56 def add_card(self, card):

57 self.cards.append(card)

58

59 # Sort the cards into original order

60 def sort(self):

61 self.cards.sort()

62

63 # Move cards from one deck to another

64 def move_cards(self, hand, num):

65 for i in range(num):

66 hand.add_card(self.pop_card())

67

68 # Counts the amount of cards in a deck

69 def count(self):

70 res = 0

71 trash = Deck()

72 trash.empty()

73 while True:

74 try:

75 self.move_cards(trash, 1)

76 res += 1

77 except:

78 break

38

79 trash.move_cards(self, res)

80 return res

81

82 # Empties a deck

83 def empty(self):

84 waste = Hand('waste')

85 while True:

86 try:

87 self.move_cards(waste, 1)

88 except:

89 break

90

91 # Cuts a deck into two packets

92 def cut(self):

93 top = Deck()

94 top.empty()

95 res = self.count()

96 n = random.binomial(res, 0.5)

97 self.move_cards(top, n)

98 return top

99

100 # Riffles two packets together

101 def riffle(self, deck):

102 n = self.count()

103 hulp = Deck()

104 hulp.empty()

105 self.move_cards(hulp, n)

106 m = deck.count()

107 while self.count() < (n+m):

108 d = deck.count()

109 h = hulp.count()

110 r1 = random.randint(1 ,d+h+1)

111 if r1 <= h:

112 r = 0

113 else:

114 r = 1

115 if (r == 0) and (h > 0):

116 hulp.move_cards(self, 1)

117 elif (r == 1) and (d > 0):

118 deck.move_cards(self, 1)

39

119

120 ### Methods of shuffling

121

122 # Top-in Shuffle

123 def top_in(self, num = 1):

124 for i in range(0, num):

125 top = Deck()

126 top.empty()

127 pick = Hand('pick')

128 self.move_cards(pick, 1)

129 res = self.count()

130 n = random.randint(0,res)

131 self.move_cards(top, n)

132 pick.move_cards(self,1)

133 top.move_cards(self,n)

134

135 #Reversing a deck

136 def reverse(self):

137 hulp1 = Deck()

138 hulp2 = Deck()

139 hulp1.empty()

140 hulp2.empty()

141 n = self.count()

142 self.move_cards(hulp1, n)

143 hulp1.move_cards(hulp2, n)

144 hulp2.move_cards(self, n)

145

146 # The a-shuffle

147 def ashuffle(self, a = 2, num = 1):

148 for i in range(0, num):

149 lst = []

150 n = self.count()

151 for i in range(0, a-1):

152 hulp = Deck()

153 hulp.empty()

154 b = random.binomial(n, 1/float(a))

155 if self.count() < b:

156 self.move_cards(hulp, self.count())

157 else:

158 self.move_cards(hulp, b)

40

159 lst.append(hulp)

160 for i in range(0, a-1):

161 self.riffle(lst[i])

162

163 # Riffle Shuffle

164 def rshuffle(self, num = 1):

165 for i in range(0, num):

166 self.ashuffle()

167

168 ## Reversed Riffle

169

170 # Riffle with reversed probability

171 def riffleOp(self, deck):

172 n = self.count()

173 hulp = Deck()

174 hulp.empty()

175 self.move_cards(hulp, n)

176 m = deck.count()

177 while self.count() < (n+m):

178 d = deck.count()

179 h = hulp.count()

180 r1 = random.randint(1 ,d+h+1)

181 if r1 <= d:

182 r = 0

183 else:

184 r = 1

185 if ((r == 0) and (h > 0)) or d == 0:

186 hulp.move_cards(self, 1)

187 elif ((r == 1) and (d > 0)) or h == 0:

188 deck.move_cards(self, 1)

189

190 # The a-shuffling using reversed riffling

191 def ashuffleOp(self, a = 2, num = 1):

192 for i in range(0, num):

193 lst = []

194 n = self.count()

195 for i in range(0, a-1):

196 hulp = Deck()

197 hulp.empty()

198 b = random.binomial(n, 1/float(a))

41

199 if self.count() < b:

200 self.move_cards(hulp, self.count())

201 else:

202 self.move_cards(hulp, b)

203 lst.append(hulp)

204 for i in range(0, a-1):

205 self.riffleOp(lst[i])

206

207 # Riffle shuffle using reversed riffling

208 def rshuffleOp(self, num = 1):

209 for i in range(0, num):

210 self.ashuffleOp()

211

212

213 ## Casino shuffles

214

215 # Strip shuffle

216 def strip(self, num = 1):

217 for i in range(0, num):

218 n = self.count()

219 hulp1 = Deck()

220 hulp1.empty()

221 self.move_cards(hulp1, n)

222 hulp1.reverse()

223 while self.count() < n:

224 hulp2 = Deck()

225 hulp2.empty()

226 b = random.binomial(n, 1./5)

227 if hulp1.count() < b:

228 hulp1.move_cards(hulp2, hulp1.count())

229 hulp2.move_cards(self, hulp2.count())

230 else:

231 hulp1.move_cards(hulp2, b)

232 hulp2.move_cards(self, b)

233

234 # Full cut

235 def fullcut(self, num = 1):

236 for i in range(0, num):

237 top = self.cut()

238 hulp = Deck()

42

239 hulp.empty()

240 n = self.count()

241 self.move_cards(hulp, n)

242 t = top.count()

243 top.move_cards(self, t)

244 hulp.move_cards(self, n)

245

246 # Casino hand-shuffle

247 def casino(self, num = 1):

248 for i in range (0, num):

249 self.rshuffle(3)

250 self.strip()

251 self.rshuffle()

252 self.fullcut()

253

254 # Casino shelf-shuffle

255 def shelf(self, m = 10, num = 1):

256 for t in range (0, num):

257 n = self.count()

258 lst = [None] * m

259 for k in range (0, m):

260 lst[k] = Deck()

261 lst[k].empty()

262 hulp1 = Deck()

263 hulp1.empty()

264 hulp2 = Deck()

265 hulp2.empty()

266 while self.count() > 0:

267 self.move_cards(hulp1, 1)

268 r1 = random.randint(0, m)

269 for i in range (0, m):

270 if r1 == i:

271 r2 = random.randint(0,2)

272 if r2 == 0:

273 hulp1.move_cards(lst[r1], 1)

274 else:

275 b1 = lst[r1].count()

276 lst[r1].move_cards(hulp2, b1)

277 hulp1.move_cards(lst[r1], 1)

278 hulp2.move_cards(lst[r1], b1)

43

279 while self.count() < n:

280 r3 = random.randint(0, m)

281 b2 = lst[r3].count()

282 if b2 > 0:

283 lst[r3].move_cards(self, b2)

284

285 #### Defining a hand

286 class Hand(Deck):

287

288 def __init__(self, label=''):

289 self.cards = []

290 self.label = label

291

292

293 def __str__(self):

294 club_lst = ['Clubs']

295 dia_lst = ['Diamands']

296 hea_lst = ['Hearts']

297 spa_lst =['Spades']

298 tot_lst = []

299 for cards in self.cards:

300 if cards.rank == 1:

301 ranks = 'A'

302 elif cards.rank == 11:

303 ranks = 'J'

304 elif cards.rank == 12:

305 ranks = 'Q'

306 elif cards.rank == 13:

307 ranks = 'K'

308 else:

309 ranks = cards.rank

310 if cards.suit == 0:

311 club_lst.append(str(ranks))

312 elif cards.suit == 1:

313 dia_lst.append(str(ranks))

314 elif cards.suit == 2:

315 hea_lst.append(str(ranks))

316 elif cards.suit == 3:

317 spa_lst.append(str(ranks))

318 for elt in (club_lst, dia_lst, hea_lst, spa_lst):

44

319 tot_lst.append(' '.join(elt))

320 return '\n'.join(tot_lst)

321

322

323

324

325

326

327

328

329

330

45

1 #### Calculating the variation distance ####

2

3 from Cards_mod import *

4 import operator as op

5 from math import *

6 import matplotlib.pyplot as plt

7

8 ## Help functions

9

10 # Defining the binomial coefficient

11 def ncr(n, r):

12 if n < r:

13 return 0

14 else:

15 r = min(r, n-r)

16 numer = reduce(op.mul, xrange(n, n-r, -1), 1)

17 denom = reduce(op.mul, xrange(1, r+1), 1)

18 return numer//denom

19

20 # Defining the Eulerian numbers

21 def A(n, m):

22 res = 0

23 for k in range (0, m+1):

24 res += (-1)**k * (m-k)**n * ncr(n+1, k)

25 return res

26

27 ## Variation distances

28

29 # Variation distance for an a-shuffle

30 def var_dis(k, n = 52, a = 2):

31 res = 0

32 for r in range(1, n+1):

33 res += A(n, r) * abs(ncr(n-r+(a**k), n)- float(a**(n*k))/factorial(n))

34 return res/float(2*(a**(n*k)))

35

36 # Variation distance, using a list of rising sequences

37 def var_dis_seq(lst):

38 res = 0

39 n = len(lst)

40 for i in range(0,n):

46

41 lst[i] = lst[i]/5000.

42 for r in range(1, n+1):

43 res += A(n, r) * abs(float(lst[r-1])/A(n,r) - 1./factorial(n))

44 return res/2.

45

47

1 #### Doyle's solitaire game ####

2

3 from Cards_mod import *

4

5 # Function for numbering the cards

6 def Card_num(card):

7 ranks = 13

8 if card.suit == 0:

9 return card.rank + 26

10 elif card.suit == 1:

11 return card.rank + 39

12 elif card.suit == 2:

13 return ranks - card.rank + 14

14 elif card.suit == 3:

15 return ranks - card.rank + 1

16

17 # The solitaire game

18 def Soliltaire(res = 1, x = 7):

19 a_lst = []

20 b_lst = []

21 for i in range(0, res):

22 deck = Deck()

23 A = Deck()

24 A.empty()

25 B = Deck()

26 B.empty()

27 C = Deck()

28 C.empty()

29 deck.rshuffle(x)

30 while (A.count() < 26) and (B.count() < 26):

31 while deck.count() > 0:

32 a = A.count()

33 b = B.count()

34 hand = deck.pop_card()

35 num = Card_num(hand)

36 if num == a + 1:

37 A.add_card(hand)

38 elif num == b + 27:

39 B.add_card(hand)

40 else:

48

41 C.add_card(hand)

42 C.move_cards(deck, C.count())

43 if A.count() == 26:

44 a_lst.append('a')

45 elif B.count() == 26:

46 b_lst.append('b')

47 a = len(a_lst)

48 b = len(b_lst)

49 print 'A: ', 100*float(a)/(a+b), '%, B: ', 100*float(b)/(a+b), '%'

49

1 #### The tests for shuffling ####

2

3 from math import *

4 from Cards_mod import *

5

6 # Function gives a number to a card

7 def Card_num(card):

8 if card.suit == 0:

9 return card.rank

10 elif card.suit == 1:

11 return card.rank + 13

12 elif card.suit == 2:

13 return card.rank + 26

14 elif card.suit == 3:

15 return card.rank + 39

16

17 # Counts the amount of rising sequences in a deck

18 def RiseSeq(deck):

19 res = 0

20 count = 0

21 hulp1 = Deck()

22 hulp1.empty()

23 hulp2 = Deck()

24 hulp2.empty()

25 deck.reverse()

26 while deck.count() > 0:

27 n = deck.count()

28 for i in range(0, n):

29 card = deck.pop_card()

30 num = Card_num(card)

31 if num == count + 1:

32 hulp1.add_card(card)

33 count += 1

34 else:

35 hulp2.add_card(card)

36 h = hulp2.count()

37 hulp2.move_cards(deck, h)

38 res += 1

39 return res

40

50

41 # Top-card test for casino shelf-shuffle

42 def TopShelf(m, n = 1):

43 res = 0

44 for i in range(0, n):

45 deck = Deck()

46 deck.shelf(m)

47 card = deck.pop_card()

48 if Card_num(card) == 52:

49 res += 1

50 if i%1000 == 0:

51 print i/1000

52 return res

53

54 # Top-card test for casino hand-shuffle

55 def TopCas(n = 1):

56 res = 0

57 for i in range(0, n):

58 deck = Deck()

59 deck.casino()

60 card = deck.pop_card()

61 if Card_num(card) == 52:

62 res += 1

63 if i%1000 == 0:

64 print i/1000

65 return res

51

1 #### Computing transition matrices ####

2

3 from math import *

4 from numpy import *

5

6 # Transition matrix for n = 52

7 mat = [[1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0],

8 [0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0],

9 [0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0],

10 [0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0],

11 [0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0],

12 [0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0],

13 [0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

14 [0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

15 [0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

16 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

17 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

18 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

19 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

20 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

21 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

22 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

23 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0],

24 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0, 0],

25 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0, 0],

26 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0, 0],

27 [0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0, 0],

28 [0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0, 0],

29 [0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0, 0],

30 [0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 0],

31 [0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0],

32 [0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8],

33 [1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7],

34 [3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6],

35 [4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5],

36 [3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4],

37 [2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4],

38 [9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3],

39 [3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3],

40 [9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2],

52

41 [2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2],

42 [4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2],

43 [7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115],

44 [0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144],

45 [0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155],

46 [0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144],

47 [0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115],

48 [0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2],

49 [7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2],

50 [4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2],

51 [2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3],

52 [9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3],

53 [3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4],

54 [9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4],

55 [2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6, 3.87e-5],

56 [3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7, 4.84e-6],

57 [4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8, 3.87e-7],

58 [3.87e-7, 4.84e-6, 3.87e-5, 2.23e-4, 9.8e-4, 3.43e-3, 9.8e-3, 2.33e-2, 4.66e-2, 7.92e-2, 0.115, 0.144, 0.155, 0.144, 0.115, 7.92e-2, 4.66e-2, 2.33e-2, 9.8e-3, 3.43e-3, 9.8e-4, 2.23e-4, 3.87e-5, 4.84e-6, 3.87e-7, 1.49e-8, 0, 1.49e-8]]

59

60 # Function to calculate distance between a percentage and the uniform density

61 def va_dis(x):

62 return abs(x - 1./52)

63

64 # Transition matrix for the example with n = 6

65 matex = [[0.125 ,0.375 ,0.375 ,0.125 ,0 ,0],

66 [0, 0.125, 0.375, 0.375, 0.125, 0],

67 [0, 0, 0.125, 0.375, 0.375, 0.125],

68 [0.125, 0, 0, 0.125, 0.375, 0.375],

69 [0.375, 0.125, 0, 0, 0.125, 0.375],

70 [0.375, 0.375, 0.125, 0, 0, 0.125]]

71

72

53

B Appendix

Riffle Shuffle k = 6

r 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

br 4 12 38 130 363 648 924 1002 835 568 318 104 43 10 1

Riffle Shuffle k = 7

r 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

br 3 21 60 177 401 666 883 978 828 533 278 118 40 12 1 1

Riffle Shuffle k = 8

r 19 20 21 22 23 24 25 26 27 28 29 30 31 32

br 7 23 78 188 431 696 912 974 814 481 237 105 36 18

54

Reversed riffle k = 6

r 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25

br 1 13 44 123 218 453 669 797 824 658 529 341 171 85 49 18 6 1

Reversed riffle k = 7

r 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

br 2 10 43 93 236 369 595 734 744 727 552 402 259 136 58 26 11 3

Reversed riffle k = 8

r 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

br 4 16 34 93 221 380 564 674 781 723 637 406 251 117 65 23 5 6

Reversed riffle k = 9

r 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

br 6 6 26 54 137 274 434 619 738 765 712 522 350 202 102 33 15 5

Reversed riffle k = 10

r 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

br 3 3 15 44 93 213 393 537 728 786 781 623 378 238 99 46 15 5

Reversed riffle k = 11

r 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

br 16 39 79 191 336 593 745 823 797 626 387 206 109 28 17 6 2

Reversed riffle k = 12

r 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

br 2 13 27 88 185 374 599 793 871 826 583 355 184 62 28 6 2 2

Reversed riffle k = 13

r 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

br 1 6 18 43 140 276 473 670 836 832 751 496 267 137 40 10 3 1

Reversed riffle k = 14

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

br 3 9 20 74 184 345 562 788 880 819 638 375 181 96 20 5 1

Reversed riffle k = 15

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

br 3 3 18 39 111 260 518 752 918 856 723 438 231 96 26 6 2

55

Reversed riffle k = 16

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

br 1 2 17 30 91 190 415 698 866 938 788 500 278 110 49 20 5 2

Reversed riffle k = 17

r 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

br 2 32 80 193 382 642 843 929 832 559 319 129 38 18 1 1

Reversed riffle k = 18

r 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

br 5 21 52 154 331 650 815 883 840 623 358 180 68 15 5

Reversed riffle k = 19

r 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

br 5 14 58 145 299 536 816 962 848 665 375 174 70 23 8 1 1

Reversed riffle k = 20

r 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

br 1 10 48 126 288 524 832 873 930 654 387 216 79 23 7 2

Reversed riffle k = 20

r 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

br 1 8 31 117 266 520 788 914 922 670 438 210 82 26 4 2 1

Casino hand-shuffle

r 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

br 9 24 113 256 545 760 923 891 685 441 200 103 36 13 1

Casino shelf-shuffle m = 5

r 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

br 1 2 10 40 127 275 458 704 815 918 686 530 283 95 42 6 3 2

Casino shelf-shuffle m = 10

r 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

br 1 2 10 33 85 227 504 713 899 989 690 437 258 107 35 7 3

Casino shelf-shuffle m = 50

r 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

br 1 2 34 91 241 482 705 933 930 748 465 230 106 26 4 1 1

56

Casino shelf-shuffle m = 100

r 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

br 2 7 27 70 232 455 709 928 935 751 494 254 96 30 8 2

Casino shelf-shuffle m = 200

r 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

br 1 1 5 35 118 293 474 699 956 891 721 466 235 75 22 6 2

57

