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Abstract

The automotive industry is continuously improving the safety and comfort of the vehicles. To improve the
safety and comfort of the vehicle more focus is put on improving driver assistance systems and also on mak-
ing the vehicles more autonomous. In order for the safety systems to work properly and also to drive au-
tonomously, it becomes essential that the vehicle has accurate knowledge of all the states of the vehicle. Two
of such states are the roll and pitch angle. They are used to correct the images of a stereo camera, in roll
control systems and for comfort assessment in autonomous vehicles.

Measuring the roll and pitch angle is in practice problematic. Gyroscopes are mostly used to calculate
the roll and pitch angle by integrating the angular rates with respect to time. If low quality gyroscopes are
used, this leads to inaccurate calculation of the roll and pitch angle, because the measurements contain noise
or bias accumulated during the integration process. To use these low quality gyroscopes, they need to be
incorporated in an robust algorithm together with other sensors. Only then the roll and pitch angle can be
estimated accurately.

In this thesis a dynamic observer is developed, which has an internal vehicle dynamic model that calcu-
lates the tyre forces using an exponential tyre model. The performance of the observer is not only assessed
using the true roll and pitch angle, but also compared against the performance of a kinematic observer.

To test the performance of both observers various test manoeuvres were executed in IPG CarMaker, which
is a highly advanced vehicle simulation environment. The manoeuvres consisted of rapid steering inputs and
hard braking to execute large roll and pitch angles. Sensor noise was added to the inputs of the observers to
simulate low quality sensors. In this thesis it has been shown that incorporating dynamics into an observer
significantly increases its estimation performance and outperforms the kinematic observer during all ma-
noeuvres when sensor noise was added to the inputs of the observers.

The contribution of this thesis to the scientific field is that an exponential tyre model is used for the cal-
culation of the roll and pitch angle in the internal vehicle dynamic model of the dynamic observer. Another
contribution is that this thesis not only compares the performance of the dynamic observer against the real
roll and pitch angles, but also against a kinematic observer, to see what the estimation improvement is when
including dynamic relations.
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1
Introduction

1.1. Background
The automotive industry is continuously improving the safety and comfort of the vehicles. To further increase
the safety and comfort, the automotive industry is focusing more on improving driver assistance systems and
also on making the vehicles autonomous. Driver assistance systems take over certain tasks of the driver,
such as for example adaptive cruise control, where the vehicle drives at a predefined velocity and brakes
when the car in front slows down. Another example is a city safety system, where the vehicle first warns the
driver if it detects a pedestrian or cyclist that is likely to hit the vehicle and then brakes automatically if the
pedestrian or cyclist comes too close. The use of such driver assistance systems as described above can lead
to an increase of the road safety, because unlike humans, sensors of a vehicle do not get distracted. Driver
assistance systems are not only beneficial to the road safety, but also to the driver, because he or she has to
focus less on certain driving tasks.

The downside of most driver assistance systems is that most of them can be switched off. If for example
the vehicle gives unnecessary warnings the driver could get annoyed and turns the system off, which is not
beneficial to the road safety. With autonomous vehicles the driver is not responsible of driving the vehicle
anymore and is taken out of the loop. Making the vehicle responsible for the driving task is not only bene-
ficial to the road safety, but also for the driver. Since the driver does not have to pay attention to the road
anymore, it opens up possibilities for him/her to do other things while being on the road. Another advantage
of making vehicles autonomous is that when vehicles start to communicate with other vehicles and also with
the infrastructure the road capacity can be increased. If vehicles communicate with each other they can drive
much closer together, because they know when a vehicle brakes. Lastly when a vehicle communicates with
the infrastructure such as traffic lights, the traffic flow can be increased, by making the traffic light green just
when the vehicle arrives at an intersection.

In order for the autonomous vehicles to drive safely on the road it is essential that the vehicle has accurate
knowledge of all the states of the vehicle. These states include the vehicle velocities in longitudinal and lateral
directions. The accelerations in longitudinal, lateral and vertical directions and also the vehicle attitude, so
the roll, pitch and yaw angles. This information is used to plan the desired course of the vehicle and is also
needed in the safety systems of the vehicle.

Some of these states can be measured by sensors, for example, in the case of non-slip conditions, the
longitudinal velocity can calculated using the wheel speed sensors installed at each wheel of the vehicle.
Others like lateral velocity cannot be measured by sensors and need to be estimated accurately. To determine
the exact position of the vehicle on the road, global positioning system (GPS) is used in conjunction with
many others sensors. For example radars are used to measure distances to other vehicles on the road.

1
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To measure distances to other vehicles and detect pedestrians not only radars are used, but also a stereo
camera. A stereo camera consists of two cameras mounted at a fixed distance from each other, which is
visualised in Figure 1.1. By comparing the images of the two cameras, distances can be estimated using
disparity between the two images. The function of the camera is affected by the movements of the vehicles
body [1–3]. If the vehicle goes through a corner, the vehicle’s body starts to roll in the opposite direction
of the corner. The same applies for the braking of the vehicle, where the vehicle’s body dives forward. These
movements are called the roll and pitch movement of a vehicle. The distances that are estimated by the stereo
camera are affected by these roll and pitch movements. By measuring or estimating the roll and pitch angle,
the images of the stereo camera can be corrected so that proper functioning of the camera can be guaranteed.

Figure 1.1: Visualisation of a stereo camera, taken from [3]

The roll and pitch angle are not only used for the stereo camera corrections, but they are also used in
safety/comfort related systems. Examples are roll stability control systems [4]. The way that such a system
works, is that the roll angle that is measured or estimated is continuously compared with a threshold. If the
roll angle stays below the threshold the vehicle is stable and unlikely to roll over. If the threshold is exceeded
roll-over of the vehicle is likely to happen and action is needed. In [4] an yaw moment, which is a torque about
the vehicles vertical axis, is generated using the brakes of the vehicle to prevent the vehicle to roll-over. To
ensure proper working of such a system it is essential that the roll angle measurement or estimate is accurate
and does not drift away over time, otherwise the roll stability control system could be activated unnecessary.

Lastly the roll and pitch angle are used in the assessment of the comfort of the vehicles. Especially in
autonomous vehicles motion sickness is a problem [5]. The three main reasons that contribute to motion
sickness are the conflict between vestibular and visual inputs, inability to anticipate to the direction of mo-
tion and lack of control over the direction of motion [5]. These effects are especially present in autonomous
vehicles where the passengers have no control over the vehicle anymore. In literature [6] it has be shown
that when the roll and pitch angle vary at certain frequencies the motion sickness is triggered. By measuring
the roll and pitch angle, these frequencies can be detected and if the vehicle has adaptive suspension, the
suspension settings could be changed so that these frequencies are avoided.

1.2. Problem
The most simple way of determining the roll and pitch angle is by using gyroscopes. Gyroscopes measure
angular rates. In this case the roll and pitch angle could be obtained by integrating the angular rates with
respect to time. Determining the roll and pitch angle in this way would require accurate gyroscopes, because
any noise or bias will be accumulated in the integration process causing the calculated roll and pitch angle
to drift away from the real values over time. Gyroscopes that fulfil the requirements of having low noise and
bias are expensive [7] and could even cost more than the actual vehicle.

In practice cheap low quality gyroscopes are used in vehicles as standard sensors. In order to accurately
determine the roll and pitch angle with such gyroscopes, other sensors are used to correct the drift of the
gyroscopes. The measurements of the different sensors are then fused together into an observer to accurately
estimate the roll and pitch angle. The observer has to run real time in order to be used e.g. for the image
correction of the stereo camera.



1.2. Problem 3

Most of the observers in literature that estimate the roll and pitch angle can be divided into two groups:
vehicle dynamic model based and sensor kinematics based [8]. The vehicle dynamic model based observers
have an internal vehicle model that calculates the states of the vehicle. In general most internal vehicle mod-
els are then implemented in some form of a Kalman filter. In the Kalman filter the internal vehicle model is
corrected using actual sensor data. In this thesis an observer that is based on an internal vehicle model is
called a dynamic observer. The main challenge of a dynamic observer is to have an internal vehicle model
that has sufficient dynamics in it to calculate the states accurately, while being sufficient enough for real-time
computation.

Figure 1.2: Estimation performance kinematic observer normal drive WEpod

The other observer group is purely based on sensor kinematics. These observers don’t have an internal
vehicle model that calculates the states first, which are then corrected by using actual measurements. Instead
they use kinematic relations and general properties of sensors to estimate the roll and pitch angle. One of the
properties of an accelerometer for example is that accelerometers not only measure the accelerations of the
vehicle, called the external accelerations, but also the gravitational acceleration components. If the external
accelerations are removed or when the vehicle standing still, the vector sum of the accelerometers equals the
gravitational constant.

Figure 1.3: Estimation performance kinematic observer during emergency braking and hard cornering of
the WEpod
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The advantage of using a kinematic observer is that unlike a dynamic observer no knowledge is needed
of vehicle mass-geometry properties. This means that the observer can be implemented in every vehicle
without any tuning of parameters needed. The downside of a kinematic observer is that in extreme driving
situations, such as emergency braking or hard cornering the kinematic relations cannot capture all the mo-
tions of the vehicle anymore, because kinematic relations do not take into account tyre behaviour [9]. This
leads to an inaccurate estimation of the roll and pitch angles.

The effect of not taking into tyre behaviour can also be seen in Figure 1.2 and 1.3. In Figure 1.2 the estima-
tion performance of a kinematic observer developed by Ahmed and Tahir [7] can be seen of a normal drive
of an autonomous vehicle called WEpod. It can be observed that the estimates of the roll and pitch angle
follow the measured values well. If the vehicle starts braking very hard and also does some hard cornering
the estimates of the roll and pitch angle drift away as can be seen in Figure 1.3, because the tyre behaviour of
the vehicle is not taken into account by the observer.

A dynamic observer can take into account tyre behaviour, which should lead to better estimation perfor-
mance during manoeuvres such as hard cornering and emergency braking. In order to function properly a
dynamic observer requires some knowledge of the vehicle parameters, such as the location of the centre of
gravity (COG) and the mass distribution of the vehicle, which could be seen as a downside. This downside is
compensated by the prospect of accurate estimation results even under extreme driving situations.

1.3. Thesis
In this thesis a dynamic observer is developed which is based on an exponential tyre model. The internal
vehicle model is implemented into an Extended Kalman Filter (EKF). The exponential tyre model is chosen
because it takes into account 3 dominant effects of the tyre behaviour, which are tyre force saturation, com-
bined slip and varying normal loads. The derivations of the exponential tyre model, which are needed for
the EKF, are relatively simple to calculate. This is important because the algorithm should still be able to run
real time. The main goal of the dynamic observer is to give accurate estimation results of the roll and pitch
angle. Since it is desired to have as much information of the vehicle states as possible, the lateral velocity is
also estimated, because it cannot easily be measured by sensors. The lateral velocity is used to calculate the
vehicle side slip angle. Having an accurate estimate of the vehicle side slip could lead to the development of
new safety systems and improving existing ones like Electronic Stability Control (ESC) [10].

The estimation performance of the dynamic observer is not only compared to the real roll and pitch an-
gles, but also compared to the estimation performance of a kinematic observer that was recently developed.
The kinematic observer was developed by Ahmed and Tahir [7]. The observer uses kinematic relations to
remove external accelerations of the accelerometer, so that the accelerometer can be used as the correcting
sensor for the gyroscope.

The contribution of this thesis to the scientific field is that an exponential tyre model is used for the calcu-
lation of the roll and pitch angle in the internal vehicle model of the dynamic observer. Another contribution
is that this thesis not only compares the performance of the dynamic observer against the real roll and pitch
angles, but also against a kinematic observer, to see what the estimation improvement is when including
dynamic relations.

The research question that is answered in this thesis is:

Does incorporating a vehicle dynamic model in an observer increase the performance compared to an observer
that is only based on kinematic relations?

1.4. Outline
To answer the research question the report is structured as follows. First in Chapter 2 the concept of state
estimation is introduced. In Chapter 3 the dynamic observer is developed and presented and in Chapter 4
the kinematic observer is presented. To test the performance of the observer first in Chapter 5 the simulation
environment and the different test manoeuvres are discussed. The results of the simulations can be seen in
Chapter 6. Lastly in Chapter 7 the conclusion and recommendations can be found.



2
Estimation Principles

In this chapter the the roll, pitch and yaw angle are defined. Then the different sensors that can be used
for estimating the roll and pitch angle are explained. Lastly the concept of state estimation is explained by
presenting the working principle of a Kalman filter.

2.1. Definition of Roll, Pitch and Yaw Angle
The roll, pitch and yaw angle, φ, θ and ψ, respectively, can be defined by introducing the coordinate systems
of the vehicle. There are two coordinate systems: one coordinate system which is fixed in space, called the
global coordinate system denoted with capital X Y Z . The other coordinate system is fixed to the COG of the
vehicle and moves in space with the vehicle seen from the global coordinate system. This coordinate system
is called the body fixed coordinate system and is denoted with x y z. In Figure 2.1 the coordinate systems of
the vehicle are visualised according to the ISO standard.

(a) Global and body coordinate systems (b) Body fixed coordinate system

Figure 2.1: Coordinate systems of the vehicle

The body fixed coordinate system can be seen in Figure 2.1b. The x-axis is parallel with the centre line of the
vehicle, the y-axis is defined positive to the left of the vehicle and the z-axis is defined positive in the upward
direction. The roll angle φ is defined as the angle about the x-axis and is positive when the vehicles body rolls
from left to right. The pitch angle θ is the angle about the y-axis and is defined positive when the vehicles body
dives forward, so during braking. Lastly the yaw angle ψ is defined about the z-axis and is defined positive
when the vehicle makes a turn to the left. All angles can be seen in Figure 2.1b.

2.2. Sensors
The gyroscope, which was already mentioned in the introduction, is not the only sensor that can be used to
measure the roll and pitch angle. In fact there are many different sensors that can be used to measure the roll

5



6 2. Estimation Principles

and pitch angle. In Barnada et al. [11] for example, the stereo camera is not only used for object detection, but
also to estimate the roll and pitch angle. In the paper it remains however unclear if the proposed algorithm
can run real time. In the subsections below the gyroscope and two of the most common sensors used in
literature to measure the roll and pitch angle are discussed in detail.

2.2.1. Gyroscope
Using a tri-axial gyroscope the angular velocities along all three axis of the vehicle as defined in Section 2.1
can be measured. The angular velocities are then integrated with respect to time to obtain the vehicle’s body
angles. Determining the roll and pitch angle this way requires extremely high accuracy gyroscopes [7], be-
cause in the integration process any noise or bias will be accumulated. As a result of the accumulated noise or
bias in the integration process, the calculated roll and pitch angle can drift away from the real roll and pitch
over time.

Automotive gyroscopes use ring-laser or fibre-optic technology, which can reach the necessary level of
accuracy, but can cost more than the vehicle itself [7] and due to this high cost it means that these gyroscopes
are not an option in production vehicles. Ring-laser and fibre-optic gyroscopes are mostly used as a reference,
as for example in [7, 12], they are used to check if the proposed algorithm functions well. With Micro-Electro-
Mechanical Systems (MEMS) technology gyroscopes and accelerometers are developed which are available
at a very low cost, but the accuracy of these gyroscopes are too low to be used as a direct measurement [13],
so these gyroscopes have to be used in conjunction with accelerometers, creating an inertial measurement
unit (IMU) and a specific filtering algorithm has to be used that compensate of the drift that these gyroscopes
introduce.

In Table 2.1 the specifications and prices can be seen of 8 gyroscopes. It can be observed that the price of
the cheapest MEMS gyroscope is a fraction of the most expensive gyroscope, but the noise density and drift
error are much larger than the expensive gyroscopes.

Table 2.1: Specifications and prices (Jan 2016) of different gyroscopes, taken from [7]

Name Manufacturer Technology Noise Density
d ps/

p
H z

Drift Error
(deg /h)

Price
(USD)

1 TG-6000 KVH Fibre Optic 0.001 1 30000
2 HG1700AG37 Honeywell Ring Laser 0.002 1 22000
3 VG700MB Crossbow Fibre Optic 0.006 < 20 12000
4 HG1700AG68 Honeywell Ring Laser 0.008 5 9000
5 Landmark 10 Gladiator Tech MEMS 0.012 25 2500
6 ADIS16355 Analog Devices MEMS 0.033 25.2 600
7 MTi-1 Xsens MEMS 0.01 10 70
8 L3GD20 ST Microelectronics MEMS 0.03 108 10

2.2.2. Global Positioning System
In [14–16] GPS is used to determine the roll and pitch angles of a vehicle. GPS works with at least 24 satellites
in space, which have very precise atomic clocks onboard, which are synchronised with each other and with
the ground. The satellites continuously transmit data about their current time and position. GPS receivers
or antennas receive the signals of multiple satellites and the receiver then uses the slight time delay between
the signals to find its own position. In order for the receiver to find its position at least four signals must be
received [17].

As mentioned in [14, 15] the sampling rate of GPS is low, typically not more than 10 Hz, while an IMU
sensor samples at frequencies up to 200 Hz. A low sampling rate is not beneficial for accuracy, because it
becomes difficult to capture the high dynamics of a vehicle. Another disadvantage of GPS is that it is suscep-
tible to loss of signal, due to satellite blockages such as tunnels or high buildings [18, 19]. This means that
sometimes it is not possible to update the vehicle states. It is due to this reason that GPS is not used in this
report as a sensor, because continuous updates of the roll and pitch angle are desired.



2.3. State Estimation 7

2.2.3. Inertial Measurement Unit
The IMU sensor is the sensor that is used the most in literature [7, 15, 20–22] to estimate the vehicle’s roll
and pitch angle. An IMU sensor typically consists of three accelerometers and three gyroscopes mounted in
a set of three orthogonal axes [22, 23]. The IMU sensor measures the acceleration and rotation in all three
dimensions. The sampling frequency of the IMU sensor is typically about 100 Hz. As already explained in
Section 2.2.1 with MEMS technology it became possible to construct IMU sensors at a very low cost, but the
measurements contain large amounts of noise even under stable conditions [19], so filtering techniques or
combinations with other sensors are used to accurately predict the vehicles angles, which will be done in this
report. Apart from their low cost the other advantages of an IMU sensor are its small size and robustness,
which makes it easy to mount the sensor in a production vehicle.

2.3. State Estimation
Since the roll and pitch angle have to be estimated, an estimation algorithm has to be used. There are a variety
of estimation algorithms available. Examples are sliding mode observers [24], particle filtering [25], moving
horizon estimation [26] and Kalman filtering [27]. The Kalman filter is most used in literature [7, 8, 12, 14, 21,
23, 28–34] for estimation of the roll and pitch angle, because its ease of implementation and robustness. The
Kalman filter is also used in this report for the dynamic and kinematic observers. The kinematic observer uses
a linear Kalman filter and the dynamic observer uses an extended Kalman filter. Both are explained below in
detail.

2.3.1. Linear Kalman Filter
The Kalman filter is an algorithm that uses probability to estimate its states. The algorithm works in two
steps. In the prediction step the Kalman filter produces estimates of the current state variables, along with
their uncertainties using an internal model. This prediction is then used in the next step, which is called the
measurement step, where the output of the prediction is compared with actual measurements. The estimates
are updated using a weighted average, called the Kalman gain which is calculated based on the uncertainties.
The Kalman gain puts more weight on estimates with higher certainty. These two steps are then repeated at
every time step.

The advantages of a Kalman filter are that the algorithm can run real time and only uses the present input
measurements and the previously calculated state and uncertainty matrix. This means that no additional
information about the past is required, making the memory required relatively small compared to other esti-
mators.

Below the working principle of the algorithm is explained in equations using a linear time-varying process
model:

xk+1 = Ak xk +Bk uk +wk

yk =Ck xk +Dk uk +vk
(2.1)

where xk ∈ Rn is the state, uk ∈ Rm is the input, yk ∈ Rp is the output, wk ∈ Rn is the process noise and
vk ∈Rp is the measurement noise. Given a measurement sequence and an input sequence up to time step k

Yk = {yi ,ui : 0 ≤ i ≤ k}

with Kalman filtering the best possible estimate x̂k+1 of xk+1 can be obtained. It is assumed that the noise
has zero mean and is uncorrelated (white) noise [27]. The covariances

E
{[

wk

vk

][
w T

l v T
l

]}
=

[
Qk Sk

ST
k Rk

]
δkl =

∑
k δkl

are assumed to be known. δkl is the Kronecker delta (δkl = 1 if k = l , and else δkl = 0). It is also assumed
that that there is some knowledge about the initial state x0 and covariance matrix P0. It is assumed that

E {x0} = x̄0 and E {(x0 − x̄0)(x0 − x̄0)T } = P0

are known.
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The general Kalman Filter algorithm can be given as [27, 35]:

Prediction step:

x̂k|k−1 = Ak x̂k−1|k−1 +Bk uk (2.2)

Pk|k−1 = Ak Pk−1|k−1 AT
k +Qk (2.3)

Correction step:

Kk = Pk|k−1C T
k (Ck Pk|k−1C T

k +Rk )−1 (2.4)

x̂k|k = x̂k|k−1 +Kk (yk −Ck x̂k|k−1 −Dk uk ) (2.5)

Pk|k = (I −KkCk )Pk|k−1 (2.6)

where the initialisation is done using k := 0,

x̂0|−1 := x̄0 and P0|−1 := P0

In equation (2.2) and (2.3) x̂k−1|k−1 and Pk−1|k−1 are the state estimate and error covariance matrix of the
previous time step. x̂k|k−1 and Pk|k−1 are the state prediction estimate and error covariance matrix prediction
based on the previous time step. In equation (2.5) and (2.6) x̂k|k and Pk|k are the corrected state estimate and
error covariance matrix, based on the predicted state estimate and error covariance matrix.

Equations (2.2) and (2.3) are called the a priori estimates, because x̂k|k−1 and Pk|k−1 are calculated based
on the linear time varying model and no measurements are taken into account in this step. In the correction
step, equations (2.5) and (2.6) are called the a posteriori estimates. The Kalman gain Kk in equation (2.4)
is calculated such that it minimises the a posteriori error covariance. The Kalman gain is used in equation
(2.5) and (2.6) to correct any errors that were introduced in the prediction step and a optimal state estimate
is calculated.

2.3.2. Extended Kalman Filter
Many physical systems cannot be written in linear state space form as in equation (2.1). To also make it
possible to estimate states of such nonlinear systems, the EKF was developed for nonlinear systems that can
not be written in linear state space form. Consider the nonlinear system:

xk+1 = fk (xk ,uk )+wk (2.7)

yk = hk (xk ,uk )+vk (2.8)

with the constraints

xk ∈Xk , wk ∈Wk , vk ∈Vk (2.9)

In equation (2.7) and (2.8) the next time step of the state and the output of the system are nonlinear
functions of the states and input. In the EKF algorithm equations (2.7) and (2.8) are linearized around the
current estimate, so that the nonlinear system can be written in state space. The EKF algorithm looks similar
to the linear case and can be given as [34]:

The prediction step as

x̂k|k−1 = f (x̂k−1|k−1,uk ) (2.10)

Pk|k−1 = Ak Pk−1|k−1 AT
k +Qk (2.11)
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The measurement update as

Kk = Pk|k−1H T
k (Hk Pk|k−1H T

k +Rk )−1 (2.12)

x̂k|k = x̂k|k−1 +Kk (yk −h(x̂k|k−1,uk )) (2.13)

Pk|k = (I −Kk Hk )Pk|k−1 (2.14)

where Ak and Hk are the Jacobians of the system and sensor model respectively at each time step and
where the initialisation was done using k := 0,

x̂0|−1 := x̄0 and P0|−1 := P0

The Jacobian matrices consists of all the first order partial derivatives of the state vector. The Jacobian
matrix of the system model A and sensor model H are defined as

Ai j = ∂ fi (x,u)

∂x j
Hl j =

∂hl (x,u)

∂x j
(2.15)

Where i and l are the lengths of the state and output vectors respectively and j is also the length of the
state vector.

Qk and Rk are the process and measurement noise covariance matrices respectively. Meaning that Qk is
the matrix associated with the noise in the system states and Rk is the covariance matrix of the measurement
noise, which is either given by the manufacturer or can found from measurements. Finding the right mea-
surement noise covariance matrix is not that easy and is generally constructed by trial and error, because the
unmodeled dynamics and parameter uncertainties are generally not exactly known. The performance of the
EKF is highly affected by Qk and Rk , so it is of great importance to choose Qk and Rk correctly [36].

The working principle of the EKF algorithm is the same as for the linear Kalman filter. Due to the calcu-
lation of the Jacobian matrices in each iteration, the computational load of the EKF can be high. If the EKF
is intended for online parameter estimation, simplifications to the system equations should be considered to
reduce the computational load.





3
Dynamic Observer

In this chapter the dynamic observer is developed. A nonlinear vehicle model is implemented in an EKF. The
vehicle model consists of 9 degree of freedom (DOF). The DOF consists of the longitudinal and lateral planar
motions of the vehicle, body roll, pitch and yaw motion and the rotational dynamics of the four wheels of the
vehicle. First the internal vehicle model is presented and this is then implemented into an EKF.

3.1. Vehicle Modelling
The main goal of the dynamic observer is to give correct estimates of the roll and pitch angle. This is done
by using an internal nonlinear vehicle model that gives accurate predictions of the roll and pitch angle. The
observer is used in conjunction with a low cost IMU sensor. This makes it possible to also estimate the lat-
eral velocity of the vehicle, by using the lateral accelerometer of the IMU sensor. The estimate of the lateral
velocity can be used for calculation of the side slip angle, which is beneficial for safety systems such as ESC
[10]. The performance of the observer is largely dependent on the accuracy of the internal vehicle model. If
the dynamics of the internal vehicle model matches up with the true nonlinear behaviour of the vehicle, the
model output error will be small, which leads to faster converge to the correct estimate and so the tracking of
the states will be improved.

3.1.1. State Variables
To make sure that the dynamics of the internal vehicle model match up with the actual vehicle behaviour, it
is of great importance to choose the correct state variables. To ensure proper functioning of the observer it
is essential to have states that can be compared to actual sensor data. Below are the state variables that are
chosen for the dynamic observer:

• vy : lateral velocity in the centre of gravity

• ψ̇: yaw rate around vehicles z-axis

• φ: roll angle around vehicles x-axis

• φ̇: roll rate around vehicles x-axis

• θ: pitch angle around vehicles y-axis

• θ̇: pitch rate around vehicles y-axis

The vehicle has several sensor outputs which are available. These outputs can be used as an input to the
internal vehicle model. In this thesis the available inputs to the internal vehicle model are the front steering
wheel angle δ f and the rotational velocity of the four wheels of the vehicle ωi . The outputs of the internal
vehicle model, which are compared with the actual sensors of the vehicle are:

• ay : lateral acceleration in the centre of gravity

• ψ̇: yaw rate around vehicles z-axis

• φ̇: roll rate around vehicles x-axis

• θ̇: pitch rate around vehicles y-axis

11
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In vector form the inputs u, states x and output z can be summarised as:

u = [
δ f ωF L ωF R ωRL ωRR

]T

x = [
vy ψ̇ φ φ̇ θ θ̇

]T

z = [
ay ψ̇ φ̇ θ̇

]T

Now that the input, state and output vector are defined, they can be used to write the internal vehicle
model in a form so that it can later be used by the EKF. The system has to be written in the nonlinear state
space form as

ẋ = f (x(t ),u(t )) (3.1)

z = h(x(t ),u(t )) (3.2)

3.1.2. Tyre Modelling
Now that the general form and states of the vehicle model are defined, a model of the tyre forces is developed,
because the accuracy of the internal vehicle model of the estimator is for a large part dependent on correct
modelling of the highly non-linear tyre forces. The tyre forces depend on the longitudinal and lateral slip,
wheel suspension kinematics, vertical loads on the tyre, temperature, road texture, etc. In this thesis report
only the three most dominant effects of the tyre force behaviour are taken into account. These are tyre force
saturation, combined slip and vertical load dependency. Each is explained below.
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Figure 3.1: Effect of tyre saturation
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Figure 3.2: Effect of varying normal loads

The tyre saturation can be explained by the phenomenon that for large tyre slip, the tyre forces saturate
at the maximum achievable peak friction value. In Figure 3.1 this peak can be observed. When the tyre slip
further increases, the maximum tyre force that can be generated saturates or even decreases. In Figure 3.2
the effect of different normal loads on a tyre can be seen. Increasing the normal load leads to an increase
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in generated tyre force. Lastly in Figure 3.3 the effect of combined slip can be seen. Having combined slip
leads to a lower generated tyre force. The maximum amount of achievable lateral tyre slip is dependent on
the amount of slip in the longitudinal direction and vice versa. For example, when braking during cornering,
the lateral tyre force will collapse as the brake force increases.

Since the estimator has to be able to run online, the computational load of the tyre force calculation
should be minimised. In an EKF the derivatives of the tyre model have to be calculated as well. Increasing
the complexity of a tyre model significantly increases the complexity of calculating these derivatives [37, 38],
this may mean that the estimator is not able to run online. The tyre model should be as simple as possible
while still be able to cope with the non linearity’s. An exponential tyre model is chosen as the preferred tyre
model due to its simplicity. This model can still cope with the effects of tyre force saturation, combined slip
and normal load variation and the derivatives required for the EKF can be easily calculated.
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Figure 3.3: Effect of combined slip

In Figure 3.4 a comparison of the exponential tyre model with the Magic formula [39] can be seen. It can
be observed that the overall shape of the exponential tyre model matches up with the Magic formula. Only
the friction peak can not be modelled and at larger slip values there is a slight offset in the calculated tyre
force. The exponential tyre model is tuned offline such that the friction peak and slip stiffness will closely
match with the measured vehicle behaviour.
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Figure 3.4: Tyre models comparison

For the exponential tyre model it is assumed that the longitudinal and lateral tyre forces are linearly de-
pendent with the vertical tyre load Fz . To take combined slip into account in the tyre model a simplified
relation is used. Since the lateral slip is dependent on the longitudinal slip and vice versa, the combined slip
can be seen as the resultant between the two, as illustrated in Figure 3.5. This relation can be written as [38]

S =
√

s2
x + s2

y (3.3)
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Figure 3.5: Effect of combined slip

In order to calculate the tyre slip at each corner of the vehicle, the velocities at the centre of gravity have
to be transformed to each corner of the vehicle. Each wheel of the vehicle has separate longitudinal slip
calculation which uses the transformed wheel velocity and rotational wheel velocity. This is done so that
individual wheel braking (or traction) can be accounted for.

Figure 3.6: Transformation of velocities

To visualise the transformation of the velocities, the right front wheel is visualised, which can be seen in
Figure 3.6. The same type of definition also applies to the other three wheels, but those are not visualised.
The longitudinal and lateral velocities at each corner of the vehicle can be calculated using the following
equations

vx,F L = vx −
B f

2
ψ̇ (3.4)

vx,F R = vx +
B f

2
ψ̇ (3.5)
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vx,RL = vx − Br

2
ψ̇ (3.6)

vx,RR = vx + Br

2
ψ̇ (3.7)

vy,F L = vy,F R = vy + l f ψ̇ (3.8)

vy,RL = vy,RR = vy + lr ψ̇ (3.9)

Where l f and lr are the distances from the front and rear axles to the COG. In order to derive the longitu-
dinal and lateral tyre forces , these velocities then have to be transformed to the local coordinate axis of the
wheel. This is done by correcting the velocities with the steering angle.

vx,F L,t yr e = vx,F Lcos(δ f )+ vy,F Lsin(δ f ) (3.10)

vx,F R,t yr e = vx,F R cos(δ f )+ vy,F R sin(δ f ) (3.11)

vx,RL,t yr e = vx,RLcos(δr )+ vy,RLsin(δr ) (3.12)

vx,RR,t yr e = vx,RR cos(δr )+ vy,RR sin(δr ) (3.13)

Since the vehicle is only front steered, the rear steering angle is equal to zero which results in:

vx,RL,t yr e = vx,RL (3.14)

vx,RR,t yr e = vx,RR (3.15)

It is not necessary to correct the lateral velocities, since the tyre side slip angle is calculated directly using
the steering angle. The tyre side slip equations are

αF L =αF R = atan
(
− vy,F L

vx

)
+δF (3.16)

αRL =αRR = atan
(
− vy,RL

vx

)
(3.17)

To avoid divisions by zero, a condition is set to the side slip angle. It is only calculated when the longitu-
dinal velocity is greater than 0.5 ms−1. When the longitudinal velocity is smaller, the side slip angle is set to
zero.

The longitudinal tyre slip can be calculated using the rotational velocities of the wheels and the longitu-
dinal velocities in the local coordinates of the wheels. To guarantee numerical stability, a distinction in the
definition of tyre slip is made between positive tyre slip as a result of acceleration and negative tyre slip due
to braking. To avoid divisions by zero, the same condition is used as for the side slip angle. The positive
longitudinal tyre slip of the tyres is defined as

κi j = 1− vx,i j ,t yr e

Rwωi j
(3.18)

For negative longitudinal tyre slip as

κi j =
Rwωi j

vx,i j ,t yr e
−1 (3.19)

Where i j stand for each corner of the vehicle, defined as i j = {F L,F R,RL,RR}. Rw is the tyre radius and
ωi j the rotational velocity of each tyre. Now the longitudinal and side slip are defined, the combined slip
vector from equation (3.3) can now be rewritten and is defined for each wheel as

SF L =
√
α2

F L +κ2
F L (3.20)

SF R =
√
α2

F R +κ2
F R (3.21)

SRL =
√
α2

RL +κ2
RL (3.22)

SRR =
√
α2

RR +κ2
RR (3.23)
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The only equations that have to be defined are the equations of the vertical tyre load at each wheel. These
forces change due to longitudinal and lateral load transfer. The longitudinal component of the vertical tyre
force can be given as

F long
z = m

hs

2L
ax (3.24)

The lateral component is different for the front and rear of the vehicle and can be given as

F l at
z, f r ont = m

lr

L

h f

B
ay (3.25)

F l at
z,r ear = m

l f

L

hr

B
ay (3.26)

Combining equations (3.24), (3.25) and (3.26) with the static weight distribution of the vehicles gives [40]

Fz,F L = mg
lr

2L
−F l ong

z −F l at
z (3.27)

Fz,F R = mg
lr

2L
−F l ong

z +F l at
z (3.28)

Fz,RL = mg
l f

2L
+F l ong

z −F l at
z (3.29)

Fz,RR = mg
l f

2L
+F l ong

z +F l at
z (3.30)

Now that the combined slip vector and the vertical tyre forces are defined for each wheel, the exponential
tyre model for each wheel is defined for the lateral force as [41]

Fy,i j =µFz,i j
αi j

Si j

(
1−e−Ky,i Si j

)
(3.31)

The variable µ represents the tyre/road-friction coefficient. For dry asphalt µ is approximately equal to 1.
The tuning of the slip characteristics is done using the linear tyre slip stiffness Ky .

Figure 3.7: Degrees of freedom in-plane
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3.1.3. State Equations
Now that the lateral tyre forces are calculated they can be used to calculate the states of the estimator. Below
the equations related to the lateral velocity and yaw rate are derived. Looking at Figure 3.7 and starting with
Newton’s second law of motion and a moment balance around the z-axis gives:

may =
∑

Fy (3.32)

Izzψ̈=∑
Mz (3.33)

where
∑

Fy is the sum of the lateral tyre forces acting on the centre of gravity of the vehicle.
∑

Mz is the
total yaw moment around the vertical z-axis. m and Izz are the vehicle mass and inertia around the vertical
axis respectively.

The lateral acceleration ay is the sum of the derivative of the lateral velocity vy and the centripetal accel-
eration [42], so ay = v̇y + ψ̇vx . Using the tyre forces from the previous section and rewriting equations (3.32)
and (3.33) gives:

m(v̇y + vxψ̇) =∑
Fy (vx , vy ,ψ̇,δ f ,ωi j ,Fz,i j ,µ) (3.34)

Izzψ̈=∑
Mz (vx , vy ,ψ̇,δ f ,ωi j ,Fz,i j ,µ) (3.35)

Figure 3.8: Roll degree of freedom, when looking at the vehicle from the front

The equations of the roll and pitch rates are derived below, which are used in the estimator for calculation
of the roll and pitch angle. As with the yaw rate, a moment balance is also done, but now around the x-axis
and y-axis to obtain the equations of the roll and pitch rates. Starting with the moment balance around the
x-axis and looking at Figure 3.8 gives [8, 33, 40]

Ixx φ̈= ms g hr sin(φ)+ms ay hr cos(φ)− (Kφ f +Kφr )φ− (Cφ f +Cφr )φ̇ (3.36)

where hr is the distance from the vehicle’s COG to the roll axis. Kφ f and Kφr are the front and rear roll stiff-
nesses respectively. Cφ f and Cφr are the front and rear roll damping coefficients respectively. ay is calculated
using the relation (3.32). Since ay is calculated using lateral forces, equation (3.36) can be written as

Ixx φ̈= ms g hr sin(φ)+ms

∑
Fy,i j

m
hr cos(φ)− (Kφ f +Kφr )φ− (Cφ f +Cφr )φ̇ (3.37)

The derivative of the roll angle φwith respect to time equals φ̇. Recalling that the state vector was defined
as

x = [
vy ψ̇ φ φ̇ θ θ̇

]T

The derivative of the third element of the state vector, which is the roll angle, becomes now equal to the fourth
element of the state vector.
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The pitch rate can be derived in the same manner as the roll rate. Starting with a moment balance around
the y-axis gives [33]

Iy y θ̈ = ms g hp sin(θ)−ms ax hp cos(θ)−Kθθ−Cθθ̇ (3.38)

where hp is the distance from the vehicle’s COG to the pitch axis. Kθ and Cθ are the pitch stiffness and
pitch damping coefficient respectively.

The derivative of the pitch angle can be obtained in the same manner as that of the roll angle. Looking at
the definition of the state vector, the derivative of the fifth element, which is the pitch angle, becomes equal
to the sixth element of the state vector.

Now that all state equations are defined they can be rewritten in a nonlinear state space form. Recalling
that the state and input vector were defined as

x = [
vy ψ̇ φ φ̇ θ θ̇

]T

u = [
δ f ωF L ωF R ωRL ωRR

]T

then renaming the state and input variables as x1, x2, ... x6 and u1, u2, ... u5, the nonlinear state space
form can be written as

ẋ =



1
m

(
Fy,F L +Fy,F R +Fy,RL +Fy,RR

)− vx x2
1

Izz

(
l f (Fy,F L +Fy,F R )− lr (Fy,RL +Fy,RR )

)
x4

1
Ixx

(
ms g hr sin(x3)+ms

∑
Fy,i j

m hr cos(x3)− (Kφ f +Kφr )x3 − (Cφ f +Cφr )x4
)

x6
1

Iy y

(
ms g hp sin(x5)−ms ax hp cos(x5)−Kθx5 −Cθx6

)


(3.39)

3.2. Estimator
Now that the internal vehicle dynamic model is defined, it can be implemented in an EKF. First the general
structure of the estimator is presented. Then the structure of the required Jacobians and the assumptions
made to calculate them are given. Lastly the initialisation and tuning of the observer is presented.

3.2.1. Extended Kalman Filter Structure
The internal vehicle model in the previous section was given in continuous form. In order to use it in an EKF
it has to be discretized. The continuous vehicle model is converted into discrete time using the relations:

xk = xk−1 + ẋ ts (3.40)

zk = z (3.41)

where ts is the sampling time interval and k is the time step. ẋ and z are the state and output equations
of the internal vehicle model as defined in equations (3.1) and (3.2).

Now that the internal vehicle model is discretized it can be used in the EKF. In Chapter 2 the general
structure of the EKF was already presented, but is repeated below

The prediction step is given as

x̂k|k−1 = f (x̂k−1|k−1,uk ) (3.42)

Pk|k−1 = Ak Pk−1|k−1 AT
k +Q (3.43)
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and the measurement update:

Kk = Pk|k−1H T
k (Hk Pk|k−1H T

k +R)−1 (3.44)

x̂k|k = x̂k|k−1 +Kk (yk −h(x̂k|k−1,uk )) (3.45)

Pk|k = (I −Kk Hk )Pk|k−1 (3.46)

In the prediction step the nonlinear internal vehicle model is used to make a prediction of the state es-
timate and error covariance matrix. For the prediction of the error covariance matrix a Jacobian matrix of
the system model is calculated, which is a linearization of the nonlinear model. In the measurement update
the outputs of the nonlinear model are compared to the actual sensor measurements, which is then used to
correct the state estimate. In the correction of the error covariance matrix a Jacobian matrix of the sensor
model is calculated. It should be noted that in the above equations the process noise and measurement noise
covariance matrices are not dependent on time step k. This means they are modelled as constants.

The Jacobian matrix of the system model A is defined as

Ai j = ∂ fi (x,u)

∂x j
with i = {1,2,3,4,5,6} and j = {1,2,3,4,5,6} (3.47)

and the Jacobian of the sensor model H as

Hi j = ∂hi (x,u)

∂x j
with i = {1,2,3,4} and j = {1,2,3,4,5,6} (3.48)

It should be noted that the Jacobian elements are numbered according to the definition of the state and
output vectors as in Section 3.1.1.

3.2.2. Calculation Jacobian Elements
A large part of the computational load is accounted by the calculation of the partial derivatives in the Jaco-
bians. Any simplification that can be done, which does not affect the final result helps to reduce this compu-
tational load. Since a large part of the computational load lies in the calculation of the Jacobians with respect
to the tyre forces, a few simplifications are done in these calculations.

The first simplification in the calculation of the Jacobians is not to take the combined slip into account.
Above that an additional simplification is made. The arctan in equations (3.16) and (3.17) is neglected, which
leads to the following definition of the side slip angles

αF L =αF R =−vy,F L

vx
+δF (3.49)

αRL =αRR =−vy,RL

vx
(3.50)

The lateral tyre forces for positive and negative side slip α are now defined for the left front wheel as, for
positive α

Fy,F L =µFz,F L

(
1−exp−Ky,F

( −vy +l f ψ̇

vx
+δ

))
(3.51)

and for negative α

Fy,F L =−µFz,F L

(
1−expKy,F

( −vy +l f ψ̇

vx
+δ

))
(3.52)

In the same manner the lateral tyre force equations are defined for the other three wheels. Now that
the tyre force equations used for the partial derivatives are defined for positive and negative slip values, the
derivatives can be calculated. Further details of the calculation of the derivatives can be seen in Appendix A.
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Simplifications were also made in the calculation of the derivatives with respect to the roll and pitch rates.
Since the roll and pitch angle is typically only a few degrees, for the calculation of the derivatives the small
angle approximation is used on equations (3.37) and (3.38). For the small angle approximation it is assumed
that

cos(x) ≈ 1

sin(x) ≈ x

Using these approximations results in the following equation for the roll rate

φ̈= 1

Ixx

(
ms gφ+ms

∑
Fy,i j

m
hr − (Kφ f +Kφr )φ− (Cφ f +Cφr )φ̇

)
(3.53)

And for the pitch rate

θ̈ = 1

Iy y

(
ms gθ−ms ax hp −Kθθ−Cθθ̇

)
(3.54)

Further details of the calculation of the derivatives of the roll and pitch rates can again be seen in Appendix
A.

3.2.3. Initialisation and Tuning
In order to guarantee proper working of the dynamic observer it is essential to initialise the observer correctly
and tune it properly. This needs to be done for every new type of vehicle the dynamic observer is used in.
Starting with the initialisation. For the internal vehicle model of the observer several parameters of the vehicle
are needed to be defined to accurately calculate the dynamics. Below these parameters are summarised.

m Total mass of the vehicle, kg
ms Sprung mass of the vehicle, kg
Ixx Body inertia around x-axis, kgm2

Iy y Body inertia around y-axis, kgm2

Izz Body inertia around z-axis, kgm2

L Wheelbase, m
l f Distance from front axle to COG, m
hcg Height of vehicles COG above the road, m
b f Front track width, m
br Rear track width, m
hr ol l Height of roll axis above the road, m
hpi tch Height of pitch axis above the road, m
Kz, f Front vertical suspension stiffness, Nm−1

Kz,r Rear vertical suspension stiffness, Nm−1

Dz, f Front vertical suspension damping, Nsm−1

Dz,r Rear vertical suspension damping, Nsm−1

Once these parameters are correctly defined, the tyre forces needs be tuned. This is done by tuning the
parameters Ky, f and Ky,r . The sum of the tyre forces divided by the total mass of the vehicle gives the lateral
acceleration of the vehicle. This sum is compared to the actual lateral acceleration of the vehicle. By tuning
Ky, f and Ky,r the lateral acceleration calculated by the model will closely match the actual lateral acceleration
and this also implies proper calculation of the tyre forces.

After tuning of the tyre forces the roll and pitch stiffnesses and damping are tuned, so that the calculated
roll and pitch rate are close to the actual roll and pitch rate. Now that all parameters are tuned, the internal
vehicle model should calculate roll and pitch angles that lie close to the actual roll and pitch angle.

The EKF is now used to give correct estimates of the roll and pitch angles, when sensor measurements
are taken into account. For proper functioning of the EKF it is of great importance to select the proper pro-
cess and measurement noise covariance matrices. The variances that are used in the measurement noise
covariance matrix come from the sensors that are used to in the EKF. In this thesis the measurement noise
covariance matrix consists of the variances of the IMU sensor. In most cases these variances are given by the
manufacturer.
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The process noise covariance matrix is not so trivial to select. As was already explained in Chapter 2, the
unmodeled dynamics and parameter uncertainties are not exactly known. Choosing elements in the process
noise covariance matrix that are too low with respect to the elements of the measurement noise covariance
matrix, means that in the EKF more weight is put on the internal vehicle model. This could lead to under
estimation of the states. Choosing elements of the process noise covariance matrix that are too high with
respect to the elements of the measurement noise covariance matrix, means that in the EKF more weight is
put on the measurements. This could lead to a larger drift error. The process noise covariance matrix is tuned
until the Kalman filter gives satisfactory results.





4
Kinematic Observer

In this chapter a kinematic observer is presented which estimates the roll and pitch angle through sensor
kinematics. This observer was developed by Ahmed & Tahir [7] and was designed to give accurate estimation
results even when using low quality sensors. The observer consists of a Kalman filter, which uses velocity,
accelerometer and gyroscope measurements to accurately estimate the roll and pitch angle.

4.1. Methodology
As was shown in Table 2.1 low cost gyroscopes suffer from drift. This drift needs to be corrected by another
sensor in order to obtain accurate estimates of the roll and pitch angle. In [7] an accelerometer is used as
the correcting sensor. The measurements of the accelerometer are corrected by removing the external ac-
celerations of the vehicle. The external accelerations along the lateral and vertical axis are removable due to
specific kinematic relations of a moving vehicle. The external acceleration in the longitudinal direction can-
not be removed, but by obtaining correct gravitational accelerations along the lateral and vertical axes, the
longitudinal gravitational acceleration component can be determined, because the norm of the gravitational
accelerations in three directions is always equal to 9.81 ms−2.

Since an accelerometer is an noisy sensor due to road vibrations, determining the longitudinal acceler-

ation using the relation Axk =
√

9.812 − A2
yk

− A2
zk

, where A denotes the accelerometer measurement, would

create even more noise in the measurement of the longitudinal component. This issue is solved in [7] using
a Kalman filter to implement the complete fusion process by considering the state vector as a three dimen-
sional vector, representing the orientation of the vehicle with respect to the global coordinate system. The
filter uses a two step process. First only the lateral and vertical components of the state vector are updated
from the accelerometer measurements. The measurements are compensated for centripetal, lateral and ver-
tical accelerations. In the second step a measurement for the longitudinal gravity component is formed by
using the updated lateral and vertical components of the state vector.

4.2. Sensor Model
Three sensors are used in this observer. From an IMU sensor the accelerometer and gyroscope measurements
are obtained. The vehicle’s velocity should also be known. The measurements from the sensors at time step
k can be expressed in the vehicle coordinate system as:

yGk =ωωωk +nG (4.1)

y Ak = gk +ak +nA (4.2)

yvx = vx +nv (4.3)

where yGk is a vector
[
Gxk Gyk Gzk

]T
containing the actual gyroscope measurements about the x, y

and z-axis of the vehicle coordinate frame. The actual measurements are the sum of the true angular rates

ωωωk = [
ωxk ωyk ωzk

]T
about each axis and the zero mean white Gaussian noise in each axis contained in

23
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the vector nG . In equation (4.2) y Ak is a vector
[

Axk Ayk Azk

]T
which contains the actual accelerometer

measurements. The actual accelerometer measurements are the sum of the gravitation acceleration gk =[
gxk g yk gzk

]T
, the external accelerations ak = [

axk ayk azk

]T
and the white Gaussian noise nA . In

equation (4.3) yvx is the speed reading of the vehicle, vx the actual vehicle speed and nv is the measurement
noise.

4.3. State Vector
During normal driving situations the roll and pitch angle is only a few degrees. Even in extreme situations the
roll and pitch angle never becomes 90° and singularity does not occur. Using Euler angles [43] and the same
definition as in Section 2.1 the state vector can be formulated. The relation between the global and the body
fixed coordinate system can be given as

X Y Z = Rr ot x y z (4.4)

where Rr ot is the rotation matrix to rotate any vector in the body fixed coordinate system (xyz) into the
global coordinate system (XYZ). The rotation matrix is given by [43]

Rr ot =
cos(ψ)cos(θ) cos(ψ)sin(θ)sin(φ)− sin(ψ)cos(φ) cos(ψ)sin(θ)cos(φ)+ sin(ψ)sin(φ)

sin(ψ)cos(θ) sin(ψ)sin(θ)sin(φ)+cos(ψ)cos(φ) sin(ψ)sin(θ)cos(φ)−cos(ψ)sin(φ)
−sin(θ) cos(θ)sin(φ) cos(θ)cos(φ)

 (4.5)

Since the last row doesn’t contain any terms with the yaw angle ψ, the last row is used to calculate the roll
and pitch angles, φ and θ respectively.

φ= atan
(R32

R33

)
θ = atan

( −R31

R32/sin(φ)

)
where Ri j denotes the (i , j )th element of Rr ot . The state vector at time step k is then defined as

xk = [
R31 R32 R33

]T
(4.6)

In [7] it is noted that the gravitational acceleration vector gk in equation (4.2) at any time step k as mea-
sured in the vehicle coordinate system is equal to

gk = g xk (4.7)

where g is the gravitational acceleration constant equal to 9.81 ms−2

4.4. Process Model
The process model is developed using the general equations for the process model [27], which is given by

xk =ΦΦΦk−1xk−1 +wk−1 (4.8)

whereΦΦΦk−1 is the state transition matrix and wk−1 is the process noise with covariance matrix Qk−1. The
state vector xk is determined from xk−1 using the fact that the rotation matrix Rr ot ,k at time step k can be
computed from Rr ot ,k−1 using the integral of the vector differential equation, which is taken from [44]:

Rr ot ,k = Rr ot ,k−1(I3 +∆tω̃̃ω̃ωk−1) (4.9)

where ts is the sampling time interval,ωωωk−1 contains the ideal angular rates of rotation of the body and ∼
is a cross product operator on a 3×1 vector. Taking for example the cross product operator on p gives

p̃ =
 0 p3 p2

p3 0 −p1

−p2 p1 0

 (4.10)
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Since only the last row of Rr ot ,k is used, instead of using equation (4.9), the following equation is used

xk = (I3 + tsω̃k−1)xk−1 (4.11)

Because the ideal angular ratesωωωk−1 are not known in practice and are measured by the gyroscope, sub-
stitution of equation (4.1) into (4.11) after some rewriting gives

xk = (I3 + ts ỹGk−1 )xk−1 + ts x̃k−1nG (4.12)

Comparison of (4.12) with (4.8) gives the state transition matrix and a model for the process noise

ΦΦΦk−1 = I3 + ts ỹGk−1 (4.13)

wk−1 = ts x̃k−1nG (4.14)

In [7] it was stated that the state dependence of the process noise wk−1 does not violate any underlying
assumption of the Kalman filter. The process noise covariance Qk−1 is given by

Qk−1 = E [wk−1w T
k−1] (4.15)

Substitution of equation (4.14) into (4.15) and using x̃T
k−1 =−x̃k−1 gives

Qk−1 =−t 2
s x̃k−1

∑∑∑
G x̃k−1 (4.16)

Where
∑∑∑

G is the covariance matrix of the gyroscope noise given by E [nG nT
G ] which is set equal to σ2

G I3 by
assuming that the variance of the gyroscope noise σ2

G is the same along all three axes.

4.5. Measurement Model
A measurement model is developed with the purpose to mitigate the error propagated in the state estimate by
the process model. The measurement update is done in two steps. The general equations of the measurement
models [27] are given by

zk,1 = H1xk +ΥΥΥk,1 (4.17)

zk,2 = H2xk +ΥΥΥk,2 (4.18)

where zk,1 and zk,2 are measurement vectors, H1 and H2 are observation matrices andΥΥΥk,1 andΥΥΥk,2 are
the measurement noise with covariance matrices Mk,1 and Mk,2 for updates 1 and 2 respectively.

The accelerometer measurements y Ak for the measurements updates as defined in equation (4.2) are
used. y Ak consists of the sum of the gravitational gk and external acceleration ak components. Since ak is
not zero when the vehicle is moving, it needs to be subtracted from y Ak before using it for the measurement
update. The external accelerations are determined by resolving them into their constituent components us-
ing the kinematic model of a car. The definition of the axis as defined in [7] is slightly different as the definition
taken in Section 2.1. Since the final estimated roll and pitch angle only have a sign difference, in this section
the definition as in [7] is taken, which can be seen in Figure 4.1.

Figure 4.1: Direction of linear and angular velocities as used in [7], taken from [7]
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Using the directions of the velocities and angular rates as in Figure 4.1 the external accelerations are given
by [7]

axk = v̇xk −ωzk vyk +ωxk vzk (4.19)

ayk = v̇yk +ωzk vxk −ωyk vzk (4.20)

azk = v̇zk −ωxk vxk +ωyk vzk (4.21)

In equation (4.19), v̇xk cannot be estimated using the available sensor data and is too significant to ig-
nore. Although generally vx is given by the Controller Area Network (CAN) bus, which can be used for the
longitudinal velocity vxk , it cannot be differentiated to obtain v̇xk . The speed given by the CAN bus is a very
low rate approximation of the actual speed. Differentiation will given an incorrect estimate of v̇xk . In [7], the
x-axis accelerometer measurements are discarded, because axk cannot be determined. ayk and azk can be
determined from equation (4.20) and (4.21) and are subtracted from the y and z-axis accelerometer readings
to give the measurement vector zk,1, which updates the state vector xk in the first measurement update.

It can be noted that the most significant quantities in equation (4.20) and (4.21) are the longitudinal ve-
locity vxk and the yaw rateωzk . Ideally the velocities vyk and vzk are zero, but when the tires are being steered,
a small lateral velocity component vyk is present due to the tire cornering stiffness. The same holds for the
vertical velocity vzk when the car hits a bump on the road. In [7] the derivatives of the lateral and vertical
velocity, so v̇yk and v̇zk , are modelled using a first order low pass process:

αk = cααk−1 +εk (4.22)

where αk is an external acceleration component at time step k, cα is a dimensionless constant which
determines the cut-off frequency and εk is the error in this model. Modelling v̇yk and v̇zk by αyk and αzk

according to equation (4.22) gives

αyk = ca1αyk−1 +εyk (4.23)

αzk = ca2αzk−1 +εzk (4.24)

For simplicity ca1 = ca2 = ca . Substitution in equation (4.20) and (4.21) and ignoring the negligible prod-
ucts ωyk vzk and ωyk vyk gives

αyk = caαyk−1 +ωzk vxk +εyk (4.25)

αzk = caαzk−1 −ωxk vxk +εzk (4.26)

4.5.1. Measurement Update 1
Substitution of the gyroscope and CAN bus measurements from equation (4.1) and (4.3) into equation (4.25)
and (4.26) gives

ayk = caαyk−1 + (Gzk −nGz )(yvx −nv )+εyk (4.27)

azk = caαzk−1 − (Gxk −nGx )(yvx −nv )+εzk (4.28)

This can be-arranged in matrix form as

ak,1 = caαααk−1 + yGk,1 vt +nG ,1nv,1 +εεεk (4.29)

where ak,1 = [
ayk azk

]T
, αααk−1 = [

αyk−1 αzk−1

]T
, yGk,1 = [

Gzk −Gxk

]T
, nG ,1 = [

nGz nGx

]T
, nv,1 =[

nv nv
]T

and εεεk = [
εyk εzk

]T
.

The cross-product terms are ignored for simplicity, because their contribution to the measurement noise
will be negligible. In the first update the x-axis accelerometer readings are discarded and the update from y-
and z-axis readings are applied, so the accelerometer measurement for this update can be arranged in the
vector form as

y Ak,1 =
[

Ayk Azk

]T
(4.30)
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Combining equations (4.29), (4.30) and (4.2) gives

y Ak,1 = Hm g xk + caαααk−1 + yGk,1 vx +nG ,1nv,1 +εεεk +nA,1 (4.31)

Equation (4.31) is then compared with the measurement model in equation (4.17) which gives

zk,1 = yAk,1 − caαααk−1 − yGk,1 vx (4.32)

H1 = g Hm = g

[
0 1 0
0 0 1

]
(4.33)

ΥΥΥk,1 = εεεk +nG ,1nv,1 +nA,1 (4.34)

The measurement noise covariance Mk,1 is given as

Mk,1 = E [ΥΥΥk,1ΥΥΥ
T
k,1] (4.35)

It is assumed that εεεk , nG ,1, nv,1 and nA,1 are uncorrelated, so that Mk,1 can be written as

Mk,1 =
∑∑∑

ak +
∑∑∑

GV +∑∑∑
A (4.36)

Here
∑∑∑

GV is the measurement noise from the velocity and gyroscope product terms which is set equal
to σ2

vσ
2
g I2.

∑∑∑
A is the accelerometer noise which is set equal to σ2

A I2. It is assumed that the accelerometer
variance is the same along both y and z-axis.

∑∑∑
αk is the contribution to the measurement noise by the model

based estimation of αααk which is given by E [εkε
T
k ]. E [εkε

T
k ] cannot be determined analytically and in [7] an

approximation is used:
∑∑∑
αk = 2−1c2

a ||αααk−1||2I2 which was suggested in [45].

4.5.2. Measurement Update 2
The lateral and vertical axes accelerometer readings are used to obtain the correct estimates of second and
third element of the state vector xk , so xk (2) and xk (3), respectively in equation (4.6). It can be noted that the
state vector in equation (4.5), due to the definition of a rotation matrix, has the property:√

xk (1)2 +xk (2)2 +xk (3)2 = 1

Assuming that the correct estimates of xk (2) and xk (3) are obtained, the property above is used to calcu-
late the estimate of xk (1):

xk (1) =
√

1−xk (2)2 −xk (3)2

The estimate of xk (1) is then used as a measurement for correcting the state vector in the next step. The
measurement is denoted by yxk

yxk =
√

1−xk (2)2 −xk (3)2 +δk

= xt (1)+δt

(4.37)

where δk is the noise in this measurement. Comparison equation (4.37) with (4.18) gives

zk,2 = yxk (4.38)

H2 =
[
1 0 0

]
(4.39)

Υk,2 = δk (4.40)

The measurement noise covariance Mk,2 is given by E [δkδ
T
k ] and can be seen as a tuning parameter.
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4.6. Filter Procedure
The proposed Kalman filter algorithm proposed in [7] is summarised in Figure 4.2. The - superscript denotes
the a priori estimate, the + superscript denotes the a posteriori estimate after the first measurement update
and ++ denotes the a posteriori estimate after the second measurement update. Pk is the error covariance
matrix and Kk,1 and Kk,2 are the Kalman gains for the first and second measurements updates respectively at
time step k.

Figure 4.2: Kalman filter structure

The roll and pitch angles are calculated from the a posteriori state estimate:

φk = atan
( x++

k (1)

x++
k (2)

)
(4.41)

θk = atan
( −x++

k (1)

x++
k (2)/sin(φk )

)
(4.42)



5
Simulation Setup

In this chapter the simulation setup is presented. First the the simulation environments are discussed. Then
the different test manoeuvres are presented which are used to test the performance of the observers. Lastly
the criteria that the observers have to satisfy are discussed.

5.1. Simulation Environments
Below two different types of simulation environments are discussed. In the first environment a nonlinear
vehicle model in Simulink is used. In the second simulation environment IPG CarMaker is used.

5.1.1. Nonlinear Vehicle Model
In the first simulation environment a nonlinear vehicle model is used to test the observers. The vehicle model
is a SimMechanics model in Simulink. The vehicle model not only takes the planar dynamics into account,
but also the roll, pitch and yaw dynamics. The downside of this model is that it only takes limited vertical
dynamics into account. Due to this reason this model is not used for extensive test procedures, but only used
for preliminary evaluation, during the development of the observers. In the model the tyres are modelled by
making use of the Magic formula [39]. With the Magic formula the tyre forces can be accurately calculated.
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Figure 5.1: Comparison of the roll and pitch angle

The nonlinear model is used to test the performance of the observers when a sinusoidal steering input is
applied to the vehicle model. This is a so called sine wave. The goal of this test is to see if the observers will
suffer from drift after a certain time interval. The frequency of the steering will be set to 0.2 Hz. The steering
wheel angle will be varying between -30 ° and 30 °.The manoeuvre is executed at a speed of 80 kmh−1.
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Figure 5.2: Comparison of the lateral velocity

In Figure 5.1 and 5.2 the performance of the observers can be seen for the sinusoidal steering input. It can
be observed that the estimates of the roll, pitch and lateral velocity match up well with the true values out of
the nonlinear model. When the true roll angle is equal to 2 °, the roll estimates of the dynamic and kinematic
observer are also equal to 2 °. There is only a very small difference between the true pitch angle and the
estimate of the pitch angle of the kinematic observer at the end of the manoeuvre. To test the performance of
the observers in more extreme situations, many different tests are done with IPG CarMaker described in the
next section.

5.1.2. IPG CarMaker
To test the performance of the observers in extreme situations, tests are done in IPG CarMaker. This software
is a highly advanced simulation environment. IPG CarMaker consists of a highly nonlinear vehicle model,
which makes the model behave very similar to a real vehicle. The benefits of this vehicle model above the
nonlinear model in the previous section apart from the vertical dynamics, is that IPG CarMaker takes into
account the compliance of the suspension components and also the kinematics of the suspension are defined
in greater detail.

The vehicle model that is used in IPG CarMaker resembles a compact hatchback. This vehicle model was
provided by a car manufacturer and the model was validated using a real vehicle. The vehicle model showed
similar behaviour as a real vehicle. The model contained detailed information about the mass distribution
and geometry of the vehicle. Also the nonlinear spring and damper characteristics as well as the tyre property
files were specified.

The accelerations that IPG CarMaker outputs do not contain the gravitational accelerations, only the ac-
celerations caused by the vehicle are given. Since the kinematic observer needs the gravitational acceleration
to work properly, it is added to the input of the observers. The gravitational acceleration always points straight
down and can be decomposed in the longitudinal, lateral and vertical axis of the vehicle using the true roll
and pitch angle from IPG CarMaker. Using Figure 2.1b in Chapter 2 where the body fixed axis of the vehicle is
defined, the gravitational acceleration can be decomposed as

gxk = g sin(θk ) (5.1)

g yk =−g sin(φk )cos(θk ) (5.2)

gzk =−g cos(φk )cos(θk ) (5.3)

Where k is the time step and g the gravitational constant equal to 9.81 ms−2
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5.2. Test Manoeuvres
The following test manoeuvres are done using IPG CarMaker: a sine sweep, step response, double lane change
manoeuvre, skidpad, fishhook, braking manoeuvres and driving on a racetrack. Each will be discussed in
detail below.
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Figure 5.3: Steering angle profile of the sine sweep manoeuvre

5.2.1. Sine Sweep
A sine sweep manoeuvre is very similar to sine wave manoeuvre, only the frequency of the steering angle is
not held constant, but instead increases over time. The starting frequency is chosen to be equal to 0.1 Hz and
the final frequency is equal to 1 Hz. The vehicle starts from standstill and then accelerates to 80 kmh−1. Then
the vehicle starts doing the manoeuvre for 60 seconds. The steering input is similar to the sine wave and still
varies between -30 ° and 30 °. The visualisation of the steering input in this manoeuvre can be seen in Figure
5.3.
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Figure 5.4: Steering angle profile of the step response manoeuvre. Steering angle is slowly increased till the
lateral acceleration reaches 4 ms−2, then two step steering inputs are applied

5.2.2. Step Response
The next manoeuvre is a step response steering input. The goal of a step response manoeuvre is to see how
well the observers can track the true roll and pitch angle when there is a sudden change of direction. The
vehicle starts the manoeuvre again from standstill and accelerates to 80 kmh−1. Then the steering angle
is slowly increased till the lateral acceleration reaches 4 ms−2. This is done to find right the steering angle
needed in the step response. After a few seconds of straight line driving, the step steering input is applied
which can be seen in Figure 5.4. The steering rate is limited to 500 deg/s. The steering rate is limited to this
value, because in real driving conditions a driver is not able to turn at a faster rate.
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Figure 5.5: Trajectory of a double lane change, where B is the the car width, taken from [46]

5.2.3. Double Lane Change
In Figure 5.5 the trajectory of a double lane change manoeuvre can be seen, where the dotted line is the
desired path of the car. The goal of this test is to see the performance of the estimators during extreme con-
ditions, where large roll is expected. The initial velocity at the entrance of the manoeuvre is set to 90 kmh−1.
After finishing the manoeuvre the vehicle returns to steady state in which the estimated roll and pitch angle
should go back to zero.

5.2.4. Skidpad
A skidpad is a circular area with a fixed radius and flat pavement. The radius of the circle is 42 meters. The
vehicle drives from standstill in circles until the point that lateral deviation of the vehicle deviates more than
half a meter of the desired course, then the vehicle slows back down to standstill. The velocity at which the
vehicle cannot follow the desired course is 70 kmh−1. The goal of this test is not to find the maximum lateral
acceleration of the vehicle, but to see how well the observers can cope with roll and pitch behaviour for a long
duration. The objective of this test manoeuvre is to have a minimum drift error.

5.2.5. Fishhook
To test the performance of the observers during a critical vehicle manoeuvre, where the vehicle can roll over,
a fishhook test is performed. In this test the vehicle will be likely to roll over and the goal of this test is to see
how well the observers perform when extreme roll is present. The steering input of the manoeuvre can be
seen in Figure 5.6.
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Figure 5.6: Steering input of the fishhook manoeuvre

5.2.6. Braking Straight Line
To test the correctness of the pitch angle estimate of the observers some braking tests are done. This is done
driving in a straight line at constant speed of 75 kmh−1 and then the braking is initiated. Two braking test
are being done. First normal braking is simulated by applying half of the braking force. The vehicle then
gradually slows down to a standstill. In the second test the vehicle is tested at its limit and maximum braking
force is applied. This is done to check the performance of the observers during an extreme driving situation.
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Figure 5.7: Layout of Hockenheim racetrack

5.2.7. Hockenheim Racetrack
To test the performance of the observers over a long time duration, the vehicle is driven on a racetrack. The
Hockenheim race track can be seen in Figure 5.7. In IPG CarMaker a predefined driver can be selected, which
follows the track in the most efficient way. The driver was limited to drive between a set of accelerations.
The longitudinal acceleration could not exceed 3.0 ms−2, the longitudinal deceleration could not exceed -
4.0 ms−2 and the lateral acceleration could not exceed 4.0 ms−2. Driving on this track contains braking and
acceleration as well as braking during cornering, so all kinds of vehicle motions are present to test the perfor-
mance of the observers.

5.3. Variances and Noise Generation
The variances of the IMU sensor and velocity sensor where chosen such that they represent low quality sen-
sors as in Table 2.1. In Table 5.1 the values of the variances that are used for the IMU sensor and velocity
sensor can be seen. To simulate noisy sensor data from low quality IMU sensors, noise was added to the
angular rates, accelerometers and velocity sensor, which are the inputs of the observers. In Simulink the
band-limited white noise block was used to simulate this noise. The input of the block was noise power. In
Table 5.1 the values of the noise powers that are used in simulation can be seen.

Table 5.1: Variances and noise powers used in the simulation

Sensor component Variance Noise power
Gyroscope 1.60×10−3 rads−1 1.57×10−4 rads−1

Accelerometer 1.96×10−2 ms−2 1.50×10−3 ms−2

Velocity 1.00×10−4 ms−1 1.00×10−5 ms−2

5.4. Initialisation of the Observers
In this section the initialisation of the observers is presented. For both observers the variances of the IMU
sensor and velocity sensor are the same and can be seen in Table 5.1.

5.4.1. Kinematic Observer
The Kinematic observer has two tuning parameters which needs to be set. The first one is ca , which deter-
mines the cut-off frequency of the first order low pass process in equation (4.22). It can vary between 0 and 1.
The second tuning parameter is the measurement noise covariance Mt ,2 in the second measurement update.
After trial and error, ca is set equal to 1 and Mt ,2 is set equal to 0.9.

The Kalman filter inside the kinematic observer requires also the initialisation of the state vector and
the covariance matrix. The state vector was initialised by using the initial orientation of the vehicle. The
covariance matrix was initialised by setting the whole matrix equal to equal to machine precision, which is
equal to 10−16.
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5.4.2. Dynamic Observer
The initialisation of the dynamic observer is a bit more complicated. First the parameters of the internal
vehicle model have to be known, which were discussed in Section 3.2.3. Then the tuning parameters of the
internal vehicle model have to be set. Lastly the initialisation of the EKF needs to be performed. The vehicle
parameters of the compact hatchback, which are used to test the performance of the observers, can be seen
in Table 5.2.

Table 5.2: Vehicle parameters of a compact hatchback

Parameter Value Unit
m 1500 kg
ms 1300 kg
Ixx 500 kgm2

Iy y 2000 kgm2

Izz 2000 kgm2

L 2.5 m
l f 1.0 m

hcg 0.6 m
h f 0.8 m

hr ol l 0.1 m
hpi tch 0.4 m

Kz, f 25000 Nm−1

Kz,r 30000 Nm−1

Dz, f 1300 Nsm−1

Dz,r 1500 Nsm−1

Now that the vehicle parameters are set, the linear tyre slip stiffnesses Ky,F and Ky,R are tuned. They are
both set equal to 20. The front roll stiffness is tuned to a value of 80000 Nrad−1 and in the rear to 40000
Nrad−1. The pitch stiffness is tuned to a value of 30000 Nrad−1. The front roll damping is tuned to 11000
Nsm−1 and in the rear to 1500 Nsm−1. The pitch damping coefficient is tuned to 10000 Nsm−1.

The EKF inside the dynamic observer needs also to be initialised and tuned. The tuning parameters are
the process noise covariance matrix Q and the measurement noise covariance matrix R . R is set by using the
variances of Table 5.1, which gives the following matrix:

R =


σ2

A 0 0 0
0 σ2

G 0 0
0 0 σ2

G 0
0 0 0 σ2

G


The process noise covariance matrix Q is different for when no noise is added and when noise is added to

the inputs of the observers. When no noise is added to the inputs of the observer the values on the diagonal of
the Q matrix are chosen to be equal to 10−3. Changing the values on the diagonal does not have a significant
effect on the estimation performance of the roll and pitch angle. The dynamics of the roll and pitch angle in
the internal vehicle model do not match up completely with the actual roll and pitch dynamics, to compen-
sate this some noise is added to the off diagonal values that relate the roll and pitch angle to the roll and pitch
rates. This off diagonal noise is set equal to 10−3.

When noise is added to the inputs of the observer this off diagonal noise has a negative influence on
the estimation performance and so is removed when noise is added to the inputs. It turned out that the
values on the diagonal equal to 10−3 of the Q matrix when no noise was added to the inputs were also a good
approximation when noise was added to the inputs. Increasing the noise on the diagonal resulted in a larger
drift error of the roll and pitch angle, while decreasing the noise on the diagonal lead to under estimation of
the roll and pitch angle.
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When no noise is added to the inputs the Q matrix is equal to

Q =



10−3 0 0 0 0 0
0 10−3 0 0 0 0
0 0 0 10−3 0 0
0 0 0 10−3 0 0
0 0 0 0 0 10−3

0 0 0 0 0 10−3


When noise is added to the inputs the Q matrix is equal to

Q =



10−3 0 0 0 0 0
0 10−3 0 0 0 0
0 0 0 0 0 0
0 0 0 10−3 0 0
0 0 0 0 0 0
0 0 0 0 0 10−3


The state vector of the EKF was initialised by setting the whole vector equal to machine precision, which

is the same value as used in the initialisation of the kinematic observer. When no noise was added to the
inputs of the observer the covariance matrix was initialised as an identity matrix and with noise added to the
inputs, it was initialised as a diagonal matrix with the first 2 inputs of the diagonal equal to 1 and the other
inputs equal to 10−4. The roll and pitch angle always had a small offset, due to the weight of the driver. To
compensate for this offset, it was added to the final state estimate in the EKF.

5.5. Passing Criteria
In this section the criteria that the observers have to meet are discussed.

5.5.1. Mean Error
A good indicator of estimation performance, which is also used in literature [7, 45], is the so called Root Mean
Square (RMS) error. It represents the square root of the mean square error. It can be defined as

RMS =
√

E((x̂ −x)2) (5.4)

where x̂ is the estimate and x is the estimated or true value. The RMS error can never be negative and
ideally it is equal to 0, which means perfect estimation, but this is never achieved in practice.

For the roll and pitch angle the the desired performance threshold of the RMS error of the roll and pitch
angle is set to the same value as in [7], which is equal to 1 °. This applies for both the kinematic and dynamic
observer.

5.5.2. Maximum error
Although the RMS error is sensitive to outliers it could happen that in certain situations large estimation
errors are present for a short duration. This roll and pitch error peaks could have a negative influence on
sensors that make use of the estimated roll and pitch angle. To detect that these error peaks are not too large,
a limit is set. In this thesis the maximum error limit of the roll and pitch angle is set to 2 °.





6
Simulation Results

In this chapter the results of the different manoeuvres are presented. First the roll and pitch estimation results
are presented. There is a distinction made between no noise added to the inputs of the observers and noise
added to the inputs. Lastly the estimation results of the lateral velocity of the dynamic observer are presented.

6.1. Roll & Pitch Angle
In this section the roll and pitch angle estimation results are presented. To see the performance of the ob-
servers during different quality of the sensors, a distinction is made. First the results are presented when
perfect sensor data is assumed and no noise is added to the inputs of the observers. Then the results are
presented when sensor noise is added, which resembles a worst case scenario with low quality sensors.
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Figure 6.1: Calculated roll and pitch angle in the internal vehicle model during the step response manoeuvre

6.1.1. No Noise Added
In Figure 6.1 the calculated roll and pitch angle of the internal vehicle model in the dynamic observer can be
seen during the step response manoeuvre. It can be observed that the calculated values of the roll and pitch
angle already match up quite well with the actual roll and pitch angle, which means that the internal model
functions properly.

In Table 6.1 the RMS errors of the roll and pitch angle of both observers can be seen. Looking at the table it
can be observed that for almost all manoeuvres the RMS error stays below the threshold of 1 °. Only when the
vehicle is driven on the Hockenheim racetrack the threshold for the RMS error of the roll angle of the kine-
matic observer is exceeded and during this manoeuvre, the RMS error of the pitch angle is also the highest

37
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Table 6.1: RMS errors of the observers for different manoeuvres, when no sensor noise is present

Manoeuvre RMS error
roll [°]

RMS error
pitch [°]

Dynamic Kinematic Dynamic Kinematic
Sine sweep 0.0454 0.1153 0.0039 0.2819

Step response 0.3340 0.3983 0.0035 0.1560
Double lane

change
0.0151 0.1066 0.0051 0.0958

Skidpad 0.8053 0.5944 0.0133 0.0969
Fishhook 0.1256 0.4479 0.0600 0.5064

Normal braking
straight line

0.0116 0.0201 0.0047 0.1121

Emergency braking
straight line

0.0396 0.7001 0.0071 0.1180

Hockenheim
racetrack

0.5866 7.0941 0.0170 0.5894

of all the manoeuvres. This can be explained by the fact that when the vehicle is driven on the Hockenheim
racetrack, there are constantly large accelerations that persist for long periods of time. As already mentioned
in the introduction kinematic relations cannot capture all the motions of the vehicle during large accelera-
tions, because kinematic relations do not take into account tyre behaviour. This causes the estimate of the
roll angle to drift away over time from the true estimate, which results in a large RMS error.
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Figure 6.2: RMS error of each manoeuvre normalised to the best performing observer. Roll angle (a) and
pitch angle (b)

What also can be seen from Table 6.1 is that the RMS error for the roll angle is the lowest for both observers
when braking in a straight line. This is as expected because the braking is done in straight line, so no roll
angle is present. The RMS errors at this manoeuvre are almost the same, because at this point the kinematic
relations still can capture the motion of the vehicle. When looking at the results from the emergency braking
manoeuvre, the results is a bit different. Then the RMS error of the roll angle increases for the kinematic
observer. The vehicle in IPG CarMaker is not equipped with Anti-Lock Braking System (ABS) and one wheel
of the vehicle locks during the manoeuvre. The kinematic observer has trouble to capture this, while the
dynamic observer takes this into account.

In Figure 6.2 RMS errors of the roll and pitch angle from Table 6.1 are visualised. At every manoeuvre
the RMS error is normalised to the best performing observer. This means that the best performing observer
will be set equal to 1 and the other observer will be scaled accordingly. In this figure the large differences
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in performance of the dynamic and kinematic observer become visible. Especially the RMS errors of the
dynamic observer regarding the pitch angle are much lower than the RMS errors of the kinematic observer.
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Figure 6.3: Estimation performance during the fishhook manoeuvre

The RMS error of the roll angle of the dynamic observer is the largest for the skidpad manoeuvre. It is
even larger than the RMS error of the kinematic observer, which can also clearly be seen in Figure 6.2. In this
manoeuvre the vehicle was driven from standstill and then constantly accelerating until the point that the
lateral deviation reached a certain value. The performance of the dynamic observer can be explained by a
mismatch of the dynamics at larger slip values, which is extra dominant for long periods of time. Due to the
mismatch between the exponential tyre forces and the actual tyre forces at high slip values, which could be
seen in Figure 3.4 of Chapter 3, the lateral acceleration that is calculated in the vehicle model is too high, but
this is then over compensated by the terms that contains the roll stiffness and roll coefficients in equation
(3.37), which leads to a calculated roll angle in the internal vehicle model that is too low compared to the
actual roll angle.

Table 6.2: Maximum deviation of the observers for different manoeuvres, when no sensor noise is present

Manoeuvre Maximum deviation
roll [°]

Maximum deviation
pitch [°]

Dynamic Kinematic Dynamic Kinematic
Sine sweep 0.1285 0.2933 0.0344 0.8689

Step response 0.6934 1.2396 0.0348 0.2918
Double lane

change
0.0668 0.4662 0.0347 0.3231

Skidpad 2.0161 1.6265 0.0404 0.4121
Fishhook 0.2540 0.7388 0.0823 1.2288

Normal braking
straight line

0.0538 0.0468 0.0329 0.2474

Emergency braking
straight line

0.1147 2.1168 0.0492 0.4708

Hockenheim
racetrack

1.6914 13.7525 0.0398 1.1234

In Figure 6.3 the estimation performance of the fishhook manoeuvre can be seen. It can be observed
that there is a slight mismatch of the estimated roll angle of the kinematic observer that starts halfway of the
manoeuvre. From that point on the pitch angle slowly drifts away from the true angle. The drift of the pitch
angle can be explained by the fact that the roll and pitch angle in the state vector of the kinematic observer
are coupled. An incorrect estimate of the roll angle leads to an incorrect estimate of the pitch angle.
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In Table 6.2 the maximum estimation deviation of the observers with respect to the real roll and pitch
angle can be seen. The roll angle of the kinematic observer shows the largest deviation. This is as expected
since the RMS error was also the largest. Looking at Figure 6.4 this also can be observed. Although the shape
of the estimated roll and pitch angle looks similar to that of the true values, the estimates drift way from the
true values, because the kinematic relations cannot capture all the motions, due to the large and prolonged
accelerations.
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Figure 6.4: Estimation performance of driving on the Hockenheim racetrack

Looking at Table 6.2 also shows that the maximum deviations of the pitch angle of the dynamic observer
are about ten times smaller than the maximum deviations of the kinematic observer. This is valid for all
manoeuvres. The large deviations of the pitch angle of the kinematic observer during the fishhook manoeuvre
and the drive on the Hockenheim racetrack can be explained again by the coupling of the states.

The limitations of the kinematic observer are also clearly visible in the braking manoeuvres. For normal
braking the maximum deviation of the roll and pitch angle is comparable to the dynamic observer. When the
emergency braking manoeuvre is performed, the maximum deviations of the dynamic observer only increase
slightly, while the deviations of the kinematic observer increase significantly.

The reader is referred to Appendix B to see the figures of the estimation performance of the roll and pitch
angle of the rest of the manoeuvres.

6.1.2. Noise Added
In this section the estimation results are shown when noisy sensor data is added to the inputs of both the
kinematic and dynamic observers. In Section 5.3 the noise powers were specified.

In Table 6.3 the RMS errors of the roll and pitch angle of both observers can be seen. Looking at the RMS
errors shows that now there is a significant performance difference between the observers. The RMS errors
of the roll and pitch angle of the kinematic observer exceed the threshold of 1 ° for every manoeuvre. The
RMS error of the roll angle of the dynamic observer stays in all manoeuvres except the Hockenheim racetrack
below the threshold and for the Hockenheim racetrack the threshold is only exceeded by 0.35 °. The RMS
errors show that including dynamics into an observer clearly increases the estimation performance when
noise is added to the input of the observers.

From Table 6.3 it can also be observed that the RMS errors of the pitch estimation for the dynamic ob-
server exceed the threshold of 1 ° only slightly, but that the performance is worse than the roll angle esti-
mation. This can be explained that for the roll angle estimation the lateral tyre forces are used to calculated
the lateral acceleration, instead of using the lateral accelerometer measurements. The pitch angle estimation
is based on the longitudinal accelerometer measurements. The comparison of the estimation results shows
that using the tyre forces leads to better estimation performance.
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Table 6.3: RMS errors of the observers for different manoeuvres, when sensor noise is present

Manoeuvre RMS error
roll [°]

RMS error
pitch [°]

Dynamic Kinematic Dynamic Kinematic
Sine sweep 0.7782 3.8767 1.2725 3.5937

Step response 0.8606 6.5113 1.1617 4.0567
Double lane

change
0.4277 3.5010 1.4080 4.1551

Skidpad 1.6608 13.1638 1.2686 2.9869
Fishhook 0.8592 2.8232 1.1246 4.6954

Normal braking
straight line

0.2582 4.0345 1.3427 4.4898

Emergency braking
straight line

0.3578 3.9432 1.2720 4.1148

Hockenheim
racetrack

1.3549 32.8858 1.1764 10.8381

Calculation of the longitudinal tyre forces can be performed in the same way as the lateral tyre forces
using the exponential tyre model. To ensure that the longitudinal tyre forces are calculated correctly, their
sum needs to be compared to the longitudinal acceleration, which basically means that one is estimating
the longitudinal velocity. The longitudinal velocity can already accurately calculated using the wheel speed
sensors. This basically means that the estimation algorithm will be made much more complex, due to all
the derivatives needed for the Jacobian elements, with the prospect of only a slight increase in estimation
performance of the pitch angle. Due to this reason the longitudinal accelerometer measurements are used in
this thesis instead of longitudinal tyre forces.
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Figure 6.5: RMS error of the observers at each manoeuvre normalised to the best performing observer. Roll
angle (a) and pitch angle (b)

In Figure 6.5 the RMS errors of the roll and pitch angle from Table 6.3 are visualised. Again at every ma-
noeuvre the RMS error is normalised to the best performing observer. It can be observed that at every ma-
noeuvre the dynamic observer performs better than the kinematic observer. Comparing Figure 6.5 to Figure
6.2 where no sensor noise was present, it becomes clear that when sensor noise is added to the observer,
the relative performance of the dynamic observer increases regarding the roll angle in comparison to the
kinematic observer. The relative performance of the kinematic observer regarding the pitch angle estimation
increases in comparison the the dynamic observer.
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Figure 6.6: Estimation performance during the skidpad manoeuvre with noise added

Remembering the estimation performance of roll angle for the skidpad manoeuvre in the previous sec-
tion, where the kinematic observer performed better than the dynamic observer. If one looks at Table 6.3 and
Figure 6.6 the opposite is the case when sensor noise is added to the inputs. It can be seen that the kinematic
observer performs quite badly now sensor noise is added. A possible explanation for this is that the kinematic
observer cannot remove the external accelerations properly due to the noisy signals. This means that the drift
introduced by the gyroscopes cannot be corrected correctly. Due to the long duration of the accelerations the
drift error grows to a very large value over time.

Table 6.4: Maximum deviation of the observers for different manoeuvres, when sensor noise is present

Manoeuvre Maximum deviation
roll [°]

Maximum deviation
pitch [°]

Dynamic Kinematic Dynamic Kinematic
Sine sweep 2.0338 11.2480 3.3578 9.5886

Step response 2.1851 13.7164 3.2679 9.5397
Double lane

change
1.9599 10.2049 3.2793 10.0071

Skidpad 4.1082 24.2128 3.7738 7.2200
Fishhook 3.7138 9.6585 3.0597 10.5294

Normal braking
straight line

1.2001 10.0706 3.2980 9.6640

Emergency braking
straight line

2.4177 10.0706 3.2980 9.6640

Hockenheim
racetrack

4.0089 58.2015 3.8360 28.4421

The explanation that the external accelerations cannot be removed properly due to the noisy signals could
also be used to the other manoeuvres, but in these manoeuvres the accelerations do not hold on for extensive
periods of time, which results in lower RMS errors. What also does not help is that the roll and pitch angle are
coupled in the state vector. An incorrect roll angle estimate leads also to an incorrect pitch angle estimate.
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In Table 6.4 the maximum deviation of the estimates of the observers compared the real roll and pitch
angle can be seen. It can be seen that the threshold of 2 ° is exceeded for both observers for almost all ma-
noeuvres. Only during the double lane change manoeuvre and the normal braking the maximum deviation
of the dynamic observer stays below 2 °. The threshold of the maximum deviation of the roll angle of the
dynamic observer is for the rest of the manoeuvres only just exceeded. The maximum deviation of the pitch
angle of the dynamic observer is for almost all manoeuvres equal to about 3 °. This can be explained by again
by the noisy sensor input of the longitudinal accelerometer used for the calculation of the pitch angle.

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-10

-5

0

5

10

R
o

ll 
a

n
g

le
 [

d
e

g
] Dynamic

Kinematic

Real

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-5

0

5

10

P
it
c
h

 a
n

g
le

 [
d

e
g

]

Dynamic

Kinematic

Real

Figure 6.7: Estimation performance during the emergency braking manoeuvre with noise added

One thing that can also be noted from Table 6.4 and what can also be seen in Figure 6.7 is that the max-
imum deviation of the roll angle for the kinematic observer is almost 10 ° for the straight line braking ma-
noeuvres. Due to the coupling of the roll and pitch angle in the states, this also leads to a high deviation of the
pitch angle. The algorithm has trouble with removing the external accelerations when there are noisy sensor
inputs and cannot remove the drift introduced by the gyroscopes.

The reader is referred to Appendix B to see the figures of the rest of the manoeuvres.

6.1.3. Sensor Quality Dependence
To see what the effect the gyroscope sensor quality has on the estimation performance of the observers, the
gyroscope noise that was added to the inputs of the observers was varied over an interval. The noise added
to the other inputs, which are the accelerometers and velocity sensor, were set to zero. The noise of the
gyroscope was varied between 0 and the value specified in Section 5.3.

The off diagonal noise values of the process noise covariance matrix Q of the dynamic observer turned
out to be not linearly dependent to the increased noise of the gyroscope sensor. After trial and error it turned
out that the best results were achieved when the process noise covariance matrix Q for the dynamic observer
was held constant over the range of varying gyroscope sensor noise and set equal to the same value as when
maximum noise is added to the inputs of the observer.

In Figure 6.8 the RMS errors of the roll and pitch angle can be seen as a function of the noise power of
the gyroscope noise for the double lane change manoeuvre. The noise power is given as an input of the band
limited white noise block that generates the noise that is added to the gyroscopes. It becomes clear that the
RMS errors of the roll and pitch angle of the kinematic observer increase significantly over the range, whereas
the RMS error of the pitch angle of the dynamic observer only increases slightly and the RMS error of the roll
angle of the dynamic observer stays more less constant.
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Figure 6.8: RMS errors of the observers as a function of gyroscope sensor quality of the double lane change
manoeuvre

The results from Figure 6.8 are as expected. When the noise power increases the kinematic observer has
difficulty to remove the external accelerations when the sensor values become noisy and so the RMS error of
the roll and pitch angle increases. The coupling of the states in the kinematic observer can also be observed
in the figure. When there is a small peak in the RMS error of the roll angle, the peak becomes also visible in
the RMS error of the pitch angle.
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Figure 6.9: RMS errors of the observers as a function of gyroscope sensor quality of the fishhook manoeuvre

In Figure 6.9 the RMS error of the roll and pitch angle can be seen as a function of the noise power of the
gyroscope noise for the fishhook manoeuvre. It can again be observed that the RMS errors of the kinematic
observer increase when the noise power increases. What also can be seen is that the RMS error of the dynamic
observer for the roll angle stays more less constant over the range of noise power and for low noise powers
it is higher than the RMS error of the kinematic observer. This can be explained by the fact that the process
noise covariance matrix Q was set constant over the entire range of noise powers. It was set equal to same
value as when maximum noise was added to the inputs of the observer for the entire range of noise power.
This means that for low noise power, so low sensor noise, the tuning of the Q matrix is not optimal, which
results in a higher RMS error of the roll angle. The RMS error of the pitch angle is less effected by this, which
results in a low RMS error for low noise powers.
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6.2. Lateral Velocity Dynamic Observer
The dynamic observer does not only estimates the roll and pitch angle, but also the lateral velocity. In this
section the estimation results are presented of the lateral velocity. In Table 6.5 the RMS error of the lateral
velocity estimates can be seen. In the table the results are shown for each manoeuvre when no sensor noise
is added to the inputs and when maximum sensor noise, as specified in Section 5.3, is added to the inputs of
the observer. From the table it becomes clear that the RMS error does not increases much when sensor noise
is added to the inputs of the observer.

Table 6.5: RMS error of lateral velocity estimate, when there is no noise and noise is present

Manoeuvre
RMS error lateral velocity

no noise [ms−1]
RMS error lateral velocity
maximum noise [ms−1]

Sine sweep 0.0441 0.0615
Step response 0.0154 0.0478
Double lane

change
0.0360 0.0583

Skidpad 0.1281 0.1338
Fishhook 0.0952 0.1005

Hockenheim
racetrack

0.1178 0.1241

Only for the skidpad manoeuvre and the Hockenheim racetrack the RMS error exceeds 0.1 ms−1. As
explained in previous sections this can be explained by the fact that there is a mismatch at high slip values in
the calculated tyre force in the internal vehicle model and the actual tyre forces. In the skidpad manoeuvre
and the Hockenheim racetrack there are constantly large accelerations and so large slip values, making the
RMS error large.
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Figure 6.10: Estimation performance lateral velocity during the double lane manoeuvre

In Figure 6.10 the lateral velocity estimates can be seen of the double lane change manoeuvre, when no
sensor noise is added to the inputs and when sensor noise is added to the inputs. It becomes clear that the
estimated lateral velocities match quite well with the real lateral velocity. For this manoeuvre the steering rate
is relatively low, which means that the slip in this manoeuvre is also relatively small and the calculated tyre
forces match the actual values quite well.
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Figure 6.11: Estimation performance lateral velocity during the step response manoeuvre

This result is different when a rapid steering input is applied, which is the case in the step response ma-
noeuvre. The estimation result can be seen in Figure 6.11 for the whole manoeuvre. At first sight the overall
estimate matches up quite well with the real value, but if one zooms in on the actual manoeuvre, a mismatch
between the estimate and the real value becomes visible.
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Figure 6.12: Close up lateral velocity estimate of the step response manoeuvre

In Figure 6.12 close up of the actual manoeuvre can be seen. It becomes clear that when the step response
steering input is applied the estimate is off. There are large slip values present during the step response, which
leads to a mismatch of the calculated tyre forces and the actual tyre forces. The calculated tyre forces are too
high compared the the actual ones, leading to an over estimation of the lateral velocity.
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Table 6.6: Maximum deviation of lateral velocity estimates with respect to true value for the different
manoeuvres with no noise and noise present

Manoeuvre Maximum deviation
no noise [ms−1]

Maximum deviation
noise [ms−1]

Sine sweep 0.1440 0.2716
Step response 0.3629 0.3941

Double lane change 0.2270 0.3344
Skidpad 0.7903 1.0540

Fishhook 1.0982 1.0989
Hockenheim

racetrack
0.5575 0.9475

In Table 6.6 the maximum deviation of the lateral velocity estimate with respect the true value for the
different manoeuvres can be seen. It can be observed that the maximum deviations are the highest for ma-
noeuvres that consists of high steering angle rates. Especially in the fishhook test, which consists of a very
rapid steering input, the maximum deviation is high. What also can be observed from the table is that com-
pared to the RMS errors in Table 6.5 the maximum deviations are quite high. This can be explained by the
fact that the estimate is off for a short time period as the steering input is applied. The rest of the manoeuvre
the lateral velocity estimate matches the true value well, which can also be seen in Figure 6.11.

The reader is referred to Appendix C to see the figures of the estimation results of the sine sweep, skidpad,
fishhook and the Hockenheim racetrack.





7
Conclusion and Recommendations

7.1. Conclusion
7.1.1. Roll and Pitch Angle Estimation
In this thesis report a dynamic and kinematic observer were compared that estimate the roll and pitch angle.
The dynamic observer was developed, because kinematic observers give inaccurate estimation results during
extreme driving situations, because kinematic relations do not take into account tyre behaviour. The goal of
this thesis was to develop an dynamic observer that gives accurate estimation results even in those extreme
driving situations. The estimation performance was not only assessed using the actual roll and pitch angle,
but also compared against a kinematic observer. The kinematic observer was developed by Ahmed & Tahir
[7].

From the results it can be concluded that when no sensor noise is added to the inputs of the observers
similar performance is achieved by both observers. Only at manoeuvres with high accelerations, where the
slip has a dominant effect, some deviation between the dynamic and kinematic estimator is observed, be-
cause kinematic relations do not take into the slip. When sensor noise is added to the inputs of the observers,
the estimation performance becomes different. Then the dynamic observer performs much better than the
kinematic observer.

Including dynamics significantly improves the estimation performance of the dynamic observer. Because
the observer has an internal model that calculates the roll and pitch angle quite accurately, its performance
is not influenced a lot by the noisy sensor measurements. It also has been shown that calculating the lateral
acceleration using an exponential tyre model leads to a more accurate estimation, than when the noisy ac-
celeration sensor measurements are used, but as already explained in Chapter 6 incorporating longitudinal
tyre forces makes the observer a lot more complex and with the prospect that the estimate of the pitch angle
only slightly increases, the longitudinal tyre forces are not calculated and used in this thesis.

From the results it also becomes clear that the estimates of the roll and pitch angle of the kinematic ob-
server drastically decrease when sensor noise is added to the inputs of the observer. The algorithm has trou-
ble removing the external accelerations when the sensor measurements are noisy and due to that reason the
kinematic observer cannot correct the drift of the gyroscopes accurately.

The contributions of this thesis to the scientific field are firstly that using an exponential tyre model inside
a dynamic observer the roll and pitch angle can be accurately estimated. Even in conjunction with low quality
sensors that have high noise in their measurements, accurate estimation results are achieved. The second
contribution is that for the first time the estimation performance of a dynamic observer that estimates the
roll and pitch angle is compared to a kinematic observer.

49
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Recalling from the introduction that accurate estimates of the roll and pitch angle were desired, because
the roll angle is used in roll stability control systems and the roll and pitch angle used for image correction
of the stereo camera and for comfort assessment in autonomous vehicles. In this thesis it has been shown
that using a dynamic observer the roll and pitch angle can be accurately estimated even using low quality
sensors and thus the estimates of the dynamic observer can be used for those applications. It has also has
been shown that a kinematic observer fails to estimate the roll and pitch angle when low quality sensors are
used and cannot be used for those applications.

7.1.2. Lateral Velocity Estimation
In this thesis an attempt was also made to estimate the lateral velocity in the dynamic observer. From the
results it can be concluded that the estimated lateral velocity does not drift away from the true lateral velocity.
It can also be concluded that the estimated lateral velocity follows the true value quite well when a gradual
steering input is applied. Only if a rapid steering input is applied, the estimate of the lateral velocity deviates
from the true lateral velocity.

This deviation during rapid steering inputs is caused by a mismatch at high slip values in the calculated
tyre forces in the internal vehicle model. Although the exponential tyre model takes into account saturation,
combined slip and vertical load dependency, it does not take into account the peak force and force drop off.
Because the peak force and drop off are not modelled, the calculated tyre forces are too high at higher slip
values.

In the introduction it was mentioned that the lateral velocity estimates are used to calculate the lateral
side slip angle α. Having an accurate estimate of the side slip angle could lead to the development of new
safety systems. For manoeuvres with a rapid steering input, the lateral velocity that is estimated in this thesis
are sadly not good enough in order to be used to calculate the side slip angle. In the next section a recom-
mendation is made to improve the estimation of the lateral velocity.

7.2. Recommendations
After performing this thesis study a few recommendations can be given to improve the state estimation of the
dynamic observer:

An improvement can be made to the tyre force calculation by including the peak force and also force drop
off at high slip values. The exponential tyre model can be extended by a second exponential term, which is
proposed in [38]. Adding an extra exponential could lead to better calculated tyre forces at high slip values,
which in term leads to a better estimated lateral velocity when a rapid steering input is applied, such as for
example in a step response manoeuvre.

In this thesis the tyre/road-friction coefficient µ is always equal to 1. This is a great assumption if the
vehicle is driving on dry asphalt, but when the vehicle is driving on a wet road or even on ice, the assumption
is not correct anymore. The tyre/road-friction coefficient then becomes close to zero. So for actual driving in
the real world, it is better to make this constant dependent of the weather. This can be done in two ways. The
first way is to make it a state in the Kalman filter, where it will be estimated. If the vehicle is equipped with a
camera, the images could also be used to estimate the tyre/road-friction coefficient.

Lastly, in this thesis the performance of the dynamic observer was investigated using IPG CarMaker. Al-
though this is a highly advanced vehicle simulation environment, which approximates the true vehicle dy-
namic behaviour well, there will always be some minor differences in the vehicle dynamic behaviour. To
analyse the performance of the dynamic observer further, it would be beneficial to test the dynamic observer
on a real vehicle doing actual manoeuvres and check if the observer shows similar performance as in IPG
CarMaker.
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A
Derivations

In this appendix all the derivatives are presented needed for the calculation of the Jacobians Ak and Hk .
Recalling that the Jacobians Ak and Hk are defined as

Ai j = ∂ fi (x,u)

∂x j
with i = {1,2,3,4,5,6} and j = {1,2,3,4,5,6} (A.1)

Hi j = ∂ fi (x,u)

∂x j
with i = {1,2,3,4} and j = {1,2,3,4,5,6} (A.2)

Where the Jacobian elements are numbered according to the definition of the state and output vector as
in Section 3.1.1. Recalling that the state and output vector were defined as

x = [
vy ψ̇ φ φ̇ θ θ̇

]T

z = [
ay ψ̇ φ̇ θ̇

]T

A.1. Derivatives Tyre Forces
The partial derivatives of the lateral tyre forces are done using equations (3.51) and (3.52) and are defined
below.

The partial derivative with respect to the lateral speed vy is defined as

(∂Fy,F L

∂vy

)
Posi t i ve α

=−µFz,F LKF exp
−Ky,F

(
− vy +l f ψ̇

vx
+δF

)
1

vx
(A.3)

(∂Fy,F L

∂vy

)
Neg ati ve α

=−µFz,F LKF exp
Ky,F

(
− vy +l f ψ̇

vx
+δF

)
1

vx
(A.4)

Combining the positive and negative slip gives

∂Fy,F

∂vy
=−µFz,F LKy,F exp−Ky,F |αF L | 1

vx
(A.5)

The partial derivatives with respect to the yaw rate is defined as

(∂Fy,F L

∂ψ̇

)
Posi t i ve α

=−µFz,F LKy,F exp
−Ky,F

(
− vy +l f ψ̇

vx
+δ f

)
l f

vx
(A.6)

(∂Fy,F L

∂ψ̇

)
Neg ati ve α

=−µFz,F LKy,F exp
Ky,F

(
− vy +l f ψ̇

vx
+δ f

)
l f

vx
(A.7)

Combining the positive and negative slip gives
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∂Fy,F L

∂ψ̇
=µFz,F LKy,F exp−Ky,F |αF L| l f

vx
(A.8)

To avoid divisions by zero a condition is set. The derivations of the lateral velocity are only calculated
when the longitudinal velocity is greater than 0.5 ms−1. When the longitudinal velocity is smaller than 0.5
ms−1 the derivations are set to zero.

A.2. Derivatives of Jacobian Elements
The elements of the Ak matrix containing the partial derivative with respect to the lateral velocity vy are
defined as

A11 =
∂v̇y

∂vy
= 1+ ts

( 1

mtot

(∂Fy,F L

∂vy
+ ∂Fy,F R

∂vy
+ ∂Fy,RL

∂vy
+ ∂Fy,RR

∂vy

))
(A.9)

A21 = ∂ψ̈

∂vy
= ts

( l f

Izz

(∂Fy,F L

∂vy
+ ∂Fy,F R

∂vy

)
− lr

Izz

(∂Fy,RL

∂vy
+ ∂Fy,RR

∂vy

))
(A.10)

A31 = ∂φ̇

∂vy
= 0 (A.11)

A41 = ∂φ̈

∂vy
= ts

(ms hr

Ixx

( 1

mtot

(∂Fy,F L

∂vy
+ ∂Fy,F R

∂vy
+ ∂Fy,RL

∂vy
+ ∂Fy,RR

∂vy

)))
(A.12)

A51 = ∂θ̇

∂vy
= 0 (A.13)

A61 = ∂θ̈

∂vy
= 0 (A.14)

The elements of the Hk matrix containing the partial derivatives to the lateral velocity vy are defined as

H11 =
∂ay

∂vy
= 1

mtot

(∂Fy,F L

∂vy
+ ∂Fy,F R

∂vy
+ ∂Fy,RL

∂vy
+ ∂Fy,RR

∂vy

)
(A.15)

H21 = ∂ψ̇

∂vy
= 0 (A.16)

H31 = ∂φ̇

∂vy
= 0 (A.17)

H41 = ∂θ̇

∂vy
= 0 (A.18)

(A.19)

The elements of the Ak matrix containing the derivatives with respect to the yaw rate ψ̇ are defined as

A12 =
∂v̇y

∂ψ̇
= ts

( 1

mtot

(∂Fy,F L

∂ψ̇
+ ∂Fy,F R

∂ψ̇
+ ∂Fy,RL
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+ ∂Fy,RR

∂ψ̇

)
− vx

)
(A.20)

A22 = ∂ψ̈

∂ψ̇
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(A.21)

A32 = ∂φ̇

∂ψ̇
= 0 (A.22)

A42 = ∂φ̈
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A52 = ∂θ̇

∂ψ̇
= 0 (A.24)

A62 = ∂θ̈

∂ψ̇
= 0 (A.25)
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The elements of the Hk matrix containing the derivatives with respect to the yaw rate ψ̇ are defined as

H12 =
∂ay

∂ψ̇
= 1

mtot

(∂Fy,F L

∂ψ̇
+ ∂Fy,F R

∂ψ̇
+ ∂Fy,RL

∂ψ̇
+ ∂Fy,RR

∂ψ̇

)
(A.26)

H22 = ∂ψ̇

∂ψ̇
= 1 (A.27)

H32 = ∂φ̇

∂ψ̇
= 0 (A.28)

H42 = ∂θ̇

∂ψ̇
= 0 (A.29)

The elements of the Ak matrix containing the derivatives with respect to the roll angle φ are defined as

A13 =
∂v̇y

∂φ
= 0 (A.30)

A23 = ∂ψ̈

∂φ
= 0 (A.31)

A33 = ∂φ̇

∂φ
= 1 (A.32)

A43 = ∂φ̈
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( 1
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ms g hr − (Kr ol l , f +Kr ol l ,r )
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(A.33)

A53 = ∂θ̇

∂φ
= 0 (A.34)

A63 = ∂θ̈

∂φ
= 0 (A.35)

The elements of the Hk matrix containing the derivatives with respect to the roll angle φ are defined as

H13 =
∂ay

∂φ
= 0 (A.36)

H23 = ∂ψ̇

∂φ
= 0 (A.37)

H33 = ∂φ̇

∂φ
= 0 (A.38)

H43 = ∂θ̇

∂φ
= 0 (A.39)

The elements of the Ak matrix containing the derivatives with respect to the roll rate φ̇ are defined as

A14 =
∂v̇y

∂φ̇
= 0 (A.40)

A24 = ∂ψ̈
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= 0 (A.41)
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(A.43)

A54 = ∂θ̇
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= 0 (A.44)

A64 = ∂θ̈

∂φ̇
= 0 (A.45)
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The elements of the Hk matrix containing the derivatives with respect to the roll rate φ̇ are defined as

H14 =
∂ay

∂φ̇
= 0 (A.46)

H24 = ∂ψ̇

∂φ̇
= 0 (A.47)

H34 = ∂φ̇

∂φ̇
= 1 (A.48)

H44 = ∂θ̇

∂φ̇
= 0 (A.49)

The elements of the Ak matrix containing the derivatives with respect to the pitch angle θ are defined as

A15 =
∂v̇y

∂θ
= 0 (A.50)

A25 = ∂ψ̈

∂θ
= 0 (A.51)

A35 = ∂φ̇

∂θ
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∂θ
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(A.55)

The elements of the Hk matrix containing the derivatives with respect to the pitch angle θ are defined as

H15 =
∂ay

∂θ
= 0 (A.56)

H25 = ∂ψ̇

∂θ
= 0 (A.57)

H35 = ∂φ̇

∂θ
= 0 (A.58)

H45 = ∂θ̇

∂θ
= 0 (A.59)

The elements of the Ak matrix containing the derivatives with respect to the pitch rate θ̇ are defined as

A16 =
∂v̇y

∂θ̇
= 0 (A.60)
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∂θ̇
= 0 (A.61)
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The elements of the Hk matrix containing the derivatives with respect to the pitch rate θ̇ are defined as

H16 =
∂ay

∂θ̇
= 0 (A.66)

H26 = ∂ψ̇

∂θ̇
= 0 (A.67)

H36 = ∂φ̇

∂θ̇
= 0 (A.68)

H46 = ∂θ̇

∂θ̇
= 1 (A.69)





B
Figures Roll and Pitch Angle

In this appendix the figures are shown of the roll and pitch angle estimation that were not showed in Chapter
6. The appendix follows the same structure as that chapter, which means that first the estimation results are
shown when there is no noise added to the inputs of the observers and then the results are shown when the
inputs are added to the observer.

B.1. No noise Added
Since the estimation results of the fishhook manoeuvre and the Hockenheim racetrack were already shown
in Section 6.1.1, they will not be shown and discussed here.
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Figure B.1: Estimation performance during the sine sweep manoeuvre

Starting with the estimation results of the sine sweep manoeuvre, which can be seen in Figure B.1. It
can be seen that the estimates of the roll and pitch angle of the dynamic observer follow the true values well
and hardly any deviation can be observed. It becomes also clear the the estimate of the pitch angle of the
kinematic observer slowly drifts away from the true value. A possible explanation for this is that the Kalman
filter does not correct the drift, because the measurement covariance matrix in the first measurement update
is low.
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Figure B.2: Estimation performance during the step response manoeuvre

In Figure B.2 the estimation performance of the observers can be seen for the step response manoeuvre.
It can be observed that a small deviation can be seen for both observers regarding the roll angle. For the
dynamic observer this can be explained by the fact that for larger slip values the calculated tyre forces in the
internal vehicle model are too high. The deviation of the kinematic observer can be explained by the fact
that slip is not taken into account in the kinematic relations, which is a dominant effect in the step response
manoeuvre. The deviation of the pitch angle of the kinematic observer can be explained by the coupling of
the roll and pitch angle in the state vector.
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Figure B.3: Estimation performance during the double lane change manoeuvre

The results of the double lane change manoeuvre can be seen in Figure B.3. It can be observed that both
observers perform well. There is some deviation of the kinematic observer regarding the pitch angle at the
end of the manoeuvre, but this is so small that it can be neglected. The main reason for the good performance
of both observers can be given by the relatively slow steering rate, which means that the slip values are not
high. This results in an accurately calculated tyre force in the dynamic observer and the kinematic relations
can still capture all the motions in the kinematic observer.
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Figure B.4: Estimation performance during the skidpad manoeuvre

In Figure B.4 the estimation performance of the skidpad manoeuvre can be seen. As already explained in
Chapter 6 the bad performance of the dynamic observer can be explained due to a mismatch in tyre forces,
which in turn is then over compensated by the term that contain the roll stiffness and roll coefficients, which
leads to a roll angle that is too low in the internal vehicle model compared to the actual roll angle. The
kinematic observer only shows some deviation at the end of the manoeuvre, where the accelerations are
the largest and slip plays a dominant role.
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Figure B.5: Estimation performance during normal straight line braking

In Figure B.5 the estimation results can be seen for normal straight line braking. The slip values are not
dominant in this manoeuvre and as expected the roll and pitch angle estimates of both observer match the
true roll and pitch angle quite well. This is different for the emergency braking manoeuvre, which can be seen
in Figure B.6. During this manoeuvre one of the wheels locks up and the kinematic observer does not takes
this into account, which explains the deviation of the roll angle.
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Figure B.6: Estimation performance during emergency straight line braking

B.2. Noise Added
In this section the figures of the estimation performances of the both observers can be seen when the sensor
noise is added to the inputs of the observers. Just as in the previous section the figures that already have
been shown in Chapter 6 are not shown. This means that the figures of the skidpad and emergency braking
manoeuvre are not shown here.
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Figure B.7: Estimation performance during the sine sweep manoeuvre with noise added

In Figure B.7 the estimation performance of the sine wave manoeuvre can be seen. It can be seen that the
roll estimate of the kinematic observer first drifts away, but then recovers when the steering input is started.
The estimate is then in the first part quite accurate, but when the steering input rate increases the estimate
drifts away, because the slip becomes a dominant roll. From the figure can also be observed that the dynamic
observer performs much better in this manoeuvre, due to the internal vehicle model.



B.2. Noise Added 65

0 10 20 30 40 50 60 70

Time [s]

-10

0

10

20

R
o

ll 
a

n
g

le
 [

d
e

g
]

Dynamic

Kinematic

Real

0 10 20 30 40 50 60 70

Time [s]

-5

0

5

10

P
it
c
h

 a
n

g
le

 [
d

e
g

]

Dynamic

Kinematic

Real

Figure B.8: Estimation performance during the step response manoeuvre with noise added

In Figure B.8 estimation performance of the step response manoeuvre can be seen. It becomes clear that
the drift of the roll and pitch estimate of the kinematic observer is very large. The coupling of the states
becomes also clearly visible again. The roll and pitch angle estimates of the dynamic observer stay much
closer to the actual values. Even if the dynamics inside the internal vehicle model do not match completely
with the real behaviour, they help the observer to estimate the roll and pitch angle much more accurately. A
combination of extreme dynamics and very noisy sensor inputs causes the kinematic observer to drift away
completely.
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Figure B.9: Estimation performance during the double lane change manoeuvre with noise added

In Figure B.9 the estimation of the double lane change manoeuvre can be seen. It becomes visible that the
roll estimate of the kinematic observer slowly drifts away from the true value when there are no accelerations
in the lateral direction. As soon as the actual manoeuvre starts, the Kalman filter starts working, because it
gets an lateral acceleration input and the drift of the roll estimate is corrected. Again in this figure the coupling
of the roll and pitch angle estimate is clearly visible.
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Figure B.10: Estimation performance during the fishhook manoeuvre with noise added

In Figure B.10 the estimation performance of the fishhook manoeuvre can be seen. Although the kine-
matic observer does not estimate the roll and pitch angle correctly, the drift is not so large as in the manoeu-
vres of the skidpad and double lane change manoeuvre. A possible explanation for this is that the actual
steering action of the manoeuvre begins not so rapid, which leads to a better tracking of the states. The dy-
namic observer shows similar behaviour as in the previous manoeuvres.
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Figure B.11: Estimation performance during normal braking with noise added

In Figure B.11 the estimation performance of the observers can be seen when the normal braking ma-
noeuvre is performed. Again the drift of the estimates of the roll and pitch angle of the kinematic observer is
clearly visible. The dynamic observer performs similar as in the other manoeuvres.
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Figure B.12: Estimation performance of driving on the Hockenheim racetrack with noise added

Lastly in Figure B.9 the estimation performance of the observers can be seen when the vehicle is driven
on the Hockenheim racetrack. The only thing that can be concluded from the figure is that the estimates of
the roll and pitch angle of the kinematic observer completely lost track of the true roll and pitch angle. The
kinematic observer already had difficulties giving correct estimates, when no sensor noise was present, but
with sensor noise it completely loses track of the true roll and pitch angle. The accelerations are too high and
hold on too long in order for the kinematic observer to give correct estimates.
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In this appendix the estimation performances of the dynamic observer can be seen for the lateral velocity.
Since the figures of the double lane change and step response manoeuvre were already shown in Chapter 6
they are not shown here.
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Figure C.1: Estimation performance of the lateral velocity during sine sweep manoeuvre

In Figure C.1 the estimation of the lateral velocity of the sine wave manoeuvre can be seen. It can be
observed that for low steering rates the estimate is quite good and matches the true lateral velocity quite well.
As the steering rate increases the estimate starts to deviate more. This can be explained as already said in the
results, that for high steering inputs the slip is higher. Due to the mismatch in the tyre forces at higher slip
values, the estimate of the lateral velocity starts to deviate.

In Figure C.2 the estimation performance of the lateral velocity of the skidpad manoeuvre can be seen. It
can be observed that the estimate follows the true value well for the majority of the manoeuvre. Only at the
end of the manoeuvre, where the lateral accelerations are the largest, there is some deviation. This can again
be explained with the mismatch of the tyre forces at higher slip values.

In Figure C.3 the estimation performance of the lateral velocity of the fishhook manoeuvre can be seen.
The manoeuvre consists of a very rapid steering rates to make the vehicle to roll over. This manoeuvre means
high slip values and due to the vary rapid steering input the estimate is off.

In Figure C.4 the estimation performance of the lateral velocity of the Hockenheim racetrack. The drive
consists of constant of hard cornering and hard braking, due to the high slip values the estimate is off most of
the time.
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Figure C.2: Estimation performance of the lateral velocity during the skidpad manoeuvre
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Figure C.3: Estimation performance of the lateral velocity during the fishhook manoeuvre
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Figure C.4: Estimation performance of the lateral velocity during driving on Hockenheim racetrack
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