An interactive design tool for urban planning using the size of the living space as unit of measurement

MSc Geomatics for the built environment

Gabriel García

July 2019

Tutors: G. Agugiaro R. Cavallo Co-reader: B. Hausleitner

What is the size of the living space?

Research question

What is the size of the living space in Amsterdam in relation with housing density and housing prices, and how this dimension can be used as a unit of measurement for new housing developments like Sloterdijk One in the Haven-Stad project?

Test case Sloterdijk One, Haven-stad project - Amsterdam

Sloterdijk train station

Amsterdam Central Station

Sloterdijk One

		Now	Future		
R	m2	360.311	1.122.000		
蜎	jobs	4.731	7.480		
	households	Ø	11.220		
	schools	Ø	8		
V	hospitals	Ø	8		
-3-	m2 sport	Ø	56.100		

*Source: *Ontwikkelstrategie Haven-Stad 2017*.

Methodology overview

Virtual city model, Definition of KPIs, Selection of similar existing neighbourhoods

Step 1

Calculation of living space design parameters from the chosen neighbourhoods

Step 2

Interactive generation of multiple design proposals/scenarios for a new development area

Step 3

Step 1 – Selection of similar existing neighbourhoods

Calculation of living space design parameters from the chosen neighbourhoods

Step 2

Interactive generation of multiple design proposals/scenarios for the new development area

Step 3

Step 1 – KPIs definition based on the Municipality guidelines

203 h/Ha Orte - 4 5,442 e 1931

Step 2 – Living space calculation

of KPIs, Selection of similar existing neighbourhoods

Step 1

chosen neighbourhoods

Step 2

Interactive generation of multiple design proposals/scenarios for the new development area

Step 3

Step 2 – Living space calculation _ Classification

1 Household

Step 2 – Example of living space calculation (Fannius S.)

LoD1 Buildings

Non-residential functions

Step 2 – Volume calculations

Colour: non-residential White: LoD1 Buildings

Step 2 – Living space calculation – Open space

Basisregistratie Kadaster (BRK)

Basisregistratie Grootschalige Topografie (BGT)

Step 2 – Comparison panels

Step 2 – Relation density-indoor space size

Step 3 – Interactive generation of multiple design proposals

Virtual city model, Definition of KPIs, Selection of similar existing neighbourhoods

Step 1

Calculation of living space design parameters from the chosen neighbourhoods

Step 2

Rhino / Grasshopper / Python

Interactive generation of multiple design proposals/scenarios for the new development area

Step 3

Step 3 – Interactive 3D model _ Implementation

Step 3– Input geometries (user)

Parcellations (plots) Closed polygons (polylines)

Road lines Lines & polylines

Step 3 – Options to create buildings

Step 3 – Geometrical parameters for new buildings

Step 3 – Other inputs for indoor space

Step 3 – Open space calculation

- Search for intersections
- Define the size of the intersections based on road sizes

• Intersections considered as driving space

- The remaining segments are considered for open space calculations
- Each road typology is customized separately

Step 3 – Schematic representation of the six open space classes

Step 3 – Example of urban/architectonic constraints

Step 3 – Contextual information _ Non-residential functions 1.5 km (Functiekaart)

SCOURSO

3 step – Demo

https://www.youtube.com/watch?v=cPYT5_cFlgw

3 step – Further considerations

Solid buildings

Courtyard buildings (blocks)

Residential building shape

Offset from street RESID

Building depth RESID

Level height RESID

Mixed-use building shape

Offset from street Mixed-use

Building depth Mixed-use

Level height NR in Mixed-use

Number of NR levels in Mixed-use

Level height RESID in Mixed-use

NR building shape

Offset from street NR

Building depth NR

Level height in NR buildings

Number of levels in NR

Existing buildings RESID

Existing buildings NR

All plots avaolable

Number of new houses

Average house size in m3

% of RESID to Mixed-use buildings

3 step – Output: Reports with model information (logs)

GSI FSI TOT parcel surfaces (m2) TOT m2 construction TOT number of houses Height of new residential buildings Number of levels of new residential buildings Height of new Mixed-use buildings Number of levels of new Mixed-use buildings Height of new NR buildings Number of working places Amount of NR space per house (m3) Overall % of NR in the area % of NR in Mixed-use buildings % of NR in NR buildings % of NR in Existing buildings

3 step – Output: Screenshots from the 3D model

3 step – Output: Export 3D model + data (CityGML + Geo-globes visualization in collaboration with G.Agugiaro)

City**GML**

Open standardized data model to store and share 3D city models

Cesium screenshot: G. Agugiaro

Overview of the project

Orte - 4 5,442 e 203 h/Ha 1931

Loots - 7 6,422 e 214 h/Ha 1918

Fann - 4 6,151 e 235 h/Ha 1930

Comparison among scenarios – Goal: 11,220 households

		11220 households	Java E.	Hercules	Elands.	Orteliusb.	Lootsb.	Fannius		
		Household size (m3)	515	290	440	285	310	300		
		Working space (m3)	95	145	185	65	125	110		
Elandsgrachtbuurt	185.49 m3/work	Working places	8,692	7,785	7,524	12,703	7,930	11,250	Orteliusbuurt	66.43 m3/work
	∫ ← 439.90 m3/house	FSI	5.8	3.8	5.51	3.57	3.92	3.79		285.71 m3/house
	1.48 people/household	m2 of construction	1,848,000	1,212,200	1,754,700	1,136,400	1,247,900	1,206,500		1.66 people/household
		Storeys Residential	16	9	13	9	9	9		
all sill	-Pedestrian- 7.02 m2/house Bike lines- 0.26 m2/house Road- 7.47 m2/house 	Storeys Mixed-Use	17	10	15	10	11	11		Pedestrian- 9.34 m2/house Bike lines- 0.85 m2/house Road- 7.37 m2/house
24%	Green - 0.63 m2/house Water - 6.37 m2/house	Storeys NR	1	3	6	1	2	1	6%	Green- 0.77 m2/house Water- NO m2/house
Non residential 137.51 m3/house 1.	61 km to Centraal station								Non residential 15.97 m3/house	3.58 km to Centraal station

Conclusions

- Analyze the city of the present through open data to create the city of the future.
- Inspiration from the Amsterdam Municipality goal: **reproduce** the existing **areas of 'success'** in expansion projects of the city (ring A10).
- Even if assumptions and simplifications were made in this thesis, the results shown the importance of considering the **size of the living spaces for future** development projects.
- Forgotten design proposals? The **exporting process** proposed in this thesis allows to make more **transparent** and **public** the design process and **store design as data** for possible future benefits.
- **GIS analysis** and parametric modelling of **cities** and **roads** together to have a complete overview of the design process.
- Expected uses of the 3D modelling tool for the design process:

Before -	Help to set the minimum parameters for a new project.
During -	Review the guidelines and check if the parameters are up to date.
After -	Adjust parameters or add new data over time.

Future implementations

- 1. Calculate in an automated way the **size of the living space for Amsterdam** and the **NL** based on the proposed method.
- 2. Beeing able to **compare** the scenarios **with other neighbourhoods** in the country and viceversa.
- 3. Implement the 3D modelling tool in an **open source software** (preferably web based).
- 4. Implement a **topology checker** to improve the **design possibilities** and calculate road widths based on building heights.

