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Abstract
In this paper we give growth estimates for ‖T n‖ for n → ∞ in the case T is a
strongly Kreiss bounded operator on a UMDBanach space X . In several special cases
we provide explicit growth rates. This includes known cases such as Hilbert and L p-
spaces, but also intermediate UMD spaces such as non-commutative L p-spaces and
variable Lebesgue spaces.

Keywords (Strongly) Kreiss bounded · Power boundedness · UMD space · Discrete
semigroup · Fourier multipliers · Decompositions

1 Introduction

Let X be a Banach space. Suppose that T ∈ L (X) is power bounded, i.e., there exists
a constant C ≥ 0 such that ‖T n‖ ≤ C for all n ≥ 1. If T is power bounded, then by
the Neumann series
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(λ − T )−1 =
∑

n≥0

T n

λn+1 , |λ| > 1,

one obtains

‖(λ − T )−1‖ ≤
∑

n≥0

‖T n‖
|λ|n+1 ≤ C

|λ| − 1
, |λ| > 1.

One can repeat the above calculation after differentiation, to see that

‖(λ − T )−k‖ ≤ C

(|λ| − 1)k
, |λ| > 1, k ∈ N.

These observations motivate the following definitions. An operator T ∈ L (X) is
called Kreiss bounded with constant K if

‖(λ − T )−1‖ ≤ K

|λ| − 1
, |λ| > 1, (1.1)

and T is called strongly Kreiss bounded with constant Ks if

‖(λ − T )−n‖ ≤ Ks

(|λ| − 1)n
, |λ| > 1, n ∈ N. (1.2)

By the above observations, any power bounded operator is (strongly) Kreiss bounded.
By letting λ → ∞ one sees that Ks, K ≥ 1.

In applications to numerics and ergodic theory, one often needs power boundedness
of T or sharp estimates for ‖T n‖ as n → ∞, which can be difficult to obtain directly.
However, it is often possible to check (strong) Kreiss boundedness. Therefore, it is
useful to investigate the converse to the above observations:

(i) Does (strong) Kreiss boundedness imply power boundedness?
(ii) If this is not the case, which growth of ‖T n‖ can one obtain from the (strong)

Kreiss boundedness of T ?

In the continuous time setting, the Hille–Yosida theorem provides a result of this
form. It gives the equivalent characterization between the generation of bounded C0-
semigroups and thepowers of the resolvent of its generator.Moreover, theHille–Yosida
theorem yields that T is strongly Kreiss bounded with constant Ks if and only if

‖eξT ‖ ≤ Ks e
|ξ |, ξ ∈ C, (1.3)

see [25, Proposition 1.1].
There is a gap between (1.3) and power boundedness of T , stemming from the

gap between the growth of an entire function and the decay of its Taylor coefficients
(see [25]). Therefore, the answer to Question (i) is unfortunately negative: not every
(strongly) Kreiss bounded operator is power bounded. Counterexamples to this and
related questions can be found in [1, 6, 17, 23, 33].
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Strongly Kreiss bounded operators in UMD Banach spaces

Question (ii) has been extensively studied. For instance, using Cauchy’s integral
formula, one can check that if T is Kreiss bounded with constant K , then (see [32,
p.9]) we have

‖T n‖ ≤ K e(n + 1), n ∈ N, (1.4)

and, if T is strongly Kreiss bounded with constant Ks , then (see [23, Theorem 2.1])
we have

‖T n‖ ≤ Ks

√
2π(n + 1), n ∈ N. (1.5)

Moreover, these growth rates in n are known to be optimal in general Banach spaces,
see [30, 32] for Kreiss bounded operators, and [23, Example 2.2] for strongly Kreiss
bounded operators.

Under geometric assumptions on X one can improve the above bounds. In the
special case that X is d-dimensional, the “Kreiss matrix theorem” (see [18, 19, 31])
asserts that Kreiss boundedness with constant K implies T is power bounded with
‖T n‖ ≤ K ed. In applications, the dimension may be very large (see [33]), so it is of
interest to study the sharpness with respect to d, which was established in [17] up to
multiplicative constants. In the finite dimensional setting, this seemed the end of the
story. However, 20 years later in [27], it was shown that the bound can be improved
to sublinear growth in d under further conditions.

In the infinite dimensional setting several results are known which improve the
estimate (1.4) for Kreiss bounded operators and the estimate (1.5) for strongly Kreiss
bounded operators:

• If X is a Hilbert space:

– (1.4) can be improved to ‖T n‖ = O
(
n/

√
log(n + 2

)
(see [2, Theorem 5] and

[7, Theorem 4.1]).
– (1.5) can be improved to ‖T n‖ = O((log(n+2))β) for some β > 0 depending
on T (see [7, Theorem 4.5]). Moreover it is also shown in [7, Proposition 4.9]
that β can be arbitrary large.

• If X = L p with p ∈ (1,∞) \ {2}:
– (1.4) can be improved to ‖T n‖ = O

(
n/

√
log(n + 2)

)
aswell (see [9, Corollary

3.2]).

– (1.5) can be improved to ‖T n‖ = O(n| 12− 1
p |

(log(n + 2))β) for some β > 1,
where the number | 12 − 1

p | is optimal (see [1, Theorem 1.1]).

• If X is aUMDspace, q and q∗ denote the (finite) cotypes of X and X∗, respectively:

– (1.4) can be improved to ‖T n‖ = O(n/(log(n+ 2))β) with β = 1
q∧q∗ (see [9,

Theorem 3.1]).

See Table 1 for an overview of these results. An improvement of (1.5) for general
UMD spaces seems to be missing. The main results of this paper give such improve-
ments. Moreover, we recover the results for strongly Kreiss bounded operators from
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Table 1 Growth rates for (strongly) Kreiss bounded operators in various spaces

Banach Hilbert L p UMD

KB O(n) O
(
n/

√
log(n + 2)

)
O(n/

√
log(n + 2)) O(n/(log(n + 2))β )

SKB O(
√
n) O((log(n + 2)))β ) O(n

| 12− 1
p |

(log(n + 2))β ) This paper

[7, Theorem 4.5] and [1, Theorem 1.1] in the Hilbert and L p-cases, respectively. The
following two results (see Corollaries 3.2 and 3.3) are special cases of our main result:

• If X is a UMD space, there exists an α ∈ (0, 1/2) depending only on X such that
‖T n‖ = O(nα);

• If X = [Y , H ]θ (complex interpolation), where Y is a UMD space and H is a
Hilbert space with θ ∈ (0, 1), then there exists an α ∈ (0, (1 − θ)/2) depending
only on X such that ‖T n‖ = O(nα).

For instance, the above conclusions can be applied to L p-spaces both in the commuta-
tive setting and non-commutative setting. Improvements of (1.5) for Banach function
spaces are discussed in Theorems 4.3 and 4.6.

The previously mentioned improvements of (1.5) follow from one single theorem,
in which the main condition on X is formulated in terms of upper and lower estimates
for decompositions in the Fourier domain, which we introduce and study in detail.
The definitions and properties of these decompositions will be given in Sect. 2.

Theorem 1.1 Let X be a Banach space which has upper �q0(L p)-decompositions and
lower �q1(L p)-decompositions, where p ∈ (1,∞) and 1 < q0 ≤ q1 < ∞. If T is a
strongly Kreiss bounded operator on X, then there exist constants C, β > 0 depending
on X and T such that

‖T n‖ ≤ Cn
1
2 ( 1

q0
− 1

q1
)
(log(n + 2))β, n ≥ 1.

One can see that q0 = q1 would lead to logarithmic growth. However, this equality
can only occur if X is isomorphic to a Hilbert space. This follows from Propositions
2.9 and 2.10 and Kwapien’s theorem (see [14]).

The structure of this paper is as follows. We explain our main tool: Fourier decom-
position properties in Sect. 2. With the help of Fourier decompositions, we can prove
our main results in Sect. 3 for general UMD space and in Sect. 4 for UMD Banach
function spaces. In Sect. 5 we collect some open problems related to the results of
paper.

2 Fourier decompositions

In Theorem 1.1, we used an assumption in terms of decompositions in the Fourier
domain. In this section, we will introduce these concepts.
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2.1 Fourier multiplier theory

Westart by briefly recalling someFouriermultiplier theory in the vector-valued setting.
For details we refer to [13].

Let T = [0, 1] denote the torus, and set en(t) := e2π int for t ∈ T and n ∈ Z. For
f ∈ L1(T; X) and n ∈ Z, let

f̂ (n) := F ( f )(n) :=
∫

T

f (t)en(t) dt

and for a sequence a = (an)n∈Z ∈ �1(Z; X) define

qa := F−1(a) :=
∑

n∈Z
anen .

Let P(T; X) denote the set of all trigonometric f : T → X . The space P(T; X) is
dense in L p(T; X) for all p ∈ [1,∞).

For a bounded sequence m = (mn)n∈Z ∈ �∞(Z;L (X)) and f ∈ P(T; X), we
define the Fourier multiplier

Tm f := F−1(m f̂ ),

which is well defined since f̂ is a finitely nonzero sequence. In this definition, we also
interpret a bounded function m : R → L (X) as a sequence by setting mn := m(n)

for n ∈ Z.
Let p ∈ [1,∞). If there exists a constant C > 0 such that for all f ∈ P(T; X),

‖Tm f ‖L p(T;X) ≤ C‖ f ‖L p(T;X),

we call m a L p-Fourier multiplier. In this case, Tm can be uniquely extended to a
bounded linear operator on L p(T; X).

In order to have a flexible theory of Fourier multipliers, one needs to restrict to
the so-called class of UMD Banach spaces. Indeed, already the boundedness of the
Hilbert transform Tm on L p(T; X) with p ∈ (1,∞) and m = −i sgn(·) gives a
characterization of UMD spaces. Moreover, the same holds for the Riesz projection
Tm where m = 1[0,∞). These results are due to Burkholder and Bourgain, and for
details we refer to [13, Chapter 5].

We will not give the precise definition of UMD spaces here and one may regard the
above characterization as a definition. The following properties of UMD spaces will
be used throughout this paper [13, Chapter 4]:

• UMD spaces are (super)reflexive.
• If X is UMD, then X∗ is UMD.

Moreover, for p ∈ (1,∞), we will write Rp,X := ‖T1[0,∞)
‖L (L p(T;X)).
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We say that a sequence (an)n∈Z of complex numbers is of bounded variation if

[a]V 1 :=
∑

n∈Z
|an+1 − an| < ∞,

andwe denote by V 1 the space of all such sequences. The following vector-valued ana-
logue of the Marcinkiewicz multiplier theorem is due to [4]. A corresponding version
on R with operator-valued m can be found in [14, Theorem 8.3.9]. Via transference,
the periodic case can also be derived from [14].

Lemma 2.1 Let X be a UMD space and 1 < p < ∞. If m ∈ �∞ ∩ V 1, then m is a
Fourier multiplier, and there exists a constant Mp,X ≥ 1 such that

‖Tm‖ ≤ Mp,X
(‖m‖�∞ + [m]V 1

)
.

2.2 �q(Lp)-Fourier decompositions

After the above preparationwe can now introduce the �q (L p)-Fourier decompositions.
For an interval I ⊆ Z and f ∈ P(T; X), define

DI f := T1I f = F−1(1I f̂ ).

A family I of subsets of Z is called an interval partition if it is a partition of Z and
each I ∈ I is an interval.

Definition 2.2 Let X be a Banach space and p, q ∈ [1,∞].
(i) The space X is said to have upper �q(L p)-decompositions if there exists a

constant U > 0 such that for each interval partition I and all f ∈ P(T; X),

‖ f ‖L p(T;X) ≤ U
( ∑

I∈I
‖DI f ‖qL p(T;X)

) 1
q .

(ii) The space X is said to have lower �q(L p)-decompositions if there exists a con-
stant L > 0 such that for each interval partition I and all f ∈ P(T; X),

( ∑

I∈I
‖DI f ‖qL p(T;X)

) 1
q ≤ L ‖ f ‖L p(T;X).

By the triangle inequality, it is clear that every Banach space has upper �1(L p)-
decompositions for any p ∈ [1,∞]. Moreover, if X is nonzero, then q < ∞ and in
fact q ≤ 2 ∧ p′ for the upper decompositions (see Proposition 2.9).

AnyUMDBanach space has lower �∞(L p)-decompositions for p ∈ (1,∞), which
follows from the boundedness of the Riesz projection. In Theorem 2.8 we shall see
that this can be improved. Moreover, the UMD property and p ∈ (1,∞) cannot be
avoided for the lower decompositions. Indeed, if there exist p, q ∈ [1,∞] such that
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(a nonzero) X has lower �q(L p)-decompositions, then p ∈ (1,∞), and X is a UMD
space. To see this, take I1 = Z+ and I2 = Z−\{0}. Definition 2.2(ii) immediately
implies that for all f ∈ P(T; X),

‖DI1 f ‖L p(T;X) ≤ L ‖ f ‖L p(T;X),

which gives the boundedness of the Riesz projection. Thus, X is a UMD space and
p ∈ (1,∞).

2.3 Basic properties

Let us discuss some basic properties of the upper and lower decompositions. We start
with a simple duality result.

Proposition 2.3 (Duality) Let X be a Banach space, p ∈ (1,∞) and q ∈ [1,∞]. The
following are equivalent:

(1) X is a UMD space which has upper �q(L p)-decompositions.
(2) X∗ has lower �q

′
(L p′

)-decompositions.

Proof We only consider the case q ∈ (1,∞).
(2)⇒(1): We already noted that X is a UMD space. To show the upper estimate,

let I be an interval partition, let f ∈ P(T; X) and g ∈ P(T; X∗). By Hölder’s
inequality and the assumption, we have

∣∣〈 f , g〉L p(T;X),L p′ (T;X∗)
∣∣ =

∣∣∣
∫

T

〈 f , g〉X ,X∗ dt
∣∣∣ =

∣∣∣
∫

T

∑

I∈I
〈DI f , DI g〉X ,X∗ dt

∣∣∣

≤
∑

I∈I
‖DI f ‖L p(T;X)‖DI g‖L p′ (T;X∗)

≤
( ∑

I∈I
‖DI f ‖qL p(T;X)

) 1
q
( ∑

I∈I
‖DI g‖q

′
L p′ (T;X∗)

) 1
q′

≤ L
( ∑

I∈I
‖DI f ‖qL p(T;X)

) 1
q ‖g‖L p′ (T;X∗).

Taking the supremum over all g which satisfy ‖g‖L p′ (T;X∗) ≤ 1, it follows from [13,
Proposition 1.3.1] that X has upper �q(L p)-decompositions.

(1)⇒(2): Let g ∈ P(T; X∗). Let f I ∈ P(T; X) for I ∈ I , where we suppose
that only finitely many f I are nonzero. Let f := ∑

I∈I DI fI . Hölder’s inequality
and the assumption give that

123



C. Deng et al.

∣∣∣
∑

I∈I

∫

T

〈 f I , DI g〉X ,X∗ dt
∣∣∣ =

∣∣∣
∫

T

〈 f , g〉X ,X∗ dt
∣∣∣ ≤ ‖ f ‖L p(T;X)‖g‖L p′ (T;X∗)

≤ U
( ∑

I∈I
‖DI f ‖qL p(T;X)

) 1
q ‖g‖L p′ (T;X∗)

≤ 2URp,X

( ∑

I∈I
‖ f I ‖qL p(T;X)

) 1
q ‖g‖L p′ (T;X∗).

where, in the last step, we applied the boundedness of the Riesz projection. Taking the
supremum over all ( f I )I∈I such that

∑
I∈I ‖ f I ‖qL p(T;X)

≤ 1, it follows from [13,

Proposition 1.3.1] that X∗ has lower �q
′
(L p′

)-decompositions. ��

In the following proposition, we show that one can trade �q -summability for poly-
nomial growth in the number of intervals in the decomposition properties, which seems
like a natural way to prove upper decompositions. A similar result holds for the lower
decompositions case.

Proposition 2.4 (�q -summability versus growth α) Let X be a Banach space and let
p, q ∈ [1,∞].
(1) If X has upper �q(L p)-decompositions, then there exists a constant U > 0 such

that for r ∈ [q,∞], all finite families of disjoint intervals I and f ∈ P(T; X)

with support in ∪{I ∈ I },

‖ f ‖L p(T;X) ≤ U (#I )
1
q − 1

r

( ∑

I∈I
‖DI f ‖rL p(T;X)

) 1
r
.

(2) Conversely, if there exists an r ∈ (q,∞] and a constant U > 0 such that for all
finite families of disjoint intervalsI and f ∈ P(T; X)with support in∪{I ∈ I },

‖ f ‖L p(T;X) ≤ U (#I )
1
q − 1

r

( ∑

I∈I
‖DI f ‖rL p(T;X)

) 1
r
,

then X has upper �s(L p)-decompositions for 1 ≤ s < q.

Proof Note that (1) follows directly from Hölder’s inequality. For (2), let I = {Ik :
k ≥ 1} be an interval partition of Z. For a trigonometric polynomial f : T → X , set
fk := DIk f . Without loss of generality, we may assume that

‖ fk‖L p(T;X) ≥ ‖ fk+1‖L p(T;X), k ≥ 1.
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By the triangle inequality and the assumption, we get

‖ f ‖L p(T;X) =
∥∥∥

∞∑

k=1

fk
∥∥∥
L p(T;X)

≤
∞∑

j=1

∥∥∥
2 j−1∑

k=2 j−1

fk
∥∥∥
L p(T;X)

≤ U
∞∑

j=1

2( j−1)( 1q − 1
r )

( 2 j−1∑

k=2 j−1

‖ fk‖rL p(T;X)

) 1
r

≤ U
∞∑

j=1

2( j−1) 1q ‖ f2 j−1‖L p(T;X)

≤ U
∞∑

j=1

2( j−1)( 1q − 1
s ) ·

( ∞∑

k=1

‖ fk‖sL p(T;X)

) 1
s
.

Since 1
q − 1

s < 0, assertion (2) follows. ��
In the next proposition, we discuss a complex interpolation result for the decom-

position properties.

Proposition 2.5 (Interpolation) Let (X0, X1) be an interpolation couple of UMD
spaces. Let p0, p1 ∈ (1,∞) and q0, q1 ∈ [1,∞]. Let θ ∈ (0, 1), set Xθ = [X0, X1]θ
and

1

p
= 1 − θ

p0
+ θ

p1
,

1

q
= 1 − θ

q0
+ θ

q1
.

If Xi has upper (lower) �qi (L pi )-decompositions for i = 0, 1, then Xθ has upper
(lower) �q(L p)-decompositions.

Proof We start with the proof of the lower case. Since Xθ is a UMD space, it has lower
�∞(L p)-decompositions. Thus we may assume without loss of generality that q < ∞
and thus min{q0, q1} < ∞. Let I be an interval partition of Z. Let

T : L pi (T; Xi ) → �qi (I ; L pi (T; Xi ))

be given by T f = (DI f )I∈I for i = 0, 1. From the assumption we see that T
is bounded of norm Li for i = 0, 1. Therefore, by complex interpolation (see [13,
Theorem 2.2.6]), we obtain that T : L p(T; Xθ ) → �q(L p(T; Xθ )) is bounded and

‖T ‖L (L p(T;Xθ ),�q (L p(T;Xθ ))) ≤ L1−θ
0 Lθ

1.

This gives the required result.
For the upper case, in Proposition 2.9, we will show that q0, q1 < ∞. Let

T : �qi (I ; L pi (T; Xi )) → L pi (T; Xi ) be given by

T (( f I )I∈I ) :=
∑

I∈I
DI fI
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for i = 0, 1. Note that

‖T (( f I )I∈I )‖L pi (T;Xi ) =
∥∥∥

∑

I∈I
DI fI

∥∥∥
L pi (T;Xi )

≤ Ui

( ∑

J∈I

∥∥∥DJ

∑

I∈I
DI fI

∥∥∥
qi

L pi (T;Xi )

) 1
qi

≤ 2Ui Rpi ,Xi ‖( f I )I∈I ‖�qi (I ;L pi (T;Xi )).

Therefore, again by complex interpolation (see [13, Theorem 2.2.6]), we obtain that
T : �q(I ; L p(T; Xθ )) → L p(T; Xθ ) is bounded. Applying this to ( f I )I∈I =
(DI f )I∈I for f ∈ P(T; Xθ ) yields the result. ��

With a similar method we obtain the following “extrapolation result”.

Proposition 2.6 (Extrapolation) Let X be aUMD space, p ∈ (1,∞), and q ∈ (1,∞).

(1) If X has upper �q(L p)-decompositions, then X has upper �s(Lr )-decompositions
for every s ∈ [1, q) and r ∈ (1,∞) such that

s′ = q ′

θ
for θ < min

{ p

r
,
p′

r ′
}
.

(2) If X has lower �q(L p)-decompositions, then X has lower �s(Lr )-decompositions
for every s ∈ (q,∞] and r ∈ (1,∞) such that

s = q

θ
for θ < min

{ p

r
,
p′

r ′
}
.

Proof By the duality result in Proposition 2.3, it suffices to prove (2). Moreover,
X has lower �∞(Lt )-estimates for all t ∈ (1,∞) by the boundedness of the Riesz
projection. It therefore follows fromProposition 2.5 that X has lower �s(Lr )-estimates
if 1

s = 1−θ
∞ + θ

q = θ
q and 1

r = 1−θ
t + θ

p . First consider r > p. Since we assumed
θ
p < 1

r , the latter identity holds for some t ∈ (r ,∞). If r < p, then using θ
p′ < 1

r ′ ,
one can check that this identity holds for some t ∈ (1, r). ��

The decomposition properties also behave well in the following sense, where we
note that extrapolation to other exponents can be deduced from Proposition 2.4 and
Corollary 2.6.

Proposition 2.7 Let (S,A , μ) be a σ -finite measure space. Let X be a Banach space
and let p, q ∈ (1,∞).

(1) If X has upper �q(L p)-decompositions, then L p(S; X) has upper �p∧q(L p)-
decompositions.

(2) If X has lower �q(L p)-decompositions, then L p(S; X) has lower �p∨q(L p)-
decompositions.
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Proof (1): By Fubini’s theorem, the assumption, the contractive embedding �p∧q ↪→
�q , and Minkowski’s inequality, we obtain

‖ f ‖L p(T;L p(S;X)) = ‖ f ‖L p(S;L p(T;X))

≤ U‖(DI f )I∈I ‖L p(S;�q (I ;L p(T;X)))

≤ U‖(DI f )I∈I ‖L p(S;�p∧q (I ;L p(T;X)))

≤ U‖(DI f )I∈I ‖�p∧q (I ;L p(S;L p(T;X)))

= U‖(DI f )I∈I ‖�p∧q (I ;L p(T;L p(S;X))).

(2): This can be proved in the same way. ��
The following result is much deeper and follows from [3] and [11]. It will play a

role in some of the results below.

Theorem 2.8 Let X be a Banach space and p ∈ (1,∞).

(1) X is super-reflexive if and only if there exists a q ∈ (1,∞) such that X has upper
�q(L p)-decompositions.

(2) X is a UMD space if and only if there exists a q ∈ (1,∞) such that X has lower
�q(L p)-decompositions.

Proof (1) is immediate from [3, Theorem 10] and [11, Theorem 9.25]. For (2), note
that if X is a UMD space, then X∗ is a UMD space as well, and thus super-reflexive. By
(1) for each p′ ∈ (1,∞), there exists a q ′ ∈ (1,∞) such that X∗ has upper �q

′
(L p′

)-
decompositions. Applying Proposition 2.3, X has lower �q(L p)-decompositions. The
converse implication has already been observed below Definition 2.2. ��

2.4 Necessity of type and cotype properties

We have already seen that super-reflexivity and UMD are necessary for upper and
lower decompositions, respectively. Our next aim is to show that the decomposition
properties also imply (Fourier) type and cotype. We briefly recall the definitions. For
details the reader is referred to [13–15].

Let p ∈ [1,∞]. The space X has Fourier type p if there exists a constant ϕp,X > 0
such that for all finitely nonzero (xn)n∈Z in X , we have

∥∥∥
∑

n∈Z
enxn

∥∥∥
L p′ (T;X)

≤ ϕp,X ‖(xn)n≥1‖�p(Z;X).

Every Banach space has Fourier type 1. Moreover, from the scalar case it follows that
necessarily p ∈ [1, 2]. Finally, note that X has Fourier type p if and only if X∗ has
Fourier type p (see [13, Propositions 2.4.16 and 2.4.20]).

Let (εn)n≥1 be a complex Rademacher sequence on a probability space (
,A ,P),
i.e., a sequence of independent random variables εn which are uniformly distributed
on the unit circle in C. Let p ∈ [1,∞). The space X is said to have type p if there
exists a constant τp,X > 0 such that for all x1, · · · , xn ∈ X , we have
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∥∥∥
n∑

k=1

εk xk
∥∥∥
L2(
;X)

≤ τp,X

( n∑

k=1

‖xk‖p
X

) 1
p
.

Let q ∈ [1,∞]. The space X is said to have cotype q if there exists a constant
cq,X > 0 such that for all x1, · · · , xn ∈ X , we have

( n∑

k=1

‖xk‖qX
) 1

q ≤ cq,X

∥∥∥
n∑

k=1

εnxn
∥∥∥
L2(
;X)

.

In the above, the complex Rademacher sequence can be replaced by a real
Rademacher sequence (see [14, Proposition 6.1.19]). Every space has type 1 and
cotype ∞. Moreover, considering the scalar case one sees that necessarily p ∈ [1, 2]
and q ∈ [2,∞] in the above definitions. If X has type p, then X∗ has cotype p′. The
converse holds if X has some nontrivial type, which for instance is the case if X is
UMD or super-reflexive. Finally, note that Fourier type p implies type p and cotype
p′ (see [14, Proposition 7.3.6]).

To deduce type and cotype properties, we will present the details in the case of
upper decompositions. The lower case will be derived by duality.

Proposition 2.9 (Upper decompositions implies type and cotype) Let X be a Banach
space and p, q ∈ [1,∞]. If X has upper �q(L p)-decompositions, then q ∈ [1, p′ ∧2]
and

(1) X has type q;
(2) X has Fourier type r ′ and cotype r for any r ∈ (

2q ′
p∧2 ,∞).

Proof By the assumption applied to the trigonometric polynomial f = ∑n
k=1 ekxk ,

and Ik = {k} for k ∈ Z, we obtain

∥∥∥
∑

n∈Z
enxn

∥∥∥
L p(T;X)

≤ U ‖(xn)n≥1‖�q (Z;X). (2.1)

This implies q ∈ [1, p′]. Indeed, if q > p′, this would lead to an improvement of the
classical Hausdorff–Young inequalities, which is known to be false for C and thus for
one-dimensional subspaces of X . This can for instance be deduced from [10, below
(4.6) with a ∈ (0, 1)].

(1): The fact that X has type q, and thus in particular q ≤ 2, follows from (2.1) and
the same argument as in [14, Proposition 7.3.6].

(2): By Hölder’s inequality we may assume p ≤ 2 in (2.1). Interpolating this
estimate with the trivial bound

∥∥∥
n∑

k=1

ekxk
∥∥∥
L∞(T;X)

≤
n∑

k=1

‖xk‖,
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and setting θ = p/2 and 1
s = 1−θ

1 + θ
q = 1 − p

2q ′ , we obtain

∥∥∥
n∑

k=1

ekxk
∥∥∥
L2(T;X)

≤ U p/2
( n∑

k=1

‖xk‖s
)1/s

.

Note that s ∈ [1, 2] as a consequence of q ≤ p′. Therefore, Hölder’s inequality implies
that

∥∥∥
n∑

k=1

ekxk
∥∥∥
L2(T;X)

≤ U p/2n
1
s − 1

2

( n∑

k=1

‖xk‖2
)1/2

.

By [15, Lemma 13.1.32] the latter estimate implies Fourier type r ′ if 1
r ′ > 1

s = 1− p
2q ′ ,

which is the required result. Since Fourier type r ′ implies cotype r by [14, Proposition
7.3.6], this completes the proof. ��
Proposition 2.10 (Lower decompositions implies type and cotype) Let X be a Banach
space, p ∈ (1,∞) and q ∈ [1,∞]. If X has lower �q(L p)-decompositions, then
q ∈ [p′ ∨ 2,∞] and
(1) X has cotype q;
(2) X has Fourier type r ′ and type r ′ for any r ∈ (

2q
p′∧2 ,∞).

Proof Note that the assumption implies that X is UMD. By Proposition 2.3, we know
that X∗ has upper �q

′
(L p′

)-decompositions. Thus Proposition 2.9 gives that q ′ ∈
[1, p∧2], and X∗ has type q ′. Therefore, X has cotype q and this proves (1). Similarly,
X∗ has Fourier type r ′ for any r ∈ (

2q
p′∧2 ,∞). This implies that X has Fourier type r ′,

and thus also type r ′ by [14, Proposition 7.3.6]. ��

2.5 Examples

Wehave already seen that everyUMDspace admits nontrivial upper and lower �q (L p)-
decompositions. In this section, we give some concrete spaces and indicate what the
admissible p and q are on these spaces.

Example 2.11 Let X be a Hilbert space. Then

• X has upper �p(L p)-decompositions for p ∈ (1, 2].
• X has lower �p(L p)-decompositions for p ∈ [2,∞).

Indeed, the first claim follows from the second by the duality statement in Proposition
2.3. Moreover, for the second statement it suffices to consider X = C by [13, Theorem
2.1.9]. By Rubio de Francia’s Littlewood–Paley inequality for arbitrary intervals [28],
which for T can be found in [16], there is a C > 0 such that for p ∈ [2,∞), each
interval partition I and all f ∈ P(T; X), we have

(∑

I∈I
‖DI f ‖p

L p(T)

) 1
p ≤

∥∥∥
(∑

I∈I
|DI f |2

) 1
2
∥∥∥
L p(T)

≤ C ‖ f ‖L p(T). (2.2)
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For the other ranges of p, we can combine (2.2) for p = 2 with Proposition 2.6 to
obtain that

• X has upper �q(L p)-decompositions for p ∈ [2,∞) and q ∈ [1, p′).
• X has lower �q(L p)-decompositions for p ∈ (1, 2] and q ∈ (p′,∞].

The endpoint q = p′ is missing in the above result due to the use of Proposition 2.6.
We leave it as an open problem whether these endpoints hold, see Problem 5.3.

Example 2.12 Let (S,A , μ) be a σ -finitemeasure space and p ∈ (1,∞). FromExam-
ple 2.11 and Proposition 2.7 we immediately obtain

• L p(S) has upper �p(L p)-decompositions for p ∈ (1, 2] and upper �q(L p)-
decompositions for p ∈ [2,∞) and q ∈ [1, p′).

• L p(S) has lower �p(L p)-decompositions for p ∈ [2,∞) and lower �q(L p)-
decompositions for p ∈ (1, 2] and q ∈ (p′,∞].

The claims about �p(L p)-decompositions are optimal, which follows from the opti-
mality of Corollary 3.5 below. Whether the endpoints q = p′ hold is even unclear in
the case S is a singleton thus L p(S) = C, see Problem 5.3.

The spaces X = L1(S) and X = L∞(S) do not have nontrivial upper and lower
estimates, since they are not reflexive in general.

An efficient method to create many examples can be obtained by interpolation. It is
actually an open problem if all UMD spaces can be written as an interpolation space as
below. For UMD lattices this is indeed the case (see [29]). Moreover, noncommutative
L p-spaces can also be written in the form below.

Example 2.13 Let X := [Y , H ]θ , where Y is a UMD Banach space and H is a Hilbert
space such that (Y , H) is an interpolation couple, and θ ∈ (0, 1). Let p ∈ ((1 −
θ
2 )−1, 2

θ
). Then there exists a θ0 > θ depending on θ, p and Y such that

• X has lower �
2
θ0 (L p)-decompositions.

• X has upper �
2

2−θ0 (L p)-decompositions.

As a trivial consequence, the same holds with θ0 = θ . To derive the above, we only
explain the lower case as the upper case can be proved similarly. By the assumption
on p we can find p0 ∈ (1,∞) such that

1

p
= 1 − θ

p0
+ θ

2
.

By Theorem 2.8 there exists an s ∈ (1,∞) such that Y has lower �s(L p0)-
decompositions. Note that s ≥ p′

0∨2 by Proposition 2.10. Since H has lower �2(L2)-
decompositions, Proposition 2.5 gives that X has lower �r (L p)-decompositions where
r ∈ [2, s] satisfies 1

r = 1−θ
s + θ

2 . This gives the result in the lower case.
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3 Main results on UMD Banach spaces

3.1 Statement of the results

In this section, we prove Theorem 1.1 and discuss several consequences. We use a
slightly more general formulation below, as this is required to obtain sharp estimates
in Corollary 3.5. The main extra ingredient is to allow growth in the upper and lower
decompositions.

Theorem 3.1 Let X be a Banach space, let p, q0, q1 ∈ (1,∞) and let γ0 ∈ [0, 1/q ′
0),

γ1 ∈ [0, 1/q1). Suppose that the following conditions hold:

(1) There exists a constant U > 0 such that for all finite families of disjoint intervals
I and all f ∈ P(T; X) with support in ∪{I ∈ I },

‖ f ‖L p(T;X) ≤ U (#I )γ0
( ∑

I∈I
‖DI f ‖q0L p(T;X)

) 1
q0 ;

(2) There exist a constant L > 0 such that for all finite families of disjoint intervals
I and all f ∈ P(T; X) with support in ∪{I ∈ I },

( ∑

I∈I
‖DI f ‖q1L p(T;X)

) 1
q1 ≤ L (#I )γ1 ‖ f ‖L p(T;X).

Suppose that T ∈ L (X) is strongly Kreiss bounded with constant Ks. Then there
exist constants C, β > 0 depending on X and Ks such that

‖T n‖ ≤ Cn
1
2 ( 1

q0
− 1

q1
+γ0+γ1)(log(n + 2))β, n ≥ 1.

For γ0 = γ1 = 0, the conditions (1) and (2) in Theorem 3.1 are equivalent to the
upper �q0(L p)-decompositions and lower �q1(L p)-decompositions of X , respectively.
In many cases it is sufficient to consider γ0 = γ1 = 0. Moreover, note that by
Proposition 2.4, the estimate in (1) implies that X has upper �s(L p)-decompositions
for all s satisfying 1

s > 1
q0

+ γ0. In particular, this shows that 1
q0

+ γ0 ≥ 1
2 (see

Proposition 2.9). A similar implication holds from (2) to lower decompositions of X ,
and one has 1

q ′
1

+ γ1 ≥ 1
2 . Finally, note that it is not useful to consider γ0 ≥ 1/q ′

0 or

γ1 ≥ 1/q1, because the obtained bound in the theorem would be worse than (1.5).
Before we turn to the proof, we derive several immediate consequences. Using

Theorem 2.8, we obtain:

Corollary 3.2 (General UMD case) Let X be a UMD Banach space. Suppose that
T ∈ L (X) is strongly Kreiss boundedwith constant Ks. Then there exist anα ∈ [0, 1

2 )

depending on X, and a constant C depending on X and Ks such that

‖T n‖ ≤ Cnα, n ≥ 1.

For interpolation spaces we can also provide explicit growth rates.

123



C. Deng et al.

Corollary 3.3 (Intermediate UMD) Let X := [Y , H ]θ , where Y is a UMD Banach
space and H is a Hilbert space such that (Y , H) is an interpolation couple, and
θ ∈ (0, 1). Suppose that T ∈ L (X) is strongly Kreiss bounded with constant Ks.
Then there exist an α ∈ [0, 1−θ

2 ) depending on X, and a constant C > 0 depending
on X and Ks such that

‖T n‖ = Cnα(log(n + 2))β, n ≥ 1.

In particular, one can also take α = (1 − θ)/2 in the above.

Proof By Example 2.13 we know that X has upper �
2

2−θ0 (L2)-decompositions for

some θ0 > θ , and lower �
2
θ0 (L2)-decompositions for some θ0 > θ . Thus it remains to

observe that α := 2−θ0
4 − θ0

4 = 1−θ0
2 < 1−θ

2 . ��
Similarly, the results of [7, Theorem 4.5] follow from Example 2.11.

Corollary 3.4 (Hilbert spaces) Let X be a Hilbert space. Suppose that T ∈ L (X)

is strongly Kreiss bounded with constant Ks. Then there exist constants C, β > 0
depending on Ks such that

‖T n‖ = C(log(n + 2))β, n ≥ 1.

We can also recover [1, Theorem 1.1], for which we will need the parameters γ0, γ1
in Theorem 3.1. Recall that in [1, Proposition 1.2], it is also shown that the exponent
| 12 − 1

p | cannot be improved.

Corollary 3.5 (L p-spaces) Let (S,A , μ) be a σ -finite measure space and let X =
L p(S) with p ∈ (1,∞). Suppose that T ∈ L (X) is strongly Kreiss bounded with
constant Ks. Then there exist constants C, β > 0 depending on p and Ks such that

‖T n‖ = Cn| 12− 1
p |

(log(n + 2))β, n ≥ 1.

Proof Due to the missing endpoint, using Example 2.12 would yield the asymptotic
nα for α > | 12 − 1

p |. We therefore argue differently, using the growth parameters γ0, γ1
in Theorem 3.1.

By duality, it suffices to consider the case p ∈ (1, 2]. By Example 2.12 we know
that assumption (1) in Theorem 3.1 holds with q0 = p and γ0 = 0. Next we claim that
assumption (2) in Theorem 3.1 is satisfied with q1 = 2 and γ1 = 1

p − 1
2 . This readily

follows from [1]. For convenience we include the details. Note that for finite families
of disjoint intervals I and all f ∈ P(T) with support in ∪{I ∈ I },

∥∥∥
(∑

I∈I
|DI f |2

) 1
2
∥∥∥
L2(T)

= ‖ f ‖L2(T),

∥∥∥
(∑

I∈I
|DI f |2

) 1
2
∥∥∥
L1,∞(T)

≤ C (#I )
1
2 ‖ f ‖L1(T).
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The first identity follows from the fact that F : L2(T) → �2(Z) is an invertible
isometry (see [13, Theorem 2.1.9]) and the second one is immediate from the bound-
edness of the Riesz projection from L1(�2) into L1,∞(�2) (see [16]). Applying the
Marcinkiewicz interpolation theorem (see [13, Theorem 2.2.3]) yields

(∑

I∈I
‖DI f ‖2L p(T)

) 1
2 ≤

∥∥∥
(∑

I∈I
|DI f |2

) 1
2
∥∥∥
L p(T)

≤ cp C
2
p −1

(#I )
1
p− 1

2 ‖ f ‖L p(T).

By Minkowski’s inequality and Fubini’s theorem, we obtain

(∑

I∈I
‖DI f ‖2L p(T;L p(S))

) 1
2 ≤ cp C

2
p −1

(#I )
1
p − 1

2 ‖ f ‖L p(T;L p(S)),

which implies the claim.
From the above and Theorem 3.1 we see that

‖T n‖ ≤ Cnα(log(n + 2))β, n ≥ 1,

with

α = 1

2

( 1

q0
− 1

q1
+ γ0 + γ1

)
= 1

2

( 1

p
− 1

2
+ 0 + 1

p
− 1

2

)
= 1

p
− 1

2
,

finishing the proof. ��
A further application for Banach function spaces will be presented in Theorems 4.3

and 4.6.

3.2 Preparatory lemmas

Beforewe prove Theorem 3.1, we need several preparatory lemmas.We start by noting
the key property that we will use of strongly Kreiss bounded operators, which follows
from [12] and [24, Corollary 3.2].

Lemma 3.6 If T is a strongly Kreiss bounded operator on a Banach space X with
constant Ks, then we have

∥∥∥
n∑

k=0

λkT k
∥∥∥ ≤ 20Ks (n + 1), |λ| = 1, n ∈ N. (3.1)

Proof It was shown in [12] that if T is a stronglyKreiss bounded operatorwith constant
Ks , then we have

sup
n≥0

∥∥∥
n∑

k=0

T k

λk+1

∥∥∥ ≤ 4Ks

|λ| − 1
, |λ| > 1.
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By [24, Corollary 3.2], this is equivalent to

∥∥∥
n∑

k=0

λkT k
∥∥∥ ≤ 20Ks (n + 1), |λ| = 1, n ≥ 5.

If n ≤ 4, (3.1) holds because of (1.5). The proof is complete. ��
The following key lemmawill provide away to obtain a special self-improvement of

bounds for stronglyKreiss bounded operators. The proof is a straightforward extension
of [1], where X = L p was considered. In order to obtain not too large explicit constant,
some adjustment and optimization seemed necessary. Moreover, it can be helpful to
see where the geometry of the space X enters.

We will use the notation
∑

a≤m≤b for a, b ∈ R to denote the sum over all integers
m ∈ Z such that a ≤ m ≤ b.

Lemma 3.7 Let X be a UMD space, and p ∈ (1,∞). Let T ∈ L (X) be strongly
Kreiss bounded with constant Ks. Suppose that there exists an increasing function
h : R+ → [1,∞) such that for all x ∈ X and n ≥ 2,

∥∥∥
∑

1≤m≤n

emT
mx

∥∥∥
L p(T;X)

≤ h(n)‖x‖. (3.2)

Then there exists a constant Cp,X > 0 such that for all j ≥ 0, n ≥ 1 and x ∈ X,

∥∥∥
∑

n−√
n+ j≤m≤n

emT
mx

∥∥∥
L p(T;X)

≤ KsCp,Xh(
√
n)‖x‖. (3.3)

Proof Define Sn := ∑
1≤m≤√

n emT
m . Then

ee1nT Sn =
∑

k≥0

ek(nT )k

k!
∑

1≤m≤√
n

emT
m

=
∑

k≥0

∑

k+1≤m≤k+√
n

nk

k! emT
m

=
∑

1≤m≤√
n

b̃n,memT
m +

∑

m≥�√n�+1

bn,memT
m,

where b̃n,m := ∑
0≤k≤m−1

nk
k! and bn,m := ∑

m−√
n≤k≤m−1

nk
k! .

We first consider the case n ≥ 6 and thus
√
n ≥ 2. Fix j ≥ 0 and let In =

[n − √
n + j, n] ∩ N. Note that

n − √
n ≥ �√n� + 1.
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By the boundedness of the Riesz projection with constant Rp,X , (1.3) (which uses the
strong Kreiss boundedness), and (3.2) we obtain

∥∥∥
∑

m∈In
bn,memT

mx
∥∥∥
L p(T;X)

≤ Rp,X‖ee1nT Snx‖L p(T;X)

≤ Ks Rp,Xe
n‖Snx‖L p(T;X)

≤ Ks Rp,Xe
nh(

√
n)‖x‖. (3.4)

Let an,m := enb−1
n,m for m ∈ In and zero otherwise. Then by Lemma A.2,

‖(an,m)m∈Z‖�∞ ≤ 32 and [(an,m)m∈Z]V 1 ≤ 978. Therefore, the Fourier multiplier
Lemma 2.1 and (3.4) imply that

∥∥∥
∑

m∈In
enemT

mx
∥∥∥
L p(T;X)

≤ 1010Mp,X

∥∥∥
∑

m∈In
bn,memT

mx
∥∥∥
L p(T;X)

≤ 1010Mp,X Ks Rp,Xe
nh(

√
n)‖x‖.

Dividing by en gives (3.3) with

Cp,X := 1010Mp,X Rp,X .

To prove the estimate for n ≤ 5, note that by Lemma 3.6 we can write

∥∥∥
∑

m∈In
emT

mx
∥∥∥
L p(T;X)

≤ Rp,X

∥∥∥
n∑

m=0

emT
mx

∥∥∥
L p(T;X)

≤ 20(n + 1)Ks Rp,X‖x‖
≤ 1010Mp,X Ks Rp,Xh(

√
n)‖x‖.

��

Combining Lemma 3.7 with the upper �q(L p)-decompositions, we obtain the fol-
lowing self-improvement result.

Proposition 3.8 Let 1 < p, q < ∞, γ ∈ [0, 1/q ′), and suppose that X is a UMD
which satisfies Theorem 3.1(1) with (q0, γ0) replaced by (q, γ ). Let T ∈ L (X) be
stronglyKreiss boundedwith constant Ks . Suppose that there exist constants d ∈ [0, 1]
and P ≥ 1 such that for all x ∈ X and n ≥ 1,

∥∥∥
n∑

m=1

emT
mx

∥∥∥
L p(T;X)

≤ Pnd‖x‖. (3.5)
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Then there is a constant C ′
p,X > 0 such that for all x ∈ X, and n ≥ 1,

∥∥∥
n∑

m=1

emT
mx

∥∥∥
L p(T;X)

≤ PUC ′
p,X Ksn

1
2 (d+ 1

q +γ )‖x‖.

Proof Let N ∈ N be such that (N − 1)2 < n ≤ N 2. Then by the boundedness of the
Riesz projection with constant Rp,X , the upper decompositions with constant U and
Lemma 3.7 with h(n) = Pnd , we find

∥∥∥
n∑

m=1

emT
mx

∥∥∥
q

L p(T;X)
≤ Rq

p,X

∥∥∥
N2∑

m=1

emT
mx

∥∥∥
q

L p(T;X)

≤ Uq Rq
p,X (2N )qγ

N−1∑

k=0

(∥∥∥
k2+k∑

m=k2+1

emT
mx

∥∥∥
q

L p(T;X)

+
∥∥∥

(k+1)2∑

m=k2+k+1

emT
mx

∥∥∥
q

L p(T;X)

)

≤ PqUq Rq
p,XC

q
p,X K

q
s (2N )qγ

N−1∑

k=0

2(k + 1)dq‖x‖q

≤ 21+qγ Pq Rq
p,XU

qCq
p,X K

q
s N

(d+γ )q+1‖x‖q ,

where Cp,X is the constant defined in the proof of Lemma 3.7. Since N ≤ 2
√
n, this

gives the result with constant (use d + 2
q + 2γ < d + 2 ≤ 3)

2
1
q +γ Rp,XCp,X2

d+ 1
q +γ ≤ 8 · 1010R2

p,X Mp,X = 8080 · R2
p,XMp,X =: C ′

p,X .

��

3.3 Proof of Theorem 3.1

Wecanfinally turn to the proof of themain result, which is an extension of the argument
in [1].

Proof of Theorem 3.1 Since T and T ∗ are both strongly Kreiss bounded, it follows
from Lemma 3.6 and (1.5) that for S ∈ {T , T ∗} and n ≥ 1 we have

∥∥∥
n∑

m=1

emS
mx

∥∥∥
L p(T;X)

≤ min
{
20Ks(n + 1) + 1, Ksn

√
2π(n + 1)

}‖x‖

≤ 21Ksn‖x‖,
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using the first term in the minimum for n > 64 and the second term for n ≤ 64.
Therefore, (3.5) holds for T and T ∗ with d = c0 = d0 := 1 and P := 21Ks .

By a similar duality argument as in Proposition 2.3, one can check that the estimate
Theorem 3.1(1) holds with (X , p, q0, γ0) replaced by (X∗, p′, q ′

1, γ1). Define cN and
dN for N ≥ 1 by

cN = 1

2Nq ′
0

− γ0

2N
, and dN = 1

2Nq1
− γ1

2N
.

Let Fp,X := UC ′
p,X Ks and Fp′,X∗ = LC ′

p′,X∗Ks , where C ′
p,X is the constant defined

in the proof of Proposition 3.8. By Proposition 3.8 and an induction argument one sees
that for every N ≥ 1,

∥∥∥
n∑

m=1

emT
mx

∥∥∥
L p(T;X)

≤ P(Fp,X )Nn
cN+ 1

q0
+γ0‖x‖, n ≥ 1, x ∈ X ,

∥∥∥
n∑

m=1

emT
∗mx∗

∥∥∥
L p′ (T;X∗)

≤ P(Fp′,X∗)Nn
dN+ 1

q′
1
+γ1‖x∗‖, n ≥ 1, x∗ ∈ X∗.

Let n ≥ 14 and thus n + 2 ≥ ee. We claim that there exist N ∈ N and w0, w1 > 0
such that

(Fp,X )NncN ≤ (log(n + 2))w0 , (3.6)

(Fp′,X∗)NndN ≤ (log(n + 2))w1 . (3.7)

Indeed, let N ∈ N be such that 2N <
log(n+2)

log(log(n+2)) ≤ 2N+1. Then

ncN ≤ (n + 2)cN = (log(n + 2))
log(n+2)

log(log(n+2)) cN ≤ (log(n + 2))2/q
′
0−2γ0 .

Moreover, from 2N ≤ log(n+2)
log(log(n+2)) and log(log(n + 2)) ≥ 1, we obtain that N ≤

log(log(n+2))
log 2 . Therefore, since (Fp,X )N ≥ 1,

(Fp,X )N = eN log Fp,X ≤ e
log(log(n+2))

log 2 log Fp,X = (log(n + 2))
log Fp,X
log 2 .

This gives (3.6) with w0 = 2
q ′
0

− 2γ0 + log Fp,X
log 2 . In the same way one sees that (3.7)

holds with w1 = 2
q1

− 2γ1 + log Fp′,X∗
log 2 .
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From (3.6) and (3.7) we can conclude that for all n ≥ 14, and x ∈ X ,

∥∥∥
n∑

m=1

emT
mx

∥∥∥
L p(T;X)

≤ P(log(n + 2))w0n
1
q0

+γ0‖x‖, (3.8)

∥∥∥
n∑

m=1

emT
∗mx∗

∥∥∥
L p′ (T;X∗)

≤ P(log(n + 2))w1n
1
q′
1
+γ1‖x∗‖. (3.9)

Since 1
q0

+ γ0 ≥ 1
2 and w0 ≥ log Fp,X

log 2 ≥ log(8080)
log(2) , one can readily check that (3.8)

extends to n ≤ 13, where we used the bound (1.5) once more. The same holds for
(3.9).

Applying (3.9) with n ≥ 3 replaced by 1 + √
n ≤ 2

√
n, we find

∥∥∥
∑

1≤k≤1+√
n

ekT
∗k x∗

∥∥∥
L p′ (T;X∗)

≤ 2P(log(n + 2))w1n
1

2q′
1
+ γ1

2 ‖x∗‖. (3.10)

If n ≤ 2, (3.10) holds by (1.5). By Lemma 3.7 and (3.8), with h(n) := P(log(n +
2))w0n

1
q0

+γ0 , we obtain

∥∥∥
∑

n−√
n≤k≤n

ekT
kx

∥∥∥
L p(T;X)

≤ PKsCp,X (log(n + 2))w0n
1

2q0
+ γ0

2 ‖x‖. (3.11)

It follows that for all n ≥ 1 and x ∈ X , x∗ ∈ X∗,

(1 + �√n�)∣∣〈x∗, T n+1x〉X∗,X
∣∣

= ∣∣ ∑

1≤k≤1+√
n

〈T ∗k x∗, T n+1−k x〉X∗,X
∣∣

=
∣∣∣
∫

T

〈 ∑

1≤k≤1+√
n

ekT
∗k x∗,

∑

1≤m≤1+√
n

ēmT
n+1−mx

〉

X∗,X
dt

∣∣∣

≤
∥∥∥

∑

1≤k≤1+√
n

ekT
∗k x∗

∥∥∥
L p′ (T;X∗)

∥∥∥
∑

n−√
n≤k≤n

ekT
kx

∥∥∥
L p(T;X)

≤ 2P2KsCp,X (log(n + 2))w0+w1n
1
2 ( 1

q0
+γ0+ 1

q′
1
+γ1)‖x‖‖x∗‖,

where in the last step we used (3.10) and (3.11). Taking the supremum over ‖x‖ ≤ 1
and ‖x∗‖ ≤ 1, we obtain for all n ≥ 1

‖T n‖ ≤ C(log(n + 2))βn
1
2 ( 1

q0
+γ0− 1

q1
+γ1),

where C := 2P2KsCp,X and β = w0 + w1. ��
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4 Results in Banach function spaces

In this final section we will discuss the particular case when X is a Banach function
space. For details on Banach function spaces, the reader is referred to [21, 34] and to
the recent survey [22].

Definition 4.1 Let (S,A , μ) be a σ -finite measure space and denote the space of
measurable functions f : S → C by L0(S). A vector space X ⊆ L0(S) equipped
with a norm ‖ · ‖ is called a Banach function space over S if it satisfies the following
properties:

• Ideal property: If f ∈ X and g ∈ L0(S) with |g| ≤ | f |, then g ∈ X with
‖g‖ ≤ ‖ f ‖.

• Fatou property: If 0 ≤ fn ↑ f for ( fn)n≥1 in X and supn≥1‖ fn‖ < ∞, then
f ∈ X and ‖ f ‖ = supn≥1‖ fn‖.

• Saturation property: For everymeasurable E ⊆ S of positive measure, there exists
a measurable F ⊆ E of positive measure with 1F ∈ X .

We note that the saturation property is equivalent to the assumption that there is an
f ∈ X such that f > 0 almost everywhere. Moreover, the Fatou property ensures that
X is complete.

We define the associate space X ′ of a Banach function space X as the space of all
g ∈ L0(S) such that

‖g‖X ′ := sup
‖ f ‖X≤1

∫

S
| f g| dμ < ∞,

which is again a Banach function space. For g ∈ X ′, define ϕg : X → C by

ϕg( f ) :=
∫

S
f g dμ,

which is a bounded linear functional on X , i.e., ϕg ∈ X∗. Hence, by identifying g
and ϕg , one can regard X ′ as a closed subspace of X∗. Moreover, if X is reflexive (or,
more generally, order-continuous), then X ′ = X∗.

The following notions, closely connected to type and cotype, will play an important
role in this section (see [21, Section 1.d] for details).

Definition 4.2 1 ≤ p ≤ q ≤ ∞. We call X p-convex if

∥∥(| f |p + |g|p) 1
p
∥∥ ≤ (‖ f ‖p + ‖g‖p) 1

p , f , g ∈ X ,

and we call X q-concave if

(‖ f ‖q + ‖g‖q) 1
q ≤ ∥∥(| f |q + |g|q) 1

q
∥∥, f , g ∈ X .
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Note that any Banach function space is 1-convex by the triangle inequality and ∞-
concave by the ideal property. One often defines p-convexity and q-concavity using
finite sums of elements from X and a constant in the defining inequalities. However, by
[21, Proposition 1.d.8], one can always renorm X such that these constants are equal
to one, yielding our definition. Moreover, X is p-convex (p-concave) if and only if
X ′ is p′-concave (p′-convex).

For s ∈ (0,∞) and a Banach function space X , define

Xs := { f ∈ L0(S) : | f | 1s ∈ X},

equipped with the quasi-norm ‖ f ‖Xs := ‖| f | 1s ‖sX . If s ≤ 1, Xs is always a Banach
function space. For s > 1, Xs is a Banach function space if and only if X is s-convex.
Note that for 0 < s, p < ∞, we have (L p(S))s = L

p
s (S).

Our main result of Banach function spaces reads as follows.

Theorem 4.3 Let X be a Banach function space over S and s ∈ (1, 2). Suppose X is
s-convex and s′-concave, and

Xs := (
(Xs)′

) 1
2−s

is aUMD Banach function space. Suppose that T ∈ L (X) is strongly Kreiss bounded
with constant Ks. Then there exist constants C, β > 0 depending on X and Ks such
that

‖T n‖ ≤ Cn
1
2− 1

s′ (log(n + 2))β, n ≥ 1.

Proof Note that Xs is s′
s -concave, so (Xs)′ is 1

2−s -convex and therefore we can con-
clude that Xs is a well-defined Banach function space. By [26, Corollary 2.12] and
[5] we have

X = ((Xs)
′)1−

2
s′ · Ls′(S) = [

(Xs)
′, L2(S)

]
2
s′
.

Since 1−2/s′
2 = 1

2 − 1
s′ , Corollary 3.3 yields the result. ��

Let us illustrate Theorem 4.3 and the space Xs with some examples. We start by
calculating the space Xs for X = L p(S).

Example 4.4 Let (S,A , μ) be a σ -finite measure space and let X = L p(S) with
p ∈ (1,∞). Let 1 ≤ s < min{p, p′}. Note that L p(S) is s-convex and s′-concave.
Moreover, we have

Xs = ((L
p
s (S))′)

1
2−s = (L

p
p−s (S))

1
2−s = L

(2−s)p
p−s (S) =: Lq(S).

Since

q = (2 − s)p

p − s
< ∞, and q ′ = (2 − s)p

p + s − sp
= (2 − s)p′

p′ − s
< ∞,
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we observe that q ∈ (1,∞) and thus that Xs is a UMD Banach function space.
Therefore, Theorem 4.3 yields that for any strongly Kreiss bounded operator T ∈
L (X), there are C, β > 0 depending on p and Ks such that

‖T n‖ = Cn
1
2− 1

s′ (log(n + 2))β, n ≥ 1.

The above method can also be extended to non-commutative L p-spaces. Note that the
result in Example 4.4 is almost as sharp as Corollary 3.5. So, in this particular case,
the general result in Theorem 4.3 almost recovers the specialized result in Corollary
3.5. Of course, the advantage of Theorem 4.3 is that it is applicable to many other
Banach function spaces, such as Lorentz, Orlicz and variable Lebesgue spaces. Let us
illustrate the result for variable Lebesgue spaces:

Example 4.5 Let (S,A , μ) be a σ -finite measure space, fix p0, p1 ∈ (1,∞) and
assume p : S → [p0, p1] is measurable. Let X = L p(·)(S) be the space of all f ∈
L0(S) such that

∫

S
| f (x)|p(x) dμ(x) < ∞,

which, equippedwith the corresponding Luxemburg norm, is a Banach function space.
Let 1 ≤ s < min{p0, p′

1} and note that L p(·)(S) is s-convex and s′-concave.Moreover,
by the same computation as in Example 4.4, we have Xs = Lq(·)(S), where q : S →
(1,∞) satisfies

q(x) = (2 − s)p(x)

p(x) − s
<

(2 − s)p1
p0 − s

< ∞, x ∈ S,

q(x)′ = (2 − s)p(x)′

p(x)′ − s
<

(2 − s)p′
0

p′
1 − s

< ∞, x ∈ S.

So, by [20,Corollary 1.2]weknow that Xs is aUMDBanach function space.Therefore,
Theorem 4.3 yields that for any strongly Kreiss bounded operator T ∈ L (X), there
are C, β > 0 depending on p and Ks such that

‖T n‖ = Cn
1
2− 1

s′ (log(n + 2))β, n ≥ 1.

4.1 Positive strongly Kreiss bounded operators

We end this article by considering positive strongly Kreiss bounded operators T (i.e.,
T f ≥ 0 for all f ≥ 0) on a Banach lattice. We refer to [21] for the definition of a
Banach lattice and note that a Banach function space is a particular case of a Banach
lattice.

The main result is the following extension of [1], where the cases X = L p and X
is an AM or AL space were considered.

123



C. Deng et al.

Theorem 4.6 Let X be aBanach lattice. Suppose that T ∈ L (X) is a positive operator
which is strongly Kreiss bounded with constant Ks.

(1) If X is p-convex with p ∈ (2,∞], then there exist constants C, β ≥ 0 depending
on X and Ks such that

‖T n‖ ≤ Cn
1
p (log(n + 2))β, n ≥ 1.

(2) If X is q-concave with q ∈ [1, 2), then there exist constants C, β ≥ 0 depending
on X and Ks such that

‖T n‖ ≤ Cn
1
q′ (log(n + 2))β, n ≥ 1.

Proof The case n = 1 is clear. In the following, we assume n ≥ 2.
(2): Let x ≥ 0. Using the Krivine calculus (see [21, Proposition 1.d.1]), Lemma

A.1, the positivity of T , and �1 ↪→ �q , we obtain

en

28
√
n

⎛

⎝
∑

n−√
n≤k≤n

(T kx)q

⎞

⎠

1
q

≤
⎛

⎝
∑

k≥0

(
nkT kx

k!
)q

⎞

⎠

1
q

≤
∑

k≥0

nkT kx

k! . (4.1)

Since X is q-concave, it follows from (1.3) that

en

28
√
n

⎛

⎝
∑

n−√
n≤k≤n

‖T kx‖q
⎞

⎠

1
q

≤ en

28
√
n

∥∥∥
( ∑

n−√
n≤k≤n

(T kx)q
) 1

q
∥∥∥

≤
∥∥∥

∑

k≥0

nkT kx

k!
∥∥∥ = ‖enT x‖ ≤ Kse

n‖x‖,

Therefore,

( ∑

n−√
n≤k≤n

‖T kx‖q
) 1

q ≤ 28Ks
√
n‖x‖. (4.2)

For all x ∈ X , x∗ ∈ X∗, we can estimate

(1 + �√n�)∣∣〈T n+1x, x∗〉∣∣q =
∑

1≤k≤1+√
n

∣∣〈T n+1−k x, T ∗k x∗〉∣∣q

≤
∑

1≤k≤1+√
n

‖T n+1−k x‖q‖T ∗k x∗‖q

≤
∑

n−√
n≤k≤n

‖T kx‖q sup
1≤k≤1+√

n
‖T ∗k‖q‖x∗‖q .
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Therefore, from (4.2), taking the supremum over ‖x‖, ‖x∗‖ ≤ 1, and using ‖T n‖ =
‖T ∗n‖, we find that

‖T n‖ ≤ 28Ksn
1
2q′ sup

1≤k≤2
√
n
‖T k‖. (4.3)

Since ‖T n‖ ≤ Ks
√
2π(n + 1) in any Banach space by (1.5), from (4.3) we obtain by

induction that for any N ≥ 0,

‖T n‖ ≤ 2
√

πKs · QNn
1
q′ +( 12− 1

q′ )2−N

,

where Q = 28 · √2Ks . Proceeding as in the proof of Theorem 3.1, we see there exist
C, β > 0 such that

‖T n‖ ≤ Cn
1
q′ (log(n + 2))β, n ≥ 2.

(1): We note that (2) holds for T ∗ on X∗ with exponent 1/p′. Now (1) follows by
duality. ��

5 Open problems

In this section we collect some open problems related to the results of the paper.
The upper and lower decompositions imply (Fourier) type and cotype properties of

X as we have seen in Propositions 2.9 and 2.10. It would be interesting to know if a
converse result holds.

Problem 5.1 Let X be a UMD space and p, q ∈ (1,∞). Find a sufficient condition
for �q(L p)-upper or lower decompositions in terms of (Fourier) type and cotype of
the space X.

Our decomposition properties are Fourier decomposition properties onT. One may
similarly define Fourier decomposition properties on R, in which case it is natural to
wonder if these properties would be equivalent. Note that transference methods are
not directly applicable.

Problem 5.2 Are the decomposition properties equivalent to their counterparts onR?

Even for the scalar field, we do not know for which p and q the upper and lower
�q(L p)-decompositions hold. The following problem concerns the missing sharp end-
points.

Problem 5.3 Does the scalar field C have lower �p
′
(L p)-decompositions for p ∈

(1, 2)?

If one reverses the roles of �p
′
and L p, then the above estimate fails as was observed

in [8], which answered a problem left open in [28]. In particular, a positive answer to
Problem 5.3 would be a special case of the following:
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Problem 5.4 Does Proposition 2.6 hold in the sharp case θ = min
{ p
r ,

p′
r ′

}
?

In Corollary 3.5 we have seen a sharp result for X = L p(S) for strongly Kreiss
bounded operators. The method of Example 4.4 can be adjusted to cover non-
commutative L p-spaces, but yields a sub-optimal result.

Problem 5.5 Does Corollary 3.5 hold for non-commutative L p-spaces?

It seems that the bounds for positive operators obtained in Sect. 4.1 are non-optimal.
Especially for L p(S)-spaces we expect that there is an improvement. The bounds
obtained from Corollary 3.5 and Theorem 4.6 are different. Moreover, as observed in
[1], the bound of Theorem 4.6 is worse than the one in Corollary 3.5 if p ∈ (4/3, 4).
It is unclear to us if and how positivity can help in the case p ∈ (4/3, 4). Given the
results for L1(S), L2(S) and L∞(S) (see [1]), one could even hope that θ = 0 in the
case of positive operators.

Problem 5.6 Let T be a positive operator on L p(S) with p ∈ (1,∞)\{2} which is
strongly Kreiss bounded. What is the infimum of all θ ∈ [0, 1/2) for which there exists
a C such that ‖T n‖ ≤ Cnθ for all n ≥ 1.

There has been a lot of interest in Kreiss bounded operators in finite dimensions
(see [18, 19, 31]). However, it seems to be unknown whether the obtained bounds in
terms of the dimension can be improved for strongly Kreiss bounded operators.

Problem 5.7 Let X be d-dimensional. Let T be strongly Kreiss bounded. Determine
the best θ ∈ (0, 1] for which there exists a C such that ‖T n‖ ≤ Cdθ for all n ≥ 1.

Appendix A: Technical estimate

In this appendix we present some technical estimates based on the standard Stirling
formula. These are quantified and optimized versions of results from [1].

Lemma A.1 Let n ≥ 2. Then for all integers k ∈ [0, 2√n],

en

28
√
n

≤ nn−k

(n − k)! ≤ en√
8π
5 n

. (A.1)

Proof The case n ∈ [2, 99] can be checked by hand. In the following we assume
n ≥ 100. It is elementary to check that log(1− x) ≤ − 2x

2−x for x ∈ [0, 1). Therefore,
setting g(x) = x2

2n−x , we find

log
(
ex (1 − x

n )n−x) = x + (n − x) log(1 − x
n )

≤ x − (n − x)
2x

2n − x
= g(x).
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The function g : [0, 2√n] → [0,∞) is increasing. It follows that for all x ∈ [0, 2√n],

g(x) ≤ g(2
√
n) = 4n

2n − 2
√
n

= 2

1 − 1√
n

≤ 20

9
,

where in the last step we used n ≥ 100. Therefore, we can conclude

ek(1 − k
n )n−k ≤ e

20
9 . (A.2)

One can check that the latter is close to optimal. For k = 2
√
n and n → ∞, the

left-hand side tends to e2.
Next, we show that (A.1) holds via the standard Stirling formula

e
1

12n+1
√
2πn( ne )

n < n! < e
1

12n
√
2πn( ne )

n, n ≥ 1. (A.3)

Let n ≥ 100 and k ∈ [0, 2√n]. It follows that n − k ≥ n − 2
√
n ≥ 80. Thus, by

the upper estimate of (A.3) and (A.2), we have

(n − k)! ≤ √
2π(n − k)

( n−k
e

)n−ke
1

12(n−k)

≤ √
2πn

( n
e

)n−k
(1 − k

n )n−ke
1

12·80

≤ √
2π

√
n
( n
e

)n−ke−k+ 20
9 e

1
960

= e
20
9 e

1
960

√
2π

√
nnn−ke−n

≤ 28
√
nnn−ke−n .

The first estimate in (A.1) is proved.
On the other hand, since f (x) := ex (1 − x

n )n−x is increasing, we have f (x) ≥
f (0) = 1 for x ∈ [0, 2√n]. Note that n − k ≥ n − 2

√
n ≥ 4

5n due to n ≥ 100. Thus
the lower estimate of (A.3) gives

(n − k)! ≥ √
2π(n − k)( n−k

e )n−ke
1

12(n−k)+1

≥
√
8π

5

√
nnn−ke−nek(1 − k

n )n−k

≥
√
8π

5

√
nnn−ke−n,

finishing the proof. ��
Lemma A.2 For n ≥ 2 and n − √

n ≤ m ≤ n, define

bn,m :=
∑

m−√
n≤k≤m−1

nk

k! ,

an,m := enb−1
n,m,
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and an,m = bn,m = 0 otherwise. Then we have ‖(an,m)m∈Z‖�∞ ≤ 32 and
[(an,m)m∈Z]V 1 ≤ 978.

Proof The case n ∈ [2, 99] can be checked by hand. In the following we assume
n ≥ 100. We start with the boundedness of an,m for m ∈ [n − √

n, n]. From (A.1) it
is almost immediate that

|an,m | = en

bn,m
≤ 28en

∑
m−√

n≤k≤m−1
en√
n

≤ 28

(
1 + 1√

n − 1

)
≤ 32.

Next, we show that (an,m)m∈Z has bounded variation. First we fixm ∈ [n−√
n, n−

1] and let L := �m − √
n�. By (A.1),

|an,m+1 − an,m | = en
∣∣b−1

n,m+1 − b−1
n,m

∣∣ = en
| nmm! − nL

L! |
bn,mbn,m+1

≤ e−n
(
nm

m! + nL

L!
)

· an,man,m+1 ≤ e−n · 2 en√
8π
5 n

· 322 ≤ 914√
n

.

Therefore, we can conclude

[(an,m)m∈Z]V 1 ≤ 2 sup
m≥1

|an,m | +
∑

n−√
n≤m≤n−1

|an,m+1 − an,m | ≤ 978,

finishing the proof. ��
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