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Abstract

This thesis investigates a steady-state visually evoked potential (SSVEP)–based brain-computer in-
terface (BCI) for controlling a computer cursor. The system employs two frequency-detection meth-
ods: filter-bank canonical correlation analysis (FBCCA) and ensemble task-related component anal-
ysis (eTRCA). Performance was evaluated using EEG data from a public dataset (MAMEM) and a
self-recorded dataset. Classification accuracy, information transfer rate (ITR), and signal-to-noise ratio
(SNR) were analyzed.

Results indicate that theMAMEMdataset, featuring a 256-channel high-density electrode setup, yielded
superior classification accuracy—averaging 70.3% with FBCCA and reaching up to 93.3% peak accu-
racy in some subjects. In contrast, the self-recorded dataset, acquired with an 8-channel OpenBCI
headset, showed lower performance, with FBCCA average accuracies ranging from 33.3% to 71.1%,
and a maximum observed peak accuracy of 93.3% in isolated trials. FBCCA proved particularly effec-
tive in real-time conditions due to its calibration-free design, achieving real-time classification accura-
cies of 67.86% and 62.5% in two separate test sessions. In addition, system latency was assessed,
and it was found that the complete signal processing pipeline executes within 0.232 seconds. eTRCA
achieved higher offline accuracy on the MAMEM data when sufficient training trials were available but
underperformed on the self-recorded dataset due to limited calibration data. Real-time cursor control
was successfully demonstrated using two target frequencies (8.57 Hz and 12.00 Hz), confirming the
practical viability of SSVEP-based BCIs. Future work should aim to improve signal quality, enhance
spatial resolution through better electrode placement, and reduce the need for user-specific calibration
to enable more reliable and accessible real-world applications.
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Preface

Adam Amnouh & Adam El Haddouchi
Delft, June 2025

This paper marks the completion of our Bachelor’s graduation project, conducted as part of a collab-
orative effort to develop a real-time Brain-Computer Interface (BCI) system. The project was carried
out by three dedicated groups: GUI and Stimulus Design, Signal Acquisition, and Signal Processing
and Classification. Our group was responsible for the latter, focusing on decoding SSVEP signals from
EEG data to enable cursor control through brain activity.

Working on this project has been both challenging and rewarding. It provided us with the opportunity
to apply and expand our knowledge in signal processing, while also learning how to collaborate effec-
tively within a multidisciplinary team. The experience gave us valuable insights into the complexity and
potential of BCI technologies.

We would like to sincerely thank our supervisors, Tiago Costa and Dante Muratore, for their ongoing
support, guidance, and constructive feedback throughout the course of the project. Their expertise and
encouragement played a crucial role in helping us stay motivated and on track.

We hope this work will contribute to further developments in the field of BCI, and we are excited to see
how future students and researchers will build upon it.
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1
Introduction

1.1. State-of-the-Art Analysis
Brain-Computer Interfaces (BCIs) are systems that enable direct communication between the brain and
an external device by translating neural activity into actionable commands, bypassing peripheral nerves
or muscular control [1]. Non-invasive BCI systems, particularly those based on electroencephalography
(EEG), are very attractive due to their safety, portability, and relatively low cost [2]. BCIs have shown
promise in restoring communication or control abilities to individuals with severe motor impairments. In
recent years, however, BCI applications have extended into broader domains including entertainment,
neurofeedback training, and assistive technologies for the general population [3], [4].

Among various BCI paradigms, the Steady-State Visual Evoked Potential (SSVEP) approach stands
out for its robustness, minimal training requirements, and high information transfer rates. SSVEPs are
brain responses elicited when a user focuses on a visual stimulus flickering at a constant frequency,
making this paradigm particularly suitable for real-time applications [5]. Thanks to advances in signal
processing and machine learning, modern SSVEP-based BCIs now achieve significantly improved
accuracy and responsiveness, bringing real-time control applications closer to practical deployment
[6]. However, achieving seamless integration between signal acquisition, real-time processing, and
graphical interface design remains a key technical challenge [7].

1.2. Problem Definition
Despite the growing interest in non-invasive Brain-Computer Interfaces (BCIs), many real-time sys-
tems still face significant challenges in signal processing, particularly in decoding Steady-State Visually
Evoked Potentials (SSVEPs) with low-latency and high accuracy using consumer-grade EEG hardware.
These challenges are exacerbated by the practical limitations of low channel count, environmental
noise, and inter-subject variability in SSVEP responses [8], [9].

Real-time BCI applications, such as cursor control, demand both rapid response and consistent per-
formance. However, many existing pipelines require extensive calibration, long signal windows, or
high-density electrode arrays, limiting their practicality for general use. The need for reliable classifica-
tion from brief EEG epochs recorded via dry electrodes further complicates the signal processing task,
often resulting in reduced signal-to-noise ratios (SNR) and degraded system responsiveness [10].

This thesis addresses these limitations by designing and implementing a signal processing and classi-
fication pipeline optimized for low-latency and calibration-minimal operation. The system targets two-
class cursor control using an 8-channel OpenBCI headset and evaluates two prominent frequency
recognition methods: Filter Bank Canonical Correlation Analysis (FBCCA) and Ensemble Task-Related
Component Analysis (eTRCA). These algorithms were selected due to their established performance
in SSVEP detection under real-time constraints [8], [9].

The scope of this work is shaped by practical constraints, including limited EEG spatial resolution,
hardware compatibility with the OpenBCI platform, and integration with GUI components developed

1



1.3. Overview of the BCI Pipeline and Implementation Scope 2

by collaborating subgroups. These constraints inform design decisions throughout the pipeline and
highlight trade-offs between algorithmic performance and system usability.

1.3. Overview of the BCI Pipeline and Implementation Scope
The developed Brain-Computer Interface (BCI) system consists of three principal components: the
Graphical User Interface (GUI), the Data Acquisition subsystem, and the Signal Processing module. To-
gether, these elements form an integrated real-time loop for interpreting Steady-State Visually Evoked
Potential (SSVEP) responses and enabling cursor control through neural activity.

Figure 1.1 presents the high-level system architecture. The operational flow is initiated within the GUI,
which manages user interaction and initiates communication with the EEG headset through the Lab
Streaming Layer (LSL) protocol. LSL provides a standardized interface for real-time acquisition and
synchronization of biosignals, enabling a seamless data stream between the GUI and the backend.

Upon activation, the EEG headset continuously transmits raw neural signals to both the GUI and the
backend components. Within the Data Acquisition subsystem, these signals undergo preprocessing
steps, including filtering and noise suppression, to enhance the signal-to-noise ratio. The filtered EEG
data is then forwarded to the Signal Processing unit, where SSVEP-related frequency features are
extracted and classified.

The classification module is responsible for determining the intended focus of the user based on the
frequency-locked neural activity. A predicted frequency label and associated confidence score are
generated as output and sent back to the GUI. The GUI interprets this classification result to update
the interface, such as moving a cursor or providing other real-time feedback.

Graphical
User Interface

EEG Headset

Data
Acquisition Signal Processing

Back-end

User Input

Start LSL stream EEG Data

EEG Data

Filtered Data

Classification Output

Figure 1.1: Overall System Architecture
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This work forms part of a broader collaborative project in which multiple subgroups contributed to the de-
sign and implementation of the BCI system. The responsibilities described in this thesis were centered
on the signal processing and classification track. Key tasks undertaken include:

• Implementation and optimization of the FBCCA and eTRCA classification algorithms.
• Validation of these algorithms using both publicly available datasets (e.g., MAMEM) and self-
recorded EEG signals.

• Ensuring real-time system performance through the use of short signal windows and lightweight
computational methods.

• Delivering classification outputs in a structured format suitable for direct integration with the GUI
subsystem.

Through the careful development and evaluation of the signal processing pipeline, the system aims
to demonstrate the feasibility of real-time BCI control using non-invasive EEG signals and consumer-
grade hardware.

1.4. Structure of the Thesis
The thesis is continued in Chapter 2, where the programme of requirements is outlined, including the
system’s functional goals, performance targets, and integration needs. In Chapter 3, the chosen sig-
nal processing and classification methods—such as FBCCA and eTRCA—are presented, along with
supporting techniques like filtering and performance metrics. Chapter 4 describes how the system was
implemented, detailing how the datasets were processed and how the algorithms were integrated into
a working pipeline. In Chapter 5, the empirical evaluation is provided, covering both the validation of
dataset signal quality and the correctness of the classification methods. The system’s performance is
also reported based on various datasets and real-time tests. In Chapter 6, potential improvements and
directions for future work are explored. Finally, in Chapter 7, the main findings are summarized and
concluding reflections are offered. Additional material, such as source code and extended results, is
included in the appendices, with all references compiled at the end.



2
Programme of Requirements

This chapter presents the formal requirements for the development of a signal processing and classifica-
tion pipeline within a steady-state visually evoked potential (SSVEP)-based Brain-Computer Interface
(BCI) system. The intended goal of the system is to enable real-time two-class cursor control via non-
invasive EEG signals acquired using an OpenBCI headset. To realize this objective, a structured set of
requirements has been established, categorized into general system requirements, classifier-specific
requirements, and implementation constraints.

2.1. General System Requirements
Functional Requirements
G.1 The system shall be capable of identifying user visual attention towards flickering stimuli corre-

sponding to distinct control commands.
G.2 It shall output a classification result in real-time, based on a brief segment of EEG data following

stimulus onset.
G.3 The system shall allow two-target control, assigning one flicker frequency to each directional

command.
G.4 Output confidence scores shall be provided to quantify prediction certainty, enabling threshold-

based command validation.

Performance Requirements
G.5 The average classification accuracy during real-time operation shall exceed 70%, based on the

user’s intended selections.
G.6 The latency between stimulus onset and output decision (signal processing pipeline delay) shall

not exceed 400 ms.
G.7 The system shall produce consistent classification results using a maximum of 2 seconds of EEG

data per trial.

Implementation Requirements
G.8 All signal processing and classification procedures shall be implemented in Python, using libraries

suitable for real-time execution (e.g., NumPy, SciPy).
G.9 The system shall operate on mid-range consumer hardware without requiring GPU acceleration.
G.10 EEG data shall be acquired using the OpenBCI headset with dry electrodes, operating at a sam-

pling rate of 250 Hz.

4
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2.2. Classification Module Requirements
Functional Requirements
C.1 The classifier shall receive preprocessed EEG epochs of fixed length and return a prediction label

and associated confidence value.
C.2 The method shall be capable of distinguishing between at least two classes corresponding to

defined flickering frequencies.
C.3 The classifier shall be modular and capable of integration with the GUI component.
C.4 The output format shall consist of a label (Left or Right) and a normalized confidence value in the

range [0,1].

Performance Requirements
C.5 The classifier shall achieve at least 67% accuracy on real-time trials using unseen data.
C.6 In controlled offline experiments using synthetic or benchmark datasets, accuracy shall exceed

80%.
C.7 The classifier shall operate within a computational latency of less than 200 ms per prediction.

Implementation Requirements
C.8 The classification method shall be based on Filter Bank Canonical Correlation Analysis (FBCCA)

and ensemble task-related component analysis (eTRCA).
C.9 Sub-band weights and canonical correlation scores shall be used to compute a final class decision

and confidence level.



3
Methodology

3.1. Literature review
The classification of Steady-State Visual Evoked Potentials (SSVEPs) in Brain-Computer Interfaces
(BCIs) has prompted extensive research into signal processing and machine learning techniques. Nu-
merous algorithms have been developed to enhance the accuracy and speed of SSVEP-based sys-
tems. Among these, Filter Bank Canonical Correlation Analysis (FBCCA) and Ensemble Task-Related
Component Analysis (eTRCA) have emerged as prominent methods due to their balance between
performance, computational efficiency, and applicability in real-time environments.

FBCCA, an enhancement of Canonical Correlation Analysis (CCA), applies a bank of band-pass fil-
ters to extract frequency-specific information, including fundamental and harmonic components of the
SSVEP response. This approach, introduced by Chen et al. [11], has been shown to significantly im-
prove classification accuracy over traditional CCA, particularly in noisy conditions and with short data
windows. Earlier foundational work by Lin et al. [12] and Bin et al. [13] established the use of CCA
in BCI applications, while FBCCA extended its utility by emphasizing harmonic contributions and im-
proving robustness. Comparative studies such as those by Liu et al. [14] and Aghili et al. [15] affirm
FBCCA’s competitiveness, making it suitable for use even with low-cost EEG devices.

Ensemble Task-Related Component Analysis (eTRCA), building upon the earlier Task-Related Compo-
nent Analysis (TRCA)method proposed by Tanaka et al. [16], offers a supervised alternative that utilizes
subject-specific training data. It enhances signal components that are temporally stable across trials,
learning spatial filters tailored to individual users. The ensemble version, proposed by Nakanishi et
al. [17], combines multiple spatial filters to further improve classification reliability. Although it requires
calibration, eTRCA has demonstrated high accuracy in within-subject settings and has outperformed
other methods such as eCCA and standard TRCA in multiple studies [18].

Several other classification strategies were evaluated but not adopted due to various limitations. Ex-
tendedCCA (eCCA), which combines artificial reference signals with subject-specific EEG templates [19],
offers moderate performance gains over standard CCA but at the cost of increased computational
complexity. Machine learning models like Support Vector Machines (SVMs) and Linear Discriminant
Analysis (LDA) have also been explored [20], [21], often relying on hand-engineered features such
as spectral power or spatial patterns. While potentially effective, these approaches require extensive
preprocessing and may lack the temporal resolution needed for rapid SSVEP detection.

Deep learning-based approaches, particularly Convolutional Neural Networks (CNNs), have attracted
attention for their ability to learn discriminative features directly from raw EEG data [22]. However,
these models typically demand large training datasets, are computationally intensive, and often lack
generalizability across subjects without retraining or fine-tuning [23]. Their limited interpretability and
resource demands currently constrain their practicality in real-time or consumer-grade settings.

Other methods, including mutual information-based feature selection [24], multiset CCA [25], and adap-
tive filtering techniques, offer alternative perspectives but have seen limited adoption due to implemen-
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tation complexity or inconsistent results across experimental setups.

In summary, FBCCA and eTRCA were selected based on their strong empirical performance, theo-
retical soundness, and practical usability. These methods represent two distinct but complementary
approaches—unsupervised and calibration-free in the case of FBCCA, and supervised with subject
adaptation in the case of eTRCA—making them well-suited for evaluation in both general-purpose and
personalized BCI applications.

3.2. Preprocessing
Before the methods can be applied, the signal must first be preprocessed. EEG preprocessing aims
to improve the signal-to-noise ratio by removing unwanted artifacts. A common first step in many EEG
pipelines is notch filtering: a narrow band-stop filter, typically centered at 50Hz in Europe or 60Hz in
North America, which is designed to suppress mains electricity interference. In a comprehensive study
on EEG signal enhancement, Wang et al. [26] describes how a 50/60Hz notch filter is commonly used
to attenuate power line noise, but also emphasize that if the notch is too wide, it may distort nearby
signal components. This warning draws from earlier signal-processing studies, such as Ai et al. (2018),
which analyze the effects of filter width on adjacent EEG frequency bands.

Following the removal of line noise, band-pass filtering is used to isolate the frequency range relevant
to steady-state visual evoked potentials (SSVEPs), typically between 5 and 50Hz. A widely used
option is the Butterworth filter, a type of infinite impulse response (IIR) filter known for its maximally
flat frequency response in the passband. This ensures minimal amplitude distortion within the band of
interest. In practice, a fourth-order zero-phase Butterworth filter is commonly employed by applying the
filter forward and then backward through the data to eliminate phase distortion. This approach results
in a linear-phase band-pass filter, ideal for preserving the temporal structure of SSVEP responses.

3.2.1. Notch Filter
A notch filter is a narrow-band bandstop filter designed to eliminate a specific frequency component
while leaving other frequencies largely unaffected. In EEG, the notch is set to the power-line frequency
(50 or 60 Hz). This removes the strong sinusoidal interference from electrical mains. However, notch
filtering can introduce ringing or distort signals very near the notch. For this reason, the notch is made
as narrow as possible. In practice, EEG toolboxes often implement an IIR notch (e.g. second-order)
at 50 Hz, sometimes also filtering harmonics (e.g. 100 Hz). As noted in the literature, notch filtering “is
usually used to attenuate power line noise”, though one must balance noise removal against the risk
of waveform distortion.

3.2.2. Butterworth Filter
The Butterworth filter is a standard IIR filter known for a “maximally flat” frequency response in its
passband. In other words, it has no ripples in the passband and a smooth roll-off toward the stopband.
Its magnitude response is given by

|H(ω)|2 =
1

1 +
(

ω
ωc

)2n (3.1)

for cutoff frequency ωc and filter order n. In EEG-BCI preprocessing, Butterworth filters are often used
for band-pass (and sometimes low-pass) filtering of EEG. For example, a fourth-order Butterworth band-
pass from 5–50 Hz might be applied to isolate SSVEP components. To avoid phase distortion, the filter
is typically applied forward and backward (zero-phase filtering). Wang et al. reported using “a zero-
phase fourth-order Butterworth filter” in an EEG processing pipeline. In summary, the Butterworth filter
provides a gentle, flat passband ideal for preserving signal amplitude within the SSVEP band, while
attenuating out-of-band noise.

3.3. Methods
3.3.1. FBCCA
Following preprocessing, the data can be forwarded to one of the primary methods presented in this
study, namely FBCCA. Filter Bank Canonical Correlation Analysis (FBCCA) is an enhanced method
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used in SSVEP-based Brain-Computer Interfaces (BCIs) for frequency recognition. It is designed to
overcome the limitations of traditional Canonical Correlation Analysis (CCA) by leveraging the spectral
characteristics of SSVEPs across multiple frequency bands, including harmonics.

The process begins with amultichannel EEG signalX ∈ RC×T , whereC is the number of EEG channels
and T the number of time samples. As shown in Figure 3.1, the EEG signal is passed through a filter
bank that decomposes it into m subbands. Each subband is configured to isolate a specific frequency
range, targeting either the fundamental stimulus frequency or one of its harmonics. This subband
decomposition helps to capture the frequency-specific energy distribution of the SSVEP response more
effectively than full-band analysis.

Figure 3.1: FBCCA framework: Subband decomposition of the EEG signal followed by CCA processing for each subband.

Once the signal is decomposed, each subband is processed independently. For a given target fre-
quency fi, a reference signal Yfi is constructed using sine and cosine components at fi and its har-
monics. The form of the reference signal is typically:

Yfi(t) =



sin(2πfit)
cos(2πfit)
sin(4πfit)
cos(4πfit)

...
sin(2πNfit)
cos(2πNfit)


(3.2)

where N is the number of harmonics included. Canonical Correlation Analysis is then performed be-
tween each subband of the EEG signal and each reference signal. CCA identifies pairs of linear trans-
formations (weight vectors) for the EEG and reference signals that maximize the correlation between
them. Mathematically, the goal is to find vectors wx and wy that maximize:

ρ =
E
[
(w⊤

x X)⊤(w⊤
y Y )

]√
E [(w⊤

x X)2] · E
[
(w⊤

y Y )2
] (3.3)

This canonical correlation ρij is computed for each combination of subband j and stimulus frequency
fi.

Figure 3.2 illustrates the core logic of this process. For each stimulus frequency fi, a corresponding
reference signal Yi is compared with the EEG data using CCA. The canonical correlation coefficient
ρi obtained from each comparison reflects how well the EEG data matches that stimulus frequency.
Among all tested frequencies, the one yielding the highest ρi is selected as the recognized stimulus.

The innovation in FBCCA lies in combining the correlation results from each subband to produce a final
decision. Instead of relying on the output of a single full-band CCA computation, FBCCA assigns a
weight wj to each subband j, then calculates a weighted sum of the squared canonical correlations:
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Figure 3.2: CCA computation between the EEG signal and multiple frequency-specific reference signals. The frequency with
the highest ρk is selected as the BCI output.

ρi =

m∑
j=1

wj · ρ2ij (3.4)

This weighted aggregation exploits the fact that different frequency bands contain different SSVEP
harmonics with varying strength. Low-frequency subbands usually contribute more strongly to the
recognition accuracy, and thus receive higher weights.

The final step is to select the stimulus frequency f∗ that corresponds to the highest aggregated corre-
lation score:

f∗ = argmax
fi

ρi (3.5)

This approach allows FBCCA to more accurately extract frequency-specific information from EEG data
compared to standard CCA, especially under low signal-to-noise ratio (SNR) conditions or when dealing
with multiple simultaneous stimuli. By decomposing the signal and exploiting harmonics through filter
banks, FBCCA offers a robust and high-resolution method for SSVEP-based BCI classification.

3.3.2. eTRCA
Another method employed in this paper is eTRCA. To enhance the extraction of steady-state visual
evoked potentials (SSVEPs) in brain–computer interfaces (BCIs), the ensemble task-related compo-
nent analysis (eTRCA) method has been proposed as an extension of the traditional task-related com-
ponent analysis (TRCA) approach.Instead of treating each stimulus independently, eTRCA enhances
signal detection by incorporating spatial information from all stimulus classes simultaneously, resulting
in greater robustness to noise and variability.

As illustrated in Fig. 3.3(b), the method begins by computing a spatial filter for each stimulus condition
based on repeated EEG trials. These filters are derived by maximizing the reproducibility of the brain
response across trials of the same stimulus. Letwn ∈ RC denote the spatial filter for stimulus n, where
C is the number of EEG channels. These filters are computed using the TRCA criterion, which seeks
the direction in EEG space that maximizes inter-trial covariance while minimizing intra-trial variability.



3.3. Methods 10

Figure 3.3: Overview of the proposed methods. (a) Standard TRCA method using individual class filters; (b) Ensemble TRCA
(eTRCA), which integrates filters from all classes and computes a two-dimensional correlation. Adapted from [17].

Instead of using each wn separately, eTRCA constructs an ensemble spatial filter matrixW by collect-
ing all filters into a single structure:

W = [w1, w2, . . . , wN ] , (3.6)

whereN is the number of stimulus classes. This ensemble filter exploits the fact that the spatial patterns
of SSVEP responses across nearby frequencies tend to be similar, and therefore combining them can
improve the overall signal-to-noise ratio (SNR).

Given a test EEG trial X ∈ RC×T , where T is the number of time samples, and a corresponding
class-specific template X̄n ∈ RC×T formed by averaging previous trials, both are projected using the
ensemble filter:

Y = W⊤X, Yn = W⊤X̄n. (3.7)

The similarity between the projected trial and the projected template is then quantified using a two-
dimensional correlation:

ρn = Corr2D(Y,Yn), (3.8)

where ρn serves as the classification feature for stimulus n. This correlation measures both spatial and
temporal similarity between the test signal and the class template after filtering.

To further enhance detection performance, the analysis is repeated across multiple frequency sub-
bands. For each sub-bandm, a correlation value ρ

(m)
n is computed. These values are then aggregated

using a weighted sum of squares:
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F (n) =

M∑
m=1

am ·
(
ρ(m)
n

)2

, (3.9)

where am = m−1.25 + 0.25 is the weight for sub-band m, andM is the total number of sub-bands. The
final decision is made by selecting the stimulus n with the maximum score:

n̂ = argmax
n

F (n). (3.10)

The entire process, shown in Fig. 3.3(b), highlights how eTRCA incorporates spatial filters from all
stimuli, uses them to project both test and template signals, and applies two-dimensional correlation to
produce a robust measure of similarity. This ensemble strategy allows the system to exploit inter-class
spatial structure and improves detection accuracy, particularly in scenarios with many stimuli and short
time windows.

3.4. Evaluation metrics
3.4.1. FFT
To analyze the datasets used in this paper, the Fast Fourier Transform (FFT) will be applied. FFT allows
for the identification of frequency peaks even before implementing classification algorithms. It is widely
used to extract frequency-domain features from EEG signals. By taking the discrete Fourier transform
of each EEG epoch, one obtains the amplitude (or power) spectrum. In SSVEP analysis, the stimulus
frequency appears as a sharp peak in this spectrum. Specifically, if x[n] is the EEG signal of length N ,
the DFT is

X[k] =

N−1∑
n=0

x[n]e−i2πnk/N , (3.11)

where k indexes frequency bins. By choosing N so that the stimulus frequency f coincides with one
of the FFT bins (e.g. by using an integer number of cycles in the window), the response at f can be
estimated precisely. Typically, one computes the magnitude |X[k]| or power |X[k]|2 and looks for the
largest peak at or near the known stimulation frequencies. As Kartsch et al. note, “SSVEP responses
are traditionally computed from the power spectrum at the tag frequency”. In practice, the FFT is
computed over the selected electrodes (often occipital channels) and averaged across them or across
epochs. The peak amplitude (or signal-to-noise ratio) at each stimulus frequency can then be used as
a feature for classification.

3.4.2. Signal-to-Noise Ratio in SSVEP
To quantitatively assess the strength and clarity of the recorded SSVEP responses, the signal-to-noise
ratio (SNR) is computed. This metric provides a measure of how prominently the stimulus-locked signal
stands out from background neural and environmental noise.

Welch power--spectral density
Before any SNR is calculated, EEG power is estimated with the Welch PSD. Welch’s method splits
each epoch into overlapping segments, applies windowing, computes a periodogram for every segment,
and then averages those periodograms. Averaging lowers the variance of single-segment FFTs, while
windowing limits spectral leakage. For the present data, a 2s window with 50% overlap was used,
giving a frequency resolution of ∆f = 0.2 Hz. This resolves the 8.57 Hz and 12 Hz targets yet leaves
enough segments for a stable average. The resulting spectrum P (f) is therefore smoother and more
reliable than a raw FFT and is used in both SNR definitions below.

Time-domain SNR
Time-domain SNR in SSVEP experiments is defined by comparing the signal power during stimulation
against a separate baseline (no-stimulus) period. One computes the power spectral density (PSD) of
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the EEG during stimulation and during baseline, then takes their ratio:

SNRtime =
Pstim(f0)

Pbase(f0)
. (3.12)

For instance, if the EEG shows a spectral peak at the stimulus frequency during flicker, this peak’s
power is divided by the power at the same frequency in the baseline recording [27].

Frequency-domain SNR
Frequency-domain SNR leverages the narrowband nature of SSVEP responses by estimating noise
from neighboring frequency bins within the same trial. If P (f0) is the power at the target stimulation
frequency f0, and Pnoise the average power of adjacent bins (excluding f0), then

SNRfreq =
P (f0)

Pnoise
. (3.13)

often expressed in decibels as 10 log10[P (f0)/Pnoise]. An SNR > 1 indicates a clear spectral peak above
the local noise floor.

3.4.3. Accuracy
The most important evaluation metric used in this study is accuracy. Classification accuracy, a funda-
mental performance metric in BCI research, is defined as the fraction of trials correctly classified 3.14.
Mathematically, if Ncorrect is the number of correct identifications out of Ntotal trials, then

Accuracy =
Ncorrect

Ntotal
. (3.14)

This definition is commonly used in the literature. In multiclass SSVEP experiments with balanced
classes, accuracy by itself usually suffices. Sometimes one also reports the error rate 1− P or related
measures such as balanced accuracy if classes are imbalanced. Other standard metrics (precision,
recall, F1-score) can be computed from the confusion matrix if needed, but in typical SSVEP-BCI
reporting they are less common.



4
Implementation

The implementation of the proposed SSVEP-based BCI system was carried out in a structured manner
across several stages involving both offline and real-time data. In order to design and validate the signal
processing pipeline, initial development was conducted using a publicly available EEG dataset [28],
which provided controlled experimental conditions suitable for algorithm refinement. This phase was
followed by the application of the samemethods to EEG data collected with a consumer-gradeOpenBCI
headset, allowing for an evaluation under more realistic and user-defined conditions. Ultimately, the
pipeline was adapted for real-time use to enable direct control of a computer interface through brain
activity. The sections that follow present the technical details and considerations of this implementation
process in chronological order.

4.1. The MAMEM dataset
4.1.1. Dataset Description
The MAMEM SSVEP dataset comprises EEG recordings from 11 healthy volunteers (8 males, 3 fe-
males, ages 24–39) obtained during a visual flicker task. EEG was captured with the EGI Geodesic
EEG System 300 (GES 300) using a 256-channel HydroCel Geodesic Sensor Net at a sampling rate
of 250 Hz. Five visual stimulus frequencies (6.66, 7.50, 8.57, 10.00, 12.00 Hz) were presented as flick-
ering magenta boxes at the center of a 22” LCD screen (refresh rate 60 Hz). Each stimulus flickered
for 5 seconds (one trial), followed by 5 seconds of rest (black screen).

Each subject performed up to five recording sessions. Each session began with 100 seconds of rest
(fixation on a blank screen), followed by an adaptation phase consisting of eight 5-second flicker trials,
with each frequency selected randomly and separated by 5-second rest periods. After a further 30-
second rest, the main experiment continued with each of the five stimulation frequencies presented in
ascending order; for each frequency, three 5-second flicker trials were delivered, each separated by a 5-
second rest. In total, 15 main trials and 8 adaptation trials were collected per session. Some sessions
with recording issues (e.g., program crashes) were excluded, resulting in a final dataset comprising
1104 valid 5-second trials.

4.1.2. Electrode Mapping and Channel Selection
Figure 4.1 shows the two EEG headsets used: (a) the OpenBCI 8 channel EEG headset and (b) the
256 channel HydroCel Geodesic Sensor Net used in the MAMEM recordings. Only channels common
to both systems were retained for analysis. Specifically, electrodes numbered 21, 59, 183, 81, 126,
101, 107, and 160 in the 256 channel layout were chosen, because these positions match the user’s
8-channel montage; these eight electrodes were relabeled as channels 1 to 8 in the reduced data set
(see Fig. 4.1). This selection ensures that the analyses use the intersection of both sets of electrodes,
avoiding mismatches in spatial sampling between systems.

13
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(a) The OpenBCI 8-channel EEG headset. (b) The 256-channel Geodesic Sensor Net (HydroCel).

Figure 4.1: Electrode configurations for the two EEG systems. Only electrodes common to both systems were used: channels
1–8 correspond to electrodes 21, 59, 183, 81, 126, 101, 107, and 160 of the 256-channel net.

4.1.3. Data Segmentation Methodology
The continuous EEG recordings were segmented into stimulus trials based on the digital event markers
(DIN_1) recorded by the Stim Tracker device. In the raw data, the DIN_1 channel indicates stimulus
onset and offset: it is high (1) during each 5-second flicker and low otherwise. The indices nk at which
DIN_1 rises from 0 to 1 were identified as the start of each trial. If successive rising-edge events were
separated by more than 1250 samples (5 seconds at 250 Hz), this gap signified a rest interval rather
than a continuation of the same trial. In other words, a new trial wasmarked whenever nk+1−nk > 1250.

After identifying the onset index nk of each trial, a 5-second epoch was extracted. Let fs = 250 Hz be
the sampling rate. For trial k, the raw EEG segment Ek was defined as

Ek[m] = x[nk +m], m = 0, 1, . . . , 5fs − 1, (4.1)

i.e. 5fs = 1250 samples starting at the trigger index nk. Each epoch Ek is a multichannel time series
(with the selected 8 channels) of length 1250 samples.

Each extracted epoch was then bandpass and notch filtered to remove drifts and line noise. A digital
notch filter at 50 Hz (mains frequency) was applied to attenuate power-line interference. Additionally,
a zero-phase bandpass filter in the range 5–45 Hz was applied to retain the SSVEP frequency compo-
nents and suppress slow drifts and high-frequency noise. In the time domain, the combined filtering
can be represented as a convolution of the epoch with the filter impulse responses:

Yk[n] = (hnotch ∗ hbp ∗ Ek)[n], (4.2)

where hnotch[n] and hbp[n] are the impulse responses of the 50 Hz notch and the 5–45 Hz bandpass
filters, respectively. The result Yk[n] is the final preprocessed epoch for trial k.

4.1.4. Usage in FBCCA and eTRCA
Each preprocessed epoch was organized as a matrix of size C × N (channels × time samples), with
C = 8 selected channels andN = 1250 samples per trial. These epoch matrices served as the inputs to
the frequency recognition algorithms. Specifically, for each trial k, the filtered EEG data Yk (an 8×1250
array) was provided as input to both FBCCA and eTRCA methods. The details of feature extraction
and classification by FBCCA and eTRCA are given in chapter 3.
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4.2. The Self-Measured Dataset
4.2.1. Dataset Description
An independent EEG dataset was recorded specifically for this study, following a controlled experimen-
tal protocol designed to replicate the visual stimulation paradigm used in the MAMEM dataset. EEG
signals were recorded from five healthy participants using an 8-channel OpenBCI-compatible headset.
All measurements were conducted in a quiet, darkened room to minimize ambient light and acoustic
interference. The measurement setup is shown in Figure 4.2.

Figure 4.2: Measurement setup used for EEG data acquisition.

Each subject participated in between two and five recording sessions. The stimulus protocol included
five visual stimulation frequencies: 6.66 Hz, 7.50 Hz, 8.57 Hz, 10.00 Hz, and 12.00 Hz. Each session
began with a 30-second resting (calibration) period during which the subject fixated on a black screen.
This was followed by a sequence of trials, each consisting of repeated stimulation with a single target
frequency.

Each target frequency was presented in three repetitions, with each repetition consisting of 5 seconds of
stimulation followed by 5 seconds of baseline (black screen). After the third repetition, an additional 10-
second baseline was included before the next frequency began. This resulted in the following temporal
structure for a single frequency:

• 5 s stimulation
• 5 s rest
• 5 s stimulation
• 5 s rest
• 5 s stimulation
• 15 s rest (final 5 s rest + 10 s baseline)

The demographic details of the participants are summarized in Table 4.1.
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Subject ID Gender Hair Type
S001 Male Thick
S002 Male Regular
S003 Male Regular
S004 Male Short
S005 Male Thick

Table 4.1: Overview of subjects in the self-measured dataset.

4.2.2. Data Segmentation Methodology
The EEG recordings were stored in CSV format with samples collected at 250 Hz. The raw data
consisted of eight EEG channels. Specific sample windows corresponding to flicker intervals were
predefined for segmentation. For each trial i, the segment indicates the start and end indices of the
flicker period. In total, 15 such intervals were extracted:

(si, ei) = (s0 + 2500i, s0 + 2500i+ 1250), i = 0, 1, . . . , 14 (4.3)

Each window was 5 seconds long (1250 samples). For example, trial 1 was extracted from samples
7500 to 8750, trial 2 from 10000 to 11250, and so on. These segments represented periods of active
visual stimulation.

Before analysis, each extracted trial was subjected to the following filtering steps:

1. A notch filter was applied at 50 Hz to remove power-line interference:

Hnotch(f) =
s2 + 1

s2 + ω0

Q s+ 1
, ω0 =

2πf0
fs

, ; f0 = 50 Hz (4.4)

2. A 4th-order Butterworth bandpass filter was used to retain components between 5 and 45 Hz:

Hband(f) =
1√

1 +
(

f
fc

)2n
, fc ∈ [5, 45], ;n = 4 (4.5)

Each trial Tk was then filtered by convolution:

T filtered
k = hband ∗ (hnotch ∗ Tk) (4.6)

where ∗ denotes convolution, and hnotch and hband represent the respective impulse responses of the
filters. The final output was a 3D tensor of shape (15, 8, 1250), representing 15 trials, 8 channels, and
1250 samples per trial.

4.2.3. Usage in FBCCA
The preprocessed epochs from the self-measured dataset were used as direct input to the FBCCA
classification pipeline. Each trial, structured as an 8× 1250 matrix, was passed to the FBCCA method
for frequency detection by computing canonical correlations with reference sine/cosine signals at the
five target frequencies.

4.3. Real-Time BCI Evaluation Using FBCCA
4.3.1. Real-Time Measurement Description
To evaluate the system’s ability to operate in real-world scenarios, a real-time EEG-based interface
was implemented. This interface allowed subjects to control a two-class cursor by focusing on one
flickering visual targets, each associated with a distinct stimulation frequency. In contrast to the offline
experiments—where five different frequencies were tested to assess their detectability—only two fre-
quencies were used in this setup: 8.57 Hz for the left direction and 12.00 Hz for the right direction.
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These specific frequencies were chosen because they had shown the highest classification accuracy
in offline analyses (as discussed in Section 5).

The user interface, shown in Figure 4.3, presented two large yellow flickering boxes, one on each
side of the screen. Each box flickered at one of the two selected frequencies. A circular cursor was
positioned at the center, and its movement reflected the system’s classification of the user’s intent. If
the user looked at the left target (8.57 Hz), the system aimed to detect this frequency and move the
cursor left. Similarly, a gaze at the right target (12.00 Hz) was intended to result in rightward cursor
movement. The interface was developed by the GUI subgroup, as described in their report [29].

Figure 4.3: Real-time BCI. The left box flickers at 8.57 Hz and the right at 12.00 Hz. The cursor indicates the system’s
classification output, while the confidence level quantifies the correlation strength between the EEG signal and the target

frequency.

Displayed above the interface was a real-time confidence score. This score quantified how strongly the
system believed that the EEG signal matched one of the two target frequencies. The confidence value
was calculated as a normalized correlation score between the user’s EEG signal and the theoretical
reference signals generated for each frequency. Thus, it indicated not only the chosen direction but
also how reliable the classification decision was.

In addition to functional control, baseline measurements were conducted in which the participant did not
look at either of the flickering boxes. These neutral trials were used to observe the natural confidence
fluctuations when no intentional command was given. This information helped determine a thresh-
old confidence level below which the system would interpret the signal as neutral or resting, avoiding
unintended cursor movement.

4.3.2. Mathematical Framework for Real-Time FBCCA
Since the full FBCCA method, including sub-band decomposition and frequency scoring, has already
been introduced in Section 3, this subsection focuses solely on the confidence value used in real-time
classification.

After the classification frequency f∗ is selected by maximizing the aggregated correlation score as
described in Equation 3.5, the associated canonical correlation ρi is used to quantify how closely the
EEG signal matches the reference. This score is then normalized over the sum of the sub-band weights:

Confidence =
ρi∑m

j=1 wj
(4.7)

This confidence value ranges from 0 to 1 and expresses the system’s certainty in its prediction. A
higher confidence suggests a stronger and more reliable match to one of the stimulation frequencies,
while lower values may indicate either ambiguous brain activity or a resting state. In real-time usage,
this confidence measure is critical for suppressing unintended control actions and determining baseline
thresholds.



5
Empirical Evaluation

In order to assess the effectiveness and practical applicability of the implemented methods, a sys-
tematic evaluation was carried out. This chapter presents the validation procedures and empirical re-
sults derived from both offline and real-time experiments. The performance of the system is analyzed
across several dimensions, including signal quality, frequency detection accuracy, and classification
confidence.

5.1. Validation
5.1.1. FFT-Based Inspection of Target Trials (MAMEM Dataset)
To confirmwhether the visual stimulation successfully evokedmeasurable SSVEP responses, a frequency-
domain analysis was conducted using the FFT, as described in chapter 3. Each EEG trial was converted
to the frequency domain, and spectral amplitudes were averaged across all channels. The resulting
spectra were examined to detect peaks corresponding to the stimulation frequencies.

Figure 5.1 displays the FFT power spectra of fifteen trials, grouped by target frequencies: 6.66 Hz, 7.50
Hz, 8.57 Hz, 10.00 Hz, and 12.00 Hz. In each plot, the red dashed line indicates the frequency the
subject was instructed to focus on.

Figure 5.1: FFT power spectra of 15 EEG trials grouped by stimulus frequency - MAMEM Dataset.

18
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Clear peaks are observable near the target frequencies in most cases, confirming the presence of
frequency-locked SSVEP activity. For instance, trials labeled 6.66 Hz and 10.00 Hz exhibit sharp, con-
sistent peaks exactly at those frequencies. Slight variability in amplitude or minor spectral noise can
be noted across some trials, which is expected due to differences in individual responses or environ-
mental factors. Nonetheless, the presence of clear spectral energy at the target frequencies validates
the recorded responses.

5.1.2. FFT-Based Inspection of Target Trials (Self-Measured Dataset)
To evaluate the presence of SSVEP responses in the self-recorded dataset, the FFT was applied to
each trial after averaging across all EEG channels, similar to the procedure used for the MAMEM
dataset. Figure 5.2 shows the resulting power spectra for 15 trials, grouped by the corresponding
stimulus frequency.

Compared to the MAMEM data, the spectra from the self-measured trials display increased variability
in peak clarity and alignment. In several instances, particularly at lower frequencies such as 6.66 Hz
and 7.5 Hz, the spectral peaks are either broad or slightly shifted away from the target.

Despite these variations, multiple trials still exhibit discernible energy concentrations near the intended
frequencies, notably at 10 Hz and 12 Hz. The presence of these peaks suggests that the SSVEP re-
sponses were successfully elicited, albeit with less consistency than in the controlled MAMEM dataset.

Overall, the frequency-domain analysis supports the viability of the self-measured data for further in-
vestigation, though the results indicate a somewhat noisier signal profile.

Figure 5.2: FFT power spectra of 15 EEG trials grouped by stimulus frequency - Self-Measured Dataset.

5.1.3. Synthetic Signal Validation of FBCCA
To assess the functionality of the Filter Bank Canonical Correlation Analysis (FBCCA) method, a con-
trolled experiment was conducted using a 10 Hz sine wave produced by a function generator. The
signal was applied to one of the electrodes of the EEG headset, with the ground connected to the ref-
erence electrode. A sinusoidal waveform with a peak-to-peak voltage of 1 V was introduced into the
system, emulating a continuous SSVEP signal at 10 Hz. This setup was designed to verify whether
the FBCCA method correctly identifies the stimulation frequency by returning a maximum correlation
score at 10 Hz.
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The EEG signal was recorded and saved in a CSV file. A FFT was then applied to the data to visualize
the frequency content of the signal. As shown in Figure 5.3A, a clear peak appears at 10 Hz, which
confirms that the 10 Hz signal was successfully captured by the system.

Following the FFT analysis, the FBCCA method was applied to the signal. As described in Chapter 3,
the FBCCA algorithm splits the signal into five overlapping subbands. For each target frequency, a
correlation value (ρ2 score) is computed per subband, and the sum of these five scores is used to
determine the final correlation score, as given by Equation 3.4. The results are shown in Figure 5.3B. As
expected, the correlation score for 10 Hz is significantly higher than for all other candidate frequencies,
clearly demonstrating the correct functioning of the FBCCA method.

Together, the FFT and FBCCA results confirm that the system accurately detects and correlates with
the true stimulation frequency. The frequency domain analysis confirms the presence of the 10 Hz
signal, while the FBCCA correlation scores validate that the method effectively identifies the correct
frequency from among multiple candidates.

(a) FFT of the 10 Hz signal. (b) Per-band FBCCA ρ2 scores.

Figure 5.3: Functional assessment of FPCCA with a 10 Hz sine wave: (A) shows a spectral peak at 10 Hz and its harmonic at
20 Hz, (B) confirms the highest correlation at 10 Hz across all subbands.

5.2. Results
MAMEM Dataset

Subject ID Gender Hair Type FBCCA Avg. (%) FBCCA Peak (%) ETRCA Avg. (%)
S001 Male Regular 77.78 80.00 40.00
S002 Male Regular 78.67 93.33 33.33
S003 Male Thick 37.78 40.00 20.00
S004 Male Short 80.00 86.67 26.67
S005 Female Thick 33.33 53.33 26.67
S006 Female Thick 46.67 66.67 40.00
S007 Male Regular 64.00 73.33 53.33
S008 Female Thick 31.11 40.00 40.00
S009 Male Short 81.33 86.67 53.33
S010 Male Regular 74.67 80.00 26.67
S011 Male Regular 69.33 80.00 40.00

Table 5.1: Overview of subject-specific performance metrics using FBCCA and ETRCA methods (5 targets).

As shown in Table 5.1, the classification accuracies for each subject are presented based on the ap-
plication of FBCCA and ETRCA methods to the MAMEM dataset. These results are derived from the
experimental pipeline detailed in chapter 4. The FBCCA average accuracy is computed over five trials
per subject, as described in the same chapter. The table displays both the average and peak perfor-
mance using FBCCA, as well as the average accuracy achieved through ETRCA, giving a comparative
overview of the results across subjects.



5.2. Results 21

Self-Measured Dataset

Subject ID Gender Hair Type Trials FBCCA Avg. (%) FBCCA Peak (%)
S001 Male Thick 2 36.67 40.00
S002 Male Regular 3 60.00 73.33
S003 Male Regular 3 60.00 80.00
S004 Male Short 5 71.11 93.33
S005 Male Thick 2 33.33 40.00

Table 5.2: FBCCA performance results on the self-measured dataset (5 targets).

Table 5.2 shows the classification results obtained using the FBCCA method on the self-measured
dataset. The number of trials conducted for each subject is also reported. As described in chapter 4,
these accuracies are based on the experimental setup and evaluation procedure outlined therein. The
average FBCCA accuracy per subject is computed over the number of trials specified, while the peak
value indicates the highest individual performance observed.

(A) Confusion matrix of the best FBCCA result.
(B) Confusion matrix of the lowest-scoring FBCCA trial

(Subject 5).

Figure 5.4: Comparison between the best and worst FBCCA classification results on the self-measured dataset.

Figure 5.4 shows a comparison between the highest and lowest FBCCA classification performances
obtained on the self-measured dataset. The confusion matrix in (A) displays a strong diagonal structure,
indicating correct classification across most frequency targets. In contrast, the matrix in (B) shows
scattered misclassifications, with less alignment along the diagonal.

Self-Measured Dataset
To evaluate the real-time performance of the developed Brain-Computer Interface (BCI) system, two
experimental sessions were conducted, visualized as time-series plots of confidence scores and pre-
dicted stimulus frequencies in Figure 5.5. The BCI leverages Steady-State Visually Evoked Potentials
(SSVEPs) elicited by visual stimuli flickering at distinct frequencies: 8.6 Hz for the left target and 12.0 Hz
for the right target, as depicted in the interface design (see Figure 4.3).

Based on a qualitative assessment of multiple real-time performance traces, a confidence threshold
of 0.2 was established. Confidence scores exceeding this threshold were interpreted as indicative of
intentional target selection, whereas scores below this boundary were considered reflective of baseline
or non-selective neural states. In addition, system latency was assessed, and it was found that the
complete signal processing pipeline executes within 0.232 seconds.
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Figure 5.5: Real-time BCI predictions with confidence scores. Red: 12.0 Hz (right), blue: 8.6 Hz (left), dashed line: 0.2
confidence threshold.

Session A (Left Panel of Figure 5.5): This session lasted approximately 70 seconds. The participant
initially focused on the right stimulus (12.0 Hz) from the start of the trial until second 35, shifted attention
to the left stimulus (8.6 Hz) until second 57, and finally returned to the right stimulus for the remainder
of the session. A total of 28 classification events surpassed the confidence threshold, of which 19
corresponded to the correct target as per the participant’s intended selection. This yields an overall
real-time classification accuracy of 67.86%.

Session B (Right Panel of Figure 5.5): This session lasted approximately 50 seconds. The partici-
pant alternated attention between the target stimuli, following a predefined pattern. During this record-
ing, 24 classification points exceeded the confidence threshold, with 15 correctly matching the attended
target frequency. The resulting accuracy for this session was 62.5%.

5.2.1. SNR results
Time�Domain SNR Results
Time-domain SNR was computed by comparing the power at each stimulation frequency during flicker
against the corresponding frequency’s power in baseline recordings. Mean SNR values across subjects
and conditions are presented in table 5.3.
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Frequency-Domain SNR Results
Frequency-domain SNR was calculated by dividing the power at each target frequency by the average
power of its neighboring bins. The distribution of frequency-domain SNR values across participants
is shown in table 5.3. This measure emphasizes the presence of the SSVEP peak above the local
spectral background.

Time-SNR Time-SNR Freq-SNR Freq-SNR
Trial lin mean lin std dB mean dB std lin mean lin std dB mean dB std
1 3.203 2.175 5.056 3.374 1.063 0.083 0.265 −10.794
2 1.882 1.029 2.745 0.123 1.772 1.659 2.485 2.199
3 124.714 124.205 20.959 20.941 1.703 1.406 2.313 1.479
4 1.204 1.110 0.806 0.454 1.050 1.022 0.211 0.096
5 15.864 12.129 12.004 10.838 4.985 2.238 6.976 3.498
6 10.702 9.280 10.294 9.679 4.105 1.265 6.133 1.020
7 3.709 0.846 5.692 −0.730 3.242 1.686 5.108 2.267
8 8.210 3.564 9.144 5.522 8.872 6.726 9.480 8.278
9 4.740 2.195 6.758 3.415 1.896 0.927 2.779 −0.331
10 0.872 0.754 −0.594 −0.473 0.929 0.897 −0.320 −0.473
11 2.642 2.465 4.219 3.918 3.797 3.695 5.794 5.676
12 0.397 0.284 −4.015 −5.462 0.188 0.044 −7.266 −13.560

Table 5.3: Time- and frequency-domain SNR from an average accuracy recording with 6 trials per target. The two target
frequencies are 8.57 Hz and 12 Hz.

In Table 5.3, the frequency-domain SNR values line up with the single-trial spectra. Ratios above about
2, as in Trials 5 and 8, come with a clear peak at the stimulus frequency. Ratios near or below 1, as
in Trials 2, 4, 10, and 12, match spectra that follow a 1∕f curve and show no peak. Trial 3 exposes
a weakness of the time-domain metric; its very high baseline-referenced SNR is driven by a short
broadband burst, so the frequency-domain measure still reports only a modest response. Overall, the
frequency-domain SNR gives the clearest view of stimulus-locked activity, while the time-domain SNR
mainly flags large power shifts that may be artifacts. Because most trials sit close to the noise floor, we
find no significant peaks at the intended stimulation frequencies, and the data lack SSVEP responses
strong enough for high-quality classification.
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Analysis and Discussion

Algorithm Selection and Calibration
Due to time constraints and the limited quality of EEG recordings, the supervised eTRCA method could
not be effectively utilized in this study. This method typically requires several consistent training trials to
derive reliable spatial filters, which were not available in the self-recorded dataset. Consequently, classi-
fication accuracies obtained using eTRCA were consistently low. In contrast, the unsupervised FBCCA
method demonstrated substantially better performance under the same conditions. Since FBCCA does
not rely on prior calibration and is known to maintain robustness with short signal segments and lower
signal quality, it was selected as the primary classification algorithm for both offline and real-time im-
plementation.

Electrode Placement and Spatial Limitations
SSVEP signals are known to originate predominantly from the visual cortex, located in the occipital lobe.
In the self-measured dataset, only three electrodes (channels 6, 7, and 8) were positioned over this
region, as illustrated in Figure 4.1a. This limited spatial coverage introduced high sensitivity to electrode
misplacement. If any of the occipital electrodes were improperly placed, the resulting signals lacked the
necessary strength or clarity for reliable classification. By contrast, the MAMEM dataset included more
than 50 electrodes across the occipital area, providing high spatial resolution and consistently robust
SSVEP detection. This discrepancy in electrode density and placement precision likely contributed
significantly to the reduced classification performance observed in the self-measured data.

Additionally, physical characteristics such as hair type were observed to significantly influence signal
acquisition quality. As shown in Table 5.1 and Table 5.2, participants with thick hair generally exhibited
lower classification accuracy compared to those with short or regular hair. For example, in the self-
measured dataset, subjects with thick hair (S001 and S005) achieved FBCCA average accuracies of
only 36.67% and 33.33%, respectively, whereas the subject with short hair (S004) reached 71.11%.
A similar trend is evident in the MAMEM dataset, where thick-haired subjects (e.g., S003 and S005)
had notably lower FBCCA average accuracies (37.78% and 33.33%) compared to those with short hair
(e.g., S004 and S009, with accuracies of 80.00% and 81.33%).

This inverse relationship between hair thickness and classification accuracy can be attributed to the in-
sulating properties of dense hair, which impedes effective electrode-skin contact and increases impedance
at the sensor interface. As reported by Kappenman and Luck (2010), high impedance can significantly
attenuate EEG signals and increase noise levels, thereby degrading signal quality and reducing clas-
sification performance [30].

Peak Detection Sensitivity and Classification Accuracy
Initial classification attempts using the MAMEM dataset yielded modest accuracy levels of approxi-
mately 40%, despite the presence of clear spectral peaks at the stimulation frequencies, as seen in
Figure 5.1. It was observed that the frequency detection algorithm applied a strict matching criterion,
requiring peaks to align exactly with the target frequencies. Given physiological variability and spectral
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resolution limitations, actual peak positions often deviated by small margins (e.g., ±0.1 Hz). By relax-
ing the sensitivity and expanding the detection tolerance to ±0.2 Hz, classification accuracy improved
markedly, reaching approximately 70%. These findings emphasize the importance of algorithmic flexi-
bility in peak detection to accommodate realistic variations in spectral features.

Real-Time System Evaluation
To decouple algorithm performance from biological variability, synthetic SSVEP signals were injected
into the system using a function generator. Sine waves at 12.0 Hz and 8.57 Hz were introduced to
the amplifier through a voltage divider (see figure B.3), reducing the output to realistic EEG amplitudes
between 10 and 100 µV. Even at these low signal strengths, the FBCCA classifier achieved 100%
accuracy with confidence levels averaging around 0.6. Results from both the high-amplitude (1 V)
and brain-strength (100 µV) tests are presented in the Appendix B (see figure B.2 and B.1). These
findings confirm that the implemented classification algorithm is functional and effective under ideal
signal conditions.

Real-time measurements using human EEG input yielded overall low accuracy, with the exception of
two notable sessions that demonstrated substantially improved performance (see Figure 5.5). These
isolated instances are likely attributable to better electrode contact or stronger individual responses.
The generally poor performance across the remaining sessions confirms that inadequate signal quality,
rather than algorithmic error, was the dominant limiting factor.

Future Work
Future work should consider the implementation of advanced data aggregation techniques to expand
the available dataset for training and evaluation. By combining data across sessions and subjects,
or using augmentation methods such as overlapping windows and synthetic trial generation, the vari-
ability of SSVEP responses can be better captured [31], [32]. This would be particularly beneficial for
improving the generalizability of the eTRCA method, which demonstrated limited performance due to
insufficient high-quality calibration data in the current study [17]. A larger, more diverse dataset could
make eTRCA more robust and effective across different recording conditions.

With increased data availability through aggregation, future research may also explore the use of ma-
chine learning approaches for feature extraction and classification. These methods, including convo-
lutional neural networks (CNNs) and deep belief networks, have shown promise in BCI applications
but typically require substantial training data to avoid overfitting [33], [34]. In the present study, such
methods were not pursued due to the known limitations of the self-recorded dataset, which lacked
sufficient volume and consistency. However, with improved data collection and aggregation, the adop-
tion of machine learning frameworks could significantly enhance classification accuracy and system
adaptability.

Additionally, strategies to improve the signal-to-noise ratio (SNR) of EEG recordings should be explored.
These may include hardware-based solutions such as electromagnetic shielding, proper cable ground-
ing, and high-quality amplifiers [35], as well as experimental enhancements like increased electrode
density in occipital areas and the use of standardized EEG caps for consistent placement [36]. Im-
proving SNR directly impacts the clarity of SSVEP responses, thereby increasing the reliability of both
traditional and machine-learning-based classifiers in future implementations.



7
Conclusion

This thesis has explored the design, implementation, and evaluation of a steady-state visually evoked
potential (SSVEP)–based brain-computer interface (BCI) system for two-class cursor control. The
system was developed using two classification methods—Filter Bank Canonical Correlation Analysis
(FBCCA) and Ensemble Task-Related Component Analysis (eTRCA)—and tested on both a benchmark
dataset (MAMEM) and a custom self-recorded dataset acquired with an 8-channel OpenBCI headset.

The empirical results demonstrated that FBCCA outperformed eTRCA under the given experimen-
tal conditions, particularly in the context of real-time classification and low-channel, low-SNR record-
ings. FBCCA enabled basic real-time cursor control with accuracies of 67.86% and 62.5% in two
separate sessions. Conversely, eTRCA exhibited poor generalization and achieved low classification
accuracy, frequently below 40%, likely due to its reliance on high-quality, subject-specific calibration
data—something not available in the self-recorded setup. In addition to classification accuracy, system
latency was assessed, and it was found that the complete signal processing pipeline executes within
0.232 seconds.

Performance discrepancies between the MAMEM and self-recorded datasets highlighted the critical
role of signal quality, electrode density, and hardware stability. The high-density MAMEM dataset
yielded notably higher classification accuracy and more consistent spectral responses due to supe-
rior spatial resolution and controlled experimental conditions. In contrast, the self-recorded data suf-
fered from variability introduced by sparse electrode coverage, inconsistent contact, and environmental
noise.

While the study confirms the feasibility of SSVEP-based cursor control using non-invasive EEG, it
also underscores several limitations. Real-time performance remains modest and sensitive to noise
and inter-subject variability. Future work should focus on improving signal quality through optimized
electrode placement, enhanced filtering strategies, and the use of adaptive or hybrid classification
methods. Furthermore, hardware improvements—such as standardized caps, shielding, and increased
channel count—could substantially improve reliability and usability. Addressing these limitations will
be essential for transitioning BCI technology from research prototypes to robust, user-friendly systems
suitable for daily use.
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A
A Code

A.1. MAMEM Dataset Code
A.1.1. FBCCA

1 import os
2 from glob import glob
3 import scipy.io as sio
4 import numpy as np
5 from scipy.signal import iirnotch, butter, filtfilt
6 from sklearn.cross_decomposition import CCA
7 from sklearn.metrics import accuracy_score
8 from collections import defaultdict
9 # === Setup ===
10 data_dir = r"C:\Users\Adam\OneDrive\Documenten\Bep\BCI\Signal␣Processing\Code\Datasets"
11 mat_files = sorted(glob(os.path.join(data_dir, "S*.mat")))
12

13 # Constants
14 selected_channels = [
15 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
16 139, 140, 141, 142, 143, 144, 145, 146, 147, 148
17 ]
18 target_freqs = [6.66, 7.5, 8.57, 10.0, 12.0]
19 freqs = sorted(set([round(f + delta, 2) for f in target_freqs for delta in [-0.2, 0, 0.2]]))
20 main_labels = [0]*3 + [1]*3 + [2]*3 + [3]*3 + [4]*3 # 15 trials
21

22 # Results storage
23 results = []
24 # === Processing loop ===
25 for filepath in mat_files:
26 try:
27 filename = os.path.basename(filepath)
28 subject = filename[:4]
29 recording = filename[4]
30

31 mat = sio.loadmat(filepath)
32 eeg = mat['eeg']
33 din1 = mat['DIN_1']
34 sr = float(mat['samplingRate'])
35

36 event_samples = [int(x[0][0]) for x in din1[3]]
37 diffs = np.diff(event_samples)
38 gap_idx = np.where(diffs > 1250)[0]
39 block_starts = np.concatenate(([0], gap_idx+1))
40 block_ends = np.concatenate((gap_idx, [len(event_samples)]))
41 blocks = [(s,e) for s,e in zip(block_starts, block_ends)]
42 main_blocks = blocks[8:23]
43 main_starts = [event_samples[b[0]] for b in main_blocks]
44

45 b_notch, a_notch = iirnotch(50/(sr/2), Q=30)
46 b_band, a_band = butter(4, [5/(sr/2), 45/(sr/2)], btype='band')
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47

48 def preprocess_epochs(eeg_data, starts, sr, selected_channels):
49 epochs = []
50 for start in starts:
51 epoch = eeg_data[selected_channels, start:start+int(5*sr)]
52 epoch = filtfilt(b_notch, a_notch, epoch, axis=1)
53 epoch = filtfilt(b_band, a_band, epoch, axis=1)
54 epochs.append(epoch)
55 return np.stack(epochs)
56

57 main_epochs = preprocess_epochs(eeg, main_starts, sr, selected_channels)
58

59 subbands = [(5,45), (10,45), (15,45), (20,45), (25,45)]
60 band_filters = [(butter(4, [lo/(sr/2), hi/(sr/2)], btype='band')) for lo, hi in

subbands]
61 weights = [1.0/j for j in range(1, len(band_filters)+1)]
62

63 def generate_reference(f, N, fs, nh=3):
64 t = np.arange(N) / fs
65 return np.vstack([np.sin(2*np.pi*k*f*t) for k in range(1, nh+1)] +
66 [np.cos(2*np.pi*k*f*t) for k in range(1, nh+1)]).T
67

68 def fbcca_classify(epochs, freqs, band_filters, weights):
69 n_trials = epochs.shape[0]
70 scores = np.zeros((n_trials, len(freqs)))
71 N = epochs.shape[2]
72 refs = {f: generate_reference(f, N, sr) for f in freqs}
73 for i in range(n_trials):
74 for j, (b, a) in enumerate(band_filters):
75 X_filt = filtfilt(b, a, epochs[i], axis=1).T
76 for k, f in enumerate(freqs):
77 cca = CCA(n_components=1)
78 cca.fit(X_filt, refs[f])
79 X_c, Y_c = cca.transform(X_filt, refs[f])
80 rho = np.corrcoef(X_c[:, 0], Y_c[:, 0])[0, 1]
81 scores[i, k] += weights[j] * (rho ** 2)
82 preds = np.argmax(scores, axis=1)
83 return preds
84

85 pred_dense = fbcca_classify(main_epochs, freqs, band_filters, weights)
86 pred_freqs = [freqs[i] for i in pred_dense]
87 mapped_preds = [min(range(len(target_freqs)), key=lambda j: abs(pred - target_freqs[j

]))
88 for pred in pred_freqs]
89

90 acc = accuracy_score(main_labels, mapped_preds)
91 results.append((subject, recording, acc))
92 print(f"{subject}␣-␣Rec␣{recording}␣→␣Accuracy:␣{acc:.2%}")
93

94 except Exception as e:
95 print(f"Error␣processing␣{filename}:␣{e}")
96

97 # === Summary Output ===
98 print("\n===␣Accuracy␣per␣Recording␣===")
99 for subj, rec, acc in results:
100 print(f"{subj}{rec}:␣{acc:.2%}")
101

102 print("\n===␣Average␣Accuracy␣per␣Subject␣===")
103 per_subject = defaultdict(list)
104 for subj, rec, acc in results:
105 per_subject[subj].append(acc)
106

107 for subj in sorted(per_subject.keys()):
108 avg_acc = np.mean(per_subject[subj])
109 print(f"{subj}:␣{avg_acc:.2%}")
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A.1.2. ETRCA
1 import os
2 from glob import glob
3 import numpy as np
4 import scipy.io as sio
5 from scipy.signal import iirnotch, butter, filtfilt
6 from sklearn.metrics import accuracy_score, confusion_matrix
7 from collections import defaultdict
8 # === Setup ===
9 data_dir = r"C:\Users\Adam\OneDrive\Documenten\Bep\BCI\Signal␣Processing\Code\Datasets"
10 mat_files = sorted(glob(os.path.join(data_dir, "S*.mat")))
11

12 selected_channels = [
13 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
14 139, 140, 141, 142, 143, 144, 145, 146, 147, 148
15 ]
16 target_freqs = [6.66, 7.5, 8.57, 10.0, 12.0]
17 main_labels = [0]*3 + [1]*3 + [2]*3 + [3]*3 + [4]*3 # 15 trials
18 adapt_labels = [1, 0, 3, 4, 0, 2, 4, 1] # fixed for all subjects
19

20 results = []
21 subject_best_acc = {}
22

23 # === Process all files ===
24 for filepath in mat_files:
25 try:
26 filename = os.path.basename(filepath)
27 subject = filename[:4]
28 recording = filename[4]
29

30 mat = sio.loadmat(filepath)
31 eeg = mat['eeg']
32 din1 = mat['DIN_1']
33 sr = float(mat['samplingRate'])
34

35 event_samples = [int(x[0][0]) for x in din1[3]]
36 diffs = np.diff(event_samples)
37 gap_idx = np.where(diffs > 1250)[0]
38 block_starts = np.concatenate(([0], gap_idx + 1))
39 block_ends = np.concatenate((gap_idx, [len(event_samples)]))
40 blocks = [(s, e) for s, e in zip(block_starts, block_ends)]
41

42 adapt_blocks = blocks[:8]
43 main_blocks = blocks[8:23]
44

45 adapt_starts = [event_samples[b[0]] for b in adapt_blocks]
46 main_starts = [event_samples[b[0]] for b in main_blocks]
47

48 # Filters
49 b_notch, a_notch = iirnotch(50/(sr/2), Q=30)
50 b_band, a_band = butter(4, [5/(sr/2), 45/(sr/2)], btype='band')
51 subbands = [(5, 45), (10, 45), (15, 45), (20, 45), (25, 45)]
52 band_filters = [(butter(4, [lo/(sr/2), hi/(sr/2)], btype='band')) for lo, hi in

subbands]
53

54 def preprocess(eeg_data, starts):
55 epochs = []
56 for start in starts:
57 ep = eeg_data[selected_channels, start:start+int(5*sr)]
58 ep = filtfilt(b_notch, a_notch, ep, axis=1)
59 ep = filtfilt(b_band, a_band, ep, axis=1)
60 epochs.append(ep)
61 return np.stack(epochs)
62

63 adapt_epochs = preprocess(eeg, adapt_starts)
64 main_epochs = preprocess(eeg, main_starts)
65

66 # Templates
67 n_classes = 5
68 adapt_templates = {cls: [] for cls in range(n_classes)}
69 for (b, a) in band_filters:
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70 band_data = filtfilt(b, a, adapt_epochs, axis=2)
71 for cls in range(n_classes):
72 idx = [i for i, lbl in enumerate(adapt_labels) if lbl == cls]
73 if idx:
74 adapt_templates[cls].append(np.mean(band_data[idx], axis=0))
75 else:
76 adapt_templates[cls].append(np.zeros((band_data.shape[1], band_data.shape

[2])))
77

78 # TRCA weights
79 W = {cls: [] for cls in range(n_classes)}
80 for (b, a) in band_filters:
81 band_data = filtfilt(b, a, adapt_epochs, axis=2)
82 for cls in range(n_classes):
83 idx = [i for i, lbl in enumerate(adapt_labels) if lbl == cls]
84 if len(idx) < 2:
85 W[cls].append(np.zeros(band_data.shape[1]))
86 continue
87 X_cls = band_data[idx]
88 X_sum = np.sum(X_cls, axis=0)
89 Q = np.zeros((X_cls.shape[1], X_cls.shape[1]))
90 for trial in X_cls:
91 Q += trial @ trial.T
92 S = X_sum @ X_sum.T - Q
93 eigvals, eigvecs = np.linalg.eig(np.linalg.pinv(Q + 1e-6 * np.eye(Q.shape[0])

) @ S)
94 w = eigvecs[:, np.argmax(np.real(eigvals))]
95 W[cls].append(np.real(w))
96

97 # Classify
98 pred_etrca = []
99 for i in range(main_epochs.shape[0]):
100 scores_cls = np.zeros(n_classes)
101 for b_idx, (b, a) in enumerate(band_filters):
102 trial = filtfilt(b, a, main_epochs[i], axis=1)
103 for cls in range(n_classes):
104 w = W[cls][b_idx]
105 if np.allclose(w, 0):
106 corr_val = 0
107 else:
108 y_trial = w.T @ trial
109 y_temp = w.T @ adapt_templates[cls][b_idx]
110 if np.std(y_trial) == 0 or np.std(y_temp) == 0:
111 corr_val = 0
112 else:
113 corr_val = np.corrcoef(y_trial, y_temp)[0, 1]
114 weight = (b_idx+1)**(-1.25) + 0.25
115 scores_cls[cls] += weight * corr_val
116 pred_etrca.append(np.argmax(scores_cls))
117

118 acc = accuracy_score(main_labels, pred_etrca)
119 results.append((subject, recording, acc))
120 print(f"{subject}␣-␣Rec␣{recording}␣→␣eTRCA␣Accuracy:␣{acc:.2%}")
121

122 # Update best accuracy per subject
123 if subject not in subject_best_acc or acc > subject_best_acc[subject][1]:
124 subject_best_acc[subject] = (recording, acc)
125

126 except Exception as e:
127 print(f"�␣Error␣in␣{filename}:␣{e}")
128

129 # === Final Output ===
130 print("\n===␣eTRCA␣Accuracy␣per␣Recording␣===")
131 for subj, rec, acc in results:
132 print(f"{subj}{rec}:␣{acc:.2%}")
133

134 print("\n===␣Best␣Accuracy␣per␣Subject␣===")
135 for subj in sorted(subject_best_acc.keys()):
136 rec, best_acc = subject_best_acc[subj]
137 print(f"{subj}␣→␣Best:␣{rec}␣with␣{best_acc:.2%}")
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A.2. Self-Measured Dataset Code
1 import numpy as np
2 import pandas as pd
3 from scipy.signal import butter, filtfilt, iirnotch
4 import seaborn as sns
5 import matplotlib.pyplot as plt
6 from sklearn.metrics import confusion_matrix
7 from sklearn.cross_decomposition import CCA
8 def extract_trials_from_csv(filepath, sr=250):
9 """
10 Load EEG CSV, remove trigger channel, extract and filter 6 flicker trials.
11 Each trial is 10 seconds (2500 samples) long.
12 Returns: numpy array of shape (6, 8, 2500)
13 """
14 # Load data (skip header row), keep only first 8 EEG channels
15 df = pd.read_csv(filepath, skiprows=1, header=None)
16 raw = df.iloc[:, :-11].astype(float).values.T # shape: (8, samples)
17 print("Raw␣EEG␣shape:", raw.shape)
18

19 # Flicker normaal 2 targets
20 # flicker_samples = [
21 # (7500, 8750), # tf1
22 # (10000, 11250), # tf1
23 # (12500, 13750), # tf1
24 # (17500, 18750), # tf2
25 # (20000, 21250), # tf2
26 # (22500, 23750), # tf2
27 # ]
28

29 # # Flicker demba 2 targets 26 mei
30 # flicker_samples = [
31 # (7500, 8750), # tf1
32 # (10000, 11250), # tf1
33 # (12500, 13750), # tf1
34 # (17500, 18750), # tf2
35 # (20000, 21250), # tf2
36 # (22500, 23750), # tf2
37 # ]
38

39 #Flicker 4 targets
40 # flicker_samples = [
41 # (7500, 8750), # tf1
42 # (10000, 11250), # tf1
43 # (12500, 13750), # tf1
44 # (17500, 18750), # tf2
45 # (20000, 21250), # tf2
46 # (22500, 23750), # tf2
47 # (27500, 28750), # tf3
48 # (30000, 31250), # tf3
49 # (32500, 33750), # tf3
50 # (37500, 38750), # tf4
51 # (40000, 41250), # tf4
52 # (42500, 43750) # tf4
53 # ]
54 #Flicker 5 targets
55 flicker_samples = [
56 (7500, 8750), # tf1
57 (10000, 11250), # tf1
58 (12500, 13750), # tf1
59 (17500, 18750), # tf2
60 (20000, 21250), # tf2
61 (22500, 23750), # tf2
62 (27500, 28750), # tf3
63 (30000, 31250), # tf3
64 (32500, 33750), # tf3
65 (37500, 38750), # tf4
66 (40000, 41250), # tf4
67 (42500, 43750), # tf4
68 (47500, 48750), # tf5
69 (50000, 51250), # tf5
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70 (52500, 53750) # tf5
71 ]
72

73 # Define filters
74 b_notch, a_notch = iirnotch(50 / (sr / 2), Q=30)
75 b_band, a_band = butter(5, [5 / (sr / 2), 45 / (sr / 2)], btype='band')
76

77 # Extract, filter, and store each trial
78 trials = []
79 for start, end in flicker_samples:
80 eeg_segment = raw[:, start:end] # (8, 2500)
81 #eeg_segment = apply_car(eeg_segment)
82 eeg_filtered = filtfilt(b_notch, a_notch, eeg_segment, axis=1)
83 eeg_filtered = filtfilt(b_band, a_band, eeg_filtered, axis=1)
84 trials.append(eeg_filtered)
85

86 return np.stack(trials) # shape: (6, 8, 2500)
87

88 sr=250
89 def setup_band_filters(sr):
90 """Create bandpass filters for 5 sub-bands"""
91 subbands = [(5, 45), (10, 45), (15, 45), (20, 45), (25, 45)]
92 filters = []
93 for low, high in subbands:
94 b, a = butter(4, [low / (sr / 2), high / (sr / 2)], btype='band')
95 filters.append((b, a))
96 return filters
97 # def setup_band_filters(sr):
98 # bands = [(8, 90), (8, 70), (8, 60), (8, 50), (8, 40), (8, 30), (8, 25), (8, 20)]
99 # filters = []
100 # for low, high in bands:
101 # b, a = butter(4, [low / (sr / 2), high / (sr / 2)], btype='band')
102 # filters.append((b, a))
103 # return filters
104

105

106

107 def generate_reference(f, N, fs, nh=3):
108 """Generate sine/cosine reference signal"""
109 t = np.arange(N) / fs
110 ref = np.vstack(
111 [np.sin(2 * np.pi * k * f * t) for k in range(1, nh + 1)] +
112 [np.cos(2 * np.pi * k * f * t) for k in range(1, nh + 1)]
113 ).T
114 return ref # shape: (N × 2*nh)
115

116 def fbcca_classify(epochs, freqs, band_filters, sr=250, weights=None, default_threshold=0.02)
:

117 """
118 Perform FBCCA classification on EEG epochs.
119

120 Parameters:
121 epochs: np.ndarray
122 EEG data of shape (n_trials, n_channels, n_samples)
123 freqs: list of float
124 List of target frequencies
125 band_filters: list of (b, a)
126 List of IIR filter coefficients for sub-bands
127 sr: int
128 Sampling rate
129 weights: list of float or None
130 Weights for each sub-band
131 default_threshold: float
132 Threshold on max score to assign to "default" class (-1)
133

134 Returns:
135 preds: np.ndarray
136 Predicted class indices (or -1 for default class)
137 scores: np.ndarray
138 Score matrix of shape (n_trials, n_freqs)
139 """
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140 n_trials, n_channels, n_samples = epochs.shape
141 n_freqs = len(freqs)
142 scores = np.zeros((n_trials, n_freqs))
143 refs = {f: generate_reference(f, n_samples, sr) for f in freqs}
144

145 if weights is None:
146 weights = [1 / (j + 1) for j in range(len(band_filters))]
147

148 for i in range(n_trials):
149 print(f"\nTrial␣{i␣+␣1}:")
150 for j, (b, a) in enumerate(band_filters):
151 X_filt = filtfilt(b, a, epochs[i], axis=1).T # (samples × channels)
152 weight = weights[j]
153 for k, f in enumerate(freqs):
154 Y = refs[f] # (samples × harmonics)
155 cca = CCA(n_components=1)
156 cca.fit(X_filt, Y)
157 X_c, Y_c = cca.transform(X_filt, Y)
158 rho = np.corrcoef(X_c[:, 0], Y_c[:, 0])[0, 1]
159 scores[i, k] += weight * (rho ** 2)
160 print(f"␣␣Sub-band␣{j+1},␣Freq␣{f:.2f}␣Hz:␣corr␣=␣{rho:.4f},␣weighted␣score␣

+=␣{weight␣*␣rho**2:.4f}")
161

162 # Determine predicted classes
163 max_scores = np.max(scores, axis=1)
164 preds = np.argmax(scores, axis=1)
165

166 # Handle default class assignment
167 preds[max_scores < default_threshold] = -1
168 for i, score in enumerate(max_scores):
169 if preds[i] == -1:
170 print(f"Trial␣{i␣+␣1}␣classified␣as␣DEFAULT␣(no␣freq␣match,␣max␣score␣=␣{score:.4

f})")
171 else:
172 print(f"Trial␣{i␣+␣1}␣predicted␣class␣=␣{preds[i]},␣max␣score␣=␣{score:.4f}")
173

174 return preds, scores
175

176 filepath = r"C:\Users\Adam\OneDrive\Documenten\Bep\BCI\Signal␣Acquisition\recordings\
Recordings␣27-05\Demba␣6.66␣7.5␣8.57␣10␣and␣12.csv"

177 # === Set parameters ===
178 sr = 250
179 freqs_to_test = [6.66, 7.50,8.57,10, 12] # You control this
180 #true_labels = [0, 0, 0, 1, 1, 1] # Adjust based on your ground truth
181 true_labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]
182

183 # === Run full pipeline ===
184 main_epochs = extract_trials_from_csv(filepath, sr=sr)
185 band_filters = setup_band_filters(sr=sr)
186 preds, scores = fbcca_classify(main_epochs, freqs_to_test, band_filters, sr=sr)
187

188 # === Evaluation ===
189 print("Frequencies␣tested:", freqs_to_test)
190 print("Predicted␣indices:␣", preds)
191 print("Predicted␣freqs:␣␣␣", [freqs_to_test[i] for i in preds])
192 print("True␣freqs:␣␣␣␣␣␣␣␣", [freqs_to_test[i] for i in true_labels])
193

194 correct = sum(p == t for p, t in zip(preds, true_labels))
195 print(f"\nAccuracy:␣{correct}/{len(true_labels)}␣=␣{correct␣/␣len(true_labels):.2%}")
196

197 # === Optional: Confusion Matrix ===
198 cm = confusion_matrix(true_labels, preds)
199 sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
200 xticklabels=freqs_to_test, yticklabels=freqs_to_test)
201 plt.xlabel("Predicted␣Frequency")
202 plt.ylabel("True␣Frequency")
203 plt.title("FBCCA␣Confusion␣Matrix")
204 plt.show()
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A.3. Real-Time Code
1 def setup_band_filters(sr=250): # Added default sr
2 subbands = [(5, 45), (10, 45), (15, 45), (20, 45), (25, 45)] # Standard sub-bands for

FBCCA
3 filters = []
4 for low, high in subbands:
5 # Ensure Nyquist frequency is not violated
6 if high >= sr / 2:
7 high = sr / 2 - 1 # Adjust high if it's too close or above Nyquist
8 print(f"Warning:␣Adjusted␣high␣frequency␣for␣bandpass␣filter␣to␣{high}␣Hz␣due␣to␣

sampling␣rate␣{sr}␣Hz.")
9 if low >= high: # Ensure low is less than high
10 print(f"Warning:␣Skipping␣sub-band␣({low},{high})␣as␣low␣>=␣high␣or␣high␣is␣too␣

close␣to␣Nyquist␣for␣sr={sr}.")
11 continue
12 if low <= 0: # Ensure low is positive
13 print(f"Warning:␣Skipping␣sub-band␣({low},{high})␣as␣low␣is␣not␣positive.")
14 continue
15

16 b, a = butter(4, [low / (sr / 2), high / (sr / 2)], btype='band')
17 filters.append((b, a))
18 if not filters: # Fallback if all sub-bands were invalid
19 print(f"Warning:␣No␣valid␣sub-bands␣for␣sr={sr}.␣Using␣a␣default␣wide␣band␣[5,␣40]␣Hz

.")
20 b, a = butter(4, [5 / (sr/2), min(40, sr/2 -1) / (sr/2)], btype='band')
21 filters.append((b,a))
22 return filters
23

24 def generate_reference(f, N, fs, nh=3):
25 t = np.arange(N) / fs
26 ref_signals = []
27 for k in range(1, nh + 1):
28 ref_signals.append(np.sin(2 * np.pi * k * f * t))
29 ref_signals.append(np.cos(2 * np.pi * k * f * t))
30 return np.vstack(ref_signals).T # shape: (N × 2*nh)
31

32 # --- FBCCA Classification Core (modified to be more general) ---
33 def fbcca_classify_core(eeg_segment, freqs_to_test, band_filters, sampling_rate, weights=None

):
34 """
35 Core FBCCA classification logic for a single EEG segment.
36 eeg_segment: shape (channels, samples) - pre-filtered (bandpass, notch)
37 freqs_to_test: list of target frequencies
38 band_filters: list of (b, a) tuples for sub-band filtering
39 sampling_rate: The sampling rate of eeg_segment
40 weights: weights for each sub-band (optional)
41

42 Returns: predicted_freq_index , predicted_freq_value , max_cca_score
43 """
44 n_freqs = len(freqs_to_test)
45 if n_freqs == 0:
46 return -1, 0.0, 0.0 # No frequencies to test
47

48 n_samples = eeg_segment.shape[1]
49 if n_samples == 0:
50 print("Warning:␣Empty␣EEG␣segment␣passed␣to␣fbcca_classify_core.")
51 return -1, 0.0, 0.0
52

53 # Generate reference signals for the given segment length
54 refs = {f: generate_reference(f, n_samples, sampling_rate, nh=3) for f in freqs_to_test}
55

56 scores_for_segment = np.zeros(n_freqs)
57

58 for i_band, (b_sub, a_sub) in enumerate(band_filters):
59 # Apply sub-band filter
60 # Ensure eeg_segment has enough samples for filtfilt (at least 3 * max(len(a), len(b)

))
61 # For butter order 4, len(a) and len(b) are 5. So need at least 15 samples.
62 if eeg_segment.shape[1] < 15: # A common requirement for filtfilt with order 4
63 print(f"Warning:␣Segment␣too␣short␣({eeg_segment.shape[1]}␣samples)␣for␣sub-band␣
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filtering.␣Skipping␣sub-band␣{i_band}.")
64 continue
65

66 X_sub_band_filtered = filtfilt(b_sub, a_sub, eeg_segment, axis=1).T # Transpose to (
samples, channels)

67

68 for k_freq, f_target in enumerate(freqs_to_test):
69 Y_ref = refs[f_target] # Shape (samples, 2*nh)
70

71 # Ensure X and Y have the same number of samples (should be guaranteed by
N_samples)

72 if X_sub_band_filtered.shape[0] != Y_ref.shape[0]:
73 print(f"Warning:␣Mismatch␣in␣samples␣for␣CCA:␣X_filt␣{X_sub_band_filtered.

shape[0]},␣Y_ref␣{Y_ref.shape[0]}.␣Skipping.")
74 continue
75

76 cca = CCA(n_components=1)
77 try:
78 cca.fit(X_sub_band_filtered, Y_ref)
79 X_c, Y_c = cca.transform(X_sub_band_filtered, Y_ref)
80 # Handle potential all-zero transformed components (can happen with noisy/

short data)
81 if np.all(X_c == 0) or np.all(Y_c == 0):
82 rho = 0.0
83 else:
84 rho = np.corrcoef(X_c[:, 0], Y_c[:, 0])[0, 1]
85

86 current_weight = weights[i_band] if weights is not None and i_band < len(
weights) else 1.0

87 scores_for_segment[k_freq] += current_weight * (rho ** 2)
88 except ValueError as e:
89 print(f"CCA␣ValueError␣for␣freq␣{f_target}␣Hz,␣sub-band␣{i_band}:␣{e}.␣

Skipping␣this␣CCA.")
90 # This can happen if input contains NaNs or Infs, or if X/Y are rank-

deficient for CCA.
91 continue # Skip this CCA calculation
92

93 if n_freqs == 0 or (np.sum(scores_for_segment) == 0 and n_freqs > 0) : # Handle no
frequencies or all scores are zero

94 predicted_idx = -1
95 predicted_freq_val = 0.0
96 normalized_confidence_score = 0.0
97 else: # n_freqs > 0 and at least one score is non-zero
98 predicted_idx = np.argmax(scores_for_segment)
99 predicted_freq_val = freqs_to_test[predicted_idx]
100 raw_max_score = scores_for_segment[predicted_idx]
101

102 # Normalize the score:
103 # The denominator is the sum of weights of all sub-bands that *could* contribute.
104 # This assumes weights are positive. rho^2 is max 1.
105 # `weights` is the parameter passed to fbcca_classify_core.
106 # In process_live_eeg_segment , it's `fbcca_weights = [1.0] * len(sub_band_filters)`.
107

108 actual_sum_of_weights = 0.0
109 if weights is not None and len(weights) == len(band_filters):
110 # Sum positive weights. If all are 1.0, this is len(band_filters).
111 actual_sum_of_weights = sum(w for w in weights if w > 0)
112 elif weights is None:
113 # If weights were None, accumulation loop used 1.0 per band.
114 actual_sum_of_weights = float(len(band_filters))
115 else:
116 # Mismatched weights length. This is an issue. Fallback for robustness.
117 print(f"Warning:␣Mismatch␣in␣weights␣length␣for␣normalization.␣len(weights)={len(

weights)},␣len(band_filters)={len(band_filters)}.␣Assuming␣default␣weights␣of
␣1.0␣for␣normalization␣denominator.")

118 actual_sum_of_weights = float(len(band_filters)) # Fallback
119

120 if actual_sum_of_weights > 0:
121 normalized_confidence_score = raw_max_score / actual_sum_of_weights
122 # Clip to ensure the score is strictly within [0, 1]
123 # due to potential floating point inaccuracies or unexpected rho values.
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124 normalized_confidence_score = np.clip(normalized_confidence_score , 0.0, 1.0)
125 else:
126 # This case (actual_sum_of_weights <= 0) implies no bands or all weights non-

positive.
127 # If raw_max_score is also 0 (likely), then 0.0 is correct.
128 # If raw_max_score is > 0 but sum_weights is 0, it's an anomaly; 0.0 is a safe

fallback.
129 normalized_confidence_score = 0.0
130

131 return predicted_idx, predicted_freq_val, normalized_confidence_score
132

133 # --- 2. Basic Preprocessing (Filters) ---
134 # Bandpass filter (e.g., 5-45 Hz)
135 b_band, a_band = butter(4, [5 / (sampling_rate / 2), min(45, sampling_rate/2 - 1) / (

sampling_rate / 2)], btype='band')
136 # Notch filter (e.g., 50 Hz or 60 Hz depending on region)
137 # Assuming 50Hz for now, make this configurable if needed
138 notch_freq = 50
139 if notch_freq >= sampling_rate / 2:
140 print(f"Warning:␣Notch␣frequency␣{notch_freq}Hz␣is␣too␣high␣for␣sampling␣rate␣{

sampling_rate}Hz.␣Skipping␣notch␣filter.")
141 eeg_filtered_band = filtfilt(b_band, a_band, eeg_segment_selected_channels , axis=1)
142 else:
143 b_notch, a_notch = iirnotch(notch_freq / (sampling_rate / 2), Q=30)
144 eeg_filtered_band = filtfilt(b_band, a_band, eeg_segment_selected_channels , axis=1)
145 eeg_filtered_final = filtfilt(b_notch, a_notch, eeg_filtered_band, axis=1)
146

147 # --- 3. FBCCA Classification ---
148 # Get sub-band filters (these are independent of the main bandpass/notch applied above)
149 sub_band_filters = setup_band_filters(sr=sampling_rate)
150

151 if not sub_band_filters:
152 print("Error:␣Could␣not␣set␣up␣sub-band␣filters␣for␣FBCCA.")
153 return -1, 0.0, 0.0
154

155 # Weights for sub-bands (can be optimized, e.g., based on SNR of harmonics)
156 # For now, using equal weights as a starting point.
157 # Example: weights = [k**(-1.25) + 0.25 for k in range(1, len(sub_band_filters) + 1)]
158 fbcca_weights = [1.0] * len(sub_band_filters) # Equal weights
159

160 predicted_idx, predicted_val, confidence = fbcca_classify_core(
161 eeg_filtered_final,
162 target_frequencies,
163 sub_band_filters,
164 sampling_rate,
165 weights=fbcca_weights
166 )
167

168 return predicted_idx, predicted_val, confidence
169

170

171 # --- Existing Offline Plotting and Main Execution (for testing/reference) ---
172 def plot_trial_fft_offline(trials, target_freqs_values, sr=250, max_freq=30):
173 n_trials = trials.shape[0]
174 cols = 3
175 rows = int(np.ceil(n_trials / cols))
176 fig, axes = plt.subplots(rows, cols, figsize=(15, 4 * rows))
177 axes = axes.flatten()
178 for i in range(n_trials):
179 trial = trials[i]
180 signal = trial.mean(axis=0)
181 fft_vals = np.abs(np.fft.rfft(signal))
182 fft_freq = np.fft.rfftfreq(len(signal), d=1/sr)
183 axes[i].plot(fft_freq, fft_vals, label='FFT')
184 axes[i].axvline(target_freqs_values[i], color='red', linestyle='--', label='Target␣

Freq')
185 axes[i].axvline(2 * target_freqs_values[i], color='green', linestyle='--', label='2nd

␣Harmonic')
186 axes[i].set_xlim(0, max_freq)
187 axes[i].set_title(f"Trial␣{i+1}␣—␣Target:␣{target_freqs_values[i]}␣Hz")
188 axes[i].set_xlabel("Frequency␣(Hz)")
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189 axes[i].set_ylabel("Amplitude")
190 axes[i].legend()
191 for j in range(n_trials, len(axes)): fig.delaxes(axes[j])
192 plt.tight_layout()
193 plt.show()
194

195 if __name__ == '__main__':
196 print("---␣Testing␣Offline␣Pipeline␣(from␣original␣script)␣---")
197 sr_offline = 250
198 # Example file path - replace with an actual path if you want to run this
199 example_filepath = "eeg_data/trial_eeg_data_placeholder.csv" # Placeholder
200

201 # This part will likely fail if the placeholder file doesn't exist or has wrong format.
202 # It's here for structural reference from the original script.
203 try:
204 df_example = pd.read_csv(example_filepath)
205 df_example = df_example.iloc[:, :-11] # Adjust slicing as per your CSV
206 eeg_data_offline_example = df_example.values.T
207

208 freqs_to_test_offline = [8.57, 12] # Example frequencies
209 true_labels_offline = [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1] # Example labels
210

211 main_epochs_offline = extract_trials_from_data_offline(eeg_data_offline_example , sr=
sr_offline)

212

213 # For offline, you might run ICA on each epoch or concatenated epochs
214 # cleaned_epochs_offline = np.array([ICA_offline(epoch)[0] for epoch in

main_epochs_offline])
215

216 band_filters_offline = setup_band_filters(sr=sr_offline)
217

218 # Offline FBCCA would iterate through epochs:
219 all_preds_offline = []
220 all_scores_offline = []
221 print("\nSimulating␣offline␣FBCCA␣on␣extracted␣epochs:")
222 for i_epoch, epoch_data in enumerate(main_epochs_offline): # Using non-ICA'd for this

example
223 pred_idx, pred_val, conf = fbcca_classify_core(
224 epoch_data, freqs_to_test_offline , band_filters_offline , sr_offline
225 )
226 all_preds_offline.append(pred_idx)
227 all_scores_offline.append(conf) # Storing only max score for simplicity here
228 print(f"Epoch␣{i_epoch+1}:␣Pred␣Idx:␣{pred_idx},␣Pred␣Freq:␣{pred_val:.2f}␣Hz,␣

Confidence:␣{conf:.4f},␣True␣Label␣Idx:␣{true_labels_offline[i_epoch]}")
229

230 if all_preds_offline:
231 correct_offline = sum(p == t for p, t in zip(all_preds_offline,

true_labels_offline) if p != -1) # Count correct only if a prediction was
made

232 valid_predictions = sum(1 for p in all_preds_offline if p != -1)
233 accuracy_offline = correct_offline / valid_predictions if valid_predictions > 0

else 0
234 print(f"\nOffline␣Accuracy:␣{correct_offline}/{valid_predictions}␣=␣{

accuracy_offline:.2%}")
235

236 cm_offline = confusion_matrix([true_labels_offline[i] for i,p in enumerate(
all_preds_offline) if p!=-1], # only use true labels where a prediction was
made

237 [p for p in all_preds_offline if p!=-1])
238 if cm_offline.size > 0:
239 sns.heatmap(cm_offline, annot=True, fmt='d', cmap='Blues',
240 xticklabels=freqs_to_test_offline , yticklabels=

freqs_to_test_offline)
241 plt.xlabel("Predicted␣Frequency")
242 plt.ylabel("True␣Frequency")
243 plt.title("Offline␣FBCCA␣Confusion␣Matrix␣(Simulated)")
244 plt.show()
245 else:
246 print("No␣offline␣predictions␣made.")
247

248 except FileNotFoundError:



A.4. Plots Code 41

249 print(f"Offline␣example␣data␣file␣not␣found:␣{example_filepath}.␣Skipping␣offline␣
pipeline␣test.")

250 except Exception as e:
251 print(f"Error␣in␣offline␣pipeline␣test:␣{e}")
252

253

254 print("\n\n---␣Testing␣Live␣Processing␣Function␣---")
255 test_sr = 250 # Hz
256 test_duration = 1 # seconds
257 test_num_channels_raw = 8 # Total channels in the raw mock data
258 test_num_samples = int(test_sr * test_duration)

A.4. Plots Code
A.4.1. FFT

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 def plot_all_main_trial_spectra(epochs, labels, fs=250, max_freq=30):
5 n_trials = len(epochs)
6 cols = 5
7 rows = int(np.ceil(n_trials / cols))
8 fig, axes = plt.subplots(rows, cols, figsize=(18, 10))
9 axes = axes.flatten()
10

11 for i, trial in enumerate(epochs):
12 # Average over channels
13 signal = trial.mean(axis=0)
14 fft_vals = np.abs(np.fft.rfft(signal))
15 fft_freq = np.fft.rfftfreq(len(signal), 1/fs)
16

17 axes[i].plot(fft_freq, fft_vals)
18 axes[i].axvline(labels[i], color='r', linestyle='--', label='Target␣Freq')
19 axes[i].set_xlim(0, max_freq)
20 axes[i].set_title(f"Trial␣{i+1}␣(label={labels[i]}␣Hz)", fontsize=9)
21 axes[i].set_xlabel("Frequency␣(Hz)")
22 axes[i].set_ylabel("Amplitude")
23 axes[i].legend(fontsize=6)
24

25 # Hide any extra subplots
26 for i in range(n_trials, len(axes)):
27 fig.delaxes(axes[i])
28

29 fig.tight_layout()
30 plt.suptitle("Power␣Spectrum␣of␣Main␣Trials␣(averaged␣across␣channels)", fontsize=14, y

=1.02)
31 plt.show()
32

33 # Call it
34 plot_all_main_trial_spectra(main_epochs, labels=[6.66]*3 + [7.5]*3 + [8.57]*3 + [10.0]*3 +

[12.0]*3)

A.4.2. Correlation plot
1 import pandas as pd
2 import numpy as np
3 from sklearn.cross_decomposition import CCA
4 from scipy.signal import butter, filtfilt
5 import matplotlib.pyplot as plt
6

7 def load_single_csv_trial(filepath, sr=250):
8 """
9 Load a single 10s EEG trial from a CSV file with 8 channels.
10 Returns: (channels, samples)
11 """
12 df = pd.read_csv(filepath, skiprows=1, header=None)
13 data = df.iloc[:, :8].astype(float).values.T # shape: (8, samples)
14 return data
15
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16

17

18 def generate_reference(f, N, fs, nh=3):
19 t = np.arange(N) / fs
20 ref = np.vstack(
21 [np.sin(2 * np.pi * k * f * t) for k in range(1, nh + 1)] +
22 [np.cos(2 * np.pi * k * f * t) for k in range(1, nh + 1)]
23 ).T
24 return ref
25

26 def setup_band_filters(sr):
27 subbands = [(5, 45), (10, 45), (15, 45), (20, 45), (25, 45)]
28 filters = []
29 for low, high in subbands:
30 b, a = butter(4, [low / (sr / 2), high / (sr / 2)], btype='band')
31 filters.append((b, a))
32 return filters
33

34 def fbcca_debug_single_trial(epoch, freqs, band_filters, sr=250):
35 n_bands = len(band_filters)
36 n_freqs = len(freqs)
37 N = epoch.shape[1]
38 ref_signals = {f: generate_reference(f, N, sr) for f in freqs}
39 rho_squared = np.zeros((n_bands, n_freqs))
40

41 for j, (b, a) in enumerate(band_filters):
42 X_filt = filtfilt(b, a, epoch, axis=1).T # (samples × channels)
43 for k, f in enumerate(freqs):
44 Y = ref_signals[f]
45 cca = CCA(n_components=1)
46 cca.fit(X_filt, Y)
47 X_c, Y_c = cca.transform(X_filt, Y)
48 rho = np.corrcoef(X_c[:, 0], Y_c[:, 0])[0, 1]
49 rho_squared[j, k] = rho ** 2
50

51 return rho_squared
52

53

54 # === Parameters ===
55 filepath = r"C:\Users\Adam\OneDrive\Documenten\Bep\BCI\Signal␣Acquisition\recordings\

Recordings␣21-05\ch1␣10Hz␣sine␣wave.csv"
56 sr = 250
57 freqs_to_test = [7, 8.0 ,8.5,9.0, 9.5, 10.0, 10.5, 11, 11.5, 12.0, 20.0, 30] # test around

the known signal
58

59 # === Load & prepare ===
60 epoch = load_single_csv_trial(filepath, sr=sr) # (channels, samples)
61 band_filters = setup_band_filters(sr)
62

63 # === Run FBCCA debug ===
64 rho_sq = fbcca_debug_single_trial(epoch, freqs_to_test, band_filters, sr)
65

66 # === Print scores ===
67 total_scores = rho_sq.sum(axis=0)
68 for i, f in enumerate(freqs_to_test):
69 print(f"Freq␣{f}␣Hz␣→␣Total␣FBCCA␣score:␣{total_scores[i]:.4f}")
70

71 # === Plot per-band scores ===
72 bands = [f"{low}-{high}Hz" for (low, high) in [(5, 45), (10, 45), (15, 45), (20, 45), (25,

45)]]
73 plt.figure(figsize=(8, 4))
74 for i, f in enumerate(freqs_to_test):
75 plt.plot(range(len(bands)), rho_sq[:, i], marker='o', label=f"{f}␣Hz")
76 plt.xticks(range(len(bands)), bands)
77 plt.ylabel("�²␣Score")
78 plt.title("Per-Band␣FBCCA␣�²␣Scores␣(10␣Hz␣Recording)")
79 plt.legend()
80 plt.grid(True)
81 plt.tight_layout()
82 plt.show()
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A.4.3. Confusion matrix
1 #true_labels = [0, 0, 0, 1, 1, 1] # Adjust based on your ground truth
2 true_labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]
3

4 # === Run full pipeline ===
5 main_epochs = extract_trials_from_csv(filepath, sr=sr)
6 band_filters = setup_band_filters(sr=sr)
7 preds, scores = fbcca_classify(main_epochs, freqs_to_test, band_filters, sr=sr)
8

9 # === Evaluation ===
10 print("Frequencies␣tested:", freqs_to_test)
11 print("Predicted␣indices:␣", preds)
12 print("Predicted␣freqs:␣␣␣", [freqs_to_test[i] for i in preds])
13 print("True␣freqs:␣␣␣␣␣␣␣␣", [freqs_to_test[i] for i in true_labels])
14

15 correct = sum(p == t for p, t in zip(preds, true_labels))
16 print(f"\nAccuracy:␣{correct}/{len(true_labels)}␣=␣{correct␣/␣len(true_labels):.2%}")
17

18 # === Optional: Confusion Matrix ===
19 cm = confusion_matrix(true_labels, preds)
20 sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
21 xticklabels=freqs_to_test, yticklabels=freqs_to_test)
22 plt.xlabel("Predicted␣Frequency")
23 plt.ylabel("True␣Frequency")
24 plt.title("FBCCA␣Confusion␣Matrix")
25 plt.show()
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Results and Visualizations

Figure B.1: Time- and frequency-domain SNR from an average accuracy recording. A 1 V sine wave was induced using a
function generator at the electrodes of the EEG headset, with 6 trials per target. The two target frequencies were 8.57 Hz and

12 Hz.
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Figure B.2: Time- and frequency-domain SNR from an average accuracy recording. A 100 µV sine wave was induced using a
function generator at the electrodes of the EEG headset, with 6 trials per target. The two target frequencies were 8.57 Hz and

12 Hz.
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Figure B.3: Measurement setup with function generator and tunable voltage divider
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