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Abstract In daily practice, public transport authorities and operators are constantly 

searching for improvements in public transport operations. To this end, it is 

necessary to identify inefficiencies and bottlenecks in the current public transport 

services. In this paper, we propose a method to automatically detect bottlenecks in 

the public transport network, using Automatic Vehicle Location data. A tool is 

developed to automatically process AVL data to identify bottlenecks for the current 

situation. This tool is applied to Amsterdam, capital of the Netherlands, where a 

new metro line will come into operation in the summer of 2018. The results show 

that bottlenecks are mainly found on radial lines and in the inner city. Therefore we 

expect that the operations of the tram network will improve in terms of operating 

speed and reliability due to the opening of the metro line, since the tram lines are 

expected to become less crowded and fewer lines will traverse the inner city. 

 

Keywords: AVL data · Bottleneck detection · Performance indicators · Service 

reliability 

 

 

 

 



 
 

 

1 Introduction 

 
Service reliability is considered to be one of the most important quality aspects of 

public transport. Peek and Van Hagen (2002) consider it as one of the basic 

elements of good services. Several passenger choices (such as mode and route 

choice) are affected by the level of service reliability (see for instance Bates et al. 

2001; König and Axhausen 2002; Li et al. 2010; Van Oort 2016). In addition to 

increasing service quality (and expected ridership growth accordingly), improving 

service reliability also positively affects the costs of operations, since buffer times 

might be reduced. It is therefore not surprising that improving service reliability 

received much attention last decade, both in academia and in practice (see for 

instance Delgado et al. 2012; Xuan et al. 2011; Nesheli and Ceder 2017; Yap et al. 

2018). 

 

Service reliability, which is a result of variability in operations, is the certainty of 

service aspects (such as travel time) compared to the schedule as perceived by the 

user. Unreliability causes longer and uncertain passenger journeys, due to longer 

average waiting time. In case of crowded PT operations, also due to longer dwell 

times. It also causes more crowded vehicles and therefore higher perceived in-

vehicle time. In numerous studies, reliability-related attributes have been found 

among the most important service attributes. In earlier work, Van Oort et al. (2015) 

provide an overview of unreliability causes and impacts on passengers (see Figure 

1). Multiple internal and external causes are identified and proper analyses are 

required to find and understand them. 

 

1.1 Service reliability and AVL data 

 

Van Oort et al. (2015) also illustrate possible applications of AVL (Automatic 

Vehicle Location) data analysis, focusing on the Dutch situation and based on the 

basic principles of AVL data analysis as were established by Furth et al. (2006) and 

Hickman (2004). AVL data remains a valuable data source to assess service 

reliability. In this paper it is used to assess the current state (before opening of the 

new metro line) of the tram network in Amsterdam. This enables assessing the 

impacts of opening the new metro line on service reliability. 



 
 

 

 

Fig. 1: Main causes of service variability in urban public transport 

 

 

1.2 Paper objective 

 

The objective of this paper is to develop a method to automatically detect 

bottlenecks in the public transport network, using Automatic Vehicle Location data 

as data source for analysing service reliability. As mentioned, a lot of literature 

exists on applications of AVL data in the past 15 years. The novelty of our approach 

is the ability to automatically identify bottlenecks in a systematic way. We develop 

a tool to translate the data into valuable information about quality of service. We 

will apply and demonstrate our method by providing an overview of unreliability 

causes in the current tram network of Amsterdam, using AVL data. The data and 

tool are applied to assess the quality of the tram network in Amsterdam in terms of 

operating speed and reliability. This may act as a starting point for before and after 

comparison analyses after opening of the new metro line. 

 

 

 

  

Vehicle  
availability   

Distribution  
d riving time   

Driver behaviour   

Distribution  
dwell  time   

Infrastructure design   

Weather   Other traffic   

Terminal departure  
time variability   

Irregular loads   

Schedule  quality   

Traveller behaviour   

Other public transport   

Distribution  
stopping  time   

Internal causes   

External causes   

Service network design   

Crew availability   
Vehicle design   

Trip time  
variability   



 
 

 

1.3 Case study: Amsterdam network 

 

Amsterdam has about 850,000 inhabitants within its municipality borders. Including 

the surrounding areas the number of inhabitants is about 1,350,000, covering an area 

of about 250 km2. Currently, the area served by 13 train stations, 4 metro lines with 

51 metro stations, 15 tram lines and 25 urban bus lines. The broad river IJ divides 

the city into two parts, where the city centre is situated in the larger southern part. 

The northern part of the city is only served by buses, but it is also connected to the 

rest of the city by 6 ferry connections. 

 

A new metro line will come into operation in Amsterdam in the summer of 2018. 

The new metro line is to connect the north, central and south parts of the city, 

adding a large amount of capacity to the public transport (PT) network, especially in 

the busiest areas of the city (i.e. the monumental, dense city centre). The northern 

part of the city will be served by the metro network and buses will feeder on the 

metro line. In the southern part of the city the line ends at the main business district 

of Amsterdam (“Zuidas”). 

 

Until now, the city centre is mainly served by tram lines, suffering from low speeds 

and unreliable operation. In the situation with the new metro line, the tram network 

will be redesigned to feeder on the new metro line (see Figure 2). It is expected that 

the operation of the tram network will improve in terms of operating speed and 

reliability, for two reasons. First, existing tram lines are expected to become less 

busy, leading to shorter dwell times, less bunching and therefore faster and more 

reliable operation. Second, in the redesigned tram network less lines are needed to 

serve the central train station and have a (partly) tangential route instead. It is 

expected that these tangential routes have less intersecting traffic (pedestrian, cycle 

and car), which also may results in faster and more reliable operations.  

 

All PT vehicles in Amsterdam are equipped with GPS devices, so that AVL data 

can be collected. Table 1 shows an example of the data as available in Amsterdam. 

For each trip basic data is available like date, line number, direction, trip ID and 

vehicle ID. Within a trip each stop is included using both stop order numbers and 

stop names and numbers. For each combination of trip and stop, both the planned 

and realised arrival and departure times are available. 



 
 

 

 
Fig. 2 The PT network of Amsterdam after opening of the new north south metro line. The 

new metro line is shown in light blue. Thick lines are metro lines and thin lines are tram lines. 

 

 
Table 1 Example of AVL data in Amsterdam 

Date Line 

number 

Direc-

tion 

Trip 

ID 

Stop 

order 

number 

Stop name Stop 

number 

Vehicle 

ID 

Planned 

arrival 

time 

Planned 

departure 

time 

Realized 

arrival 

time 

Realized 

departure 

time 

1-11-2017 2 1 355 1 Oudenaardeplantsoen 4314 574 18:54:00 18:54:00 18:54:34 18:54:34 

1-11-2017 2 1 355 2 Kasterleepark 4278 574 18:55:17 18:55:35 18:55:48 18:56:02 

1-11-2017 2 1 355 3 Laan v.Vlaanderen 4276 574 18:56:25 18:56:43 18:56:47 18:57:08 

1-11-2017 2 1 355 4 Louwesweg 4089 574 18:57:31 18:57:49 18:58:31 18:58:56 

1-11-2017 2 1 355 5 Johan Huizingalaan 4113 574 18:58:50 18:59:08 19:00:04 19:00:32 

1-11-2017 2 1 355 6 Heemstedestraat 4116 574 19:01:09 19:01:27 19:01:59 19:02:44 

 

 

1.4 Paper outline 

 

The remainder of the paper is structured as follows. In chapter 2 the method of 

automatic bottleneck detection is described, starting with the introduction of 

notations and definitions. After that, the bottleneck criteria are mathematically 

described and a short description of the implementation in a software tool is given. 

In chapter 3 the results of the bottleneck detection for the case study in Amsterdam 

are described, including a sensitivity analysis with respect to the parameter values. 

Finally, chapter 4 provides conclusions and recommendations. 

 



 
 

 

 

2 Systematic bottleneck detection 

 

In this section the process to detect bottlenecks is described. After defining the 

notation, it is described how the data is processed to aggregated numbers. Next, the 

definitions of bottlenecks are given. Finally, the tool in which this method is 

implemented is shortly described. 

 

2.1 Notation 

 

The following notation is based on Gentile and Noekel (2016); it is extended where 

necessary. It is used in subsequent sections to define the criteria for bottleneck 

detection. 

 

𝑆𝑙,𝑑 ⊆ 𝑆 Stop sequence of line 𝑙 ∈ 𝐿 in direction d; an ordered set with no 

repetitions.  

𝑆𝑙,𝑑
− ∈ 𝑆𝑙 First stop of line l in direction d.  

𝑆𝑙,𝑑
+ ∈ 𝑆𝑙 Last stop of line l in direction d.  

𝑠𝑙,𝑑
− ∈ 𝑆𝑙 Previous stop of stop 𝑠 ∈ 𝑆𝑙,𝑑 − 𝑆𝑙,𝑑

−  of line l in direction d. 

𝑠𝑙,𝑑
+ ∈ 𝑆𝑙 Successive stop of stop 𝑠 ∈ 𝑆𝑙,𝑑 − 𝑆𝑙,𝑑

+  of line l in direction d. 

𝑅𝑙,𝑑 ⊆ 𝑅 (Scheduled) runs sequence of line 𝑙 ∈ 𝐿 in d; ordered set with no 

repetitions.  

𝑃 Set of time periods P. 

𝑅𝑙,𝑑,𝑝 ⊆ 𝑅𝑙Runs of line 𝑙 ∈ 𝐿 in direction d that fall into time period p. 

𝐾𝑝 ⊆ 𝐾 Days that fall into time period p. 

𝜃𝑙,𝑑,𝑘,𝑟,𝑠
𝑠𝑐ℎ𝑒𝑑  Scheduled departure time for run r, line l direction d, at stop s, on day k. 

𝜏𝑙,𝑑,𝑘,𝑟,𝑠
𝑠𝑐ℎ𝑒𝑑  Scheduled arrival time for run r, line l direction d, at stop s, on day k. 

𝜃𝑙,𝑑,𝑘,𝑟,𝑠
𝑟𝑒𝑎𝑙  Realised departure time for run r, line l direction d, at stop s, on day k. 

𝜏𝑙,𝑑,𝑘,𝑟,𝑠
𝑟𝑒𝑎𝑙  Realised arrival time for run r, line l direction d, at stop s, on day k. 

𝐿𝑙,𝑑,𝑠 Length of line segment s on line l in direction d. 

𝛼1 to 𝛼8 Threshold values for bottleneck detection. 

 

2.2 Data processing 

 

The following data is generated from the AVL data, and aggregated. 

 Realised dwell time is calculated (difference between actual arrival time 

and departure time, see equation 1) for each r, l, d, s, k. 

 

𝑡𝑙,𝑑,𝑘,𝑟,𝑠
𝑑𝑤𝑒𝑙𝑙 = 𝜃𝑙,𝑑,𝑘,𝑟,𝑠

𝑟𝑒𝑎𝑙 − 𝜏𝑙,𝑑,𝑘,𝑟,𝑠
𝑟𝑒𝑎𝑙     (1) 

 

The average values are calculated for each time period P (see equation 2). 

For each time period the 15, 50 and 85 percentile values 

𝑡𝑙,𝑑,𝑠,𝑝
𝑑𝑤𝑒𝑙𝑙,𝑝15

, 𝑡𝑙,𝑑,𝑠,𝑝
𝑑𝑤𝑒𝑙𝑙,𝑝50

 and 𝑡𝑙,𝑑,𝑠,𝑝
𝑑𝑤𝑒𝑙𝑙,𝑝85

 are also calculated. 



 
 

 

 

𝑡𝑙,𝑑,𝑠,𝑝
𝑑𝑤𝑒𝑙𝑙,𝑎𝑣 =

∑ 𝑡𝑙,𝑑,𝑘,𝑟,𝑠
𝑑𝑤𝑒𝑙𝑙

𝑘∈𝐾𝑝,𝑟∈𝑅𝑙,𝑝

|𝑘∈𝐾𝑝|∗|𝑟∈𝑅𝑙,𝑝|
    (2) 

 

 Realised punctuality is calculated (difference between actual departure 

time and planned departure time, see equation 3) for each r, l, d, s, k. 

 

𝜋𝑙,𝑑,𝑘,𝑟,𝑠
𝑟𝑒𝑎𝑙 = 𝜃𝑙,𝑑,𝑘,𝑟,𝑠

𝑟𝑒𝑎𝑙 − 𝜃𝑙,𝑑,𝑘,𝑟,𝑠
𝑠𝑐ℎ𝑒𝑑     (3) 

 

Similar with dwell time, also for punctuality for each time period the 

average value 𝜋𝑙,𝑑,𝑠,𝑝
𝑎𝑣  is calculated, as well as the 15, 50 and 85 percentile 

values 𝜋𝑙,𝑑,𝑠,𝑝
𝑝15

, 𝜋𝑙,𝑑,𝑠,𝑝
𝑝50

 and 𝜋𝑙,𝑑,𝑠,𝑝
𝑝85

. 

 

 For each r, l, d, k, for each line segment 𝑠 ∈ 𝑆𝑙,𝑑 − 𝑆𝑙,𝑑
−  (from previous stop 

𝑠𝑙,𝑑
−  to current stop s, i.e. the segment before stop s), realised run time 

(difference between actual departure time at the previous stop and actual 

arrival time at the current stop, see equation 4) is calculated. 

 

𝑡𝑙,𝑑,𝑘,𝑟,𝑠
𝑟𝑢𝑛 = 𝜏𝑙,𝑑,𝑘,𝑟,𝑠

𝑟𝑒𝑎𝑙 − 𝜃𝑙,𝑑,𝑘,𝑟,𝑠𝑙
−

𝑟𝑒𝑎𝑙     (4) 

 

Similar with dwell time, also for run time for each time period the average 

value 𝑡𝑙,𝑑,𝑠,𝑝
𝑟𝑢𝑛,𝑎𝑣  is calculated, as well as the 15, 50 and 85 percentile values 

𝑡𝑙,𝑑,𝑠,𝑝
𝑟𝑢𝑛,𝑝15

, 𝑡𝑙,𝑑,𝑠,𝑝
𝑟𝑢𝑛,𝑝50

 and 𝑡𝑙,𝑑,𝑠,𝑝
𝑟𝑢𝑛,𝑝85

. 

 

 Using the length of each segment 𝐿𝑙,𝑑,𝑠 these travel times are converted into 

speeds 𝑣𝑙,𝑑,𝑠,𝑝
𝑟𝑢𝑛,𝑝15

, 𝑣𝑙,𝑑,𝑠,𝑝
𝑟𝑢𝑛,𝑝50

, 𝑣𝑙,𝑑,𝑠,𝑝
𝑟𝑢𝑛,𝑝85

 and 𝑣𝑙,𝑑,𝑠,𝑝
𝑟𝑢𝑛,𝑎𝑣

.  

 

Each of these values is calculated for 6 different time periods 𝑝 ∈ 𝑃: 

1. AM peak (7AM-9AM) on work days; 

2. Inter peak period (9AM-4PM) on work days; 

3. PM peak (4PM-6PM) on work days; 

4. Evening period (6PM-midnight) on work days; 

5. Saturdays; 

6. Sundays. 

These time periods represent the relevant distinctions between several situations to 

analyse. In both peak periods, the largest delays and travel time variations are 

expected to occur due to high traffic volumes: in many cases only in the peak 

direction. However, there is a difference: in the AM peak most traffic is commuter 

traffic, while in the PM peak traffic is more mixed with other purposes. The inter 

peak period on work days generally has moderate traffic volumes with a lot of 

leisure/shopping traffic, comparable with Saturdays. Evening periods on work days 

are usually less busy, just like Sundays. In a city like Amsterdam, with many 



 
 

 

visitors coming to the city, also on Sundays and evenings busy times occur on a 

non-regular basis.  

 

2.3 Bottleneck definition 

 

Based on these aggregated data, the following definitions are used to identify 

bottlenecks. The parameter values used in the case study are based on expert 

judgement of the authors and of Dutch PT operators and authorities. In section 3.4 a 

sensitivity analysis on these values is included. 

1. Large dwell time: 𝑡𝑙,𝑑,𝑠,𝑝
𝑑𝑤𝑒𝑙𝑙,𝑎𝑣 > 𝛼1 . In the case study 𝛼1 = 60 seconds. 

2. Large variation in dwell time: 𝑡𝑙,𝑑,𝑠,𝑝
𝑑𝑤𝑒𝑙𝑙,𝑝85

− 𝑡𝑙,𝑑,𝑠,𝑝
𝑑𝑤𝑒𝑙𝑙,𝑝15

> 𝛼2. In the case study 𝛼2 

= 120 seconds. 

3. Early departure: 𝜋𝑙,𝑑,𝑠,𝑝
𝑝50

< 𝛼3. 𝛼3 should be a negative value; in the case study 

𝛼3 = -60 seconds.  

4. Late departure: 𝜋𝑙,𝑑,𝑠,𝑝
𝑝50

> 𝛼4. 𝛼4 should be a positive value; in the case study 𝛼4 

= 180 seconds. 

5. Large variation in departure time: 𝜋𝑙,𝑑,𝑠,𝑝
𝑝85

− 𝜋𝑙,𝑑,𝑠,𝑝
𝑝15

> 𝛼5. In the case study 𝛼5 = 

300 seconds. 

6. A punctuality change compared to the previous stop: |𝜋𝑙,𝑑,𝑠,𝑝
𝑝50

− 𝜋𝑙,𝑑,𝑠𝑙
−,𝑝

𝑝50
| > 𝛼6. 

If this is the case, a structural delay occurs at the stage between those stops, that 

is not included in the schedule. In the case study 𝛼6 = 60 seconds. 

7. Low speed: 𝑣𝑙,𝑑,𝑠,𝑝
𝑟𝑢𝑛,𝑎𝑣 < 𝛼7. In the case study 𝛼7 = 15 km/h. 

8. Large travel time compared to free flow (the 15th percentile of the travel time 

on Sundays): 𝑡𝑙,𝑑,𝑠,𝑝
𝑟𝑢𝑛,𝑎𝑣 − 𝑣𝑙,𝑑,𝑠,𝑝=6

𝑟𝑢𝑛,𝑝15
> 𝛼8. In the case study 𝛼8 = 60 seconds. 

 

If at least one of these criteria is met for a specific stop on a specific line and 

direction, a bottleneck is added to the list. This list is made for each time period p. 

For each criterion and time period, a top list can be created based on the indicator 

values. 

 

2.4 Software tool 

 

The data is processed using two tools in MS Excel (using VBA). First, the AVL 

data for each line is processed using the equations in section 2.2, resulting in 

aggregated data per line and time period. For one month of AVL data, the 

calculation time is approximately 5 minutes per line, on a regular laptop (Intel® 

Core™ i5-6200U CPU@2.30GHz). In the second tool, the aggregated data of all 

lines is put together in one database. The bottleneck detection rules (as defined in 

section 2.3) are applied to this database, with a bottleneck list as a result. An 

example screenshot of a resulting bottleneck list in the tool is shown in Figure 3. 

 



 
 

 

 
Fig. 3 The resulting bottleneck list in the bottleneck detection tool  

 

 

 

3 Results 
 

3.1 Case study 

 

The method for automatic bottleneck detection has been applied to the tram network 

of Amsterdam, consisting of 14 lines. In total, 617 combinations of lines (and 

directions) and stops are investigated. For each time period, each of these 

combinations is a potential bottleneck and is checked using the criteria. An AVL 

dataset of one month has been used (November 2017). For each line, this dataset 

consists of 80,000 to 200,000 records that contain both planned and recorded 

departure times 𝜃𝑙,𝑑,𝑘,𝑟,𝑠
𝑠𝑐ℎ𝑒𝑑  and 𝜃𝑙,𝑑,𝑘,𝑟,𝑠

𝑟𝑒𝑎𝑙  and planned and recorded arrival times 𝜏𝑙,𝑑,𝑘,𝑟,𝑠
𝑠𝑐ℎ𝑒𝑑  

and 𝜏𝑙,𝑑,𝑘,𝑟,𝑠
𝑟𝑒𝑎𝑙 . In total, the number of records is approximately 1.9 million. 

 

3.2 Types of bottlenecks 

 

The results are summarized in Table 2: for each time period the number of 

bottlenecks is shown in relation to the 8 criteria used as bottleneck definitions. It 

may be the case that one bottleneck is on the list due to more than one criterion: in 

the last column the number of bottlenecks is listed for which at least one criterion 

applies. It can be observed that the PM peak contains most bottlenecks: more than 

one third of the combinations of line and stop is identified as a bottleneck. 

Furthermore, it can be noted that during the day period more bottlenecks occur than 

in the AM peak: probably due to the large share of leisure / tourism traffic in 

Amsterdam.  

 

 

 

 



 
 

 

 
Table 2 Number of bottleneck occurrences per time period and per criterion 

Time period Large 

dwell 

time 

Large 

variation 

in dwell 

time 

Early 

departure 

Late 

departure 

Large 

variation in 

departure 

time 

Punctuality 

change 

compared to the 

previous stop 

Low 

speed 

Large travel 

time 

compared to 

free flow 

At least 

one 

criterion 

AM peak 4 0 17 0 27 11 87 7 133 

Day period 4 0 11 0 60 10 87 13 164 

PM peak 14 0 29 0 102 17 99 21 219 

Evening  7 0 20 0 18 7 67 0 109 

Saturdays 10 0 12 0 66 11 76 10 158 

Sundays 6 0 29 0 0 9 64 10 104 

 

Two observations can be done concerning type of bottlenecks. Firstly, no cases of 

large variation in dwell time or late departure are found in the tram network of 

Amsterdam. Secondly, low speeds and large variation in departure time occur most 

frequently: low speeds can be observed in all time periods, while large variation in 

departure time (unreliability) is mainly observed in the PM peak, during the day 

period and on Saturdays. During the AM peak tram operation is more reliable, 

probably due to limited leisure traffic (including pedestrians) during that period. 

 

3.3 Location of bottlenecks 

 

In Figure 4 the bottlenecks are shown geographically for the PM peak (the time 

period with the largest number of bottlenecks). The colour of the dot indicates the 

type of bottleneck. A larger size of the dot indicates that two or more bottlenecks 

occur at the same stop (on two or more lines). 

 

It can be observed that low speed bottlenecks mainly occur in the old city centre, 

with a lot of on-street activities like pedestrians and cyclists. Large dwell time 

bottlenecks are observed in the city centre as well, probably due to large number of 

passengers. Large variation in punctuality is mainly observed towards the end of 

long lines between the city centre and the western suburbs and on tangential lines, in 

some cases in combination with early departures. Finally, the line from the city 

centre to the eastern suburb IJburg suffers from large changes in punctuality on 

subsequent stops, indicating that the timetable may be better adjusted to realised 

travel times.  

 



 
 

 

 
Fig. 4 Geographical representation of bottlenecks during the PM peak 

 

 

3.4 Sensitivity analysis 

 

To test the influence of the chosen parameter values on bottleneck detection (see 

section 2.3) a sensitivity analysis is conducted. In this analysis, two additional 

parameter sets are applied: one with tighter criteria (and therefore less identified 

bottlenecks) and one with looser criteria (and therefore more identified bottlenecks). 

The used parameter sets are shown in Table 3.  

 
Table 3 Parameter values for bottleneck detection in the base analysis and in both 

sensitivity analyses. 
Parameter Base 

values 

Sensitivity 

values 1  

Sensitivity 

values 2 

Unit 

 𝛼1: Large dwell time 60 90 45 Seconds 

 𝛼2: Large variation in dwell time 120 180 90 Seconds 

 𝛼3: Early departure -60 -90 -45 Seconds 

 𝛼4: Late departure 180 300 120 Seconds 

 𝛼5: Large variation in departure time 300 450 180 Seconds 

 𝛼6: Puctuality change compared to previous stop 60 90 45 Seconds 

 𝛼7: Low speed 15 12 18 Km/h 

 𝛼8: Large travel time compared to free flow 60 90 45 Seconds 

 

The results of the sensitivity analysis, in terms of numbers of identified bottlenecks, 

are shown in Table 4. The number of identified bottlenecks appears to be very 



 
 

 

sensitive to the used parameter values. This stresses that it is very important to think 

well of the threshold values in relation to the question what is acceptable. This 

question may be posed from the perspective of society / the traveller, but also from 

the operator point of view. Another viewpoint may be the resulting numbers. From 

that perspective, the initial parameter set seems well chosen, since looser parameter 

values (2) lead to identifying more than half of the possible locations as a 

bottleneck. The tighter parameter values (1) lead to a relatively small number of 

bottlenecks and therefore does not seem very ambitious. 

 

When looking at the different types of identified bottlenecks, it can be observed that 

especially variation in departure time is very sensitive to its parameter value: in case 

2 it occurs almost ten times as much, while in case 1 it does not occur at all any 

more. It is also interesting to note that in case 2 every type of bottleneck occurs in 

the network of Amsterdam. 

 

 
Table 4 Total number of bottleneck occurrences (over all time periods) in the sensitivity 

analysis. 
Time period Large 

dwell 

time 

Large 

variation 

in dwell 

time 

Early 

departure 

Late 

departure 

Large 

variation in 

departure 

time 

Punctuality 

change 

compared to the 

previous stop 

Low 

speed 

Large travel 

time 

compared to 

free flow 

At least 

one 

criterion 

Base values 45 0 118 0 273 65 480 61 887 

Sensitivity 1 0 0 18 0 0 11 154 23 180 

Sensitivity 2 207 10 243 25 2310 265 994 145 2677 

 

 

 

4 Conclusions 
 

In this paper a method is developed to automatically detect bottlenecks in PT 

operations. The method first aggregates data (average values and 15, 50 and 85 

percentile values) for dwell time, run time and punctuality. Secondly, bottlenecks 

are identified using 8 criteria that cover multiple aspects of reliability. The 

parameter values used to apply these criteria strongly influence the number of 

resulting bottlenecks. Therefore, it is important to set these values such that a 

reasonable number of bottlenecks are identified. 

 

The method is successfully applied to the current tram network of Amsterdam, 

before the opening of a new metro line in the summer of 2018. In the PM peak most 

bottlenecks occur, which are mainly related to low speeds and unreliable departure 

times. It is expected that the new metro line alleviates these problems, because tram 

lines will become less busy and less tram lines will have to cross the monumental 

city centre, which is the busiest area of the city.  

 



 
 

 

As future research we plan to compare the reliability performance of the PT network 

in Amsterdam before and after the opening of the new metro line. Furthermore, 

smart card data will be used in combination with AVL data to assess the distribution 

of passengers over vehicles. That information can be used to weigh bottlenecks 

depending on the number of passengers that suffer from them. Finally, we plan to 

compare actual performance of the PT network with quality perception of travellers, 

based on customer satisfaction surveys. The last recommendation we have for 

further research is to develop real time bottleneck detection. This could be done by 

connecting our method to CAD-AVL systems (see for instance Van Oort and Van 

Nes 2009), including a short term prediction model. 
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