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Abstract
Self Supervised Learning (SSL) has been shown to
effectively utilise unlabelled data for pre-training
models used in down-stream medical tasks. This
property of SSL enables it to use much larger
datasets when compared to supervised models,
which require manually labelled data. Medical
classification tasks often require the identifica-
tion of patterns inside a small Region Of Interest
(ROI) known to be relevant for radiographic di-
agnosis. This contrasts standard image classifica-
tion tasks, which generally rely on broader pat-
terns. To guide a model in learning such anatom-
ically relevant features, we investigated the hip os-
teoarthritis classification performance of a ROI-
guided Masked Autoencoder (MAE) with a Con-
volutional Neural Network (CNN)-based architec-
ture. Unlike conventional MAEs, which learn la-
tent features by reconstructing randomly masked
images, our alternative uses generated anatomical
landmarks to exclusively mask the ROI or back-
ground. Contradicting similar research on Vision
Transformer (ViT)-based MAEs, random masking
outperformed our ROI-guided alternatives, reveal-
ing a fundamental difference in what drives perfor-
mance for the two architectures, and guiding future
research on more sophisticated ROI-guided mask-
ing strategies. The code is available on GitHub:
https://github.com/Jasperdetweede/AnatAMAE/

1 Introduction
Osteoarthritis (OA) is a degenerative joint disease that is pro-
gressively affecting more individuals [14]. Over time, the dis-
ease causes a gradual breakdown of the tissues in the affected
joint, leading to stiffness and pain. The radiographic diagno-
sis of osteoarthritis is typically performed by trained medical
personnel through the examination of X-ray images, a process
that is both costly and time-consuming. To mitigate these is-
sues, automation using machine learning has been proposed
[11].

However, many machine learning models require a size-
able number of labelled examples to function properly. In
medical settings, acquiring this labelled data is especially
time-consuming and subjective, contradicting the reason for
using machine learning in the first place. In contrast, unla-
belled data is far more abundant, as it does not require human
annotation. Self-Supervised Learning (SSL) has emerged as
a promising approach that effectively utilises this unlabelled
data for medical tasks [7, 1], as it uses only input data to ex-
tract latent features.

SSL operates by creating a supervised task where the tar-
get is generated from input data instead of provided. This
paper focusses on self-predictive SSL methods, which learn
by reconstructing original versions of masked, transformed or
contrasted data.

A distinct characteristic making classification tasks in med-
ical imaging particularly challenging is the presence of a rel-

Figure 1: Comparison between a healthy hip (left) and one affected
by severe osteoarthritis (right). The affected hip shows strong signs
of joint space narrowing.

atively small Region Of Interest (ROI) within otherwise un-
informative areas. Where regular imaging tasks generally re-
quire the model to find broader patterns, medical classifica-
tion often requires capturing localized structures, like hairline
fractures or early-stage tumours. For hip osteoarthritis classi-
fication, these include reduced cartilage thickness around the
femoral head and the presence of bone abnormalities called
osteophytes [8]. Figure 1 shows a healthy hip, and one af-
fected by severe osteoarthritis.

Given the smaller ROIs, it would be valuable to guide a
model’s attention toward these anatomically relevant regions,
known to contain important diagnostic information. While
several approaches exist with the potential to leverage such
domain knowledge, this paper will focus on Masked Au-
toencoders (MAEs), which learn by attempting to reconstruct
masked images and remain largely unexplored in this context.

Specifically, this research paper aims to explore the adapta-
tion of SSL models through the lens of masked autoencoders,
by proposing an anatomy-aware masked autoencoder for hip
osteoarthritis detection. This will be investigated by introduc-
ing two contrasting masking strategies: one that masks only
within the ROI, and another that masks only outside the ROI.
These strategies will be compared against two baseline meth-
ods across varying mask sizes. Each configuration will be
evaluated on classification performance.

2 Related Work
The masked autoencoder was first introduced in 2021 [6],
making it a relatively young self-supervised learning ap-
proach. Consequently, the conducted research in this area is
limited. In general, it has been shown that masked autoen-
coders benefit from context-aware modifications [5, 15, 3, 9],
especially when tailored to a specific medical task [16, 13].

Non-Medical Context-Guided Masking - Comparable
studies in non-medical contexts show that replacing ran-
dom masking with a context-guided approach significantly
increases accuracy. Various papers have suggested different
strategies for context-based masking, like graph-cut segmen-
tation [5] and attention maps created by a trained generator
[3].

Medical Text-Guided Masking - In the medical field, Xie
et al. [15] developed MedIM, which identifies key words and



sentences in the radiology reports accompanying medical im-
ages, and uses them to determine which areas to mask. Con-
cretely, the model was trained on key words and their visual
counterpart from the image, and tasked to map them close to-
gether in a shared embedding space. Subsequently, the areas
named in the report are masked more often. This strategy was
shown to consistently increase performance for various tasks.

Medical Anatomy-Aware Masking - A conceptually sim-
ilar method to the one in this paper was proposed by Zheng
et al. [16]. They used the different intensities from a CT-
scan as a segmentation, which formed the base for their
masks. This experiment showed that for a segmentation task,
anatomy-aware masking significantly improves the accuracy
of an MAE. Another concept similar to the one in this paper
was proposed by Szijártó et al. [13]. Here, ROI-awareness
was shown to increase the accuracy of a masked autoencoder
for ultrasound video. Specifically, they applied a binary seg-
mentation to ultrasound video to mask everything except the
ROI. Subsequently, the ROI was masked using random mask-
ing. This nearly doubled the accuracy when compared to their
baseline.

In sum, recent work has shown that swapping out purely
random masks for ones guided by anatomy [16], medical re-
ports [15] or ROI detections [13] consistently helps MAEs
learn features that matter for medical tasks.

This research will apply a similar anatomy-guided ap-
proach to the task of hip osteoarthritis classification, with
the goal of learning how performance is affected by different
masking strategies. One noticeable difference between this
paper and the ones discussed is that, where others predom-
inantly use a ViT architecture, this paper employs a CNN-
based autoencoder.

3 Methodology
3.1 Model Architecture
The masked autoencoder consists of an encoder and a de-
coder. The encoder processes a masked input image to extract

Figure 2: Overview of the model architecture. The first cycle il-
lustrates the pre-training pipeline; the second shows the fine-tuning
pipeline. L1Loss calculates the linear, pixel-wise difference between
the ground truth image and reconstruction. BCEWithLogitsLoss cal-
culates the loss between raw model output and a binary ground truth.

a latent feature representation, which the decoder then uses to
reconstruct the original image. Each epoch, the reconstruc-
tion loss is calculated from the difference between the origi-
nal and reconstructed images, and used to update the model
parameters. Following the pre-training, the encoder is ex-
tracted and a classifier is attached to its output. Subsequently,
supervised learning with unmasked images is utilised to train
the classifier and fine-tune the encoder. Figure 2 shows a vi-
sual representation of the model architecture.

Two options were considered for implementation of the
MAE: a Convolutional Neural Network (CNN) and a Vision
Transformer (ViT). ViTs function by dividing an image into
patches, which are serialized and shown to the encoder ac-
companied by positional embeddings. In contrast, CNNs re-
ceive the complete input data without division into patches.
ViTs have frequently been shown to outperform CNNs in
image classification tasks [12]. Nevertheless, CNNs often
achieve comparable performance in such cases [4]. Addi-
tionally, using a conceptually simpler model reduces the risk
of confounding factors influencing the results. Given that
this study primarily aims to compare masking strategies, the
masked autoencoder was implemented using a CNN architec-
ture.

3.2 Masking
Before being passed to the autoencoder, images are masked
following a predefined strategy. This paper focuses on the de-
sign and effect of that masking approach. To this end, we dis-
tinguish between random patch masking, the prevailing stan-
dard, and ROI-guided masking.

Random Masking - Random masking is the strategy
utilised by He et al. in the original paper on masked autoen-
coders [6]. Random masking divides the image in patches
of a fixed size and masks a fixed percentage. A mask-
ing percentage of 75% is generally found to be optimal [6],
although some studies report improved performance with
slightly lower ratios [9].

ROI-guided Masking - ROI-guided masking is a hyper-
nym encompassing any strategy that considers the region of
interest when determining which areas of the image to mask.
The version used in this paper defines the ROI to be the
anatomical area known to be most relevant in radiographic di-
agnosis of hip osteoarthritis: the outline of the femoral head
[8]. Specifically, two ROI-guided strategies were considered:
one masks part of the ROI while leaving the background in-
tact; the other masks part of the background while preserving
the ROI. Figure 6 depicts the ROI for the input data.

4 Experiment
4.1 Training Data
The Cohort Hip and Cohort Knee (CHECK) dataset [2] was
used for both pre-training and fine-tuning. This population-
based dataset covers 1002 participants from the Netherlands
during a maximum of five visits [T0, T2, T5, T8, T10] over
ten years. Participants were selected based on the presence of
symptomatic osteoarthritis of the hip and/or knee. Although



X-ray images of various joints are present in the dataset, this
study was limited to images of the hip. Additionally, only
measurements with a Kellgren-Lawrence label for each hip
were used, resulting in 3.359 images and 6.718 hips from 940
participants. Internally, the data is stored in DICOM file for-
mat, together with metadata required for preprocessing, like
pixel density and photometric interpretation.

BoneFinder - For all used images, a set of landmarks was
generated to outline anatomically significant parts of the im-
age. To this end, BoneFinder [10], a machine learning tool,
was used. An example of such landmarks can be seen on the
output images in figure 3.

Kellgren-Lawrence Grading - The Kellgren-Lawrence
(KL) system is the most commonly used radiographic clas-
sification system for osteoarthritis of the hip joint. It scores
hips on an integer range of [0,4], where a score of 0 means
no features of osteoarthritis are present. A score of 4 is de-
fined by the presence of large bone abnormalities called os-
teophytes, joint space narrowing and severe sclerosis. The
CHECK dataset provided KL-scores for all individual hips.

4.2 Preprocessing
All images were preprocessed to standardise the model in-
put. This included ensuring all images were stored using
MONOCHROME1 photometric interpretation, and with a
pixel density of 0.1 mm/pixel. The centre of the femoral head
was then calculated by averaging the coordinates of all land-
marks outlining it. Each image was cropped to 1024×1024
pixels centred on this point and subsequently downsampled
to 256×256 to balance image clarity and computational fea-
sibility. For every modification to the image, the landmarks
were translated accordingly. Figure 3 depicts a conceptual
outline of the preprocessing pipeline.

Figure 3: Overview of the preprocessing pipeline. The input is an X-
ray image of the hip from the CHECK dataset. Sequentially, photo-
metric interpretation and resampling are applied, followed by crop-
ping centred on the femoral head, downsampling and mirroring of
the left hip. The blue dots on the output represent the generated
anatomical landmarks.

4.3 Evaluation
The first experiment compares four approaches. Of these
four, the first and last serve as a baseline, enabling a compari-
son between a non-masking autoencoder, random masked au-
toencoder and the ROI-guided alternatives. Figure 4 visually

exemplifies the four strategies when applied on a data sample.
Specifically, the strategies considered during the conducted
experiments were:

• No masking
• ROI masking
• Background masking
• Full masking

Figure 4: Overview of all masking strategies, applied on an arbitrary
data sample with a patch size of 16 pixels. From left to right: ’no
masking’, ’ROI masking’, ’background masking’ and ’full mask-
ing’.

The second experiment repeats the first for three patch
sizes: 8, 16 and 32 pixels. Since patch size does not affect
the ’no masking’ strategy, this results in ten pre-trained mod-
els over both experiments.

During fine-tuning with the pre-trained encoder, the in-
put is not masked, allowing one consistent evaluation pro-
cess across all models. Each hip was labelled positive if
the Kellgren-Lawrence score was higher than 1, and labelled
negative otherwise. The Receiver Operating Characteristics
(ROC) metric was used to evaluate model performance. This
metric gives a complete picture of performance that is inde-
pendent of the classification threshold. The numerical per-
formance of the model is then defined as the Area Under the
ROC curve (AUROC), which represents the chance that the
model ranks a randomly chosen positive example higher than
a randomly chosen negative example.

Figure 5: ROC curve (left) and AUROC over epochs (right). Note
the variance in the AUROC graph due to arbitrary overfitting on the
validation set. To avoid such outliers, the graph was smoothed be-
fore calculating performance.

To identify the model with the best overall performance,
the AUROC was plotted for each epoch. Subsequently, this
graph was smoothed with a five-epoch window, and the opti-
mal window was selected. Finally, to avoid outliers the model
with an AUROC closest to the window average was chosen.
Model fine-tuning and evaluation were repeated five times per



pre-trained model, with unique seeds. Figure 5 depicts an ex-
ample of an ROC curve and AUROC graph before smoothing.

Hyperparameters - For all experiments, all hyperparam-
eters not under investigation were held constant and chosen
based solely on reconstruction accuracy. A batch size of 16
and learning rate of 0.00025 were used to balance conver-
gence speed with training stability. Additionally, each model
was trained for 80 epochs, as preliminary tests showed all
models to convergence well before this point while keeping
overall runtime reasonable and avoiding overfitting. Finally,
the masking ratio was set to 50% to highlight potential perfor-
mance differences while avoiding an overly aggressive mask-
ing strategy that could obscure those differences.

The hyperparameters for the finetuning phase were chosen
to balance performance with a fair evaluation and computa-
tional feasibility. Specifically, a learning rate of 0.0005, batch
size of 16 and runtime of 80 epochs were chosen.

Data Partitioning - The dataset (6.718) was split into
roughly 70% training data (4.754) and 30% evaluation data
(1.964). To reduce confounding factors, the same split was
used for each run, and each split has roughly the same num-
ber of positive labels (26%). For the fine-tuning phase, 20%
of the training data was used, to simulate a real-world sce-
nario where only part of the data is labelled.

4.4 Implementation Details
The autoencoder was implemented using Python and Py-
torch. The encoder is build as 5 convolution layers and 4
residual blocks, using ReLU activation functions in between
each layer. The decoder is the reverse of the encoder, cre-
ating a symmetrical autoencoder. The classifier head, ap-
plied during fine-tuning, is implemented as a network with
one hidden layer and a single output dimension. Addition-
ally, dropout and randomised data augmentation are applied
to reduce over-fitting.

Both the pre-training and fine-tuning phase use a loss func-
tion to evaluate batch-wise performance and update model
parameters. During pre-training, the autoencoder minimizes
the linear pixel-wise loss (L1Loss) between the original im-
age and the reconstruction. For supervised fine-tuning, a sig-
moid activation layer combined with binary cross entropy
(BCEWithLogitsLoss) was applied on the classification out-
put and the ground-truth label.

Many existing ViT-based MAEs utilise a loss function that
ignores visual patches, rewarding only reconstruction accu-
racy for the masked patches. However, this loss function is
incompatible with the zero percent masking ratio, and would,
given the proposed ROI-guided masking strategies, ignore ei-
ther the ROI or background entirely. Despite the potential for
increased performance, this would conceptually be closer to
an attention map, which was not the focus of this research.

The ROI-guided masking strategies were implemented by
first defining the ROI based on a predefined subset of the gen-
erated landmarks, each representing a specific anatomical po-
sition on a bone. Figure 6 depicts an example of an extracted
ROI. Subsequently, the image is divided into square patches
of the specified size. For the ’ROI masking’ strategy, patches

overlapping one or more pixels of the ROI are selected. For
the ’background masking’ strategy, the exact opposite patches
are extracted. In both cases, a fraction of these patches equal
to the masking ratio is masked, while the remainder remains
unaltered.

Additionally, the ’no masking’ baseline was evaluated us-
ing the same model without masking. The ’full masking’
baseline was implemented as random patch masking.

The complete codebase can be found on the GitHub repos-
itory for this paper, referenced in the abstract.

Figure 6: Visual representation of the Region Of Interest (ROI) for
an arbitrary data sample. Note the blue dots, which represent gener-
ated anatomical landmarks, and the blue segmentation, representing
the ROI.

5 Results
5.1 Pre-Training
Figure 7 shows an example of the image reconstruction for
each strategy. Given that the pre-training loss graphs are not
the focus of any experiment, this data is not shown in this
paper. However, all raw data and visuals are available in the
experiments folder on the aforementioned GitHub repository
for this paper.

5.2 Down-Stream Classification
For all pre-trained encoders, the average classification perfor-
mance (AUROC) over five fine-tuning runs is shown in figure
8.

First, the ’no masking’ baseline is consistently outper-
formed by all other strategies by a minimum of 2.5%, show-
ing the promising potential of masked autoencoders in med-
ical classification. Secondly, for a patch size of both 8 and
16 pixels, the ’full masking’ strategy outperformed the ROI-
aware alternatives by 0.4-2.6%.

An interesting exception was found for a patch size of 32
pixels, where ’background masking’ outperformed both ’full
masking’ and ’ROI masking’ by roughly 0.5%. Addition-
ally, while both ROI-aware strategies perform similar to the
alternative with a 16 pixel patch size, ’full masking’ drops
significantly when using a 32 pixel patch size.

Although both observations could have various explana-
tions, their combination seems to point to one in particular.
In contrast to the ’ROI masking’ strategy, which ensures that
only a fixed proportion of the ROI is masked, the ’full mask-
ing’ approach offers no such guarantee. As a result, the ROI
is often either almost entirely masked or left mostly intact,
both of which can hinder effective feature extraction



Figure 7: Pre-train reconstructions after 80 epochs for all models
with a patch size of 16 pixels. From left to right: ground truth,
masked input and reconstruction. From top to bottom: ’no masking’,
’ROI masking’, ’background masking’ and ’full masking’.

As hypothesized, ’background masking’ was observed to
benefit from a larger patch size. This may be explained by
the model relying more heavily on global patterns when pro-
cessing background regions. Although ’ROI masking’ was
expected to benefit from a smaller patch size due to the pres-
ence of important fine-grained details, its performance was
found largely unaffected by the variable.

Overall, a patch size of 16 pixels showed the most bal-
anced performance. Additionally, given that the performance
drop at 32-pixel suggests this patch size exceeds the optimal
threshold, it could be argued that ’full masking’ is the most
effective masking strategy that was tested for this architec-
ture.

6 Responsible Research
6.1 Ethical Discussion
As this research concerns both machine learning and applica-
tion in the medical field, considering the ethical implications
of the conducted research is of great importance.

Firstly, the real-world consequences of our model perfor-
mance must be considered. For medical classification tasks,
classification mistakes can often significantly affect the lives
of patients. Specifically, a clear distinction has to be made
between false positives, and false negatives. Where a false
positive causes stress and financial loss, a false negative could
deny a patient early treatment, causing suffering. In practice
a trade-off between these two has to be made in the form of a
classification threshold. Since our model was evaluated using

Figure 8: Average AUROC per pre-trained encoder-classifier model
(n=5). Note that the range on the y-axis was limited to [0.64, 0.72]
for clarity. A fully random classifier would score 0.5 on this scale,
and a perfect classifier 1.0. In the table, bold text indicates the best
performance per patch size.

a metric independent of this threshold (AUROC) we did not
have to make this ethical trade-off. However, when a simi-
lar classification model were to be applied in practice, other
metrics like accuracy and recall should be taken into account.

Secondly, automated systems such as ours are funda-
mentally paired with the ethical concern of responsibility.
Morally, anybody that actively helped create and run such a
model could to a degree be held responsible. However, we
have little precedence for who holds legal responsibility for
decisions of end-to-end automated classifiers. Until a clas-
sification system for hip osteoarthritis is proven to consis-
tently deliver better radiographic diagnoses than trained med-
ical personnel, we suggest these systems remain a tool, only
used under human supervision.

Lastly, we acknowledge that the used dataset contains med-
ically sensitive data. Although all participants signed in-
formed consent statements, we are morally obliged to handle
this data with care. Hence, the dataset was not uploaded to
the paper’s GitHub page, and the visualization of full X-ray
images was limited to where it was strictly necessary. More
leniency was granted for the cropped and downsampled sam-
ples from the training data, as little sensitive information can
be extracted from these images.

6.2 Reproducibility and Repeatability
Repeatability refers to the likelihood of consistently achiev-
ing the same results over multiple sessions, while repro-
ducibility concerns achieving the same results over indepen-
dent studies.

Repeatability - If the conducted experiments were re-
peated under the exact same conditions, similar results will
be achieved. During implementation of the model, consistent
effort was put into seeding all randomised factors. Hence,
using an input twice will result in the exact same results.



Reproducibility - The experiment section extensively de-
scribes all factors, including those that potentially affect the
results. This allows an accurate recreation of the original con-
ditions. To further improve reproducibility, the codebase used
for the experiments is publicly available on the repository ref-
erenced in the abstract, along with the input commands and
logs for pre-training and fine-tuning. However, the data used
for this experiment is not publicly available. Although it can
be downloaded on request, this limitation in availability does
negatively impact the reproducibility of our findings.

7 Discussion and Conclusion
7.1 Limitations
Although the results show emerging patterns, there are limita-
tions that need to be acknowledged. Furthermore, because of
constraints in both scope and time, the effect of various fac-
tors could not be explored, leaving opportunity for follow-up
research.

Margin of Error - Most notably, the results are limited
by the number of performance samples per model. Despite
each model being ran five times, the variance in these results
leaves on average a significant 95% confidence interval width
of 0.76% in a range of 0.43%-1.15%. This means that in some
cases, the observed difference in performance falls within the
margin of error and could be significantly higher or lower in
practice. Nevertheless, the likelihood that the true average
performances differ enough to change the overall conclusion
is low, supporting the reliability of the results.

Reconstruction and Prediction Loss - In this experiment,
each model was pre-trained for 80 epochs, based on the con-
vergence of the reconstruction loss. This was done under the
assumption that reconstruction loss and prediction accuracy
would be inversely correlated. However, it is possible that a
lower reconstruction loss is correlated to lower prediction ac-
curacy. Similarly, if reconstruction loss is bottlenecked by the
decoder, pre-training for longer might strengthen the embed-
dings and improve classification performance, while recon-
struction loss has plateaued. A systematic set of experiments
could be conducted in future research, to learn how recon-
struction loss is related to prediction accuracy.

Masking Ratio - The experiments considered only two
masking ratios (0% and 50%) because of limited computa-
tional resources. Despite these values being chosen with the
goal of clearly showing potential differences, two points leave
room for significant patterns to be overlooked due to underfit-
ting. Repeating the conducted experiments for more masking
ratios could strengthen the observed patterns, or reveal new
emerging ones.

7.2 Discussion
The results of the conducted experiments seem to contradict
the findings of similar papers. Where other papers observe
improved performance with ROI-aware modifications, ’ROI
masking’ and ’background masking’ were outperformed sig-
nificantly by random masking. The two factors that most

likely caused this difference are the used model architecture,
and the loss function.

Firstly, while most papers use a Vision Transformer (ViT)
to implement the masked autoencoder, this paper employs
a convolutional neural network. Although their conceptual
similarities were assumed to allow generalization of the con-
clusion across architectures, the conflicting results challenge
this assumption.

Secondly, ViT-based MAEs are typically paired with a
reconstruction loss that ignores unmasked patches, as this
approach aligns well with their architecture. This strategy
is less commonly used in CNN-based MAEs, due to their
stronger reliance on local pixel relationships. However, such
a masked-patch loss function places greater emphasis on the
masked regions and could therefore significantly influence
the results.

Adapting the conducted experiments to be compatible with
a ViT and a masked-patch loss could provide an interesting
premise for follow-up research and offer meaningful insight
into the differences between CNN- and ViT-based MAEs.

Considering the broader applications of the results and pro-
posed models, it is clear they do not achieve a competitive
performance for this task, but this was expected. Real-world
medical imaging applications require models far larger and
more complex than the those studied in this paper. Instead,
this paper focussed on gaining a more fundamental under-
standing of how the masking strategy affects down-stream
performance. To this end, this paper showed that CNN-
based MAEs do not benefit from masking only the ROI or the
background. This suggests they might not benefit from ROI-
guided masking at all, or not to the same degree as ViT-based
models, revealing a fundamental difference in what drives
performance for these two architectures. These observed re-
sults can guide the creation of more sophisticated masking
strategies, and help build a more fundamental understanding
of the factors that affect performance in medical classification
tasks.

7.3 Conclusion
This paper aimed to find the effectiveness of different
anatomy-aware modifications to the masked autoencoder,
when applied to classification of hip osteoarthritis from X-
ray images.

We have demonstrated that for a convolutional masked au-
toencoder, full random patch masking outperforms masking
only the ROI or background, suggesting they might not ben-
efit from ROI-guided masking. This indicates a fundamen-
tal difference in how vision transformers and convolutional
neural networks are affected by masking strategies, offering
fertile ground for future research.

Secondly, a non-masked baseline was consistently outper-
formed by all masking alternatives, confirming the promising
potential of masked autoencoders in medical classification.

Finally, although the initial hypothesis was disproven, the
observed results can guide future research into more so-
phisticated ROI-guided masking strategies, and help build a
more fundamental understanding of the factors that affect per-
formance in masked autoencoders for medical classification
tasks.
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