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ABSTRACT 
Now that all kinds of products are increasingly getting 

connected to the Internet, it is expected that it will become easi-
er to collect data on how they are actually used during the mid-
dle-of-life stage of their product lifecycles. At the same time, a 
growing number of data analytics technologies offers opportu-
nities to transform this data into actionable knowledge. Over 
the years, such knowledge extracted from usage data has al-
ready become a reliable input for managing maintenance and 
related services, but other uses such as feedback to design – 
where product data management systems have started to offer 
support for data collection practices – and providing advice to 
end users are now also being considered. Most data from sen-
sors and other product-embedded information devices are col-
lected in batches and analyzed retrospectively. In order for 
companies to further benefit from data collection in terms of 
efficacy and acceptance in society, two key challenges are (i) 
finding ways to effectively use data analytics techniques – 
which currently do not seem to be used to their full potential, 
and (ii) finding a good trade-off between respecting privacy and 
yet producing useful knowledge. 

INTRODUCTION 
Analysis of how different customers use products can pro-

vide valuable insights for companies which depend on revenues 
generated directly or indirectly from those products. Among 
these companies are manufacturers, resellers and third parties 
such as maintenance providers and insurance companies. In 
addition, non-commercial parties such as law enforcement au-
thorities and NGOs may have interest in how particular prod-
ucts are being used. 

The collection of usage data to obtain particular insights 
has been common for a long time in the exploitation of websites 
and software, as well as hardware such as computers, 
smartphones and digital cameras [e.g., 1,2,3]. Now that the In-
ternet is evolving “from a network of interconnected computers 

to a network of interconnected objects” [4], also referred to as 
the Internet of Things (IoT), more and more categories of prod-
ucts offer opportunities for collecting data about how they are 
being used. This trend is extending to product categories that 
are deployed to achieve mostly physical effects, which did not 
traditionally produce any processable data. It is facilitated by 
the fact that product functionality is increasingly realized with 
the help of information-producing and networked solution ele-
ments such as embedded software, sensors – which convert 
measurements from the physical world to data – and actuators, 
which convert data to changes in the physical world. Compa-
nies can track the movements of these products and monitor 
interactions with them, which inspires new business models 
taking advantage of these behavioral data [5]. As we will see in 
this survey, the changes in business models can take various 
forms. Knowing how customers actually use the products is 
said to enhance a company's ability to segment customers, cus-
tomize products, set prices to better capture value, and extend 
them with value-added services [6]. 

OBJECTIVE, SCOPE AND METHOD 
In this paper we have focused on how product-producing 

companies can extract and exploit knowledge from product 
usage to improve their products and product-related services. It 
is not a paper about the Internet of Things, as it has been de-
fined as “the networked interconnection of everyday objects, 
which are often equipped with ubiquitous intelligence” [7] or 
“the pervasive presence around us of a variety of things or ob-
jects which (...) are able to interact with each other and cooper-
ate with their neighbors to reach common goals” [8]. The IoT 
according to these definitions adds value through networked 
cooperation between products of various kinds, in applications 
such as domotics control in smart homes [9]. Instead, our focus 
has been on data and knowledge collected from multiple in-
stances of physical, tangible products of the same kind. The IoT 
can be seen as a possible enabler of data collection, but we have 
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also considered more traditional, centralized communication 
schemes in which each instance of the product unidirectionally 
sends data to the company. Our focus on data to be used by the 
product-producing company also implies that the survey does 
not cover collection of data only to be used within the product 
itself and its local context, as is the case with applications of 
control engineering and local diagnostics support – e.g., distrib-
uted control of aircraft engines [10], and user access to a vehi-
cle’s diagnostic information [11]. Furthermore, our focus on 
how the product in question is being used, implies that we have 
not considered data collected by the product about (behavior of) 
other entities that it is monitoring, like fitness trackers, smart 
alarm systems, smart energy meters, etc., do [12]. 
 

This survey aims to (i) accumulate what has been done in 
the field of gathering and utilizing data from products by giving 
an overview of the applied technologies and approaches as well 
as the achieved results, and (ii) identify unresolved (research) 
challenges and unexploited opportunities. 

In reviewing the current state of the art, we have started 
from the following questions: 
 What kinds of products have been considered in the re-

viewed sources?  
 What have been the motivations to collect and analyze the 

data? 
 What are the technologies, infrastructures and platforms 

that have been considered to generate, transmit, collect and 
interpret the data? 
 
In the light of the increasing connectedness of products, we 

were especially interested in data collection by products that 
traditionally would not be expected to generate any data about 
their usage, i.e. products that are not essentially computers, but 
products with main functions other than receiving/collecting, 
processing and providing information. For those products that 
are essentially computers, the so-called information-centric 
products – such as smartphones and tablets – the focus has been 
on data other than the data handled by the product’s infor-
mation-processing processes. For instance, for a laptop we 
would be interested in how users handle it mechanically rather 
than in how often the laptop connects to wireless networks. 
This special interest was motivated by the fact that for infor-
mation-handling functions the collectable data about usage 
comes more or less for granted, while it might be more interest-
ing to learn about the additional efforts needed if that is not the 
case. 

 
As a basis of the survey, scientific publications, commer-

cial materials as well as technology news reports collected from 
the Web were used. The initial, central search has been for pub-
lications and websites where the words collect, product, us-
age/use, and data, with or without sensors appear together. 
Subsequently, other sources to which the results referred were 
consulted, and potentially meaningful terminology often men-
tioned in the results was also used as search terms. 

 

The structure of the remainder of this paper is as follows: 
in the next section, the various products that have been provid-
ed with usage data gathering capabilities are characterized. 
Secondly, the various motivations for collecting the data are 
discussed: what did companies and other stakeholders aim to 
achieve with it? Third, the technologies (platforms, hardware, 
networking, analysis techniques, etc.) are discussed. These next 
three sections aim to reflect the trends in collecting and utiliz-
ing data from products. After that, issues and challenges are 
identified, and the paper ends with a discussion and conclu-
sions. 

CHARACTERIZATION OF PRODUCTS THAT HAVE 
BEEN DEPLOYED TO COLLECT DATA ABOUT THEIR 
USE 

Many reports on products collecting data during middle-of-
life (MOL, also known as mid-life or the aftermarket, i.e. the 
stage of the lifecycle where a product is used) focus on a par-
ticular category of products or even a specific product. From 
our investigation, it appears that the practice of equipping 
products with data collection capabilities and utilizing the data 
is currently more widespread among products of a certain 
(high) complexity. These are products that buyers generally 
consider investment goods. Quite a number of sources [13-24]1 
report on data collection from automobiles. Other sources pre-
dominantly report on B2B applications in aircraft [5,18,25], 
military equipment [26], industrial equipment [27-31], and in-
frastructure such as bridges [32,33], street lights [34] or eleva-
tors [35]. The fact that data collection has become so wide-
spread in cars may be due to the fact that automobiles are not 
only investment goods, but contrary to the other products men-
tioned above, also mass products. 

One example where MOL data collection has made it to 
less capital-intensive products is Hewlett Packard’s Instant Ink 
program for inkjet printers [36]. The few other examples of 
data collection from less capital-intensive goods concern stud-
ies, where researchers have collected data from one product or 
a small number of products to investigate aspects of possible 
future data collection and utilization at a larger scale – for in-
stance fridge-freezer combinations [37], notebook computers 
[38], and furniture [39]. Furthermore, in 2015, Miele completed 
a proof-of-concept study with data collection from connected 
kitchen equipment [40]. 
In the remainder of the paper, application examples will be dis-
cussed in this same order: (i) automotive, (ii) aerospace and 
defense, (iii) industrial equipment and infrastructure, and (iv) 
non-capital-intensive products including consumer goods. For 
each category, first, examples will be discussed where data col-
lection actually has become practice, followed by smaller-scale 
data collection experiments and novel approaches proposed by 
researchers. 

                                                           
1 The individual contributions from the referred works will be discussed 

in the next subsections. 
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MOTIVATIONS FOR COLLECTING AND PROCESSING 
DATA  
A company that decides to collect data from its products – or 
from other companies’ products – does so with a particular in-
tention. This intention, motivation or rationale is the driver be-
hind some form of exploitation of the processed data. It can be 
anything from optimizing business processes to achieving the 
“changes in business models” mentioned in the introduction. By 
far the largest body of literature concerns managing mainte-
nance of products out in the field. After the state of art in that 
area, other reasons why data collection has been considered or 
implemented will be discussed. 

Maintenance management of fielded products 
According to the broad definition offered by the European Fed-
eration of National Maintenance Societies, ‘maintenance’, is the 
combination of all technical, administrative and managerial 
actions during the lifecycle of an item intended to retain or re-
store it to a state in which it can perform its required function 
[41]. Going by this definition, there are several differently 
named but similar approaches aiming to exploit data collection 
for support, streamlining, or optimizing maintenance of prod-
ucts to reduce downtime, avoid unnecessary maintenance activ-
ities, increase customer satisfaction and extending the use phase 
of the product lifecycle. In this section, the following approach-
es have been grouped together: condition-based, predictive, 
proactive and preventive maintenance, prognostics & health 
management (PHM) and through-life engineering services 
(TES). 
Condition-based maintenance is an established and accepted 
maintenance practice. It aims to derive maintenance require-
ments from real-time assessment of the product2 condition ob-
tained from embedded sensors and/or external tests and meas-
urements. It relies on built-in diagnostic equipment or portable 
diagnostic equipment, such as PDAs and tablets [26]. The goal 
of condition-based maintenance is to perform maintenance 
based only upon the evidence of a need rather than any prede-
termined time cycle, equipment activity count, or other engi-
neered basis. 
Proactive maintenance is an approach that uses integrated, in-
vestigative and corrective practices to significantly extend ma-
chinery life with the goal to eliminate failures of equipment 
forever [31].  
PHM aims to monitor life-cycle environmental and usage con-
ditions of products or systems to assess on-going health, pro-
vide advance warning of failure through detection of failure 
precursors, and provide information to improve the design and 
qualification of fielded and future products [42]. 

TES has been defined as “a result of the application of ex-
plicit and tacit ‘service knowledge’ supported by the use of 
monitoring, diagnostic, prognostic technologies and decision 
support systems whilst the product is in use, and maintenance 
(…) functions to mitigate degradation, restore ‘as design’ func-

                                                           
2The original publication [26] specifically uses “weapon system” where 

“product” is used in this survey. 

tionality, maximize product availability, thus reducing whole-
life operation cost” [43]. This is achieved based on five sources 
of knowledge, namely knowledge of (i) degradation and failure 
mechanisms, (ii) means of repair, (iii) diagnostics and prognos-
tics, (iv) use, and (v) design and function. 

The approaches to manage maintenance described above 
are often considered to underlie so-called performance models, 
which represent the transition from selling products to selling 
performance. They are based on the rationale that there is no 
inherent benefit for the customer to actually own the product 
[44]. 
 

In the automotive industry, health monitoring and fault 
tracing based on diagnostics data collected from fielded cars 
forms an important part of service and maintenance [16]. It 
increases the service technicians’ ability to diagnose and reme-
dy problems in the increasingly complex electronically con-
trolled vehicles and thus improves customer satisfaction. The 
offline retrospective readouts are also uploaded to the manufac-
turer's database to analyze fault occurrences collected from 
multiple cars, (i) to monitor the quality of components and sub-
systems, (ii) to prioritize in which order problems should be 
addressed and (iii) to find correlations between different faults, 
or between faults and the operating environment. The recent 
trend of offering real-time connectivity in vehicles is mainly 
motivated by customers’ demand for on-board internet and on-
demand entertainment [45] rather than by the need to collect 
data. 

The automobile industry has introduced data collection 
platforms offering support for maintenance management. For 
instance, GM’s OnStar emails diagnostics reports to the dealer 
to facilitate scheduling of service appointments [46]. A more 
futuristic proposition was proposed by Amor-Segan et al. [23]: 
their self-healing vehicle concept collects data from connected 
automobiles and is supposed to support in-vehicle autonomous 
fault management. They claim that centralized collection of 
data based on wireless telematics can be used to (i) facilitate 
more comprehensive data analysis and diagnosis at a remote 
support center, (ii) receiving diagnostics patches to aid in-
vehicle diagnostics, (iii) update diagnostic and prognostic guid-
ance and (iv) enable new software versions for feature en-
hancements, correction of design and implementation errors. In 
addition, Johanson et al [16] foresee support of inspection and 
repair during manufacturing of automobiles based on collected 
data. 

Performance models have been introduced in the aerospace 
industry, where manufacturers of jet engines nowadays retain 
ownership of their products while charging airlines for the 
amount of thrust used [5,43]. As an example of predictive 
maintenance in industrial capital goods, Marek et al describe 
how this has been put into practice for mining equipment [28]. 
Maintenance dates are scheduled and optimized related to the 
actual load on the machines. Before a maintenance job, the ma-
chine informs the crew about the tools and consumables need-
ed, thus reducing the level of service skills required. As tools 
and consumables can be pre-organized and made available, 
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hourly-based routine maintenance can be avoided and the time 
involved minimized, thus reducing downtime and improve 
availability. 

Aspects of predictive maintenance can also be found in less 
capital-intensive products – as Hewlett Packard’s Instant Ink 
program for inkjet printers shows. It enables connected inkjet 
printers to arrange replacement cartridges for their end users 
before they run out [36]. Service contracts for office equipment 
such as printers and computers are often based on a perfor-
mance model [44]. 

Other uses 
Other than for maintenance management, one of the uses of 

collected data that has been foreseen by the literature is provid-
ing feedback to product design. This feedback is used, for in-
stance, to reduce future product failures and associated services 
required [6] to draft better requirements based on actual usage 
or to redefine the functionality of a next product design itera-
tion based on functions and features actually used [44]. Similar-
ly, Van Horn et al [47] have suggested that data collected from 
deployed products enables manufacturers to quickly identify 
and efficiently solve quality issues in specific components. In 
addition, product usage data can also be used to validate war-
ranty claims and identify warranty agreement violations [6]. 
Furthermore, Främling et al. [48] have suggested to collect in-
formation from connected cars to (i) proactively optimize en-
gine tuning based on factors such as location and time of day, 
and (ii) present comparative performance measures affecting 
behavior of drivers. Al-Taee et al. have suggested collecting 
data from connected cars for a completely different purpose, 
namely, to allow the traffic control authority to record speed 
limit violations [21]. 

Data collection schemes that have been brought to practice 
or have been envisaged for concrete products give evidence of 
some of the above and several other motivations behind data 
collection. The initial goal that Ford envisaged with collecting 
usage information from customers’ automobiles in the 1990s 
was indeed to gain understanding of how customers actually 
use their vehicles and to define appropriate specifications for 
development and testing. This has been considered as a critical 
factor supporting design and development in delivering afford-
able, high-reliability, high-quality products [20]. Hilpert et al 
[22] presented a system for real-time collection of CO2 emis-
sions from an entire company fleet of transportation vehicles to 
assess the carbon footprint of the products they are transporting. 
Although, strictly spoken, the application is outside the scope of 
this survey, it could theoretically be used to collect emission 
data from all fielded cars of a certain type, and collect usage 
data based on which its manufacturer could possibly reduce 
emissions. 

Two forms of third-party use of data collected from auto-
mobiles have been reported by Chui et al [5], namely (i) insur-
ance companies installing location sensors in customers’ cars so 
that they can base the price of policies on how a car is driven as 
well as where it travels, and (ii) rental car companies using 
tracking data to optimize each car’s use. 

In the aerospace industry, important objectives – other than 
maintenance management – for data collection have been (i) 
improving crew decision-making and response in complex situ-
ations (ii) maintaining aircraft safety between major inspec-
tions; and (iii) assuring safe and effective aircraft control under 
hazardous conditions [18] . 

Dienst et al. [29] propose a knowledge-based feedback sys-
tem to assist product developers in exploiting data collected 
during the use of industrial goods, e.g., centrifugal pumps. 
From the given examples, the impression emerges that applica-
tion of the system is limited to redesign based on component 
selection and parameter modification, e.g., selecting a better 
bearing to replace a bearing that the data analysis proves to fail 
too often, or selecting a different material. 

Coca-Cola collected data from vending machines that al-
lowed customers to compose their own drinks, with the objec-
tive to automatically schedule refills, but also for marketing 
purposes: the purchased mixtures provided indications of how 
new drinks are performing on the market over time, and of dif-
ferences in regional tastes [49]. Miele’s connected kitchen 
equipment has been developed with the initial goal to assist end 
users by providing recipes on demand, but future plans include 
data collection for generating status report for machines or ena-
bling remote diagnosis of problems [40]. 

For the EU-funded ELIMA project, data from 28 fridge-
freezer combinations was collected to record events of door 
opening and using the fast-freeze feature per user over time, 
with the goal to obtain an impression how useful these data 
would be as input for (i) design improvements, (ii) offering 
improved logistics and (value-added) services and (iii) possibil-
ity of reusing components from disposed products [37]. The 
preliminary findings indicated that some potentially useful in-
put could be collected for design and also for the contents of 
the user manual.  

Gu et al. [38] collected data about handling of notebook 
computers to (i) get an impression of variations in use condi-
tions between different users and in one user over a longer time 
span, and (ii) verify that the test conditions in lab tests reasona-
bly reflect actual use. Some of their tests involved hundreds of 
users over hundreds of days. They were able to point out par-
ticular use conditions that were either more critical than as-
sumed or were not properly reflected in lab tests. 

TECHNOLOGIES, INFRASTRUCTURES AND PLAT-
FORMS TO SUPPORT UTILIZATION OF DATA FROM 
PRODUCTS 
All the surveyed approaches to taking advantage of data col-
lected by products assume a processing chain that starts with 
collecting or generating the data and ends with outputting the 
results of data processing for utilization and storing it for possi-
ble later use. Our goal in surveying technologies, infrastruc-
tures and platforms has been to get a general overview of: 
 how processing chains have been implemented: 

– To what extent are data stored and processed in the 
product? 

– Is it a continuous stream of data or is it a list of events? 



 5 Copyright © 2016 by ASME 

– Is the data transferred by wire or wirelessly? 
– Is this done continuously in real time or in batches? 

 what kind of analysis is performed: 
– How has the need for collecting data affected the prod-

uct, i.e., to what extent does it require additional PEIDs 
(product-embedded information devices, i.e., sensors, 
transmitters and processors)? 

 
In the automotive industry, ‘on-board diagnostics system’ 

or ODB is the common umbrella term used for systems collect-
ing MOL data [13]. The ODB in automobiles physically mani-
fests in the form of the ODB-II connector which is connected to 
the Controller Area Network (CAN) bus.  The CAN bus is in 
turn responsible for the communication between the electronic 
control units (ECUs) of the car [15]. Diagnostic trouble codes 
(DTCs) from ECUs are routinely being read out during service 
from customer vehicles using a wired connection. DTCs are 
stored only when a reading is out of range. Readings produced 
at other times are generally not recorded. This is a missed op-
portunity, because these could potentially be used to gain 
knowledge about usage and vehicle behavior, for instance to 
predict faults. By establishing a real-time connection to the 
ODB these off-line retrospective readouts can however be col-
lected and sent to a manufacturer’s database for further statisti-
cal analysis to find correlations between detected events [16]. 

Connecting cars to the Internet can be achieved indirectly 
through a smartphone [17,22], although today’s connected cars 
usually have their own direct access to the mobile phone net-
work [19]. The increasing demand for bandwidth requires im-
plementation of multiple radio interfaces, which may incur a 
high cost and thereby impede further developments [45]. In the 
1990s, Ford introduced CVDAS (customer vehicle data acquisi-
tion system), the first platform to wirelessly connect vehicles 
[20]. CVDAS uses the same SAE J1850 protocol for the vehicle 
data communication backbone that was prescribed for OBD. Its 
wireless data communication is based on mobile telephony 
standards. A recent development in that area is the ISO 13400 
standard for Diagnostics over Internet Protocol (DoIP) [16]. To 
be able to collect the desired usage data in CVDAS-equipped 
cars, the existing ECUs have been extended with additional 
sensors such as an ambient temperature sensor and a rotary po-
sition sensor. To keep hardware requirements manageable, the 
data are statistically analyzed inside the car and only the results 
are transmitted. A drawback of this approach is that, in order to 
perform the right type of analysis, a-priori knowledge about 
system interaction effects is needed [20]. In the system for real-
time collection of CO2 emissions presented by Hilpert et al 
[22], OBD data were combined with GPS, transmitted wireless-
ly through the mobile phone network, and collected and pro-
cessed by ERP systems.  

The term OBD is also used in the aerospace industry [18], 
where the proactive maintenance schemes that have been intro-
duced by manufacturers rely on networked sensors built into 
airframes that send continuous data on product wear and tear to 
the manufacturers’ computers [5]. 

 

In the knowledge-based feedback system that Dienst et al. 
[29] proposed for industrial equipment, the collected data con-
sists of (i) sensor data, which are collected automatically, and 
(ii) data that have been entered manually by maintenance engi-
neers and customers3. The system prepared the data so that 
these could be handled by a product lifecycle management 
(PLM) system. This is needed because, according to the au-
thors, conventional PLM systems cannot deal with multiple 
individual instances of products, and therefore the systems can-
not store the collected data directly. Before further processing, 
the collected data require additional human intervention: a 
knowledge engineer aggregates the data from numerous data-
bases and initiates Bayesian-networks based statistical analysis 
and visualization techniques. With the results, designers can 
perform what-if studies with different usage conditions, and 
identify weak spots in the design to be reconsidered. A decision 
support module guides towards the best solution from available 
alternatives. 

The automated maintenance planning and diagnostic fault-
finding for mining equipment that Marek et al. reported on, 
uses on-board sensors. The machines’ on-board control system 
processes the incoming data and compares these with the ma-
chine manufacturers’ database to ascertain whether the values 
are within the defined parameters. If not,  maintenance is 
scheduled automatically through a wired interface with the 
SAPTM ERP (enterprise resource planning) system. In addition, 
the ERP integration facilitates automated ordering of the con-
sumables needed for maintenance, and assessment of the ma-
chine’s performance in the context of the entire mine. The sen-
sor data themselves are stored at the mining site in an SQL da-
tabase to allow further (unspecified) post-processing and visu-
alization [28]. 

 
The fridge-freezer combinations in the ELIMA study re-

ported in [37] were equipped with extra sensors to log energy 
consumption, door openings, power on/off cycles and tempera-
tures every second. Several other parameters could be read 
from the embedded software without the need for adding addi-
tional sensors. Data logged by a built-in custom logger were 
transferred to the ELIMA database by a GSM module once 
every three hours. At the end of the running time of the study, 
the collected data were visualized in histograms, presumably by 
using a spreadsheet application. 

The notebook computers in the experimental setup dis-
cussed in [38] were equipped with sensors capable of measur-
ing temperature, humidity and vibration. Part of the collected 
data were visualized in graphs without additional prior pro-
cessing, to qualitatively assess characteristic patterns of varia-
bles over time and relations between variables (e.g. between 
temperature and humidity inside the notebook), other part of 
the data was statistically analyzed by means of ANOVA tests. 
Since the investigators performed analysis based on recorded 
history of sensor data, real-time communication of data does 

                                                           
3 These data that are not generated by the product and therefore outside 

the scope of this paper.  
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not seem to have played a significant role. 
 
Wrapping up the inventory of technology that is used to re-

alize the data-processing chain, we can state that the first step, 
collection of data, typically takes place inside products, and is 
typically done by sensors. Embedded software can also produce 
valuable data, thus reducing the need for additional sensors.  
The subsequent steps may take place anywhere between ‘inside 
the product’ and ‘at a central location’. If data processing is 
done in-product, it is typically transmitted to and stored at a 
central location afterwards, i.e. the product’s manufacturer or a 
service provider’s site. Some basic pre-processing of the band-
width for data transfer, e.g., when the average is considered 
instead of the individual values. Details about the subsequent 
processing that is performed to produce actionable knowledge 
are not always given. Approaches that have been mentioned are 
statistical  techniques such as Bayesian networks analysis, 
ANOVA and visualization. Some of the reported processes in-
volve multiple steps and in some cases human interventions by, 
for instance, knowledge engineers. In none of the discussed  
implementations, continuous data transfer and real-time 
knowledge conversion seem to play a role. 

For storage of the data and the findings, and making these 
accessible and manageable, PLM systems, ERP systems and 
databases such as MySQL are used. The name ‘product lifecy-
cle management’  suggests that PLM includes management of 
MOL and tracking how products are actually being used. How-
ever, several authors have indicated that conventional PLM 
systems are not adequately equipped for that purpose. For a 
long time, these systems have focused on processes where digi-
tal systems such as CAx traditionally produce large amounts of 
data to be managed [48]. Conventional PLM systems are gener-
ally not equipped to keep records of any dynamical process 
after the product has left the factory [50]. 

As a follow-up to this conclusion, it is interesting to note 
that software vendor PTC has recently announced that the latest 
version of its WindchillTM PLM system was designed to to sup-
port collection of PEID data during MOL [51]. This would fa-
cilitate exploitation of usage data in predictive maintenance and 
MOL-information-based design, which has also been referred 
to as ‘closed-loop PLM’ [52].  

ISSUES AND CHALLENGES 
The sources that we consulted pointed out several issues 

and challenges related to collection of MOL data from products. 
In addition to these sources, we reviewed several issues and 
challenges that were identified in works related to the IoT  [53-
57] to check whether these would also apply to data collection 
within the scope of our survey. The following issues and chal-
lenges were brought forward by two or more sources: 
 limitations of the current internet [e.g., 45,53]; 
 privacy, trust and security [e.g., 4,37,44,53,54]; 
 conversion of data to knowledge [e.g., 53,54,55,56]; 
 achieving standardization and overcoming heterogeneity 

[e.g., 4,44,53]; 

 energy efficiency [e.g., 56,57]. 
Below these issues will be addressed more specifically in 

the context of data collection and utilization during MOL. 

Limitations of the current internet 
The current Internet architecture is limited in terms of mo-

bility, availability, manageability and scalability [53]. This may 
give rise to problems if data are collected to provoke immediate 
action on critical events [45] or if the quality and/or complete-
ness is crucial for achieving the objectives of collecting and 
processing the data. 

Privacy, trust and security 
The data collected by products during MOL hold infor-

mation or knowledge about product usage, and thus also about 
the users. Social acceptance of data collection and utilization is 
expected to strongly depend on the respect for privacy that is 
being observed, and the protection of personal data. [4]. 

The privacy concerns arising from the collection of usage 
data from tangible products are perhaps best illustrated by what 
is known from the car industry, which is obviously a prominent 
domain where data collection has become common practice. 

In 2015, researchers from the General German Automobile 
Club ADAC were commissioned by the International Automo-
bile Federation FIA to investigate data collection by cars with 
wireless connection capabilities. They examined two cars from 
one manufacturer – one with combustion engine and one elec-
trical car. The goal was to uncover (i) what data these cars col-
lect and make available to the manufacturer and/or the work-
shop, (ii) how long these are stored inside the car and (iii) on 
what occasions the data are transferred [14]. Since data collec-
tion and transfer is based on closed-source mechanisms devised 
by the manufacturer, the investigators had to reverse-engineer 
ODB information and signals transferred by the built-in wire-
less communication means. For the same reason, the manufac-
turer’s motivation behind collection of the data could not be 
determined. 

Of the dozens of information items that they identified to 
be stored and/or retrieved during workshop visits and/or wire-
lessly transmitted, several were labeled potentially privacy-
sensitive. Among these are preferred seat positions, telephone 
contacts and numbers of drives covering particular distance 
ranges. In the electrical car they even found that, each time the 
ignition is turned off and the car is locked, it transmits data 
such as GPS location of the parking spot, previous charging 
stations, recent destinations entered in the navigation system as 
well as at least 25 other items. Based on these and similar re-
sults, the FIA has demanded new legislation to ensure that car 
manufacturers (i) reveal what they collect, (ii) give customers 
access to the collected data and (iii) offer an opt-out from data 
collection. 

Findings from [37] suggest that, especially if it is used to 
improve service or recycling processes, most consumers 
(~70%) would accept recording of technical data, provided that 
not too much of actual usage is revealed. Furthermore, they 
appeared to accept data collection at end-of-life more easily 
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than continuous collection over the Internet. Besides, it has 
been suggested that the IoT and other recent ICT developments 
are affecting the way privacy is understood, particularly among 
younger generations [4]. In that context, future users might be 
more willing to accept collection of data by products. 

There are strategies that can be applied to reduce the priva-
cy sensitivity of transmitted data – for instance, limiting the 
data transmission or reducing the quality or fidelity of the 
transmitted data. However, there is a trade-off in applying 
these: it is considered unavoidable that these approaches com-
promise the quality of the extracted knowledge and thus the 
user’s trust in it [58,59].  

Besides privacy, security of information is considered a 
major concern when data are collected that can reveal insights 
on users [4,60]. Industrial espionage can be a threat for business 
data [61], and hackers can be a threat for both business data and 
potentially privacy-sensitive data of users [62]. Since this is a 
whole field of research in itself, it will not be elaborated here; 
the reader is invited to refer to the many surveys on this specific 
topic, for instance [63-66]. 

Converting data to knowledge 
The whole point of collecting data is to transform these in-

to actionable knowledge [55]. In the context of this survey, ‘ac-
tionable’ means that knowledge satisfies the motivation behind 
the data gathering (e.g., service management or design im-
provement). It is however somewhat disappointing that our 
sources hardly provide details on how the data were analyzed. 
In most cases, sources state that ‘statistical analysis’ or even 
just ‘data analysis’ was performed. Only in a few cases, more 
specifics were given, such as Bayesian Networks [29] and 
ANOVA [38]. 

Statistical analysis is just one of the more traditional forms 
of data analysis, and there is a large collection of other tech-
niques available, including various data mining and discovery 
techniques, prediction techniques and simulation techniques 
using real-time acquired data [43,54,67]. Developing methods 
to select the best out of many analysis techniques given the 
characteristics of the available data and the motivation that is to 
be satisfied, still seems to be a challenge. A possible reason why 
the industry does not seem to explore potentially more ad-
vanced analysis techniques is given in the next subsection. 

Standardization and homogeneity 
Most implementations of data collection and utilization 

have been developed in closed innovation processes [44], which 
gives rise to the problem that components (including networks 
and software) from different companies have to work together, 
yet cannot be integrated or run on a common operating system 
[68]. Managing heterogeneous applications, environments and 
devices constitute a major challenge [53]. Consequently, in 
practice, the collected data are mainly used for anomaly detec-
tion and control, but not for more sophisticated forms of analy-
sis such as optimization, prediction or discovery [67]. 

Energy efficiency 
Collecting, processing and transferring data consumes 

electrical power. Especially, the power required by 3G and Wi-
Fi connectivity is relatively high. Problems may arise when a 
user is responsible for maintaining the battery and other con-
nectivity aspects of the product [59]. Energy supply is also an 
issue for products that are traditionally not powered and need to 
be powered just for data collection, such as furniture [39]. 

DISCUSSION AND CONCLUSIONS 
From the inventory, the impression emerges that, apart 

from products that are essentially computers, MOL data collec-
tion and analysis has mainly been deployed in the context of 
capital-intensive goods, such as automobiles, airplanes, profes-
sional equipment and manufacturing equipment. With the ex-
ception of automobiles and a few other products where data 
collection has been studied in small-scale experimental setups, 
these products are typically deployed in a B2B context. How-
ever, data collection from consumer products seems to be on 
the rise, as most examples in that area appear to be recent. This 
trend can perhaps be accounted to the fact that the contact be-
tween companies and consumers is more anonymous than be-
tween companies and corporate customers in a B2B context. 
Collecting data about these previously anonymous consumers 
would offer a good opportunity to get to know them better. 

In the majority of the cases, the rationale behind collecting 
and processing usage data is to manage maintenance activities. 
Other purposes to which data collection has been exploited 
most prominently include feedback to design, for future prod-
ucts, and providing advice to end users. Furthermore, analysis 
results were used for diverse purposes such as marketing, track-
ing and classifying users and environmental impact assessment. 

Currently, most data are collected at intervals and analyzed 
retrospectively. Real-time monitoring does not seem to be much 
needed, except for condition-based maintenance. In some cases, 
products such as smartphones play an intermediary role in col-
lecting the data. 

For the manufacturer, the collected data can generally be 
characterized as a contribution to management of the product 
lifecycle. Recently, vendors of product lifecycle management 
software appear to have recognized the potential, and have 
started offering functionality to collect data from fielded prod-
ucts. Among the parties taking advantage of the data are not 
only the manufacturers of the products, but also resellers and 
third parties such as maintenance providers and insurance com-
panies. In addition, non-commercial parties such as law en-
forcement authorities have shown interest in how particular 
products are being used. It is not surprising that all this interest 
in usage data might cause privacy concerns among end users – 
especially  in cases where they do not seem to benefit from it 
(e.g., validation of warranty claims). Offering the possibility to 
opt out from data collection seems to be a good solution to this 
problem. Data security is a related issue; offering solutions for 
secure data handling is, however, a discipline of its own. 

For the actual analysis of the data, a wide range of tech-
niques are available including solutions from machine learning, 
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statistics, pattern recognition, simulation and combinations 
thereof. However, in most cases of actual data collection, no 
further analysis tools than basic statistics are being applied. One 
of the biggest unresolved challenges is to match the characteris-
tics of the available data to those analytics tools that best sup-
port the extraction of the sought-after knowledge. A first step 
towards achieving this would be to conduct further research to 
characterize and classify (i) all types of data that can possibly 
collected from products on how they are used, (ii) motivations 
of stakeholders for collecting the data in terms of possible anal-
ysis results (i.e., the sought-after knowledge: answers to ques-
tions/queries about the data), and (iii) data analytics techniques, 
their data requirements and their knowledge extraction capabili-
ties. In addition, the development of knowledge extraction ap-
proaches would benefit from standardization among the in-
volved applications, environments and devices. 

Another important issue, especially when it comes to socie-
tal acceptance of data collection practices, is finding a way to 
deal with the trade-offs that arise between respecting privacy of 
individual end users and striving to get the highest-quality 
knowledge out of the collected data. This, however, is a prob-
lem that is also being dealt with in related other fields – in par-
ticular analysis of website statistics. 
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