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Abstract  

In this thesis an investigation into the buckling behaviour of steel trusses with eccentric joints is 

performed. 

In recent years, Ampelmann motion compensated gangway systems have been pivotal to the 

advancement of offshore personnel transfers. These systems for functionality reasons require the use 

of eccentric joints. The behaviour of such joints is not a well-studied topic, and little is known of their 

effect on the buckling behaviour of structures. Buckling of trusses using conventional centric (non-

eccentric) joints has been examined extensively in the literature. This work aims to answer what the 

effects of using eccentric joints compared to centric are, on the stability of steel truss structures. 

Additionally, a reduction of the computational and design time is attempted, by extending a simplified 

approach developed for centric joints, to eccentric joints. 

The main investigation is performed on a simply supported truss comprised from eccentric K-joints 

and square hollow sections (SHS). Detailed models are used, with the joints being modelled by shell 

elements. The results are compared to equivalent trusses with centric joints. The main conclusions 

are that due to the eccentric joints, a better buckling behaviour can be realised for the truss members 

in the case of in-plane buckling. This improvement is more evident for the buckling of the braces and 

for combinations of chords and braces with γ>8 and 0.30<β<0.70 respectively. In those cases, a 

decrease of the buckling length of at least 5% is observed and reaching nearly 20% for γ=15.9 and 

β=0.4. In the case of out of plane buckling, the observed behaviour is slightly worse. The difference 

is considered negligible in practice, with all configurations checked giving a difference of less than 

2% between the buckling lengths. 

The simplified design approach, which uses beam elements and rotational springs, is validated, by 

comparing literature results with detailed shell element models. It is, also, further improved by 

performing new research on individual centric K-joint models. Having validated the approach for 

centric joints, three different modifications are proposed to extend it to eccentric joints. None of the 

proposed modifications give the validation required but insight is gained regarding the behaviour of 

eccentric K-joint trusses. It is concluded that eccentric joints require non-symmetric stiffness matrices 

for their behaviour to be captured. 

  



 

 

 

  



 

 

Acknowledgements 
These past two years have been difficult for everyone, and as someone challenged by the circumstances, I 

would like to thank all the people that supported me through the highs and lows.  

Firstly, I would like to thank my committee. I would like to thank Prof. Dr. M. Velkjovic for his guidance 

during my research, especially in the beginning, as well as for giving me the opportunity to work as a student 

assistant for Steel Structures II. A very special thanks to Florentia for her help and support throughout my 

work. I enjoyed working closely with her and will always hold her in the highest regard. I would also like to 

thank Dr. Ir. Max Hendriks, for being willing to join the committee, even with his already busy schedule, and 

providing his insights when the time called for them. 

I would like to thank Ampelmann for giving me the opportunity to conduct my research through their company. 

A thank you to the whole structural engineering team for making the weekly meetings interesting and a special 

thanks to Elsy and Lisanne for putting up with me (especially with the unstructured information overload in 

the beginning) and always being available to help with any issue that arose. 

On a more personal note, I would like to thank the people of 33F for becoming my family away from home, 

as well as all my Greek friends for all the havale. Adding to that, thanks to all my fellow students that made 

my daily life in the faculty building enjoyable and special. 

I owe a big thanks to my parents for making my move to the Netherlands possible and providing always more 

than they could bare. Most of the time it goes without saying, but an even bigger thank you for raising me and 

making me the person I am today. 

Again, my deepest gratitude to all that helped me through these difficult two and a half years. Without you, 

the end of the journey would have been much more challenging and (would feel) longer! 

 
 

  



 

 

 

  



 

 

 

 

 

 

To all those who helped me 

throughout this journey. 

 

  



 

 

CONTENTS 
1 Introduction .................................................................................................................... 1 

1.1 Motivation ............................................................................................................... 1 

1.2 Problem statement .................................................................................................. 2 

1.3 Research questions ................................................................................................ 2 

1.4 Research methodology ........................................................................................... 3 

1.5 Thesis outline ......................................................................................................... 4 

2 Literature study .............................................................................................................. 7 

2.1 Buckling of structures .............................................................................................. 7 

2.2 Hollow sectioned truss structures............................................................................ 9 

2.3 Buckling length in hollow sectioned truss structures ............................................. 11 

2.4 State of the art ...................................................................................................... 14 

2.5 Research work on eccentric joints. ........................................................................ 26 

2.6 Topics that require further investigation ................................................................ 29 

3 Investigation of centric joints ........................................................................................ 33 

3.1 Introduction ........................................................................................................... 33 

3.2 Effects of corner radius on stiffness ...................................................................... 36 

3.3 Truss models ........................................................................................................ 45 

3.4 Approach .............................................................................................................. 48 

3.5 Results ................................................................................................................. 50 

3.6 Conclusions .......................................................................................................... 57 

4 Investigation of eccentric joints .................................................................................... 59 

4.1 Introduction ........................................................................................................... 59 

4.2 Truss models ........................................................................................................ 59 

4.3 Approach .............................................................................................................. 60 

4.4 Results ................................................................................................................. 62 

4.5 Additional investigations ....................................................................................... 68 

4.6 Conclusions .......................................................................................................... 73 

5 Formulating rotational springs for eccentric joints ........................................................ 75 

5.1 Introduction ........................................................................................................... 75 

5.2 In-plane Rotational stiffness .................................................................................. 75 

5.3 Out of plane rotational stiffness ............................................................................. 79 

5.4 Formulation of eccentric springs ........................................................................... 83 

5.5 Conclusions .......................................................................................................... 91 

6 Discussions, conclusions & recommendations ............................................................. 93 

6.1 Discussion ............................................................................................................ 93 

6.2 Conclusions .......................................................................................................... 94 

6.3 Recommendations for future research .................................................................. 96 



 

 

7 References .................................................................................................................. 99 

APPENDIX A Mesh investigation ................................................................................... 103 

A.1 Centric joints ....................................................................................................... 103 

A.2 Mesh investigation Eccentric joints ..................................................................... 106 

APPENDIX B Effect of brace thickness on stiffness ....................................................... 111 

APPENDIX C New method for buckling load calculation of continuous columns............. 119 

C.1 Stiffness of members loaded with an axial load................................................... 119 

C.2 Calculation of the equivalent spring in the case of a continuous column ............. 120 

C.3 Solution process ................................................................................................. 121 

C.4 Numerical application .......................................................................................... 122 

C.5 Conclusions ........................................................................................................ 128 

APPENDIX D Proposal of buckling length calculation approach for truss girders ............ 129 

D.1 Approach ............................................................................................................ 129 

D.2 In-plane buckling ................................................................................................. 131 

D.3 Out of plane buckling .......................................................................................... 134 

D.4 Conclusions ........................................................................................................ 136 

APPENDIX E Numerical results ..................................................................................... 137 

E.1 Stiffness calculations .......................................................................................... 137 

E.2 Buckling lengths .................................................................................................. 138 

 

  



 

 

 





 

BUCKLING OF TRUSSES WITH ECCENTRIC JOINTS 

1 INTRODUCTION 

1.1 Motivation 
Due to the high strength of steel available as a building material, very slender members can be realised. This 

slenderness, however, makes the structures and the members made from steel susceptible to the buckling 

phenomena. As such, one of the most important verifications performed on steel structures is checking the loss 

of stability of part or the whole structure. This is especially true for light weight systems designed for 

minimization of their weight and by extension the cross-sectional area of their members. Such is the case for 

the newly developed motion compensated gangway systems by Ampelmann (Figure 1). 

 

Figure 1. 3D representation of the E-5000 system by Ampelmann. 

These structures need to be verified and certified by codes and guidelines which, due to the general nature and 

the wide range of applications necessary to be covered by them, do not cover every design case encountered. 

Specifically, owing to the unconventional designs that functionality reasons impose, some cases are not 

covered by the codes. This is particularly the case when it relates to the buckling verification of truss structured 

elements of the systems. The added complexity is introduced from the use of non-conventional eccentric joints 

(Figure 2). As such, it is imperative to understand better the buckling behaviour of structures that make use of 

such joints. In this thesis, the buckling mechanics and behaviour of trusses whose connections are realized 

using eccentric joints are going to be investigated. 
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Figure 2. Eccentric joints used in Ampelmann’s gangway systems. 

1.2 Problem statement 
Due to not being applied widely, little research has been performed on hollow section trusses with eccentric 

joints. There is little known on how these joints behave in-plane and out of plane. Additionally, as it relates to 

their effect on the buckling behaviour of truss members, no research is to be found. When referring to eccentric 

joints, the eccentricity may be applied in different amounts, giving rise to different types of joints, depending 

on how the braces are connected to the chords (Figure 2). Additionally, there are different types of joints that 

can be used (T-joints, K-joints etc). In this work, eccentric K-joints are going to be investigated. The 

eccentricity introduced will allow for the braces to be welded on the chord face (Figure 3). From some 

preliminary work it is obvious that eccentric joints behave differently to centric joints. The investigation will 

aim to give insight to the buckling of truss members connected with eccentric K-joints. The behaviour is to be 

assessed qualitatively as well as quantitively and the conclusions are to guide future practice. 

 
Figure 3. Eccentric K-joint with brace welded on the chord face. 

1.3 Research questions 
The main question to be answered through this study is, what the effects of eccentric joints on the buckling 

behaviour the truss members are. The effects that the eccentric joints will be measured qualitatively and 

quantitively, by comparing the results to results obtained for centric joints, for which more research is 

available. As part of this research, the following sub-questions are to be answered: 

• What are the effects of modelling the corner radius of profiles to the connection stiffness of centric 

joints and are these substantial? 

• Does Eurocode 3 prescribed buckling lengths provide a safe estimate? And under what assumptions? 
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• Does the buckling behaviour change qualitatively and is this change substantial? 

• Do trusses with eccentric joints present better or worse buckling behaviour compared to the 

corresponding trusses with centric joints? Does the conclusion change depending on the buckling 

direction (in-plane, out of plane)? What effect does the change of joint parameters (β, γ) have on the 

observed trends? 

Additionally, the use of complex models for all phases of design is time consuming. As such, the simplification 

of the analysis methods is desired. A method has already been developed for centric joints, by approximating 

the joint behaviour with rotational springs accounting for the stiffness of the connections. From the approach 

described in the literature, three different stiffness values can be calculated and it is not yet clear which is 

definitively correct. This gives rise to the following sub-questions: 

• Do simplified models (beam element models with rotational springs) adequately capture the behaviour 

of more complex models (shell element models)? 

• What do the different stiffness values that can be calculated for the same connection represent? Which 

is the most appropriate stiffness value to be used for trusses with K-joints? 

• Is it possible for this approach to be extended to eccentric joints? If so, what modifications are 

necessary for its application? 

1.4 Research methodology 

1.4.1 Literature study 

First, a literature study is performed to gain insight into the buckling of truss structures using hollow sections. 

A state-of-the-art investigation is performed to examine the buckling of truss with centric joints and find what 

simplified approaches have been developed to analyse the buckling of such truss structures. Additionally, how 

researchers have approached eccentric hollow section joints in the past is examined. 

1.4.2 Numerical investigations-Centric joints 

Next the numerical investigation of the eccentric joints is performed. First centric joints are investigated, to 

provide baseline results. The effects of modelling the corner radius on the connection stiffness is assessed by 

using finite element models and following an approach found from the literature study for the stiffness 

calculations. Finite element models of a simply supported truss girder are developed for investigating centric 

joints. The developed models make use of shell elements to capture the complex behaviour of the joints. 

Buckling analysis is performed for truss used and for different values of β and γ, for the braces and chords 

respectively. The buckling lengths of chords and braces, for in and out of plane modes are assessed. The results 

are cross validated by literature results obtained for simplified models (beam element models and rotational 

springs). Additional supports are introduced to isolate the behaviour of the truss member and compare the 

results with the buckling lengths prescribed by EC3. 

1.4.3 Numerical investigations-Eccentric joints 

Finite element models using shell elements are developed for investigating eccentric joints. Similar approach 

to the investigation of centric joints is followed, by calculating the buckling lengths for the braces and chords, 

for in and out of plane modes. The results are compared to the results obtained for centric joints and conclusions 

are drawn for the effects that the eccentricity has on the buckling behaviour of the truss members. A parametric 

study with the shell element models is performed using additional cross sections to investigate for which values 

of β and γ the differences between centric and eccentric joints are more pronounced. An additional 

investigation with beam element models and rigid connections is performed to check if assuming rigid 

connections could provide a safe estimate of the buckling length. 

1.4.4 Numerical investigations-Formulation of rotational springs 

As a final numerical investigation, the development of an approach to simplify the eccentric joint modelling, 

is attempted. First the centric joints are investigated, to conclude which approach is more appropriate to 

calculate the rotational stiffness, so it may be introduced in a simplified model (beam element). This is done 

by comparing the brace buckling loads of K-joint sub-models using shell elements, to beam element models 
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with an equivalent rotational spring. Having validated the approach and the calculation method of the rotational 

springs for centric joints, an attempt is made to extended the approach to eccentric joints. Due to the coupled 

behaviour presented by the eccentric joints, the already developed approaches are not immediately applicable 

for them. Three different approaches are proposed for the calculation of the stiffness and formulating the 

rotational springs for eccentric joints. Similar to the centric joints, the buckling loads of shell element models 

are compared to the buckling loads of beam elements models that use the rotational springs calculated for 

different approaches. 

 
Figure 4. Schematization of methodology followed. 

1.5 Thesis outline 
The structure and outline of the thesis is presented below. 

In the first chapter, an extensive literature study was performed. Initially, details relating to the things that 

affect buckling (geometrical non-linearity and imperfections) are presented and how these can be accounted 

for in codes and in practice. The literature study is followed by general information about hollow sections and 

then specifically by the buckling of truss structures using hollow sections. Lastly, the state-of-the-art for centric 

joints is given. As limited research is performed on eccentric joints only a specific work was found relevant 

and presented. 

In the second chapter, the investigation into the buckling of trusses with centric joints is presented. A 

comparison of the effects the corner radius of the cross sections has on the stiffness of centric joints is 

performed. The example truss used in the rest of the work is presented and the approach followed is given. 

Buckling results are created for the example truss and compared to results found in literature. These highlight 

the differences between different modelling techniques. Additionally, an investigation is performed by 

changing the support conditions of the example truss, to isolate the buckling behaviour of individual members. 

In the third chapter, the investigation into the truss member buckling for eccentric joints is presented. Firstly, 

how the models and geometry are defined is described. The same approach as with the centric joints is 

followed. The results are then compared to the buckling lengths obtained from the centric joints. Additional 

cross sections are investigated and a model using rigid connections is used to help support and form the 

recommendations and conclusions. 

In the fourth chapter, the last investigation into simplifying the joint modelling is shown. In this, an attempt to 

model the eccentric joints with conventional rotational springs is attempted (for in-plane and out of plane). 

Initially, a study into the calculation of the rotational stiffness of the springs for centric joints is performed. 

Then the study on the eccentric joints is presented. 

In the last chapter discussion on the results and the approach used is performed. The conclusions of the study 

are summarized and lastly recommendations for future research are provided. 
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In the appendices further research, as well as results that helped guide the investigation of the main research 

questions are provided. These include an investigation into the effect the brace thickness has on the connection 

stiffness, as well as the mesh investigations performed prior to the creation of the final models. A method 

developed to calculate the buckling load of continuous columns is presented, along with a description of a new 

approach that could be used to predict truss structures’ buckling lengths. Lastly, all the buckling length results 

produced for the example truss are gathered and presented together. 
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2 LITERATURE STUDY 

2.1 Buckling of structures 
Buckling refers to a phenomenon in which a member or a structure loses its stability. This means that for loads 

above a certain level the member or the structure experience disproportionally large displacements, putting the 

integrity of the system at risk. When it comes to verifying systems against the loss of stability due to buckling 

the checks are done at the level of the member, as the partial or total collapse of the system will occur at those 

points. Buckling is a complex phenomenon, in which many aspects of construction play a role in determining 

the ultimate resistance of the members. These can be grouped in the following two categories: P-Δ/P-δ effects 

and imperfection. 

2.1.1 P-δ and P-Δ effects 

P-δ and P-Δ refer to the increase of internal forces that a member experiences to stay in equilibrium, due to 

large deformations. When a member deflects laterally from its undeformed state, relative to its end points, it 

will develop additional moments to remain in equilibrium. These additional moments are part of the P-δ effects 

a member under compression may experience. Additionally, if a structure is relatively flexible and its loading 

conditions produce significant deflections from its undeformed state, additional cross-sectional forces will 

develop to keep the structure’s equilibrium. These forces comprise the P-Δ effects on the structure (Figure 5). 

The P-δ and P-Δ forces that will develop relate to the stability of the member and the overall stability of the 

structure, respectively. 

  
Figure 5. P-δ and P-Δ effects on structural systems (Geschwindner et al., 2017) 
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The main aspect that affects the P-δ and P-Δ effects are the boundary conditions of the system. Both dynamic 

and kinematic boundary conditions play a role in this. Therefore, apart from the geometry and mechanical 

characteristics of the system, the loading of the system is equally important. As it relates to individual 

members, the amount of restrain that can be developed by adjacent members is affected by the axial loading 

on those. This makes the determination and exact solution of buckling difficult.  

2.1.2 Imperfections 

The other important aspect in the actual behaviour of buckling members is the effects of imperfections. These 

can take two forms. The first, and more straight forward, are the geometric imperfections. These account for 

deviations of the actual structure from the idealized form assumed during design. The other important 

imperfections that need to be accounted for are the structural imperfections (Vayas et al., 2019). These include 

the influences arising from the manufacturing process of the members. In both cases, the effect of 

imperfections is the reduction of stiffness of a member. In the case of geometric, it happens at the level of a 

member (or structure), with the reduction being a result of continuous equilibrium during its deformation 

(Figure 6). For structural imperfections, the loss of stiffness is done at the cross-sectional level (Figure 7,Figure 

8), with the premature yielding of the member. These effects of imperfections may alter the behaviour of a 

member significantly compared to its idealized response, resulting to a lower resistance than the one 

theoretically possible. 

 
Figure 6. Effects of geometric imperfections to member’s behaviour (Geschwindner et al., 2017) 

 
Figure 7. Effects of residual stresses from production process. Due to early yielding certain areas of the cross section are ineffective 

(Vayas et al., 2019) 
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Figure 8. Effects of structural imperfections to the cross-sectional stiffness of members (Geschwindner et al., 2017) 

2.2 Hollow sectioned truss structures 

2.2.1 Types of hollow section trusses 

Trusses can come in many various different geometries, applications and combinations. They can be in 3D 

space 2D plane and have many different joint types that can be used to connect the different members. This 

work will be focused on plane trusses so only these are considered. Plane trusses can make use of different 

joints and different chord variations to produce a multitude of results. A few different designs are presented in 

Figure 9. For common truss girders, with straight chords, standard naming conventions exist, depending on 

the configuration and joint type used. The most common types are presented in Figure 10.  

 
Figure 9. Examples of plane trusses (Boel, 2010) 

 
Figure 10. Names of commonly used plane trusses (Wardenier et al., 2010) 
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2.2.2 Welded hollow section joints 

For plane trusses, typical connections consist of K KT N T and Y joints, depending on geometry of the 

connected members. Lastly, in Figure 11(a) the most common welded joint types for plane trusses are shown. 

Connections can be also overlapped (Figure 11(b)) but this work will not be dealing with these types of joints. 

  

 

 

(a) (b) 

Figure 11. (a) Commonly used joints for plane trusses and (b) definitions of overlapped joints 

In order to describe and categorise the joints, some design parameters have been defined and are used. For K 

joints, which will be the focus of this thesis, they are equations 1. till 4.. These conventions are going to be 

used throughout this work.  

 
Figure 12. Definitions of K-joint geometry (Wardenier et al., 2010) 

 
𝛽 =

𝑑1 + 𝑑2
2𝑑0

 𝑜𝑟 
𝑏1 + 𝑏2
2𝑏0

 1. 

 
𝛾 =

𝑑0
2𝑡0

 𝑜𝑟 
𝑏0
2𝑡0

 2. 

 
𝜏 =

𝑡𝑖
𝑡0

 3. 
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 𝑔′ =
𝑔

𝑡0
 4. 

2.3 Buckling length in hollow sectioned truss structures 

2.3.1 Buckling length of truss members 

It has already been discussed how the effects of global and member buckling can be separated and how 

different approaches can be used for the analysis of structures depending on the available tools, experience 

and required detail level. As global buckling can be quite project specific and because various codes and 

research propose buckling lengths primarily for individual members, the current work will focus on buckling 

of members. 

In calculating the critical buckling load of members, the concept of a buckling factor is usually used. This 

coefficient encompasses the effects of the boundary conditions on the critical buckling load of individual 

members. The buckling factor multiplied by the system or reference length gives the buckling length of the 

problem (Equation 5.). Depending on the boundary conditions, some characteristic examples are presented in 

Figure 13. In the case of trusses it can be hard to asses the boundary conditions that a member experiences, in 

order to estimate its buckling length. 

𝑁𝑐𝑟 =
𝜋2𝛦𝛪

(𝛫𝐿)2
 5. 

 
Figure 13. Characteristic examples of buckling factors for various boundary conditions (Geschwindner et al., 2017) 

For the member’s buckling length, the maximum value considered is 1. Since both ends are considered 

translationally fixed, it accounts only for deformation occurring in the axis between its two ends. Buckling 

lengths above 1 require that one of the ends is either partially restrained or completely unrestrained. Depending, 

now, on the rotational restraint that can develop at its ends, the buckling length can be as low as 0.5, in the 

extreme case that both member’s ends are rotationally constrained (Figure 13). The level of rotational restraint 

that may be developed is influenced by several factors such as the joint and connection types used to connect 

the members, the geometry of the structure, the relative stiffness between the different members and the 

loading conditions. 

A reasonable assumption for design that could be used in practice would be to take the ends of an individual 

truss member as hinged. This is what is proposed by the American building codes (AISC, 2016b). Specifically, 

it states that “… the effective length for flexural buckling of all members shall be taken as the unbraced length 

unless a smaller value is justified by rational analysis”. This would give buckling length equal to the system 

length, meaning a buckling factor of 1. In reality, this would only be the case if all members of the truss fail 

simultaneously (Poels, 2017; Ziemian, 2010) where no member can further restrain another. This of course is 

usually not the case as rarely all members are designed to have close to unity check. There is also the case of 

very flexible connections compared to the stiffness of the member. In this situation, the restraint that adjacent 
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members can provide is limited by the connection’s stiffness. As such, no meaningful restraint can develop. 

This is not the case for welded hollow section joints with no overlap though, as they can create quite a rigid 

connection. For joints with high β the stiffness may be large enough for them to be considered rigid (B. Zhao 

et al., 2020; X.-L. Zhao et al., 2001). Owing to the beneficial boundary conditions that the relatively high 

stiffness of welded hollow sectioned joints provide, different approaches and buckling lengths formulas have 

been developed, to reflect reality more accurately, but also improve design. 

2.3.2 Significance of connections stiffness on truss structures 

The stiffness of the connections plays several significant roles in trusses. Firstly, they may affect the 

distribution of axial forces, such in the case of shallow Vierendeel girders (Garifullin et al., 2019; W. Wang & 

Chen, 2005). This, though, is not the case for trusses with diagonal members, which assuming either fully fixed 

member’s ends or pinned member’s ends has little effect on the distribution of the axial forces of the members. 

What is affected by the assumption of the member’s boundary conditions is the development and distribution 

of secondary moments. However, these do not affect the ultimate resistance of the members, because in the 

ultimate limit state (ULS), due to yielding of the extreme fibres of the members, they dissipate (Ziemian, 

2010). Where connections also have a significant role though, is in the buckling behaviour of trusses. 

 
Figure 14. Chord member buckling mode of a truss girder 

As was mentioned in an earlier section, due to the relatively high stiffness developed between welded hollow 

members, the buckling behaviour can be improved through higher rigidity throughout the truss. This can affect 

the global behaviour, such as the case of lateral torsional buckling of a girder (Biegus & Wojczyszyn, 2011; 

Czepizak & Biegus, 2016; Jankowska-Sandberg & Kołodziej, 2013; Krajewski & Iwicki, 2015), or the 

buckling behaviour of the individual members (Boel, 2010; Haakana, 2014; Hornung & Saal, 2001; Poels, 

2017) (Figure 5). In the current thesis the focus will be on the buckling length of individual members and the 

effects at a global level are not going to be investigated further. The approaches and research done on the 

buckling length of individual members are going to be discussed in the upcoming sections. 

Lastly, not accounting for the local behaviour of the joints can incur significant errors in other areas, such as 

estimating deflections, natural frequencies, and dynamic mode shapes (Asgarian et al., 2014, 2015). These do 

not compose part of the scope of this thesis, but it is good for the reader to be aware of the general importance 

of accounting for the joints behaviour in practice. 
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Figure 15. Example of truss’s global buckling mode (Biegus & Wojczyszyn, 2011) 

2.3.3 Truss buckling lengths in codes 

Taking into consideration the benefits arising from the increased connection stiffness of welded hollow section 

joints, EN1993.1.1 prescribes buckling factors lower than 1.0. Specifically, in section BB.1.3, it states for 

hollow section chord members the buckling factor for in and out of plane buckling may be taken as 0.9. For 

hollow section brace members without cropping or flattening and welded around their perimeter it may be 

taken as 0.75 irrespective of in or out of plane buckling. Lower values may be used based on testing or 

calculations. In the case of using the lower buckling lengths given for the braces, the buckling factors of the 

chords should not be decreased to 0.9. The organization CIDECT (Comité International pour le 

Développement et l´Etude de la Construction Tubulaire) provides the same values given by EN1993.1.1 but 

additionally provides formulas for the buckling length of braces that have a limited β factor (β≤0.6). These can 

be seen in Table 1, taken from CIDECT’s design guide 2 (Rondal et al., 1992). The design guide additionally 

provides buckling length predictions for unrestrained chords, but as this thesis focuses on member buckling 

and not the global buckling effects, they are not analysed further. 

Table 1. Truss buckling lengths for braces according to CIDECT’s Design guide 2 (Rondal et al., 1992) 
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Table 2. Design values for buckling factors, depending on the boundary conditions (Code for Lifting Appliances in a Marine 

Environment, 2020) 

 

The American codes, as was mentioned earlier, prescribe a standard buckling factor of 1.0 except if a lower 

value can be justified by rational analysis (AISC, 2016b). What the American codes additionally provide is an 

increase of the buckling factor for the classic boundary conditions of members to account for deviations that 

are observed in practice, from the theoretical values. This, though, is not especially useful as the boundary 

conditions of truss members cannot be approximated by one of these standard cases (except maybe of the case 

of Pinned-Pinned boundary conditions). A similar table is also given by the Code for Lifting Appliances in a 

Marine Environment (CLAME) by Lloyd’s Register (Table 2). Lastly, the Japanese standard for Steel and 

Composite structures adopts buckling factor values of 0.9 for chord members and 0.8 in the case of web (brace) 

members (Commentary (1) in section 12.2.2.2). What is also interesting is that it provides some outdated values 

from different codes. These can be compared to the values that are currently in use and demonstrate how the 

buckling factors have changed (Table 4). 

Table 3. Outdated buckling factors from various codes (Standard Specifications for Steel and Composite Structures, 2009) 

 

Table 4. Buckling factors currently prescribed 

Country/code Chord member Brace member 
   

AISC (2016) 1.0 1.0 

Eurocodes 3 (2005) 0.9 0.75 

Japanese standard (2007) 0.9 0.8 

2.4 State of the art 
Since the current thesis will revolve around member buckling of hollow sectioned trusses with eccentrically 

welded joints, a good starting point is reviewing research done on centrically welded joints. The most relevant 

literature is presented and analysed in this chapter. 
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In recent years, researchers Hornung and Saal introduced the concept of replacing shell element models for 

joint modelling (Figure 16) with rotational springs (Hornung & Saal, 1998). In their work they investigated 

the out of plane buckling behaviour of braces comprising a truss scaffolding system. The investigation revolved 

around CHS chords and SHS braces, whilst the joints used were K-joints (Figure 17). 

 
Figure 16. Conventional modelling of joints for global analysis, using shell element. (ESDEP WG 12, “Lecture 12.4.1: Fatigue 

Behaviour of Hollow Section Joints (I)”) 

 
Figure 17. Shell element model used in Hornung’s and Saal’s work (Hornung & Saal, 2001) 

The calculation of the stiffness for their joints was done using three different models and load cases (Figure 

18). It is not explained what the rationale is behind picking the specific configurations, or what exactly they 

represent. From the following configurations the rotational springs for each case were calculated by extracting 

the rotations developed by the assumed spring that represented the connection. This was done by taking the 

total displacements developed in their sub-model and subtracting the displacements that were not due to the 

connection (eg. Brace bending), by using the corresponding equations (Figure 18(b)). From this, the smallest 

value of calculated springs was used for the analysis. 
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(a) (b) 

Figure 18. (a) Model describing the geometry of the joint and (b) equations used to calculate the rotations attributable to 

the welded connections (Hornung & Saal, 2001) 

Eleven trusses were investigated (Table 5), and three different load cases were used for each truss (Figure 19). 

For each truss the highest buckling factor arising from the three load cases was set as the decisive factor. The 

decisive factors were then compared to the buckling factor of 0.75 given by the Eurocodes for out of plane 

buckling of braces. From the results only two factors were above Eurocode’s prescribed value. This led them 

to the conclusion that Eurocode may be conservative in many cases. 

 
Figure 19. Truss load cases used in investigation 

Table 5. Parameters for the different truss configurations used (Hornung & Saal, 2001) 

 



LITERATURE STUDY  17 

 

 BUCKLING OF TRUSSES WITH ECCENTRIC JOINTS 

Regarding the validation of their results, in their originally published paper (Hornung & Saal, 1998), Hornung 

and Saal did not compare their results with a full shell element model or something more substantial. The only 

comparison that was done, was with buckling length predicted from an individual member supported by 

springs at its ends (Figure 20). The springs used were the values of the rotational springs calculated (this is 

assumed, as they do not explicitly state what springs were used). Of course, the results, for the various formulas 

used, as well as the exact solution did not match the result obtained from their simplified beam element model. 

 
Figure 20. Individual member with rotational restraints 

They acknowledge that this would be a wrong comparison as the real boundary conditions of the member were 

not accounted for correctly and the determination of those are quite difficult. It should be noted that the use of 

the joint’s rotational springs as the only boundary conditions only provides the lower bound solution of the 

buckling factor. This is the case if the member’s connections were attached to rigid supports. The adjacent 

members do not act as rigid supports in most cases, which means that this assumption is often wrong and not 

on the safe side. In their follow-up paper (Hornung & Saal, 2001) they compared their method with 

experimental results obtained by Rondal in 1988 and 1992. They concluded that the prescribed buckling length 

of 0.75 of the ENV1993 is often conservative and that the results from their method and the finite element 

analysis were satisfactory and safe. 

Boel built upon the work of Hornung and Saal in his Master thesis at Eindhoven’s TU. In his work he focused 

on the buckling of lattice girders and in his conclusions proposed buckling length formulas. To achieve his 

results, he used the approach introduced by Hornung and Saal and used springs to capture the behaviour of the 

connections (Figure 21). 

 
Figure 21. Concept of describing the connection behaviour with springs in 4 different degrees of freedom (Boel, 2010) 

 
Figure 22. Example of shell element model of the joint (Boel, 2010) 
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In his work he first studied the formulation of the connection stiffness that needed to be calculated and used 

for a buckling analysis. For the cases of in plane and out of plane stiffness of the connections he proposed three 

different load cases that could be used for their calculation. Similarly to Hornung and Saal, he calculated the 

displacement of the spring representing the connection by subtracting from the total displacement the 

displacements of the other components of the modelled K-joint (Figure 23). From the three load cases, load 

case 3 computes the lowest stiffness, load case 2 computes the highest and load case 1 gives a stiffness value 

in between the other two. From his investigation he concluded that the rotational stiffness calculated by load 

case 1 can be used for the in-plane buckling calculation, whilst the averaged stiffness calculated from the three 

load cases can be used for the out of plane calculations. 

 
(a) 

 
(b) 

Figure 23. Components to calculate in plane stiffness of connection. (a) Three load cases used for the calculations and 

(b) deflections of cantilever beam with rotational spring describing the brace’s behaviour 

For the axial and torsional stiffness, he concluded that their value was not important for the results and 

assuming rigid connections for those degrees of freedom was adequate. He additionally investigated the 

optimum position for the rotational springs and in general the formulation of the joint geometry for the 

simplified spring/beam element model (Figure 25). His investigation resulted in proposing that his initial 

configuration, Variant 1, was the best to describe the truss’s buckling behaviour. Lastly, it is pointed out that 

his conclusions were drawn from comparing his proposed method to the results obtained for a whole truss 

modelled with shell elements. 

  
Figure 24. Final model to simulate the behaviour of the joint (Boel, 2010) 
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Figure 25. Different variants that were compared to find the one best describing the joint behaviour (Boel, 2010) 

His investigation continued by calculating the buckling length of a truss girder. The truss had a specific 

geometry and loading (Figure 26) and it was investigated against different combinations of chord and brace 

profiles (Chord-Braces: SHS-SHS, SHS-CHS, CHS-CHS). For each combination of cross sections, the top 

and bottom chords were the same and all the brace members made use of the same profile. In total 21 different 

configurations were used. From these, the buckling lengths of the end brace and the middle chord were 

determined for in plane and out of plane. This was done by attributing structure buckling modes to modes of 

members. Due to the complex buckling modes, in case that there was doubt, he always used the lowest 

attributable buckling mode to the corresponding member (Brace and chord) and mode (in-plane and out of 

plane). 

 
Figure 26. Truss geometry and support/loading conditions used (Boel, 2010) 

 
Figure 27. In-plane buckling lengths of brace members for SHS-200 chords SHS braces (Boel, 2010) 
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From his results he concluded that Eurocode buckling lengths are mostly conservative but in some cases, 

unconservative. The Eurocode is expected to be conservative as it attempts to capture a wide range of 

applications, so it includes a certain safety margin. This of course is at odds with the fact that Boel concluded 

that it may be unconservative in some cases. One reason for this could be that the prescribed buckling lengths 

of the Eurocode are meant for member buckling, meaning the non-sway buckling length. As Boel in his 

investigation only restrained his top chord and his results were for an unrestrained tension chord, these include 

sway effects of the whole structure (Figure 28). Another reason, could be misattributed buckling modes. As 

was mentioned earlier, in cases where the actual mode was in doubt, and a few modes could be attributed to 

the same member and buckling direction, the smallest was always used in the results. This could lead to an 

underestimation of the buckling load of a member, which would lead to the conclusion that Eurocode is not 

conservative. Lastly, Boel uses a length defined differently than what is proposed in practice (Figure 29). 

Shorter lengths give rise to larger buckling lengths for the same critical buckling load, so comparing with 

Eurocode is not that straightforward. 

 
  

(a) (b) (c) 

Figure 28. (a) Out of plane buckling mode of brace, as was calculated by Boel (Boel, 2010). (b) Boundary conditions of 

braces for accounting for global behaviour and (c) boundary conditions for accounting only for member buckling 

 

 
(a) (b) 

Figure 29. (a) Length of member as given by CIDECT guidelines (Rondal et al., 1992) and (b) length of member as defined 

by Boel (Boel, 2010) 

The last step of his work was to attempt to fit a formula, which could be used in design, from the results 

obtained from his models. Since no formula existed for the buckling length of chords, he introduced a bilinear 

design curve which fit his data (Figure 30). For his formula for braces, he altered the ones provided by CIDECT 

(Figure 28Table 6-Table 8), in which width of the chord and brace, as well as the length of the braces are used 
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(Figure 31). He specifically changed the exponent, as well as introducing the γ factor as a parameter in the 

formula. A summary of his proposed buckling lengths can be found from Table 6 till Table 8. 

 

 
Figure 30. In-plane buckling lengths of chord members for SHS-200 chords and SHS braces (Boel, 2010) 

 
Figure 31. In-plane buckling lengths of brace members for SHS-200 chords and SHS braces (Boel, 2010) 
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Table 6. Proposed buckling length factors for a truss with SHS chords and SHS braces 

Chord and brace combination: SHS-SHS 

 Eurocode CIDECT Boel (2010) 

Chord in-plane: 0.9 0.9 1.25 − 0.6𝛽 ≤ 0.9 

Chord out of plane: 0.9 0.9 1.17 − 0.45𝛽 ≤ 0.9 

 

   

Brace in- plane: 0.75 
2.30 (𝛽

𝑏1
𝑙
)
0.25

, 𝛽 < 0.6 

≤ 0.75, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛽 

(1.05 + 0.025𝛾 (𝛽
𝑏1
𝑙
)
0.14

 

Brace out of plane: 0.75 
2.30 (𝛽

𝑏1
𝑙
)
0.25

 (3 + 1.2 𝛾 (𝛽
𝑏1
𝑙
) + 0.55 ≤ 1.0 

Table 7. Proposed buckling length factors for a truss with SHS chords and CHS braces 

Chord and brace combination: SHS-CHS 

 Eurocode CIDECT Boel (2010) 

Chord in-plane: 0.9 0.9 1.17 − 0.45𝛽 ≤ 0.9 

Chord out of plane: 0.9 0.9 1.05 − 0.25𝛽 ≤ 0.9 

    

Brace in- plane: 0.75 
2.35 (𝛽

𝑑1
𝑙
)
0.25

, 𝛽 < 0.6 

≤ 0.75, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛽 

(0.95 + 0.03𝛾) (𝛽
𝑑1
𝑙
)
0.14

≥ 0.5 

Brace out of plane: 0.75 
2.35 (𝛽

𝑑1
𝑙
)
0.25

 1.2 𝛾 (𝛽
𝑑1
𝑙
) + 0.55 ≤ 1.0 

Table 8. Proposed buckling length factors for a truss with CHS chords and CHS braces 

Chord and brace combination: CHS-CHS 

 Eurocode CIDECT Boel (2010) 

Chord in-plane: 0.9 0.9 1.25 − 0.6𝛽 ≤ 0.9 

Chord out of plane: 0.9 0.9 1.17 − 0.45𝛽 ≤ 0.9 

 

   

Brace in- plane: 0.75 
2.20 (𝛽

𝑑1
𝑙
)
0.25

, 𝛽 < 0.6 

≤ 0.75, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛽 

(2.5 + 𝛾) (𝛽
𝑑1
𝑙
) + 0.5 ≤ 1.0 

Brace out of plane: 0.75 
2.20 (𝛽

𝑑1
𝑙
)
0.25

 (5 + 1.2 𝛾 (𝛽
𝑑1
𝑙
) + 0.55 ≤ 1.0 

It should be noted that for the case of out of plane buckling of the brace, even though an upper limit of the 

buckling factor is prescribed (Table 6-Table 8), this is erroneous. As the trusses that were investigated were 

not restrained at the tension chord, the sway effects are included in the results. This means that the upper limit 

of 1.0 which applies to non-sway members cannot be used in Boel’s formula. This note is quite important as 

towards the higher end of β values, the buckling factors for the braces attached to an unrestrained tension chord 

reach unity (Figure 32). 
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Figure 32. Out of plane buckling lengths of brace members for SHS-200 chords and SHS braces (Boel, 2010) 

In section 2.3.1 it was mentioned that one of the ways that members of a truss could experience a buckling 

factor of 1.0 is in the case that all members fail simultaneously, and thus adjacent members provide no restraint 

to a specific member. This topic was investigated by Poels in 2017 in his master thesis from the University of 

Eindhoven. In his work, he aimed to study the buckling behaviour of trusses optimized for buckling. By using 

a truss of specific geometry (Figure 33), he progressively optimized the cross sections used for the chord and 

braces. His aim was to reach a case for which buckling occurs for most members simultaneously. He studied 

hollow sections with the specific combinations being SHS-SHS, SHS-CHS and CHS-CHS. The actual profiles 

varied quite a bit in order to achieve his optimization. 

For his investigation he adopted the approach developed by Boel in his master thesis. He initiated his study 

with a simplified model, where he replaced the joints with rotational springs. The stiffness calculations and 

joint formulations all conformed with Boel’s proposals. With this model he proceeded to progressively 

optimize the truss structure by reducing the cross-sectional dimensions. 

 
Figure 33. Geometry and support/loading conditions of truss under investigation (Poels, 2017) 

The optimization was performed by running successive linear buckling analysis and retrieving the buckling 

lengths. During the process each buckling mode was categorized depending on which member had buckled or 

was bent and whether it was in or out of plane (Table 9). By using the calculated buckling lengths, he performed 

the Eurocode 3 verification and aimed to get cross sections near unity. The goal of his initial optimization was 

to get the different members to buckle for the same buckling load. By performing a few iterations, he managed 

to get satisfactory results visible in Table 10 and Table 11.  
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Table 9. Table of results from initial investigation for first iteration (Poels, 2017) 

 

Table 10. Buckling length factors after first optimization 

 

Table 11. Chosen cross sections after first optimization 

 

He verified his results by using a geometric non-linear analysis with imperfection (GNIA). He stated that the 

results go asymptotically to the LBA value. This is debatable and the buckling load appears to converge to a 

lower value than the one predicted by the linear buckling analysis (Figure 34). This is not unexpected though, 

as introducing imperfections can lower the buckling value of the system (Gantes, 2016). For the out of plane 

buckling, it appears that it is actually reaching asymptotically to the linear buckling analysis value (Figure 35). 

Similar observations can be made for the SHS-CHS and CHS-CHS configurations. The results do indeed 

indicate that the buckling modes selected from the LBA are correct, as they are close to the linear buckling 

factor and always below it. 
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Figure 34. Load displacement diagram for in plane buckling mode, using a GNIA (Poels, 2017)  

 

 
Figure 35. Load displacement diagram for out of plane buckling mode, using a GNIA (Poels, 2017) 

He followed his GNIA results by adding material non-linearity in his analysis (GMNIA). He did not use the 

simplified beam element and spring model. The process and investigation include the behaviour of the 

connection under plasticity was deemed way too complex for the scope of his thesis. Very coarse mesh was 

used for the shell element modelling. Too cross validate his previous results and the new models, he compared 

his LBA results between shell element and beam element. His results matched quite well. The only notable 

example was the case of CHS-CHS configuration. The buckling length of the chord was calculated equal to 

1.0 and concluded that Eurocode 3 was not conservative in this case, with its prescribed factor of 0.9. Eurocode 

3 though also states that if the reduced buckling length is used for the braces, then no reduction is allowed for 

the chord. This is exactly in line with his findings (Table 12). In general, the difference appeared only for the 

circular hollow sections. This, according to Poels, could be due to axial and rotational stiffness interacting. In 

Boel’s investigations he checked the two stiffnesses separately, so no interaction would be accounted for. 
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Figure 36. Shell element model used in the GMNIA investigation (Poels, 2017) 

Table 12. Linear buckling analysis results for shell element model (Poels, 2017) 

 

In his investigation which included the material non-linearity, it became apparent that the failure and buckling 

of the structure were initiated from the yielding of the connection (Figure 37). From this, an initiation of 

stiffness loss for the connection could be assumed. Due to this, different members appeared to have much 

lower buckling loads than the ones predicted by the LBA. His main conclusion was that joints should be 

designed with adequate overstrength to avoid premature failure. This would guarantee that the buckling lengths 

are not affected by the yielding of the joints. 

 
Figure 37. Yielding of the connections prior to the appearance of buckling of members (Poels, 2017) 

2.5 Research work on eccentric joints. 
In general, little work has been done on eccentric joints that are comprised of hollow sections, probably due to 

their rarity and use of them only on specific applications. The most recent work done on eccentric hollow 

section joints is from a paper in 2020 (B. Zhao et al., 2020). In their work, the researchers studied the out of 

plane behaviour of an eccentric joint comprised of rectangular hollow sections. They investigated the moment-

rotation behaviour for out of plane moments and chord stress. In their investigation they used finite element 

model (FEM) and performed experiments to support their findings. 
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Figure 38. Drawing of eccentric joint under investigation 

 
Figure 39. Solid element model used in the investigation. Symmetry conditions were used. 

For the generation of their finite element models, they used the commercial software ABAQUS. The type of 

element used for their analysis was solid elements (Figure 39). The length of the chord and braces were taken 

adequately large for the connection behaviour not to be affected by the boundary conditions applied at their 

ends. They simulated the contact of the top plate with the chord with contact elements, although changing the 

active friction coefficient of the surfaces did not change the results substantially.  

To retrieve the rotations attributable to the connection, the same method that has been mentioned in previous 

literature was used. In this, the displacements due to the connection are separated from the displacements due 

to the rest of the components of the set up (Figure 40). 

 
Figure 40. Deflections of cantilever beam with rotational spring describing the brace’s behaviour 

They additionally used an experiment to study the static behaviour of the connection and used the results to 

validate their finite element models. From their comparison they concluded that the FEM could predict well 
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the failure mode of the actual joint, as well as the Moment-Rotation behaviour until the end of the experiment 

(Figure 41). 

 
Figure 41. Comparison of FEA results to experimental results of the eccentric joint 

A major part of their work was developing a semi-rigid model to describe the behaviour of the joint under out 

of plane moment and chord stress. Their model is based on the semi-rigid exponential model used to describe 

bolted end-plate connections. The model can be described by equation 6. and typical diagrams of the model 

are presented in Figure 42. 

𝑀𝑜 = 𝑀𝑜𝑝 {1 − exp [
−(𝑘𝑜𝑖 − 𝑘𝑜𝑝 + 𝐶𝜓𝜊)𝜓𝜊

𝑀𝑜𝑝
]} + 𝑘𝑜𝑝𝜓𝜊 6. 

Where: 

 𝐶  Constant coefficient associated with the slope and shape of the curve 

 𝑀𝑜𝑝  The intercept moment 

 𝑘𝑜𝑖  Initial stiffness 

 𝑘𝑜𝑝  Tangent stiffness 

 
Figure 42. Moment-rotation diagrams for the eccentric joints, including characteristic parameters of the semi-rigid model (B. Zhao 

et al., 2020) 

To verify their semi-rigid model, they compared 16 additional configurations and compared the results between 

their developed model and the results of an FEA of their validated model. From the results they concluded that 

the semi-rigid model predicted the behaviour of the connection well and that it could also capture the strength 
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degradation (Figure 43Figure 43. (a) The developed semi-rigid model compared to FE results and experimental 

results and (b) the developed semi-rigid model compared to 1 of the additional configurations used for 

validation) 

  

(a) (b) 

Figure 43. (a) The developed semi-rigid model compared to FE results and experimental results and (b) the developed semi-

rigid model compared to 1 of the additional configurations used for validation 

Lastly, they investigated the effects of chord stress loading. For this investigation they used a total of 184 FE 

with varying characteristics and under various chord stress combinations. The modification of the stiffness due 

to the presence of chord strength is given by a factor with which you multiply the original stiffness, that is not 

under chord stress. This is a standard way of dealing with the presence of chord stress and is used in codes (EN 

1993-1-8: Eurocode 3: Design of Steel Structures - Part 1-8: Design of Joints, 2005) as well as other 

researchers (Garifullin, Pajunen, et al., 2017). To conclude they verified their improved semi-rigid model, 

which included the effects of the chord stress, by using eight more joint configurations. It was concluded that 

their improved model predicted well the joint behaviour subjected to both chord stress and out of plane bending 

moment. 

From their investigations they managed to extract a few useful conclusions. Firstly, they produced a semi-rigid 

model for the moment-rotation behaviour of the connection. This can be used for the analysis and design of 

the truss structure. This is especially important for the global buckling of single-layered reticulated structures, 

by which this study was inspired by. The results also help with the design of the members in buckling, so that 

the boundary conditions out of plane are better accounted for. What was not investigated though was the in-

plane behaviour, which would help with the design of the members against buckling. What is more, the 

eccentric joint out of plane is symmetric, but the in-plane behaviour is not symmetric. This can give rise to a 

more complicated response which would warrant an investigation. 

2.6 Topics that require further investigation 

2.6.1 Topics to be investigated 

When it comes to eccentric hollowed sectioned joints much work is needed. Especially in the case of the non-

symmetric plane of the joint. No literature was found describing the behaviour in the specific plane, which 

indicates that a lot is yet to be known about the behaviour of such joints. Through this work, an attempt will 

be made to answer what effects the introduced eccentricity has on the buckling behaviour qualitatively and 

quantitatively. The main comparison will be against the centric joints that are used widely in practice. 
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(a) (b) 

Figure 44. Example of eccentric joint. With green the symmetric plane is indicated, whilst with blue the non-symmetric plane 

The main focus of the thesis will be the investigation of plane trusses using K-joints that have an included 

eccentricity. This configuration is currently being used in Ampelmann’s gangway systems and the results will 

be directly relevant in practice. From this literature study it has been concluded that the effects from member 

buckling and global buckling can be separated in design and verification of structures. As global buckling 

modes may be quite project specific it is regarded that investigating member buckling more important as it 

will produce results and conclusions useful for a wider array of applications.  

From the literature it can be determined that the aspects that can affect buckling of a planar truss are the cross 

sections used, the actual geometry of the structure, the loading and support conditions and the stiffness of the 

connections. The latter is again affected by quite a few parameters. These include the β and γ factors of the 

joint, the gap between the braces and connection angle. 

 
Figure 45. Basic geometry and load case used in Boel’s research (Boel, 2010) 

To limit the scope of this research, it was decided that structures similar to Boel’s research (Boel, 2010) are 

going to be used for the investigations in following chapters. This would help give a benchmark for the results 

of this thesis, but also further verify Boel’s findings. From having a standard geometry, loading and support 

conditions, the main parameters that can be used to describe the buckling behaviour of the truss members are 

β and γ. These two factors more directly include information regarding the stiffness of the joint, i.e. these are 

the main parameters that have been identified as affecting the stiffness of K-joints. Additionally, they include 

information regarding the cross sections used for the chords and braces. It is of interest to investigate if the 

relationships between β, γ and buckling length factors remain the same when comparing the buckling results 

of trusses with centric joints and eccentric joints. 

Another aspect of design that can be addressed is the detailed modelling of joints. This can be quite time 

consuming and complicated to implement in global design models, especially with complicated geometries 

that arise from eccentric joints. This makes interesting the investigation of simplified modelling processes, 
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such as the introduction of rotational springs, which was done in the research presented in the state of the art 

(Chapter 2.4). The first question that is of interest is, why are there three load cases defined and what exactly 

they represent (Figure 46). Having three distinct stiffness values for the same joint seems counter intuitive. An 

additional study into their meaning and use would increase confidence in the method.  

 
Figure 46. The three load cases used to calculate the out of plane stiffness of connections (Boel, 2010) 

Another question that arises for the implementation of rotational springs for eccentric joints is how to calculate 

the stiffness. Due to the existing non-symmetry, the behaviour may be highly irregular and different to what 

is expected with normal centric K-joints that have been used up till now (Figure 47). This means that the 

definition and calculation of the rotational spring may be more complex than what has been presented in the 

literature this far.  

   
(a) (b) (c) 

Figure 47. Out of plane behaviour of (b) centric and (c) eccentric K-joint under in plane bending moment (a) 

The last point that can be investigated is if the brace thickness influences the stiffness of the connections. In 

the literature study, it is considered that the brace thickness plays a minor role in the stiffness of the joints, so 

it is not accounted for. The main effect of the brace thickness on the connection stiffness is on the deformation 

distribution on the chord face (Figure 48). The thicker the brace the less deformation is allowed to the chord. 

In the extreme case of a rigid brace, all contact positions between brace and chord will displace purely 

rotationally. 

  

(a) (b) 

Figure 48. Chord face deformations for (a) normal thickness brace and (b) rigid brace 
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2.6.2 Topics outside the scope 

From the literature study, a few interesting questions arose regarding parameters that affect the resistance of 

truss structures but that are outside the scope of this investigation due to time constraints. Firstly, as was stated 

before, global stability issues are not going to be dealt with. These may play a significant role in the final 

resistance of the truss and its members, depending on the support and loading conditions. The interaction 

between the different components of the truss (joints, members and supports) and how they relate to the global 

modes of trusses are not going to be part of this study. 

Another issue that is not yet well determined is how much the buckling behaviour is affected by non-linear 

effects of the truss components. When calculating the linear buckling loads, the stiffness used is that of the 

undeformed structure. In reality though, non-linear effects may arise that affect the boundary conditions of the 

members. An example of this are joints under chord stress. In the presence of an axial load on the chord the 

stiffening or softening of the brace connections can be observed (Figure 49). This phenomenon has been 

investigated in works presented in the state of the art, as well as by other researchers (Garifullin, Pajunen, et 

al., 2017), but its effects and how it relates to the final resistance of hollow section trusses is still unclear. These 

can only be accounted for through a detailed non-linear analysis. This means that a linear buckling analysis 

may overestimate the actual critical buckling load. Further validation may be needed into the direct use of 

buckling eigenvalues for the buckling resistance calculations. 

 
Figure 49. Change of in plane stiffness of T-joint connection as a function of chord stress factor n (Garifullin, Pajunen, et al., 2017) 

The non-linear effects mentioned already relate to geometric non-linearities. Another set of non-linearities that 

need further investigation, as they relate to the buckling resistance of truss members, is that of the material. 

Specifically, as it relates to the joints, it was seen in the literature study that their yielding can substantially 

affect the buckling length of a member. What is not fully known is the interaction between the predicted 

buckling resistance and the resistance of the joint. In the case where the resistance of the joint is much lower 

than the calculated buckling resistance, then the joint would already be governing for the design. If the joint 

resistance is higher than the calculated buckling resistance, then early yielding of the joint is not to be expected 

and the calculated buckling resistance will develop fully. There is still the question of whether there is a 

situation in between, for which the yielding of the joint may affect the final resistance of the members and 

would make the governing failure mode lower that the predicted. 

Another interesting topic that is not yet fully investigated is the effects of welds. Welds theoretically should 

increase the resistance of a connection and additionally increase the stiffness. Thus, the buckling resistance of 

the members would be expected to increase. However, welding can also introduce residual stresses and 

deformations. These may not be implicitly considered in the design codes with the prescribed imperfections, 

so further investigations are needed to verify that their effects in the final resistance are minor or provide 

proposals for accounting for them. 
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3 INVESTIGATION OF CENTRIC JOINTS 

3.1 Introduction 
The first step to investigating eccentric connections is to investigate the behaviour of trusses comprised of 

centric joints. This allows obtaining results that permit the comparison between the centric joint and the 

eccentric joint behaviour (Figure 50). Boel in his master thesis has already investigated centric joints in 2010, 

as was presented in the literature study. One of the assumptions adopted was that the cross sections were 

modelled without accounting for the corner radius of the profiles (Figure 51 (b)). Also, the models used for his 

final results were simplified using beam elements and rotational springs to account for the joints stiffnesses. 

For the eccentric connections, a more detailed model is needed for the investigation, in order to get reliable 

initial results. 

  
(a) (a) 

Figure 50. Finite element models for (a) centric and (b) eccentric K-joint 

In this chapter an investigation of centric joints is going to be performed, by working with detailed models, 

using shell element. This will make the comparison between the detailed eccentric joints and the centric results 

straightforward. 

To facilitate comparisons to Boel’s work, similar cross sections to the ones used in this work will be chosen. 

This will allow to cross validate the results obtained from the shell element models of this work and the 

approach that Boel developed. Additionally, the structural system and load case used in his investigation will 

also be adopted in this work. This limits the scope of the investigations, which is outlined below: 
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• Profiles to be used are hot rolled, of steel grade S355 and Square Hollow Sections (SHS). Cross 

sectional data taken according to EN 10210-2:2006. 

• The total chord and brace combinations to be used for the centric investigation are 15. These can be 

seen in Table 13. The β factor is limited to 0.75 as for larger brace to chord width ratios, the effects of 

eccentricity should diminish. In the extreme case of β=1.0 no eccentricity can actually be defined 

(Figure 52). 

• The structural system consists of a simply supported truss loaded with vertical loads on its compressive 

chord nodes (Figure 54). 

• The compression chord is supported out of plane at its nodes. 

• The gaps used for the joints were the minimum permissible by the EN 1993-1-8 (2005). So, for the K-

joint of this study, which both braces have the same thickness, the minimum gap introduced was 2t. 

Noticeable exceptions are for the joints with β=0.25 and β=0.40, where the minimum gap of the brace 

with β=0.50 was used, i.e. 12.6 mm. This was done to be able to model the specific joints with mid-

surface modelling. Otherwise, the models arising from such geometries would be nonsensical (Figure 

53). 

• Welding of the brace on the chord face is not accounted for in this work and no welds are modelled 

during the investigations performed. 

   

(a) (b) (c) 

Figure 51. Different modelling assumptions for representing the actual geometry of a SHS (a), by assuming no rounding at its 

corners (b) or by accounting for the corner radius (c) 

Table 13. Cross sections used in the centric joint investigation 

  Chords  

  γ= 15.9  10  6.25   

   SHS 

200/6.3 

 SHS 200/10  SHS 200/16   

Braces 

β= 0.25  0.4  0.5  0.6  0.75 

 SHS 50/4  SHS 80/5  SHS 100/6.3  SHS 120/7.1  SHS 150/8 
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(a) (b) (c) 

Figure 52. Front views of centric K-joints and the equivalent eccentric joints for (a) β=0.5, (b) β=0.9 and (c) β=1.0 (no 

eccentricity definable) 

 
Figure 53. Intersection of shell elements in model, when using the minimum gap for the joint with γ=6.25 and β=0.25 (Boel, 2010). 

One of the parameters not to be investigated is the effects of the brace thickness. Due to the geometry of the 

connections changing with different brace thicknesses, the stiffness results obtained from the changes do not 

match the expected changes in stiffness. This was investigated and is presented in APPENDIX B. Because of 

this, only the cross sections used by Boel are going to be employed in the investigations. These will provide 

representative results for the joint behaviour and primarily have intermediate thicknesses for the width of the 

cross sections chosen, which is also expected in practice. For all the investigations mid-surface modelling was 

used. This is a simplification, but substantially reduced the computational demand and time so it was necessary 

to adopt. 

 
Figure 54. Structural system of the simply supported truss used in the investigation 
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3.2 Effects of corner radius on stiffness 
As Boel did not account for the corner radius in the profiles used (Snijder et al., 2011), a simplification that is 

commonly used in practice, it is of interest to investigate how this assumption affects the in plane and out of 

plane stiffness of the connections. For the comparison, the basic load cases introduced by Boel and described 

in the literature study were used. For in plane stiffness Load case 1 is going to be used to calculate the in-plane 

stiffness, whilst for the out of plane stiffness the average of the three load cases is to be used. In Chapter 5 

(Formulating rotational springs for eccentric joints) it is shown that taking the average stiffness of the three 

load cases for the out of plane stiffness may be inaccurate, but it still gives a good indication of the stiffness 

and gives results comparable to Boel. 

3.2.1 In plane stiffness calculation 

The process used for calculating the stiffness was the same as the one described in Boel’s master thesis (Boel, 

2010), except for two main differences. The first modification was in regard to the support introduced along 

the chord. In order to exclude the effects of the chord bending and introducing additional displacements at the 

end of the brace, Boel introduced line supports at the middle of the chord wall. These constrained the vertical 

displacements as well as the in-plane rotations. As the main goal of these supports is to eliminate the chord 

bending in-plane, the constraint of the vertical displacement is required. The constraint of the rotations along 

the chord wall mid-line, though, is questionable. There is no requirement for such a constraint and it introduces 

the possibility of over-stiffening the connection response. As such, for the in-plane stiffness calculations in 

this work only the vertical constraint component was introduced in the line supports of the chord walls.  

 
Figure 55. Schematazation of the finite element model used by Boel for the in-plane stiffness calculations (Boel, 2010) 

Having excluded the effects of the chord bending on the brace end displacements, the only additional 

component increasing these displacements is the bending of the brace. In order to calculate the displacements 

attributable to the connection, the displacements due to the brace bending need to be calculated. Assuming the 

brace as a cantilever beam (Figure 56), Boel used Equation 7. to calculate the deflections. In this work the 

brace deflections are also calculated assuming the brace as a cantilever, but the shell element model is used to 

calculate the values (Figure 57). This decision was taken, as calculating the deflections with Equation 7. gave 

inconsistent results. This was mainly due to some configurations for which the deflections due to the 

connection were very small, so the calculation was sensitive to the deflection value calculated for the brace. 

𝑤𝑏𝑟𝑎𝑐𝑒 =
𝑀𝐿𝑏𝑟
2𝐸𝐼

 7. 
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Figure 56. Schematization of super positioning of stiffnesses of system (Boel, 2010) 

 
Figure 57. Model used for the calculation of the brace deflections. Constraints for all degrees of freedom were introduced on the 

base lines. 

In general, it is noted that both assumptions, of supporting the chord against vertical displacements and treating 

the brace as a cantilever, are generally accepted conventions and are used by other researchers (Garifullin et 

al., 2018; Havula et al., 2018; B. Zhao et al., 2020). To conclude, the in-plane stiffness calculation was 

performed by subtracting the in-plane deflection due to the bending of the brace, from the total in-plane 

deflections at the end of the brace, calculated for the whole K-joint under loading prescribed by each Load 

case (Figure 23 (a)). This is given by Equation 8., from which the rotations arising from the connection can be 

calculated (Equation 9.). From this, the stiffness of the connection is calculated by dividing the applied moment 

with the calculated rotations (Equation 10.). 

𝑤𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑤𝐾−𝑗𝑜𝑖𝑛𝑡,𝐹𝐸𝑀 −𝑤𝑏𝑟𝑎𝑐𝑒,𝐹𝐸𝑀 8. 

𝜑𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑤𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

𝐿𝑏𝑟
 9. 

𝐶𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 =
𝑀

𝜑𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛
 10. 
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Figure 58. K-joint modelled using shell elements, used for the calculation of stiffnesses 

3.2.2 Out of plane stiffness calculation 

In the case of the out of plane stiffness calculations, things are more complicated. This is primarily due to not 

needing to support the chord walls. Since out of plane displacements and torsion of the chord are expected 

from the out of plane loading, supporting the chord side walls would over constrain and lead to higher stiffness 

than expected. This means that bending and torsion of the chord needs to be accounted for and subtracted from 

the total displacements in order to acquire the displacements due to the connections. The displacement due to 

the bending and torsion of the chord are dependent on the Load case as the moments applied on the ends of 

the braces interact. For this reason, the equations used to calculate the connection displacements change for 

every Load case. As with the in-plane stiffness calculation, the deflection of the brace is calculated using a 

finite element model of the K-joint brace section. The figures schematizing the joints for the stiffness 

calculation are taken from Boel’s work, as the same set ups were used for the calculations in this work. 

3.2.2.1 Out of plane Load case 1 

For the case of Load case 1, Equation 11. is used to calculate the displacements at the end of the brace owing 

to the connection. In this equation the first term is taken from an analysis of a fixed brace, the second describes 

the displacements due to torsion, the third the displacements due to rotation of the chord around the vertical 

axis and the last term describes the displacement due to the vertical deflection of the chord. By calculating the 

displacement due to the connection, Equations 9. and 10. can be used to calculate the out of plane stiffness for 

Load case 1. 
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Figure 59. Schematization of joint for the stiffness calculation of Load case 1 (Boel, 2010) 

𝑤𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑤𝐾−𝑗𝑜𝑖𝑛𝑡,𝐹𝐸𝑀 −(

𝑤𝑏𝑟𝑎𝑐𝑒,𝐹𝐸𝑀 +
sin(𝛼)𝑀(𝐿𝑐ℎ − 𝑔)

2𝐺𝐽𝑐ℎ
(sin(𝛼) 𝐿𝑏𝑟 + ℎ) +

+
𝑀(3𝑔2 + 𝐿𝑐ℎ

2 )
12𝐸𝐼𝑐ℎ𝐿𝑐ℎ

cos2(𝛼) 𝐿𝑏𝑟 +
𝑀𝑔(𝑔2 − 𝐿𝑐ℎ

2 )
12𝐸𝐼𝑐ℎ𝐿𝑐ℎ

cos (𝛼)
) 11. 

3.2.2.2 Out of plane Load case 2 

For the case of Load case 2 Equation 12. is used to calculate the displacements at the end of the brace owing 

to the connection. In this equation the first term is taken from an analysis of a fixed brace, the second describes 

the displacements due to torsion, the third the displacements due to rotation of the chord around the vertical 

axis and the last term describes the displacement due to the vertical deflection of the chord. By calculating the 

displacement due to the connection, Equations 9. and 10. can be used to calculate the out of plane stiffness for 

Load case 2. 

 

 
Figure 60. Schematization of joint for the stiffness calculation of Load case 2 (Boel, 2010) 
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𝑤𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑤𝐾−𝑗𝑜𝑖𝑛𝑡,𝐹𝐸𝑀 −(
𝑤𝑏𝑟𝑎𝑐𝑒,𝐹𝐸𝑀 +

sin(𝛼)𝑀(𝐿𝑐ℎ − 𝑔)
2𝐺𝐽𝑐ℎ

(sin(𝛼) 𝐿𝑏𝑟 + ℎ) +

+
𝑀𝑔
2𝐸𝐼𝑐ℎ

cos2(𝛼) 𝐿𝑏𝑟 +
𝑀𝑔(𝑔 − 𝐿𝑐ℎ)

4𝐸𝐼𝑐ℎ
cos (𝛼)

) 12. 

3.2.2.3 Out of plane Load case 3 

For the case of Load case 3, Equation 13. is used to calculate the displacements at the end of the brace owing 

to the connection. In this equation the first term is taken from an analysis of a fixed brace, the second describes 

the displacements due to rotation of the chord around the vertical axis and the last term describes the 

displacement due to the vertical deflection of the chord. From calculating the displacement due to the 

connection, Equations 9. and 10. can be used to calculate the out of plane stiffness for Load case 3. 

 
Figure 61. Schematization of joint for the stiffness calculation of Load case 3(Boel, 2010) 

𝑤𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑤𝐾−𝑗𝑜𝑖𝑛𝑡,𝐹𝐸𝑀 −

(

 
 
𝑤𝑏𝑟𝑎𝑐𝑒,𝐹𝐸𝑀 +

𝑀(3𝑔2 − 3𝑔𝐿𝑐ℎ + 𝐿𝑐ℎ
2 )

6𝐸𝐼𝑐ℎ𝐿𝑐ℎ
cos2(𝛼) 𝐿𝑏𝑟 +

+
𝑀𝑔(2𝑔2 − 3𝑔𝐿𝑐ℎ + 𝐿𝑐ℎ

2 )
12𝐸𝐼𝑐ℎ𝐿𝑐ℎ

cos (𝛼)

)

 
 

 13. 

3.2.3 Results 

Using the approach described in the previous sections, the stiffness of the various configurations was 

calculated. The first set of results are for the case of cross sections with no rounding in their corners. This was 

done to compare the results with the results of Boel, in order to validate the tools and the method used in this 

work. The results would be expected to match closely to the results obtained by Boel. This, though, is not the 

case. The results are presented below. 
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Table 14. In-plane stiffness of SHS K-joints, without accounting the corner radius of the cross sections 

In-plane stiffness (kNm/rad) 

  γ 

    15.9  10  6.25  

   

Present 
work 

Boel 
(2010) 

Diff.  Present 
work 

Boel 
(2010) 

Diff.  Present 
work 

Boel 
(2010) 

Diff. 

  

  

β 

  

  

0.25 81.0 82.4 -1.6%  283.1 292.1 -3.1%  1015.2 953.5 6.5% 

0.40 183.8 188.4 -2.5%  615.1 627.8 -2.0%  2146.8 2144.8 0.1% 

0.50 342.7 355.5 -3.6%  1097.2 1133.3 -3.2%  3672.6 3680.7 -0.2% 

0.60 678.0 711.7 -4.7%  2060.2 2141.5 -3.8%  6547.9 6547.2 0.0% 

0.75 2303.2 2766.2 -16.7%  6165.8 6888.3 -10.5%  16623.2 17717.9 -6.2% 

 
Figure 62. In-plane stiffness of SHS K-joints, without accounting the corner radius of the cross sections 

Table 15. Out of plane stiffness of SHS K-joints, without accounting the corner radius of the cross sections 

Out of plane stiffness (kNm/rad) 

  γ 

    15.9  10  6.25  

  

 
Present 

work 
Boel 

(2010) 
Diff.  Present 

work 
Boel 

(2010) 
Diff.  Present 

work 
Boel 

(2010) 
Diff. 

  

  

β 

  

  

0.25 216.6 225.3 -3.9%  630.8 673.2 -6.3%  2031.5 1726.4 17.7% 

0.40 469.1 481.9 -2.6%  1349.9 1376.2 -1.9%  4229.4 4046.5 4.5% 

0.50 806.6 831.2 -3.0%  2148.5 2247.1 -4.4%  6598.2 6643.9 -0.7% 

0.60 1256.9 1376.8 -8.7%  3384.9 3605.9 -6.1%  10047.7 10657.5 -5.7% 

0.75 3242.6 3489.3 -7.1%  7883.1 8584.8 -8.2%  21474.8 23322.5 -7.9% 
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Figure 63. Out of plane stiffness of SHS K-joints, without accounting the corner radius of the cross sections 

As can be seen in Table 14 and Table 15, for most cases the results do not agree with the results presented by 

Boel and in some cases the difference reaches around 18%. This could be due to several reasons. One potential 

reason could be that in this work, the deflection of the brace was calculated from a FE analysis, whist Boel 

used analytical formulas. This can have a substantial effect on the calculated stiffness, especially in cases that 

the displacements attributable to the braces and the connections have similar values. This would mean that a 

slight change in the displacement attributed to the brace creates a relatively substantial increase in the stiffness 

value. It is also mentioned that for the in-plane stiffness, Boel additionally constrained the rotations. This may 

have a over constraining effect leading to a stiffer calculation of the stiffness. 

Additionally, a general increase in the difference can be observed for an increase in the brace to chord width 

ratio (β). One possible answer is the differences in mesh sizing. From Boel’s ANSYS script presented in his 

thesis Appendix it is evident that for all his investigations he used the same number of elements for the brace 

and chord, irrespective of the cross section used in each case. In the current investigation the element size is 

chosen as a function of the surface thickness. This can potentially explain the increasing differences with 

increase in brace widths. Lastly, Poels also compared some stiffness calculations to Boel’s results. He also 

found that Boel’s stiffness values were in general higher than the ones Poels calculated (Table 16). Without 

access to Boel’s models it is impossible to attribute the difference to something more specific. 

Table 16. Relative differences between Poel’s and Boel’s in-plane stiffness calculations (Poels, 2017) 

 

For the next investigation, the effects of the corner radius on the stiffness are going to be checked. In order to 

make a suitable comparison, the results obtained from the previous investigation for cross sections with no 

radius is going to be used to compare to the cross sections with rounded corners. The results are compared and 

presented in Table 17 and Table 18. 
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Table 17. In-plane stiffness of SHS K-joints, with and without accounting for the corner radius of the cross sections 

In-plane stiffness (kNm/rad) 

  γ 

    15.9   10   6.25  

   

Rounded 
corners 

No 
radius 

Diff.  Rounded 
corners 

No 
radius 

Diff.  Rounded 
corners 

No 
radius 

Diff. 

  

  

β 

  

  

0.25 78.8 81.0 -2.7%  279.0 283.1 -1.4%  1025.4 1021.9 0.3% 

0.40 179.5 183.8 -2.3%  615.7 615.1 0.1%  2189.6 2156.6 1.5% 

0.50 326.8 342.7 -4.6%  1076.0 1097.2 -1.9%  3734.5 3637.9 2.7% 

0.60 639.9 678.0 -5.6%  2021.1 2060.2 -1.9%  6643.8 6423.8 3.4% 

0.75 2160.1 2303.2 -6.2%  6005.2 6165.8 -2.6%  16826.1 16585.7 1.4% 

 
Figure 64. In-plane stiffness of SHS K-joints, with and without accounting for the corner radius of the cross sections 

Table 18. Out of plane stiffness of SHS K-joints, with and without accounting for the corner radius of the cross sections 

Out of plane stiffness (kNm/rad) 

  γ 

    15.9   10   6.25  

   

Rounded 
corners 

No 
radius 

Diff.  Rounded 
corners 

No 
radius 

Diff.  Rounded 
corners 

No 
radius 

Diff. 

  

  

β 

  

  

0.25 203.8 216.6 -5.9%  606.1 630.8 -3.9%  1948.4 2031.5 -4.1% 

0.40 442.1 469.1 -5.8%  1296.1 1349.9 -4.0%  4159.2 4229.4 -1.7% 

0.50 758.3 806.6 -6.0%  2074.0 2148.5 -3.5%  6463.9 6598.2 -2.0% 

0.60 1231.8 1256.9 -2.0%  3362.2 3384.9 -0.7%  10538.9 10047.7 4.9% 

0.75 2930.7 3242.6 -9.6%  7685.7 7883.1 -2.5%  22063.7 21474.8 2.7% 
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Figure 65. Out of plane stiffness of SHS K-joints, with and without accounting for the corner radius of the cross sections 

For the in-plane stiffness there are small differences that increase with the increase of the brace to chord width 

ratio (β). The trends appear to show that rounding of the corners decrease the stiffness of the connection. But 

for the case of γ=6.25 the trend appears to show that the rounding of the corners increases the stiffness. For 

the out of plane stiffness even higher differences can be observed.  

Due to the rounding of the corners an increase in flexibility is expected, as the corners of the braces become 

less stiff (Haakana, 2014). This would indicate a decrease in stiffness compared to the square cross sections 

with the increase of the β factor. But there is also a second effect, which explains the stiffening of the 

connection for thicker chords. Due to the increase in thickness of the chord, the radius modelled is also larger. 

This means that as the support conditions provided by the chord wall moves towards the brace’s edge, the 

radius becomes larger. 

The change of boundary conditions from non-rounded to rounded cross sections depends only on the chord 

thickness used. Depending on the width of the brace used though, the relative difference is affected. For smaller 

braces, the decrease in the unsupported length becomes a much smaller percentage of the total unsupported 

length. This means that the stiffening effect of the chord radius becomes greater with higher values of β. These 

two effects compete between them and provide the explanation of the differences observed. It is noted that 

these conclusions hold only for mid-surface modelling because with solid elements, the different effects 

mentioned, may be more or less pronounced. In Figure 66, a representation and an example of the described 

effect is provided. 

  
(a) (b) 

  

(c) (d) 

Figure 66. Chord face section for different K-joint configurations. Indication of the boundary conditions for the chord face in 

bending component is given by the black circles. Extreme cases of chord thickness and brace width are presented to aid with the 

comparison between rounded vs unrounded corners. 
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From Figure 66 the mechanism that leads to stiffer response for thicker chords and wider braces becomes more 

apparent. The dark circles indicate the chord face in bending boundary conditions. These unsupported lengths 

contribute the most to the stiffness. In each subfigure the difference between rounded and unrounded cross 

sections is demonstrated. To show the effects for different brace widths the same chords are used for pairs 

Figure 66 (a)-(b) and Figure 66 (c)-(d). The difference between rounded and unrounded remains the same for 

the same chord cross sections and independent from the brace used. But the total unsupported length is affected 

by the brace used. So, for larger braces, the decrease in length from unrounded to rounded, is a larger 

percentage of the total unsupported length. It is also seen that for a small radius the differences between 

rounded and unrounded for the chord are small. Therefore, for the thinnest chord (γ=15.9) all the stiffnesses 

for the rounded cross sections are smaller than the corresponding unrounded ones. The decrease of stiffness 

due to the rounding corners of the brace is the dominating effect. The opposite is true for the thickest chord 

(γ=6.25) and the larger braces, where the rounded cross sections appear to be stiffer. 

To conclude, in general, the differences between the results appear not to be substantially large and are not 

expected to affect the buckling behaviour substantially. This means that a comparison between results obtained 

in the present work and Boel’s work should be possible. This would also indicate that if a stiffness calculation 

is required, square profiles may be used. For the remainder of the investigations this work will continue using 

rounded cross sections as a more accurate representation of reality. 

3.3 Truss models 
To limit computational time and aid the investigation, it was decided that the models used would be comprised 

by a combination of shell and beam elements. The joints were to be modelled with shell elements, to capture 

the detailed behaviour of the structure. The remaining parts of the members were to be modelled using beam 

elements connected via rigid elements to the joints. This will be referred to as a hybrid model. 

To investigate if this would affect the results, compared to using a complete shell element model, an 

investigation was performed using a smaller truss structure (Figure 67). The cross sections used were SHS 

100-6.3 and SHS 50-4 for the chords and braces respectively. The first four eigenmodes were used for the 

comparison.  

 
(a) 

 
(b) 

Figure 67. Models used to arrive to the final model used in the investigations. For the hybrid mode (a) the joints are modelled 

using shell elements and beam elements for the rest of the members, whist for the shell element model (b) only shell elements were 

used. 

The results are presented in Table 19. A difference of around 5% exists between the results of the hybrid model 

and the shell element model, for the first four eigenmodes. This difference is primarily attributed to the 

difference existing in the cross sections modelled. Depending on the mesh density and the number of elements 

created on the corner radius of the rounded cross sections, the actual perimeter can be quite smaller than reality. 

In this case, the mesh density used created two shell elements on the corner (Figure 68). 
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Table 19. Eigenvalue results for shell element and hybrid truss models 

 Load factors 

 Shell element model Hybrid model Difference (%) 

Eigenmode 1 15.57 16.35 4.8 

Eigenmode 2 18.69 19.66 4.9 

Eigenmode 3 19.15 20.21 5.2 

Eigenmode 4 20.22 21.27 4.9 

 
Figure 68. Differences between reality and models using shell elements. On the left the actual cross sections of members, whilst on 

the right the modelled cross sections due to the use of shell elements 

To calculate these effects, a single member with the same cross section as the brace, was supported as a 

cantilever and put under axial compressive load. The shell element mesh was kept the same as with the previous 

investigation, to be able to compare results. Then the results from a shell element model and beam element 

model were compared. As can be seen from the results the differences are around 4-5%. This indicates that the 

differences expected from using a hybrid model compared to a fully shell element model is below 1%. As 

such, using hybrid modelling to calculate the eigenvalues is considered adequate and the following 

investigations will make use of it. 

Table 20. Eigenvalue results for shell element and beam element cantilever model 

 Load factors 

 Shell element model Hybrid model Difference (%) 

Eigenmode 1 1.38 1.44 4.2 

Eigenmode 2 1.38 1.44 4.2 

Eigenmode 3 12.35 12.94 4.6 

Eigenmode 4 12.37 12.94 4.4 

Having demonstrated that the hybrid model can be and will be used in all the following investigations a few 

other details about the models used are presented. First it is pointed out that the lateral supports were introduced 

in the middle of the joints, at the mid-height of the chord wall (Figure 69). The effects of this assumptions are 

minor and are checked in section 4.5. Secondly, the introduction of the loads on the top nodes was done through 
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line loads on the middle of the joints (Figure 69). Although care was taken to introduce the prescribed load of 

10 kN, the actual values are not important for the final conclusions. The reason is because the results are 

described in terms of buckling lengths which is a normalized quantity. What is important is to introduce the 

correct proportion per load i.e. the same load per node, which was done. At the places where the shell elements 

interacted with beam elements or the boundary conditions, rigid surfaces were introduced, to facilitate with 

the interaction (Figure 70). Rigid surfaces were also introduced at the ends of the tension chord where the ends 

are free. To not over stiffen the connection a reasonable length of the joint was modelled (Figure 70).  

 

 
Figure 69. Detail of a joint from the top (compressive) chord, from the hybrid model used. 

 

  
(a) (b) 

Figure 70. Details from the chord end conditions of the truss structure. In (a) the rolling support conditions applied on the top 

(compressive) chord and in (b) the free end of the bottom (tension) chord. With purple the rigid surfaces are displayed. 
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3.4 Approach 
To process the results, different calculated eigenmodes will be attributed to the buckling of different members 

and directions. In regard to direction in-plane modes and out of plane modes will be distinguished depending 

on which plane the deformations occur. In regard to the members, the most critical chord member is the one 

in the middle which is maximally loaded and will buckle first between the rest of the chord members. For the 

buckling of the braces, the most critical is the compressive braces closer to the end supports (Figure 71). From 

each model four eigenmodes will be attributed to one of each specific mode: chord buckling in-plane, chord 

buckling out of plane, brace buckling in-plane and brace buckling out of plane (Figure 72Figure 1). 

 
Figure 71. Members of the truss, most critical to buckling; middle chord and end brace 

  

(a) (b) 

  
(c) (d) 

Figure 72. Truss buckling modes categorized per member and direction. In-plane buckling of (a) chord and (b) brace and 

out of plane buckling of (c) chord and (d) brace. 

When it comes to the results, it is important to attribute the correct eigenmode to the appropriate member 

(chord and brace) and mode (in and out of plane). In many cases this can be unambiguous, but in some cases, 

it can be impossible to attribute since the members may buckle together. Boel addressed this issue by always 

attributing the lowest possible eigenmode to the corresponding member and mode. This is a safe estimate and 

appropriate since Boel’s work revolved around trying to produce predictive formulas for buckling lengths. In 

the present work, in cases of doubt, the lowest eigenmode will also be used. This though may produce results 

that do not follow the intuitive trend followed by all results. To demonstrate one such case, the alternative 

results for the out of plane buckling of the chord are presented with the tension chord is restrained. In this case 

the buckling modes of chords γ=10 and γ=6.25 for the brace width ratio of β=0.6 are presented (Figure 73). 
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(a) (b) 

  
(c) (d) 

Figure 73. Possible modes attributable to the chord buckling out of plane for the configurations with γ=10 ((a) and (b)), and 

γ=6.25 ((c) and (d)) and β=0.6. 

It is obvious that for the chord out of plane for the configuration with γ=10, Figure 73 (a) as it has the lower 

eigenvalue of the two presented and the chord presents the maximum deformation. For the case of the 

configuration with γ=6.25, it is obvious that the corresponding mode is from Figure 73 (d), as for Figure 73 

(c) the chord presents minimal deformations. These are the values used to plot the final results for the chord 

buckling out of plane. It can be seen, though, that the graph for γ=6.25 does not follow the same trend as the 

graphs for γ=10 and γ=15.9 (Figure 74). It is of interest to note that the lowest eigenvalues (Figure 73 (a) and 

(c)) present the same characteristics, meaning that braces and chord deform towards the same directions 

indicating the same “eigen-shape”. The same can be said for the higher eigenvalues (Figure 73 (b) and (d)) 

where the braces deform in the opposite direction of the chord. It is interesting to see the results that can be 

produced by using the same “eigen-shape” for γ=6.25, as the one used for γ=10. The alternative graph of 

γ=6.25 is now plotted, by using the eigenmode from Figure 73 (c) instead of (d). It can be seen from the results 

that the graph is now more in line with the trend presented from γ=10 and γ=15.9 (Figure 74). This is an 

example that the buckling analysis is quite a complex phenomenon and may not always follow the expected 

trend. 
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Figure 74. Chord buckling factors for out of plane in the case of a restrained tension chord, along with an alternative assumption for 

γ=6.25 and β=0.6 

Having attributed a certain eigenmode to a member and mode, the critical buckling load of the member can be 

calculated. This is done by multiplying its axial load from a linear elastic analysis with the load factor (LF) of 

the attributed eigenmode (Equation 14.). Then the buckling factor is calculated by using Equation 15.. The 

only unambiguous parameter left is which length is to be used. In the present work, Boel’s definition is used 

(Figure 75), which would allow for immediate comparison with his results. 

𝑁𝑐𝑟 = 𝐿𝐹 ∗ 𝑁𝑒𝑑 14. 

𝐾 = √
𝜋2𝛦𝛪

𝑁𝑐𝑟𝐿
2
 15. 

 
Figure 75. System length as defined by Boel (Boel, 2010) 

3.5 Results 
In this section the results are presented. Firstly, a table with the results and the comparison to Boel’s is given, 

followed by the visual representation with graphs. The results will be first presented for the in-plane direction 

for chord and brace buckling and then for the out of plane direction for the chord and brace buckling. It should 

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.2 0.3 0.4 0.5 0.6 0.7 0.8

B
u

ck
lin

g 
fa

ct
o

r 
K

ch
,o

u
t

β

Chord buckling factor for out of plane buckling Kch,out

FE-results Restrained tension 
chord γ=15.9

FE-results Restrained tension 
chord γ=10

FE-results Restrained tension 
chord γ=6.25

FE-results Restrained tension 
chord γ=6.25-Alternative

EC3



INVESTIGATION OF CENTRIC JOINTS  51 

 BUCKLING OF TRUSSES WITH ECCENTRIC JOINTS 

be noted that the results taken from Boel (2010) were already rounded so the differences may be smaller or 

larger. Additionally, the percentile difference is given for the unrounded number of the present work. Thus, 

even if the rounded numbers are the same, a difference amount might be present. 

Table 21. Chord buckling factors for in plane buckling 

  γ 

  15.9  10  6.25 

  

Present 
work 

Boel 
(2010) 

Diff. 
 

Present 
work 

Boel 
(2010) 

Diff. 
 

Present 
work 

Boel 
(2010) 

Diff. 

β 

0.25 0.88 - -  0.88 - -  0.89 - - 

0.40 0.85 0.86 -0.7%  0.86 0.87 -0.6%  0.90 0.90 -0.1% 

0.50 0.85 0.86 -1.1%  0.86 0.86 0.1%  0.88 0.88 0.4% 

0.60 0.82 0.83 -0.8%  0.84 0.84 -0.4%  0.86 0.86 0.4% 

0.75 0.73 0.74 -1.0%  0.75 0.75 -0.4%  0.77 0.77 0.0% 

 
Figure 76. Chord buckling factor for in plane buckling Kch,in 

Table 22. Brace buckling factors for in plane buckling 

  γ 

  15.9  10  6.25 

  

Present 
work 

Boel 
(2010) 

Diff. 
 

Present 
work 

Boel 
(2010) 

Diff. 
 

Present 
work 

Boel 
(2010) 

Diff. 

β 

0.25 0.59 0.59 -0.3%  0.53 0.53 -0.7%  0.51 0.51 -0.7% 

0.40 0.68 0.68 -0.6%  0.57 0.57 0.1%  0.52 0.53 -1.2% 

0.50 0.72 0.73 -1.3%  0.61 0.61 -0.6%  0.56 0.54 2.8% 

0.60 0.74 0.74 0.5%  0.63 0.68 -7.1%  0.58 0.59 -2.5% 

0.75 0.81 0.81 0.1%  0.68 0.68 0.2%  0.61 0.66 -7.2% 
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Figure 77. Brace buckling factor for in plane buckling Kbr,in 

It can be seen that the buckling lengths of the chords decrease with the increase of the chord width ration. This 

is because the stiffness of the connections increase, as well as the stiffness of the braces. This has as a result 

that the braces provide increasing restrain to the chords, decreasing the buckling length. For the buckling length 

of the braces the opposite effect is observed. This is due to the increasing stiffness of the brace members. As 

the stiffness of the braces increase the relative restraint experienced, for the same number of absolute values 

of rotational stiffness, decreases. This results in the buckling length of the braces decreasing, even though an 

increase in connection stiffness is observed. 

From the presented graphs it can be seen that the results for the chord buckling in plane match pretty well the 

results given by Boel in his work. In regard to the brace buckling in plane, most of the results match the values 

given by Boel, but there are some specific points that present quite a large deviation. As one of the goals for 

investigating the centric joints is to validate Boel’s results and his proposed approach, the reasons behind the 

discrepancy was investigated in detail. 

As the points in question usually had buckling lengths higher than the ones attributed in the present work, 

some of the possible eigenmodes with lower eigenvalues were checked. From this investigation it was found 

that by changing the eigenvalues chosen the results extracted from the hybrid model could match well with the 

results presented by Boel. This evident in Table 23 and Figure 78. The reasons for these differences may be 

due to Boel misattributing eigenmodes by being conservative in his judgement. Without access to his models, 

it is difficult to make safe conclusions. The positive conclusion is that his approach is able to predict the same 

eigenmodes and eigenvalues calculated by the hybrid model used in the present work. 

Table 23. Brace buckling factor for in plane buckling using eigenmodes that best fit Boel’s results 

  γ 

  15.9  10  6.25 

  

Present 
work 

Boel 
(2010) 

Diff. 
 

Present 
work 

Boel 
(2010) 

Diff. 
 

Present 
work 

Boel 
(2010) 

Diff. 

β 

0.25 0.59 0.59 -0.3%  0.53 0.53 -0.7%  0.51 0.51 -0.7% 

0.40 0.68 0.68 -0.6%  0.57 0.57 0.1%  0.52 0.53 -1.2% 

0.50 0.72 0.73 -1.3%  0.61 0.61 -0.6%  0.54 0.54 0.4% 

0.60 0.74 0.74 0.5%  0.67 0.68 -0.9%  0.58 0.59 -1.4% 

0.75 0.81 0.81 0.1%  0.68 0.68 0.2%  0.66 0.66 -0.3% 
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Figure 78. Brace buckling factor for in plane buckling Kbr,in, using eigenmodes that best fit Boel’s results 

Another interesting observation is that for the thinnest chord and a larger value of the brace width ratio the 

buckling length trends above the prescribed buckling length of 0.75 from the Eurocode. This cannot be fully 

attributed to the different system length definition (Figure 29) as even with changing the system length, the 

buckling length becomes 0.79, above the Eurocode value. This could indicate that the buckling length factor 

of 0.8 given by the Japanese steel codes (Standard Specifications for Steel and Composite Structures, 2009) 

may be a safer assumption for the design of steel trusses. 

The results for the out of plane buckling of the members are presented next. 

Table 24. Brace buckling factor for in plane buckling 

  γ 

  15.9  10  6.25 

  

Present 
work 

Boel 
(2010) Diff.  

Present 
work 

Boel 
(2010) Diff.  

Present 
work 

Boel 
(2010) Diff. 

 0.25 0.88 - -  0.88 - -  0.88 - - 

 0.40 0.85 0.86 -0.7%  0.87 0.88 -0.7%  0.93 0.92 0.5% 

β 0.50 0.86 0.86 -0.2%  0.88 0.88 0.0%  0.92 0.91 0.9% 

 0.60 0.84 0.84 0.1%  0.87 0.86 1.1%  0.85 0.86 -0.6% 

 0.75 0.78 0.79 -0.9%  0.80 0.81 -0.6%  0.83 0.83 -0.5% 
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Figure 79. Chord buckling factor for out of plane buckling Kch,out 

Table 25. Brace buckling factor for out of plane buckling 

  γ 

  15.9 

 

10 

 

6.25 

  

Present 
work 

Boel 
(2010) 

Diff. 
 

Present 
work 

Boel 
(2010) 

Diff. 
 

Present 
work 

Boel 
(2010) 

Diff. 

 0.25 0.60 0.60 -0.8%  0.58 0.58 -0.6%  0.57 0.57 -0.1% 

 0.40 0.65 0.66 -1.8%  0.61 0.61 0.8%  0.59 0.58 1.4% 

β 0.50 0.69 0.70 -1.2%  0.64 0.64 0.5%  0.61 0.60 2.0% 

 0.60 0.74 0.74 0.2%  0.70 0.70 0.1%  0.64 0.63 1.8% 

 0.75 0.85 0.85 0.1%  0.82 0.81 0.7%  0.69 0.71 -3.2% 

 
Figure 80. Brace buckling factor for out of plane buckling Kbr,out 
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The results for the out of plane buckling it is determined that most results are within 1% of the results presented 

by Boel (2010). The only noticeable difference is the trend that can be observed for the out of plane buckling 

of the truss with the chord of γ=6.25. This is potentially because, from what will be presented in Chapter 5, 

Boel’s approach of calculating the out of plane stiffness using the average of the three load cases may provide 

a slightly inaccurate approximation. Another explanation could be again the misattributing eigenmodes. As 

was mentioned earlier without the models it is difficult to judge the exact cause of the discrepancy. In any case 

the differences are quite small, so we can say that Boel’s approach captures the behaviour of the hybrid model 

adequately. 

It is interesting to note that the buckling length calculated for the brace out of plane are quite above the given 

buckling length of the Eurocode, with the additional tendency to increase even more, as it is evident from 

Boel’s results for larger values of brace width ratio. This does not mean that Eurocode is unconservative, but 

that it is not applicable in the case of trusses with unrestrained chords. Due to the tension chord being 

unrestrained the braces act as if they have a translational spring on one of their ends. This accounts for the 

partial restraint to out of plane movements the tension chord provides to the braces. This can be schematized 

in Figure 81, where the deformations of characteristic buckling modes of the braces for restrained and 

unrestrained are compared to their mechanical representation. Due to the unrestrained tension chord, the 

buckling lengths of the braces can theoretically have buckling lengths even above 1.00. 

      
(a) (b) 

Figure 81. Mechanical schematization of the boundary conditions of the braces for (a) unrestrained tension chord and 

(b) restrained tension chord 

The last investigation performed was getting results for the truss with restrained tension chord. The tension 

chord was support in a similar manner as the compressive chord. The results of the in plane buckling did not 

change as the in plane buckling is unaffected by the out of plane boundary conditions of the truss, in the case 

of the centric joints. 
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Table 26. Chord buckling factor for out of plane buckling. 

  γ 

  15.9  10  6.25 

  

Supp. 
tension 
chord 

Unsupp. 
tension 
chord 

Diff. 
 

Supp. 
tension 
chord 

Unsupp. 
tension 
chord 

Diff. 
 

Supp. 
tension 
chord 

Unsupp. 
tension 
chord 

Diff. 

 0.25 0.88 0.88 -0.1%  0.88 0.88 0.0%  0.88 0.88 0.0% 

 0.40 0.85 0.85 -0.1%  0.87 0.87 -0.1%  0.92 0.93 -0.6% 

β 0.50 0.85 0.86 -0.5%  0.88 0.88 -0.3%  0.91 0.92 -0.4% 

 0.60 0.84 0.84 -0.2%  0.87 0.87 -0.4%  0.85 0.85 -0.9% 

 0.75 0.78 0.78 -0.5%  0.80 0.80 0.0%  0.82 0.83 -0.1% 

 
Figure 82. Chord buckling factor for out of plane buckling Kch,out 

Table 27. Brace buckling factor for out of plane buckling. 

  γ 

  15.9  10  6.25 

  

Supp. 
tension 
chord 

Unsupp. 
tension 
chord 

Diff. 
 

Supp. 
tension 
chord 

Unsupp. 
tension 
chord 

Diff. 
 

Supp. 
tension 
chord 

Unsupp. 
tension 
chord 

Diff. 

 0.25 0.57 0.60 -4.4%  0.54 0.58 -5.5%  0.53 0.57 -6.6% 

 0.40 0.63 0.65 -2.6%  0.59 0.61 -4.5%  0.56 0.59 -4.6% 

β 0.50 0.68 0.69 -1.7%  0.63 0.64 -2.7%  0.59 0.61 -3.5% 

 0.60 0.71 0.74 -4.8%  0.66 0.70 -5.7%  0.63 0.64 -2.4% 

 0.75 0.75 0.85 -11.5%  0.74 0.82 -9.6%  0.67 0.69 -2.2% 

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.2 0.3 0.4 0.5 0.6 0.7 0.8

B
u

ck
lin

g 
fa

ct
o

r 
K

ch
,o

u
t

β

Chord buckling factor for out of plane buckling Kch,out

FE-results Restrained tension 
chord γ=15.9

FE-results Unrestrained tension 
chord γ=15.9

FE-results Restrained tension 
chord γ=10

FE-results Unrestrained tension 
chord γ=10

FE-results Restrained tension 
chord γ=6.25

FE-results Unrestrained tension 
chord γ=6.25

EC3



INVESTIGATION OF CENTRIC JOINTS  57 

 BUCKLING OF TRUSSES WITH ECCENTRIC JOINTS 

 
Figure 83. Brace buckling factor for out of plane buckling Kbr,out 

From the results it is evident that the additional restraint of the tension chord plays little role in the buckling 

values of the chord buckling out of plane. In the case of the brace buckling, larger deviations are observed. 

This makes sense as the change in supporting conditions have a more immediate effect on the boundary 

conditions of the braces. A general decrease in buckling length is observed as it would be expected. 

Additionally, the largest of buckling lengths are around the prescribed length from the Eurocode which is an 

indication that the lengths prescribed by the Eurocode refer only to member buckling lengths, without 

accounting for effects from the global behaviour of the structure. 

3.6 Conclusions 
In this chapter an investigation into the buckling behaviour of trusses with centric joints was performed. From 

the investigations, several conclusions were drawn. 

Firstly, the effects of the corner radius on the stiffness of K-joints connections were examined. The expected 

result is that the inclusion of the corner radius will decrease the stiffness, as the rounding softens the response 

at the corners of the braces. This is also supported by the current results. The larger the profile used for the 

brace, and thus the radius of the corner, the lower the stiffness compared to the non-rounded profiles that was 

observed. Another observation was that for thicker chords the difference in stiffness between rounded and 

unrounded became smaller. Surprisingly, for the case of the thickest chord examined, the in-plane stiffness of 

the rounded corner profiles was larger. This is due to the gap between brace and support conditions becoming 

smaller, due to the radius. Additionally, any differences were more pronounced for the out of plane stiffness, 

which is to be expected. In general, though, the effects were not very large and assuming rounded or unrounded 

profiles should not affect the analysis substantially. 

When it comes to investigating the buckling lengths of trusses, some difficulties exist when attributing 

buckling modes to specific members and directions. This issue has been noted in the literature (Boel, 2010; 

Poels, 2017) and was also encountered in this work. In general, it would be beneficial to develop a method to 

ascertain the buckling modes of each member unambiguously. Until such a method is created, the buckling 

load attributable to specific members and directions, from a linear buckling analysis, is prone to human error. 

This was attempted by developing a new method, to calculate the buckling loads of individual members. It 

accomplished to calculate the buckling loads for a continuous column but was not further developed due to 

time restrictions. This new method is presented in APPENDIX C. 

In regard to the buckling length factor investigation, the results from the truss girder used were split into 

restrained tension chord and unrestrained tension chord. The results for the unrestrained tension chord were 

compared to the results from literature (Boel, 2010), whilst the results for the restrained tension chord were 
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compared with the unrestrained. From the comparison with Boel’s results it was concluded that the results 

from the shell element model (hybrid model) match the results he produced with his approach. This validates 

further the approach he developed, with which the stiffness of the connections is accounted for with rotational 

springs in a beam element model. 

What was further observed was that for the unrestrained tension chord the buckling lengths factors for out of 

plane buckling were above the prescribed buckling length factor of the Eurocode of 0.75. This it to be expected 

as the unrestrained structure includes sway effects. For the restrained tension chord all values were around or 

below the prescribe buckling length factor. This indicates that the provided buckling length factor of the 

Eurocode refers to the buckling lengths of individual members and that global effects need to be considered 

separately. The last remark regarding the buckling length factor of the Eurocode is that of the in plane buckling 

of the braces, there was as singular value above 0.75. This may indicate that Eurocode may need to revise the 

provided buckling lengths to 0.8 as are given by the Japanese structural steel codes (Standard Specifications 

for Steel and Composite Structures, 2009).  

During this investigation a new approach was proposed for calculating the buckling length factors of trusses. 

The approach relies on using the stiffness of the members and the connections, as opposed to only relying on 

the brace width ratio β and chord thickness ratio γ, as proposed by Boel. This approach may be promising as 

the thickness of the braces can be more immediately be accounted for and would also be applicable to any kind 

of cross sections, not only square hollow ones that were used in this investigation. The development and 

investigation regarding this are presented in APPENDIX D. 

Lastly, regarding the general behaviour of the buckling length factor depending on the brace width ratio β. The 

buckling length factor of chords plateau for smaller values of β and decrease by increasing the β. This is 

because the smaller the β is the less stiff the braces are, and the smaller the stiffness the connections have. This 

means that the chords are primarily supported by the adjacent chord members. With the increase of β, the 

braces become capable of providing larger amounts of restraint for the chords, which decrease the buckling 

length factor. For the buckling of the braces, with an increasing β there is an increase of the buckling lengths 

factors. This is because with the increase of β the stiffness of the braces increases. It follows that they then 

require larger amounts of rotational restraints in absolute numbers to “feel” the same restraint as the smaller 

cross sections. 

 



 

BUCKLING OF TRUSSES WITH ECCENTRIC JOINTS 

4 INVESTIGATION OF ECCENTRIC JOINTS 

4.1 Introduction 
In this section the investigation of the buckling behaviour of trusses with eccentric joint was performed. When 

it comes to eccentric joints, one additional characteristic is required to be defined. This is the amount of 

eccentricity introduced compared to a centric joint. Depending on the displacement a percentage eccentricity 

or an absolute value can be defined. In this investigation introducing the maximum feasible eccentricity is of 

interest. This also provides more information on the differences between centric and eccentric joints as it is the 

extreme between the two cases.  

As in the case of centric joints, some geometries cannot be reasonably defined with mid-surface modelling. 

Such is the case of when a maximum eccentricity is introduced for a brace that has a thinner thickness than the 

chord (Figure 84). From the figure it is obvious that trying to model the specific configuration by the mid-

surface definition, would prove quite difficult. For this reason, in all joints, the braces were put at the edge of 

the chord such that the brace’s side wall was in line with the chords side wall (Figure 85). 

 
Figure 84. Actual geometry vs theoretical geometry of model using mid-surface modelling for the case of brace having thinner walls 

than the chord. 

Additionally, to describe the brace width ratio, a new factor would be needed, as the β factor has a very specific 

meaning and should be used for centric joints. For simplicity reasons the βe factor will simply be referred to as 

β factor. In all graphs, when comparisons between centric and eccentric joints is performed, simply β is going 

to be used to describe both centric and eccentric brace width ratio. 

4.2 Truss models 
As with the centric joint investigation, a hybrid model was used to perform the analysis. The joints were formed 

using shell elements and the rest of the truss was done using beam elements. 
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In the case of the centric joints the symmetry in the trusses plane provided the simplification that the lateral 

supports did not matter which side they were placed on. In the case of eccentric joints this symmetry does not 

exist. In this case, the positioning may actually affect the results, so it was decided to place the supports on a 

specific side. For all the investigations, the supports were placed on the opposite side in which the eccentricity 

was introduced (Figure 85). Additionally, to investigate the effect the support placements have on the buckling, 

two additional positions were investigated, by changing the height placement of the supports. 

  

(a) (b) 

Figure 85. Lateral support positions for (a) centric joints and (b) eccentric joints 

In order to get additional data points to support the conclusions, both restrained and unrestrained tension chords 

were used in the investigations. Lastly, an additional meshing investigation was performed. The change in 

geometry gives additional requirements for the mesh refinement, especially in areas between the two braces’ 

meeting point and the chord edge. This investigation is presented in APPENDIX A. 

4.3 Approach 
As with the centric joint trusses, the eigenmodes were characterized depending on the member that has buckled 

(chord or brace) and the direction (in plane or out of plane). The calculation of the buckling load and the 

buckling length were done in same manner as the centric joint investigation. The system length definition was 

kept the same because in most cases the majority of the cross section lay on the chord face and not on the 

corner radius. If in some cases the brace cross section laid primarily on the corner radius a change of definition 

may be appropriate, but the differences in length were marginal so not worth addressing it. 

One point that is worth noting is the fact that the eccentric joint trusses give rise to couple behaviour between 

in plane and out of plane. Already, from the linear static analysis, it can be seen that the behaviour of the 

eccentric joint differs from the centric joint behaviour (Figure 86). 
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(a) (b) 

Figure 86. Displacements of linear static analysis of models with (b) centric and (c) eccentric joints. The displacements have been 

enlarged by a factor of 150. 

The same coupling is observed in the buckling behaviour. This means that for the in plane buckling modes, 

out of plane eigen-displacements were observed and vice versa. Nonetheless, in all configurations tested, the 

members continued to buckle predominantly in one or the other direction. This allowed for the classification 

of the buckling modes for in and out of plane depending on the predominate direction of buckling. Classifying 

the buckling modes in the same manner as the centric joints allows the comparison of the results with the 

previous results. The results and comparisons are presented in the next section. 

 

  
(a) (b) 

Figure 87. Example of coupled buckling. In plane buckling of the chord for (a) centric and (b) eccentric joint 
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4.4 Results 
As with the centric joint investigation, first the results for in plane are going to be presented, followed by the 

result for the out of plane buckling. Additionally, the results for the unrestrained tension chord are going to be 

presented, followed by the results for the restrained tension chord. 

4.4.1 Results for unrestrained tension chord 

From the first set of results a general decrease in the buckling length for the in-plane buckling can be observed 

(Figure 88). This would indicate that there is a better buckling behaviour in plane from the use of eccentric 

joints compared to centric joints. This effect appears to diminish with the increase of β. This makes sense as 

the closer to unity the β is, the eccentric joint approaches the geometry of a centric joint. In the extreme case 

of β=1 an eccentric joint cannot be defined anymore. The results also support that the cut-off limit of 0.75 

chosen was a reasonable assumption for the investigations performed. 

Table 28. Brace buckling factor for out of plane buckling 

  γ 

  15.9  10  6.25 

  Eccentric Centric Diff. 
 

Eccentric Centric Diff. 
 

Eccentric Centric Diff. 

 0.25 0.87 0.88 -1.4%  0.87 0.88 -0.4%  0.89 0.89 0.0% 

 0.40 0.80 0.85 -6.2%  0.86 0.86 -1.0%  0.89 0.90 -0.7% 

β 0.50 0.79 0.85 -7.1%  0.84 0.86 -1.9%  0.88 0.88 0.1% 

 0.60 0.79 0.82 -4.3%  0.82 0.84 -2.1%  0.86 0.86 -0.9% 

 0.75 0.71 0.73 -3.0%  0.74 0.75 -0.8%  0.75 0.77 -1.9% 

 
Figure 88. Chord buckling factor for in plane buckling Kch,in 
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Table 29. Brace buckling factor for out of plane buckling 

  γ 

  15.9  10  6.25 

  Eccentric Centric Diff. 
 

Eccentric Centric Diff. 
 

Eccentric Centric Diff. 

 0.25 0.51 0.59 -12.5%  0.51 0.53 -3.8%  0.50 0.51 -1.2% 

 0.40 0.54 0.68 -19.5%  0.53 0.57 -7.7%  0.51 0.52 -2.0% 

β 0.50 0.60 0.72 -16.6%  0.55 0.61 -8.6%  0.53 0.54 -2.5% 

 0.60 0.66 0.74 -11.5%  0.59 0.63 -6.7%  0.55 0.56 -1.6% 

 0.75 0.79 0.81 -2.3%  0.67 0.68 -1.3%  0.59 0.59 -0.3% 

 
Figure 89. Brace buckling factor for in plane buckling Kbr,in 

Additionally, the effect is much less pronounced for the thicker chords used. This indicates that the thickness 

of the chord affects the decrease in buckling length from centric to eccentric joints. 

This could be explained by attributing the improvement in behaviour to the increase of stiffness from the 

introduction of the eccentricity. In a centric joint, of β<0.85 (X.-L. Zhao et al., 2001), the forces are transferred 

primarily with the mechanism of the chord face in bending. From the introduction of the eccentricity, due to 

the brace being connected immediately with the chord wall, the transfer of forces can be done through the 

much stiffer mechanism of the chord wall. Since for thick chords, the mechanism of the chord face is already 

quite stiff, the increase in stiffness due to the introduction of the eccentricity is expected to be less. Due to this, 

the reduced improvement observed from thinner to thicker chords makes sense. 
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Table 30. Brace buckling factor for out of plane buckling 

  γ 

  15.9  10  6.25 

  Eccentric Centric Diff. 
 

Eccentric Centric Diff. 
 

Eccentric Centric Diff. 

 0.25 0.88 0.88 0.0%  0.88 0.88 0.0%  0.88 0.88 0.5% 

 0.40 0.85 0.85 0.1%  0.87 0.87 0.1%  0.93 0.93 0.6% 

β 0.50 0.86 0.86 0.0%  0.88 0.88 0.3%  0.93 0.92 1.2% 

 0.60 0.84 0.84 0.3%  0.88 0.87 0.8%  0.86 0.85 0.3% 

 0.75 0.79 0.78 0.5%  0.81 0.80 0.4%  0.83 0.83 0.3% 

 
Figure 90. Chord buckling factor for out of plane buckling Kch,out 

Table 31. Brace buckling factor for out of plane buckling 

  γ 

  15.9  10  6.25 

  Eccentric Centric Diff. 
 

Eccentric Centric Diff. 
 

Eccentric Centric Diff. 

 0.25 0.60 0.60 1.3%  0.58 0.58 0.8%  0.57 0.57 -0.7% 

 0.40 0.66 0.65 1.4%  0.62 0.61 0.5%  0.59 0.59 1.1% 

β 0.50 0.70 0.69 1.3%  0.65 0.64 1.5%  0.62 0.61 1.7% 

 0.60 0.74 0.74 0.4%  0.71 0.70 0.8%  0.65 0.64 1.6% 

 0.75 0.85 0.85 0.3%  0.82 0.82 0.4%  0.69 0.69 1.0% 
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Figure 91. Brace buckling factor for out of plane buckling Kbr,out 

From the results of the out of plane buckling the eccentric joints perform slightly worse than the centric. This 

would indicate a potential decrease in stiffness. From the literature study there is an example of calculated 

stiffness of an eccentric joint but has a stiffening plate. Thus, there cannot be a straight comparison between 

centric and eccentric with the results being extrapolated to this investigation. Additionally, there is not a 

conclusive method to calculate the out of plane stiffness of eccentric joints (Garifullin, Mela, et al., 2017).  

To check if decreased stiffness provides an adequate explanation, a simple T-joint model is used. Part of the 

connection is modelled and is simply supported at the chord ends. By applying an out of plane moment, the 

out of plane displacements are compared for a centric and two eccentric joints, with increasing eccentricity. 

The displacement for all the components except for the displacements due to the connection should remain the 

same. It can be seen from the results (Figure 92) that by increasing the eccentricity there is a progressive 

increase in the displacements. 

    
(a) (b) (c) (d) 

Figure 92. Out of plane displacements for T-joints loaded with an out of plane moment (a), with increasing levels of eccentricity 

from left to right. Joint (b) is centric whilst joint (d) an eccentric joint with the full eccentricity possible applied. 

4.4.2 Results for restrained tension chord 

As was done with the centric joints, to investigate the member buckling lengths for the out of plane buckling 

of braces, the tension chord is restrained. Additionally, the buckling length of the chord is presented as they 
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were slightly affected by the change in boundary conditions. The results for in plane are not presented as they 

were virtually the same. This means that the out of plane boundary conditions do significantly affect the 

buckling in plane, even though coupled behaviour is present. 

Table 32. Chord buckling factor for out of plane buckling 

  γ 

  15.9  10  6.25 

  Eccentric Centric Diff. 
 

Eccentric Centric Diff. 
 

Eccentric Centric Diff. 

 0.25 0.88 0.88 0.1%  0.88 0.88 0.1%  0.88 0.88 0.6% 

 0.40 0.85 0.85 0.1%  0.87 0.87 0.1%  0.93 0.92 0.6% 

β 0.50 0.85 0.85 0.1%  0.88 0.88 0.4%  0.92 0.91 1.2% 

 0.60 0.84 0.84 0.4%  0.87 0.87 0.6%  0.85 0.85 0.4% 

 0.75 0.78 0.78 0.6%  0.80 0.80 0.0%  0.83 0.82 0.1% 

 
Figure 93. Chord buckling factor for out of plane buckling Kch,out 

Table 33. Brace buckling factor for out of plane buckling 

  γ 

  15.9  10  6.25 

  Eccentric Centric Diff. 
 

Eccentric Centric Diff. 
 

Eccentric Centric Diff. 

 0.25 0.58 0.57 1.6%  0.55 0.54 0.7%  0.53 0.53 0.3% 

 0.40 0.64 0.63 1.6%  0.60 0.59 1.7%  0.57 0.56 1.6% 

β 0.50 0.69 0.68 1.3%  0.64 0.63 1.7%  0.60 0.59 1.5% 

 0.60 0.71 0.71 0.9%  0.67 0.66 1.4%  0.64 0.63 1.8% 

 0.75 0.76 0.75 0.8%  0.74 0.74 0.7%  0.68 0.67 0.9% 
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Figure 94. Brace buckling factor for out of plane buckling Kbr,out 

As was observed from the previous out of plane results (unrestrained tension chord), the buckling lengths 

appear slightly higher for the eccentric joints, indicating a worst buckling behaviour. As was mentioned before 

this is due to a slightly less stiff response by the connection. 

4.4.3 Results for different support positions 

The buckling lengths for the restrained tension chord are assumed to be the buckling lengths of the members. 

To confirm this assumption, it is necessary to investigate if the position of the lateral supports affect the 

calculated buckling lengths greatly. By confirming that the lateral support position plays an insignificant role 

in the value of the buckling load, it would unambiguously mean that the calculated buckling length does indeed 

correspond to the member’s buckling length. 

The investigation was done by changing the height position of the supports on the chord wall. To limit the 

investigation time, results for only one of the chord thicknesses was produced. In case a big difference was 

observed, additional chord cross sections would be used to investigate the changes that the chord thickness 

incurs on the effects. Additionally, only three different positions were investigated with the prospect of 

investigating additional configurations if the effects appeared major. 

For the preliminary investigation the middle chord, with the γ factor of 10, was used. The three positions 

chosen were taken as follows (Figure 95): 

• On the middle of the chord wall (middle), 

• by placing the supports as further away as possible (external) and  

• lastly, by placing the supports as close as possible (internal). 

From the results a few conclusions were drawn. Firstly, the changes in support position did not affect the 

buckling in plane at all. This makes sense as the lateral restraint should primarily affect the out of plane 

behaviour. However, due to the coupling effect observed in the modes there was potential for interaction 

between in plane and out of plane. Apparently, this was not the case, or it was so slight that it is outside the 

accuracy of the analysis results obtained. 
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Figure 95. Lateral constraint positions for the three alternatives investigated 

Another observation is that the results for the out of plane buckling are practically unaffected. The results differ 

slightly but the effects are so slight that they are not even visible in graphs. The effects are more pronounced 

for the brace out of plane buckling and it is presented for demonstration purposes (Figure 96). The rest of the 

results can be found in APPENDIX E. 

Table 34. Brace buckling factor for out of plane buckling 
  γ 
  10 
  External support Middle support Internal support 

β 

0.25 0.570 0.549 0.551 

0.40 0.631 0.597 0.598 

0.50 0.680 0.636 0.637 

0.60 0.706 0.670 0.672 

0.75 0.753 0.741 0.742 

 
Figure 96. Brace buckling factor for out of plane buckling Kbr,out 

4.5 Additional investigations 
From previous results it was observed that with an increase in the chord thickness, the observed decrease of 

buckling lengths (eccentric vs centric) was reduced. In order to investigate the rate at which the beneficial 

effects of eccentric joints diminish, two cross sections were additionally investigated. The profiles were chosen 
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so that the cross-sectional thickness was between the profiles already used, with γ=10 and γ=6.25. According 

to the EN 10210-2:2006 two profiles existed and so those were picked. As to have results to compare to, except 

for the eccentric joint trusses, the centric joint trusses were also created and used in the investigation. 

The results follow the trends observed in all previous results regarding the comparison between centric and 

eccentric. For this reason, only the graph of the brace in plane is going to presented below. The analytical 

results, as well as the results for the rest of the cases (chord/brace, in-plane/out of plane) can be found in 

APPENDIX E. In the graph presented, the data points for the thinnest chord used has been excluded in order 

for the graph to be clearer. 

 
Figure 97. Brace buckling factor for in plane buckling Kbr,in 

In order to visualise the results better and to be able to draw useful conclusions, the buckling lengths of the 

eccentric joints are normalized against the corresponding buckling length from the centric joint.  

From the results already presented it can be stated that in the case of in plane buckling (chord and brace) the 

eccentricity does not necessarily need to be modelled. As the effects of eccentricity have a positive effect on 

the buckling length it would be on the safe side to deal with the design in regard to buckling, as if it were 

centric. It is of interest to conclude if and when it would be beneficial to actually account for the eccentric joint 

and obtain the decreased buckling length expected due to the better behaviour. In this work the limit is chosen 

as 5%. It is assumed that if the normalized buckling length value for an eccentric joint is below 0.95, it would 

be beneficial to account for the eccentricity. 
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Figure 98. Normalized buckling factors of eccentric joints for in plane buckling of chords Kch,in,ecc/Kch,in,cen. 

 
Figure 99. Normalized buckling factors of eccentric joints for in plane buckling of braces Kbr,in,ecc/Kbr,in,cen. 

From Figure 98 it can be observed that the differences between eccentric joints and centric joints are not that 

big for the chord buckling in plane. This means that it would not be especially beneficial to go into the detail 

of accounting for the eccentricity, except for the thinnest chord used and medium range braces (β≈0.35-0.55). 

As it relates to buckling of the braces in plane, for chords that have γ higher than 8 it would appear to be 

beneficial to account for the eccentricity. As it relates to the β factor for the higher end of the range (above 

0.7) and the lower end of the range (below 0.3), it would appear that it would not be beneficial. Interestingly, 

for the case of γ=15.9 and β=0.4 the reduction in buckling length can reach around 20% for eccentric joints 

compared to centric. 
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Figure 100. Normalized buckling factors of eccentric joints for out of plane buckling of chords Kch,out,ecc/Kch,out,cen 

 
Figure 101. Normalized buckling factors of eccentric joints for out of plane buckling of braces Kbr,out,ecc/Kbr,out,cen. 

As it relates to the out of plane buckling, it was concluded that introduction of the eccentricity produces results 

slightly worse than the ones expected from centric joints. In this case, as the comparison between centric and 

eccentric is a matter of safety, a cut-off limit of 2% is adopted. This means that for normalized buckling length 

values of the eccentric joint truss of above 1.02, the eccentricity needs to be accounted for, otherwise the design 

may not be on the safe side. From the results presented above, it is evident that all the results are below the 

assumed limit of 2% set. This would indicate that the eccentricity can be ignored when it comes to calculating 

the buckling load of the truss. 

It is noted that for the case of the chords with γ=6.25, there is a relatively pronounced change in trend for the 

braces with β=0.5. This was investigated thoroughly and no specific issue was found in the results or the 

models (centric and eccentric). Even without this potential error, if the results followed the expected trend the 

difference would be marginal to the conclusions already made. 
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Figure 102. Beam element model of the truss used in this work. 

From the results up till now, it has been indicated that the difference between centric and eccentric for thick 

cords is small. It has been argued that this is due to thick chords providing significantly stiff connections and 

thus a substantial increase in stiffness from the introduction of eccentricity should not be expected. Since 

accounting for any flexibility requires additional work and calculations, it is of interest to investigate if the 

connections of thicker chords can be approximated as rigid. 

For this investigation beam element models were used. The geometry near the connections was modelled 

similarly to the one proposed by Boel (Figure 103). The only difference was that the connections between the 

braces and the rigid elements was taken as rigid. From a preliminary investigation, it was found that modelling 

the eccentricity by offsetting the node connecting the braces and rigid elements had marginal effects (0.01% 

difference). As such, the geometry of the centric joint truss was used for this investigation. 

  

(a) (b) 

Figure 103. Representation of K-joints using (a) shell elements and (b) beam elements, assuming a rigid connection. 

The results presented are the buckling lengths of the eccentric joint truss, normalized against the beam element 

model buckling lengths. As the out of plane buckling lengths are quite affected by the connection stiffness they 

are not presented here as the differences are quite large. The results are given only in table form as many values 

are close and a graph would be hard to read (Table 35 and Table 36). A colour scale is used to indicate 

configurations that may be safe to assume rigid connections between the braces and the chords. As a cut-off 

limit a 2-percentile difference is set. For values above 1.02 assuming rigid connections for the model is 

considered unsafe.  

Table 35. Normalized buckling lengths Kch,in,hybrid/Kch,in,beam 

    
β   

    

  
0.25 0.40 0.50 0.60 0.75  Colour scale 

 15.90 1.01 1.03 1.06 1.03 1.05     

 10.00 1.00 1.01 1.01 1.02 1.03  1.00 1.02 1.05 

γ 8.00 1.00 1.00 1.01 1.02 1.02     

 7.04 1.01 1.00 1.01 1.02 1.02     

 6.25 1.00 1.00 1.01 1.01 1.01     
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Table 36. Normalized buckling lengths Kbr,in,hybrid/Kbr,in,beam 

    β       

  0.25 0.40 0.50 0.60 0.75  Colour scale 

 15.90 1.03 1.06 1.12 1.16 1.04     
 10.00 1.01 1.03 1.05 1.05 1.03  1.00 1.02 1.05 

γ 8.00 1.01 1.02 1.04 1.04 1.03     

 7.04 1.01 1.02 1.03 1.04 1.03     

 6.25 1.00 1.01 1.02 1.03 1.03     

It can be seen that for the case of the chord buckling in plane for smaller braces and for all from the medium 

chord it is able to be approximated by a rigid connection. This is due to the fact that the braces do not 

significantly contribute to the chord’s restraint, as they are significantly less stiff than the chords. In the case 

of the brace buckling in plane the stiffness of the connections alters the buckling lengths substantially. This 

means that the stiffness of the connections needs to be accounted for, when calculating the buckling lengths of 

the structures. Otherwise, the buckling length will be severely and unsafely miscalculated. 

4.6 Conclusions 
In this chapter, an investigation into the buckling behaviour of trusses making use of eccentric joints was 

performed. From the investigations several conclusions can be drawn. 

Firstly, the implementation of eccentric joints has a positive effect for in plane buckling, compared to the use 

of centric joints. This is attributed to the stiffening effect that the chord wall provides, opposed to the chord 

face in bending mechanism primarily used by the centric joints for the force transfer. Depending on the brace 

and chord dimensions, the effects can be larger or smaller. In the cases of relatively thin chords (γ>8) and 

medium sized braces (0.3<β<0.7), it may be beneficial to account for eccentricity of the joints and the 

decreased buckling lengths. Accounting for the increase in stiffness a reduction of the buckling length of at 

least 5% can be realized. 

For the case of the out of plane buckling, a slight increase of the buckling lengths is observed compared to the 

centric joints. This indicates that the eccentricity affects the buckling behaviour negatively. This is attributed, 

to the change of stiffness in the connection. For the case of out of plane stiffness, it is a bit harder to describe 

a conclusive mechanism behind the decrease in stiffness, but sub-model analysis and argumentation indicate 

that this is the case. This slightly negative effect can be ignored as quantitatively gives a difference of less than 

2% in all cases investigated. In general, it is safe to treat the eccentric joints as the centric, regarding the 

buckling of the members.  

The trusses used for the investigation had lateral constraints introduced in their models. These were positioned 

on the chord side wall, at the mid-height of the cross section. What was additionally concluded was that 

changing the support position height wise, made a negligible difference. This indicates that when calculating 

the member buckling lengths, the actual implementation of the support is more important compared to the 

exact position. 

Lastly, by additionally investigating the assumption of rigid connection between the brace and the chords, it 

was concluded that in all cases the stiffness needs to be accounted for. Especially for the buckling of the braces, 

the effects of ignoring the connection flexibility are substantial. For this reason, modelling using rigid 

connections between members is not a safe assumption for performing a buckling investigation. 
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5 FORMULATING ROTATIONAL SPRINGS FOR 

ECCENTRIC JOINTS 

5.1 Introduction 
In the literature study an approach was presented which was first presented in a paper by Hornung and Saal, 

and further developed by Boel in his master thesis. In this approach the stiffness and effects of the connections 

of K-joints are captured by assigning a rotational stiffness. This rotational stiffness is then used to define 

rotational springs in a beam element model and captures the buckling behaviour of the truss. From the results 

presented in a previous chapter (chapter centric investigation), it was shown that the proposed approach does 

indeed capture the behaviour of more detailed models satisfactorily. In this chapter it is attempted to extend 

this approach to its use for eccentric joints. 

Before investigating in more detail the behaviour of eccentric joints, a few questions raised in the literature 

study will be addressed. Specifically, the use of three load cases as proposed by Boel. Each load case calculates 

a distinct stiffness value, which gives three different values for the same connection. Boel does not address 

this and simply performs a comparative study to decide with which one he will continue his investigation. This 

topic will be addressed before investigating further a spring formulation for eccentric joints 

5.2 In-plane Rotational stiffness 
In his work, Boel (2010) proposed that connections experience three different load cases (Figure 104). Each 

one provides a different stiffness value for the rotational spring approximating the connection. From his 

investigations, Boel concluded that the most appropriate stiffness value for in plane buckling was calculated 

from Load case 1 (LCin1). This in turn could be used as the stiffness value of the springs used in his beam 

element model. What was not elaborated was why three different Load cases existed and what exactly they 

represent. By assuming different ratios of moments applied on each brace, infinite different values of stiffness 

can be calculated between the maximum and the minimum values (Load case 2 and Load case 3 respectively). 

 
Figure 104. Three possible load cases that provide three different stiffness estimations, according to Boel (2010) 
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To study what these three load cases represent, the buckling loads between a shell element models and beam 

element models with rotational springs are going to be investigated. To simplify the investigation, the same 

models used to calculate the in-plane stiffness are going to be used. This means that the contribution of the 

chord member in restraining the brace is cancelled out by the line supports included on the chord wall (Figure 

55). As such, the beam element model that is going to be used for comparison will consist of a cantilevered 

member supported on a rotational spring (Figure 105). This way, the contribution of only the connections is 

accounted for and makes the comparison more straightforward. The rotational springs are calculated as 

presented in Section 3.2. 

  
(a) (b) 

Figure 105. Shell element model (a) and beam element model (b) used in the investigation of the rotational springs for the in-

plane direction 

The load cases that are going to be investigated regarding the buckling of the joint sub-models were selected 

as the actual load analogy to the moment load cases used in the stiffness calculations. Stiffnesses that are 

logically derived for various buckling cases experienced by a joint were chosen e.g. the lowest stiffness (Load 

case 3) to be used in the case of both braces are under compression and the highest stiffness (Load case 2) in 

the case of one brace in compression and the other in tension (Figure 106). The investigation includes the 

following cases: 

a. K-joint with one brace loaded in compression, 

b. K-joint with one brace loaded in compression and the second brace loaded in tension by an equal 

amount, 

c. K-joint with both braces loaded in compression and lastly, 

d. Y-joint with the brace loaded in compression 

For the investigation, the buckling loads of the four different cases were calculated for the shell element 

models. From the results, the in plane buckling load was used. Then this value was compared to the buckling 

load of a brace loaded in compression, modelled with beam elements. Its base is supported rotationally by a 

spring. The rotational stiffness of the springs was calculated using the corresponding load case as described 

earlier and are presented in Figure 106. For the geometry, no rounding of the corners was considered as it 

would not affect the conclusions and it would make the investigation easier. 
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a 

 
b 

 

 
c 

 
d 

Figure 106. Equivalent rotational springs that make intuitive sense for the comparison of the four different cases. From left to right; 

the model used to calculate the rotational stiffness, model used to calculate the buckling load of the shell element model and the 

model used to calculate the buckling load of the beam element model. Each sub-figure corresponds to the equivalent case, meaning 

that (a), (b), (c) and (d) correspond to the cases a, b, c and d. 

From a preliminary investigation, it was concluded that the stiffness calculated by Load case 2 significantly 

overestimated the predicted buckling load of the beam element model compared to the shell element model. 

From additional results, it was concluded that the stiffness of the connection for case b is better capture by 

Load case 1, which is also used for case a (Figure 107). For this reason, all the following results and 

comparisons for case b. are done by using the stiffness calculated by Load case 1. 

To ensure the validity of the conclusions, six different configurations were considered. For the chords two 

different chords were used. For the first chord (SHS 50/2.6) one brace width ratio (β=0.60) but three different 
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thicknesses (2.6,4 and 5 mm). For the second chord (SHS 120/5) three different brace width ratios were used 

(β=0.33,0.66 and 0.83), with only one thickness being considered per profile. The complete set of 

configurations used are presented in Table 37. 

 
Figure 107. Models used for the comparisons of case b, guided from preliminary results 

Table 37. Different configurations used in the investigation of the three load cases 

Configuration 

number 
Chord Brace 

1 SHS 50/2.6 SHS 40/2.6 

2 SHS 50/2.6 SHS 40/4 

3 SHS 50/2.6 SHS 40/5 

4 SHS 120/5 SHS 40/2.6 

5 SHS 120/5 SHS 80/6.3 

6 SHS 120/5 SHS 100/10 

In presenting the results, the beam element buckling loads are normalized against the buckling loads of the 

shell element models. From the results (Figure 108) it becomes evident that for cases a, c and d, the load cases 

assumed for the rotational stiffness calculation capture the behaviour well. The differences between the shell 

element model and beam element model’s buckling loads are marginal. For the case b, there is an observed 

and consistent difference. Specifically, the use of Load case 1 appears to underestimate slightly the stiffness 

that the shell element model experiences whilst buckling.  

These results can be explained by the effect the opposite brace has on the brace under compression. In case c, 

both braces are under compression. As both braces are under compression, they buckle simultaneously and 

provide a negative effect to the other’s buckling behaviour. This translates in a decrease in stiffness and is why 

the minimum stiffness can be used for the calculation (Load case 3). The same can be said for case b. The 

tension load has a beneficial effect and helps the brace under compression to resist buckling. This translates to 

an increase of the rotational stiffness experienced by the compressed brace. It would be expected for the results 

for case b to be close to the stiffness of Load case 2 (maximum), just like the results of case c are close to the 

stiffness of Load case 3 (minimum). This does not happen, as the stiffening effect of tension is much smaller 

than the effect compression has on the loss of stability. As such, case b tends to Load case 2, but the effect is 

minor. Lastly, for case a, the second brace has no effect on the buckling of the compressed brace, and as such 

Load case 1 can be used; similarly for case d. 

When investigating the buckling of the trusses in Chapter 3, most of the joints were under the load case 

described by case b. From the braces connected to the joint, one would be under compression and the other 

under tension. As was shown in this investigation, the stiffness of these joint can be approximated well by 

Load case 1. Boel also concluded that Load case 1 should be used for his approach and used this in his analysis. 

These results further support the use of Load case 1 for the stiffness calculation of K-joint trusses and explains 

why the results obtained by Boel and his beam element model matched well with the results of the hybrid 

model used in this work. 
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Figure 108. Comparison of results of shell element models and beam element models, for the in-plane direction. 

5.3 Out of plane rotational stiffness 
As with the in-plane stiffness calculations, Boel also defines three Load cases for the out of plane stiffness (see 

Section 3.2). The investigation in this section will be performed similarly to the one performed for the in-plane 

stiffness. The main change will be in the formulation of the beam element models. For the stiffness calculation 

of the out of plane spring, the shell element model used is not supported by a line support in the middle of the 

chord wall. As such, the shell element model behaviour includes the effects of the chord member. These effects 

will be included in the beam element model, by using the whole joint sub-models (Figure 109) not only the 

braces, as was done for the in-plane stiffness. Due to this, how the shell element joints are approximated by a 

beam element model is important. 

  
(a) (b) 

Figure 109. Shell element model (a) and beam element model (b) used in the investigation of the rotational springs for the out of 

plane direction 

In his thesis, Boel checked many different variants for this approximation (Figure 110). From his investigation 

he concluded that Variant 1 was the most suitable to capture the behaviour of the shell element model. The 

other variant that presented some promise was 3c. From some preliminary investigation perforemd, it was also 

concluded that Variant 1 provides the better approximation. Additionally, by considering a joint that has a 

small angle and/or large gap, it can be argued that the position where the forces are introduced to the chord 

make little sense. As such, for this investigation the same formulation as Boel’s Variant 1 is used. 
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Figure 110. Different variants tested by Boel (2010) for connection modelling using 1D elements and springs 

As with the in-plane investigation, cases a, b, c and d are going to be used. Case a is going to be compared to 

the beam element model with a spring stiffness calculated from Load case 1, whilst case d with Load case 0. 

In the case of out of plane stiffness Load cases, using Load case 2 gives the minimum stiffness whilst Load 

case 3 the maximum. As such, case c is going to be compared with Load case 2. From preliminary 

investigations, on the out of plane case b, the stiffness calculation does not appear to have a straightforward 

comparison. For this reason, it is compared with Load case 1, Load case 3 (maximum) and the average of the 

three Load cases. The last approximation was checked and adopted by Boel in his work. An overview of the 

corresponding cases and load cases that were used in the out of plane investigation are presented in Figure 111 

for cases a, c, and d and Figure 113 for case b. Since similar results to the previous investigation are expected, 

only four configurations (chord and brace combinations) are going to be used. These are taken from Table 37 

and are going to be configurations 1, 4, 5 and 6. 

As with the in-plane results, the beam element buckling loads are normalized against the buckling loads of the 

shell element models. Two different figures are presented. The first one (Figure 112) includes the results for 

cases a, c and d. In these cases, the differences between the shell element model and beam element models’ 

buckling loads are small. For all configurations tested, the error of approximation is below 2%. This indicates 

that the conclusions formed from the in-plane investigation, hold for the out of plane stiffness formulation as 

well. The slightly larger differences compared to the results obtained from the in-plane investigation can be 

attributed to the modelling of the whole joint and not just the brace, as was the case in the previous 

investigation. 

 
(a) 
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(b) 

 
(c) 

Figure 111. Shell element models (left) used to calculate the equivalent rotational spring for the beam element models (right). The 

beam element models are compared to the different cases defined with figures (a), (b), and (c) corresponding to cases a, c and d 

respectively. 

 
Figure 112. Comparison of results of shell element models and beam element models, for out of plane direction in cases a,b and d. 
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Figure 113. Different assumptions for the calculation of the equivalent rotational spring for case b. 

The second graph presented (Figure 114) includes the results obtained for the case b, in which one of the braces 

is loaded in compression and the other in tension. As was mentioned, three different comparisons are made. 

As is expected, when using Load case 1 to calculate the stiffness, the beam element model underestimates the 

stiffness experienced by the shell element model. Compared to the in-plane results, though, the difference is 

much larger. By using Load case 3, it can be observed that the beam element model overestimates the stiffness. 

Lastly, by taking the average of the three Load cases, the beam element model overestimates the stiffness again 

but not as much as for Load case 3. As expected, the stiffness for case b lies between Load case 1 and Load 

case 3, but the effect of the tension load is much larger compared to the in-plane direction. 

 
Figure 114. Comparison of results of shell element models and beam element models, for the out of plane direction in case b. 

To conclude, the initial intuition and analogy presented in Figure 111 appears to hold true for the cases a, c, 
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tension force tends to the Load case that gives the maximum stiffness. In the case of in plane buckling the 

effects are small and the stiffness can be approximated by Load case 1. For the out of plane buckling, the 

effects of the tension force are much larger and there is no clear approximation that produces close results. In 

his work, Boel used the average of the three Load cases as an approximation. However, this has been 

demonstrated to not provide representative results. Even though this is the case, from the investigation into the 

buckling lengths of trusses with centric joints, small differences existed between the hybrid models used and 

Boel’s results. This would indicate that taking the average of the three Load cases for the calculation of the out 

of plane stiffness may be adequate. This, though, could potentially be only for the specific cases investigated. 

For other cases, the difference may be larger and taking the average may produce larger than acceptable 

differences. For this reason, the use of Load case 1 would be recommended for the use on trusses. 

5.4 Formulation of eccentric springs 
It was shown from the investigation into the buckling behaviour of trusses with eccentric joints that the effects 

of the eccentricity may be ignored. On the other hand, it was demonstrated that accounting for the connection 

stiffness can be beneficial for the case of in plane buckling. In order to facilitate better design, an investigation 

is performed, in order to extend the approach described by Boel for eccentric joints. Additionally, it would 

provide insight in dealing with other kinds of eccentric connections, not only the ones for which the braces are 

welded on the chord face. 

5.4.1 Challenges 

The main issue to be dealt with is the calculation of the stiffness. Unlike the calculation of the centric joints, 

the eccentric joints’ behaviour is much more complicated. Owing to the complicated geometry and interface 

conditions between the brace and the chord, the eccentric joints appear to have a coupling of their in-plane and 

out of plane displacement (Figure 115). This is not the case for the centric joints as solely in plane loading 

gives rise to only in plane displacements, and similarly for the out of plane degrees of freedom. These 

differences in joint behaviour were also observed in the buckling behaviour of the trusses utilising the 

corresponding joint. This means that a simple spring, with stiffnesses defined in the same axis as the centric 

joints, may not adequately describe the behaviour of the joints.  

 
Figure 115. In-plane and out of plane displacements of a simply supported K-joint under in-plane moment load at one of its brace’s 

end. 

5.4.2 Different approaches 

Due to the coupling of in and out of plane displacements, the approach used up till now to calculate the stiffness 

may need modifications. For this reason, three different approaches are proposed, to calculate the stiffness of 

the eccentric joints. 

5.4.2.1 Approach 1 

The first approach proposed, is to use only the displacements developed in the corresponding plane of the 

applied moment. In the case of the in-plane stiffness, an in-plane moment is to be introduced and only the in-

plane displacements will be considered. With this approach, the in-plane displacements attributable to the 

connection are going to be calculated and used to calculate the stiffness. Any out of plane displacements are 

ignored and not accounted for.  



84  CHAPTER 5 

MASTER THESIS OF NTONALNT KORAKAS    TU DELFT 2022 

 
Figure 116. Calculating the in-plane stiffness by taking only the in-plane deformations and disregarding the out of plane 

deformations. 

5.4.2.2 Approach 2 

With the second approach, the introduction of a counter moment is proposed. This counter moment would be 

applied in the direction not under investigation. The aim of this moment would be to set the coupled 

displacements to zero (Figure 117). This would mean that for the in-plane stiffness, an out of plane moment 

would be introduced, in order for the out of plane displacements to be set to zero. Then, similarly to the first 

approach, the rotation of the spring can be calculated, by calculating the displacements attributable to the 

connection. 

 
Figure 117. Setting the out of plane displacements by introducing a counter moment, for the in-plane stiffness calculation. 

5.4.2.3 Approach 3 

In approach 3, it is proposed that the rotational spring is defined in rotated axis (Figure 118). In these rotated 

axes, it is assumed that no coupled displacements occur. By assuming rotated axes, the coupling of 

displacements can be attributed to the expression of the spring stiffness in the original axes. Due to the rotated 

axes, the spring would have components in both the degrees of freedom defined as in-plane and out of plane. 

This can be demonstrated by using an arbitrary direction and defining a diagonal stiffness matrix on it that 

would give no coupling (Figure 118 (b)). If the axes are X’ and Υ’, the assumed stiffness matrix would be 

given by Equation 16.. If the assumed axes are at angle θ to the global axes X and Y, then a rotation matrix 

can be defined as per Equation 17.. This rotation matrix can be used to transform the stiffness matrix of 

Equation 16. to the global axes, by pre-multiplying with the transpose of the rotation matrix and post-

multiplying with the rotational matrix (Equation 18.). It is obvious that the result of such manipulations is a 

non-diagonal stiffness matrix that would be able to account for the coupling of the in plane and out of plane 

direction. 
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(a) (b) 

Figure 118. Definition of rotated system of the equivalent rotational springs (b) to capture the coupled behaviour of the 

eccentric joints (a). 

𝛫𝑋
′𝛶′ = [

𝐾𝑋′𝛸′ 0
0 𝐾𝛶′𝛶′

] 16. 

𝑅𝜃 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] 17. 

𝛫𝛸𝛶 = 𝑅𝜃
𝑇𝛫𝑋

′𝛶′𝑅𝜃 ⇒𝛫
𝛸𝛶 = [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝐾𝑋′𝛸′ 0
0 𝐾𝛶′𝛶′

] [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] 18. 

5.4.3 Investigation 

As with the investigation performed for the centric joints, simplified K-joints are going to be used for the 

calculation of the stiffness and the buckling. By calculating specific rotational spring stiffnesses, they will be 

replaced in a beam element model and a buckling analysis will be performed. The results of the equivalent 

beam element model will be compared to the shell element model. The geometry of the beam element model 

will follow Boel’s guidelines, as was presented in the out of plane stiffness investigation in section 5.3. 

Additionally, an eccentricity will be introduced for the intersection point of the braces with the rigid elements. 

This point will be at the intersection point of the brace’s midline and the chord face (Figure 119). 

 
Figure 119. Eccentricity of interception point of brace’s beam elements with the rigid elements connecting to the chord. 

A slight change in the model used will also be introduced. This will be done for the case of the in-plane 

displacements. As opposed to the models used in all previous sections, in this investigation the chord will not 

be supported. As out of plane displacements are expected to arise for in-plane loading, it is unknown how these 

will interact with the whole joint behaviour. For this reason, line supports will not be introduced on the chord 
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wall (Figure 120). This helps with not over constraining the model and gives the most accurate results. From 

this assumption, it follows that the chord displacements due to bending need to be subtracted from the total 

displacements to calculate the displacements due to the connection. This is done by using Equation 19., with 

the definitions used in Section 3.2. This is then additionally subtracted from Equation 8. to give Equation 20., 

which is used in this investigation. 

 
Figure 120. Configuration used for the in-plane investigation of the equivalent spring for eccentric joints. 

𝑤𝑐ℎ𝑜𝑟𝑑,𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
𝑀(3𝑔2 + 𝐿𝑐ℎ

2 )

12𝐸𝐼𝑐ℎ𝐿𝑐ℎ
𝑐𝑜𝑠(𝛼) 𝐿𝑏𝑟 19. 

𝑤𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑤𝐾−𝑗𝑜𝑖𝑛𝑡,𝐹𝐸𝑀 −𝑤𝑏𝑟𝑎𝑐𝑒,𝐹𝐸𝑀 −𝑤𝑐ℎ𝑜𝑟𝑑,𝑏𝑒𝑛𝑑𝑖𝑛𝑔 20. 

In the case of approach 3, rotated axes are defined at an angle θ from the original in plane and out of plane 

direction. These will be named principal axes and have no coupling of displacements, meaning the rotational 

stiffness matrix defined is diagonal. From these, a transformation matrix is defined (Equation 17.). The 

longitudinal axis (brace’s midline) remains the same for both coordinate systems. Totating the system to the 

original coordinates (Equation 18.) the stiffness in the original coordinates is defined. The stiffness is given as 

a function of the two stiffnesses in the principal axes and the angle they are rotated by θ (Equation 18.). As the 

matrix is assumed symmetric, by calculating three quantities from the FE models the three unknowns can be 

calculated: two stiffnesses in the principal axes and the angle it is rotated by θ. To make the investigation 

easier, as in-plane and out of plane moments are going to be applied in each case and the degrees of freedom 

of the equivalent rotational springs will be both free, the compliance matrix will be used. By calculating each 

column of the compliance matrix by applying the load in each degree of freedom, the stiffness matrix can be 

found by calculating the inverse of the compliance matrix (Equation 21.). 

𝛫𝛸𝛶 = (𝐶𝑋𝑌)−1 21. 

5.4.4 Results 

The results of the investigation are going to be presented by normalizing the beam element results against the 

shell element results. This will give an indication of how well the different approaches approximate the 

rotational stiffness of the shell element model. 
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5.4.4.1 Approach 1 

 
Figure 121. Normalized results for the in-plane buckling of the beam element model, using Approach 1 for the stiffness calculation. 

 
Figure 122. Normalized results for the out of plane buckling of the beam element model, using Approach 1 for the stiffness 

calculation. 

The results obtained by the stiffness formulation according to approach 1 indicate that Approach 1 does not 

approximate the stiffness very well. The results appear to diverge from the shell element model. They also 

appear to diverge for larger values of β. This is linked to the fact that for larger braces, larger coupled 

displacements are observed. Additionally, no coupling was observed in the results of the beam element model, 

which was expected. The results appear to mean that the approach 1 overestimates the stiffness of the 

connection. Since the issue was one of overestimating stiffness, it could indicate that the displacements used 

for the stiffness calculated were underestimated. The total displacements were also taken and used as 

equivalent “in-plane” displacements (Equation 22.) but this approach did not give any substantial differences 

compared to the original assumptions. 

𝑢"𝑖𝑛−𝑝𝑙𝑎𝑛𝑒" = √𝑢𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
2 + 𝑢𝑜𝑢𝑡 𝑜𝑓 𝑝𝑙𝑎𝑛𝑒

2  22. 
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5.4.4.2 Approach 2 

Results from approach 2 appear to be worse. Due to the coupling, by implementing the counter moment, the 

displacements in the direction analysed decrease. Due to the calculations, this produces a stiffer rotational 

spring. Since the results from Approach 1 overestimate the connection stiffness, the results from Approach 2 

are even further away. Again, no coupling of displacements was observed for the beam element model. 

 
Figure 123. Normalized results for the in-plane buckling of the beam element model, using Approach 2 for the stiffness calculation. 

 
Figure 124. Normalized results for the out of plane buckling of the beam element model, using Approach 2 for the stiffness 

calculation. 

5.4.4.3 Approach 3 

As was mentioned in section 5.4.3, the stiffness matrix of the connection is assumed to be symmetric. From 

the results obtained a peculiarity emerged. The spring’s stiffness matrix behaves in a non-symmetric manner. 

The in-plane rotations attributable to out of plane moments are not equal to the out of plane rotations 

attributable to in plane moments. This means that the stiffness matrix arising from an eccentric joint has to be 

non-symmetric. To understand better how an eccentric joint may have a non-symmetric stiffness matrix, the 
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example of a T-joint is recruited. From this it becomes more evident how a non-symmetric stiffness matrix is 

needed to account for the complex behaviour of an eccentric joint. 

For the example, an eccentric T-joint simply supported is assumed. It is loaded firstly by an in-plane moment 

at the end of its brace and then from an out of plane moment. Assuming that the degrees of freedoms of the 

equivalent spring at the base of the brace are 1 and 2 for in-plane and out of plane respectively, the compliance 

matrix of the connection is defined by Equations 23. and 24.. In Figure 125 the behaviour of the eccentric T-

joint under in-plane moment is demonstrated. Using Equation 24. it follows that the compliance matrix takes 

the form of Equation 25., with the first column being populated by the respective values of deformation in the 

in and out of plane direction, and the second column yet to be determined. In Figure 126 the behaviour of the 

eccentric T-joint under out of plane moment is demonstrated. By populating the second column of Equation 

25., Equation 26. is created and the complete compliance matrix is formed 

𝐶12 = [
𝑐11 𝑐12
𝑐21 𝑐22

] 23. 

[
𝜑1
𝜑2
] = [

𝑐11 𝑐12
𝑐21 𝑐22

] [
𝑀1
𝑀2
] 24. 

    
(a) (b) (c) (d) 

Figure 125. Simply supported eccentric T-joint under in-plane moment (a). Except for the expected in-plane deformations (b), 

additional out of plane deformations are observed (c), compared to the equivalent centric joint (d). 

𝐶12 = [
𝑐11 ?
𝑐21 ?

] 25. 

   
(a) (b) (c) 

Figure 126. Simply supported eccentric T-joint under out of plane moment (a). Due to the symmetry conditions no in-plane 

deformations (b) accompany the out of plane deformations (c). 

𝐶12 = [
𝑐11 0
𝑐21 𝑐22

] 26. 
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From the produced compliance matrix, it becomes evident that from eccentric joints, non-symmetries may 

arise. Of course, this does not mean that the shell element model has a non-symmetric stiffness matrix. It 

merely means that the symmetric matrix which the shell element degrees of freedom generate cannot be 

simplified down to a formulation of 2 degrees of freedom with a symmetric matrix. In general, it would be 

theoretically possible to formulate a non-symmetric stiffness element, but from a practical standpoint it has 

little value. Due to this, the formulation of such an element is not investigated further. 

To be able to define the rotated axis, a simplification is assumed in order to investigate if Approach 3 is able 

to produce results close to the shell element results. This is done by taking the average of the formulated 

compliance matrix and its transpose (Equation 27.). By making this assumption it is possible to define a 

symmetric matrix and define principal axes for the equivalent rotational spring. 

𝐶𝛸𝛶 = 0.5[(𝐶𝛸𝛶)𝑇 + 𝐶𝛸𝛶] 27. 

By using Equation 27., Equation 21. can be used to calculate the stiffness matrix of the equivalent rotational 

spring. From there, by using Equation 18. the stiffness of the rotational spring in the principal axes can be 

calculated, as well as the angle of rotation from the original axes. Having this information, the rotational 

springs can be introduced in the beam element models and compare the results with shell element models. 

From the analysis it becomes evident that the springs in rotated axis provide a better approximation for the 

equivalent rotational springs, at least qualitatively. From the eigenmodes, it can be seen that coupled buckling 

does indeed occur and it closely matches the results from the shell element model (Figure 127). 

  
(a) (b) 

Figure 127. Buckling mode of eccentric joint using (a) shell elements and (b) beam 

elements with rotational springs formulated according to Approach 3. 

 Quantitatively, though, the results are not better than the other proposed approaches and do not match the shell 

element model. The results are plotted and compared with the ones obtained from Approach 1, as it gave the 

better results between the first two approaches (Figure 128,Figure 129). It can be observed that for the in plane 

buckling it provides worst outcomes compared to Approach 1, whilst for the out of plane it provides a better 

approximation. In any case, the results are quite off from expressing or approximating the results obtained 

from the shell element model. Due to the initial negative results and the complex behaviour encountered from 

the eccentric joints, no other simplified formulation was investigated. 
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Figure 128. Normalized results for the in-plane buckling of the beam element model, using Approach 3 and Approach 1 for the 

stiffness calculation. 

 
Figure 129 Normalized results for the out of plane buckling of the beam element model, using Approach 3 and Approach 1 for the 

stiffness calculation. 

5.5 Conclusions 
In this chapter, an investigation into the rotational stiffness of centric connections was performed. The stiffness 

calculation was related to the buckling load of members connected to K-joints and how the stiffness is affected 

depending on the loading conditions of the connected members. Additionally, an attempt to extend the 

calculation method to eccentric joints was done. From this, a better understanding of the rotational stiffness of 

connections on K-joints, as it relates to the buckling of members was gained. Additionally, insight to the 

general behaviour of the eccentric joints, as well as the details involved in calculating their stiffness was 

gathered. 

 From the investigations several conclusions were drawn. In the case of in-plane stiffness, it was concluded 

that using Load case 1 for its calculation gives the most accurate results. This is related to calculating the 

buckling loads of a truss that uses centric K-joints. As in trusses, one of the members connected to the K-joint 
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is expected to be under tension, and tension loading affect the stiffness only slightly, calculating the stiffness 

by using Load case 1 provides a good approximation. This is also the conclusion that was reached by Boel 

(Boel, 2010). 

In the case of out of plane buckling, Boel proposed the use of the average stiffness produced by the three Load 

cases. From the investigation into the buckling lengths of centric joint in section 5.3, it is demonstrated that 

the approximation is quite adequate for capturing the behaviour of shell element models. However, the results 

produced in this chapter would indicate that the stiffness of the connection is overestimated by this assumption. 

This would indicate that the effect of changing the stiffness slightly has a small effect on the buckling length. 

Through this work it was determined that Load case 1 should be used to calculate the out of plane stiffness. 

Even if the effect is slight, it would be advisable to keep the calculations on the safe side, as the effect may be 

not as slight for other cases which were not checked. 

Regarding the eccentric joints, the behaviour encountered was much more complex than the centric ones. This 

was due to the coupling of the in-plane and out of plane degrees of freedom. Due to that, three different 

approaches were proposed to calculate the rotational stiffness. The first approach involved the complete 

disregard of the coupled displacements, whilst for the second, the introduction of a counter moment to 

eliminate the coupled displacement was proposed. For the third approach, the introduction of a rotated system 

was proposed and defining the rotational stiffnesses in those axes. For all approaches proposed, the results 

produced are far from capturing the actual buckling response of the shell element model. The only one that 

gave some positive approximation was approach 3, due only to the coupled displacement it was able to capture. 

Lastly, the more interesting outcome of this investigation came when attempting to formulate approach 3. It 

was found that the connection behaved in a non-symmetric manner. This would mean that a non-symmetric 

stiffness element would have to be defined, to accurately describe the shell element model’s behaviour. Such 

a thing was considered unpractical for engineering practice, so its actual application was not investigated 

further. In order to obtain some results from Approach 3, a symmetric stiffness matrix was created by taking 

the average of the calculated non-symmetric matrix and its transpose. As was mentioned earlier, the results of 

this simplification did not give adequately good results. 
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6 DISCUSSIONS, CONCLUSIONS & 

RECOMMENDATIONS 

6.1 Discussion 
A few topics that may affect the validity and application of the results are going to be addressed in this section.  

As was seen through the investigations presented, in some cases it is difficult to attribute a certain eigenmode 

to a specific member. This makes the process of using eigenmodes in buckling verification prone to human 

error. From this, it follows that any results obtained from an eigenvalue analysis for which human judgement 

was used to categorize the modes could be erroneous. Preferably, a method would be used calculate the 

buckling load of members and per direction which would not involve human judgement. An attempt was made 

to develop such a method but was only successful to the point at which a continuous column buckling load 

could reliably be predicted. This is presented in APPENDIX C. 

In APPENDIX B there is also an investigation into the effects of the brace thickness on the stiffness of the 

connections. It showed that for the same chord and brace widths, thicker chords actually had a decreasing 

effect on the stiffness of the connection. This is not actually the expected result, and it is attributed to the use 

of mid-surface modelling. Although, mid-surface modelling doesn’t appear to capture the expected behaviour, 

the results and conclusion drawn from such models should be on the safe side since it should underestimate 

the connections stiffness. Because mid-surface modelling was assumed throughout this study, the conclusions 

should still be valid and applicable in practice. Having stated that, better results can be expected from using a 

different modelling process for the joints, such as using solid elements. By changing the modelling method, it 

would potentially allow for the inclusion of the welds in the analysis. This would make the investigation more 

realistic and provide additional insight into the actual behaviour of the joint. Especially in the case of eccentric 

joints, the welds may have more important effect since they would be adding to the non-symmetry of the joints. 

From investigating the position of the lateral supports which were introduced, it was seen that changing their 

position by height did not have any effect. The lateral supports were introduced to separate global effects from 

the buckling of the members, and the conclusion indicates that indeed the results obtained can be used as the 

buckling lengths for member buckling. Although the conclusions were also valid for buckling including global 

effects (sway buckling of the braces for unrestrained tension chord), care should be taken if they are to be 

extrapolated to more cases of global buckling. For this reason, limiting the scope primarily to member buckling 

lengths is suggested. 

Lastly, regarding the general behaviour of the buckling length factor as it relates to the stiffness of the brace 

and chord members a few observations are made. The stiffer the chords are compared to the braces; the lower 

the buckling length factors are for the braces and the higher they become for the chords and vice versa. In other 

words, making the braces stiffer leads to the buckling length of the chords to decrease and the buckling length 
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of the braces to increase. This effect is quite expected and has already been seen in the literature, so it is not 

included in the conclusions of this work. 

6.2 Conclusions 
In this section the conclusions drawn from the thesis are going to be summarized and presented. First the scope 

of use is going to be described and then the conclusions of the investigations persented. Lastly, design 

recommendations are going to be given. The conclusions are based on 60 hybrid (shell element-beam element) 

truss models and 15 beam element truss models. To aid with the investigations 16 additional shell element sub-

models of the K-joints were used. 

6.2.1 Scope of use 

As the conclusions of this study were produced for specific configurations, care must be taken with 

extrapolating the results to other cases. The main characteristics used throughout the investigations are listed 

below. To ensure that no serious miscalculation is made, when conclusions and results of this work are applied 

in practice, the problem in hand needs to match or approximate to the data below: 

• Eccentric K-joints used, with the braces welded on the chord face. The maximum allowable 

eccentricity introduced. 

• Trusses with identical upper and lower chords. Warren type trusses (K-joints) and with identical cross 

section for the brace. Trusses loaded on the nodes of the top chord. 

• Hot-rolled, square hollow sections, according to EN 10210-2:2006.  

• The compressive chord laterally supported at its nodes. Bottom chord may be supported or 

unsupported as both cases were checked. The whole truss is simply supported with additional forked 

supports at its ends.  

• The gap introduced needs to be close to the minimum permissible by the Eurocode 3. 

• Trusses with height to length ratio of around 1/10 and 5 spans. 

• The angle of the braces to be around 45°. 

In the case that the characteristics of the truss deviate significantly from the data above, similar methodology 

used in this work can be followed and conclusions drawn.  By creating hybrid models and following the 

approach described in sections 3.4 and 4.3, any number of cases can be additionally investigated. 

6.2.2 Investigation conclusions 

In this section, the main conclusions of this work are presented by answering the research questions posed in 

the introduction. 

What are the effects of modelling the corner radius of profiles to the connection stiffness of centric joints and 

are these substantial? 

• From the investigation into the centric joints a few conclusions were drawn. Specifically, the stiffness 

for the rounded cases of corner cross sections was found, in general, to be lower. However, in the 

thicker chords, the response becomes less severe and in some cases the effect was reversed, making 

the rounded cross sections’ connections stiffer.  

Does Eurocode 3 prescribed buckling lengths provide a safe estimate? And under what assumptions? 

• Comparing the buckling lengths of the centric join trusses to the Eurocode prescribed values it was 

seen that Eurocode buckling lengths were mostly conservative, although some were slightly higher. 

Due to this, Eurocode may need to slightly adjust the buckling lengths it gives, specifically for very 

thin chords and for larger braces. However, it is noted that in practice, due to the limitation of the 

scope (shell element models, no welds modelled), Eurocode is most likely safe to use. Additionally, it 

was also concluded that Eurocode prescribed buckling lengths are to be used only as buckling length 

of members, and not when global effects are included in the analysis. 

Does the buckling behaviour change qualitatively and is this change substantial? 

• For trusses with eccentric joints, coupling of their displacements in their eigenmodes is observed. This 

means that when vertical displacements are present, lateral displacements are also observed and vice 
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versa. Even though this is the case, the members still buckle predominantly in one or the other 

direction, making the categorization of the buckling modes into in-plane and out of plane possible. It 

should be pointed out, though, that this is a simplification used to aid the comparison of the results 

with centric joint trusses. Since verification methods are usually developed for the principal axis of 

the cross sections and in the case of eccentric joints the members buckling in a non-principal axis, it 

is not known how this behaviour affects the ultimate limit state of the members. 

Do trusses with eccentric joints present better or worse buckling behaviour compared to the corresponding 

trusses with centric joints? Does the conclusion change depending on the buckling direction (in-plane, out of 

plane)? What effect does the change of joint parameters (β,γ) have on the observed trends? 

• From the investigation into the eccentric joint trusses, a better behaviour for in plane buckling was 

observed. This is attributable to the stiffening effect that the chord wall has. Due to the eccentricity, 

the brace is placed closer to the chord wall, leading to the more immediate transfer of forces through 

that mechanism. For the out of plane buckling behaviour, slightly higher buckling lengths were 

observed. This again is attributable to the change in the stiffness of the connection. 

• In general, as is expected, the effects of the eccentric joints diminish with the increase of β. For the 

largest brace used in this work (β=0.75), the effects of the eccentric joints were already quite small for 

all configurations and directions (in-plane and out of plane), with a trend towards further reduction of 

any effect. Minimal effect is also observed for the smaller braces with low β values. This is attributed 

to the brace members which have very low stiffness. In the case of the buckling of the chords, the 

stiffness of the braces is insignificant compared to the chord’s members and have little effect on their 

buckling lengths. In the case of the buckling of the braces, any change in the stiffness of the connection 

makes little difference because the connections are already stiff enough to act as relatively rigid 

connections. The last point is also indicated by the buckling lengths of the braces for low β being close 

to 0.5 which would indicate a completely fixed boundary condition. 

• Eccentric joints are also more affected by high γ values (thinner chords). As has been explained, this 

is due to the connections already being quite stiff from the component “chord face in bending”. As 

such, the increase in stiffness from the chord wall due to the eccentricity makes little difference.  

• The values of β and γ that are affected the most by the introduction of the eccentricity are thinner 

chords and medium braces. 

• To conclude, for in-plane buckling, the values of β and γ that are affected the most by the introduction 

of the eccentricity are thinner chords (γ>8) and medium sized braces (0.3<β<0.7). For all these values, 

a reduction of the buckling lengths by at least 5% can be expected, with the maximum observed being 

nearly 20% for γ=15.9 and β=0.40. For out of plane buckling, the buckling lengths are hardly affected 

by the eccentricity, with all configurations checked giving a difference of below 2%. 

• Lastly, although a substantial increase in stiffness can be expected for the eccentric joints, assuming 

rigid connections instead of accounting for the connection’s flexibility produces quite unsafe results 

in many cases, especially for the buckling of the braces. 

Do simplified models (beam element models with rotational springs) adequately capture the behaviour of more 

complex models (shell element models)? 

• Lastly, from the results produced from the hybrid model with the centric joints it is evident that the 

approach developed by Boel appears to capture the behaviour of the more detailed models. This means 

that in practice, replacing the stiffness of the connections for centric joints with rotational springs and 

using beam elements is a viable approach in designing truss structures for buckling. 

What do the different stiffness values that can be calculated for the same connection represent? Which is the 

most appropriate stiffness value to be used for trusses with K-joints? 

• From the investigation into the rotational stiffness of the connections under buckling it was concluded 

that using Load case 1 for the in-plane stiffness calculation, as was concluded by Boel, is correct for 

the use in warren trusses. In the case of the out of plane stiffness calculation, Boel’s conclusion was 

that the average of the three load cases should be used. From the investigation into the centric joints, 

using this approximation would produce results close to the ones expected from using shell element 
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models for the joints. However, from a more detailed investigation it was concluded that the average 

of the three Load cases would overestimate the response. For this reason, Load case 1 is also proposed 

in these conclusions, in order to provide a safe estimate for any joint combination. 

• For the stiffness calculations of the connections, it is recommended that Load case 1 be used for both 

in-plane and out of plane. This practically disregards any positive effects that tensile forces on opposite 

braces have on the stiffness of the connections. 

Is it possible for this approach to be extended to eccentric joints? If so, what modifications are necessary for 

its application? 

• To finish, a much more complicated behaviour is observed from the eccentric joints compared to the 

one encountered by the centric joints. This is primarily due to the coupling of the in plane and out of 

plane behaviour, owing to the non-symmetric nature of the geometry. Additionally, it was discovered 

that eccentric joints require a non-symmetric stiffness element if their behaviour is to be captured. 

Even though this was the case, three different approaches were proposed in order to be able to define 

a rotational stiffness and incorporate it in the analysis with a spring. Unfortunately, none of the 

proposed approaches were able to produce a good enough approximation for joint behaviour. 

6.3 Recommendations for future research 
In this section various topics will be recommended for future research. These aim for a better understanding 

of trusses with eccentric joints to aid with their application in engineering practice. 

As was already mentioned in the discussion section (Section 6.1), more accurate results can be obtained from 

better modelling approximations of the joints. It is recommended for future investigations that 3D solid 

elements be used for a more realistic representation of the joints. Additionally, it would be beneficial if the 

effects of welds were included. More importantly, more work is needed in the out of plane stiffness 

formulation, to provide more insight about the mechanisms that affect its behaviour.  

The investigation of different amounts of eccentricity would also be interesting. By decreasing the amount of 

eccentricity introduced, the conclusions already produced for the eccentric joints of this study may potentially 

change. There is also the possibility of introducing eccentricities beyond the range for which the braces are 

welded on the chord face. This would give rise to different types of eccentric joints and would provide 

additional insight into their use and design. 

Concerning the joints, another important aspect is predicting their ultimate limit state (ULS) resistance. Due 

to the eccentricity, the behaviour of the eccentric joints in ULS is expected to be quite different from the centric 

ones. Special attention would be needed for the behaviour of the interception point of the corner of the chord 

and the brace. It would be very important to investigate the effects of welds on the eccentric joint because they 

may not be the same as the effects on centric joints. 

Also mentioned in the discussion sections, is the problem with attributing the correct eigenmode and 

eigenvalue to the buckled member. It would be beneficial for a method to be created which could be used to 

find the buckling loads of members, without being prone to human errors. The method developed in 

APPENDIX C may provide a starting point for such an investigation. 

Another topic out of the research scope was the effect of non-linearities of the connection stiffness. Using the 

linear buckling load in design, assumes and uses the linear and initial stiffness of the structure. However, it is 

also known that in the actual connection response, non-linear behaviour is expected (not due to yielding). One 

such example is the decrease or increase of the connection stiffness when the chord is under compression or 

tension respectively. Because the critical buckling load does not account for the change in the boundary 

conditions (non-linearity of stiffness), differences between the load predicted in the ultimate limit state by the 

critical buckling load and the actual behaviour are expected. Another topic related to the ultimate limit state 

(ULS) of the members with eccentric joint is the coupled behaviour encountered. As was mentioned in the 

conclusions section (section 6.2.2), it is unknown what effects this coupling has on the ULS of the members, 

making it a topic that requires further research. 

Lastly, an important topic to be addressed is the effects that eccentric connections have on the global buckling 

behaviour. As global effects were outside the scope of research, global buckling of the structure was not 
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investigated thoroughly. Nonetheless, due to the structure used in the investigation, which was taken from 

prior research, some global effects were found. Specifically, the sway buckling mode of the braces was 

encountered. Since these differences may not immediately be attributable to the connection stiffness, no 

conclusive remark can be made regarding the effects of the eccentric joints on global modes. Further research 

of the interaction between different global modes of buckling and eccentric joints is needed. 
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APPENDIX A MESH INVESTIGATION 

A.1 Centric joints 
Before calculating the stiffness of the connections in section 3.2, it is important to define and use a suitable 

mesh density of elements. In this investigation an element size will be determined, with which the results of 

the models used are expected to converge to an accurate value. To do this, similar models as the ones used in 

the main investigation are going to be used. This means that simply supported K-joints are going to be used of 

which the chord wall is supported against vertical displacements, at the mid-height of the chord. The models 

were loaded by an axial load at the end of the braces (Figure 130). 

 
Figure 130. Model used for the mesh density investigation. 

The cross sections used will not account for the rounding of the corners. The convergence criteria will be the 

buckling load of a brace, for the previously described model. By making the mesh denser convergence to a 

specific value of buckling load is expected and a suitable element size to be determined. The element size will 

be defined as fraction of the chord thickness, as chord face in bending is expected to affect the stiffness of the 

connections, and thus the convergence, the most. The application of the mesh densifying is applied around the 

intersection of the brace with the chord, at the connection (Figure 131). 

For the investigation two different chords were used: SHS 50/2.6 and SHS 200/5. For the first chord two 

different braces were checked: SHS 40/2.6 and SHS 40/5. For the second chord four different braces were 

used: SHS 40/2.6, SHS 80/4, SHS 80/8 and SHS 160/5. The profiles were chosen such that a variety of β 

values and thicknesses were checked. Various element sizes were checked, with rations of shell element size 

over chord thickness ranging from 2.0 down to 0.5. The results are presented by plotting the relative error of 

each fraction used compared to the densest mesh used. This means that for Element length/Chord thickness 
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ratios of 0.5 the relative error in results is going to be zero. The relative error is calculated by Equation 28. and 

is used for the results of this investigation. 

𝐸𝑟𝑟𝑜𝑟 =
𝑁𝑐𝑟,𝑑𝑒𝑛𝑠𝑒𝑠𝑡 −𝑁𝑐𝑟,𝑖

𝑁𝑐𝑟,𝑑𝑒𝑛𝑠𝑒𝑠𝑡
% 28. 

 
Figure 131. Detail from the K-joint models used in the investigation. The yellow points around the connection indicate the positions 

where the density of the mesh is increased. 

A.1.1 Chord of SHS 50-2.6 

The results of the analysis are presented in Figure 132. For ratios of 1.0 the results appear to converge 

adequately. Also, more importantly, it appears that from ratios of 2.0 to 1.5 there is no improvement in the 

results. This is due to the number of elements that are generated from the meshing, between the side of the 

brace and the chord corner (Figure 133). The error can be minimized if at least 2 elements between chord 

corner and brace side are generated. 

 
Figure 132. Results compared to the finest mesh used for braces connected to SHS 50/2.6 chords 
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(a) (b) 

Figure 133. Example of different meshing on connection. (a) Example with 1 element between chord wall and brace’s side 

and (b) at least 2 elements between chord wall and brace’s side 

A.1.2 Chord of SHS 200-5 

To generate another pool of results a cross section of SHS 200-5 was used for the chord. From the results 

(Figure 134) it can be observed that using a ratio of 1.0 is adequate for the investigation that needs to be done. 

 
Figure 134. Results compared to the finest mesh used for braces connected to SHS 200/5 chords 

Lastly, as the chord is supported along its length, the conditions far from the connections is not expected to 

affect the behaviour much. As such a reasonable element size is chosen. From an investigation performed, it 

was determined that at least 5 elements are needed to model each side of the chord wall (Figure 135). To 

conclude, a length to thickness ratio of 1.0 is adequate and at least two elements should be generated between 

the brace side and the chord’s corner to ensure reliable results. The mentioned were used for the investigations 

into the stiffness of the connections of section 3.2. 
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Figure 135. Chord that is modelled using at least 5 elements per chord wall. 

A.2 Mesh investigation Eccentric joints 
As was mentioned in the main text, due to the additional geometry requirements of the eccentric joints, to get 

accurate results, but also limit the computational time, an additional mesh investigation is performed. The main 

aspects that are of interest is the stiffness of the connection and the behaviour in a linear buckling analysis. As 

such, a simple model with only the joint is investigated. The models used are similar to the ones used in the 

previous investigation (see section A.2) with some minor differences. Firstly, the chord wall is not supported 

along its length and additionally the loading introduced on the braces is tensile on one brace and compressive 

on the other (Figure 136). 

 
Figure 136. Model used for the mesh density investigation. 

From the models used, a linear buckling analysis is performed, and the load factors of the first two eigenmodes 

are used to gauge the convergence of results. The thinnest and thickest chords are used in this investigation 

(SHS 200/6.3 and SHS 200/16 respectively), as well as the smallest and largest braces (SHS 50/4 and SHS 

150/8 respectively). By producing an adequate mesh for the extreme cases used, the guidelines would be 

adequate for the rest of the combinations used. 

Each surface was meshed with a preferred element size given as a ratio of its thickness. This means that the 

surfaces comprising the braces and chords, were assigned an element target length a factor of the corresponding 

surface. These ratios were 2, 1.5, 1, 0.75 and 0.5. Additionally, for the chord SHS 200/16, due to its large 

thickness, an additional refinement was used with which only the chord surfaces used a ratio of 0.25, whilst 

the braces remained at an element ratio of 0.5. This is named “0.5t+”. 

As was done in the previous investigation (see section A.2), to aid comparison, the results are normalized 

against the densest mesh used, according to Equation 29.. The results are then plotted against the No. of 

elements used in each model, to indicate the computational time. 
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𝑁𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑁𝑐𝑟,𝑖

𝑁𝑐𝑟,𝑑𝑒𝑛𝑠𝑒𝑠𝑡
 29. 

 
Figure 137. Normalized buckling loads for SHS 200/6.3 chord and SHS 50/4 braces 

 
Figure 138. Normalized buckling loads for SHS 200/6.3 chord and SHS 150/8 braces 

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

0 50000 100000 150000 200000

N
o

rm
al

iz
e

d
 b

u
ck

lin
g 

lo
ad

No. Elements

Normalized buckling loads for SHS 200/6.3 chord and SHS 
50/4 braces

1st Eigenmode

2nd Eigenmode

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

0 50000 100000 150000 200000 250000

N
o

rm
al

iz
e

d
 b

u
ck

lin
g 

lo
ad

No. Elements

Normalized buckling loads for SHS 200/6.3 chord and SHS 
150/8 braces

1st Eigenmode

2nd Eigenmode



108  APPENDIX A 

MASTER THESIS OF NTONALNT KORAKAS    TU DELFT 2022 

 
Figure 139. Normalized buckling loads for SHS 200/16 chord and SHS 50/6.3 braces 

 
Figure 140. Normalized buckling loads for SHS 200/16 chord and SHS 150/8 braces 

The results can be seen in Figure 137, Figure 138, Figure 139, and Figure 140. and two observations can be 

made. Firstly, the results do not appear to be very sensitive to the mesh density. This means a quite coarse 

mesh may be utilized, but this effect may be due to the next observation. In many cases instead of the 

normalized buckling load appear to have reversing of its trend, by decreasing and then increasing in value, 

with the refinement of the mesh it increases. Also, in the cases with the braces being SHS 50/4, the values drop 

below 1.0, which is counter intuitive as by refining the mesh an increase in flexibility would be expected by 

the model. These results can be explained by accounting for the cross-sectional area modelled for the 

corresponding meshing. For coarser meshes the cross-sectional area modelled may be substantially smaller 

than the one created by a finer mesh. This can have the result that coarser meshing can produce lower buckling 

loads than a refined one (Figure 68). This effect was also encountered in section 3.3 when comparing shell 

element models and beam element models. 

To represent reality more accurately, but also limit the computational time, a more specific discretization is 

proposed (Figure 141 (d)). More specifically, for all the chords, far from the connection a target length of 16 

mm was prescribed, while near the connection 8 mm. In the immediate proximity to the connection a target 
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length equal to the thickness of the brace was prescribed. For all the braces, for the area near the connection a 

target length equal to the brace’s thickness was chosen, whilst for far from the connections a target length of 

two times the brace’s thickness was used. 

  
(a) (b) 

  
(c) (d) 

Figure 141. Details of the eccentric K-joints models used for different target lengths for the elements used. The chord-brace 

combination presented is SHS 200/16-SHS 50/4. The prescribed target lengths are (a) 1.5t, (b) 1t and (c) 0.5+t, whilst in (d) the 

proposed final meshing is visualized.  

To conclude, the proposed meshing is compared to the densest mesh used in each case. The results are 

presented in Table 38. From the comparison with the densest meshes used, the differences appear to be small, 

and the proposed mesh is suitable for use in the investigations performed in Chapters 3 and 4. 
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Table 38. Buckling loads of the eccentric K-joint models for the densest and the proposed meshing used. 

  1st Eigenvalue  2nd Eigenvalue 

Chord Brace 
Densest 

mesh 
Proposed 
meshing 

Diff.  Densest 
mesh 

Proposed 
meshing 

Diff. 

200-6.3 
50-4 292.7 291.6 -0.4%  309.1 307.5 -0.5% 

150-8 3384.7 3382.5 -0.1%  3941.1 3950.8 0.2% 
 

        

200-16 
50-4 100.8 101.3 0.5%  168.5 168.3 -0.1% 

150-8 1303.0 1312.1 0.7%  1417.7 1448.5 2.2% 
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APPENDIX B EFFECT OF BRACE THICKNESS ON 

STIFFNESS 

In the literature study performed, in all cases examined, it has been assumed that thickness of the brace has 

little or no effect. This is counterintuitive, as the thickness would be expected to play a role, especially in the 

way that the brace’s cross section distorts on the chord’s face (Figure 142). The brace’s thickness should be 

expected to play a stiffening effect on the connection’s stiffness. From this observation, it would be logical to 

conclude that thicker braces have also higher stiffness. When using mid-surface modelling this is not 

something that is observed. By using the method described in section 3.2 to calculate the stiffness for a K-joint 

comprised of chord SHS 50/2.6 and braces with a width of 40mm, the stiffness against the thickness of the 

braces can be plotted. It can be observed in Figure 143 that for increasing thickness the calculated stiffness 

decreases. 

  
(a) (b) 

Figure 142. Chord face deformations for (a) a normal thickness brace and (b) a very thick brace 

This can be explained by the fact that, by using mid-surface modelling and changing the thickness of the brace, 

the actual modelled geometry changes. As such the modelled gap, but also the β parameter changes and 

specifically increase and decrease respectively for an increase in thickness (Figure 144). It is noted that the 

effects of this is primarily due to the change of β, as the gap has a relatively small impact on the stiffness 

compared to the effect of β, especially for large β values which is used in this case (β=0.80)(Figure 145, Figure 

146).  
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Figure 143. Stiffness of connection against the thickness of the brace for chord SHS 50/2.6 and brace 40 

 
Figure 144. Relevant distances that change when modelling by changing the thickness of the brace, while using mid-surface 

modelling 

 
Figure 145. Stiffnesses of connections depending on their β factors (Boel, 2010) 
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Figure 146. Stiffnesses of connections against the connection’s gap (Boel, 2010) 

To investigate further, the stiffness of connections having the same geometry (meaning modelled geometric 

dimensions) but changing the thickness of the brace was calculated. Chords of SHS 50/2.6 and SHS 120/5 

were used. For the geometry of the brace the mid-surface of the brace SHS 40/5 was used. It can be observed 

that for both configurations the stiffness increases with the increase of the brace’s thickness (Figure 147), 

something that is expected. 

 
Figure 147. Stiffness of connection for SHS 40 braces. Geometry given by SHS 40/5 mid surface 

To get a more realistic prediction of the connection’s stiffness, a single sided joint was modelled using 3D 

elements. The configuration consisted of a chord of SHS 50/2.6 and braces of SHS 40-2.6/4/5. Initially the 

mesh size of the model was investigated to make sure that the results are going to be adequately accurate. The 

mesh refinement zones were placed all around the connection on the top and bottom of the chord face, as well 

as around area of interest (Figure 148). Since the results did not change by more than 2% from going from 0.7 

mm to 0.35 mm (Figure 149) and to save substantial computational time, an element size of 0.7 was chosen. 
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Figure 148. Example of mesh refinement areas of 3D solid element modelling of connections. Areas of refinement are defined in all 

lines in the immediate vicinity of the connection. 

 
Figure 149. Stiffness for sequential refinement of the mesh density and step error. The step error is calculated as the relative 

difference between sequential refinements. 

From the results (Figure 150) it can be observed that with the increase of brace thickness there is an increase 

in stiffness of the connection for the 3D element model. Also, comparing with the results obtained by the 

previous analysis, the results of the 2D elements models with changing only the brace thickness follow a 

similar trend (Figure 150).  
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Figure 150. Stiffness against brace thickness for different modelling technique. The graphs are for a chord SHS 50/2.6 and braces 

with width 40 mm. 

It can be concluded that modelling connections by using their mid-surface geometry can give some issues with 

accurately determining the stiffness of the connections. First off, the stiffness decreases instead of increasing 

with the increase of brace thickness. Secondly, the geometry generation is quite more complicated, and each 

paring of chord and brace cross sections would require the generation of different model. It should also be 

noted, as Boel mentions in his work, that some geometries might be non sensical to model as they would not 

capture reality, such as the case of having small gaps and large chord thicknesses (Figure 151). 

 
Figure 151. Potential issues with modelling the connection using the mid-surface geometry of the cross sections (Boel, 2010). 

To address these issues, a new way of modelling the connection, to calculate the stiffness of it, is proposed. In 

this new proposal, the geometry of the cross sections is defined by the external perimeter of the cross sections. 

On these surfaces the 2D element mesh is generated but is offset by the half of the thickness inwardly (Figure 

153, Figure 152 (c)). This has the effect of overestimating the cross section of the members, but it is assumed 

that will capture the connection’s behaviour more accurately. To deal with this an additional modelling method 

was also checked, in which the internal and external perimeter of the brace were used, and the surfaces were 

defined with half the thickness of the brace and offset by a quarter of the thickness to the relevant side (Figure 

152 (d)). The surface offset is easily introduced in the finite element program used, RFEM 5 (Figure 154). For 

the investigations chords SHS 50/2.6 and SHS 120/10 along with braces with widths of 40 mm and 100 mm 

respectively. 
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(a) (b) (c) (d) 

Figure 152. Intersection points of braces with chords for (a) 3D elements, (b) mid-surface modelling, (c) offset modelling and (d) 

double offset modelling. 

 
Figure 153. Offsetting of brace wall in shell element model.  
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Figure 154. Definition of offset surface in the RFEM 5 environment. 

 
Figure 155. Stiffness connection of SHS 50/2.6 chord and SHS 40 brace for various modelling techniques  

 
Figure 156. Stiffness connection of SHS 120/10 chord and SHS 100 brace for various modelling techniques  

It can be seen from the results (Figure 155,Figure 156) the new proposed offset modelling technique captures 

the stiffness trend of the 3D element model much better, although it still is quite less stiff. Additionally, the 
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connections modelled with double offset surfaces, also captures the trend of the stiffness from the 3D elements. 

For this investigation the chord was modelled with its external perimeter and offset inwardly. For practical 

reasons, though, the double offset technique cannot be applied to the chord, as the two cross surfaces defining 

the chord face will not be connected and will present problems with force introduction in the whole chord.  

Form this is concluded that offset modelling may be the better way of modelling connections, at least for the 

calculation of their stiffness. The problem arises from the increased cross-sectional area they present due to 

the way they are modelled. Because of this, the buckling load calculated by using this technique will be an 

overestimation of the actual value. From results done on fixed cantilevered braces of length 1 m and with cross 

sections of 40-2.6/4/5, the error reaches 25% (Table 39). The technique doubles the area in the corners of the 

cross sections and thus the effect is greater the thicker the cross section used. 

Table 39. Load factors of elastic buckling for various cross sections 

 

SHS 40-2.6 

 

SHS 40-4 

 

SHS 40-5 

Offset model 5.276  7.697  9.262 

Mid surface model 4.693  6.554  7.411 

Difference 12.4%  17.4%  25.0% 
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APPENDIX C NEW METHOD FOR BUCKLING LOAD 

CALCULATION OF CONTINUOUS 

COLUMNS 

C.1 Stiffness of members loaded with an axial load 
The first step for developing the new method is to account for the loss of stiffness a member experiences under 

compressive loading. To calculate this, two similar members are assumed (Figure 157). Both have a rotational 

spring of stiffness Κspring on one end and are loaded by an equal moment M1 in the other. Additionally, member 

2 is loaded by an axially compressive force Ned. 

 

Figure 157. Displacement field of members subjected to bending and bending/axial load 

By accounting for the spring’s stiffness, the stiffness of member 1 at its loaded end is given by Equation 30.. 

For member 2, as the member is loaded by a compressive load, its displacement field will increase according 

to the 2nd order theory and will be described by the Equation 31.. By accounting for this increase in the 

displacement field, a relative decrease of its stiffness compared to member 1 is expected. This given by 

Equation 32. and is expressed as function of the stiffness of member 1. This can be more generally described 

as the equivalent stiffness of the axially loaded member as a function of the initial stiffness of the unloaded 

member (Equation 33.). The produced equation makes intuitive sense as if the axial loading is zero the member 

has the initial unloaded stiffness, whilst for an axial load equal to its critical buckling load, its bending stiffness 

becomes zero as it is unable to provide any stiffness anymore. 
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𝐾1 =
𝑀1
𝜑1
= 4

(3 + 𝛼)

(4 + 𝛼)
𝐾𝑚𝑒𝑚𝑏𝑒𝑟 30. 

Where: 

  𝐾𝑚𝑒𝑚𝑏𝑒𝑟 =
𝐸𝐼

𝐿
 

  𝛼 =
𝛫𝑠𝑝𝑟𝑖𝑛𝑔

𝐾𝑚𝑒𝑚𝑏𝑒𝑟
 

𝜑2 = 𝜑1
1

1 −
𝛮𝑒𝑑
𝑁𝑐𝑟

 31. 

𝐾2 =
𝑀1
𝜑2
=

𝑀1

𝜑1
1

1 −
𝛮𝑒𝑑
𝑁𝑐𝑟

= (1 −
𝛮𝑒𝑑
𝑁𝑐𝑟

)
𝑀1
𝜑1
= (1 −

𝛮𝑒𝑑
𝑁𝑐𝑟

)𝐾1 
32. 

𝐾𝑒𝑞 = (1 −
𝑁𝑒𝑑
𝑁𝑐𝑟
)𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 33. 

C.2 Calculation of the equivalent spring in the case of a continuous column 
Assuming two members that are rigidly connected between them and supported against out of plane 

deformations at their intersection. Rotational springs as supports are also assumed at their ends, as the most 

general boundary conditions (Figure 158). Each member is loaded by a compressive load. Without loss of 

generality, it is assumed that member 2 buckles first (Equation 34.). As such the Load Ratio (LR) is defined 

as the ration of the compressive load of member 1 (supporting member) over the compressive load of member 

2 (buckled member) (Equation35.). Since member 2 is assumed buckled, according to Equation 33. it has no 

stiffness remaining. The equivalent supporting spring provided by member 1 is given by Equation 36.. 

 
Figure 158. General problem for the case of a continuous column. 

 
Figure 159. Equivalent problem for the case of the continuous column. 

 

𝑁𝑒𝑑,2 = 𝑁𝑐𝑟,2 34. 
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𝐿𝑅 =
𝑁𝑒𝑑,1
𝑁𝑒𝑑,2

 35. 

𝐾𝑒𝑞 = (1 −
𝑁𝑒𝑑,1
𝑁𝑐𝑟,1

)𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 36. 

By substituting Equation 34. Into Equation 35., and then Equation 35. Into Equation 36., Equation 37. is 

created. This equation gives the equivalent stiffness of the supporting member in the buckling problem. If the 

value of the stiffness becomes negative, then the assumption that member 2 has buckled does not hold and 

member 1 buckles first. The formulas for this case are the same and only switching the indices is required. 

𝐾𝑒𝑞 = 𝐾𝑖𝑛 ∗ (1 − 𝐿𝑅
𝑁𝑐𝑟,2
𝑁𝑐𝑟,1

) 37. 

Even though it has been stated that the buckled member can provide no stiffness, in Figure 159 the supporting 

member is assumed to be also supported by the equivalent supporting spring. This is due to the continuity of 

moments, which means that whatever supporting moment can develop at the buckled member’s end, the same 

moment will be developed at the supporting member’s end. At a later stage the comparison between assuming 

a rotation spring equal to the equivalent spring and no rotational support will be performed to judge the validity 

of each assumption. 

C.3 Solution process 
The solution process to be followed has the main goal of calculating the buckling load of the most critical 

member. This is done by calculating the equivalent problem of the continuous problem as presented in Figure 

159,  by using Equation 37. to determine the equivalent supporting spring of each member. From Equation 37. 

it is obvious that the critical buckling loads of both members are needed to calculate the equivalent spring. For 

this reason, an iterative process is required. By assuming initial buckling loads for each member, the equivalent 

spring can be calculated, and in turn a new buckling load for each member can be calculated by accounting for 

their boundary conditions. In this work the buckling load for the simply supported member were used as initial 

values. The iterative process converges to a reasonable solution by the third iteration, but due to the low 

computational cost, 15 iterations were performed for all results. 

To calculate the buckling load of the members the solution process described in the book of “Exact solutions 

for buckling of structural members” (C. M. Wang et al., 2004) was used. The specific problem deals with the 

calculation of the buckling load of a member with elastic restraints on its ends (Figure 160). In this example 

the ends of the member are considered translationally fixed and thus the stability criteria, as described in the 

book, is given by Equation 38.. By solving Equation 38. The variable 𝛼 is caclculated and from Equation 39. 

the buckling load of each member can be found. 

[2𝜉0𝜉1 + 𝛼(𝜉0 + 𝜉1)] cos√𝛼 − √𝛼(𝛼 + 𝜉0 + 𝜉1 − 𝜉0𝜉1) sin√𝛼 − 2𝜉0𝜉1 = 0 38. 

Where:  

 𝛼 variable to solve the equation for 

 𝜉0,1  rotational spring of end 0 and 1. normalized against stiffness of member 
𝐸𝐼

𝐿
  

𝑁𝑐𝑟 = 𝛼
𝐸𝐼

𝐿2
 39. 
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Figure 160. Buckling problem used to calculate buckling loads in all further investigations (C. M. Wang et al., 2004). 

C.4 Numerical application 
To investigate the validity of the new method, the following investigation is performed (Figure 161): 

• Without the loss of generality, member A is defined as the supporting member, meaning it will have 

a higher buckling load than member B. In all configurations, member A is the first number presented 

(e.g. configuration 4-6 means that member A is 4 and member B is 6). 

• To perform a parametric study, ten different members are defined and presented in Table 40. 

• In all configurations supports 2 and 3 prevent all displacements except for axial movement and 

rotations in the Y axis of the members.  

• Support 1 prevents all displacements, with the rotational stiffness of the support in the Y axis being 

allowed to vary. 

• The loading of member A is given as a Load Ratio of the loading on member B. 

• Shear deformations are not included in the FEA, as the solution process used does not account for 

them. 

 
Figure 161. Set up used for investigation of the proposed new method. 

 

 



NEW METHOD FOR BUCKLING LOAD CALCULATION OF CONTINUOUS COLUMNS 123 

 BUCKLING OF TRUSSES WITH ECCENTRIC JOINTS 

Table 40. Members used in the parametric study of the new method 

Member 
Cross section Length I Ncr/π^2 EI/L 

EN 10210-2:2006 [m] [m4] [kN] [kNm/rad] 

1 SHS 50 /2.6 1 1.80E-07 37.9 37.9 

2 SHS 50 /6.3 1 3.28E-07 68.8 68.8 

3 SHS 100/4 2 2.32E-06 121.7 243.4 

4 SHS 100/10 2 4.62E-06 242.6 485.2 

5 SHS 150/5 3 1.00E-05 233.8 701.4 

6 SHS 150/16 3 2.43E-05 567.0 1701.0 

7 SHS 200/8 4 3.71E-05 486.8 1947.2 

8 SHS 200/16 4 6.39E-05 839.2 3356.9 

9 SHS 200/8 8 3.71E-05 121.7 973.6 

10 SHS 200/16 8 6.39E-05 209.8 1678.4 

C.4.1 Support 1-Pinned 

For the first investigation, the assumption that Support 1 is pinned is adopted. The Load Ratios employed had 

the values of 0.0, 0.3, 0.7 and 1.0. The results are given as the percentage difference between the calculated 

buckling value of the new method and the calculated value from the FE analysis (Equation 40.). The results 

are presented in Figure 162. 

𝛥𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑙𝑜𝑎𝑑 =
𝑁𝑐𝑟,𝐹𝐸𝐴 −𝑁𝑐𝑟,𝑁𝑒𝑤 𝑚𝑒𝑡ℎ𝑜𝑑

𝑁𝑐𝑟,𝐹𝐸𝐴
 40. 

 
Figure 162. Initial results for new method. Results given as percentage difference of the new method and values calculated by the FE 

program 

 

First, it is observed that the difference between the new method and the FEA results is at the most 1%. It 

appears that the developed method can predict adequately the buckling, at least for these initial configurations. 

It is also noted that for the extreme cases of load ratios of 0.0 and 1.0, for the configurations that have the same 
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members, the new method correctly predicts the buckling load. This makes sense as for a load ratio 0.0, the 

supporting member is unloaded and thus provides its whole rotational restraint with no interaction from the 

second member. For load ratio 1.0 the supporting member buckles along with the second member meaning 

both members act like simply supported members. It is also interesting that all the configurations with the same 

members the graph follows the same values. For the configurations of 1-1 and 2-2 a small disagreement is 

observed, and it is attributed to a rounding error as these configurations have small buckling loads. This is also 

supported by the fact that they appear to not have zero difference for the edge case of load ratios of 0.0 and 

1.0. 

Another observation that can be made is that, for the configurations that are not composed of the same 

members, their graphs seem like the configurations that have same members, just extended towards higher 

values of Load Ratio. This would indicate that the error of the new method increases when the supporting 

member goes close to buckling but should have a maximum value. This is because, if the supporting member 

reaches its buckling load, the new method is exact, and the error needs to go to zero. As such the error of the 

new method should be upper bound. 

To further investigate the trend of the error observed, the same set up is used, but this time member A remains 

the same for all configurations and member B changes from less stiff to most stiff. Again, the same trend is 

observed (Figure 163). As the second members become less and less stiff and their buckling loads decrease, 

the graph that is given for symmetric problems (same members) is extended towards the right end of the graph. 

 
Figure 163. Results of the new method by keeping the supporting member the same. 

From the results so far, it is certain that the new method has an error, but it appears that it is bounded by a 

maximum. To further Illustrate this, the differences in buckling load are plotted against the equivalent 

supporting springs (Figure 164) normalized against the supporting member’s stiffness. All the results presented 

up till now were utilized. A higher rotational spring corresponds to the supporting member being further away 

from buckling. It can be observed that the higher the value becomes, the lower the expected error becomes. 

For values of zero the error is also minimized as the supporting member buckles and both members act as 

simply supported members. Lastly, the closer that both members are to buckling simultaneously, the greater 

the error appears to become. 
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Figure 164. Percentile difference between new method and FEA results plotted against the equivalent supporting spring normalized 

against the stiffness of the supporting member. The maximum values of this is three as Support 1 has been assumed pinned. 

C.4.2 Support 1-Rotationally restrained 

Another investigation performed was the increase of the buckling load of the supporting member by increasing 

the rotational stiffness of Support 1. For this investigation configuration 8-8 was used, to keep members with 

the same stiffness. The difference is plotted against rotation spring used at the end support (Figure 165). It can 

be observed that the difference again peaks for the case where the supporting member has a buckling load 

close to the second member. It is interesting to observe that the error remains the same after a certain rotational 

stiffness is introduced. This is due to the supporting member reaching fixed boundary conditions and as such 

the buckling load does not change any more. As such the error converges to the case of a fixed support at 

Support 1. 

 
Figure 165. Percentile difference between new method and FEA results plotted against the rotational spring of Support 1, 

normalized against the stiffness of the supporting member. 

C.4.3 Effect of change of Load Ratio 

Lastly, the effects of different Load Ratios are investigated by collecting more dense data points for a specific 

configuration. In this case configuration 6-6 was used and many different Load Ratios were used to create a 

detailed graph (Figure 166). The boundary condition at Support 1 is assumed pinned. The results are like what 

has been found up till now, with the additional remark that the error appears to produce a smooth curve. As 

was already assumed, the more detailed graph gives a maximum error before going to zero in the case where 

the supporting member buckles simultaneously with the other member. 
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Figure 166. Percentile difference between new method and FEA results plotted against the equivalent supporting spring, normalized 

against the buckled member 

C.4.4 Effects of assuming zero spring for supporting member. 

As was mentioned previously in section C.2, one alternative and logical assumption could be to consider that 

the supporting member is not restrained at all from the buckled member, since the buckled member does not 

provide any stiffness. To check the effects of such an assumption and to compare it to the assumption adopted 

by the new method, a similar investigation to the one performed in the previous section (C.4.3) is also done 

here. The only assumption that changes is that, additionally to the new method results, results produced by 

assuming that the supporting member has no restraint from the buckled member are also provided. 

Additionally, to investigate if the actual effects from the interaction of the two members are significant, two 

additional graphs are created. The first one is for the case that the buckled member is supported by the complete 

stiffness of the supporting member, disregarding the effects of the compressive loading (3EI/L). The second 

one is for the case that the buckled member is not supported at all by the supporting member and is considered 

pinned. 

The four different assumptions that are used can be summed up as follows: 

• Supporting member supported by equivalent supporting spring. 

• Supporting member with no support from buckled member. 

• Assuming no loss of stiffness of supporting member due to the compressive load. 

• Assuming no support from supporting member. 
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(a) 

 
(b) 

Figure 167. Comparison of results of using different assumptions for the buckling calculations. On the bottom (b) a zoomed plot of 

the complete plot (a) is provided, to make details more visible. 

From the results presented in Figure 167 it becomes obvious that the interaction between the members of the 

continuous needs to be considered. Failing to do so can produce an error of up to 40% which is not acceptable. 

Regarding the assumptions adopted for the support conditions of the supporting member, it can be observed 

that the assumption for which the supporting member is not supported by the buckled member provides a 

worse approximation than the originally stated assumption. The results may be conservative, but the error three 

times higher (although still only 3%) and additionally the graph appears to have a random form, compared to 

the smooth form of the original assumption. As such, as is already proposed, for the application of this new 

method the support of the supporting member by the equivalent supporting spring is prescribed. 
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C.5 Conclusions 
The main conclusion that can be drawn from the investigations performed, are the following: 

• The developed new method can adequately capture and calculate the buckling load of a continuous 

column. In all investigations performed the error of the new method compared to FEA results remained 

below 2%.  

• The only prescribed limitation for the application of the method is that the three support points of the 

column are required to be translationally fixed.  

• The smooth error graph observed could be due to disregarding certain effects owning to the simplified 

assumptions adopted for the application of the method. This indicates that the method may be further 

developed, although the utility of such an endeavour may be questionable as the accuracy achieved is 

already adequate for engineering practice (below 2%).  

• Lastly this method could be generalized, by accounting for the interaction of multiple connected 

members and potentially be extended to a whole truss structure, making it applicable to this thesis 

topic. 

 

 

 



 

BUCKLING OF TRUSSES WITH ECCENTRIC JOINTS 

APPENDIX D PROPOSAL OF BUCKLING LENGTH 

CALCULATION APPROACH FOR TRUSS 

GIRDERS 

D.1 Approach 
One of the difficult parts of calculating buckling lengths is to quantify the rotational restraint the truss members 

provide to other truss members. An attempt was done to investigate this in APPENDIX C by developing a new 

method but was only developed for a continuous column and not generalized to a truss girder. In this different 

approach, approximate values of the restraint experienced by an individual truss member are attempted to be 

quantified. This is done by determining an equivalent supporting spring for the member that the buckling load 

is required. For this reason, the term “support factor” (SF) is defined. By support factor, the factor by which 

the stiffness of a member needs to be multiplied by, in order to quantify the bending stiffness it provides to an 

adjacent member. For example, the SF for an unloaded member connected rigidly to another member with a 

hinged end is 3, whilst if the member’s end is fixed the SF becomes 4. It was shown in APPENDIX C that the 

presence of a compressive force acting upon a supporting member reduces the SF and it may be difficult to 

determine it. In this proposed approach these SF are found by fitting the results from a hand calculation to the 

results produced by the finite element analysis. 

To perform the hand calculations simplified assumptions are adopted. Specifically, on both ends of the 

members investigated, the same spring values is going to be assumed. Also, for the out of plane buckling only 

the bending stiffness is used, even though the torsional stiffness of the braces and chord may play a role in the 

behaviour. For the connection stiffness, the results from section 3.2 are used. 

For the equivalent supporting spring of the chord the supporting chords stiffness is simply added to the spring 

value (Equation 41.), whilst the stiffness of the braces must pass through the connection thus Equation 42. is 

used. The final rotational stiffness of the equivalent supporting spring is given by equation 43.. For the braces, 

the stiffnesses from the supporting chords and braces are given in the same manor by Equations 44. And 45.. 

with the additional step of including the effects of the connection at their end. The final rotational stiffness of 

the equivalent supporting spring is given by Equation 46.. An overview of the process can be seen in Figure 

168. 

 𝐾𝑐ℎ𝑜𝑟𝑑,𝑏𝑢𝑐𝑘
𝐶ℎ𝑜𝑟𝑑 = 𝑆𝐹𝑐ℎ𝑜𝑟𝑑

𝐶ℎ𝑜𝑟𝑑 ∗ 𝐾𝑐ℎ𝑜𝑟𝑑 41. 

 
𝐾𝑏𝑟𝑎𝑐𝑒,𝑏𝑢𝑐𝑘
𝐶ℎ𝑜𝑟𝑑 =

1

𝐾𝑐𝑜𝑛.
+

1

𝑆𝐹𝑏𝑟𝑎𝑐𝑒
𝐶ℎ𝑜𝑟𝑑 ∗ 𝐾𝑏𝑟𝑎𝑐𝑒

 42. 
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𝐾𝑠𝑝𝑟𝑖𝑛𝑔
𝐶ℎ𝑜𝑟𝑑 = 𝑆𝐹𝑐ℎ𝑜𝑟𝑑

𝐶ℎ𝑜𝑟𝑑 ∗ 𝐾𝑐ℎ𝑜𝑟𝑑 + (
1

𝐾𝑐𝑜𝑛.
+

1

𝑆𝐹𝑏𝑟𝑎𝑐𝑒
𝐶ℎ𝑜𝑟𝑑 ∗ 𝐾𝑏𝑟𝑎𝑐𝑒

) 43. 

 𝐾𝑐ℎ𝑜𝑟𝑑,𝑏𝑢𝑐𝑘
𝐵𝑟𝑎𝑐𝑒 = 𝑆𝐹𝑐ℎ𝑜𝑟𝑑

𝐵𝑟𝑎𝑐𝑒 ∗ 𝐾𝑐ℎ𝑜𝑟𝑑 44. 

 
𝐾𝑏𝑟𝑎𝑐𝑒,𝑏𝑢𝑐𝑘
𝐵𝑟𝑎𝑐𝑒 =

1

𝐾𝑐𝑜𝑛.
+

1

𝑆𝐹𝑏𝑟𝑎𝑐𝑒
𝐵𝑟𝑎𝑐𝑒 ∗ 𝐾𝑏𝑟𝑎𝑐𝑒

 45. 

 
𝐾𝑠𝑝𝑟𝑖𝑛𝑔
𝐵𝑟𝑎𝑐𝑒 =

1

𝐾𝑐𝑜𝑛.
+

1

𝑆𝐹𝑐ℎ𝑜𝑟𝑑
𝐵𝑟𝑎𝑐𝑒 ∗ 𝐾𝑐ℎ𝑜𝑟𝑑 + (

1
𝐾𝑐𝑜𝑛.

+
1

𝑆𝐹𝑏𝑟𝑎𝑐𝑒
𝐵𝑟𝑎𝑐𝑒 ∗ 𝐾𝑏𝑟𝑎𝑐𝑒

)

 
46. 

Where: 

 𝐾𝑐ℎ𝑜𝑟𝑑  The stiffness of the chords, equal to 𝐸𝐼𝑐ℎ𝑜𝑟𝑑 𝐿𝑐ℎ𝑜𝑟𝑑⁄  

 𝐾𝑏𝑟𝑎𝑐𝑒  The stiffness of the braces, equal to 𝐸𝐼𝑏𝑟𝑎𝑐𝑒 𝐿𝑏𝑟𝑎𝑐𝑒⁄  

 𝑆𝐹𝑗
𝑖  The supporting factor provided from members 𝑗 for the buckling of member 𝑖 

 𝐾𝑐𝑜𝑛.  Stiffness of the connections as calculated in section 3.2 

 𝐾𝑠𝑝𝑟𝑖𝑛𝑔
𝑖   Equivalent supporting spring for the buckling of member 𝑖 

 
Figure 168. Overview of the proposed new approach. 

Having formulated the equivalent rotational springs, the buckling solution of the member can be approximated 

by many different approaches. In this work, the solution process that was described in APPENDIX D was used 
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(C. M. Wang et al., 2004). For simplicity, the nomograph provided by the Dutch National Annex of Eurocode 

3 can also be used (Figure 169), which make the method especially suited for engineering practice. The results 

obtained from the hand calculation are compared to the results obtained from the investigation into the centric 

joints from Chapter 3. As only rotational stiffnesses have been accounted for, the buckling lengths refer to the 

member buckling lengths and the buckling lengths for a restrained tension chord are going to be used. 

 
Figure 169. Nomograph for calculating buckling lengths for a column rotationally restrained on both ends (Dutch National Annex 

for Eurocode 3). 

D.2 In-plane buckling 

D.2.1 Chord buckling 

For the chord buckling in-plane it was determined that the supporting factors that give the best fit for the 

proposed approach were 𝑆𝐹𝑐ℎ𝑜𝑟𝑑
𝐶ℎ𝑜𝑟𝑑 = 0.6 and 𝑆𝐹𝑏𝑟𝑎𝑐𝑒

𝐶ℎ𝑜𝑟𝑑 = 3. It is noted that the SF of the brace includes the 

effects of both braces that support the end of the chord. 

Table 41. Chord buckling factor for in plane buckling Kch,in 

  γ 

  15.9  10  6.25 

  

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 

β 

0.25 0.90 0.88 1.8%  0.90 0.88 2.5%  0.90 0.89 1.4% 

0.40 0.88 0.85 3.3%  0.89 0.86 2.5%  0.89 0.90 -1.0% 

0.50 0.86 0.85 1.0%  0.87 0.86 0.7%  0.87 0.88 -1.0% 

0.60 0.83 0.82 0.2%  0.84 0.84 0.1%  0.85 0.86 -1.4% 

0.75 0.75 0.73 2.8%  0.78 0.75 4.2%  0.80 0.77 4.4% 
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Figure 170. Chord buckling factor for in plane buckling Kch,in. 

D.2.2 Brace buckling 

From the preliminary results it was apparent that the SF that need to be used to capture the buckling of the 

braces, are different depending on the chord that is used. This also makes sense since the less stiff the chords 

are, the more interaction would be expected with the buckling of the braces. For this reason, three different SF 

are defined, each case capturing the behaviour of the finite element results of a chord with a specified γ. In 

practice, potentially the SF can be given as a function of the chord and brace stiffness. 

In the first case, the SF are chosen to match the results of the chord with γ=15.9. The SF chosen are 𝑆𝐹𝑐ℎ𝑜𝑟𝑑
𝐵𝑟𝑎𝑐𝑒 =

1.1 and 𝑆𝐹𝑏𝑟𝑎𝑐𝑒
𝐵𝑟𝑎𝑐𝑒 = 1.5, for the chords and braces respectively. 

Table 42. Brace buckling factor for in plane buckling Kbr,in. Results matching chord with γ=15.9. 

  γ 

  15.9  10  6.25 

  

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 

β 

0.25 0.58 0.59 -0.7%  0.53 0.53 0.9%  0.51 0.51 1.0% 

0.40 0.67 0.68 -1.0%  0.59 0.57 2.6%  0.54 0.52 3.6% 

0.50 0.72 0.72 -0.6%  0.63 0.61 4.0%  0.58 0.56 4.2% 

0.60 0.74 0.74 -0.3%  0.67 0.63 5.6%  0.62 0.58 7.3% 

0.75 0.76 0.81 -5.9%  0.71 0.68 4.6%  0.67 0.61 10.1% 
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Figure 171. Brace buckling factor for in plane buckling Kbr,in. Results matching chord with γ=15.9. 

For the second case, the SF are chosen to match the results of the chord with γ=10. The SF chosen are 

𝑆𝐹𝑐ℎ𝑜𝑟𝑑
𝐵𝑟𝑎𝑐𝑒 = 1.5 and 𝑆𝐹𝑏𝑟𝑎𝑐𝑒

𝐵𝑟𝑎𝑐𝑒 = 2, for the chords and braces respectively. 

Table 43. Brace buckling factor for in plane buckling Kbr,in. Results matching chord with γ=10. 

  γ 

  15.9  10  6.25 

  

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 

β 

0.25 0.56 0.59 -4.2%  0.52 0.53 -0.7%  0.51 0.51 0.4% 

0.40 0.64 0.68 -6.0%  0.56 0.57 -1.0%  0.53 0.52 1.5% 

0.50 0.68 0.72 -5.9%  0.60 0.61 -0.8%  0.56 0.56 0.7% 

0.60 0.70 0.74 -5.5%  0.63 0.63 0.3%  0.59 0.58 2.7% 

0.75 0.72 0.81 -10.7%  0.68 0.68 -0.9%  0.64 0.61 4.5% 

 
Figure 172. Brace buckling factor for in plane buckling Kbr,in. Results matching chord with γ=10. 
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Lastly, in the third case, the SF are chosen to match the results of the chord with γ=6.25. The SF chosen are 

𝑆𝐹𝑐ℎ𝑜𝑟𝑑
𝐵𝑟𝑎𝑐𝑒 = 1.9 and 𝑆𝐹𝑏𝑟𝑎𝑐𝑒

𝐵𝑟𝑎𝑐𝑒 = 3, for the chords and braces respectively. 

 

Table 44. . Brace buckling factor for in plane buckling Kbr,in. Results matching chord with γ=6.25. 

  γ 

  15.9  10  6.25 

  

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 

β 

0.25 0.55 0.59 -6.5%  0.52 0.53 -1.6%  0.51 0.51 0.0% 

0.40 0.61 0.68 -10.0%  0.55 0.57 -3.5%  0.52 0.52 0.2% 

0.50 0.65 0.72 -10.4%  0.58 0.61 -4.3%  0.55 0.56 -1.6% 

0.60 0.67 0.74 -10.4%  0.61 0.63 -4.0%  0.57 0.58 -0.7% 

0.75 0.68 0.81 -15.6%  0.64 0.68 -6.0%  0.61 0.61 -0.3% 

 
Figure 173. Brace buckling factor for in plane buckling Kbr,in. Results matching chord with γ=6.25. 

D.3 Out of plane buckling 

D.3.1 Chord buckling 

For the chord buckling out of plane it was determined that the supporting factors that give the best fit for the 

proposed approach were 𝑆𝐹𝑐ℎ𝑜𝑟𝑑
𝐶ℎ𝑜𝑟𝑑 = 0.75 and 𝑆𝐹𝑏𝑟𝑎𝑐𝑒

𝐶ℎ𝑜𝑟𝑑 = 1.5. It is noted that the SF of the brace includes the 

effects of both braces that support the end of the chord. 
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Table 45. Chord buckling factor for out of plane buckling Kch,out. 

  γ 

  15.9  10  6.25 

  

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 

 0.25 0.88 0.88 0.5%  0.88 0.88 0.5%  0.88 0.88 0.6% 

 0.40 0.87 0.85 2.2%  0.88 0.87 0.2%  0.88 0.92 -4.5% 

β 0.50 0.86 0.85 0.7%  0.87 0.88 -1.3%  0.87 0.91 -4.7% 

 0.60 0.84 0.84 0.1%  0.85 0.87 -1.8%  0.86 0.85 1.3% 

 0.75 0.80 0.78 2.5%  0.82 0.80 1.4%  0.83 0.82 0.9% 

 

 
Figure 174. Chord buckling factor for out of plane buckling Kch,out. 

D.3.2 Brace buckling 

For the brace buckling out of plane it was determined that the supporting factors that give the best fit for the 

proposed approach were 𝑆𝐹𝑐ℎ𝑜𝑟𝑑
𝐵𝑟𝑎𝑐𝑒 = 0.65 and 𝑆𝐹𝑏𝑟𝑎𝑐𝑒

𝐵𝑟𝑎𝑐𝑒 = 3. 

Table 46. Brace buckling factor for out of plane buckling Kbr,out. 

  γ 

  15.9  10  6.25 

  

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 
 

Proposal FEM 
Results 

Diff. 

 0.25 0.57 0.57 -0.7%  0.53 0.54 -2.1%  0.52 0.53 -2.1% 

 0.40 0.63 0.63 0.5%  0.59 0.59 0.5%  0.56 0.56 -0.3% 

β 0.50 0.67 0.68 -0.7%  0.63 0.63 1.3%  0.60 0.59 1.5% 

 0.60 0.71 0.71 0.2%  0.67 0.66 0.7%  0.63 0.63 1.2% 

 0.75 0.73 0.75 -3.2%  0.74 0.74 0.3%  0.67 0.67 -0.2% 
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Figure 175. Brace buckling factor for out of plane buckling Kbr,out. 

D.4 Conclusions 
From comparing the results obtain from the proposed approach and the finite element model of the main 

investigation, it can be concluded that the proposed approach has potential. Firstly, the results matched quite 

well between them. Secondly, as the buckling problem required to be solved at the final steps is quite simple, 

it is suited for everyday engineering practice. Thirdly, only simplified assumptions were used in this 

investigation as it was outside the scope of the main investigation. The approach can be further improved by 

accounting for different stiffnesses on the tension and compression side, or by including the torsional behaviour 

for the out of plane buckling. Lastly, it may have a wider application scope than conventional buckling length 

formulas, as the calculations are based on the stiffnesses of the members and the connections instead of 

parameters that account for these indirectly, such as β and γ. 
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BUCKLING OF TRUSSES WITH ECCENTRIC JOINTS 

APPENDIX E NUMERICAL RESULTS 

E.1 Stiffness calculations 

 

 

 

In-plane stiffness (kNm/rad) 

  γ 

    15.9   10   6.25  

   

Rounded 
corners 

No 
radius 

Diff.  Rounded 
corners 

No 
radius 

Diff.  Rounded 
corners 

No 
radius 

Diff. 

  

  

β 

  

  

0.25 78.8 81.0 -2.7%  279.0 283.1 -1.4%  1025.4 1021.9 0.3% 

0.40 179.5 183.8 -2.3%  615.7 615.1 0.1%  2189.6 2156.6 1.5% 

0.50 326.8 342.7 -4.6%  1076.0 1097.2 -1.9%  3734.5 3637.9 2.7% 

0.60 639.9 678.0 -5.6%  2021.1 2060.2 -1.9%  6643.8 6423.8 3.4% 

0.75 2160.1 2303.2 -6.2%  6005.2 6165.8 -2.6%  16826.1 16585.7 1.4% 

 

Out of plane stiffness (kNm/rad) 

  γ 

    15.9   10   6.25  

   

Rounded 
corners 

No 
radius 

Diff.  Rounded 
corners 

No 
radius 

Diff.  Rounded 
corners 

No 
radius 

Diff. 

  

  

β 

  

  

0.25 203.8 216.6 -5.9%  606.1 630.8 -3.9%  1948.4 2031.5 -4.1% 

0.40 442.1 469.1 -5.8%  1296.1 1349.9 -4.0%  4159.2 4229.4 -1.7% 

0.50 758.3 806.6 -6.0%  2074.0 2148.5 -3.5%  6463.9 6598.2 -2.0% 

0.60 1231.8 1256.9 -2.0%  3362.2 3384.9 -0.7%  10538.9 10047.7 4.9% 

0.75 2930.7 3242.6 -9.6%  7685.7 7883.1 -2.5%  22063.7 21474.8 2.7% 
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E.2 Buckling lengths 

E.2.1 Centric joints 

 

 

 

 Chord buckling in-plane 

    β   

  0.25 0.4 0.5 0.6 0.75 

 15.9 0.882 0.854 0.850 0.823 0.733 

 10 0.877 0.864 0.861 0.837 0.747 

γ 8 0.910 0.878 0.871 0.849 0.759 

 7.04 0.911 0.889 0.878 0.857 0.765 

 6.25 0.887 0.899 0.884 0.864 0.770 

 

 Chord buckling out of plane 
    β   
 

 0.25 0.4 0.5 0.6 0.75 
 15.9 0.877 0.854 0.854 0.840 0.779 
γ 10 0.877 0.874 0.877 0.866 0.805 
 8 0.890 0.888 0.894 0.829 0.810 
 7.04 0.878 0.903 0.906 0.842 0.821 
 6.25 0.877 0.919 0.914 0.848 0.825 
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 Brace buckling in-plane 
    β   
 

 0.25 0.4 0.5 0.6 0.75 
 15.9 0.588 0.676 0.720 0.743 0.811 
 10 0.526 0.571 0.606 0.632 0.681 
γ 8 0.514 0.543 0.571 0.590 0.633 
 7.04 0.511 0.532 0.555 0.576 0.613 
 6.25 0.507 0.524 0.542 0.560 0.594 

 

 Brace buckling in plane 
    β   
 

 0.25 0.4 0.5 0.6 0.75 
 15.9 0.570 0.631 0.680 0.706 0.753 
 10 0.545 0.587 0.626 0.661 0.737 
γ 8 0.539 0.576 0.611 0.655 0.702 
 7.04 0.537 0.571 0.603 0.643 0.689 
 6.25 0.532 0.561 0.590 0.626 0.672 

 

E.2.2 Eccentric joints 

 

 

 Chord buckling in-plane 

    β   
 

 0.25 0.4 0.5 0.6 0.75 
 15.9 0.870 0.802 0.790 0.788 0.711 
 10 0.874 0.856 0.845 0.819 0.741 
γ 8 0.897 0.873 0.861 0.841 0.755 
 7.04 0.902 0.883 0.870 0.846 0.763 
 6.25 0.884 0.893 0.884 0.856 0.769 
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 Chord out of plane Chord face to chord face 

    β   

  0.25 0.4 0.5 0.6 0.75 

 15.9 0.877 0.854 0.855 0.843 0.784 

 10 0.878 0.874 0.880 0.871 0.805 

γ 8 0.892 0.890 0.897 0.833 0.815 

 7.04 0.878 0.906 0.910 0.844 0.822 

 6.25 0.882 0.925 0.925 0.851 0.826 

 

 

 

 Brace in plane Chord face to chord face 

    β   

  0.25 0.4 0.5 0.6 0.75 

 15.9 0.515 0.544 0.600 0.658 0.792 

 10 0.507 0.527 0.554 0.589 0.672 

γ 8 0.505 0.520 0.542 0.566 0.628 

 7.04 0.504 0.517 0.536 0.559 0.609 

 6.25 0.501 0.513 0.529 0.551 0.592 

 

 Brace out of plane Chord face to chord face 
    β   

  0.25 0.4 0.5 0.6 0.75 

 15.9 0.579 0.641 0.688 0.713 0.759 

 10 0.549 0.597 0.636 0.670 0.741 

γ 8 0.541 0.583 0.618 0.660 0.705 

 7.04 0.539 0.576 0.609 0.648 0.692 

 6.25 0.533 0.570 0.599 0.637 0.678 
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E.2.3 Change of support conditions 

 

  Brace buckling factor for in plane buckling Kbr,in 

  γ 

  10 

  External support Middle support Internal support 

 0.25 0.874 0.874 0.874 

 0.40 0.856 0.856 0.856 

β 0.50 0.845 0.845 0.845 

 0.60 0.819 0.819 0.819 

 0.75 0.741 0.741 0.741 

 

  Chord buckling factor for out of plane buckling Kch,out 
  γ 
  10 
  External support Middle support Internal support 
 0.25 0.507 0.507 0.507 
 0.40 0.527 0.527 0.527 

β 0.50 0.554 0.554 0.554 
 0.60 0.589 0.589 0.589 
 0.75 0.672 0.672 0.672 

 

  Brace buckling factor for out of plane buckling Kbr,out 

  γ 

  10 

  External support Middle support Internal support 

 0.25 0.877 0.878 0.878 

 0.40 0.874 0.874 0.874 

β 0.50 0.880 0.880 0.880 

 0.60 0.869 0.871 0.872 

 0.75 0.805 0.805 0.805 
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  Brace buckling factor for out of plane buckling Kbr,out 

  γ 

  10 

  External support Middle support Internal support 

 0.25 0.570 0.549 0.551 

 0.40 0.631 0.597 0.598 

β 0.50 0.680 0.636 0.637 

 0.60 0.706 0.670 0.672 

 0.75 0.753 0.741 0.742 

E.2.4 Beam element model with rigid connections 
 Chord buckling in-plane 

    β   

  0.25 0.4 0.5 0.6 0.75 

 15.9 0.865 0.775 0.746 0.764 0.678 

 10 0.873 0.851 0.833 0.804 0.721 

γ 8 0.899 0.869 0.853 0.822 0.740 

 7.04 0.897 0.879 0.863 0.833 0.750 

 6.25 0.880 0.891 0.873 0.845 0.759 

 

 Chord buckling out of plane 
    β   

  0.25 0.4 0.5 0.6 0.75 

 15.9 0.873 0.834 0.826 0.818 0.756 

 10 0.878 0.872 0.866 0.846 0.788 

γ 8 0.887 0.885 0.879 0.803 0.802 

 7.04 0.875 0.896 0.888 0.825 0.809 

 6.25 0.885 0.913 0.899 0.838 0.814 

 

 Brace buckling in-plane 

    β   

  0.25 0.4 0.5 0.6 0.75 

 15.9 0.502 0.514 0.536 0.566 0.765 

 10 0.501 0.509 0.528 0.559 0.651 

γ 8 0.501 0.508 0.521 0.543 0.610 

 7.04 0.501 0.507 0.518 0.537 0.591 

 6.25 0.501 0.506 0.517 0.533 0.576 
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 Brace buckling out of plane 

    γ   

  0.25 0.4 0.5 0.6 0.75 

 15.9 0.531 0.562 0.612 0.679 0.716 

 10 0.528 0.552 0.580 0.616 0.708 

γ 8 0.528 0.548 0.573 0.632 0.674 

 7.04 0.526 0.546 0.569 0.613 0.659 

 6.25 0.526 0.544 0.566 0.602 0.647 

 


