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us based interconnects are commonly used to connect Intellectual Properties (IPs) on
System-on-Chip (SoC). However, as the number of high performance IPs with large commu-
nication requirements in a Multi Processor SoC (MPSoC) increases, the bus interconnects

become a communication bottleneck. To overcome this limitation, the bus based interconnects
are replaced by Networks-on-Chips (NoC) as the interconnect for IPs in an MPSoC. The ability
to support multiple protocols, both legacy and newer, is essential for leveraging the advantages
of the NoC. This thesis describes the protocol conversions, or shells, we design for the Æthereal
NoC, to provide a unified message format for the PLB, OPB and FSL protocols. Furthermore,
to tolerate the latencies when accessing memory and to increase the throughput when possible,
we add support for posted write and prefetch read in the shells and we design a mechanism to
coalesce multiple single transactions into burst transaction when possible. To validate our design,
we prototype it on a Virtex-II PRO FPGA. We use both synthetic applications as well as real life
applications to benchmark and analyze the effect of factors, like computation-to-communication
ratio, various link bandwidths and compiler loop unrolling on the performance of the system.
The results show that reducing the link bandwidth up to a certain point does not affect the
performance anymore, as the latency associated with NoC internals becomes dominant. Also the
burst transaction can sustain the performance of the system up to a certain point, when the link
bandwidth is reduced. The best result is obtained using a shell with posted write and prefetch
read.
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Introduction 1
1.1 Trends

System-on-Chips are integrated electronic system [3] on a single chip. SoCs are widely
used in embedded applications [26], [28] and are implemented on many integrated circuits
(IC) technology [28], like ASIC (IBM Cell processors, smart phones) and FPGA (Xilinx
Virtex platform).

1.1.1 SoC cost

The developments in the IC industry are driven by Moore’s law, which states that each
18 months the number of transistors on a chip doubles. This increases the complexity
associated with the design of the chip. Issues like testability, power management, and
signal integrity become increasingly difficult to cope with.

To exploit the available computing power and to keep designing chips at the same
rate, either the resources must double (design team) or the productivity must double for
each generation. Else the time needed to design a chip doubles for every generation. A
bigger design team each generation is not practical and feasible, due to factors like the
mythical man-month [28]. Increasing productivity is challenging, as the chip is getting
more complex each generation. Taking twice as long to design a chip is not really an
option, due to economical factors like time to market. The cost for designing a chip also
increases due to design, implementation and manufacturing challenges. The cost of a
chip depends on:

• cost of manufacturing, includes the cost of the machines and packaging.

• cost of design (NRE), are one-time cost incurred for each new chip designed.

• number of chips sold

A solution to cope with the increasing chip cost is to design more efficiently. There
are several possibilities to achieve this. The re-use of IPs and architecture enables the
NRE cost to be spread over several products and reduces the complexity of the system,
among others. Also, using a scalable architecture results in a system that is usable
even if it consists of large number of components. Raising the abstraction level enables
engineers to become more efficient. Lastly, using a system that is composable enables re-
use of design testing and verification. Finally higher abstraction level enables engineers
to utilize the exponential grow of transistors [3].

1
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1.1.2 On-chip bus based interconnects

Traditionally, bus based on-chip interconnects [2], [18], [22], [24] are used to connect IPs
on a SoC. The main advantages of using bus interconnect, described in [14], [20], are:

• low cost, as the IPs share the sets of wires.

• uniform interface to the IPs, facilitating system integration.

Current SoCs are complex, consisting of high performance IPs with large communication
requirements, like CPU, DSP and video processors, and on-chip and off-chip memory.
These systems are often referred to as Multi Processor SoC (MPSoC). The trend is toward
MPSoC with massive computation power and communication requirements [3]. As the
number of the IPs on a SoC increases, the bus interconnects become a communication
bottleneck as their bandwidth is bounded. Some of the factors are as follows.

• Physical factors [1], [10], [14]: the IPs attached to the bus share the bandwidth.
As the number of IPs increases, the capacitive loading on the bus grows, limiting
the performance of the bus.

• Technology scaling [14], [15], [16]: the layout of a chip consists of a plane of tran-
sistors with planes of wires stacked on top of it, referred to as metal layers. The
lower metal layers consists of short and thin wires for close communication (local
wires). The top metal layers consist of long and fat wires for remote communica-
tion (global wires). For each generation the number of transistors doubles and the
wires get thinner and slower, resulting in increasing delay for the wires. For the
local wires, the effect is limited due to the short length. On contrary, for the global
wires, the wire delay relative to the transistor delay increases for each generation.
For each generation, the transistors become faster, achieving higher frequency and
thus lower clock time. This constrains the performance of the global wires as it is
harder for global signals to travel across the die in a single clock cycle.

As the result of technology scaling, the gap between on-chip computation and commu-
nication increases, resulting in a shift from a computation to a communication design
scheme [3], [4].

1.1.3 Networks-on-Chip

Networks-on-Chip are proposed as interconnect for IPs on a SoC [5], to overcome the
global communication limitations of bus based interconnects. Network-on-chips have the
desirable property of using the global wires efficiently [3], [5]. This due to the fact that
the IPs are not connected with each other through a full switch, but rather though several
small switches [14]. As the wires between the IPs are not active simultaneously, they
are shared on a single communication and on multiple communications. This results in
fewer wires and better global wire utilization. Also, NoC decouple the IPs computation
and communication, enabling the IPs to be reused more easily [3], [25]. Furthermore,
NoC offer the following advantages, as described in [3], [5], [7], [8], [25].
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• Flexibility: run time programmable, ability to offer different types of communica-
tion and QoS.

• Modular design: NoC building blocks are routers and network interfaces. The
properties of the building blocks can be customized at design time. A NoC can
realize any topology.

• Scalability: scalable in terms of number of IPs and bandwidth. The performance of
the interconnect can be increased by using more links and routers. This increases
the cost of the interconnect though.

• Protocol layering: The layer stack of the NoC architecture has several benefits.
First, it enables the decomposition of problems into smaller and manageable pieces.
Next, by using abstraction, the details of the layers are hidden. Each layer uses
and offer services of the other layers. Protocols are used to implement a layer.
Also, each layer can be optimized separately, without breaking the function of the
other layers.

• Support for multiple communication protocol in use: supports both legacy as well
as newer communication protocol.

Even with NoC, latency increases. This is due to latency associated with:

• the interaction of the NoC shells and bus interconnects.

• memory subsystems, including external memory controllers.

• internal network contention.

With the bus interconnect, once the master has control of the bus, the latency is the
wire speed [3]. Increasing interconnect latencies have a negative effect on the system
performance, especially for the memory-oriented microprocessors architectures [4], [14].

1.2 Problem statement

The network adaptation layer implements the interface of NoC to the IPs. The purpose
of the adaptation layer is, among others, to:

• perform protocol conversions, enables re-use and compatibility of existing IPs.

• clock domain crossing, enables the IP to operate in a different clock domain.

The ability to support multiple protocols is essential for leveraging the advantages of the
NoC.

For this thesis, we analyze the challenges of interconnecting existing IPs using differ-
ent standards than the ones already available and explore options for lowering effective
latency.
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1.3 Solutions

To achieve interoperability with existing industry standards, we:

1. add the ability to interoperate with new protocols to the Æthereal NoC.

2. design protocol conversions for the Æthereal NoC

Furthermore, we evaluate the potential advantages of advanced techniques at the trans-
port abstraction layer, which are challenges when the IPs do not support them. This
for:

3. tolerating the latency when possible

4. increase in throughput when possible

5. definition of software protocols to facilitate the solutions of 3 and 4

We want to connect to IPs which use the IBM Coreconnect bus cores [18]. The Core-
connect buses are used and supported in a wide range of embedded products, including
the Xilinx design suites.

1.4 Overview of this thesis

The remainder of this thesis is organized as follows. In chapter 2 we give an overview
of a SoC and describe the IPs and interconnects we use in this thesis. Also, we describe
the protocols we use. In chapter 3 we give an overview of the shells and also describe
in detail the shell designs. Chapter 4 focuses on the various system-on-chips consisting
of the shells and the Æthereal NoC and the software applications used. In chapter 5 we
detail and analyze the results obtained from the experiments. In chapter 6 we present a
summary of the thesis, our conclusions, and elaborate on the future work, related work
and recommendations.
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In this section we discuss the concepts of embedded system interconnects and underlying
principles of SoC design and prototyping. We give particular attention to the set of
technologies that we have used in this study: the CoreConnect bus interconnects, the
Æthereal NoC and the Xilinx tools and components.

2.1 System overview

A SoC consists of, among others, IPs and interconnects. The IPs need to communicate
with one another and can be connected directly to each other or through an interconnect.

For the case when the IPs are connected directly to each other, one IP is the initiator
and always transmits. The other IP is the target and it always receives. A common
scheme to move data, between two IPs connected directly to each other, is a handshake
protocol. The initiator uses a request signal to initiate the transfer and the target uses
an acknowledge signal to indicate to the initiator that the data was accepted.

For the case when the IPs are connected to each other through an interconnect, the
communication is performed through transactions. For example, when the communica-
tion is done using bus interconnects, a transaction consists of sending the address and
receiving or sending data. More specifically, we distinguish between a read and a write
transaction, for example, between a processor and a memory. A read transaction trans-
fers data from memory to the processor and a write transaction transfers data from the
processor to the memory. Furthermore, we define masters as IPs that can initiate read
or write transactions and slaves as IPs that are the target of read or write transactions.
It is possible to have multiple masters and multiple slaves. Figure 2.1 shows an example
of such a SoC consisting of multiple masters and slaves.

The IPs are grouped in subsystems or tiles. The two main subsystems are the master
tile and the slave tile. The master tile contains the processing element (section 2.2.1) and
the slave tile contains the storage element (section 2.2) and peripherals. For this example,
the master tiles contain the µBlaze as the processing element together with optional
components, like the local instruction and data memory and caches. The example slave
tiles consists of on-chip memory, external memory controller to access off-chip memory
and a peripheral.

2.1.1 Communication types

We distinguish two communication types. They are as follows.

5
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Figure 2.1: System overview example

• Direct streaming: one way communication from master to slave, requires only
writing. It uses streaming protocol.

• Shared-memory communication [14], [20]: Communication occurs through a shared
address space. This type enables more complex communication between multiple
masters and multiple slaves attached to the interconnect. It requires both writing
and reading. The master IP, in this case the processor, uses a bus-based I/O
interface to communicate with peripherals and memory, by reading or writing to
an address. There are 2 addressing schemes to accomplish this, known as memory-
mapped I/O and standard I/O [14], [28]. In memory-mapped I/O, each peripheral
occupies a specific address in the existing address space. In standard I/O the
processor uses an additional signal to indicate whether the access is to memory or
to a peripheral.

Signal groups are used to transfer data between the IPs and the interconnect. If the
logical address space is distributed among several memories, the communication
type is referred to as distributed-shared-memory communication.

2.1.2 Multiprocessor system

Multiprocessor system, like the one of Figure 2.1, can be categorized, according to the
parallelism in the instruction and data streams, as follows.

• SISD: single instruction stream, single data stream: a uniprocessor executes a
single instruction stream using data available in a single memory
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• SIMD: single instruction stream, multiple data streams. The same instruction is
executed by multiple processors, using different data streams. Each processor has
a local data.

• MISD: multiple instruction streams, single data stream. Each functional unit per-
forms different operations on the same data set.

• MIMD: multiple instruction streams, multiple data streams: Each processor fetches
its own instruction and performs operation on its own data

Each of the models have techniques for performing inter processor communication and
for synchronization. An in depth coverage and analyses is provided in [14] and [20]. For
this thesis we focus on a SISD model for experimentation.

2.1.3 Layered interconnect

The interconnect of Figure 2.1 is layered, consisting of:

• local buses, for local communication. For example, the bus connecting the µBlaze
with its local data or instruction memory.

• global interconnect, for chip wide communication. For example, for the communi-
cation between a master tile and a slave tile.

For this thesis, we discuss two types of interconnect:

1. Bus based interconnects.

The term bus refers to the entire collection of wires used for communication as well
as the communication protocols over those wires [28] (section 2.4). These signals
may be unidirectional or bidirectional and are generally grouped as follows.

• Command signal group: these signals include the address, read/write and
flags. They are used to indicate the type of the transaction

• Write signal group: these signals consist of the write data and flags.

• Read signal group: these signals consist of the read data and flags.

The bus is a shared medium, which means several components take turns using it.

2. Network-on-chips.

The NoC packetizes and routes the IPs transaction between source and destination
in the network. A network consists of 2 main components.

• Routers: The routers transport packets through the network. A router re-
ceives a packet on one of its input ports and forwards the packet to one of its
output ports, which is connected to either another router or to a NI.

• Network interfaces: The NIs are responsible for both packetizing the trans-
action of the IP and for un-packetizing the packets and presenting the trans-
action to the IP. The NIs also implement the connections and the services of
the NoC.
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2.2 Master and slave tiles

The master tile consists of a processor and its local memory and buses. We use the
Xilinx µBlaze processor. The slave tile consists of a memory and its memory controller
and buses.

2.2.1 µBlaze processor

The µBlaze embedded processor is a soft core reduced instruction set computer (RISC)
and is available for the Xilinx FPGAs [11]. Figure 2.2 shows an overview of the µBlaze
core. The µBlaze core is organized as a Harvard architecture with separate bus inter-

Figure 2.2: µBlaze core overview [11]

face units for data and instruction accesses. The following three memory interfaces are
supported:

• Local Memory Bus (LMB) (Section 2.3.4), provides single-cycle access to on-chip
dual-port block RAM.

• PLB or OPB (Sections 2.3.3 and 2.3.3), provide a connection to on-chip or off-chip
peripherals and memory.

• Xilinx Cache Link (XCL), intended for use with specialized external memory con-
trollers. The XCL is not used in this thesis.

Furthermore, The µBlaze uses the memory-mapped I/O addressing scheme.
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2.2.2 On-chip memory

We use the on chip block RAM (BRAM) of the Xilinx FPGA. We access the on-chip
memory through the Xilinx memory controller [31]. The memory controller supports
memory sizes in the range of 8k to 256k bytes.

2.3 Bus based interconnect

The PLB and OPB bus are part of CoreConnect architecture bus, an IBM-developed
on-chip bus-communications link [18]. The PLB is used to connect fast components to
the CPU, while the OPB bus is used for slow peripherals. The slaves attached to the
PLB and OPB bus are assigned a certain address range. They have to recognize their
address on the bus. The following subsections present a short overview of the OPB, PLB
and FSL bus.

2.3.1 OPB bus

The OPB bus is a non-split, non-burst bus. It supports up to 16 masters and 16 slaves.
The OPB uses a single synchronous handshake protocol for the entire bus transaction.
There is no separate handshake for the request and response transaction. The master
puts the data, address and control signals on the bus and indicates a valid transaction
(M1 select, Figure 2.3). Each slave checks the address on the bus. If the address is
recognized, the transfer is completed with an acknowledge signal (Sl2 xferAck).

2.3.2 PLB bus

The PLB bus is a concurrent interconnect, it supports split transactions and also burst
transactions (table 2.1). It supports a maximum of 16 masters. Each master has a
separate address and data signal group Figure 2.4). For the slaves, the response signals
are OR’ed together.

A PLB transaction consists of an address cycle and a data cycle. In the address
cycle:

• the master drives its address and command groups and request ownership of the
bus

• address and command signals are presented to the slave after the master has been
granted ownership of the bus

• the slave latches the address and command groups and terminates the cycle with
an acknowledgement.

In the data cycle:

• master drives the write data bus for write transactions or samples the read data
bus for a read transaction.

• sample or drives the data acknowledgement signals.

Figures 2.5 gives an example of a PLB write transaction.
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Figure 2.3: OPB basic data transfer [19]

2.3.3 FSL bus

The Fast Simplex Link (FSL) is a uni-directional point-to-point FIFO-based communi-
cation channel bus[30]. The link has a master side and a slave side. The master pushes
data into the link and the slave consumes data from the link. The width of the FIFO link
is 32 bits and the depth is design time configurable. The FSL uses a simple handshake
streaming protocol for data transaction. Figure 2.6 details a write transaction [29]. The
master pushes data into the link by asserting the ”FSL M Write” signal. The FSL link
is connected to the µBlaze through a dedicated port. The µBlaze supports up to 8 FSL
link pairs in opposite directions, each with one master (write) and one slave(read) FSL
interface. The µBlaze has special put and get instructions to write and read data to/from
the FSL link. There are several variants of the instructions [11]. We use blocking version:
the µBlaze will stall until the data from the FSL interface is valid.
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Figure 2.4: PLB bus overview [17]

2.3.4 LMB bus

The LMB bus [32] is the interconnect for the µBlaze instruction and data port with the
local BRAM memory through the LMB BRAM interface controller [31]. The LMB bus
supports one master, up to sixteen slaves and has no arbiter.

2.4 Protocols overview

To transfer data between two components, a sequence of steps needs to be followed [14].
Protocols describe the rules necessary for communication over an interconnect [28].

This section describes some advanced protocols used for tolerating the transaction
latency.
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Figure 2.5: PLB write transaction [17]

2.4.1 Posted transaction

In general, the master has to wait for:

• The interconnect to transport the master request to the slave

• The slave to process the request and to acknowledge the transaction

• The interconnect to transports the slave response to the master

These steps are illustrated in figure 2.7.
In a posted or pipelined transaction, there are multiple outstanding requests of a

single master. The interconnect acknowledges the transaction before it transports the
request to the slave. Figure 2.8 shows a posted transaction. The benefit of this is that
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Table 2.1: 64 bit Processor Local Bus (Xilinx)

Specification
Address bus width 32 bits
Data bus width 64 bits
Architecture (max 16) Master / (max 16) Slaves

Bus cycles

Read/write
Back-to-back read/write
Back-to-back read write read write
Four-word line read/write
Four-line read followed by four-line write
Sequential burst-read/write transfer terminated by
Master/Slave
Fixed length burst read/write
Back-to-back burst read - burst writes
Locked data transfer
Pipelined back-to-back read/write
Pipelined back-to-back read and write
Pipelined back-to-back read/write burst
Pipelined back-to-back fixed length read burst

Arbitration Central bus arbiter. Three cycle arbitration with four levels
of dynamic master request priority. Fixed priority scheme
can be implemented

Data bus width 64 bits
Burst transfers Supported
Split transaction Supported (separate address and data busses)
Pipelining Address pipelining
Master/Slave signal interface Input or output

Figure 2.6: FSL write [29]
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Figure 2.7: Non-posted transaction between master and slave

the master does not have to wait for the slave reply. The drawback of posted write
is that the interconnect assumes that the slave can process the request successfully. If
the slave cannot process the request, this assumption is not correct anymore and the
interconnect, master and slave have to have a mechanism to solve this problem. The
actual steps needed to fix the situation depend on the cause of the error. If, for example,
the slave was busy and could not accept the request at that moment, the interconnect
could wait for the slave to be available again and then retry the transaction.

The posted transaction can be applied to write transactions.

2.4.1.1 Posted write

For the posted write transaction, the interconnect acknowledges the write and then
transport the write data to the slave. The slave acknowledge signals can be discarded
by the interconnect as they are not needed anymore by the master, except on an error.
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Figure 2.8: Posted transaction between master and slave

2.4.2 Split transaction

During a non-split transaction, between a master and a slave, the interconnect is held
by the master. A slow slave will delay the response and hence have a negative effect
on overall system performance. A method to avoid this situation is the split-transaction
for multiple master systems. Consider the case of a master initiating a memory read to
the slave. Between the time of a master request and the slave response, the intercon-
nect is unavailable for other masters. A split-transaction interconnect allows multiple
outstanding transfers by decoupling the request phase from the response phase. While
the memory is busy reading the requested word, the interconnect is released and it can
accept the next master request.

2.4.3 Burst transaction

For the case when there are multiple transactions between a master and a slave. The
master can either:
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• For each data word to be transferred, arbitrate for access on the bus and send
command group data.

• Only arbitrate for the bus once and also send command group data once.

The first is called single transaction and the latter burst transaction. For an intercon-
nect without support for burst transfers, only one word of data can be transferred per
transaction. For an interconnect with support for burst transfers, multiple data words
can be transferred per transaction. The requirement for a burst transfer is that the data
words are located in sequential locations in the slave memory.

2.5 Prefetch read

For a read transaction, the master request data from the slave and must wait on:

• the interconnect to transport the request to the slave

• the slave to execute the request and produce a response

• the interconnect to transport the response to the master

A workaround for this is to do the request in advance, before the master actually needs
it. To achieve this prefetch of data, a split read is used. First the address containing the
read data location is acknowledged. After that the actual read data is acknowledged,
when it is consumed by the processor. Figure 2.9 shows a prefetch read transaction.

Prefetching can be as classified as follows.

• hardware prefetching, the hardware performs and manages prefetches from mem-
ory. This implementation is transparent to the software.

• software prefetch: the user or compiler inserts instruction in the code to perform
prefetches. The hardware provides support for this.

• Hardware/software prefetching: a combination of the above.

For this thesis, we use software prefetching. To support the read prefetch, we use
a DMA transfer [28]: the processor signals to the DMA unit that it needs data from
memory. The DMA unit is responsible for fetching the requested word from memory.
Instead of using interrupts for signaling to the processor that the data has arrived, we
leave it up to the processor to poll for data.

In a multiprocessor system, it is possible that the prefetch read data is updated after
it was retrieved. This issue is important, as the prefetch read must not change the result
of the computation [14]. A prefetch read can be either non-binding or binding.

• Nonbinding: the data is kept coherent. On read data access, the latest value
written is loaded.

• Binding: the data is not kept coherent. On read data access, the value retrieved
is loaded.
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Figure 2.9: prefetch vs. non-prefetch read transaction

Nonbinding prefetch is essential in multiprocessors system, but it is more difficult to im-
plement than binding prefetch. We use nonbinding prefetch as it is easier to implement.
Therefore we must make sure that the data fetched from the prefetch unit is correct.
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2.6 The Æthereal Network-on-Chip

The Æthereal network on chip consists of routers and network interfaces (NI), and tools
to build and configure them [7]. Figure 2.10 shows an overview of the NoC.
The NI is split in two parts:

1. NI kernel, which implements flow control, schedule packets for sending to routers
and implements connections.

2. NI shell, interfaces to the IPs.

Figure 2.10: overview of the NoC

The main reason to split the NI into a shell and a kernel is for flexibility [25]. This way
the shell can be re-used with different NI kernel versions. Also, to offer support for a
new bus protocol, it is only necessary to implement a new shell.

The network provides two classes of quality of services (QoS) :

1. Guaranteed service (GS), channels use time division multiplexing circuit switching
approach. Circuits are set up by reserving consecutive slots in the slot table. We
use this QoS.

2. Best effort (BE), channels use buffered (worm-hole) flow control with input buffer-
ing. BE uses unused slots of the GS to transport data. We do not use this QoS

The following section details the functionality of the NI shell, the main topic of this
thesis. Further details of the routers and the NI architectures are not described here, as
they are documented in the specific literature [8], [25].

2.6.1 NI shell and messages

IPs use the bus for communication with other components (section 2.3). They interface
with each other using memory mapped I/O. The exact communication details depend on
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the bus protocol being used. The NoC, on the other hand, serializes the bus transaction
into messages. The messages are on streaming protocol and are independent of the bus
type. The functionality of a NI shell is to convert bus protocols into NoC messages
and vice versa. The presence of the NoC should be transparent to the IP. This way an
IP can be plugged into a network without any modification. The NI shells interface to
the IPs via a bus. As a transaction involves a master and a slave IP, the NI shells are
located both at the master side and at the slave side. The functionality of the master
shell is to serialize the master IP read or write requests, consisting of commands groups,
address and optionally write data, into request messages. The master shell also has to
de-serialize the response messages into IP read or write responses. Figure 2.11 illustrates
an example of the master shell. At the slave side, the opposite operations occur. The

Figure 2.11: Master shell example

functionality of the slave shell is to de-serialize the request messages into the slave IP
read or write requests. It also has to serialize the slave IP read or write responses,
consisting of command groups, data and address, into response messages. Figure 2.12
illustrates an example of the slave shell. The messages consist of headers and payload.

�����
�����
������ �� �������

������������

���������

���������

��������
�������

����������
���������������

����������������

IP
or local bus

OPB/PLB
Unified message for 
both OPB/PLB

Figure 2.12: Slave shell example

The header contains the message type, the slave address and the length of the message.
The payload consists of the actual data, byte enable and end of message (EOM). The
whole message format is illustrated in figure 2.13. The actual message that is sent or
received depends on the message type:

• write request messages consist of headers A,B and the data field(s).



20 CHAPTER 2. BACKGROUND INFORMATION

• read request messages consist of headers A and B.

• write response messages consist of header A

• read response messages consist of header A and the data field(s)

Each message has an EOM bit. The messages are transferred to the NI kernel input queue
with a simple handshake streaming protocol. The protocol consists of valid, accept and
data lines. Data (the actual message) is only transferred between the shell and the kernel
when both the valid and accept are valid on the rising edge of the clock signal.

Figure 2.13: Æthereal message format

2.7 Æthereal runtime configuration

The NoC has to be configured before it is used. The configuration process consists of
setting up connections between the NIs. This is accomplished by writing to the registers
of the NIs. The registers of the NIs are accessible from the configuration port of the host
NI. This way the configuration of the NoC is done through the network itself, there is no
separate control network. The configuration operations are executed by (at least) one
configuration master. The steps needed to configure a network for GT are as follows.
First a connection is opened from the configuring NI (NIc) to the target NI, by writing
messages to the NIc to:

• set up the flow control by initializing the remote space counter

• initialize the slot table

• set up the channel type, remote queue id and path from NIc to NIt

Next, a connection from the target NI (NIt) is opened to the NIc by writing messages
to the NIt to:
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• set up the channel type, remote queue id and path from NIt to NIc

• set up the flow control by initializing the remote space counter

• set up the slot table

Last, the NIc closes the configuration request connection to the NIt by:

• reading the remote space until all credits are returned

The NoC configuration process is detailed in [13].

2.8 NoC design tool flow

The Æthereal NoC consists of programs to generate the network topology and configu-
rations files in SystemC, VHDL and C [13]. This section details the process to generate
a NoC in VHDL from the tools provided.

2.8.1 NoC setup

The setup consists of specifying the NoC parameters. Some relevant parameters are as
follows.

• Flow mode: the Unified MApping, Routing and Slot allocation (UMARS) is used.
It is an algorithm for the mapping of cores and the routing of communication
between the cores.

• Topology: specify the type of topology. The topology used is mesh topology. Also
the number of NI per router can be specified here.

• Configuration service class: specify whether the network is configured using GT or
BE. The default is GT.

Furthermore, some network specific parameters need to be set. They are specified in
generated XML files or text files. The following subsections give an overview of the
various options.

2.8.1.1 Architecture

The architecture parameters allow customizing, among others, the slot table size. We
allocate a certain link bandwidth by varying the number of slots in the slot table. Apart
from the slot table, all the ports connections between the shell and the NI kernel are
specified in this section.
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2.8.1.2 Communication

In this section, the usecase can be specified. The parameters of the connections include:

• QoS: we can specify whether we use GT of BE. We use GT

• Initiator and target port for the connection.

• Bandwidth and latency requirements. The tool computes the number of slots
in the slot table from the information provided by the bandwidth and latency
requirements.

Instead of using the generated slot table, we customize it according to the link bandwidth
we want to use. Furthermore, we use the usecases to differentiate between the various
link bandwidth setups we use for the experiments.

2.9 FPGA design flow

We use tools and components provided by Xilinx to build a System-on-Chip. We design
the embedded system using the Xilinx Embedded Development Kit (EDK).

2.9.1 EDK

The EDK is an integrated software platform for designing embedded processing systems
based on the Xilinx FPGAs. It contains descriptions of Xilinx and 3rd party boards.
Different types of components are provided by libraries, like busses, controllers and
processors. It is also possible to add custom components to the library, which can
be imported and used in the embedded system. The EDK includes tools for writing
and uploading applications to the embedded system. By default, the EDK compiles
and uploads the application in the block RAM (BRAM) of the embedded processor.
After the embedded system is designed, it is possible to simulate the whole design in a
simulator. The EDK interacts with the simulator by generating simulation VHDL files
and simulator compile scripts. These files are then used by the simulator. The supported
simulators are ModelSim, NcSim and the ISE simulator. The EDK can automatically
generate the addresses for the peripherals. It is also possible to give each peripheral a
custom address.

For the hardware generation, we use the EDK to import the generated Æthereal
NoC. After that we build the system by connecting the components. The last step is to
specify the addresses of the shells and the memory on the local bus. For the software
generation, we use the tools provided by the EDK to create software applications for
the µBlaze. The software tools include compilers and linkers. When the whole design is
ready, it is synthesized with Xilinx Synthesis Technology (XST).

2.9.2 Digilent XUPV2P board

Our design is implemented on the XUP Virtex-II Pro Development System, developed
by Xilinx and manufactured by Digilent. The XUPV2P board provides a hardware
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platform that consists of a Virtex-II Pro FPGA surrounded by a collection of peripheral
components that can be used to create a system [27]. The XUPV2P board is supported
by the EDK. Figure 2.14 shows a block diagram of the board. After the bit stream is
generated with the EDK tool, Xilinx impact application is used to upload the bit stream
into the FPGA.

Figure 2.14: Block diagram of the XUPV2P board
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Design of the NI shells 3
This section details the design of the Æthereal OPB/PLB/FSL shells. The aim is to
design a shell which provides interoperability and high performance i.e. hide the trans-
action latency and increase the data throughput when possible. All the shells have a
pair of streaming ports, i.e. one for the read/write request and one for the read/write
response. Therefore, the shells support one connection between an initiator and a target.
We do not consider supporting separate read and write connection in the shells, as for the
OPB and PLB, the command group for read and write is shared. For the shell designs,
we choose an iterative design methodology. We first implement shells that support the
basic functionality. Only there after we implement more advanced features. The shells
are designed using VHDL.

3.1 Design methodology

We start by designing a shell for a bus with a simple protocol, the OPB bus. The OPB
shell does not actually fit the idea of high performance shell, because the OPB bus itself
is not suitable for interconnecting high performance components. The next step is to use
a high performance bus, the PLB bus. The PLB bus has a more complex protocol than
the OPB bus and it supports more advanced features. We convert the fully tested and
functioning OPB shell into a PLB shell. The last step in achieving the high performance
shell is to modify the resulting PLB shell to include optimizations. To further gain more
performance, we use a dedicated bus, the FSL link, to support specific transactions. The
high performance shells thus consist of the PLB shells and the FSL shell.

This design approach is necessary because our shells are components inside a larger
system. Starting with designing a fully optimized shell supporting various features is a
daunting task and error prone.

For the actual shell designs, we use a modular approach when possible. This has
the advantage that each separate module can be fully tested and optimized without
compromising the integrity of the whole shell. We use the modular design approach
extensively for the design of the optimized PLB shell.

3.1.1 Test strategy

We develop a test strategy in order to:

• detect and fix design and logic errors. These include erroneous transitions in the
state machines, incorrect output of components, etc.

25
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• verify the functionality of the shells. These include shell/kernel timing discrepan-
cies, message format mismatch, etc.

We use custom made test-benches, software applications and the actual Æthereal NoC
for the tests. For each shell, we perform a set of tests. First, we setup a test-bench with
the shell as device under test. This in order to verify the internal logic of the shell. After
that, we use a setup consisting of the shells, the Æthereal NoC, a µBlaze and a on-chip
memory. We test the shells by performing writes to the memory and reads from the
memory. We verify that the write and read data are correct.

As these extra components are not part of the shell design, we do not consider them
further in this thesis.

3.2 Shells overview

The OPB/FSL/PLB shells share common functionality. They differ in implementation
details.

Table 3.1: Shells protocols overview

PW NPW Burst w rd Burst rd Pr rd Burst pr rd Split Err
OPB target x

√
x

√
x x x x

√

OPB init -
√ √ √ √

- - x
√

PLB target base
√ √

x
√

x x x
√

x
PLB target opt

√
x

√ √
x x x

√
x

PLB init -
√ √ √ √

- -
√

x
FSL shell x x x x x

√ √ √
x

Table 3.1 gives an overview of the supported features of the various shells. The
abbreviations used in the table are as follows.

• pw: posted write

• npw: non-posted write

• w: write

• rd: read

• pr: prefetch

• Err: error handling

• Split: uses address phase and data phase

• -: not applicable for the shell
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•
√

: feature supported by the shell

• x: feature not supported by the shell

The next sections detail the design of each shell.

3.3 OPB shells

The OPB shells encode OPB bus protocol into the Æthereal messages and for decoding
Æthereal messages into the OPB bus protocol. The OPB shells are designed to be used
as the first stepping stone towards the high performance PLB shells. The reasons are:

• The OPB bus has a simple protocol, which is easy to interface to.

• We have the freedom to experiment with design concepts that we will not necessar-
ily implement in the high performance shells. Example of this is the error handling
mechanism.

• We can quickly develop a prototype shell to experiment with the NoC. This enables
us to gain insight into the generation process of the NoC and to familiarize with
the development kit.

Because of these considerations, the shell design is kept as simple as possible. Two OPB
shell versions exist:

• OPB target, responsible for serializing the OPB bus request protocol into the Æthe-
real request message format and for de-serializing the Æthereal response message
into the OPB bus response protocol. The OPB target is a slave on the OPB bus
in the master tile.

• OPB initiator, responsible for de-serializing the Æthereal request message into
the OPB bus request protocol and for serializing the OPB bus response into the
Æthereal response message format. The OPB initiator is a master on the OPB bus
in the slave tile.

3.3.1 OPB target shell

Figure 3.1 shows a diagram of the OPB target shell interface to the OPB bus. Not all of
the signals shown are used. This due to the fact that some optional signals and transfer
signals are not supported by the target shell or the NoC message format.

3.3.1.1 OPB target shell unused signals

The unused signals are as follows

• Sln hwAck, Sln fwAck, Sln dwAck and OPB hwXfer, OPB fwXfer,
OPB dwXfer: OPB Transfer Size Acknowledge signals. These signals are used
to implement Dynamic Bus Sizing on the OPB [19]. There are no corresponding
fields in the NoC message format to support this feature.
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Figure 3.1: OPB target shell interface overview [19]. Dashed lines indicate unused signals

• Sln beAck, OPB beXfer: byte enable transfer request signals. We use the
OPB BE signals instead.

• Sln DBusEn32 63: signal to enable a 64-bit slave devices data onto the OPB
data bus(32:63) during read transfers. We instantiated the Æthereal NoC with a
word width of 32 bits.

• OPB UABus(0:31): signals are used to form the most significant portion of a
64-bit address. We instantiated the Æthereal NoC with a word width of 32 bits.

• OPB seqAddr: signal is used to reduce the latency for sequential addresses ac-
cess, by allowing the slave to bypass the address decode cycle. This feature is not
supported by the prototype target shell.
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3.3.1.2 OPB target shell signals mapping

The OPB protocol request signals are mapped to the Æthereal message format. Figures
3.2 and 3.3 show the write request message and the read request message respectively,
produced by the OPB target shell.

Figure 3.2: Write request message

Figure 3.3: Read request message

The OPB bus signals used are as follows.

• OPB ABus(0:29) 7→ read/write request Header B(1:30) address field: contains
the address of the transaction. The 2 LSB bits of the address are omitted, due to
the fact that the memory is word addressable.

• OPB DBus(0:31) 7→ write request Message data(5:36) data field: contains
the transaction write data.

• OPB BE(0:3) 7→ write request Message data(1:4) mask field: contains the
master byte enable signals of the transaction.

The rest of the signals are used for handshaking with the OPB bus.

3.3.1.3 OPB target shell overview

Figure 3.4 shows an overview of the OPB target shell. It consists of:

• FSM, to handle the handshake between the target and the shell and for loading
data into the shift registers

• address decoder, to recognize the address on the bus.

• shift registers, for handling the handshake between the target and the NIK.
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Figure 3.4: OPB target shell overview

Figure 3.5 shows the state diagram of the FSM. The OPB bus performs the address
and data transaction in one handshake. When there is a valid transaction on the bus, the
transaction command flags and write data are ready to be sampled. The FSM enables
the shift register, resulting in the messages being loaded into the shift registers. As

S0_READY

S1_LOAD_SHIFT
Master_sel

S2_RCV_HDR!rnw & xfer_ok

S3_RCV_DATA
rnw & xfer_ok

EOM

Figure 3.5: OPB target shell state diagram

the OPB bus does not support posted transactions, the FSM waits for the acknowledge
message to return and acknowledges the transaction to the bus. If the transaction results
in an error, the target shell raises the error acknowledge signal.

Figure 3.6 shows the shift register interface. When enabled, the shift register is loaded
with the request messages, consisting of the serialized command signals, flags and write
data, if the transaction was a write. After the shift register is loaded, it starts shifting
the messages out to the NIK. The input of the shift register is a reshuffle of the OPB
bus signals, with additional signals to complete the message format.

3.3.2 OPB initiator shell

Figure 3.7 shows an overview of the OPB initiator interface. As with the OPB target,
not all signals are used. This due to the fact that some optional signals and transfer
signals are not supported by the initiator shell or the NoC message format.
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Figure 3.6: OPB target shell shift register interface

3.3.2.1 OPB initiator shell unused signals

The unused signals are as follows

• Mn hwXfer, Mn fwXfer, Mn dwXfer and OPB hwAck, OPB fwAck,
OPB dwAck: OPB Transfer Size Acknowledge signals. These signals are used
to implement Dynamic Bus Sizing on the OPB [19]. There are no corresponding
fields in the NoC message format to support this feature.

• OPB beAck, Mn beXfer: byte enable transfer request signals. We use the
Mn BE signals instead.

• Mn DBusEn32 63: signal to enable a 64-bit master devices data onto the OPB
data bus(32:63) during write transfers. We instantiated the Æthereal NoC with a
word width of 32 bits.

• Mn UABus(0:31): signals are used to form the most significant portion of a
64-bit address. We instantiated the Æthereal NoC to support an address width of
32 bits.

• Mn seqAddr: signal is used to indicate to the slave sequential address access.
This feature is not supported by the prototype initiator shell.

• Mn pendReqn: signal is used to indicate to the master that other masters at-
tached to the bus are requesting access to the bus. This feature is not supported
by the prototype initiator shell.

3.3.2.2 OPB initiator shell signals mapping

The OPB protocol response signals are mapped to the Æthereal message format. Figure
3.8 shows the read response message, produced by the OPB initiator shell.

The OPB bus signals used are as follows.

• Sln Dbus(0:31) 7→ read request Message data(5:36) data field: contains the
transaction read data.

The rest of the signals are used for handshaking with the OPB bus.
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Figure 3.7: OPB initiator shell interface overview [19]. Dashed lines indicate unused
signals

Figure 3.8: Read response message
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3.3.2.3 OPB initiator shell overview

Figure 3.9 shows a diagram of the shell. It consists of:

• FIFOs, used to store the incoming messages and also for buffering the response
messages.

• registers, used to hold the write response headers.

• FSM, controls the processing of the messages and handles the handshake with the
OPB bus.

The shell starts processing the request messages only when there is a complete request
ready. This enables the initiator shell to complete the transaction request to the bus
without stalling, blocking other masters the access to the bus. For experimental purposes
and to research burst transactions for the PLB shell, we made it possible for the initiator
shell to handle burst transactions. It does this by splitting burst transactions into single
transaction, as the OPB bus does not support burst transactions.

The OPB initiator has to take into account that the transaction may result in an
error. For this reason, when there is a read transaction, the initiator shell must buffer
the whole response and wait until the transaction finishes before it can generate and send
the message header. This due to the fact that the message header contains the response
type (acknowledge or error). For a burst read transaction, the shell waits until the last
data read is fetched from the OPB bus before it starts sending the messages to the NIK.
This due to the fact that the initiator shell must take another course of action in case of
an error transaction compared with a normal transaction. The error invalidates all the
previous data read of the burst read transaction in progress, as the Æthereal message
format does not support reporting individual errors in block read response messages.
The following steps are performed for a burst read transaction.

• Buffer the read data while burst is in progress

• If no errors occurs, send the acknowledge read header and the read data messages
to the target shell. Burst read transaction is complete

• If an error occurs, first purge all the buffered read data from the FIFO, as they are
not valid anymore. Then generate an error header and send it to the target shell.
Burst read transaction failed.

The error condition puts a constrain on the condition for processing a message. Due to
the fact that the send FIFO must be flushed when an error occurs during a burst read
transaction, the send FIFO must be empty prior to processing the burst read transaction.
The write transaction does not have these limitations, as the outcome of a write is either
an acknowledge of an error.

3.3.2.4 Proposals for alternative solutions for error handling

To overcome the limitation imposed in case of an error, we propose three possible so-
lutions. The first solution addresses the problem, while the second and third solutions
offer a workaround.
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Figure 3.9: OPB initiator shell overview

1. Make the message format more flexible. The main problem with the burst read
response message is that either the whole transaction succeeds or fails. Instead of
using such a sharp distinction, for example, an extra field to the data messages
can be added to indicate whether it is valid or not. This way the individual data
messages contain the status instead of the message header. The disadvantage of
this approach is that the message width must be adapted. Another approach is
to send a footer for the burst read transaction, which contains masks to indicate
whether a data message is valid or not. For example, in the footer, a ’1’ at bit
position ’n’ indicates that data message ’n’ is valid, and so on. The disadvantage
of this solution is that an extra message needs to be sent and that the target
shell needs additional logic to decode the response messages. Also the target shell
must wait until the last message arrives until it is able to process the burst read
responses.

2. Split the burst read response message into multiple single read response messages.
This workaround avoids the whole issue with the burst response message. There are
a couple of disadvantages with this approach. First, the target shell does not expect
single read response messages to return. This can lead to undefined behavior if the
target shell uses the ”len” field of the burst header to process burst transactions.
It imposes restriction for all target shell on how to handle burst transactions. Also,
extra headers need to be sent to the target shell.

3. Set the mask field to zero. In this case, a zero mask field indicates invalid data.
This can also lead to undefined behavior at the target shell, as the mask field is
not intended to be used as a status field.
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3.4 PLB shells

The PLB shells are shells for encoding PLB bus protocol into Æthereal messages and for
decoding Æthereal messages into PLB bus protocol. The PLB shells have two versions:

• PLB target, responsible for serializing the PLB request signals into Æthereal re-
quest messages and de-serializing the Æthereal response message into PLB response
signals at the master tile.

• PLB initiator, responsible for de-serializing the Æthereal request messages into
the PLB request signals and serializing the PLB response signals into Æthereal
response messages at the slave tile.

For the target shell, we design two versions. The base design of the first version is
the OPB shell. We derive our design out of the OPB target shell and make it suitable
for the PLB bus. This way we reuse the working and fully tested shell design. This will
provide an initial platform for testing. For the second, optimized version we start from
scratch. The design focus of the optimal shell is on performance.

For the initiator shell, we decided to not include error handling as there is no efficient
mechanism to report an error. The fact that the message type is in the header means that
the initiator shell can only send the response message when it is complete. Meanwhile
it has to buffer the messages. This increases the transaction latency. We choose not to
implement the alternative solutions discussed in Section 3.3.2.4 because:

• we do not want to change the Æthereal NoC message format specification, as this
has an impact on other existing shells (solution one).

• we strive for a structural solution and not a quick hack (solutions two and three).

The following sections detail the design of the PLB target and initiator shells.

3.4.1 PLB target shell

The PLB target interfaces through the PLB bus with the µBlaze. Figure 3.10 shows an
overview of the target shell. The bus signals are grouped as follows.

1. Command signal group: these signals include the arbitration signals (valid address,
etc) and the transaction signals (read/not write, address, etc). The transfer quali-
fiers are for initiating, handling and completing transactions. They contain all the
necessary information of the transaction.

2. Write data signal group: this bus includes the master write data and the slave
acknowledge signals.

3. Read data signal group: this bus includes the slave read data and acknowledge
signals.

Not all of the PLB bus signals are used by the target shell. This because some PLB bus
features are not supported by the shell, either due to the fact that the µBlaze does not use
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Figure 3.10: PLB target overview [17]. Dashed lines indicate unused signals

them or they are not implemented in the shell. Examples are the burst signals like and
errors signals. For the burst case, the µBlaze does not support burst transaction. For this
reason we coalesce multiple single transactions into burst transaction when possible in
the optimized shell. For the error case, the PLB shell does not support error situations
as the initiator shell does not generate error messages. Furthermore, the target shell
address is set at design time. The disadvantage of this is that the target shell address
cannot change during run time. In Section 3.4.2 we propose a solution.

3.4.1.1 PLB target shell unused signals

The unused signals are as follows [17]

• PLB masterID(0:3): PLB Master Identification, used by the slave to determine
to which master the Sl MBusy, Sl MRdErr and Sl MWrErr signals must be driven
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on the PLB [17]. We do not have support for errors and busy signals in the PLB
shells. We use Sl wait to indicate that the target shell needs more time to complete
the transaction.

• PLB BEParEn, PLB BEPar: enables parity support for the Mn BE signal.
There is no adequate section in the NoC message format to support this feature.

• PLB size(0:3): indicate the size of the requested transfer. We instantiated the
Æthereal NoC with a word width of 32 bits.

• PLB TAttribute (0:15): present specific transfer information to slaves. We do
not have a use for these signals. Also, there are no adequate sections in the NoC
message format to support this feature.

• PLB type (0:2) : to indicate to the slave the type of transfer that is being
requested. Two categories of transfer types exist: memory transfer and direct
memory access (DMA) transfer. There is no adequate section in the NoC message
format to support this feature.

• PLB MSize (0:1), Sl SSize (0:1): master and slave size signals, indicate the
data bus width of the associated master or slave. We instantiated the Æthereal
NoC with a word width of 32 bits.

• PLB lockErr: lock error status. We do not have support for errors in the PLB
shells.

• PLB abort: abort request. This request in not applicable in the scope of the
NoC. There is no adequate section in the NoC message format to support this
feature.

• PLB ABusParEn, PLB ABusPar, PLB UABusPar, PLB UABusParEn:
enables parity support for the Mn ABus and Mn UABus signals. There is no
adequate section in the NoC message format to support this feature.

• PLB UABus (0:31): allows for address expansion from 32-bits to 64-bits. We
instantiated the Æthereal NoC to support an address width of 32 bits.

• PLB rdPendReq, PLB rdPendPri (0:1), PLB wrPendPri (0:1),
PLB reqPri (0:1): read or write request pending on the PLB bus. PLB
masters and slave devices can use these signals to help resolve arbitration on the
PLB or other buses that are attached to the PLB by a bridge or cross-bar switch
[17]. We do not have a use for these signals. These requests are not applicable in
the scope of the NoC.

• Sl rearbitrate, Sl MBusy: to indicate that the slave is unable to perform the
currently requested transfer. We use Sl wait to indicate that the target shell needs
more time to complete the transaction.

• Sl MRdErr (0: n), Sl MWrErr (0: n): slave error notification. We do not
have support for errors in the PLB shells.
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• Sl MIRQ (0: n): slave interrupt notification. We do not have support for inter-
rupts in the PLB shells.

• PLB SAValid, PLB rdPrim, PLB wrPrim (0: n): used in address pipelin-
ing. We do not have support for address pipelining in the PLB shell.

• PLB wrDBusPar, PLB wrDBusParEn, Sl rdDBusPar,
Sl rdDBusParEn: enables parity support for the Mn wrDBus and the
Sl rdDBus signals. There is no adequate section in the NoC message format to
support this feature.

• PLB wrBurst, Sl wrBTerm, PLB rdBurst, Sl rdBTerm: used for burst
transfers. The µBlaze does not perform burst transfers.

• Sl rdWdAddr (0:3): used for line transfers. We do not support line transfers in
the PLB shell.

3.4.1.2 PLB target shell signals mapping

The PLB protocol request signals are mapped to the Æthereal message format. Figures
3.11 and 3.12 show the write request message and the read request message respectively,
produced by the PLB target shell.

Figure 3.11: Write request message

Figure 3.12: Read request message

The PLB bus signals used are as follows.

• PLB ABus (0:29) 7→ read/write request Header B (1:30) address field: con-
tains the address of the transaction. The 2 LSB bits of the address are omitted,
due to the fact that the memory is word addressable.
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• PLB wrDBus (031) 7→ write request Message data (5:36) data field: contains
the transaction write data.

• PLB BE (0:3) 7→ write request Message data (1:4) mask field: contains the
master byte enable signals of the transaction.

The rest of the signals are used for handshaking with the PLB bus.

3.4.1.3 PLB target base shell overview

FSM

Shift
registers

Address
decoder

Registers

PLB bus

Out message

In message

Shell

Figure 3.13: PLB target base shell overview

Figure 3.13 gives an overview of the base shell. It consists of:

• FSM, performs the handshake with the PLB bus, load the shift register with the
messages and to control the de-serialization of the response messages.

• address decoder, is used to recognize the slave address from the PLB bus. This
component generates a valid signal when a valid address is recognized. The valid
signal goes straight to the registers and the FSM

• registers, stores the command signals and flags of the bus, to be used by the rest
of the components

• shift register, performs the handshake with the NIK.

The target shell starts processing the transaction request when it detects a valid address
on the bus.

Figure 3.14 shows a diagram of the FSM interface. The inputs ’EOM’ and ’rd valid’
are from the incoming message and the NIK respectively. They are used to determine



40 CHAPTER 3. DESIGN OF THE NI SHELLS

Figure 3.14: PLB target base shell data FSM

whether all the words of a message are received. The ’CS i’ signal is from the address
decoder and is used to start the handshake between the FSM and the PLB bus. The
’PLB RNW i’ is used for determining whether the transaction currently being processed
is a read or a write. The FSM generates the slave handshake signals to the bus and it
also indicates to the shift register when to load the headers and data messages.

SO_READY

!CS_i
S1_ACKCS_i

S2_WAIT_TRANSdata_fetched_i

!data_fetched_i

Figure 3.15: PLB target base shell address state diagram

The FSM is internally divided in two separate state machines. One state machine is
responsible for the address handshake and the other is responsible for the data handshake.
Figure 3.15 shows the state diagram of the address state machine. Only the relevant
signals are displayed. When a valid address on the bus is recognized (CS i=1), the state
machine progresses from the initial state to the acknowledge state and the address is
acknowledged. After that the state machine progresses to the wait state, where it waits
until the data stored in the registers is fetched by the other state machine. This is
necessary for the synchronization between the two state machines.

Figure 3.16 shows the state diagram for the data state machine. Again, for simplicity,
only relevant signals are displayed. The state machine waits until the address on the bus
is acknowledged to start to transition to the next state. Normally, the next state is the
encode state, where the shift register is loaded with data. The only exception is when
the shift register did not finish shifting data belonging to the previous transaction. This
happens when the shells perform a posted write and the NIK did not accept all the data
yet. After the shift register is loaded, the state machine transitions into the wait state,
where it waits for the response messages to arrive. If the transaction was a posted write,
the state machine proceeds to the write acknowledge state. In case of a read transaction,
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Figure 3.16: PLB target base shell data state diagram

if the data for the last message arrives (EOM=1), the state machine acknowledges the
read transaction and presents the read data to the PLB bus.

Figure 3.17: PLB target base shell address decoder

Figure 3.17 shows the interface of the address decoder. If the bus address is in range
according to the base address, the address decoder will recognize the address as a valid
address and generates a valid ’chip select’ signal.
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Figure 3.18: PLB target base shell registers

Figure 3.18 shows the base shell registers. They are used for preserving a copy
of the command group and write data of the current transaction. This ensures that
the transaction commands and data are always available while the shell processes the
transaction. Without the registers, the shell may use updated commands or write data
from the bus, resulting in erroneous transactions. It also stores the read request data
for the PLB bus.

Figure 3.19: PLB target base shell shift registers

Figure 3.19 shows the base shell register. The ’Bus HDRA’, ’Bus HDRB’ and
’Bus Data’ signals are a combination of the registered PLB bus signals, extended with
data corresponding to the Æthereal message format. The signals ”wr accept” and
”wr valid” are used for handshaking with the NIK. The ”wr accept” indicates that the
NIK accepted the current word of the message, causing the shift register to shift the
next word of the message to the output.

3.4.1.4 PLB target optimized shell overview

The aim of the optimized shell is to provide a high performance shell. This is accom-
plished in a couple of ways. First, the shell only performs posted write transactions and
it contains logic to automatically coalesce multiple transactions to a burst transaction if
possible. Next, the shell takes full advantage of the possibility to acknowledge the ad-
dress and write data in the same clock cycle as the write request is made, in compliance
with the PLB protocol [17].
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Figure 3.20: PLB target optimized shell overview

Figure 3.20 shows an overview of the optimized shell. The shell has a modular
design. The shell consists of three main components. Each of the components performs
an independent task.

• Encoder unit: encodes the PLB request transaction into Æthereal messages.

• Message unit: transmit messages to the NIK.

• Decoder unit: decodes the response message into the PLB protocol signals.

With this modular approach, it is possible to replace a unit and still have a fully func-
tioning shell. When there is a valid transaction on the bus, the encoder unit serializes
the bus signals into a message, stores it in FIFOs and provides it to the message unit for
further handling. The message unit transmits the messages and handles the handshake
with the NIK. The decoder unit processes the incoming messages and handles the read
transaction handshake of the PLB bus.

We use FIFOs for sending messages to the NIK instead of shift registers. The dif-
ference between the FIFOs and the shift registers is that the former has a depth of 32
words (design time configurable) and the latter has a fix depth of 3 words. This allows
the encoder to process the next transaction without it having to wait for the words of
the message to be accepted by the NIK, as it can store the request messages into the
FIFOs. Also, the FIFOs have a separate buffer for address words and data words of the
message. The FIFOs are as follows.

• Header FIFO, contains the header word of the message, consisting of the transac-
tion type.
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• Address FIFO, contains the header word of the message, consisting of the trans-
action address.

• Data FIFO, contains the data words of the message.

The benefit of splitting the request process in encoder unit and message unit is as
follows. In this setup, the encoder is free to create the header and data words of the
request message in random order. This is possible as the encoder unit can store each
of the generated words of the request message separately. It is the responsibility of
the message unit to first transmit the header words and thereafter the data words of the
request message. For example, for burst coalescing, the data word is created immediately.
Only after the burst is complete does the encoder unit create the header words, which
contains the burst size. The message unit detects that there is a header word present
and starts sending the request message to the NIK. Figure 3.21 shows the interface of

Figure 3.21: PLB target optimized shell encoder unit

the encoder unit. A write transaction is immediately acknowledged, with the write data
word being stored in the FIFOs. The write transaction header words are generated
depending whether the write transaction is a burst or not. For a read transaction, the
header words are immediately sent to the FIFOs.

The address decoder determines whether the bus transaction is valid and generates
a valid signal for the other components.

The registers are used to store the command group signals, flags and address. The
FSM is responsible for loading the request header words into the FIFO and for enabling
the burst counter. The encoder unit also keeps track of the outstanding write transac-
tions. This allows synchronization with other units.

Figure 3.22 shows the FSM of the encoder. The shaded boxes indicate the states
that recognize the write transaction. The logic, that detects a burst transaction, has to
satisfy to the following conditions:
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Figure 3.22: PLB target optimized shell encoder unit FSM

• state is ’S1 REG OP’, the write recognition state.

• the FIFOs must not be empty, because this indicates that the network is idle.
When the network is idle, the overhead of sending headers is not relevant. When
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it is not, we introduce extra delay by waiting.

• there is a valid write transaction.

• current address=previous address + 4. Thus the current address is a consecutive
address.

• the burst counter must be smaller or equal to the maximum burst size supported
(thirty two).

In the write state, if a burst is in progress, the base address will be stored and the
consecutive addresses will be discarded. We store the base address, because we need to
compare with consecutive addresses. If all these conditions are met, a burst transaction
is in progress. If one of these conditions is not met, the FSM wraps up the transaction
by sending the headers to the FIFOs and resetting the counter. The headers are created
when the FSM stores the operands in the register. When the state machine is in the
write detection state and a read occurs, it first wraps up the write transaction and then
wraps up the read transaction by storing the read message headers immediately into the
FIFOs.

Figure 3.23: PLB target optimized shell message unit

Figure 3.23 shows the interface of the message unit. It receives the messages from
the encoder unit and performs the handshake transaction with the NIK. The unit sends
data to the NIK as soon as there is a valid header message. For a burst transaction, it
keeps track of the number of messages it sends to the NIK. The data messages always
arrive first in the FIFO. The last message to arrive is the header messages. When the
last data word of the message is sent, it appends the EOM bit to the data word.

Figure 3.24 shows the decoder unit. The decoder unit is used for decoding the
read response message and for bookkeeping on the outstanding writes. A read response
message is decoded into the PLB read acknowledge and data signals. The encoder asserts
the ’incr wr’ signal each time a write transaction occurs. This causes the decoder to
increase the outstanding writes counter. While there is an outstanding write transaction,
the ’ext en’ signal is de-asserted, causing other shells to stall. When a write acknowledge
message arrives, the outstanding write counter is decremented. The ’ext en’ signal is
asserted when there are no outstanding writes anymore.
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Figure 3.24: PLB target optimized shell decoder unit

3.4.2 Target shell address

It is desirable to change the target shell address at run time. We propose a method to
achieve this. Currently we compare the bus address to the base address set at design
time to recognize a valid address. To offer more flexibility, we propose to store the shell
address in a register. This way a new address can be set by overwriting the value in the
register. Figure 3.25 shows a possible setup. The address set at design time is used to

Figure 3.25: PLB target synchronization unit

address the register. During setup, a valid value must be written to this register. This
value should be the slave address. During runtime, a different slave address can be set, by
writing a new value to the register at the shell design time address. The address register
uses the ’PLB PAValid’, ’PLB Abus’ and ’Base addr’ signals to determine whether it is
addressed. If that is the case, it fetches and stores the data from the bus. This will be
the new slave address, used by the address decoder.

3.4.3 PLB target optimized shell synchronization

The decision to only support posted writes has some drawbacks. In a multi-processor
setup, posted write can lead to synchronization problems between the processors. To
solve this, the optimized shell has support for synchronization between multiple shells.
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Figure 3.26: PLB target synchronization unit

Figure 3.26 shows this situation. The synchronization unit stalls the rest of the shells
when there are outstanding write transactions in a shell.

3.4.4 PLB initiator shell

The PLB initiator interfaces through the PLB bus with the on-chip memory of any slave.
The initiator shell is a master on the PLB bus. Figure 3.27 shows an overview of the
shell interface with the PLB bus. The PLB signals are grouped in three categories:

• Request qualifiers signals, includes the transaction request, address and read/write
signals.

• Write data signals, includes the write data and write acknowledge signals.

• Read data signals, includes the read data and the read acknowledge signals.

Like in the case of the target shell, not all signals are used by the shell.

3.4.4.1 PLB initiator shell unused signals

The unused signals are as follows [17]

• PLB MnTimeout: indicates that the transaction timed out. We continue to
drive the transaction request until we get an acknowledge from the slave.
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Figure 3.27: PLB initiator overview [17]. Dashed lines indicate unused signals

• PLB Mnrearbitrate, PLB MBusy (n): used by the slave to indicate to the
master that it is unable to perform the currently requested transfer. We continue
to drive the transaction request until we get an acknowledge from the slave.

• PLB MRdErr(n), PLB MWrErr(n): slave error notification. We do not have
support for errors in the PLB shells.

• PLB rdPendReq, PLB WrPendReq PLB rdPendPri (0:1),
PLB wrPendPri (0:1), PLB reqPri (0:1): read or write request pend-
ing on the PLB bus. PLB masters and slave devices can use these signals to help
resolve arbitration on the PLB or other buses that are attached to the PLB by
a bridge or cross-bar switch [17]. We do not have a use for these signals. These
requests are not applicable in the scope of the NoC.

• Mn busLock: acquire a lock on the bus. We do not lock the bus during a trans-
action.
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• Mn size(0:3): indicate the size of the requested transfer. We instantiated the
Æthereal NoC with a word width of 32 bits.

• Mn type (0:2): to indicate to the slave the type of transfer that is being re-
quested. Two categories of transfer types exist: memory transfer and direct mem-
ory access (DMA) transfer. There is no adequate section in the NoC message
format to support this feature.

• Mn MSize (0:1), PLB MnSSize (0:1): master and slave size signals, indicate
the data bus width of the associated master or slave. We instantiated the Æthereal
NoC with a word width of 32 bits.

• Mn TAttribute (0:15): present specific transfer information to slaves. We do
not have a use for these signals. Also, there are no adequate sections in the NoC
message format to support this feature.

• Mn lockErr: lock error status. We do not have support for errors in the PLB
shells.

• Mn abort: abort request. This request in not applicable in the scope of the NoC.
There is no adequate section in the NoC message format to support this feature.

• Mn UABus (0:31): allows for address expansion from 32-bits to 64-bits. We
instantiated the Æthereal NoC to support an address width of 32 bits.

• PLB MIRQ (0: n): interrupt notification. We do not have support for interrupts
in the PLB shells.

• Mn wrDBusPar, Mn wrDBusParEn, PLB MnrdDBusPar,
PLB MnrdDBusParEn: enables parity support for the Mn wrDBus and
the PLB MnrdDBus signals. There is no adequate section in the NoC message
format to support this feature.

• Mn wrBurst, PLB MnWrBTerm, Mn rdBurst, PLB MnRdBTerm: used
for burst transfers. The µBlaze does not perform burst transfers.

• PLB MnRdWdAddr (0:3): used for line transfers. We do not support line
transfers in the PLB shell.

3.4.4.2 PLB initiator shell signals mapping

The PLB protocol response signals are mapped to the Æthereal message format. Figure
3.28 shows the read response message, produced by the PLB initiator shell.

The PLB bus signals used are as follows.

• PLB MnRdDbus (0:31) 7→ read request Message data (5:36) data field: con-
tains the transaction read data.

The rest of the signals are used for handshaking with the PLB bus.
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Figure 3.28: Read response message
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Figure 3.29: PLB initiator shell details

3.4.4.3 PLB initiator shell overview

Figure 3.29 gives an overview of the structure of the initiator shell. It consists of three
main components.

• Buffer unit: decouples the message handling from the message processing and
handles the handshake between the shell and the NIK

• Transaction unit: processes the messages, handles the handshake transaction be-
tween the shell and the bus.

• Burst unit: computes the next sequential address and keeps track of the burst
length.
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Figure 3.30: PLB initiator shell buffer unit

Figure 3.30 shows details of the buffer unit. It consists of two FIFOs, one for re-
ceiving data from the network, the other for sending data to the network. The FIFOs
handle the handshake with the NIK. The receive FIFO provides the transaction unit
with the messages for processing. The send FIFO transports the response messages of
the transaction unit to the NIK.

Figure 3.31: PLB initiator transaction unit

Figure 3.31 shows the transaction unit. It consists of registers and a FSM. The
registers are used to hold the transaction data during the transaction. The FSM handles
the handshake with the PLB bus and controls the loading of data into the registers. The
FSM consists of two control units, one for handling the address and transfer qualifiers
of the transaction and one for handling the transaction data.

The state diagram of the address state machine is illustrated in figure 3.32. Only
relevant signals are shown. The first message to arrive is the header and contains infor-
mation about whether the transaction is a read or write and the burst length. The next
message is also a header, it contains the transaction address. If it is a write transaction,
the next message(s) contain(s) write data. The state diagram shows these steps. First
the read or write is decoded, after that the address. Depending whether the transaction
is a read or a write, the next action is to start the transaction request or decode the
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Figure 3.32: PLB initiator shell transaction unit address state diagram

write data.
A burst write or read request is handled as follows.

• Burst read request message: the initiator shell splits the burst read request
message into multiple single request transactions to the PLB bus. This to ensure
that all slaves can perform the transaction, even slaves that do not support burst
transaction. The read request address is updated after each time the target memory
acknowledges the transaction, and presented again to the bus. The burst read
request terminates when the burst size is zero. For the response, the initiator shell
gathers and converts all of the individual read data from the target memory into
response data words and sends them as one burst response message to the NIK.

• Burst write request message: the initiator shell splits the burst write request
message into multiple single write transactions to the PLB bus. This also to ensure
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that all slaves can perform the transaction, even slaves that do not support burst
transaction. The burst write is terminated by the message EOM. While there
is no EOM, the shell will threat the next word as a write message data, uses
the sequential address from the burst unit and presents the bus with the new
transaction. For the response, each time the target memory acknowledges a write
transaction, the initiator sends an acknowledge write response message to the NIK.
For the write response, the same acknowledge message is used, regardless if it is a
burst or not.

S0_READY

S1_LOAD_W

wr_ack

S2_LOAD_R1

rd_ack & !hdr_sent

S3_LOAD_R2

rd_ack & hdr_sent

Figure 3.33: PLB initiator shell transaction unit data state diagram

Figure 3.33 shows the state diagram of the data transaction. The purpose of this state
machine is to load the appropriate response messages. For the write transaction, when
the write is acknowledged, the state machine creates a write acknowledge message header.
A burst write is acknowledged with multiple single write acknowledges, according to the
specification. The case for a read transaction is different. The read response message
consists of message headers and the message read data. For a burst write, the header
needs to be sent only once.

Figure 3.34: PLB initiator shell burst unit

Figure 3.34 shows the burst unit. The purpose of the burst unit is to provide the
transaction unit with the burst related data. For a burst, the burst unit computes the
next sequential address, based on the base address provided. It also keeps track of the
number of burst left. It uses the PLB acknowledge signals to update the burst data.
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3.5 FSL shell

Figure 3.35: FSL master and slave interface

The FSL link is used as a dedicated prefetch read link. It can both perform single
read as well as burst reads. The FSL is an unidirectional FIFO link, with two interfaces:
initiator and target [30]. The initiator pushes data into the FSL and the target consumes
data from the FSL. The FSL shell interfaces through a pair of FIFO links with the
µBLaze. The shell has to interface with both the target and initiator interface of the
FSL. Figure 3.35 shows the interface of the FSL. The difference between the FSL and
the PLB is as follows. The PLB is a bus interconnect, uses an address based protocol for
transaction, with command signals group, write signal group etc. The FSL is a FIFO,
uses a streaming protocol for transaction, with handshake signals. This has an impact
on the shell design, as it does not have to deal with various signals group of the bus. This
enables the shell to have a flexible, simple design and interface. The streaming nature of
the FSL enables us to explore more alternative designs, as we are not bound to a fixed
bus protocol. In this section we present an FSL shell. In section 3.5.2 we propose an
alternative method for using the FSL link.

3.5.1 FSL shell design

The FSL shell can be used for both read and write communication, but we only perform
reads because they have the largest performance gain. We use the FSL shell to provide
the µBlaze with the capability of performing prefetch reads (Section 2.5). The data flow
from the µBlaze to the FSL shell and vice versa (Figure 3.36) is as follows.

• Request from initiator to target: the µBlaze performs a read request, single or
burst, by pushing the read request address on the FIFO. The FSL shell reads the
data from the other end of the FIFO, processes the address, creates an Æthereal
read request message and send it to the NIK.

• Response from target to initiator: the FSL shell receives the response message
from the NIK, decodes the message and pushes the response read data into the
FIFO for the µBlaze to retrieve at the other end.

There is no need for a FSL initiator shell as a normal PLB initiator shell is used to
process the request message.
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Figure 3.36: FSL link data flow

Furthermore, the FSL shell has two modes of operations. They are operation and
configuration mode. In operation mode, the FSL functions as a DMA. Configuration
mode is used to configure the burst size of the read request transaction, as the FSL shell
is capable of performing both single as burst transactions. The details of the two modes
are as follows.

• Configuration mode. The µBlaze specifies the 5 bit burst size of the read trans-
action. The shell stores the burst size in its internal registers.

• Operation mode. The µBlaze writes the 32 bit address it wants to read from to
the FSL and the shell performs a read request.

The modes are selected by using the control signal of the handshake signals of the FSL.
When the control bit is asserted, the mode of operation is configuration mode. When
the control bit is de-asserted, the mode is operation mode.

The FSL shell has a relatively simple design. This because it only has to perform
read transactions and it does not have to interface with a complicated bus protocol.
Figure 3.37 shows an overview of the FSL shell components. It consists of registers to
hold the read message headers and also the burst size. The FSM controls the registers
and performs the handshake with the NIK.

The FSM consists of 2 state machines. One is used for handling the request message
and the other one is used for handling the response message. This allows the shell to
process both incoming and outgoing messages concurrently.

Figure 3.38 shows state diagrams for both the request and the response state ma-
chines. The request state machine is responsible for handling the handshake with the
NIK. First the read message header is sent and after that the message data is sent. The
wait state is for when the NIK is not accepting messages. The response state machine
is responsible for controlling the write to the FSL link. It handles the FSL link master
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Figure 3.37: Overview of the FSL shell design

Figure 3.38: FSL shell state diagrams

interface. The response message header is discarded and the response message read data
is written to the FSL link by enabling the FSL write control signal, FSL M WRITE.

3.5.2 Proposal for an alternative FSL utilization

We propose a method for performing read and write transaction, using the FSL, from the
µBlaze directly to the NIK, i.e. without the need of an FSL shell. That is, writing and
reading to/from the NIK in software, without the need of a protocol conversion hardware
component. This is possible because the FSL has a simple handshake streaming protocol.
First we present the design this ”software NI shell”, after that we discuss the advantages
and disadvantages of this approach.

3.5.2.1 Design of the ”software NI shell”

Figure 3.39 shows the design of the ”software NI shell”. The idea is to have the µBlaze
perform read and writes to the FSL port and, after that, combine the transactions to
form the header and payload of the message.

For this purpose, we use two pairs of the FSL link. One pair is used for the request
message and the other pair is used for the response message. The streaming protocol of
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Figure 3.39: software NI shell

the FSL consists of a valid and acknowledge handshake. They work as follows.

• Request transaction: the two 32 bits outputs of the FIFOs target interface
are concatenated to form the 37 bits word of the request message. The two
”FSL S Exists” signals of the FIFOs target interface are AND’ed together to form
a ”ni valid” signal (valid) for the NIK. The ”FSL S Read” signal for the FIFOs is
formed by demuxing the ”ni accept signal (acknowledge). Additional logic is used
to ensure that the ”FSL S READ” is not asserted before there is data in the FIFO,
as this results in undefined behavior in the FSL.

• Response transaction: The 37 bits word of the response message from the NIK
is split into two to form the input of the two FIFOs. The ”ni valid” signal of
the NIK is demultiplexed to form the ”FSL M WRITE” of the FSL. The FIFOs
”FSL M FULL” are AND’ed together to form the ”ni accept” signal. Additional
logic is used to ensure that the ”FSL M WRITE” is not asserted if the FIFO is
full, as this results in undefined behavior in the FSL.

All the transactions are performed in software. To form one word of the message, two
writes to FSL (Section 3.6) are needed. To make this method more transparent for the
user, we propose to encapsulate the communication with the FSL in software libraries.

3.5.2.2 Analyses of the ”software NI shell”

The advantages of this approach are as follows.

• Flexibility to support all possible transactions. The IP can even perform trans-
actions that are difficult or not supported at the time the IP was designed (for
example burst transfers).

• Easy migration to future message formats, as long as the message width does not
change. Only need to change the software mapping
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• Compatible with not only the specific FSL streaming protocols, but all streaming
protocol in general. May need minor adjustment in hardware logic and software
for complete compatibility

The disadvantages of this approach are as follows.

• The transactions are performed in software. This results in more cycles per trans-
action in comparison to a dedicated hardware component. These extra cycles add
to the transaction latency and have a negative effect on the performance of the
IPs.

• Not all IPs have a streaming protocol. This limits the usability of this approach.

3.6 Impact on software

The OPB and PLB shell are memory-mapped addressable. The addresses of the shells
are configured at design time. Generics are used to select features of the shell or to set
certain shell parameters. The most common are:

• ’Base addr’, sets the base address of the shell

• ’C AB’ sets how many bits of the address needs to be compared before the slave
recognizes the address

• Posted Write, when enabled the target shell performs posted writes.

The base and high address of the target shell should be the same as that of the slave
being addressed. There are no restrictions for the address range of the initiator shell.

3.6.1 Local vs. remote memory

We define the memory in the master tile as the local memory and the memory in the slave
tile as the remote memory. We have to modify the software in order to communicate
with the remote memory. The remote memory is reachable by writing/reading to/from
the address range it occupies. This is accomplished by accessing the target shell in the
master tile, as the address range of the remote memory is the same for the target shells.

For example, in the following code, the values 0 to 99 are written to consecutive
address in the remote memory. We assume that the base address of the target shell and
remote memory is 0xB0010000.

int i ;
unsigned int ∗X;
X=(unsigned int ∗)0 xB0010000 ;
for ( i =0; i <100; i++)
{

X[ i ] = i ;
} ;
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3.6.2 API for split pipelined reads

The FSL shell is not memory-mapped addressable. This is due to the fact that the FSL
shell is not attached to a bus interconnect but to a FIFO link. The communication to the
FSL shell is performed through special ports on the µBlaze. The EDK provides special
macros to access the FSL links. We use the ’get’ and ’set’ instructions of the macro as
follows.

• putd f s l x ( var , id , FSL CONTROL) .

The control bit is asserted for this instruction. It is used to set the burst size in
the FSL shell. The burst size is ’var’, with ’id’ being the FSL link pair id on the
µBlaze.

• putd f s l x ( var , id , FSL DEFAULT) .

This instruction is used for transferring the read address. The control bit is not
set for this instruction. ’var’ is the memory location of the address.

• g e t d f s l x ( var , id , FSL DEFAULT) .

This instruction is used to fetch data from the FSL link. This performs a blocking
read from the FSL. The data is put in the ’var’.

3.7 Conclusions

In this chapter we presented the design of the shells. We chose an iterative design
methodology was as it enabled us to focus on a working prototype first and we considered
more advanced features only thereafter. For the actual shell designs, we use a modular
approach when possible. Furthermore, we developed a test strategy in order to detect
and fix design and logic errors, and also to verify the functionality of the shells.

As for the shells, we first presented the OPB shell. This shell was used as a prototype
design. We implemented error detection in this shell only, due to the impracticalities
associated with error reporting. Next we presented the PLB shells. For the PLB target
shell, we designed two versions. The first version was built on the OPB target shell.
For the second version, we introduced a couple of novel features, like the possibility
to coalesce multiple transactions to burst transactions. To further reduce the latency
from the IPs point of view, we introduced a dedicated read link for performing prefetch
reads. Last, to use these features, we described the necessary modifications needed for
the software application.
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In this section we present various SoC configurations we have used in our experiments.
The goals of these experiments are as follows.

• Verification: we want to verify that our shells function correctly.

• Evaluation: we want to quantify the effect of latency and bandwidth on the per-
formance of the system.

In all of the configurations, a µBlaze processor was used for reading and writing to
an on-chip memory. The resulting system configurations validate and demonstrate the
functionality of our shell designs. We use the PLB bus, the FSL link and the Æthereal
NoC as interconnects. We decided not to experiment with the OPB bus, as it provides
no benefit over the PLB implementation. We present and analyze the results from the
experiments in the next chapter.

4.1 NoC setup

Figure 4.1: Generated Æthereal NoC

Figure 4.1 shows the generated NoC. To ease the integration of the NoC with the
rest of the system, we modify the NoC as follows.

• We replaced the DTL shells with the PLB/FSL/OPB shells. This because our IPs
don’t use the DTL protocol
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• We replaced the DTL bus on the configuration ports with a PLB/OPB bus. We
connect our shells directly to the NI

• We also use the µBlaze as configuration master, instead of a dedicated IP.

Figure 4.2 shows the resulting NoC.

Figure 4.2: Modified Æthereal NoC

4.2 Embedded systems

We used a combination of the various shells to produce several SoCs. Each system
supports certain features. We made the distinction between the basic PLB target, which
has support for non-posted and posted writes, and the optimized PLB target, which has
support for posted and burst write transactions. We defined, depending on the target
shell used, a base and an optimized SoC. The base SoC uses the basic PLB target. The
optimized SoC uses the posted burst PLB target. The NI connected to the µBlaze via a
PLB bus, is the configuration NI. The µBlaze is the configuration master.

4.2.1 Base SoC

Figure 4.3 shows a simple system consisting of µBlaze, a local and remote memory. With
this system, it is possible to have part of the application data in the remote memory.
The application instruction still resides in the local memory.

Instead of attaching the remote memory directly to the local PLB bus, we used the
Æthereal NoC as interconnect between the local PLB bus and the remote memory. The
resulting system is illustrated in Figure 4.4. The Æthereal NoC consists of two NIs,
shells and one router. In this system, like the simple SoC with remote memory, part
of the application data resides in the remote memory. There are several configurations
possible for the base SoC, depending on which target shell is used:
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Figure 4.3: Simple SoC with remote memory

Figure 4.4: Base SoC

• Non-posted write, non-prefetch read version

• Non-posted write, prefetch read version

• Posted write, non-prefetch read version

• Posted write, prefetch read version

For the prefetch read, we used the FSL bus to prefetch the read data. Figure 4.5
illustrates the SoC with prefetch read. The utilization of the prefetch read expands the
Æthereal with an additional NIK and FSL shell on the local side and an additional NIK
and PLB initiator on the remote side.
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Figure 4.5: Base SoC with prefetch read

4.2.2 Optimized SoC

We also used the optimized version of the PLB target instead of the basic version. The
optimized PLB target, when possible, automatically recognizes bursts. Figure 4.6 shows
the system. The optimized PLB target only supports posted write transactions. No
non-posted write transaction is possible. Again, like the simple SoC and the base SoC,
part of the application data resides in the remote memory. Figure 4.7 illustrates the

Figure 4.6: Optimized SoC

optimized system with the prefetch read. The read is performed by the FSL bus and the
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posted burst write is performed by the PLB target v2.

Figure 4.7: Optimized SoC with prefetch read

4.3 Software applications

We selected four software applications to run on the embedded system. They differ in the
communication versus computation ratio and on the quantity of memory transactions
performed. We modified each application to make them suitable to run on the SoC. All of
the applications are written in C. We also created a test application in order to evaluate
each feature of the shell separately. The applications are written for single processor
implementation.

4.3.1 Test application

The code is included in Appendix A.5. The test application consists of two loops.

• Simple write loop: In this loop, a value is written to the remote memory in each loop
iteration. The remote address is either consecutive or non-consecutive, depending
on the preprocessor value defined.

• Simple read loop: In this loop, the value written to memory is read either with a
non-prefetch read, a single prefetch read or a burst prefetch read.

We used additional code to verify whether the data being read is correct.
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4.3.2 JPG decoder

The JPG decoder is an application that converts an image encoded according to the
JPEG standard [9] into a bitmap image. It first starts by reading the JPG image from
file into an input buffer in local memory. After that, it processes pieces of the image
and then writes the result to the frame buffer located in the local memory. After the
conversion is complete, the data from the frame buffer is written to a file. We made the
following modifications to the application:

• The input buffer is located in the remote memory instead of the local memory.

• We do not read the image from a file into the input buffer. Instead, we load it with
the program as an array of constant and then write it to the input buffer.

• The frame buffer is located in the remote memory instead of the local memory.

• Instead of writing the bitmap to a file, the bitmap is now sent to the serial port.

This application is computationally intensive, with a high ratio of computation to com-
munication. The number of memory reads and writes performed depends on the JPG
image size used.

4.3.3 Livermore loops

The Livermore loops [23] are a collection of kernel routines used in parallel computers
benchmarks. They consist of a total of 24 kernels. We chose only four kernels to use for
our experiments, because they need to be manually modified. We changed the data type
of all the kernels from double to unsigned integer, as we instantiated the NoC with a word
width of 32 bits. We modified the software as we described in Section 3.6. Appendix
A.1 has the C code of the Livermore kernels.

4.3.3.1 Kernel 1: Hydro fragment

This routine consists of two loops, where equation 4.1 is computed.

x[k] = q + y[k] ∗ (r ∗ z[k + 10] + t ∗ z[k + 11]) (4.1)

Here x, y and z are one dimensional arrays and q, r and t are variables. We made
the following modifications to the routine.

• We consider the case when the arrays x, y and z are placed in the remote memory
and need to be accessed through the network.

• We modified the code to include the possibility to perform prefetch read, either
single prefetch read or burst prefetch read.
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4.3.3.2 Kernel 12: First difference

This routine consists of two loops, where equation 4.2 is computed.

X[k] = Y [k + 1]− Y [k] (4.2)

Here X and Y are one dimensional arrays. We made the following modifications to
the routine.

• We consider the case when the arrays X and Y are placed in the remote memory
and need to be accessed through the network.

• We modified the code to include the possibility to perform prefetch read, either
single prefetch read or burst prefetch read.

4.3.3.3 Kernel 6: General linear recurrence equations

This routine consists of two loops, where equation 4.3 is computed.

W [i] = W [i] +B[k][i] ∗W [(i− k)− 1] (4.3)

Here W is a one dimensional array and B is a two dimensional array. We made the
following modifications to the routine.

• We consider the case when the arrays W and B are placed in the remote memory
and need to be accessed through the network. For the two-dimensional array B we
defined a new data type as an unsigned integer vector. This guarantees that the
two-dimensional array can be used in a similar way as the one-dimensional array.

• We modified the code to include the possibility to perform prefetch read. In this
routine only single prefetch read is possible. The prefetch burst read was difficult to
implement due to the fact that the inner loop has no fixed length but is dependent
on the loop variable of the outer loop.

4.3.3.4 Matrix-Matrix multiplication

The matrix-matrix multiplication performs a product of two NxM matrixes, stored in
the arrays PX, CX and VY. The routine consists of three loops. The inner-most loop
performs the matrix-matrix multiplication. We made the following modifications to the
application:

• We consider the case when the arrays PX, CX and VY are placed in the remote
memory and need to be accessed through the network. For the two-dimensional
arrays we defined a new data type as an unsigned integer vector. This guarantees
that the two-dimensional array can be used in a similar way as the one-dimensional
array.

• We modified the code to include the possibility to perform prefetch read. In this
routine only single prefetch read is possible. The prefetch burst read is difficult to
implement due to the fact that the read address is not sequential.
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4.4 Experiment setup

In addition to the NoC related components, we also used a timer and the serial port for
the experiments performed. Figure 4.8 shows the setup. We used the timer to precisely
measure the cycle counts of the operations we are interested in. The serial port is used
to send out the information collected during the execution of the C programs (print
statements). We compiled all the software applications with the mb-gcc compiler -03”
optimization level option. We did this because we are interested the performance of the
system.
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Figure 4.8: experiment setup

Furthermore, we made sure that the compiler does not optimize away the read and
writes by placing print statements to the serial port before and after.

4.5 Conclusions

In this chapter we have described the hardware setups we are going to use to perform the
experiments. Our goal is to verify the correct functionality of the shells and to evaluate
the performance related indicators. We have also described the modification we made
to the software applications, in order to make them run on the SoC we presented.



Experimental results and
analysis 5
In this section we present the results of the experiments performed. We start with
an overview of the SoC configurations. Then we elaborate the experiment parameters.
After that we present and analyze the results obtained for the experiments. We end this
section with concluding remarks.

5.1 SoC configurations

We experimented with the applications on all of the possible hardware combinations.
Tables 5.1 - 5.2 show the configurations used to perform the experiments. On the SoC
with the Æthereal NoC, we used GT for the application traffic. We use the following
abbreviations:

• ”
√

” indicates the link bandwidth used. We use the following BW: 100%, 50%,
25% and 12.5%

• ”(n)pr” stands for (non) prefetch read

• ”(n)pw” stands for (non) posted write

There are 64 configurations possible for the base SoC and 24 configurations possible for
the optimized SoC. The total number of configurations possible is 88.

Table 5.1: Configurations for the base SoC

HW configurations
Base: npr npw Base: npr pw Base: pr npw Base: pr pw

Test application
√ √ √ √

JPG
√ √ √ √

Matrix vector mult
√ √ √ √

Livermore loops
√ √ √ √

5.2 Link bandwidth

We simulated the effects of having multiple processors in the system by varying the
bandwidth allocated. The more processors in the SoC configuration, the less bandwidth
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Table 5.2: Configurations for the optimized SoC

HW configurations
Opt: npr pw Opt: pr pw

Test application
√ √

JPG
√ √

Matrix vector mult
√ √

Livermore loops
√ √

each processor will get. A slot table of 33 slots is used, out of which 1 slot is used for
configuration traffic and 32 slots are used for application traffic. We chose a slot table
consisting of 33 slots, because it enables us to fine tune the bandwidth precisely enough
for our experiments. The 32 slots for the application traffic to simulate a multi processor
SoC configuration are used as follows.

• BW: 100% → 1 processor: occupies all slots in the slot table, all slots are
assigned to the application traffic. That is 32 of the 33 slots available. The other
slot is used by the configuration traffic.

• BW: 50% → 2 processors: 16 of 33 slots in the slot table are assigned to
application traffic. Each processor effectively uses half of the available bandwidth

• BW: 25% → 4 processors: 8 of the 33 slots available are assigned to the appli-
cation traffic. Each processor effectively uses a quarter of the available bandwidth.

• BW: 12.5% → 8 processors: 4 of the 33 slots available are assigned to the appli-
cation traffic. Each processor effectively uses one eight of the available bandwidth.

The latency for each channel is tied to the channel bandwidth. Varying the channel
bandwidth changes the channel latency. For example, the SoC configuration consisting
of only 1 processor has all slots in the slot tables assigned for application traffic. Thus
it can send data in each slot cycle. On the other hand, the SoC configuration consisting
of 8 processors only has 4 slots reserved in the slot stable for application traffic. In
the worst case, it has to wait for 29 slots before it can send data. The channel latency
variation is still present if we had implemented a multiprocessor SoC configuration with
fully filled slot table for each processor instead. In that situation, processors also need
to contend for access to a single memory. The more processors in the SoC, the larger
the latency will be. Moreover, the NoC serializes the bus protocols, instead of sampling
the address, data and commands concurrently. This also introduces a latency.

5.3 Test application results

We used the test application in order to obtain detailed information of how each shell
feature impacts the performance of the system. To accommodate all of the program
data in the local memory, we increased the stack size section of the memory using a
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setting in XPS referred to as the project Executable and Linkable Format (ELF) file.
The cycle count for the write and read transaction includes the transaction time itself,
the time it takes to compute the next address, the time it takes to handle the loop
iteration variables and the time it takes to access the timer attached to the PLB bus.
Furthermore we experimented with the ’-funroll-loops’ option of the mb-gcc compiler.
We did this to improve the performance of the processor. There is no data depence in
the simple loops. With loop unrolling, the compiler optimizes the execution speed of the
program by reducing loop test overhead [14]. First we used the base system to perform
the experiments. After that we used the optimized system.

5.3.1 Posted write for base shell

This subsection details the results obtained from the base system configuration. First, we
researched the effects of the posted write compared to non-posted write of the base shell.
We did this by using the test application write loop and we measured the time in cycles
it took to execute all of the writes. After that we performed experiments simulating
a multiprocessor system. Figure 5.1 shows the results for the base write transactions.
The results show that posted write improves the performance. The difference between

Figure 5.1: Base shell non-posted vs posted write

a posted write and a non-posted write is as follows. By using a posted write, the write
transaction is not delayed by the roundtrip of the message from the shell to the memory.
The only delay possible is between the NI shell and the NIK. This is the case when the
input FIFO of the NIK or the buffer of the shell is full and it cannot accept new incoming
messages yet. In this situation the base shell will stall, delaying the consequent write
transactions until the NIK can accept messages again. The compilation of the source code
with loop unrolling did increase the performance of the write transaction as expected.
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5.3.1.1 Multi processor system

We simulated a multi-processor system with the base shell by varying the bandwidth
and latency of the network communication channel. This was done by varying number
of allocated the slots in the slot table of the NIK, as explained in section 5.1. Figure
5.2 shows the results obtained for the system of non-posted and posted writes. For
the case of non-posted write, the performance deteriorates when the system consists
of more processors. The decreased bandwidth effects the non-posted write transaction
both when the request message travels form the base shell to the memory as from when
the response message travels from the memory back to the base shell. The performance
does not decrease linearly however, as the latency of the write transaction depends on
the network conditions (slot available) and the status of the transaction (writing to
memory). The posted write transaction shows less performance deterioration than the

Figure 5.2: Base shell multiprocessor configuration for (non-) posted writes

non-posted write. This is because the posted write does not have to wait for the message
to travel through the network. As long as the NIK FIFO is not full and the network
transports the message fast enough to keep the FIFO filled but not full, the performance
will stay stable (BW=100% and BW=50%). Eventually, as the bandwidth is decreased,
the network can not keep up with the pace of the µBlaze, the NIK FIFOs become full
and the performance starts to decrease (BW=25% and BW=12.5%).

5.3.2 Optimized shell burst write vs non-burst write

This subsection details the results obtained from the optimized system configuration.
We were interested in the performance gain using the burst write, compared to non-
burst write. The optimized shell automatically detects and performs burst transaction.
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We performed experiments to determine whether the burst transaction does increase
the performance as expected. We did this by using the test application and performing
writes to consecutive and non-consecutive addresses in the remote memory. We also
used in our experiment both the unrolled and the rolled loop. Figure 5.3 shows the
results. The results show that the performance for both write transaction without the

Figure 5.3: Burst write vs Non burst write

loop unrolling do not differ. The µBlaze cannot generate consecutive write transaction
quick enough to take advantage of the burst transaction capability of the shell. The NoC
consumes the messages faster than the µBlaze produces write transactions. This way
the NoC is idle when the next transaction is ready and the burst transaction will not
start, as intended. To demonstrate this we captured the waveforms of the simulation
for consecutive address. Figure 5.4 shows the result for the optimized shell without loop
unrolling. The ’plb pa valid’ line indicates whether there is a valid write transaction

Figure 5.4: Simulation waveform for the optimized shell without loop unrolling

on the bus. The ’fifo empty i’ line indicates whether the PLB shell FIFOs are empty.
Each time there is a write transaction (’plb pa valid’ line is ’1’), the FIFOs are empty
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(’fifo empty i’ line ’1’). This indicates to the shell that the NoC is idle and that it must
utilize the network. This way the burst mechanism is not activated.

Figure 5.5: Simulation waveform for the optimized shell with loop unrolling

Figure 5.5 shows the waveform for the optimized shell with loop unrolling. The line
”dplb m request” of the µBlaze is the transaction request line. It is immediately clear
from the figure that the µBlaze in this case emits the write request faster than in the case
without loop unrolling. The result is that when there is a valid transaction (’plb pa valid’
line is ’1’) the shell is not empty (’fifo empty i’ line is ’0’ ). The burst mechanism kicks
in (burst cnt line) and the burst transaction is automatically performed, resulting in an
improved performance.

5.3.2.1 Multi processor system write performance

As for the base system, we performed simulations for systems consisting of more than
one processors. We experimented with the burst write and non-burst write without
loop unrolling. Figure 5.6 shows the result. For the non-burst case, the performance
stays stable for BW=100% and BW=50%. This due to the fact that the network can
process the messages fast enough to avoid performance deterioration. For BW=25% and
BW=12.5%, the performance decreases significantly. This is due to the fact that the
NIK FIFOs and the shell FIFOs start to fill up and the network does not have enough
bandwidth to process the messages fast enough to avoid the drop in performance. The
performance decreases when the FIFOs are full and the shell stalls the write transactions.

For the burst case, the situation is different. For BW=50%, the burst mechanism
starts to work because the shell FIFOs are not always empty anymore. This results in
short burst as the network is able to frequently empty the shell FIFOs. The net effect
of this is that the performance stays at the same level as for BW=100%. For BW=25%,
the network is not able to process the messages fast enough anymore, similar to the
non-burst case. The network performance starts to deteriorate, causing the shell FIFOs
to be constantly filled. The result of this is that the shell starts performing long burst
writes. The advantage of burst write is that fewer message headers need to be sent to
the network. For example, for a burst transaction of length 32, the shell sends 34 total
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Figure 5.6: Optimized shell multiprocessor configuration for (non-) burst writes

messages to the network (2 headers, 32 data messages). A non-burst transaction for 32
data words requires a total of 96 messages (64 headers, 32 data messages) to be sent. For
BW=25% the drop in bandwidth is compensated by the fact that fewer headers need to
be sent. The net result is that the performance stays stable and does not drop as sharp
as in the non-burst case. A similar analysis holds for the BW=12.5% case. The drop
in bandwidth is compensated by the reduction of messages. However, the impact of less
bandwidth is bigger than the reduction in messages. This results in a more performance
decrease than for the BW=25% case.

5.3.3 Read prefetch

Next we researched the effects of the read prefetch on the performance. It must be noted
that this option requires changes to the software. The experiments were performed using
prefetch read with the FSL shell, compared to the non-prefetch read base shell version.
For the application, the read loop was used. We performed the experiments for two
types of read prefetch.

• Single read prefetch: We started by prefetching a certain number of data words in
order to fill up the FIFO initially. After that, each loop prefetches another data
word from memory. This way the FIFO link always has data readily available. The
following code snippet shows this technique.

1 for ( i =0, i<LOOP MAX, i++)
2 {
3 i f ( i ==0)
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4 for ( j =0; j <4; j++)
5 putd f s l x (Y+j , 0 ,FSL DEFAULT) ; //Y[ i ]
6 i f ( i<LOOP MAX−4)
7 putd f s l x (Y+i +4 ,0 ,FSL DEFAULT) ; //Y[ i ]
8 g e t d f s l x ( temp Y , 0 ,FSL DEFAULT) ;
9 X[ i ] = temp Y + 100 ;
10 }

Assume that ’Y’ is a pointer to the remote memory location. In the first iteration,
line 3©, prefetch 4 data words from memory (line 4© and 5©). After that, in 6© and
7©, for each loop iteration, prefetch a data word from memory. Continue up until
Y[LOOP MAX] is reached. Next, get the data word from the FIFO ( 8©) and store
it in temp y. Lastly, use the prefetch data word in a calculation, 9©, where X is an
array of integers.

• Burst read prefetch: We used the prefetch to perform burst read memory transac-
tions. We did use the maximum possible burst size allowed when performing the
burst transaction. The following code snippet shows this technique.

1 for ( i =0, i<LOOP MAX, i++)
2 {
3 i f ( i==0 | | i%32==0 )
4 {
5 burst=(LOOP MAX−i >31)?31:(LOOP MAX%i )−1;
6 pu td f s l x ( burst , 0 ,FSL CONTROL) ;
7 pu td f s l x (Y+i , 0 ,FSL DEFAULT) ;
8 }
9 g e t d f s l x ( temp Y , 0 ,FSL DEFAULT) ;
10 X[ i ] = temp Y + 100 ;
11 }

Assume that ’Y’ is a pointer to the remote memory location. First we determine
the burst size 5©, set the burst size 6©, and perform the prefetch 7©. We always use
the maximum burst size possible. The maximum burst size allowed is 32 words.
Next, in 9©, we fetch the data from FSL. Lastly, in 10©, we use the prefetch data
word in the calculation, where X is an array of integers

Figure 5.7 shows the results obtained for both the single and burst prefetch read. The
read prefetch improves performance by:

• Overlapping the read transaction with the computation. The read transaction is
active while the program is executing other non-read instructions.

• Pipelining the read transactions. Each read transaction is acknowledge immedi-
ately. The read transactions do not have to wait for the completion of the previous
active read transactions.

The results shows that the best performance is obtained with the prefetch burst read,
using the loop unroll option for compilation. The disadvantage of the single prefetch is
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Figure 5.7: Base shell non-prefetch read vs prefetch read

that it has to perform a read request to the FSL shell in each loop iteration. The burst
prefetch only has to request data once every certain amount of loop iteration. Loop
unrolling improves the performance of the memory reads.

5.3.3.1 Multi processor system read performance

Figure 5.8 shows the results for the non-prefetch and single prefetch read transaction.
For the non-prefetch read, the performance deteriorates as the system consists of more

Figure 5.8: Base shell multiprocessor configuration for (non-) prefetch reads

processors up until when the link bandwidth is 25%. After that, the latency in sending
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back credits becomes dominant and the bandwidth reduction has no more influence on
the performance. The same situation happens for the prefetch read. As the bandwidth
is decreased, the latency becomes dominant for link bandwidth is 25%.

5.3.4 Difference in result between the base shell and the optimized
shell

The write transaction results for the base shell differ from the results obtained from
the optimized shell. The optimized shell has a better performance than the base shell.
Apart from the automatic burst detection mechanism of the optimized shell, the two
implementation of the shell differ in other areas. The optimized shell uses a FIFO
to store the out going messages, instead of a shift register as in the case of the base
shell. Also the optimized shell acknowledges, in case of a write, the address and the
transaction in the same cycle, while the base shell has a delay of 2 cycles between the
address acknowledgement and the write transaction acknowledgement. These differences
explain the different results obtained for both shells. Figure 5.9 shows the waveform of
the posted write version of the base shell. We see that there is a 14 cycles delay between

Figure 5.9: Wave form for the posted write base shell without loop unrolling

two consecutive writes (sl wrcomp=’1’). From figure 5.4 we see that the delay between
two consecutive writes is 9 cycles.

5.4 JPG decoder

The JPG decoder is characterized as a computation intensive application, i.e. the com-
munication to computation ratio is very low. There is no depence between read and
write data. In this application more write transactions are performed than read. We
experimented on the base system and on the optimized system with the JPG decoder.

5.4.1 Base system results

Figure 5.10 shows the results for the base configuration. All of the four base configura-
tions have a similar performance for the JPG decoder. For all, the difference between
performance is within 5.7%. This is due to the fact that the JPG decoder spent more cy-
cle on computation than on communication. Even with the addition of a dedicated link
for prefetching read does not impact the performance significantly. The figure shows, as
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Figure 5.10: JPG decoder with the base shell

expected, that the performance is slightly improved with the usage of posted write and
read prefetch

5.4.1.1 Base multi processor system read and write performance

Figure 5.11: Base shell multiprocessor configuration for the JPG decoder

We also experimented with varying the bandwidth for the JPG application to simu-
late a multi processor setup. Figure 5.11 shows the result. The ’npr npw’, ’npr pw’ and
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’pr npw’ configurations show a general trend that the performance decreases when there
is less bandwidth available, as expected from section 5.3. The performance for the ’pr
pw’ configuration remains stable. This is due to the fact that the read and write transac-
tions are not frequent compared to the computation performed. This enables the posted
write and the read prefetch to sustain a stable performance even when the bandwidth is
decreased. In other words, there is sufficient time between the read and write transac-
tions for the network to process the transaction traffic. Another interesting difference is
between the ’pw’ and the ’npw’ configuration. This difference illustrates the advantage
of using posted write when the write transactions dominate the read transactions. Al-
though all configuration have similar performance when the full bandwidth is allocated
for application traffic, they differ when the bandwidth is decreased. The penalty for
waiting for a write transaction to return with reduced bandwidth even offsets the benefit
of having a separate communication channel for reading. The worst case difference in
performance (BW=12.5%) is 17% compared to 5.7% for the best case (BW=100%).

Table 5.3: Improvement for JPG by using Loop Unrolling for the base shell

Base npr npw Base npr pw Base pr npw Base pr pw
BW 100% 2.80% 2.89% 2.88% 2.97% JPG
BW 50% 2.87% 3.03% 2.81% 2.97%
BW 25% 2.48% 2.81% 2.62% 2.97%
BW 12.5% 2.65% 2.96% 2.62% 2.94%

5.4.2 Optimized system results

Figure 5.12 shows the result for the optimized shell. As was the case with the base
shell, the result obtained for both posted write and non-posted write do not show a large
difference. Again, the application computation dominates the communication.

5.4.2.1 Optimized shell multi processor system read and write performance

Figure 5.13 shows the result for the various link bandwidths. For the prefetch read
optimized shell, the performance stays at the same level. As previously explained, the
limited number of writes and reads compared to the computation enables the posted
shells to sustain a stable performance. For the non-posted read optimized shell, the
performance slightly decreases as the read transaction is affected by the link bandwidth.

5.5 Livermore loops

We experimented on the various configurations with the livermore loops. We measured
the amount of cycles for all the loop iterations. Table 5.5 shows the number of read and
write transaction per iteration for the livermore loops, as well as the total number of
iterations in the loop.
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Figure 5.12: Non-posted and posted write for npr base shell

Figure 5.13: Optimized shell multiprocessor configuration for the JPG decoder

We researched the combined effects of the various shell features on the performance
of the kernel routine. The burst is not considered for the Livermore Loops. The reason
for this is that the burst reads cannot be performed in an efficient way. Contrary to the
case of the test application, the loops in the Livermore kernels are more complicated,
due to:
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Table 5.4: Improvement for JPG by using Loop Unrolling for the optimized shell

Opt pr Opt npr
BW 100% 2.98% 2.89% JPG
BW 50% 2.98% 3.03%
BW 25% 2.99% 2.83%
BW 12.5% 2.98% 2.93%

Table 5.5: Livermore loop information

#Reads/iteration #Writes/iteration #Loop iterations
K1 3 1 7007
K12 2 1 12000
K6 3 1 < 900
K21 2(3) 1 63125

• variable number of loop iterations. This complicates the calculation of the burst
size.

• non-consecutive data words locations in the memory. This limits the use of the
burst, as the burst can only access consecutive word from the memory.

• multiple variables to fetch from memory. The problem with this issue is, that the
variable data words cannot be used at the same instance. This is due to the fact
that we store all the prefetch data in one FIFO.

An example of the problem with burst read and multiple variables:

1 for ( i =0, i<LOOP MAX, i++)
2 {
3 i f ( i==0 | | i%31==0 )
4 {
5 burst=(LOOP MAX−i >31)?31:(LOOP MAX%i )−1;
6 pu td f s l x ( burst , 0 ,FSL CONTROL) ;
7 pu td f s l x (Y+i , 0 ,FSL DEFAULT) ;
8 pu td f s l x (Z+i , 0 ,FSL DEFAULT) ;
9 for ( j =0; j<burst +1; j++)
10 g e t d f s l x ( Y burst [ j ] , 0 ,FSL DEFAULT) ;
11 for ( j =0; j<burst +1; j++)
12 g e t d f s l x ( Z burst [ j ] , 0 ,FSL DEFAULT) ;
13 Y pnt=Y burst ;
14 Z pnt=Z burst ;
15 }
16 X[ i ] =(∗Y pnt ) + (∗ Z pnt ) ;
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17 Y pnt++;
18 Z pnt++;
19 }

In this example, data is retrieved from 2 remote memory location. Assume that ’Y’ and
’Z’ are pointers to remote memory locations. First we determine burst size and perform
the prefetch read, in line 5© to 8©. After that, we get the data words from the FSL in
lines 9© to 12© . We store the burst data words in an array in the local memory. This is
necessary, as we perform two burst transactions and we use the data words of the two
transactions at the same time, like in 16© . As we have two arrays in the local memory
containing the read data, we assign pointers to iterate through them, in lines 13© and 14©.
Lastly, we use the prefetch data word in a calculation (line 16©) and update the pointers
to point at the next data word (lines 17© and 18©).

A work around for this issue is to use more FIFOs to store the response data. This
way each variable has its own buffer. The disadvantage of this approach is that the
whole NoC must be regenerated for this purpose. Also, this workaround is only possible
for limited number as variables, as the µBlaze can only support 8 FSL link pair. Due to
these issues, we decided not to perform burst prefetch read with the Livermore Loops. In
the following subsections we present the results of the experiment and we also comment
on the results obtained.

5.5.1 K1 Hydro fragment base configuration

Figure 5.14: K1 hydro fragment results for the base shell BW=100%

This application performs three reads and one write transaction for each loop it-
eration. The read and writes have no depence. Figure 5.14 shows the results. The
performance gain from using read prefetch is greater than posted write, as expected.
This due to the fact that more reads than writes are performed for each loop itera-
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tion. The rest of the results are also as expected. Using posted write and read prefetch
improves the performance.

5.5.1.1 Base shell multi processor system read and write performance

Figure 5.15 shows the results for the multiprocessor configuration. The benefits of a
dedicated read channel for a read intensive application is clear from this figure. As

Figure 5.15: Base shell multiprocessor configuration for K1 Hydro fragment

the bandwidth decreases, the non-prefetched configurations clearly show a much greater
performance deterioration than the prefetched read configurations. The performance of
the ’pr pw’ is fairly stable for BW=100% to BW=25%. This due to the fact that the
network can process the transactions quick enough to avoid the performance decrease.
The performance of the ’pr pw’ configuration starts to deteriorate for BW=12.5%. At
this point the network cannot keep up with the transactions, resulting in a performance
decrease. For ’npr npw’, ’npr pw’ and ’pr npw’ configurations, the latency in sending back
credits becomes dominant at BW=25%. Table 5.6 shows the performance improvement
obtained with using loop unrolling. For ’npr npw’, ’npr pw’ and ’pr npw’ configurations,
the performance is only improved when 100% link bandwidth is utilized. This is due
to the fact that for BW=100%, the µBlaze is the bottleneck. With loop unrolling, the
performance of the µBlaze is increased. With the BW <100%, the µBlaze is not the
bottleneck anymore. The result of this is that there is no performance improvement.
The case of the ’pr pw’ configuration is different. For BW>12.5%, the µBlaze is the
bottleneck. The situation changes when for BW=12.5%. Then the interconnect is the
bottleneck.



5.5. LIVERMORE LOOPS 85

Table 5.6: Improvement for K1 by using Loop Unrolling for the base shell

Base npr npw Base npr pw Base pr npw Base pr pw K1
BW 100% 1.01% 2.31% 3.17% 4.33%
BW 50% 0.00% 0.00% 0.00% 4.40%
BW 25% 0.00% 0.00% 0.00% 3.82%
BW 12.5% 0.00% 0.00% 0.00% -0.01%

5.5.2 K1 Hydro fragment optimized configuration

Figure 5.16: Optimized shell K1 results BW=100%

Figure 5.16 shows the results for the optimized shell. The results further show the
benefit of the prefetch read for this routine. An performance increase of 326% is obtained
with the use of the dedicated read link.

5.5.2.1 Optimized shell multi processor system read and write performance

Figure 5.17 shows the results for the multiprocessor experiment with the optimized shell.
The ’npr pw’ configuration is clearly affected by the lack of a dedicated read link. Like the
base configuration case, the performance starts to decrease for BW=50% and the latency
in sending back credits becomes dominant at BW=25%. The ’pw npr’ configuration also
shows a similar behavior as in the base configuration case. For BW=100%, BW=50%
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Figure 5.17: Optimized shell multiprocessor configuration for K1 Hydro fragment

and BW=25% the performance stays fairly stable. The performance starts to decrease
for BW=12.5%.

Table 5.7: Improvement for K1 by using Loop Unrolling for the optimized shell

Opt pr Opt npr
BW 100% 4.86% 1.45% K1
BW 50% 4.78% 0.00%
BW 25% 2.22% 0.00%
BW 12.5% 0.01% 0.00%

Table 5.7 shows the performance improvement obtained with using loop unrolling.
The performance only improves if the µBlaze is the bottleneck (BW=100% for ’Opt npr’
and BW=100%, 50% or 12.5% for ’Opt pr’ configurations). When the interconnect is
the bottleneck, there is no performance improvement by using loop unrolling.

5.5.3 K12 base configuration

This application performs two reads and one write transaction in each loop iteration.
There is no depence between the reads and the writes transactions. Figure 5.18 shows
the results for the base configurations. Again, like for the K1 Hydro fragment, the best
performance is obtained with read prefetch, as more reads than writes are performed.
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Figure 5.18: K12 base configuration results BW=100%

5.5.3.1 Base shell multi processor system read and write performance

Figure 5.19 shows the results for a multi processor setup. The figure shows similar
characteristic as the hydro kernel multiprocessor configuration.

Figure 5.19: Base shell multiprocessor configuration for K12

Table 5.8 shows the performance improvement obtained with using loop unrolling.
Again, for ’npr npw’, ’npr pw’ and ’pr npw’ configurations, the performance is only
improved when 100% link bandwidth is utilized, as the µBlaze is the bottleneck. For the
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Table 5.8: Improvement for K12 by using Loop Unrolling for the base shell

Base npr npw Base npr pw Base pr npw Base pr pw K12
BW 100% 1.27% 3.16% 6.18% 8.53%
BW 50% 0.00% 0.00% 0.00% 7.75%
BW 25% 0.00% 0.00% 0.00% 4.24%
BW 12.5% 0.00% 0.00% 0.00% 2.25%

’pr pw’ configuration, the use of loop unrolling results in performance improvement for
the all the link bandwidth used. Unlike for the K1 kernel, the µBlaze is the bottleneck
even for BW=12.5%.

5.5.4 K12 optimized configuration

Figure 5.20: Optimized shell K12 results BW=100%

Figure 5.20 shows the results obtained for the the optimized shell. Again, due to
the fact that the routine performs more reads than writes, the prefetch read improves
the performance significantly. A performance increase of 312% is obtained when the
dedicated prefetch link is used.

5.5.4.1 Optimized shell multi processor system read and write performance

Figure 5.21 shows the results for a multi processor setup. The figure shows a similar
characteristic as the K1 hydro kernel multiprocessor configuration.

Table 5.9 shows the performance improvement obtained with using loop unrolling.
The performance only improves if the µBlaze is the bottleneck (BW=100% for ’Opt
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Figure 5.21: Optimized shell multiprocessor configuration for K12

Table 5.9: Improvement for K12 by using Loop Unrolling for the optimized shell

Opt pr Opt npr
BW 100% 10.07% 2.27% K12
BW 50% 1.25% 0.00%
BW 25% -0.01% 0.00%
BW 12.5% -0.01% 0.00%

npr’ and BW=100% and 50% for ’Opt pr’ configurations). When the interconnect is
the bottleneck, there is no performance improvement by using loop unrolling, like in the
previous cases.

5.5.5 K6

Figure 5.22 shows the results obtained for the the base shell. This application performs
three reads and one write transaction in each loop iteration. Unlike in the previous
applications, there is a dependency between the writes and the reads. The write must
complete before the read transaction in the next loop iteration begins.This limits the
benefit of using the posted write or prefetch read. Figure 5.18 shows the results for the
base configurations. The impact of the dependence is noticeable for the ’npr pw’ and
’pr npw’ configuration. Both have similar performance, with the difference being within
3.3%. This in contrast to the 59% to 70% difference in performance for the K1 and K12
routine.
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Figure 5.22: K6 base configuration results BW=100%

5.5.5.1 Base shell multi processor system read and write performance

Figure 5.23: Base shell multiprocessor configuration for K6

Figure 5.23 shows the result for the multiprocessor configuration. Again, due to
the dependence between the reads and writes, the configurations for ’npr pw’ and ’pr
npw’ have a similar performance for the various link bandwidths. The ’pr pw’ configu-
rations show a different characteristic than in the previous routines. The performance
deteriorates for BW=50% and the latency in sending back credits becomes dominant at
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BW=25% and BW=12.5%.

Table 5.10: Improvement for K6 by using Loop Unrolling for the base shell

Base npr npw Base npr pw Base pr npw Base pr pw K6
BW 100% 0.06% 2.20% -0.05% -0.37%
BW 50% 0.02% -0.05% 0.02% 0.04%
BW 25% -0.02% 0.01% 0.02% 0.02%
BW 12.5% 0.01% 0.01% -0.02% 0.02%

Table 5.10 shows the performance improvement obtained with using loop unrolling.
Unlike the case for the K1 and the K12 kernels, the effect of using loop unrolling is
limited. The main reason for this is that number of loop iterations in this for-loop is
variable. It ranges from ’1’ to ’30’ iterations. Again, due to this, the effect of loop
unrolling is limited, as the benefit of using it is to reduce the end-of-loop test.

5.5.6 K6 optimized configuration

Figure 5.24: Optimized shell K6 results BW=100%

Figure 5.24 shows the result for the optimized shell. Again, similar to the case in of
the base shell and unlike the previous kernels, the difference between non-prefetch read
and prefetch read is small.

5.5.6.1 Optimized shell multi processor system read and write performance

Figure 5.25 shows the result for the multiprocessor configuration. The same analysis as
in the case of multi processor configuration for the K1 and K12 kernels, is applicable for
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Figure 5.25: Optimized shell multiprocessor configuration for K6

this configuration.
Table 5.11 shows the performance improvement obtained with using loop unrolling.

Again, the effect of loop unrolling is limited, due to the variable number of loop iterations.

Table 5.11: Improvement for K6 by using Loop Unrolling for the optimized shell

Opt pr Opt npr
BW 100% -1.60% 0.00% K6
BW 50% 0.03% 0.03%
BW 25% 0.02% 0.01%
BW 12.5% 0.02% 0.01%

5.5.7 K21

This application consists of two inner loops where two reads and one write transaction
is performed in the innermost loop and one read transaction in the other inner loop.
There are no dependence between reads and writes in the application. Figure 5.26 shows
the results for the base configurations. The results shows similar characteristic for the
configurations as was obtained with the K1 and K12 kernels.
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Figure 5.26: K21 base configuration results BW=100%

Figure 5.27: Base shell multiprocessor configuration for K21

5.5.7.1 Base shell multi processor system read and write performance

Figure 5.27 shows the result for the multiprocessor base configuration. Unlike for the
case of the the K1 and K12 kernels, the performances of all the configurations do not
deteriorate anymore at a link bandwidth of 25%. This is due to the large number of loop
iterations in this kernel.

Table 5.12 shows the performance improvement obtained with using loop unrolling.
Again, for ’npr npw’, ’npr pw’ and ’pr npw’ configurations, the performance is only
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Table 5.12: Improvement for K21 by using Loop Unrolling for the base shell

Base npr npw Base npr pw Base pr npw Base pr pw k21
BW 100% 3.80% 2.79% 0.19% 1.08%
BW 50% 0.00% 0.00% 0.00% 0.00%
BW 25% 0.00% 0.00% 0.00% 0.00%
BW 12.5% 0.00% 0.00% 0.00% 0.00%

improved when 100% link bandwidth is utilized, as the µBlaze is the bottleneck. For the
’pr pw’ configuration, the use of loop unrolling results in performance improvement for
link BW=100%, 50% and 25%.

5.5.8 K21 optimized configuration

Figure 5.28: K21 optimized shell configuration BW=100%

Figure 5.28 shows the result for the multiprocessor base configuration. The same
analysis as in the case of multi processor configuration for the K1 and K12 kernels, is
applicable for this configuration.

5.5.8.1 Optimized shell multi processor system read and write performance

Figure 5.29 shows the result for the multiprocessor base configuration. Again, like the
multiprocessor base configuration, the latency in sending back credits becomes dominant
at link bandwidth of 25%.

Table 5.13 shows the performance improvement obtained with using loop unrolling.
The loop unrolling only improves the performance when the link bandwidth is 100%. For
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Figure 5.29: Optimized shell multiprocessor configuration for K21

the other link bandwidths, the interconnect is the bottleneck. The use of loop unrolling
for those situations does not result in a performance increase.

Table 5.13: Improvement for K21 by using Loop Unrolling for the optimized shell

Opt pr Opt npr
BW 100% 1.72% 1.87% K21
BW 50% 0.00% 0.00%
BW 25% 0.00% 0.00%
BW 12.5% 0.00% 0.00%

5.6 Conclusions

We presented the results of the various experiments performed. Furthermore, we ana-
lyzed the following factors.

• Posted write: improves the performance of the SoC. This is due to the fact that
the write transactions do not have to wait for the acknowledge response to return
from the network. The disadvantage of the posted write is that synchronization
issues must be taken into account.

• Prefetch read: improves the performance of the SoC. This is achieved by over-
lapping the read transaction with the computation and pipelining the read trans-
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actions. The disadvantage of the prefetch read is that synchronization issues must
be taken into account and that the software needs to be modified.

• Burst transaction: both the read and the write burst do improve the perfor-
mance of the SoC. For the burst write, the improvement is achieved when the link
bandwidth is decreased. This because less header words of a request message needs
to be sent to the network. For the burst read, the performance improves due to
the fact that the prefetch instruction is not executed in each iteration. However,
a burst read is not always possible or does not always results in performance in-
crease. This depends on the complexity of the application code. A workaround to
overcome some of the issues concerning the prefetch burst read is to use more FSL
shells, but this is not always desirable or possible.

• Application Computation-to-Communication ratio: has an impact on the
effect of the shell on the performance of the SoC. The techniques used by the shell to
improve performance only has an effect when the Computation-to-Communication
ratio is low. For an application with a high Computation-to-Communication ratio,
the usage of both the optimized shell as the base shell results in a small performance
difference.

• Loop unrolling: with loop unrolling, the compiler optimizes the execution speed
of the program by reducing loop test overhead. This results in an improved per-
formance of the SoC, as long as the µBlaze is the bottleneck. Loop unrolling has
its limitations as it cannot always be performed. For example, when the number
of loop iterations is not constant, the use of loop unrolling does not improve the
performance, even when the µBlaze is the bottleneck. Also when the µBlaze is not
the bottleneck, loop unrolling does not add any improvements.

• Synchronization: the correct execution of an application needs to be verified
when the prefetch read or the posted write is used. This because the bus intercon-
nect does not support these features.

• Latency: depends on several factors. First, the type of application used has a great
effect on the latency. Second of all, depending on the shell used, the latency may
be improved. Last, the bandwidth affects the latency. A low allocated bandwidth
and correspondingly a low number of slots results in a increased latency.

• Link bandwidth: affects the SoC performance. In general, when the link band-
width is reduced, the performance of the SoC decreases. Burst write is able to
sustain the performance of the shell up to certain point, by reducing overheads.

The results of the experiment show that the best performance is achieved for:

• base shell: prefetch read, posted write implementation.

• optimized shell: prefetch read version implementation.

Of these two, the optimized shell gives the best performance.



Conclusions 6
6.1 Summary

In this thesis we have researched and implemented protocol conversions for interconnect-
ing existing IPs, which uses various protocols, with the Æthereal NoC. We accomplished
this by creating network interface shells, both for encoding the bus protocols into Æthe-
real request messages and for decoding Æthereal response messages into bus protocols.
Table 6.1 gives an overview of these shells.

Table 6.1: Protocol conversions

Component Protocol conversion
OPB target shell OPB protocol → Æthereal request message

Æthereal response message → OPB protocol
OPB init shell Æthereal request message → OPB protocol

OPB protocol → Æthereal response message
PLB target shells PLB protocol → Æthereal request message

Æthereal response message → PLB protocol
PLB init shell Æthereal request message → PLB protocol

PLB protocol → Æthereal response message
FSL target shell FSL protocol → Æthereal request message

Æthereal response message → FSL protocol

The result of this work is that we have two versions of the PLB target shell (base and
optimized), as consequence of different design considerations and features supported.
Furthermore we have researched the possibility of improving the performance, both by
coping with the transaction latency associated with memory access as well as increasing
the throughput. This is necessary due to the fact that long transaction latencies have a
negative impact on the performance of IPs. Table 6.2 gives an overview of the techniques
we employed to improve the performance.
The challenges and difficulties we faced regarding these techniques was, that none of
them are supported by the master IP, the µBlaze. First of all, we had to implement these
features. We accomplished this task as follows. For posted write, we included support
for this in both the OPB shell as in the PLB shell. For burst transactions, we designed a
mechanism to automatically coalesce multiple transaction into a burst transaction when
possible and implemented it in the optimized version of the PLB shell. For the prefetch

97
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Table 6.2: Impact of several techniques on performance

Technique Effect
Posted write Pros: improves the performance of the SoC
Prefetch read Cons: synchronization issues must be taken into account
Burst transaction Write burst

Pros: can improve the performance of the SoC
Cons: Improves the performance only when the link bandwidth is decreased.
Read burst
Pros: can improve the performance of the SoC
Cons: not always possible or does not always result in performance increase

read, we used a separate port on the µBlaze, build a custom unit to support the DMA
transfer (FSL shell), and used a dedicated link to support and perform this transaction.
Secondly, we implemented all these features without affecting the correct functioning of
the system. The concern was to avoid synchronization issues, especially for prefetch read
in combination with posted write configurations, due to the fact that we acknowledge
the transaction before it is actually completed. To address this issues, we designed a
simple component to prevent incorrect behavior due to outstanding write transactions.

We have also researched and analyzed in great detail the effects of several factors on
the performance. Table 6.3 gives an overview of these factors.

Table 6.3: Impact of several factors on performance

Factor Effect
C/C ratio High C/C ratio: small performance difference between the optimized shell

and the base shell
Low C/C ratio: big performance difference between the optimized shell
and the base shell

Loop unrolling Pros: loop unrolling improves the performance of the SoC,
as long as the µBlaze is the bottleneck.
Cons: cannot always be performed. Also when the µBlaze is not
the bottleneck, loop unrolling does not add any improvements.

Link bandwidth performance of the SoC decreases when the link bandwidth is reduced

Also, we have performed a large number of experiments, using several applications,
in order to analyze the combined effect of the several advanced techniques and factors
on the performance of the SoC. We have focused on the PLB shell, as we are interested
in the best performance possible. For the case when the link bandwidth is reduced, we
concluded that:

• the latency, associated with sending back credits, becomes dominant and the link
bandwidth reduction less influence on the performance
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• a burst transaction can sustain the performance of the system, up to a certain
point

Furthermore, the results of the experiment show that the best performance is achieved
for:

• optimized shell: prefetch read version implementation.

6.2 Main contributions

The main contributions of this thesis are as follows.

• Unified message format for PLB, OPB and FSL protocol: We have de-
signed protocol conversions to map the address based bus protocols of the Core-
connect bus architectures and the streaming protocol of the Xilinx FSL link into
the streaming protocol of the Æthereal NoC.

• Prototyping on FPGA: We have ensured that our design is correct by imple-
menting it on a Virtex-II Pro FPGA.

• Quantitive evaluation of applications: We have conducted experiments, using
the Æthereal NoC as interconnect and various shell configurations, to obtain in-
formation on the performance of the application. Furthermore, we researched the
effects of link bandwidth on the transaction latency.

• Advanced techniques to improve performance: We have researched the po-
tential advantages and impact of several advanced techniques. Furthermore, we
developed a hardware technique to coalesce transactions into burst transactions
when possible.

• Analyses of error reporting: We have analyzed the difficulties associated with
reporting error using the Æthereal NoC message format. Furthermore, we proposed
several methods to address this issue in section 3.3.2.4.

6.3 Related work

For this thesis, we have used concepts related to the field of computer architecture as
well as parallel computing. This section gives an overview of related work in those fields.
We also discuss a couple of NI shells related to our work.

6.3.1 Prefetching

Prefetching techniques are used to tolerate memory latency. Numerous hardware and
software schemes have been proposed to cope with the latency associated with memory
access. We focus on software prefetching techniques. Furthermore, we distinguish:

• whether the prefetches are inserted manually or automatically into the code
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• the type of hardware that is used to support the prefetch

Most of the software prefetching techniques proposed, focuses on compiler-controlled
prefetching, as detailed in [20]. In [14], the prefetches are used to overlap the execution
of instructions with activity in the memory hierarchy, in order reduce the cache miss
penalty or miss rate. The compiler is used to insert the prefetch instructions. The
authors distinguish between loading the data into a register or only into a cache. The
hardware support consists of nonblocking or lockup-free caches. In [21], the author
proposes and implements a compiler-controlled algorithm for inserting prefetches into
code. The hardware support consists of a lockup-free cache. The differences between
these and our approach is that we insert prefetches manually instead of automatically,
and we use a simple DMA transfer instead of a lockup-free cache hardware to support
the prefetching.

In [6], the authors used DMA mode for memory transfers, in combination with
prefetch mechanisms. Furthermore, they integrated the prefetching in a framework that
optimizes memory hierarchy, allocation and assignment. They have also presented an
exhaustive list of prefetching mechanism. To support the DMA, they used an off-the-
shelf DMA controller. The difference with our approach is that we analyze the code and
insert the prefetches manually, instead of using a formalized technique. Also, we do not
require the system to use the DMA I/O method and we use a simplified DMA transfer.

6.3.2 NI shells

In this section, we focus only on shells designed for the Æthereal NoC. We highlight
the main differences between the shells. In [8] and [12], DTL, OCP and AXI shells are
described for the Æthereal NoC. The OCP and AXI protocol have independent read
and write channels. This makes it is possible to support two connections between an
initiator and a target in the shell. We only provide support for one connection in our
shells. For DTL, the bus forwards the request or response signals of the IP, based on
the address, to the shells. It contains a reconfigurable address decoder. In our case, the
shells are responsible to recognize the address on the bus and determine whether it is
in its address range. Furthermore, we implemented in our PLB shell a mechanism to
coalesce multiple single transactions into burst transactions when possible. The DTL,
OCP and AXI shells do not have this feature.

6.4 Future work

We have the following recommendations for future work.

1. Error reporting: We have demonstrated in the prototype OPB shells a technique
for handling transactions errors. However, our PLB and FSL shells do not support
that technique as, in our opinion, the options that the Æthereal message format
provides are not practical. Other techniques are needed for handling transaction
errors. We have proposed alternative techniques, but they require changing the
Æthereal message format.
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2. Hardware stride transfer detection: We have developed a technique to coa-
lesce multiple write transactions to consecutive addresses into burst transaction.
An extension of this work is to also detect stride transfers and to coalesce them
into burst transaction when possible.

3. Prototyping using multiple µBlazes: We have performed experiments with
only one µBlaze, as the applications we have used are written for single processor
implementation. The next step is to have a system consisting of multiple processors,
running different applications concurrently. Issues like synchronization between
multiple processors can be further researched.

4. Direct interoperability between IPs and NIK: We have designed hardware
components (shells) to provide connectivity with IPs. Another possible solution is
to have the IPs interoperate with the NoC directly, without the need of a specialized
hardware components. This is suitable for IPs that support streaming protocols.
We have proposed a technique to offer such interoperability between the NoC and
a IP in section 3.5.2.

5. Interoperability with other protocols: In this study, we have provided con-
nectivity with the Coreconnect bus cores. An extension to our work is to offer
interoperability with other protocols, like the Wishbone bus architecture.

6. Automated prefetches: In our work, we have inserted the prefetches manually.
This is a time consuming process, as the code needs to be analyzed, modified and
verified. An automated technique potentially addresses these issues, resulting in a
more structural method for performing prefetches.

7. Run time address configuration: The address of our shells can be configured
only during design time. A desirable functionality is to configure the shell address
also during run time. We proposed a method to configure the shell address at
runtime in Section 3.4.2.
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Application C code A
A.1 kernel.c

#include <stdio.h>
#include "kernel.h"

/*
C*****************************************************************************
C*** KERNEL 1 HYDRO FRAGMENT
C*****************************************************************************
C
*/
void K_1()
{
#define ARRAY_SZ 1013
#define BURST_SZ 20
unsigned int Q, R, T,burst;
unsigned int temp_Y,temp_Z1,temp_Z2 ;
unsigned int time_start,time_finish;

#ifdef fpga
unsigned int *X,*Y,*Z;
unsigned int Y_burst[32],Z_burst[32],*Y_pnt,*Z1_pnt,*Z2_pnt;

X=(unsigned int *)MEM_ADDR;
Y=X+ARRAY_SZ;
Z=X+(2*ARRAY_SZ);
#else
unsigned int X[1013], Y[1013], Z[1013];
#endif
//Initialization
unsigned int i, L, k,j;

for (L = 0; L <= 1012; L++)
{ Y[L] = L*L; Z[L] = L+L%9; };

//make sure that all data is written to mem before using read prefetch
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#ifdef fpga
xil_printf("init finish: 0x%08x\n\r",Y[0] );
#else
printf("init finish: 0x%08x\n\r",Y[0] );
write_file(&Y[0],0 );
#endif
Q = 3; R = 4; T = 5;

//real computation
#ifdef fpga
time_start=timer(1);
#endif
for (L = 1; L <= 7; L++)
{
for (k = 0; k <= 1001; k++)
{
#ifdef fsl

#ifdef BURST_RD
if ( k==0 || k%31==0 )
{
burst=(1002-k>31)?31:(1002%k)-1;

putdfslx(burst,0,FSL_CONTROL);
putdfslx(Y+k,0,FSL_DEFAULT);
putdfslx(Z+10+k,0,FSL_DEFAULT);
for (j=0;j<burst+1;j++)
{
getdfslx(Y_burst[j],0,FSL_DEFAULT);

}
for (j=0;j<burst+1;j++)
{
getdfslx(Z_burst[j],0,FSL_DEFAULT);
}
Y_pnt=Y_burst;
Z1_pnt=Z_burst;
Z2_pnt=Z1_pnt+1;
}
X[k] = Q + (*Y_pnt) * (R* (*Z1_pnt) + T*(*Z2_pnt));
Y_pnt++;
Z1_pnt++;
Z2_pnt++;
#else
if (k==0)
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{
for(j=0;j<4;j++)
{
putdfslx(Y+j,0,FSL_DEFAULT);//Y[k]
putdfslx(Z+10+j,0,FSL_DEFAULT);//Z[k+10]
putdfslx(Z+11+j,0,FSL_DEFAULT);//Z[k+11]
}
}
if (k<=997)
{
putdfslx(Y+k+4,0,FSL_DEFAULT);//Y[k]
putdfslx(Z+14+k,0,FSL_DEFAULT);//Z[k+10]
putdfslx(Z+15+k,0,FSL_DEFAULT);//Z[k+11]
}
getdfslx(temp_Y,0,FSL_DEFAULT);
getdfslx(temp_Z1,0,FSL_DEFAULT);
getdfslx(temp_Z2,0,FSL_DEFAULT);

X[k] = Q + temp_Y*(R*temp_Z1 + T*temp_Z2);
#endif
#else
X[k] = Q + Y[k]*(R*Z[k+10] + T*Z[k+11]);
#endif
};
};
#ifdef fpga
time_finish=timer(0);
xil_printf("time=%d\n\r",time_finish);
#endif
//verify
for (i = 0; i <= 1011; i++)
{
#ifdef fpga
if (i%100==0)
{
xil_printf(" 0x%08x\n\r", X[i]);
}
#else
#ifdef FILE_S
write_file(&X[i],0);//if (i%100==0)
#else
if (i%100==0) printf(" 0x%08x\n\r", X[i]);
write_file(&X[0],0 );
#endif
#endif
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};

#ifdef fpga
xil_printf("start time=%d\r\n", time_start);
xil_printf("finish time=%d\r\n", time_finish);
xil_printf("total time=%d\r\n", time_finish-time_start);
#endif
#undef ARRAY_SZ
#undef BURST_SZ

//set burst to ZERO again !!!!
putdfslx(0,0,FSL_CONTROL);

}

/*
C
C******************************************************************************
C*** KERNEL 12 FIRST DIFF.
C******************************************************************************
*/
void K_12()
{
#define ARRAY_SZ 1002
#define BURST_SZ 20

#ifdef fpga
unsigned int *X,*Y;
unsigned int Y_burst[32],*Y1_pnt,*Y0_pnt;
unsigned int temp_Y,temp_Y1,offset;
unsigned int time_start,time_finish,burst;
X=(unsigned int *)MEM_ADDR;
Y=X+ARRAY_SZ;
offset=0;
#else
unsigned int X[1002], Y[1002];
#endif

int L, k,j;
//preps
for (L = 0; L <= 1001; L++)
{
Y[L] = L*L*L;
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};
//make sure that all data is written to mem before using read prefetch
#ifdef fpga
xil_printf("init finish: 0x%08x\n\r",Y[1] );
#else
printf("init finish: 0x%08x\n\r",Y[1] );
write_file(&Y[0],0 );
#endif

//real computation
#ifdef fpga
time_start=timer(1);
#endif
for (L = 1; L <= 12; L++) /* 1000 */
{
for (k = 1; k <= 1000; k++)
{
#ifdef fsl
#ifdef BURST_RD
if ( k==1 || k%31==0 )
{
burst=(1001-k>31)?31:(1001%k);
if (k!=0) offset=k; else offset=0 ;
putdfslx(burst,0,FSL_CONTROL);
putdfslx(Y+offset,0,FSL_DEFAULT);
for (j=0;j<burst+1;j++)
{
getdfslx(Y_burst[j],0,FSL_DEFAULT);

}
Y0_pnt=Y_burst;
Y1_pnt=Y0_pnt+1;
}

X[k] = *Y1_pnt - *Y0_pnt;
Y0_pnt++;
Y1_pnt++;
#else
if (k==1)
{
for(j=1;j<5;j++)
{
putdfslx(Y+j,0,FSL_DEFAULT); //Y[k]
putdfslx(Y+1+j,0,FSL_DEFAULT);//Y[k+1]
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}
}
if (k<=996)
{
putdfslx(Y+k+4,0,FSL_DEFAULT); //Y[k]
putdfslx(Y+k+5,0,FSL_DEFAULT);//Y[k+1]
}
getdfslx(temp_Y,0,FSL_DEFAULT);
getdfslx(temp_Y1,0,FSL_DEFAULT);
X[k] = temp_Y1 - temp_Y;
#endif
#else
X[k] = Y[k+1] - Y[k];
#endif

};
};
#ifdef fpga
time_finish=timer(0);
xil_printf("time=%d\n\r",time_finish);
#endif

//Fb
for (L = 1; L <= 1000; L++)
{
#ifdef fpga
if (L%100==0)
{
xil_printf(" 0x%08x\n\r", X[L]);
}
#else
#ifdef FILE_S
write_file(&X[L],0);//if (L%100==0)
#else
if (L%100==0) printf(" 0x%08x\n", X[L]);
#endif

#endif
};

#ifdef fpga
xil_printf("start time=%d\r\n", time_start);
xil_printf("finish time=%d\r\n", time_finish);
xil_printf("total time=%d\r\n", time_finish-time_start);
#endif
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#undef ARRAY_SZ
#undef BURST_SZ

//set burst to ZERO again !!!!
putdfslx(0,0,FSL_CONTROL);
}

/*
*******************************************************************
* Kernel 6 -- general linear recurrence equations
*******************************************************************
*/
void K_6()
{
#define n 30
unsigned int L, k, i,residue;
unsigned int temp,j,pf;
unsigned int time_start,time_finish;
#ifdef fpga
typedef unsigned int vec[n+1];
unsigned int *W; //,*B[n];
vec *B;
unsigned int temp_W,temp_B,temp_W1;
W=(unsigned int *)MEM_ADDR;
//B is an array of pointers
B=(vec *)W+1;
#else
unsigned int B[n+1][n+1];
unsigned int W[101];
#endif

//init
for (L = 0; L <= n; L++)
{
for (i = 0; i <= n; i++)
{
B[L][i] = 1;
W[i] = 1;

};
};
//make sure that all data is written to mem before using read prefetch
#ifdef fpga
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xil_printf("init finish: 0x%08x\n\r",B[1][1] );
#else
printf("init finish: 0x%08x\n\r",B[1][1] );
write_file(&B[1][1],0 );
#endif

//real computation
#ifdef fpga
time_start=timer(1);
#endif
for ( i=1 ; i<=n ; i++ )
{
for ( k=0 ; k<i ; k++ )
{
#ifdef fsl
//#ifdef BURST_RD
//not possible
//#else
//fetch in each loop (changes constantly)
temp_W=W[i];
temp_W1=W[(i-k)-1];
if (k==0)
{
pf=(i<4)?i:4;
for(j=0;j<pf;j++)
{
putdfslx(&B[j][i],0,FSL_DEFAULT); //B[k][i]
}

}
if (i>4 && k<i-4)
{
putdfslx(&B[k+4][i],0,FSL_DEFAULT); //B[k][i]
}
getdfslx(temp_B,0,FSL_DEFAULT);
W[i] = temp_W+ temp_B * temp_W1;

//#endif
#else
W[i] = W[i]+ B[k][i] * W[(i-k)-1];
#endif
}
}
#ifdef fpga
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time_finish=timer(0);
xil_printf("time=%d\n\r",time_finish);
#endif
//feedback
for (i = 1; i <=n; i++)
#ifdef fpga
if (i%1==0) xil_printf(" 0x%08x\n\r", W[i]);
#else
#ifdef FILE_S
if (i%1==0) write_file(&W[i],0);
#else
if (i%1==0) printf(" 0x%08x\n\r", W[i]);
#endif
#endif
#ifdef fpga
xil_printf("start time=%d\r\n", time_start);
xil_printf("finish time=%d\r\n", time_finish);
xil_printf("total time=%d\r\n", time_finish-time_start);
#endif
#undef n

//set burst to ZERO again !!!!
putdfslx(0,0,FSL_CONTROL);
}

/*
*******************************************************************
* Kernel 21 -- matrix*matrix product
*******************************************************************
*/
void K_21()
{
#define ROWS 26
#define COLS 102
unsigned int L, i, k, j,m,rd;
#ifdef fpga
typedef unsigned int vec[COLS];
unsigned int *mem,temp_PX,temp_VY,temp_CX;
unsigned int time_start,time_finish;
vec *PX,*CX,*VY;
mem=(unsigned int *) MEM_ADDR;
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PX=(vec *)mem;
CX=(vec *)mem+ ROWS;
VY=(vec *)mem+ 2*ROWS;
#else
unsigned int PX[26][102], CX[26][102], VY[26][102];
#endif

//init
for (i = 1; i <= 25; i++)
for (j = 1; j <= 101; j++)
{
PX[i][j] = 0;
VY[i][j] = i*j+j*j*i;
CX[i][j] = i*i*j+j*j*i;
};
//make sure that all data is written to mem before using read prefetch
#ifdef fpga
xil_printf("init finish: 0x%08x\n\r",VY[1][1] );
#else
printf("init finish: 0x%08x\n\r",VY[1][1] );
write_file(&VY[1][1],0);
#endif

//real computation
#ifdef fpga
time_start=timer(1);
#endif
for (L = 1; L <= 1; L++) /* 1000 */
{
for (i = 1; i <= 25; i++) /* 101 */
{
for (k = 1; k <= 25; k++) /* 101 */
{
for (j = 1; j <= 101; j++) /* 101 */
{
#ifdef fsl

//#ifdef BURST_RD
//#else
if (j==1)
{
putdfslx(&VY[i][k],0,FSL_DEFAULT);//VY[i][k]
for(m=1;m<5;m++)
{
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putdfslx(&CX[k][m],0,FSL_DEFAULT);//CX[k][j]
}
//fetch only once in the loop
getdfslx(temp_VY,0,FSL_DEFAULT);
}
if (j<=97)
{

putdfslx(&CX[k][j+4],0,FSL_DEFAULT);//CX[k][j]
}

getdfslx(temp_CX,0,FSL_DEFAULT);

temp_PX=PX[i][j];
PX[i][j] = temp_PX + temp_VY * temp_CX;
//#endif
#else
PX[i][j] = PX[i][j] + VY[i][k] * CX[k][j];
#endif

};
};
};
};
#ifdef fpga
time_finish=timer(0);
xil_printf("time=%d\n\r",time_finish);
#endif

for (i = 1; i <= 1; i++)
for (j = 1; j <= 101; j++)

#ifdef fpga
xil_printf(" 0x%08x\n\r", PX[i][j]);
#else
#ifdef FILE_S
write_file(&PX[i][j],0);
#else
printf(" 0x%08x\n\r", PX[i][j]);
#endif

#endif
#ifdef fpga
xil_printf("start time=%d\r\n", time_start);
xil_printf("finish time=%d\r\n", time_finish);
xil_printf("total time=%d\r\n", time_finish-time_start);
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#endif

//set burst to ZERO again !!!!
putdfslx(0,0,FSL_CONTROL);
}

#ifndef fpga
void write_file(unsigned int *VAL,unsigned int text)
{
FILE *fpIN;
int *i;

fpIN=fopen("out_dbg","a");
if(fpIN == 0)
{
perror("out_dbg");

return ;
}

if (text) fprintf(fpIN,"------------------------------------------------------------------------\n\r",0);
else
fprintf(fpIN," 0x%08x\n\r",*VAL);

fclose(fpIN);
}
#endif

A.2 kernel.h

//
// C++ Interface: kernel
//
// Description:
//
//
// Author: Jason de Windt <dwindt65@forseti>, (C) 2009
//
// Copyright: See COPYING file that comes with this distribution
//
//
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#ifdef fpga
#include "xilinx.h"
#endif
void write_file(unsigned int *,unsigned int );
void K_1();
void K_12();
void K_6();
void K_21();

A.3 xilinx.h

#include "jpeg.h"
#ifdef fpga

#include "xparameters.h"
#include "xutil.h"
#include "xio.h"
#include "fsl.h"

#define MEM_ADDR 0xB0010000
#define MAX_ADDR 50

//start,stop and read a timer

int timer(int );

#endif
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A.4 xilinx.c

//
#include "xilinx.h"
#define MEM_TEST
#ifdef fpga
#define TIMER_START 0x00000001
//XTmrCtr TimerCounter;

int timer(int start)
{
int val;

val=XIo_In32(XPAR_TIMER_0_BASEADDR);

//start timer
if (start)
XIo_Out32(XPAR_TIMER_0_BASEADDR ,TIMER_START);

return val;

}
#endif

A.5 generator.c

#include <stdio.h>
#ifndef fpga
#include <stdlib.h>
#endif
#include "generator.h"

#ifdef fpga
int gen()
{
#else
int main()
{
#endif
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//#ifndef fpga
unsigned int result[LOOP_MAX];
//#endif

unsigned int i,j,offset;
float cmplx;
unsigned int mem_pr;
unsigned int *mem;
unsigned int loop,burst;
unsigned int wr_st,wr_fn,rd_st,rd_fn,time,com_st,com_fn;
loop=LOOP_MAX;

#ifdef fpga
#ifdef N_BURST_WR
mem=(unsigned int *) HIGH_ADDR-1;
#else
mem=(unsigned int *) BASE_ADDR;
#endif
#else
mem=(unsigned int *) malloc(100000);
mem_pr=(unsigned int)mem;
#endif

//fill the mem with data
print("write\n\r");
#ifdef fpga
wr_st=timer(1);
#endif

for(i=0;i<loop;i++)
{
#ifdef N_BURST_WR
*mem=i;
mem--;
#else
*mem=i;
mem++;
#endif
}

#ifdef fpga
wr_fn=timer(0);
print("wr=%d\nr",wr_fn);
#endif
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print("finish write to mem\n\r");

//set the pointers to the correct location
#ifdef fpga
mem=(unsigned int *) BASE_ADDR;
#else
mem=(unsigned int *)mem_pr;
#endif

//decouple write and read
print("decouple wr and rd=%d\n\r",*(mem+1));

//set loop for read
loop=LOOP_MAX;

#ifdef fsl
//set burst to zero again
putdfslx(0,0,FSL_CONTROL);
#endif

//print("start read\n\r");
//perform the reads
#ifdef fpga
rd_st=timer(1);
#endif

//print("before loop\n\r");
for(i=0;i<loop;i++)
{
//print("inside loop\n\r");
#ifdef fsl
//print("inside fsl\n\r");
#ifdef BURST_RD
if ( i==0 || i%32==0 )
{
burst=(loop-i>31)?31:(loop%i)-1;
putdfslx(burst,0,FSL_CONTROL);
putdfslx(mem+i,0,FSL_DEFAULT);
}
//get data from FSL
getdfslx(result[i],0,FSL_DEFAULT);

//print("i=%d\tres=%d\n\r",i,result[i]);
#else
if (i==0)
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{
//remote memory
putdfslx(mem,0,FSL_DEFAULT);
//mem++;
putdfslx(mem+1,0,FSL_DEFAULT);
//mem++;
putdfslx(mem+2,0,FSL_DEFAULT);
//mem++;
putdfslx(mem+3,0,FSL_DEFAULT);
//mem++;
}
if(i<loop-4)
{
putdfslx(mem+4,0,FSL_DEFAULT);
mem++;
}

//get data from FSL
getdfslx(result[i],0,FSL_DEFAULT);
//print("i=%d\tj=%d\n\r",i,j);
#endif
#else
//print("reading\t");

result[i]=*mem;
//print(":%d\n\r",j);
mem++;
#endif
}

#ifdef fpga
rd_fn=timer(0);
print("rd=%d\n\r",rd_fn);
time=(rd_fn-rd_st) + (wr_fn-wr_st);
print("rd=%d\twr=%d\ttot=%d\n\r",rd_fn,wr_fn,time);
#endif

//check for errors
#ifdef N_BURST_WR
for(i=0;i<loop;i++)
{
j=result[loop-1-i];

if (j!=i)
{
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print("ERR=%d\texpected=%d\n\r",j,i);
break;
}
}
#else
for(i=0;i<loop;i++)
{
j=result[i];

if (j!=i)
{
print("ERR=%d\texpected=%d\n\r",j,i);
break;
}
}
#endif

#ifdef fsl
//set burst to zero again
putdfslx(0,0,FSL_CONTROL);
#endif

//----------------------------------------------------------------

#ifdef fpga
mem=(unsigned int *) BASE_ADDR;
#else
mem=(unsigned int *) malloc(100000);
mem_pr=(unsigned int)mem;
#endif

//print("start read\n\r");
//perform the reads
#ifdef fpga
com_st=timer(1);
#endif

//print("before loop\n\r");
for(i=0;i<loop;i++)
{
//print("inside loop\n\r");
#ifdef fsl
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if (i==0)
{
//remote memory
putdfslx(mem,0,FSL_DEFAULT);
//mem++;
putdfslx(mem+1,0,FSL_DEFAULT);
//mem++;
putdfslx(mem+2,0,FSL_DEFAULT);
//mem++;
putdfslx(mem+3,0,FSL_DEFAULT);
//mem++;
}
if(i<loop-4)
{
putdfslx(mem+4,0,FSL_DEFAULT);
}

//get data from FSL
getdfslx(result[i],0,FSL_DEFAULT);
*mem=i;
mem++;
#else

result[i]=*mem;
*mem=i;
mem++;
#endif
}

#ifdef fpga
com_fn=timer(0);
print("com=%d\n\r",com_fn);
time=(com_fn-com_st);
print("com=%d\ttot=%d\n\r",com_fn,time);
#endif

//check for errors
#ifdef N_BURST_WR
for(i=0;i<loop;i++)
{
j=result[loop-1-i];

if (j!=i)
{
print("ERR=%d\texpected=%d\n\r",j,i);



124 APPENDIX A. APPLICATION C CODE

break;
}
}
#else
for(i=0;i<loop;i++)
{
j=result[i];

if (j!=i)
{
print("ERR=%d\texpected=%d\n\r",j,i);
break;
}
}
#endif

//----------------------------------------------------------------

#ifndef fpga
free((unsigned int *)mem_pr);
#endif
print("Finish\n\r");
/**/
} ;

A.6 generator.h

#define HIGH_ADDR 0xb0018ff0
#define BASE_ADDR 0xb0010000
#define LOOP_MAX (HIGH_ADDR-BASE_ADDR)/4

#ifdef fpga
#include "xilinx.h"
#endif



Experiment results B
B.1 Base shell results

This section contains all the results obtained for the base shell. The numbers are the
total number of cycles that was needed to complete the operation. Table B.1 shows the
result for the base shell without loop unrolling and Table B.2 shows the result for loop
unrolling.

B.2 Optimized shell results

This section contains all the results obtained for the optimized shell. The numbers are
the total number of cycles that was needed to complete the operation. Table B.3 shows
the result for the optimized shell without loop unrolling and Table B.4 shows the result
for loop unrolling.
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Table B.1: Results for the base shell without loop unrolling
Base npr npw Base npr pw Base pr npw Base pr pw

BW 100% 870568 847374 846963 823799 jpg
BW 50% 895225 852659 866457 823835
BW 25% 964426 865314 923184 823928
BW 12,5% 968485 871581 923283 826541

Base npr npw Base npr pw Base pr npw Base pr pw
BW 100% 1578229 1319409 611085 336666 k1
BW 50% 2777554 2083194 695772 337153
BW 25% 5555022 4166329 1390109 337496
BW 12,5% 5555043 4166328 1390184 463649

Base npr npw Base npr pw Base pr npw Base pr pw
BW 100% 1980201 1531942 901431 420323 k12
BW 50% 3563979 2376070 1189214 421148
BW 25% 7127999 4752001 2378402 496589
BW 12,5% 7128014 4752000 2378378 541733

Base pr pw Base pr npw Base npr pw Base npr npw
BW 100% 70792 89201 92173 108377 k6
BW 50% 95109 141090 138130 184163
BW 25% 190117 282140 276230 368264
BW 12,5% 190132 282110 276230 368279

Base pr pw Base pr npw Base npr pw Base npr npw
BW 100% 5432668 7842678 11565692 14065227 k21
BW 50% 6311265 12560644 18748148 24997519
BW 25% 12622539 25121247 37496273 49994982
BW 12,5% 12622551 25121217 37496270 49994997
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Table B.2: Results for the base shell with loop unrolling

Base pr pw Base npr pw Base pr npw Base npr npw
BW 100% 800056 823606 823265 846825 jpg loop unrolling
BW 50% 800056 827583 842804 870285
BW 25% 800192 841671 899630 941070
BW 12,5% 802896 846527 899729 943446

Base pr pw Base pr npw Base npr pw Base npr npw
BW 100% 322678 592313 1289580 1562405 K1 loop unrolling
BW 50% 322948 695742 2083161 2777556
BW 25% 325073 1390172 4166294 5555075
BW 12,5% 463714 1390154 4166294 5555096

Base pr pw Base pr npw Base npr pw Base npr npw
BW 100% 387303 848925 1485017 1955434 K12 loop unrolling
BW 50% 390841 1189180 2376024 3564017
BW 25% 476383 2378373 4751965 7127965
BW 12,5% 529818 2378343 4751965 7127980

Base pr pw Base npr pw Base pr npw Base npr npw
BW 100% 71055 90188 89247 108307 K6 loop unrolling
BW 50% 95070 138200 141055 184129
BW 25% 190081 276195 282090 368328
BW 12,5% 190096 276195 282174 368244

Base pr pw Base pr npw Base npr pw Base npr npw
BW 100% 5374478 7827803 11251358 13550624 K21 loop unrolling
BW 50% 6311324 12560609 18748122 24997484
BW 25% 12622503 25121212 37496238 49994947
BW 12,5% 12622515 25121287 37496235 49994962
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Table B.3: Results for the optimized shell without loop unrolling
Opt pr Opt npr

BW 100% 820919 844483 jpg
BW 50% 820970 849984
BW 25% 821045 862543
BW 12,5% 821045 866399

Opt pr Opt npr
BW 100% 301596 1284650 k1
BW 50% 302132 2083223
BW 25% 316675 4166349
BW 12,5% 463710 4166347

Opt pr Opt npr
BW 100% 360302 1485003 k12
BW 50% 376566 2375983
BW 25% 476387 4752015
BW 12,5% 529831 4752021

Opt pr Opt npr
BW 100% 68255 88442 k6
BW 50% 95073 138154
BW 25% 190094 276254
BW 12,5% 190094 276255

Opt pr Opt npr
BW 100% 5135861 11251357 k21
BW 50% 6311333 18748167
BW 25% 12622516 37496202
BW 12,5% 12622513 37496294
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Table B.4: Results for the optimized shell with loop unrolling
Opt pr Opt npr

BW 100% 797176 820745 jpg loop unrolling
BW 50% 797176 825011
BW 25% 797240 838841
BW 12,5% 797257 841741

Opt pr Opt npr
BW 100% 287607 1266260 K1 loop unrolling
BW 50% 288337 2083174
BW 25% 309803 4166313
BW 12,5% 463676 4166313

Opt pr Opt npr
BW 100% 327325 1452021 K12 loop unrolling
BW 50% 371912 2376025
BW 25% 476440 4751987
BW 12,5% 529894 4751981

Opt pr Opt npr
BW 100% 69367 88445 K6 loop unrolling
BW 50% 95043 138115
BW 25% 190059 276218
BW 12,5% 190059 276218

Opt pr Opt npr
BW 100% 5049011 11045098 K21 loop unrolling
BW 50% 6311288 18748144
BW 25% 12622483 37496254
BW 12,5% 12622487 37496260
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