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Abstract

Designing lightweight aircraft parts to improve fuel efficiency is crucial to meet the aviation
sector’s goals of reducing CO2 emissions. However, it is also important to ensure that these
lightweight parts have a lower CO2 footprint over their entire lifetime. Previous studies have
successfully achieved this using topology optimization and low-embodied CO2 composite ma-
terials. However, it resulted in structures with lower mechanical properties. To address this
limitation, a new framework that uses multi-material fibre-angle topology optimization to opti-
mize fibre-reinforced composite structures is developed in this work. This approach optimizes
low-embodied CO2 footprint composites and high-performance, high-embodied CO2 compos-
ites in the same structure.

A comprehensive CO2 footprint assessment of the optimized structures is conducted by varying
the amount of each of the two materials in the structure. As a result, a series of multi-material
composite structures with varying levels of compromise between stiffness and CO2 footprint
are obtained. These findings establish an optimization approach that provides more control
over tuning the desired objectives of such structures. In addition, an extensive parametric
study is conducted to demonstrate the framework’s robustness. However, during this analysis,
certain limitations of the framework are identified, such as difficulties in optimizing fibres and
material modelling. To overcome these limitations, a more robust framework can be developed
in the future. Additionally, incorporating stress-based topology optimization into the existing
framework can also help in achieving further improved designs.
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1
Introduction

Businesses globally are increasingly driven towards sustainability, particularly in the aerospace
industry. In order to avoid the negative effects of climate change, it is essential that a target
to reduce net global CO2 emissions to half of what they were in 2005 is met by 2050. However,
achieving these climate change goals in the face of a growing aerospace sector requires a com-
prehensive decarbonization of the industry [1]. The impact of various measures on projected
CO2 emissions for the aviation sector can be observed in Figure 1.1.

Figure 1.1: Projection of the aviation sector’s jet-fuel based CO2 emissions, and possible reduction. Aircraft
technology improvement and air traffic management can reduce 7.8 and 2.7 gigatons of CO2 emissions of the

21.6 gigatons required to meet the ICAO goal of carbon neutral growth target from 2019 [2].

Projected CO2 emissions in Figure 1.1 clearly show that despite improvements in air traffic
management and aircraft technology, a deficit of 8.8 gigatons of CO2 emissions to meet the
carbon-neutral growth target would persist. While sustainable aviation fuels or SAFs hold
promise, they are not yet scalable or cost-effective. Therefore, the aviation sector must im-
plement quicker-to-the-market solutions to reduce CO2 emissions in the meantime. These
solutions include lightweighting, blended fuels, more efficient engines, improved aerodynamics
and flight operations [1], [2].

A reduced aircraft weight leads to decreased lift and drag during flight. This lowers the
required thrust and, subsequently, jet fuel consumption. For every extra ton of weight saved
on an aircraft, a projected 3% to 10% reduction in fuel consumption for short-haul flights and

1



2

20% to 25% reduction for long-haul flights can be achieved. Its equivalent impact on reducing
the CO2 emissions can be estimated from the fact that combusting a kilogram of fuel releases
3.16 kilogram of CO2 into the atmosphere [1].

Composite materials are increasingly being used in aircraft structures due to their high specific
properties. This helps in reducing the weight of the aircraft and, in turn, increases its fuel
efficiency [3]. For instance, Boeing 787 extensively utilize fibre-reinforced composites, which
make up for almost 50% of its weight. This results in a 20% weight reduction compared to
similar models made from heavier metal and leads to fuel efficiency gains of 10-12% [4].

On the other hand, structural optimization approaches like topology optimization can also
be used as an effective light-weighting tool. It helps reduce material use and enhance struc-
tural performance by redistributing the material in the structure where it is needed. When
combined with high-performance composite materials, lightweight designs can be created for
aerospace components. This relatively newer practice involves applying these materials to "nu-
merically optimized structures" and using non-conventional manufacturing techniques, such
as additive manufacturing (AM), to fabricate them [3].

However, a limitation of composites like carbon fibre-reinforced polymers (CFRP) is their
reliance on petroleum-based polymer materials and highly energy-intensive raw materials like
carbon fibres. This raises sustainability questions regarding raw material CO2 footprint and
end-of-life disposal options when compared to metals that they replace [5].

The work of Almeida [6] proposed an eco-design approach to address this issue. In his work,
the concepts of using low embodied CO2 footprint natural fibre-reinforced polymer composites
(NFRPCs) and structural optimization were combined to reduce the environmental impacts
of synthetic composite structures. The topology-optimized NFRPC structures successfully
reduced the CO2 emissions of a part over its lifetime. However, on their own, these structures
did not provide the high stiffness required for highly loaded aerospace structures without a
mass penalty.

Thus, this thesis aims to find a way to address this limitation of Almeida’s [6] work, using
its results as a starting point. In this work, multi-material topology optimized structures are
hypothesized to design more eco-efficient structures for aviation while achieving good mechan-
ical properties. Multi-material structures are envisioned to combine the high stiffness and low
embodied CO2 footprint of CFRP and NFRPC, respectively, to create better-compromised
designs that can simultaneously meet the aero-structures’ mechanical and eco-efficiency re-
quirements.

To achieve this goal, we define a detailed research scope and direction by reviewing the state-
of-the-art regarding multi-material structures for composites and the relevant research gaps
in Chapter 2. The design choices and considerations for the required multi-material topology
optimization framework for composites based on the state-of-the-art are then evaluated in
Chapter 3. Following the design choices established in the previous chapter, Chapter 4 details
the computational framework. In Chapter 5, the design of experiments for a parameter-based
sensitivity study and eco-efficiency performance assessment is underlined. The results and
analysis for the verification tests are then detailed in Chapter 6. In Chapter 7, we discuss
the issues and limitations of the framework. Lastly, the conclusions and recommendations for
future work are outlined in Chapters 8 and 9, respectively.



2
Background and Research Scope

2.1. Introduction to Topology Optimization
Structural optimization, a broader field that encompasses topology optimization, started as
simple cross-section size optimization for truss structures in civil engineering applications. It
soon evolved into more complex optimization problems, such as optimizing the structural
boundary or shape of structures and optimizing the material distribution within a solid block
structure. These optimization exercises were termed shape optimization and topology opti-
mization, respectively. Figure 2.1 shows these three primary forms of structural optimization
in the order of their development [7].

Figure 2.1: Structural optimization techniques employed in engineering practice namely, size optimization
(Top), shape optimization (Middle), and topology optimization (Bottom) [8].

As seen from Figure 2.1, each of the structural optimization techniques differs from the others
in some aspects. The optimization of an object’s dimensions, such as its length, width, or
depth, falls under size optimization. Shape optimization, on the other hand, focuses on de-
termining the optimal shape of a part by optimizing the openings, often referred to as holes.
However, when optimizing the overall geometry of a part, which encompasses both its size
and shape, we can term such an optimization exercise as topology optimization [8]. Of all
these aforementioned structural optimization techniques, the primary focus of this work and
literature review is topology optimization.

Topology optimization (TO) is often employed in engineering applications to optimize the
distribution of material in a domain such that the performance of the part is maximized. Nu-
merical optimization algorithms are employed to remove material regions in the part that are
not contributing to its overall performance like stiffness or deformation [8]. As a result, imple-
menting topology optimization for complex problems can result in unanticipated topologies.
This makes it an effective tool for designing novel and lightweight aircraft structures that can
reduce the aerospace sector’s carbon footprint.

3
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2.1.1. General Optimization Problem
In the most general form, any structural optimization problem, including topology optimiza-
tion, can be expressed by Equation 2.1.

minimize f(X) minimize this objective function
Subject to X = (x1, x2, ..., xN)T , design variables

xl
i ≤ xi ≤ xu

i , i = 1, . . . , N bound constraints
hj(X) = 0, j = 1, . . . , Nh equality constraints
gk(X) ≤ 0, k = 1, . . . , Ng inequality constraints

(2.1)
Where f(X) is the objective function that the optimization algorithm minimizes. The design
variable vector represented by X is the means to change the design during optimization. The
N individual design variables xi of the design variable vector X define the design space of
the optimization problem. In the context of structural optimization, these design variables
can represent geometrical dimensions, physical properties like material density, etc., or other
physical aspects like fibre orientations.

The design variable xi is often restricted by an upper bound, xu
i and a lower bound, xl

i. In
most engineering-relevant problems, these design variables are further constrained using Nh

equality or Ng inequality constraints hj(X) and gk(X). For a feasible solution to exist for any
given problem, all such constraints restricting the design space must be satisfied. Numerical
optimization algorithms are used to update the design variables while satisfying these con-
straints to find the best solution. This update of design variables is done through an iterative
process, which runs until the stopping criteria are satisfied [9].

2.1.2. Optimization Algorithm
Optimization algorithms can be broadly classified into gradient-free and gradient-based tech-
niques depending on how they achieve the best possible solution for a problem. The main
difference between the two is the use of gradients to obtain a solution.

A primary drawback associated with the first category of algorithms is the significantly high
computational costs, which increase with the number of unknowns or design variables. This is
significantly higher than what gradient-based optimization techniques require, given that they
are local search algorithms and use gradient information to devise better search directions.
This difference in the computational efficiency of both these strategies can also be seen in Fig-
ure 2.2a. Consequently, gradient-based approaches are preferred for structural optimization
problems with a higher number of design variables [7].

In its simplest form, a gradient-based optimization algorithm optimizes an unconstrained prob-
lem by determining a local search direction and the best step size in that search direction. A
general representation of how the gradient-based approaches use gradient information to reach
a minimum can be visualized from Figure 2.2b. A descent direction is determined using first-
order local information (gradient) at the current step. Such a gradient-based search is called
steepest-descent or gradient descent. A line search algorithm is then used to determine the
suitable step size based on this descent search direction. This step size is proportional to the
negative of the function’s gradient at the current point and is evaluated iteratively until the
stopping criteria are satisfied [7], [10].
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Figure 2.2: (a) Plot from [7], showing how gradient-based algorithms scale better with increasing number of
design variables, compared to gradient-free optimization approaches due to use of gradient information, (b)

The path taken by the optimization algorithm based on the local gradient information at each small step size,
effectively allowing it to find the lowest point or minima [10] (c) A multi-modal objective function f(x), can

cause the optimization algorithm to optimize for a local minimum or the global optimum based on that
initial design variable guesses B and A respectively [9].

Structural optimization problems are often non-convex or multi-modal, i.e., they have multiple
locally optimal solutions that are not necessarily the global optimal solution. When solved
using optimization algorithms that use local information or gradients, the final solution can
depend on the initial guess. Different initial guesses can lead to different results, and the
optimization algorithm may converge to either a local minimum or a global minimum based
on where it starts [9]. This issue of non-convexity and the quality of the obtained solution,
depending on the initial guess, can be further visualized from Figure 2.2c.

Nonetheless, if better solutions are to be achieved using gradient-based approaches that use
local search, a multi-start strategy can be used. Where the gradient-based algorithm is run
multiple times in parallel for multiple initial guesses. This results in a better solution, which
might or might not be the global minimum but better than the solution for evaluating only a
single initial guess [7], [9]. Hence, for the scope of this work, we limit our discussions to only
gradient-based approaches.

2.1.3. Topology Optimization Approaches
The most prominent topology optimization approaches for continuum structures reported in
the literature include density-based and boundary-based approaches. Solid isotropic material
Penalization (SIMP) and evolutionary structural optimization (ESO) approaches fall under
the density-based approach, and the level-set (LS) method can be classified as a boundary-
based approach [9]. Figure 2.3 shows an overview of this classification. Of all the approaches
mentioned, density-based approaches are generally more widely used. With more than 50 %
of commercially available software using density-based approaches [11] for TO. Given their
popularity, the scope of discussion is also limited to density-based TO approaches.

The foundation of numerous density-based topology optimization approaches lies in the utiliza-
tion of discrete design variables, such as those found in Evolutionary Structural Optimization
methods. However, Sigmund and Maute [12] highlight that employing density design vari-
ables restricted to discrete values, typically 0 or 1, makes it challenging to solve topology
optimization problems with large design space. However, continuous design variables allow
more efficient use of gradient-based algorithms to obtain convergence for such problems.
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Figure 2.3: An overview of basic topology optimization approaches for continuum structures adapted from
Lang [9], showing the primary approaches, which include macro-structure or boundary-based optimization

and microstructure or density-based optimization approaches. Within density-based optimization approaches,
the ESO approach uses discrete design variables, and SIMP uses continuous design variables for topology

optimization.

A typical approach to the topology optimization problem involves discretizing the design do-
main using a finite element method (FEM). When the structure is discretized using N finite
elements, the size of holes becomes restricted by this discretization. In such cases, this in-
herent ill-posedness of the optimization problem is reflected in the numerical solution and is
termed mesh-dependency. Achieving a well-posed problem then requires regularization of the
topology optimization problem formulation. One popular option involves relaxing the discrete-
ness of the design variable and incorporating intermediate material densities into the problem
formulation. As a result, recent research for topology optimization approaches for continuum
structures has largely concentrated on formulating optimization problems with continuous de-
sign variables. Examples of methodologies utilizing these continuous design variables include
the Homogenization approach and Solid Isotropic Material with Penalization [9].

The Homogenization approach assumes a "periodically perforated microstructure", where differ-
ent microstructures yield varying intermediate densities, for which the mechanical properties
are determined using homogenization theory. Alternatively, relaxation can be achieved by
utilizing a continuous material density value without microstructure. In that case, mechanical
properties are then determined through a power-law interpolation function between "solid" and
"void," implicitly penalising intermediate densities to drive the structure towards the desired
black-and-white configuration, often termed "0-1" design. This approach is commonly known
as Solid Isotropic Material with Penalization (SIMP), where the density design variable ρ is
often used to interpolate between the material property E or Young’s Modulus of an isotropic
material. As a result for a discretized design domain, when ρi = 0, we have E(ρi) = 0, and
for ρi = 1, we have E(ρi) = E0 for the corresponding discrete element [9], [12].

However, using SIMP can cause numerical challenges like check-boarding patterns with al-
ternating "0-1" densities and mesh dependence of design. To alleviate this ill-posedness of the
problem with checker-boarding and mesh dependence, we restrict the design space instead
of relaxing it too much through regularization schemes like mesh-independent filtering [9],
[12]. While filtering schemes prevent numerical instabilities, they generate many intermediate-
density elements in final topologies. These intermediate densities have no physical meaning.
They also render the manufacturing processes of the designs complicated and increase costs.
From a manufacturing perspective, generating "0-1" solutions at a macroscopic level is always
attractive. A way to address this issue is using a thresholding method, where intermediate
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densities are explicitly assigned 0 or 1 based on a cut-off value. However, this comes at the
cost of a slightly worse or sub-optimal compliance result [13].

2.1.4. General Topology Optimization Formulation
A general formulation for a simple density-based topology optimization problem, like SIMP,
can be written as,

minimize : C(ρ) = UTK(ρ)U

subject to :


K(ρ)U = F
0 ≤ ρi ≤ 1 i = 1, ..., N
V (ρ)

V0
≤ Ωf

(2.2)

Where C(ρ) is the structure’s compliance defined by the displacement vector U and global
stiffness matrix K(ρ), which is a function of ρ. The notation ρ represents the vector of N
material density design variables explicitly bounded between 0 and 1. Where 0 is void or
absence of material, and 1 is a fully dense material. The values of U required to calculate
the compliance are obtained by solving the static equilibrium equation K(ρ)U=F. Where F is
the global force vector. The inequality constraint defined for the problem is defined by V (ρ)
and V0, representing the total material and design domain volumes, respectively. Their ratio
is constrained to be less than equal to Ωf . Where Ωf is the user-defined fraction of the design
domain that can be occupied by the material densities.

Figure 2.4 illustrates a general optimization flow chart highlighting various steps to be consid-
ered for a density-based topology optimized problem, as stated in Equation 2.2.

Figure 2.4: Steps utilized to solve a density-based topology optimization problem adapted from Bendsoe and
Sigmund [14]

A similar iterative process mentioned earlier for a generalized optimization problem is used for
density-based TO approaches. Where the design domain is first discretized into N elements.
Then, an initial guess is initialized by initializing the design variable ρ. Next, the objective is
evaluated by utilizing SIMP-like interpolation for material property and finite element analysis
(FEA). After that, the objective and constraint gradients with respect to the design variables
are calculated. With the help of the gradients, the optimization algorithm is then used to
update the design to a better one with smaller objective functions. After each iteration, a check
is performed to see if the stopping criteria and constraints are met. If yes, the optimization is
stopped, and the results are plotted and processed. If not, then the process is repeated with
the new design.
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2.2. Composites and Topology Optimization
Reducing fuel consumption has been a top priority in the aerospace industry to meet the
growing demands while keeping costs in check. Several solutions exist, including improving
aerodynamic performance, engine efficiency, and fuel efficiency through better air traffic man-
agement and flight plans. Lightweighting is another widely used solution, where heavy metallic
components are replaced with lighter materials, such as composites. These materials have high
stiffness and low-density properties, which make them ideal for weight reduction [9].

Creating composite materials involves combining two or more materials to obtain a new ma-
terial with improved properties over those of the individual constituents. Fibre-reinforced
polymer composites (FRPCs) are the most common composite materials because of their high
stiffness-to-mass and stiffness-to-strength ratios. However, creating FRPCs with specific loads
and stiffness requirements can be challenging due to their anisotropic behaviour [9].

The anisotropic behaviour of FRPCs can be seen in Figure 2.5, where the Young’s Modu-
lus is evaluated for different layups of a carbon-fibre reinforced epoxy polymer with fibre
volume fraction of 60%, along multiple loading directions [9].

Figure 2.5: Polar plot showing the variation of Young’s modulus along different directions for quasi-isotropic,
unidirectional and cross-ply [0/90] carbon-epoxy composite layups, with the loading direction along the

x-direction, or θ = 0◦. This highlights the high directionality of composites and the importance of optimal
material alignment to achieve maximum mechanical properties [9].

It is evident from the plot that unidirectional layup provides the highest stiffness when the
loading direction coincides with the direction of the fibres. Conversely, with more isotropic-like
properties, the quasi-isotropic layup is largely unaffected by the loading directions. Ideally,
for high-stiffness mass-sensitive applications, such as aviation, it would thus be preferable to
employ unidirectional composites tailored to the loading direction to achieve more stiffness
with less material. In conclusion, the simultaneous selection of material and orientation is
crucial for exploiting the full lightweight potential of composites [9].

Further mass-savings, when using composites in a structure, can be achieved through topology
optimization. For example, it has been reported that considerable weight reduction can be
attained through "black-metal" solutions, which involve deriving composite structures from
former metallic ones through topology optimization [9].
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However, "black-metal" solutions often fail to fully exploit the strengths of composite materials,
particularly their directional strength along the fibres. Hence, the structure and material must
be designed concurrently to produce composite parts tailored to specific loads to achieve true
optimality. Unlike "black-metal" designs, which rely on predefined topologies and simplifica-
tions in material behaviour, optimal solutions include simultaneous consideration of structure
and material without prior assumptions [9].

Figure 2.6 shows the difference in the optimization results of isotropic material, quasi-isotropic
and "steered" unidirectional (UD) composite materials. We have tensile modulus E = 62,000
MPa for the isotropic case, which is aluminium in this case. For the carbon-epoxy quasi-
isotropic laminate, we have E = 69,671.15 MPa. Lastly, Ex = 181,000 MPa is the tensile
modulus along the fibre direction for the steered UD carbon epoxy composite.

For the same mass of all structures, the compliance and maximum displacement magnitude
are significantly reduced when the isotropic metallic structure is replaced with composite ones.
As seen, the quasi-isotropic solution is 42% stiffer than the aluminium solution. In compar-
ison, the steered unidirectional material solution is 74% stiffer than the aluminium solution
and 63% stiffer than the quasi-isotropic one. In addition, the steered unidirectional material
solution has a maximum displacement magnitude 73% lower than the aluminium solution and
60% lower than the quasi-isotropic solution [15].

Figure 2.6: For three different optimization cases with (Left) aluminium as the isotropic material, (Middle) a
carbon-epoxy quasi-isotropic layup, and (Right) a steered Unidirectional carbon-epoxy layup, the compliance
and deflection of the three resultant topology optimized structures are reported and compared. Compared to
aluminium and a quasi-isotropic layup, the steered UD materials give the best optimization results with 74
and 42% lower compliance and 73 and 60 % less displacement. Steered UD approach to TO benefits from

each microstructural element being free to orient itself along the optimal direction [15].

Steered UD laminate in Figure 2.6 achieves this significant improvement through the high
design freedom to orient fibre orientations along the most optimal direction. In this case, the
fibre orientations are allowed vary throughout the structure, enabling optimal orientation for
maximizing stiffness wherever the material is placed in the optimized structure. This steered
optimization is achieved using the technique of fibre angle optimization (FAO) applied to
the SIMP approach to topology optimization. Hence, such an approach is often used to de-
sign topology-optimized composite structures for fabrication through Additive Manufacturing
(AM) techniques.
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2.3. Fibre-Angle Optimization
In the literature on fibre-angle optimization or orientation optimization, several approaches
have been developed and reported: Discrete Material Optimization (DMO) [16], Continuous
fibre Angle Topology Optimization (CFAO) [17], tensor field variables [18], topological deriva-
tive [19], and discrete-continuous parameterization (DCP) [20], [21]. A detailed review of all
the approaches mentioned can be further referred to in the review paper by Gandhi and Minak
[22]. Of these, CFAO and DMO are the most widely used approaches studied for composite
laminate optimization [23] in literature, and hence discussed here.

Continuous fibre angle optimization is an approach that assigns a design variable directly
to each finite element, which represents the fibre angle orientation in the orthotropic mate-
rials. By relaxing the constitutive stress tensor in the design space, CFAO enables a larger
design space. It has been successfully applied to optimize the orientation of stacked laminae
in composite structures and achieve minimum-weight designs for laminated composite beams
in wind turbine applications as in Blasques and Stolpe [17].

For more non-laminate-based optimization like FRPC structures with oriented microstruc-
tures, early use of CFAO was reported by Jia et al. [24], where SIMP was combined with an
additional orientation design variable for topology-optimization of highly oriented composite
structures. Post that, several other studies like Jiang et al. [25] and Almeida [6] used the CFAO
approach in their fibre angle topology optimization (FATO) framework for designing 3D and
2D TO designs with carbon-fibre and natural fibre composites respectively. However, despite
CFAO’s prowess to generate continuous fibre paths, it is reported to face challenges such as
getting stuck in local minima [18]. Hence, alternative ways to deal with local optima problems
of CFAO must be explored to optimize composite designs and structures to be built using AM.

Discrete Material Optimization, on the other hand, initially designed for optimizing mate-
rial angles in stacked composite ply laminates by Stegmann and Lund [16], was also developed
to address the challenges associated with the local minima solutions encountered in CFAO.
It solved the local minima issues of CFAO by restricting the angle options to a predefined
set, commonly including angles like 0, 45, and 90 degrees, and in the process, reducing the
risk of inaccurate results. DMO, for FAO, is essentially a multi-material model where each
element is assigned m design variables representing m angular orientation. This simplifies the
optimization process and improves fibre-orientation optimization within the laminate.

However, despite DMO resulting in locally optimal design without local minima issues, it
might not be suitable for continuous fibre-path generation. This is due to the discrete orien-
tation values in each finite element, which makes generating continuous fibre paths difficult.
Ideally, one could use more discrete angles to obtain better continuity. However, increasing
discrete options would also lead to computational complexity and convergence problems. This
computational complexity arises from the DMO approach’s need to compute gradients for m
design variables per finite element. With m × N design variables, DMO uses m times the
design variables used by CFAO [18].

2.4. Eco-design and Topology Optimization
2.4.1. Environmental Impact of Composites
High-performance composites such as carbon and glass fibre composites help create lightweight
structures that reduce fuel consumption and emissions during an aircraft’s use phase. How-
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ever, producing these composites requires a significant amount of energy and the matrix used
is derived from petroleum-based sources, which impact the environment as well [13]. Regard-
ing manufacturing such composites, additive manufacturing allows for the creation of complex
designs, which would be otherwise difficult or impossible to achieve with conventional manufac-
turing techniques. However, it is an energy-intensive process that causes further environmental
impacts. In a nutshell, the environmental impact of these composites is present at every stage
of their life cycle, including raw material sourcing, production, manufacturing, use, and end-
of-life disposal.

A way to evaluate this impact, often cited in the literature, is Life-cycle Assessment (LCA).
LCA is a tool that quantifies and characterizes the environmental impact of commercial prod-
ucts, technologies, or services throughout their entire life cycle. LCA can be used to evaluate
the impact of using composite materials on an aircraft. However, to use this environmental
impact information of composites for designing more eco-efficient solutions, the concept of
eco-design can be implemented. Eco-design is a methodology that incorporates environmental
considerations into the design and development of products to minimize their negative envi-
ronmental effects while ensuring that essential factors like functionality, quality, and cost are
not compromised [26]. Thus, LCA can be viewed as a tool that aids in realizing the concept
of eco-design for a product by providing the designer and the stakeholders with the potential
impact quantification of all the components of the product through their various life-cycle
stages [27].

Generally, the LCA of a product or a process can be carried out by evaluating different
environmental impact parameters like terrestrial acidification, ozone depletion, land use, wa-
ter consumption, Global Warming, etc. However, since the data for all such indicators is not
well well-documented, it is often impossible to conduct a detailed LCA study. However, given
that the aviation sector’s growing contribution to the climate change crisis is primarily from
jet fuel combustion, often only a carbon footprint assessment is done for eco-design studies
that implement LCA for evaluating material choice [13]. Furthermore, materials like compos-
ites have significantly more documented CO2 footprint data than other environmental impact
parameters.

2.4.2. Eco-efficient topology optimized structures
Topology optimization of composite structures can be viewed as an eco-design task in itself,
where each kilogram of structural mass saved due to structural optimization results in sub-
stantial fuel savings over the operating life of mobility solutions like automobiles, aircraft,
launchers, etc. However, it does not directly consider the environmental impact of materials
used to optimise the structure. Neither does it consider these materials’ manufacturing or
processing impact on the part’s overall environmental impact.

Since material, process, and design selection aspects of structural design are coupled, the
environmental assessment requires a more multidisciplinary design optimization approach to
achieve optimum and sustainable results. Where the environmental impact minimization for
the structure is achieved while fulfilling the functional and technical requirements [28]. Build-
ing upon such an ideology and to eco-design the process of TO in a fast and efficient manner,
Duriez et al. [29] developed a method to "simultaneously select the optimal material, process,
and design of an additively manufactured structure". The Ashby index was used in their work
to achieve this simultaneous material-process-design optimization.
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Using the Ashby index allows for decoupling material and topology optimization. This en-
ables individual evaluation of the material and the structure. Thus, by only minimizing the
Ashby index in Equation 2.3, the objective function, in this case, CO2 footprint, can also be
minimized. This is achieved independent of the other variable terms related to the optimiza-
tion of topology (f(Vf )Vf ) in the objective definition [29] seen in Equation 2.3.

COtot
2 = LhF

δmax

ρ

E
f (Vf )Vf ×

(
COi

2,mat + Lveh × COi
2,veh

)
Ashby Index = ρ

E
×
(
COi

2 mat + Lveh × COi
2,veh

) (2.3)

Where L and h represent the length and height of the Ashby beam being optimized. δmax is the
fixed constraint on the maximum deflection of the beam, and F is the external load applied.
The material’s Young Modulus and density are E and ρ, respectively. The compliance of the
optimized topology is represented by f(Vf ) for an occupied volume fraction Vf . Lastly, the
terms in the bracket for the Ashby index are the CO2 intensities for different life-cycle phases
of the Ashby beam. It includes CO2 intensity for raw material production (COi

2,mat) and the
part’s use phase on a vehicle (COi

2,veh) over Lveh kilometres travelled, respectively.

In their work, Duriez et al. [29] minimize the CO2 impact of a structure, starting by short-
listing the best material-manufacturing process pairings from a larger database. This is done
by assessing which pair most reduces the CO2 impact index part of the objective function. A
Pareto front optimization approach is utilized to evaluate this in multiple steps until a limited
number of pairs remain. Then, the topology for the remaining optimal materials and manufac-
turing pairs is optimized. Lastly, to determine the best material-process-design combination
for a given problem, further evaluation of the total CO2 impact for the designs generated for
the remaining pairs is done.

However, this study by Duriez et al. [29] is limited to considering isotropic materials manu-
factured using AM. As a result, in a subsequent study, Almeida [6] extended this eco-design
for the TO framework developed to include anisotropic materials. Unlike in [29] though, the
CO2 impact in [6] is evaluated only post-optimization and not during the optimization.

2.4.3. Limitations of Eco-efficient Topology Optimization Framework

Figure 2.7: Ashby plot comparing the natural fibre and synthetic fibre’s embodied CO2 footprint and specific
stiffness, showing the embodied CO2 footprint of natural fibre being much lower compared to synthetic fibres.
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Almeida [6], in his work on single-material topology optimization, looks at optimizing trans-
port structures made from natural fibre-reinforced composites or NFRPCs. The aim is to
reduce the environmental impacts of otherwise conventional transport structures designed
from petroleum-based polymers and other metallic materials. This is achieved by replacing
them with low-density natural fibre-reinforced composites with a low CO2 footprint compared
to synthetic fibres, as seen in Figure 2.7.

In an attempt to realise this objective of more sustainable composite structures, SIMP was
implemented with CFAO and combined with an LCA-based material selection process. Such
an implementation resulted in 50% bamboo fibre in cellulose matrix as the composite material
with the lightest weight and the least CO2 footprint. The results for this optimization can be
seen from Figure 2.8a.

However, the compliance (24.7 J) for the bamboo-cellulose NFRPC is almost two times of
50% flax fibre in the cellulose matrix (13.4 J). This is despite the intermediate density design
variable values for the flax-cellulose composite as seen in Figure 2.8b, which probably results in
higher compliance than achievable for an equivalent discrete design. The CO2 impact, on the
other hand, is approximately 50% lower for the bamboo-cellulose combination when compared
to the flax-cellulose combination.

Figure 2.8: Topology obtained, along with the compliance and CO2 footprint when optimizing for a
composite material constituting (a) 50% bamboo fibres in cellulose matrix, (b) 50% flax fibres in cellulose
matrix. The results are reproduced using the CFAO strategy as developed by Almeida [6]. Comparing the
CO2 impact and compliance for the two designs, for a stiffness difference of 18 GPa (28.4 - 10.4 GPa)

between the two composites, a compliance difference of almost two times, and a CO2 impact difference of
approximately 50% is achieved.

The stiffness difference of 18 GPa between the two fibres explains the difference in compliance
obtained for the two structures when the same design volume fraction of 0.3 was used. The
density of bamboo fibres, on the other hand, is less than half that of flax, i.e., 700 kg/m3

compared to 1470 kg/m3, resulting in a structure with lower mass than flax fibre.

This gain in one objective at the cost of another is unfavourable when the objective is to
optimize both the compliance and the CO2 footprint. Such a simultaneous optimization of
multiple objectives often requires a trade-off among these objectives. Tools like Pareto Front
can help to achieve a smart trade-off without exploring the full range of every parameter.

In aviation, however, stiffness or rigidity requirements trump the eco-design aspect strictly
based on functionality. Increasing the stiffness of the bamboo-cellulose structure by increasing
its volume fraction could be possible, but that would lead to an increase in mass, which would
increase the CO2 footprint of the structure. When looking at aviation, the use phase or the
aircraft’s operational life contributes the most to carbon emissions [13]. In this case, increasing
mass does more harm. The emissions due to the burning of jet fuel to carry 1 kilogram of
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extra mass over the aircraft’s lifetime would be significantly higher. To emphasise the impact
of 1 kilogram of extra mass, Duriez [13] in his work estimated that we could save 25.8 tons of
kerosene over a long-distance aircraft’s life just by saving 1 kilogram of mass and 3.83 tons of
CO2 emissions can be prevented by saving one ton of kerosene.

As established, optimized compliance is also important and must be considered when a specific
stiffness is required for part design. Hence, in order to obtain a good compromise between
stiffness and minimizing carbon dioxide emissions, it is suggested that studying the effects of
a multi-material structure made up of different combinations of natural fibres and synthetic
fibres could be beneficial.

2.5. Multi-Material Topology Optimization
The motivation to opt for printing multi-material topology optimized structures is supported
by the results of the study carried out by Roper et al. [30] and Zuo and Saitou [31]. In the
study by Roper et al. [30], a three-material system containing both isotropic and anisotropic
materials, i.e. metals and composites, is simultaneously optimized along with the topology
to design aircraft seats. This results in a structure with higher specific properties than its
single-material topology-optimized counterpart.

The other study on multi-material topology optimization (MMTO) by Zuo and Saitou [31]
showed optimization results with an MMTO structure performing worse than a single-material
topology optimized (SMTO) structure. This was obtained for a single mass-constrained TO
problem. However, it also demonstrated that their MMTO approach can yield beneficial re-
sults when optimizing for a system comprising both materials with inferior specific properties
and materials with high specific properties. This was true for a multi-constraint optimization
case, with cost and mass constraints.

Figure 2.9: For a three-material system with stiffness-to-density ratio of
material C > material B > material A and cost-to-density ratio of material A > material B > material C,
(a) Optimizing with mass constraints results in the structure that uses only the stiffest material, C (Right),
to have the lowest objective value, while (b) optimizing with mass and cost constraints results in a structure

where all three materials (Left) are used to have the lowest objective value [31].

When optimizing for a three-material system material with a stiffness-to-density ratio of
material C > material B > material A and cost-to-density ratio ofmaterial A > material B >
material C, with only mass constraints, results in the structure where only the stiffest ma-
terial C is used to have the lowest objective value of 207.7, and the structure consisting of
all three materials to have a higher objective of 217.2. This difference in results for when
MMTO performs worse than SMTO can be seen in Figure 2.9a. As expected, a structure with
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only the highest stiffness-to-density ratio material for the same mass constraint shows better
results. Similarly, optimizing for the same three-material system material but with mass and
cost constraints of 0.3 and 0.4, respectively, results in the structure where all three materials
are used to have the lowest objective value of 232.7, and the structure consisting of only mate-
rial C to have a higher objective of 277. This difference in results for when MMTO performs
better than SMTO can be inferred from the plots for leftmost and rightmost cases in Figure
2.9b. While the exact reason for this was not justified in their work, we assume that in this
particular instance, the superior performance of the MMTO structure in comparison to the
SMTO structure could be partially because the SMTO structure has a lower mass fraction of
the stiffest material, thus resulting in lower stiffness.

This emphasizes that whether MMTO can outperform SMTO depends on the stiffness of the
materials being considered, their spread and the set of objective(s) and constraint(s) for which
the problem is being solved. Nonetheless, if we were to optimize for a less extreme case with
three materials that have stiffness-to-density ratio according to material C > material B >
material A and cost-to-density ratio of material C > material B > material A, then an
overall lower objective could surely be achieved when mass and cost constraints are used si-
multaneously. Based on this information, it is hypothesized that we could achieve a better
compromise between CO2 footprint and stiffness for a structure by simultaneously optimizing
materials that improved either compliance or CO2 footprint by tweaking our objectives and
constraints.

Figure 2.10: Hypothesis showcasing the potential benefits of combining the approach of optimizing single
natural composite material using SIMP-modified with CFAO, which results in the reduction of CO2 footprint

[6], and a multi-material system with multiple constraints that can potentially improve the overall
compliance [31]. Combining these approaches has the potential to yield composite structures that effectively

minimize both CO2 emissions and compliance simultaneously to a great extent.

This hypothesis can be illustrated in Figure 2.10. It can be seen that optimizing a single
natural composite material using SIMP-modified with CFAO approach as done by Almeida
[6] allows us to obtain structures with a significantly low carbon footprint. On the other
hand, a multi-material system, as developed in the case of Zou and Saitou [31] with multiple
constraints on mass and cost, can improve the overall compliance of a structure. If we were
to combine such approaches, it could lead to a structure that can substantially reduce both
the CO2 footprint and the compliance of a composite structure. However, to implement and
prove this hypothesis, it is imperative to develop a framework that can simultaneously optimize
multiple materials and fibre angles in the same design domain using topology optimization.
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2.6. Concurrent Multi-Material Fibre-Angle Topology Opti-
mization

Only limited studies in the literature have applied the concepts of orientation optimization
and multi-material topology optimization simultaneously. Two such studies are by Duan et
al. [32], and Chandrasekhar et al. [33]. Both the studies also used different optimization tech-
niques, a mesh-based topology optimization and a mesh-free topology optimization approach
using neural networks (NN).

The first one is by Duan et al. [32], where a discrete material optimization (DMO) approach
is used for both material selection and fibre angle optimization. Two different composite ma-
terials, carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced polymer (GFRP),
are used. Three types of design variables per element of the finite element mesh are used
to optimise for these two materials. Two of these design variables are used to optimize the
macro-scale topology, where one is used to determine if the material exists in the finite element
and the other one to determine which material provides maximum stiffness. The last one is to
optimize the micro-scale fibre orientations. Together, they determine the macroscopic consti-
tutive element matrix of the j− th element in the i− th layer of a multiple-ply laminate. This
two-scale model is combined to form the ’Multi-scale and multi-material composite anisotropic
penalization’ (MMCAP) approach.

Figure 2.11a,b and c show results of the MMCAP framework for different candidate fibre angles
and design domains. 2.11a and b show the results for Messerschmitt-Bölkow-Blohm (MBB)
beam and 2.11c for L-shape beam. As seen in Figure 2.11b, with more candidate angles, the
topology changes to provide better stress distribution and a more optimal solution. However,
due to the smaller number of angles that are used for optimization, non-continuous fibre paths
are obtained. As established earlier, increasing the number of candidate fibre directions using
DMO significantly increases computational complexity. This complexity, however, can be
reduced by using explicit curve functions as described in [34].

Figure 2.11: (a) and (b) Results obtained for an MBB beam optimized multi-material topology obtained for
the given set of fibre angles using the two-scale model developed by Duan et al. [32] depicting how more
number of candidate fibre orientations, improve the design and stress distribution with less discontinuous

fibre sets, (c) Results obtained for L-shaped beam optimized multi-material topology obtained for the given
set of fibre angles using with non-optimal fibre orientations and complex manufacturability.

Another study that implemented a form of multi-material topology optimization approach to
composite materials is the work by Chandrasekhar et al. [33]. In their work, multiple materials
are optimized through an MMTO framework on a macro scale and a continuous fibre-angle
optimization approach on a micro-scale. However, this work uses a neural network to capture
the matrix topology, fibre orientation, and fibre density instead of assigning design variables
to individual elements like in Duan et al. [32].
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Figure 2.12: A continuous fibre angle topology optimization approach based on neural networks, with the use
of an extra isotropic phase (2-blue) as done in the study by Chandrasekhar et al. [33], showing the potential

of the approach to optimize multi-material structures. Continuous fibre paths with spatially varying fibre
densities and isotropic materials at intersections. The long fibres are indicated in yellow, the base matrix is

in black, and the voids are in grey.

To obtain multi-material structures with fibre-reinforced material and isotropic matrix, the
following topological formulation is used, ζ(X) = ((ρm1 , ρf ,), ρm2 , . . ., ρmn , ρmϕ

). Where,
from the n matrices to be optimized, only one of the base matrices (M1) is set to be a fibrous
matrix and mϕ as void. The remaining matrices are set as isotropic matrices with matrix
densities ρm2 , ..., ρmn . For M1 we have ρm1 , ρf and θ as the matrix density, fibre density and
fibre orientation design variables, respectively.

Figure 2.12 shows an MMTO structure optimized for a combination of a long fibre-reinforced
matrix (M1) and a non-reinforced matrix (M2) with fibre density of V ∗

f = 0.25 and a maxi-
mum allowed mass m∗ of 600. As observed, the framework can achieve continuous fibre paths
with spatially varying fibre densities, indicated by the yellow lines. This attribute is better
for the manufacturability of the optimized parts using AM when compared to the results of
the previous study by Duan et al. [32]. Furthermore, an optimized distribution of isotropic
material is also observed, highlighted in blue.

2.7. Research Scope
As seen from the work of Duriez [13], eco-efficient designs can be achieved by coupling an LCA-
based material selection decision-making step with the design optimization step in topology
optimization. This approach designed for optimizing isotropic materials at a multi-scale level
further opened up opportunities to include orthotropic materials like composites and assess
their impact on the environment. This was explored in the work of Almeida [6]. However, ob-
taining an eco-efficient TO design using only NFRPCs that also meet structural requirements
like high stiffness is an uphill task. This is true especially when using only single materials
that are either low density and low CO2 impact or low density and high CO2 impact. As a
result, it is hypothesised that an overall better design can be achieved by combining multiple
materials within the same structure, leading to lower carbon emissions of a component over
its lifetime and a sufficiently high stiffness.

It was determined that doing so would require a framework that optimizes fibre orientations
as done in [6], while distributing a combination of multiple materials in the same structure
as done in [30]. However, not many multi-material topology optimization studies in literature
studies incorporate both anisotropic material properties and fibre path generation steps in the
optimization phase. Ones that do consider it [16], [32], [33] however, are not optimized to in-
tegrate continuous fibre paths in an all-anisotropic multi-material topology optimization study.
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Interestingly, the study by Chandrasekhar et al. [33] comes closest to solving a real-life multi-
material topology optimization problem. It optimizes for a mix of isotropic and anisotropic
continuous fibre composite materials like in most aircraft and space vehicles, which are not all
composite structures. However, the approach used in their study to obtain an optimized solu-
tion differs from other mesh-based topology optimization (TO) approaches. Instead of using
the traditional method with finite element mesh, neural networks were employed. This ap-
proach has the potential to provide crisp topology boundaries by implicit filtering and quicker
convergence for simple TO problems. However, the added complexity of working with neural
networks is foreseen to cause issues when modifying the framework to meet the objectives of
this work.

Based on the context and supporting literature, it is safe to assume that an easy-to-implement,
gradient-based, unified framework for MMTO and fibre angle optimization is lacking. While
Duan et al. [32] meets some of these requirements, it does not optimize structures with con-
tinuous fibre paths. A continuous and well-optimized fibre path is often necessary to avoid
stress concentrations in the optimized structure. The same also allows more design freedom for
optimizing the topology itself owing to the exploitation of the anisotropic properties of the ma-
terial in all directions [22]. Hence, combining a continuous fibre angle topology optimization
approach with a multi-material TO approach can be deemed a promising step in realizing new
design avenues where integrated, topology-optimized, multi-material designs greener aerospace
structures.

With this information and review of the state-of-the-art, we can formulate research sub-
questions for this work that help us to answer the main research question, How can multi-
material optimization be applied to design eco-efficient composite structures?

1. How can a multi-material topology optimization framework be coupled with a fibre
orientation optimization model to obtain manufacturable designs?

2. What impact does using multiple composite materials in the same structure have on the
compliance and CO2 emissions over its lifetime?

Where the first question helps us address the research gap identified concerning the lack of an
MMTO framework that optimizes fibre orientations. The second question helps us to deter-
mine the validity of using multi-material systems to address the CO2 footprint of optimized
structures.

To answer these questions, a more in-depth review of existing approaches to multi-material
topology optimization and fibre angle optimization is required. Furthermore, some design
choices for the building blocks of a topology optimization framework must be made. This in-
cludes design choices for objectives, constraints, finite elements method, regularization schemes,
optimization algorithms, and the material interpolation scheme. These choices can be made
based on some basic requirements for a good optimization framework such as, functionality,
robustness, computational efficiency and ease of use.



3
Optimization Framework Requirements

and Choices

3.1. Optimization Framework Design Requirements
The primary objective of the framework is to optimize the topology and orientations of multiple
orthotropic materials simultaneously for thin 2D structures in order to minimize compliance or
maximize stiffness. We assume that we can achieve this objective fairly by combining existing
models. However, designing structures that can be easily produced using AM techniques is
not straightforward, and we need to define such requirements in more detail.

In order to meet the AM reproducibility or manufacturability aspect, the design obtained
from the developed framework must be easy to manufacture without significantly altering the
optimized topology. A basic manufacturability criterion of the optimized design is assumed
to be met if we can maintain fibre angle continuity throughout the structure, avoid material
mixing at the interfaces between multiple materials, and ensure a minimum feature size for
each material at the end of the optimization. Assuming that these manufacturing criteria
can be incorporated within the framework, it is also essential to evaluate the computational
efficiency of our framework, an attribute essential for a good topology optimization framework.

The framework’s computational efficiency is determined by its scalability in terms of increas-
ing design variables for optimization. Hence, to have comparable or acceptable optimization
times for the coupled framework, we must consider this requirement in all our design choices
from the outset. Nonetheless, the framework must be robust to varying inputs and evaluation
criteria, regardless of the computational efficiency. The overall computational prowess of the
framework is viewed as something that can be bettered with subsequent modifications to the
framework, provided that all other requirements outlined are met sufficiently.

In this work, we define robustness as the ability of the framework to provide repeatable or
reproducible convergence of results when optimized for different initial guesses. Hence, as a
requirement, the optimization results must converge for all primary input variations, such as
domain size, number of finite elements, material properties, and feature size inputs.

Lastly, the framework must be easy to implement and easy to use. This is another important
trait of a good topology optimization algorithm. The user should be able to give minimum
inputs to the system without performing extensive parameter tuning and still achieve an ac-
ceptable output that can be worked with directly at the end of optimization.

19
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Based on these established requirements of functionality, efficiency, robustness, and ease of
use, we can dive deeper into the literature to make design trade-offs for different aspects of
topology optimization, such as optimization algorithms, filters, interpolation schemes, penal-
ization approaches, constraints, objective definitions, etc., and make design considerations to
ensure that the aforementioned requirements can be met.

3.2. Design Choices for Framework Development
A robust, functional, efficient and easy-to-implement framework combining fibre angle opti-
mization and multi-material topology optimization is required as established. Several design
choices must be considered to build such a framework. However, given that some of the re-
quirements mentioned earlier can conflict, literature and intuition-based trade-offs must be
conducted to evaluate these factors and make design choices for all the necessary building
blocks of a topology optimization problem described earlier in Section 2.1. This exercise
might not result in the best possible solution, but it would definitely help us develop a good
framework design that tries to address all the requirements appropriately.

3.2.1. Optimization Objective and Constraints
The most rudimentary design choice for the optimization process involves deciding the objec-
tive and constraints crucial to designing the rest of the framework components. As stated
earlier in one of the research objectives, we need a topology-optimized structure with high
stiffness or low compliance and a low CO2 footprint. Both low compliance and low CO2, as
objective parameters, conflict because, more often than not, for existing engineering materials,
one comes at the cost of the other. This was also seen from the Ashby plots in Section 2.4.
As a result, a trade-off, in this case, could be to fix one of these as the objective function and
optimize the other parameters through constraints. This would not give the optimal solution
for both minimum compliance and minimum CO2 design but ensure a more optimal solution
than currently possible with the framework described in the work of Almeida [6].

The compliance C to be evaluated can be given by the material’s global stiffness matrix
K and displacement vector U as shown in Equation 3.1. This representation is the same as
derived in the work of Stegmann and Lund [16] for the TO of composite materials.

C = UTKU = 2 × strain energy (3.1)

Once compliance is chosen as the optimization objective, for our constrained optimization,
the required constraints can be either volume or mass constraints. We established that a low
overall structural mass and significantly higher specific stiffness of the materials within the
structure is key to obtaining a lower CO2 footprint. This low mass for a high-performance
requirement directly translates into using low-density, high-stiffness materials. The high spe-
cific stiffness means that, overall, less material is required in the design space. We can also
reduce the mass by further restricting the occupiable design space. Combining these, higher
mass minimization and higher performance can be simultaneously achieved by maximizing
low-density, high-stiffness materials within this less-occupied space.

A simple and effective way to distribute these high-specific stiffness materials is by adjusting
the volume parameters of different materials in the design space. In doing so, we can en-
sure that a low-density material occupies the maximum volume within the occupiable domain.
However, since not all high-specific stiffness materials have a low material carbon footprint,
for instance, carbon-fibres as seen from the Ashby plots in Section 2.4, volume constraints can
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allow us to manually allocate some share of this occupiable design space to materials with not
necessarily the best specific stiffness but with the lowest embodied CO2 footprint. By having
that freedom, we can attempt to evaluate material combinations and proportions that can
give us both high stiffness and low CO2 footprint.

There are three ways to apply the volume constraint, as illustrated in Figure 3.1b-d. The
first method uses a single volume constraint to control all candidate materials, allowing each
material to be placed anywhere within the design domain following all materials are available
to be optimized throughout the domain as illustrated in Figure 3.1a (Left). On the other
hand, the second method uses individual volume constraints for each material, where each
material is only available for optimization within an exclusive subdomain of the entire design
domain following the material domain restriction as seen in Figure 3.1a (Right). The third and
final method uses individual volume constraints for each material, but again, each material is
available for optimization throughout the entire design domain.

Figure 3.1: (a) For an MMTO problem, the material can be optimized in the design domain with all the
materials being allowed to occupy the entire design domain or with each material occupying a specific

sub-domain in the design. For a load case where a cantilever beam is subjected to an axial load, the MMTO
results obtained, when using (b) a global volume constraint where the materials are allowed to exist

throughout the design space, only the stiffest material is chosen. When using (c) 10 equal volume constraints
for each material, and each material allowed to occupy separate sub-domains, similar topology to (b) are

achieved but with fixed material in different regions. Lastly, when using (d) 10 equal volume constraints but
with all materials allowed to occupy the entire design domain, give less intuitive and different material

distribution and topology [35].

In the context of this work, the optimizer should be free to choose where each material should
be placed rather than having it predefined by the user, as done in the second case shown
in Figure 3.1c. This gives us more design freedom to generate less intuitive designs without
excessive user control, like in Figure 3.1d.

An argument for and against mass constraints can be understood from the findings of an
MMTO study by Gao et al. [36]. Their work showed that mass constraints give better results
than volume constraints and are more relevant to engineering problems. However, this is only
when compliance minimization is considered. When using only mass constraint, it is possible
that with conflicting objective optimization, only one optimal material appears in the final
result. Given that this work aims to evaluate how much improvement in overall CO2 footprint
can be achieved by including varying amounts of material with low embodied CO2 footprint,
such a consequence is not desirable.
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Hence, an informed decision to persist with volume constraints is taken. From literature
and practice, volume constraints are often easy to implement, and the resultant framework
can be verified better as we can generate more data on the optimization’s evolution for differ-
ent volume fractions of different materials in the same structure. Thus, considering volume
constraints gives us more control over tuning the obtained CO2 footprint of the optimized
structure while simultaneously checking the compliance evolution.

Alternatively, simultaneous minimization of mass and compliance could also be realised through
a multi-objective topology optimization approach using Pareto fronts similar to the work done
by Duriez, [13]. Nonetheless, this work does not explore this approach because the number of
optimizations needed to be evaluated to obtain meaningful results is expected to be quite high.

Having decided on the primary objective and constraints for our optimization approach, we
must decide on the approach to each of the two individual components of the multi-material
fibre angle topology optimization (MM-FATO) framework. Once we make a choice, we will
have the design variables that the optimization algorithm will work with to minimize the
objective function of the MM-FATO framework.

3.2.2. Fibre Angle Optimization Scheme
Fibre angle optimization, as seen earlier, allows users to optimize orthotropic materials more
efficiently compared to a simple material optimization with no orientation or fibre angle op-
timization. By optimizing fibre orientations as design variables, improved results with better
optimization of the highly directional orthotropic material along the path of maximum strain
can be achieved.

As seen previously, between CFAO and DMO, continuous fibre angle optimization or CFAO
is a better approach to optimize such independent design variables for fibre orientations. The
advantage of this approach is its potential to generate designs with spatially continuous fibre
orientation, which is essential for AM reproducibility [22]. Duan et al., [32], one of only a
few studies that implement fibre angle optimization for structures consisting of multiple or-
thotropic materials, in their work, use the Discrete Material Optimization or DMO approach
proposed by Stegmann and Lund [16]. However, the designs obtained using their approach
resulted in discontinuous and difficult-to-fabricate designs when AM is considered. As a result,
CFAO for fibre angle optimization is discussed further and selected for optimizing fibre angles
in this work.

CFAO, however, also comes with its own shortcomings. As frequently reported, these in-
clude the susceptibility of the approach to fall into local minima given its high dependence
on the initial guess of orientation design variable. This issue can be addressed in multiple
ways for this work. First, a filtering approach can reduce the chances of some orientation
design variables falling into local minima at the start and during optimization. Second, the
issue specific to strong influence on an initial guess can be further addressed by the use of a
combination of multi-start and parallelization approaches for a uniform fibre field initial guess,
which essentially acts as a global search strategy with multiple start points [7], [37]. Hence, if
measures are taken to address the shortcomings, CFAO can be a suitable approach to FATO
and produce manufacturable designs.

The simplest implementation for CFAO, which is easy to reproduce, is the one by Jiang
et al. [25]. In their work, they use the polar representation for fibre orientation θ, with the
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bounds of ±2π essentially allowing the fibre orientation to orient in any direction within the
design space without any restrictions. However, as understood from the work of Nomura et
al. [38], using such design variables might be an issue when fibre angle filtering is applied to
the design variables. This orientation filtering, similar to density filtering, modifies a single
orientation vector based on a linear weighted average of the neighbouring orientations in a
fixed radius to obtain smoothly varying fibre orientations. Such smoothly varying fibre angles
ensure a more continuous fibre path that can be readily manufactured using Automated Fibre
Placement and Fused Deposition Modelling (FDM) techniques for continuous fibre-reinforced
composites. This fibre smoothing can be seen from the difference in orientations at intersec-
tions that are loaded in shear between Figure 3.2a (Left) without filtering and Figure 3.2a
(Right) with filtering.

This issue of incompatibility with filtering is highlighted by Nomura et al. [38] and is called
2π ambiguity. This means that, for two angles separated by 2π, although they are physically
the same, they are still separated by a phase of 2π in the actual design space. This can lead
to erroneous optimal designs achieved, as seen from Figure 3.2b. Furthermore, if two adjacent
design variables have θ with a phase difference of 2π, then on filtering, this would result in
an erroneous fibre angle of θ ± π [38] This can also be understood from Figure 3.2c. Jiang et
al. [25], in their work, did not implement any filtering and hence could avoid such an issue.
However, given the benefits of implementing it and having a more generic implementation that
allows for the use of in-optimization filtering without the issue of 2π ambiguity, the solution
to it suggested in the work of Nomura et al. [38] and Duriez [13] can be implemented.

Figure 3.2: (a) Orientation filtering smooths non-continuous fibre orientations in regions of topologies where
features with varying load path intersect or in the shear-loaded regions. (b) Periodic function like θ for

orientation optimization can cause optimized results to have 2π periodicity in relation to the optimal value,
depending on the initial guess, and (c) simple filtering for orientations that have neighbours with 2π

periodicity will create filtered orientations with π difference causing fibre path discontinuities [13], [39].

This suggested approach involves using Cartesian representation for the fibre orientations
instead of the Polar representation, where two orientation variables cosθ and sinθ are used,
which can be used to obtain the orientation in polar form using Equation 3.2. Although in
most cases, as noted by Nomura et al. [38], modifying the range for optimization of θ to be
[−π, π), could suppress the issue, it would also prohibit design changes across the prescribed
bounds due to the non-physical gap at the extremes, potentially causing local minima.
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θ = arctan

(
sinθ

cosθ

)
(3.2)

The thesis of Almeida [6] used as a preceding work to the current thesis also uses CFAO,
where instead of using a single fibre orientation, the Cartesian components of the design vari-
able θ were used. The results from such an implementation indicated compatibility with
in-optimization filtering, bolstering confidence in using such an approach.

In conclusion, with such a design variable definition, we can achieve simultaneous optimization
of topology and orientation that results in overall smooth fibre orientations.

3.2.3. Material Interpolation Scheme
After fixing the approach to fibre angle optimization, the next step is to decide on the multi-
material interpolation scheme. One of the primary goals of a multi-material topology opti-
mization exercise is to distribute ′m′ candidate materials within a design domain such that the
resulting structure best minimizes the objective. We can achieve this target at the elemental
level by computing the objective function as a weighted sum of the ′m′ design variables corre-
sponding to the ′m′ candidate materials. In practice, it is implemented by a weighted sum of
the variable term within the compliance definition, i.e., the elemental constitutive matrix De,
for the ′m′ candidate materials, as shown in Equation 3.3.

De =
m∑

j=1
wjDj

e = w1D1
e + w2D2

e + · · · + wmDm
e , 0 ⩽ wj ⩽ 1 (3.3)

The weights, in our case, can be seen as representative of the ′m′ design variables. Conse-
quently, we can replace the j − th weight wj with xmatj

e in Equation 3.3. These continuous
design variables xmatj

e during optimization are treated as artificial variables, where they take
values between zero and one to ensure no material contributes more than the actual physical
material property or contributes negatively, which does not hold any physical meaning. How-
ever, at the end of the optimization, the material cannot exist as an intermediate value since
such a material property might not be reproducible in real life. To that end, a power-law-based
variable penalization is employed to push the material design variables to 0-1 in the pursuit
of obtaining more discrete designs that make sense [16]. This gives us a revised interpolation
scheme expressed by Equation 3.4. Such an interpolation scheme falls under MMTO’s ’Dis-
crete Material Optimization’ (DMO) branch [16], which will be further referred to as DMO1.

De =
m∑

j=1
(xmatj

e )pDj
e = (xmat1

e )pD1
e + (xmat2

e )pD2
e + · · · + (xmatm

e )pDm
e , 0 ⩽ xmatj

e ⩽ 1 (3.4a)

m∑
j=1

xmatj
e ≤ 1 (3.4b)

Such a formulation, however, as seen in Equation 3.4b, also requires additional constraints for
the weights [40]. It is fair to assume that such an additional constraint for the desired contin-
uous fibre angle optimization framework with multi-materials could potentially over-constrain
the design space. This limitation might lead to sub-optimal designs and significant difficulties
with convergence.

In the work of Sigmund and Torquato [41], and later confirmed in a subsequent review by
Stegmann and Lund [16], another limitation of the DMO1 material interpolation formulation
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was identified. The effectiveness of DMO1 in obtaining desirable results is limited by its ability
to push the design variables to their 0-1 bound limits. When implemented in the form shown
in Equation 3.4, the weights are independently varying, causing material mixing where mul-
tiple materials can co-exist in the same element as all weights simultaneously contribute to De.

To improve upon it, Sigmund and Torquato [41], formulated a simultaneous topology and
multiple material optimization scheme, which extends SIMP to accommodate multiple materi-
als. Referred to in this study as e-SIMP, the expression for interpolating three material phases,
with one being void, can be written as shown in Equation 3.5. Here, xtop

0 is responsible for
scaling the entire contribution of the elemental constitutive matrix De, which moves between
the two constitutive matrices D1

e and D2
e calculated for the two material phases.

De =
(
xtop

0

)p ([
1 −

(
xmat1

e

)p]
D1

e +
(
xmat1

e

)p
D2

e

)
, 0 ⩽ xmatj

e ⩽ 1 (3.5)

DMO1, unlike this e-SIMP formulation, does not link the weights to more than one constitutive
matrix, which limits its capability to push all the design variables to discrete 0-1 values
simultaneously. In e-SIMP, the term (1−xmatj

e ) associates the material selection design variable
xmatj

e to multiple constitutive matrices. This linking ensures that an increase in one of the
weights automatically reduces the weights of the other constitutive matrices, resulting in
weights close to the design variable bounds of 0-1. Extending this formulation to four phases,
three material phases, and one void phase, we get the formula in Equation 3.6, where 0 ⩽
xmatj

e ⩽ 1.

De =
(
xtop

0

)p ([
1 −

(
xmat1

e

)p]
D1

e +
(
xmat1

e

)p [[
1 −

(
xmat2

e

)p]
D2

e +
(
xmat2

e

)p
D3

e

])
=
(
xtop

0

)p
(
[
1 −

(
xmat1

e

)p]
︸ ︷︷ ︸

w1

D1
e +

(
xmat1

e

)p [
1 −

(
xmat2

e

)p]
︸ ︷︷ ︸

w2

D2
e +

(
xmat1

e

)p (
xmat2

e

)p

︸ ︷︷ ︸
w3

D3
e) (3.6)

In both cases, e-SIMP and DMO1, the number of design variables remain the same for ′m′

materials. This does not allow the computational efficiency to be a good comparative measure.
However, from the literature [16], we can also derive a limitation of e-SIMP. It is applicable only
to a lower number of candidate materials. The reason for this is not exclusively highlighted
in studies, but assuming it is true when more materials must be optimized, another DMO
scheme, DMO2, can be used. This approach to multi-material interpolation is expressed in
Equation 3.7, and the equation for a three-material interpolation can be seen in Equation 3.8.
This approach, unlike DMO1, does not require explicit constraints on weights as suggested in
[40]. In order to have "physically meaningful results", the summation of all weights adding up
to one must be evaluated for DMO schemes. However, this is not necessary to be done during
optimization and can be evaluated post-optimization [40].

De =
m∑

j=1

(xmatj
e

)p m∏
k ̸=j
k=1

[
1 −

(
xmatk

e

)p]
︸ ︷︷ ︸

wj

Dj
e (3.7)

De =
(
xmat1

e

)p [
1 −

(
xmat2

e

)p] [
1 −

(
xmat3

e

)p]
︸ ︷︷ ︸

w1

D1
e +

(
xmat2

e

)p [
1 −

(
xmat1

e

)p] [
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(
xmat3

e

)p]
︸ ︷︷ ︸
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D2
e

+
(
xmat3

e

)p [
1 −

(
xmat1

e

)p] [
1 −

(
xmat2

e

)p]
︸ ︷︷ ︸

w3

D3
e

(3.8)
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Similar to the term (1 −xmatj
e ) in Equation 3.5, the term

(
1 − xmatk

e

)
in Equation 3.7, implies

that an increase in xmatj
e , corresponds to a decrease in the all other weights, helping push the

design to a more 0-1 result. This scaling or decrease in all other weights, however, in this case,
is different from what e-SIMP achieves, as seen from both Equations. For DMO2, the scaling
can be better visualized in Figure 3.3a-b.

Figure 3.3: (a) DMO2 plot with penalty factor p = 1, shows that it penalises material mixing of xmat1
e and

xmat2
e when both are fully dense, i.e., effective constitutive matrix value of the element De value would

become zero. However, it does not penalise material mixing for intermediate values. While (b) DMO2 plot
with p = 4 shows that it penalises material mixing of xmat1

e and xmat2
e both when fully dense and with

intermediate values.

In the plots shown in Figure 3.3a and b, two materials with arbitrary D1
e = 1 and D2

e = 0.5 are
considered. xmat1

e and xmat2
e are the material selection design variables for DMO2. When the

penalization factor is equal to one, as seen in 3.3a, it is observed that the interpolation func-
tion value for the arbitrary De goes to zero when both materials are fully dense, significantly
penalising material mixing. However, the same is not the case for intermediate densities when
the penalty is one. Only when higher penalization is applied like p = 4, as seen in Figure 3.3b,
the mixing of intermediate densities is also penalised, indicated by the flatness of the surface
representing De when both design variables have intermediate values lower than 0.5 [42]. This
shows the effectiveness of this type of weight formulation for multi-material interpolation in
reducing both intermediate densities and material mixing.

Such a definition of the weights in DMO2, despite being satisfactory in generating close-to
0-1 designs, does not guarantee a sum of weight functions to be less than equal to one. This
violates the physical meaning of having more than 100% material in a single element. As a
fix for this issue, DMO3 was proposed, where the weights are scaled by the sum of all weights
during optimization. Doing so, however, limits the capability of the material interpolation
approach to penalise values to 0-1 as much as DMO2, which can result in a topology with a
significant amount of intermediate densities [40].

However, from the work of Sanders et al. [35], it was understood that DMO2, on imple-
mentation, does not produce a lot of elements with the sum of weights greater than one.
These are limited to interfaces, and with some post-processing, this limitation can be miti-
gated fairly easily. As a result, DMO2 is still preferred over DMO3 in order to obtain more
discrete designs at the cost of slight non-adherence to the condition stated in Equation 3.4b.

The results before and after post-processing results from DMO2 can be seen in Figure 3.4a
and b, where the heuristic post-processing approach is seen to completely remove all material-
mixing and a non-physical result where the total density of an element is greater than one.
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In elements with such an issue which, as observed in Figure 3.4a are all along the interfaces,
the design variable of the material with the largest contribution to the elemental density ρe is
assigned a density equal to min (ρe, 1), while all the other design variables for other materials
are assigned a density of zero. The effect of such a post-processing step on the structures
compliance and the volume fraction of each material would still need to be evaluated post-
optimization [35].

Figure 3.4: (a) Converged elements with total material density ρT
e > 1, can be (b) post-processed to have

ρT
e = min(ρe, 1), where ρe corresponds to the material with the highest DMO weight wj [35].

A limitation of the DMO2 approach, which is not reported often, is the order in which the
materials used are interpolated. This was understood from preliminary testing on the MMA-
modified implementation of PolyMat by Sanders et al. [42]. It was observed that only when
a decreasing order of material stiffnesses was used for multi-material interpolation did the
optimization converge to well-defined topologies without premature convergence. This issue
was also highlighted in a recent work by Li et al. [43]. It was shown in their work that sufficient
penalization, as seen in Figure 3.3, cannot be achieved when using the reverse order of material
properties. As a result, while the DMO2 scheme is the preferred choice for this work, design
variables are defined such that stiffness for the material defined by xmat1

e > stiffness of the
material defined by xmat2

e and so on.

3.2.4. Optimization Algorithm Choice
Once we have decided on the interpolation scheme and chosen the design variables for the op-
timization, the next step is to select an optimization algorithm that minimizes the compliance
for these selected design variables. For a two-material system, we have four design variables
per finite element. As a result, for a mesh with N number of such elements, the number
of design variables becomes N × 4 or N × (m + 2) for m materials. This implies that for
large-scale optimization, the number of design variables would scale significantly, reiterating
the exclusion of non-gradient-based approaches. As a result, we limit our options to choosing
gradient-based algorithms only.

Two prominent optimization algorithms for structural topology problems often cited in the lit-
erature are the Method of Moving Asymptotes (MMA) and the Globally Convergent Method
of Moving Asymptotes (GCMMA). These methods operate through sequential convex approx-
imation techniques and can easily accommodate multiple linear inequality constraints [44].
Both the algorithms are also open-source and readily available to use on MATLAB. They
have also been used in commercial topology optimization software, prompting the extension
of this framework on commercial software.

In a benchmark study by Rojas and Stolpe [44], GCMMA was observed to obtain better
designs and required fewer iterations than MMA, with better numerical performance. In their
work, this improvement in numerical performance compared to MMA was attributed to the
additional measures implemented in GCMMA to ensure theoretical global convergence. Con-
trary to this, GCMMA in another study by Alcazar [45] is described as slower than MMA. The
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literature shows that optimization convergence rates do vary based on the method used and
the proximity of the initial design point to the optimum. MMA has been observed to rapidly
converge from distant initial points but may slow near the optimum. This is because it uses
monotonous approximation functions. Conversely, non-monotonous approximation methods
such as GCMMA yield stable solutions with good initial guesses but may be slow when start-
ing from poor initial guesses [46]. However, the quality of the initial guess is often unknown
for large design spaces with several constraints. As a result, GCMMA could potentially have
slower convergence for our application. Nonetheless GCMMA is an effective alternative when
MMA cannot achieve stable solutions. A more in-depth comparison of both algorithms can
be referred to from the works of Rojas and Stolpe [44], and Zuo et al. [46].

MMA is the preferred optimization algorithm for this work because it has been widely im-
plemented in the literature. Besides, it has been demonstrated to converge fast in some FAO
studies [21], [37]. This is foreseen to be beneficial for troubleshooting issues.

3.2.5. Regularization Approach
The importance of regularization schemes like filtering in obtaining mesh-independent, checkered-
board-free designs has been well-defined in the literature [47]. For the design variables in our
work, which include both fibre orientations and density design variables, regularization of
both types of design variables is paramount to obtain a mesh-independent topology design
with smooth fibre orientations.

Filters for density design variables
In order to avoid numerical instabilities during optimization, several filtering schemes for den-
sity design variables have been implemented and discussed in the literature, of which the most
popular ones include sensitivity filters and density filters [12].

The sensitivity filter modifies element sensitivity values by a weighted average of the sensi-
tivities of all elements within a user-defined radius rmin. The density filter, on the other hand,
defines the physical density of an element as a weighted average of the design variables in a
neighbourhood of radius rmin as seen from Figure 3.5a [12].

Both the sensitivity and density filters are perfectly capable of maintaining the minimum
feature size in the optimized topologies, enabling more manufacturable designs without thin
geometric features. However, both generate substantial grey transition regions between solid
and void regions. This issue can be solved for both cases by reducing the filter radius once
sufficient convergence of density design variables is achieved. Additionally, projection-based
schemes have been proposed to overcome the problem of grey-scale images associated with
density filtering methods [12].

For projection methods like the Heaviside projection method (HSM), the projected density
design variables are obtained through a smoothed Heaviside function. The smoothness of this
function can be controlled by a continuation approach to achieve a stable convergence. This
is done by gradually increasing the steepness of the function, which is controlled by the pa-
rameter β. The increase in the discreteness of the design variable before and after projection
for different values of β can be seen in Figure 3.5b. As β increases, so does the discreteness of
projected design variables. Such a projection method only ensures discrete solutions, where
the grey scale results from the density filtering. As a result, when used in conjunction with
density filtering, HSM can result in more discrete results [12].
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Figure 3.5: (a) A linear weighted average type density filter for densities with filter radius rmin used for
obtaining mesh-independent checkered board free designs. (b) For discrete designs, a linear to exponential
projection of density variables using HSM can be achieved by increasing projection parameter β [9], [48].

In recent literature on multi-material TO [32], [49], [50] to achieve discrete results, a density
filter in addition to the HSM scheme is used as the preferred regularization scheme. Hence,
the same is considered a tested regularization scheme for the current work. Such a combined
density filter plus HSM filtering scheme can also reduce the number of iterations required for
convergence to more discrete designs. This would be beneficial for this framework as well in
terms of achieving better computational efficiency [47].

As suggested by Sigmund [47], the volume of the material must ideally be preserved before
and after filtering. When using only a density filter or sensitivity filter, volume preservation
is always achieved as long as the volume constraints are adjusted to use the filtered densities
as well [12]. However, issues with significant volume changes can occur for HSM, given that
it is a non-volume preserving regularization technique. As a result, the impact of HSM on
optimized results from our framework will need to be assessed. This is done by determining
how much the final volume deviates from the set volume constraints and if it is significant.

Smoothing fibre orientation design variables
As seen earlier in Section 3.2.2, when using CFAO, fibre discontinuities can occur in certain re-
gions of the design domain. To deal with these discontinuities, fibre smoothing is often carried
out on the fibre orientation design variables using regularization schemes, similar to density
filtering [37]. These fibre discontinuities are usually observed either in tension-compression
regions where the principal stresses are equal in magnitude and the opposite direction or in
regions with significantly low stress where the individual material orientation does not impact
the stiffness of the overall structure [51].

For the first type of discontinuities, in-optimization filtering can be a viable choice, which
is also implemented by Schmidt et al. [37] in their work on CFAO for 2D and 3D structures.
In their work, all the individual fibre angles are filtered or smoothed with respect to the ori-
entation of their neighbours within a filter radius. This filtering is done at each optimization
step from the start of the optimization. However, as noted, tuning the overall optimization,
including densities and fibre angles, to accommodate the in-optimization filtering step can be
difficult as the instabilities and oscillations obtained due to such a step are quite high if not
treated well [37].

For the second type of discontinuity, however, a heuristic approach of matching the fibre
orientation to its neighbours at the element level can be carried out like done in the work of
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[51], where only the fibre orientation which does not match the immediate neighbours is mod-
ified and not the neighbouring elements. This is done only after the densities have converged
to a large extent so that overall convergence is not affected much due to this in-optimization
heuristic update of the discontinuous fibre angles. Additionally, we can filter the fibre angles
post-optimization through convolution and using a set of update criteria as done in the work
of Qiu et al. [21].

In the work of Stragiotti [10] on filtered-CFAO, a Gaussian filter with a kernel of 11x11,
as shown in Figure 3.6a, was used for obtaining smooth fibre orientations by filtering all ele-
mental fibre orientations throughout the optimization. The kernel, as shown in Figure 3.6b,
moves along the 2D data, multiplies the value of elements under it with the respective value
of Gaussian weight over those elements, and sums the results as the single value, which then
becomes the filtered fibre orientation of that element. The disadvantages of this approach in
their study was a slightly slow convergence and higher objectives.

Figure 3.6: (a) Gaussian filter kernel with size of 11x11 and σ = ydim/7, (b) sliding across a mesh,
determining each element’s value based on neighbouring element’s value scaled by the filter value in the

distribution plot from (a), for that element [10].

The same Gaussian filter was also used in the preceding work for this thesis Almeida [6], which
filtered fibre orientations to give smooth fibre paths. As a result, in our work, we also choose
the Gaussian filter as a simple yet effective in-optimization fibre angle filtering strategy.



4
Computational Model

4.1. Concurrent Multi-Material and Fiber-Angle Topology Op-
timization Framework

4.1.1. Formulating the MM-FATO Problem
Considering all the design requirements and choices, an MM-FATO problem for a two-material
system is derived, and the same can be expressed as Equation 4.1.

Find X =
{
xmat1,xmat2, cos(θ), sin(θ)

}
minimize C(X) = UTK (X) U =

N∑
e

UT
e Ke(xe)Ue

Subject to:



K (X) U = F
0 < xmat1

i , xmat2
i ≤ 1, i = 1, 2, ..., N

−1 ≤ cos(θ)i ≤ 1, i = 1, 2, ..., N
−1 ≤ sin(θ)i ≤ 1, i = 1, 2, ..., N

gj =
(∑N

i=1 vi×xmatj
i∑N

i=1 vi

)
≤ Ωj, j = 1, 2

(4.1)

Where xmat1 and xmat2 are the two material density design variable vectors for materials
one and two. These, along with the two fibre orientation design variables cos(θ) and sin(θ),
make up the continuous design variable array that will be updated by MMA to minimize com-
pliance C(X). The displacement vector U is calculated using the force-displacement relation
K(X)U = F, where F is the design-independent load vector, and K(X) is the global stiffness
matrix. Since an elemental topology optimization is carried out where DMO is extended with
CFAO, a finite element mesh discretizes the design domain Ω into N elements. This essentially
reduces the compliance calculation to the summation of the resultant elemental compliance
values represented by elemental stiffness matrix Ke, a function of the design variable vector
for each element xe and elemental displacement vector Ue.

This framework implements two types of constraints. The first constraint is the linear inequal-
ity volume constraint gj, defined for each material, where j = 1, 2. During the optimization,
this constraint maintains the total volume fraction occupied by each material density design
variable equal to or below a user-prescribed fraction Ωj. This total volume is obtained by sum-
ming all the elemental density design variable values xmatj

i and multiplying it by the volume
of the i − th element vi. The occupied fraction is then calculated by dividing the obtained
value by the design domain’s total volume. Although not highlighted, the constraint definition

31
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has a tilde sign over the design variable. This means that the filtered density design variables
are used to calculate the total volume occupied by a given design variable and the constraint
itself, which ensures volume preservation as suggested by Sigmund [47]. Similarly, compliance
is evaluated using the filtered material density design variables as well.

The second type is the standard bound or box constraints. The material density design
variables can take any values between 0 and 1, indicating the absence or presence of mate-
rial in an element. The lower value of xmat1

i and xmat2
i is considered non-zero with a value

of 1 × 10−3 in this work to avoid singularities. For fibre orientation design variables, bound
constraints are chosen as simple box constraints. This is simplified from the equality con-
straint underlined in Nomura et al. [38]. Such an implementation is done only to maintain
ease of defining the bounds for the optimization algorithm in a similar format to the material
selection design variables. This simplification for polar to Cartesian, and from Cartesian and
a simplified Cartesian definition can be seen in Figure 4.1.

Figure 4.1: Modifying the fibre angle orientation design variable from Polar, θ to Cartesian representation
with an equality constraint bounding the components. For ease of implementation, it is simplified as

Cartesian components of θ equal to cos(θ) and sin(θ), bounded by box constraints −1 ≤ cos(θ) ≤ 1 and
−1 ≤ sin(θ) ≤ 1 [38].

4.1.2. Initial Guess - Design Variables
The design variables, xmat1

i and xmat2
i used for the DMO2 approach for this framework, are to

be initiated with the same values. Starting with a balanced guess is the fairest approach, as
it avoids preconceived bias towards specific materials. It is important to avoid this, as even
a small change in design variables could cause a strong preference for a particular material
during optimization [16].

The fibre orientations, on the other hand, can be defined either uniformly or randomly. Both
approaches have their own advantages and disadvantages. The number of iterations and eval-
uations required to obtain the best solution with the uniform guess is quite high in continuous
fibre angle optimization studies [6]. Still, it has the best potential to give the most optimal
solution using a gradient-based approach, at least for less complex problems regarding loads
and design domain shape. On the other hand, a random orientation field as an initial guess
could avoid the high computational costs at the cost of a slightly worse local minimum [37].
The work by Schmidt et al. [37] reported some results for random orientations as an initial
guess that gave more consistent compliance results despite slight changes in topology for mul-
tiple trials. The results obtained for random initial guesses were close to the best uniform
initial guess evaluated in their work. Nonetheless, a more extensive assessment of both initial
guesses in the context of MM-FATO must be considered. Hence, a detailed evaluation is done
later in Section 6.1.1.
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4.1.3. Filtering Design Variables
Filtering density design variables
A simple Heaviside projection scheme with continuation, as given in Equation 4.2, was applied
to an MMA-modified version of PolyMat [42] to regularize the topology and obtain more
discrete designs. However, the same could not achieve stable results, even with low values for
β as a limit when continuation is applied or when applied throughout with fixed β.

x̄matj
e = 1 − e−βx̃matj

e + x̃matj
e e−β (4.2)

As a result, for the final MM-FATO framework, only a density-based filter is implemented,
which averages the material densities of the i−th element xmatj

i using a linear convolution filter
with filter radius rmin [42]. The density filter can be mathematically expressed by Equation
4.3 [47],

x̃matj
e =

∑
i∈Ne

w (xi)xmatj
i∑

i∈Ne
w (xi)

; w (xi) = 1 − ∥xi − xe∥ /rmin (4.3)

Where Ne defines the number of elements in the neighbourhood of element e defined by filter
radius rmin. xi is the centroid of the i− th element in the neighbourhood of element e, and xe

is the centroid of element e. w(xi) is a "linearly decaying weighting function" of i− th element.

Since implementing HSM during optimization did not provide stable convergence for our frame-
work, alternative approaches can be evaluated to save some computational effort. As we know,
despite being widely used in topology optimization problems and producing mesh-independent
and checkered-board-free designs, density filters take significantly more iterations to converge.
Furthermore, this can also be seen in Figure 4.2a.

Figure 4.2: (a) The topology obtained when using only a density filter that takes 690 iterations and has gaps
at material interfaces once the filter is turned off. (b) Topology obtained when using density plus sensitivity

filter takes only 351 iterations and has better interfaces on turning the filter off [42].

Hence, to reduce the higher computation time associated with using only density filters, a
combination of sensitivity and density filters was implemented in Sanders et al. [42]. The
number of iterations was halved when such a combination was used, as seen from Figure 4.2a
and b. This filtered sensitivity for the combined scheme is expressed in Equation 4.4. Using
both together results in a quicker convergence with significantly better multi-material interface
renderings, as also observed from Figure 4.2b.

∂̃C
∂xmatj

e

=

∑
i∈Ne

w (xi) x̃matj
i

∂C
∂xmatj

i

x̃matj
i

∑
i∈Ne

w (xi)
(4.4)

However, given that MMA is being used for our framework, unlike the Zhang-Paulino-Ramos
update scheme used in the work of Sanders et al. [35], it is worth implementing both variations
for our work and seeing the impact of using these two filter combinations for the MM-FATO
framework. This is evaluated further in Section 6.2.1.
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Filtering fibre orientation variables
From a preliminary assessment, using the Gaussian filter to filter fibre orientation during the
optimization process resulted in significantly high oscillations. These oscillations could not be
substantially subsided through general MMA parameter tuning or a separate MMA move limit
update for material density design variables and fibre orientation design variables as suggested
by Schmidt et al. [37] to stabilize in-optimization filtering with MMA. A visual comparison of
results when filtering for fibre orientation is done during gradient update for a single material
FATO approach using fmincon as done by Almeida [6], and the framework developed in this
work can be referred from Figure 4.3.

Figure 4.3: (a) Smooth fibre orientations along the loading paths obtained at convergence with fmincon
implementation of CFAO, when in-optimization Gaussian filtering is used, whereas (b) with the MMA

implementation of the same in-optimization filtering, oscillations cause fibre orientations to be aligned away
from load path in some regions.

As a result, although it is important to filter design variables during the continuation process
to keep non-convexity in check and ensure that the local fibre orientations are not stuck in local
minima, [52], in this work, fibre orientation filtering is only carried out in the post-processing
stages to avoid an unstable optimization.

In their work, Qiu et al., [21] also implemented orientation filters only in the post-optimization
stages. However, they filter the fibre orientations for 10 iterations once the density design vari-
ables have largely converged. After that, the fibre angles are allowed to be updated by the
optimization algorithm and filtered simultaneously, but without the sensitivities corresponding
to the orientation design variables being filtered. Nonetheless, preliminary tests determined
that a single post-processing step for fibre angles could also provide acceptable fibre continuity.

The Gaussian filter, as utilized by Stragiotti [10], during another set of preliminary analy-
ses, only worked for regular design domains and faced difficulties in implementation when
modified to accommodate for filtering angles across non-designable domain or passive regions
in the domain. The results for this issue can be referred to in Appendix A. Given this limita-
tion, an alternate convolution filter similar to the one used for the density filter is proposed
for the MM-FATO framework. The angles are further scaled by the corresponding element’s
total material density (∑m

j=1 x
matj
i ) to reduce the impact of orientations of the void elements.

The mathematical representation for this filter can be referred to from Equation 4.5.

θ̃e =
∑

i∈Ne
wθ (xi)

∑m
j=1 x

matj
i θi∑

i∈Ne
wθ (xi)

∑m
j=1 x

matj
i

wθ (xi) = 1 − ∥xi − xe∥ /rcur

(4.5)
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4.1.4. Finite Element Analysis
Material Model
The fibre-reinforced polymer material in this work is modelled as a linear elastic transverse
isotropic material. This is because the direction along the reinforced fibres, which is along
the x-axis, is much higher than the stiffness along the other directions. In this case, the ma-
terial’s stiffness in all transverse directions to the fibre orientation is assumed to be the same.
This linear transverse isotropic elastic material is modelled using the constitutive matrix D in
Equation 4.6.

D =



1
Ex

−νyx

Ey

−νyx

Ey
0 0 0

−νxy

Ex

1
Ey

−νzy

Ey
0 0 0

−νxy

Ex

−νyz

Ey

1
Ey

0 0 0

0 0 0 2(1+νyz)
Ey

0 0
0 0 0 0 1

Gxy
0

0 0 0 0 0 1
Gxy



−1

(4.6)

Based on the requirement of modelling for thin 2D structures and simplifying the modelling
for the transversely isotropic model, a plane stress condition is assumed. As a result, the
thickness direction will have dimensions significantly smaller than the other two dimensions
and only in-plane elements of the elasticity tensor will be evaluated. The reduced form of
the constitutive matrix based on this assumption is represented by the matrix in Equation
4.7. Ex, Ey are tensile modulus corresponding to the two principal directions, νxy and νyx

being the major and minor Poisson’s ratios in xy-plane, and Gxy as the in-plane shear modulus.

D0 =


Ex

1−νxyνyx

νxyEy

1−νxyνyx
0

νxyEy

1−νxyνyx

Ey

1−νxyνyx
0

0 0 Gxy

 (4.7)

The relation νxyEy = νyxEx is considered to ensure symmetry of the constitutive matrix. Fur-
thermore, the shear modulus Gxy in Equation 4.7 follows the standard transverse isotropic
definition resulting in Gxy = Ex

2(1+νxy) .

The elasticity matrix in Equation 4.7 is orientated along the x-axis, representing the direction
of the fibre. When spatially orienting the materials in the design domain along an arbitrary
fibre orientation θ, this elasticity matrix can be transformed using the transformation matrices
T1 and T2 as shown in Equations 4.8, 4.9 and 4.10. θ in this transformation is assumed to be
the angle obtained by rotating the material anti-clockwise from the positive x-axis.

T1(θ) =

 cos2θ sin2θ 2cosθsinθ
sin2θ cos2θ −2cosθsinθ

−cosθsinθ cosθsinθ cos2θ − sin2θ

 (4.8)

T2(θ) =

 cos2θ sin2θ cosθsinθ
sin2θ cos2θ −cosθsinθ

−2cosθsinθ 2cosθsinθ cos2θ − sin2θ

 (4.9)

D(θ) = T1
−1(θ) · D0 · T2(θ) =

 D11 D12 D13
D12 D22 D23
D13 D23 D33

 (4.10)
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To compute the compliance, we must calculate the global stiffness matrix K and the displace-
ment vector U of the design domain for any given loads and boundary conditions. In this
work, only single-load cases are examined. However, extension to multiple loads can be done
by treating each load case separately to calculate the stiffness matrices and a weighted sum
of the compliance can be obtained as done by Andreassan et al. [53] for an isotropic material
topology optimization.

Given that we discretize the design domain into finite elements for optimization, we must
assemble the global stiffness matrix and the displacement vector from the stiffness matrix and
displacement of individual elements in the finite element mesh. Thus, the details for the finite
element mesh used must be defined first before detailing the stiffness matrix assembly and
compliance calculation.

Finite Element Mesh
The current study explores a simple rectangular design domain for the multi-material-fibre-
angle topology optimization framework. The most effective way to mesh such a design domain
is to use simple and computationally efficient quadrilateral elements, which in our case is the
4-node quadrilateral element. These elements generate a uniform mesh for the given design
space, where the loads and boundary conditions will be applied. Doing it this way also allows
for a fair and simplistic comparison of our model’s resultant designs and objectives against
other reported studies in the literature. An overview of the quadrilateral mesh element used
to generate a uniform mesh for a simple half-MBB-beam load case can be seen in Figure 4.4a.
For an example mesh size of 4 x 3, Figure 4.4b shows the column-wise node numbering used
[53].

Figure 4.4: For an example of a simple half-MBB-beam load case, the domain is uniformly discretized with
(a) 4-node quadrilateral finite elements that have 2 degrees of freedom (dof) at each node. (b) Node

numbering for each dof from the top left node to the bottom right is the same as used in [53].

As seen in Figure 4.4a, the 4-node quadrilateral mesh element has four nodes with two dofs each
for displacements u and v in the ξ and η directions. As a result, a total of eight dofs per element
are obtained. For such an element, we define four bi-linear shape functions corresponding to
each node as shown in Equation 4.11 [54]. The B-matrix or the strain-displacement matrix, as
seen in Equation 4.12 [54], is characterized by the gradients of the shape functions that relate
the in-plane strains to the eight displacements corresponding to each dof of the quad-element
as seen in Figure 4.4a.

N1 = 1
4(1 − ξ)(1 − η) N2 = 1

4(1 + ξ)(1 − η) N3 = 1
4(1 + ξ)(1 + η) N4 = 1

4(1 − ξ)(1 + η)
(4.11)

B =


∂N1(ξ,η)

∂ξ
0 ∂N2(ξ,η)

∂ξ
0 ∂N3(ξ,η)

∂ξ
0 ∂N4(ξ,η)

∂ξ
0

0 ∂N1(ξ,η)
∂η

0 ∂N2(ξ,η)
∂η

0 ∂N3(ξ,η)
∂η

0 ∂N4(ξ,η)
∂η

∂N1(ξ,η)
∂η

∂N1(ξ,η)
∂ξ

∂N2(ξ,η)
∂η

∂N2(ξ,η)
∂ξ

∂N3(ξ,η)
∂η

∂N3(ξ,η)
∂ξ

∂N4(ξ,η)
∂η

∂N4(ξ,η)
∂ξ

 (4.12)
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Calculating compliance
Once we have the strain displacement matrix defined in Equation 4.12, we can calculate the
stiffness matrix using the relation in 4.13 that relates the strain-displacement matrix and the
material constitutive matrix to the stiffness matrix.

Ke =
∫

Ωe

BTDe(θ)B dΩe; K =
N∑

i=1
Ke (4.13)

A simple integration of all the elemental stiffnesses calculated using the formulation in Equa-
tion 4.13 gives us the global stiffness matrix. The displacement is calculated using the F = KU
relation for force and displacement. Using U and K obtained, the compliance C = UTKU is
easily calculated. In MATLAB, this implementation for the assembly of the stiffness matrix
and calculation of compliance is the same as done in the 88-line code of Andreassen et al. [53]
using sparse and Cholesky factorization for improving computational efficiency.

Since DMO2 material interpolation scheme [16] is the choice of a material interpolation scheme
for MM-FATO framework, the elemental constitutive matrix defining Ke can be defined as in
Equation 4.14. For j − th material, the corresponding elemental constitutive matrix Dj

e is a
function of θ obtained by taking the tan inverse of the two orientation design variable values
for that element.

De(θ) =
m∑

j=1

(
xmatj

e

)p
m∏

k ̸=j
k=1

(
1 −

(
xmatk

e

)p)
Dj

e(θ); i = 1, · · · , N (4.14)

However, for the multi-material interpolation scheme, the constitutive matrix is different for
different material properties being considered and at the same time, for fibre angle optimiza-
tion, fibre orientations are also spatially varying across elements in the design domain. This
results in assembling the stiffness matrix for medium-scale or large-scale problems with a
higher number of mesh elements, a computationally expensive task. Furthermore, this cost
increases with increasing candidate materials and mesh elements. This is still a limitation of
using the DMO2 interpolation scheme when considering the computational cost. Nonetheless,
such a formulation offers a simple and robust implementation.

4.1.5. Sensitivity Analysis
Since, for this framework, a gradient-based optimization algorithm is used to minimize the
objective function, gradients, or sensitivities of the objectives and constraints with respect to
the design variables is essential. The effectiveness of the gradient-based optimization algorithm,
which in our case is MMA, is highly dependent on providing accurate gradients [7]. As a result,
all the gradients used in this work are calculated using adjoint sensitivity analysis. Equations
4.15-4.24 show all the gradients for the objective function and constraints with respect to the
four design variables.

∂C
∂X = −UT∂K

∂XU = −
(
UT

e

) ∂Ke

∂X Ue (4.15)

∂Ke

∂X =
∫

Ωe

BT∂De

∂X B dΩe (4.16)

The sensitivities of the objective function with respect to the density design variables xmatj
e ,

where j = 1, 2 can then be expressed as shown in Equations 4.17-4.20,

∂De

∂xmatj
e

= ∂De

∂x̃matj
e

∂x̃matj
e

∂xmatj
e

(4.17)
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Where,
∂De

∂x̃mat1
e

= p
(
x̃mat1

e

)p−1 (
1 −

(
x̃mat2

e

)p)
D1

e − p
(
x̃mat1

e

)p−1 (
x̃mat2

e

)p
D2

e, (4.18)

∂De

∂x̃mat2
e

= −p
(
x̃mat2

e

)p−1 (
x̃mat1

e

)p
D1

e + p
(
x̃mat2

e

)p−1 (
1 −

(
x̃mat1

e

)p)
D2

e, (4.19)

and,
∂x̃matj

e

∂xmatj
e

=
w (xi)∑N

i=1 w (xi)
; w (xi) = 1 − ∥xi − xe∥ /rmin (4.20)

The sensitivities of the objective function with respect to the orientation design variables θe,
can be further expressed as shown in Equations 4.21-4.23,

∂C
∂ cos(θ)

= ∂C
∂θe

× ∂θe

∂ cos(θ)
; ∂C

∂ sin(θ)
= ∂C
∂θe

× ∂θe

∂ sin(θ)
, (4.21)

Where,

∂C
∂θe

= −Ue
T
{∫

Ωe
BT

(
∂T1 (θe)−1

∂θe

D0T2 (θe) + T1 (θe)−1D0
∂T2 (θe)
∂θe

)
B dΩe

}
Ue, (4.22)

and,
∂θe

∂ cos(θ)
= − sin(θ)

(cos2((θ)) + sin2((θ)))
; ∂θe

∂ sin(θ)
= cos(θ)

(cos2(θ) + sin2(θ))
(4.23)

Lastly, the sensitivities of volume constraints used with respect to the density design variables
can be seen in Equation 4.24.

∂gj

∂xmatj
e

= ∂gj

∂x̃matj
e

∂x̃matj
e

∂xmatj
e

; ∂gj

∂x̃matj
e

= 1∑N
i=1 vi ∗ Ωj

(4.24)

The (x̃) over the density design variables indicates filtered values. Since filtered density design
variables are used to calculate the compliance and volume constraints, the sensitivities must
be calculated with respect to filtered sensitivities as well.

For gradient-based approaches, calculating sensitivities, along with the assembly of the global
stiffness matrix, is one of the most computationally expensive tasks during the optimization.
For the implementation of MM-FATO in this work, computing sensitivities for each material
design variable includes calculating the elemental stiffness matrix ′m′ number of times for ′m′

material design variables, further increasing the base computational time required.

However, the stiffness matrix calculated for deriving compliance earlier cannot be reused di-
rectly for sensitivity calculations. Given the way the De matrix is calculated for stiffness
matrix, the individual constitutive matrix elements D1

e and D2
e are unavailable to carry out

the calculation required in Equations 4.18 and 4.19. To that end, a template approach to
stiffness matrix calculation similar to the one used by Chandrasekhar et al. [33] is imple-
mented to facilitate this exercise. Doing so assumes that the computational costs are kept at
the minimum computation required to calculate and assemble the sensitivities for the given
objective and design space.

For brevity, the calculation and assembly of these sensitivities are not explained in detail
here. However, an explanation of how this approach is used for MM-FATO implementation
in MATLAB can be referred to from Appendix B.
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4.1.6. Optimization algorithm
The method of moving asymptotes or MMA, is the optimization algorithm of choice for the
new MM-FATO framework. The MATLAB codes mmasub.m and subsolve.m written by Svan-
berg [55] are used to update the material selection and fibre angles design variables iteratively
in order to minimize compliance.

Several inputs besides the design variables must be provided to the mmasub.m routine for
solving the problem. The most obvious ones required to solve a simple optimization formula-
tion include the optimization objectives, design variable vector, both the bound and volume
constraints for the design variables and the analytically derived gradients for objective and
constraint with respect to all the design variables. For this work, only first-order gradients or
sensitivities are passed to the MMA algorithm. While second-order derivatives or the Hessian
can be provided to the optimization algorithm for more accurate results, the computation
costs of calculating outweigh the benefits. They are hence not derived [45].

However, the formulation that MMA solves differs from the standard optimization formu-
lation. Hence, additional input from the user is required. The formulation of the optimization
problem that MMA solves can be written as shown in Equation 4.25.

minimize f0(X) + a0z +∑m
i=1

(
ciyi + 1

2diy
2
i

)
Subject to: fi(X) − aiz − yi ≤ 0, i = 1, . . . ,m

αj ≤ xj ≤ βj, j = 1, . . . , N
yi ≥ 0, i = 1, . . . ,m
z ≥ 0,

(4.25)

Where, f0(X) and fi(X), are all differentiable and continuous functions with respect to design
variables xi in X. Furthermore, yi,...,ym and z are the artificial variables used to solve min-
max or least square problem types. Since in this work, we do not need such a formulation, we
set the indices corresponding to these artificial variables to standard values as described in [56].

To solve only for f0(X), we require yi variables to become zero. This is done by setting
ci to a large number, say 1000, as suggested by the author [56]. Doing so makes the yi vari-
ables "expensive" and, as a result, are assigned negligible values by the optimization algorithm.
The rest of the indices are assigned as follows: a0 = 1, ai = 0, and di = 0 for each i based
on the default values in [56]. Once the artificial variables are dealt with, we have the natural
design variables, x1,...,xN , which are required to solve the standard non-linear programming
equation f0(X). These design variables are bound between α

(k)
j and β

(k)
j .

MMA, being a convex approximation algorithm, uses the supplied gradient information to
determine the convex approximation functions f̃ (k)

j , which replace the f0(X) functions. The
curvature of these convex sub-problems is primarily influenced by two parameters, the lower
and upper asymptotes, Li and Ui, which are updated every iteration depending on information
for the design variables from previous iterations. As a result, the values of these asymptotes
are critical in determining the MMA optimization speed, direction, and quality of the mini-
mum. More information on the details of these approximation functions can be referred to
from the original MMA documentation by Svanberg [55].

An illustration of how the two asymptotes control a single variable two-iteration optimiza-
tion process can be referred to from Figure 4.5. As observed in Figure 4.5a, with the initial
definition of the asymptotes, the curvature of the approximate function is defined by the blue
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line. Since the minimum of the approximation is lower than the optimal or objective for iter-
ation one, in the next iteration, the asymptotes are shifted such that the new approximations
are moved closer to the objective, which can be seen by the red line. The solution after the
first iteration can be visualized from 4.5b, and given that a minimum is achieved, no further
iterations are required [57].

Figure 4.5: (a) For a two-iteration optimization problem, from the zeroth to the first iteration, the moving
asymptotes of MMA Li and Ui that control the curvature of the approximation function shown in blue move

the initial guess of the optimization problem initially above the optimum solution, closer to the optimum
solution. It does so by moving Ui and modifying the curvature of the approximation function, shown in red.
As a result, (b) shows the current solution after iteration 1 as approximately equal to the optimum solution

[57].

The asymptotes for every iteration L
(k)
j and U

(k)
j are updated heuristically depending on

whether the process is oscillating or moving monotonously and slowly. If the process oscil-
lates i.e., (xk − x(k−1))(x(k−1) − x(k−2)) < 0, the asymptotes are defined such that they come
closer to the current iteration value xk. Conversely, if the process is moving monotonously
and slowly, i.e., (xk − x(k−1))(x(k−1) − x(k−2)) > 0, the asymptotes are defined such that they
move away from the current iteration value xk.

The update of these asymptotes, considering the variations in the process progression with
iterations, can be implemented as shown in Equations 4.26,4.27, and 4.28.

For first two iterations i.e., at k = 0, and k = 1, asymptotes are defined as,

Lj(k) = x
(k)
j − sini

(
xmax

j − xmin
j

)
; Uj(k) = xj

(k) + sini

(
xmin

j − xmin
j

)
(4.26)

Where, s or sini is the coefficient between zero and one, here, s = 0.5 as a standard, and xmin
j ,

xmax
j are the lower and upper bounds of the design variable, xj.

For all further iterations, i.e., k > 2, the equations to select the asymptotes change. When
oscillations occur, and the optimization must be stabilized, we have the asymptotes defined
as,

Lj(k) = x
(k)
j − sslow

(
x

(k−1)
j − L

(k−1)
j

)
; Uj(k) = xj(k) + sslow

(
U

(k−1)
j − x

(k−1)
j

)
(4.27)

Where s or sslow is the coefficient between zero and one that moves the asymptotes closer to
the current iteration value x(k)

j . As a standard, this is set to sslow = 0.7 [55].
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When slow and monotonous convergence occurs, and the optimization must be relaxed, we
have the asymptotes defined as,

Lj(k) = x
(k)
j − sfast

(
x

(k−1)
j − L

(k−1)
j

)
; Uj(k) = x

(k)
j + sfast

(
U

(k−1)
j − x

(k−1)
j

)
(4.28)

Where 1/s or sfast is the coefficient that moves the asymptotes further away from the current
iteration value x(k)

j . As a standard, this is set to sfast = 1.2 [55].

Besides the asymptotes to control the curvature of approximation functions, a move limit
′move′ is defined to control the step size of the design variables. These move limits are di-
rectly applied to the design variable and their bounds. They control the smooth progression
of the optimization. The implementation of the move limit for the design variables can be
seen in Equation 4.29, where, as a standard, it is set to 0.5.

α
(k)
j = max

{
xmin

j , l
(k)
j + 0.1

(
x

(k)
j − l

(k)
j

)
, x

(k)
j − 0.5

(
xmax

j − xmin
j

)}
,

β
(k)
j = min

{
xmax

j , u
(k)
j − 0.1

(
u

(k)
j − x

(k)
j

)
, x

(k)
j + 0.5

(
xmax

j − xmin
j

)}
,

(4.29)

Here, α(k)
j and β

(k)
j determine the overall design variable step size and are assigned the maxi-

mum and minimum values from the set of three constraining expressions in Equation 4.29.

As a result, there are four important parameters for MMA that can directly impact the
optimization characteristics, namely sini, sslow, sfast, and move. Tuning these parameters for
best results is study and application-dependent. Hence, ascertaining which combination gives
the best possible results for the MM-FATO framework requires further investigation and the
same is done in Section 6.1.1.

4.1.7. Convergence Criteria
In any optimization problem, it is imperative to have a stopping point for the optimization
algorithm. Ideally, the algorithm should stop when the objective function does not change
significantly with further iterations or the change in design variables driving the objective
between subsequent iterations is negligible or under acceptable tolerance. When that happens,
we consider the model converged to acceptable results. Hence, for the current model, we define
convergence criterion 1 (CC1) along similar lines, where MMA is assumed to have converged
to a result if, between the two latest iteration steps k and k−1, the relative change R for each
design variable xj to their bound constraints (xj and xj) is below 1% or an absolute value of
0.01. The change R can be mathematically expressed using the formula in Equation 4.30.

R =
(
xk

j − xk−1
j

xj − xj

)
∀xj ∈ X; X =

{
xmat1,xmat2, cos(θ), sin(θ)

}
(4.30)

When using discrete material optimization for multi-material interpolation, the goal is to have
a single candidate material exist per element. This is considered to be achieved only when all
the elements in the mesh have one of the material weights to be greater than the Euclidean
norm of all the other material weights. These are the weights defined in Equation 4.14 for
multi-material interpolation in Section 4.1.4. This implies that only if all the elements in the
defined mesh satisfy this condition can the design be considered to converge satisfactorily.

Building upon this ideology, for this work, attainment of CC1 alone is deemed unsatisfac-
tory, and we also define a DMO convergence criterion 2 (CC2) similar to the one defined by
Stegmann and Lund [16], which first checks if each element has either one of the material



4.1. Concurrent Multi-Material and Fiber-Angle Topology Optimization Framework42

weights (wj) greater than the Euclidean norm of all the weights for that element within a
tolerance value ϵ of 95%, which can be expressed by Equation 4.31

wj ≥ ϵ
√
w2

1 + w2
2 + · · · + w2

m (4.31)

If such a weight exists for an element, that element is flagged as converged. The total number
of flagged elements is then divided by the total number of elements in the mesh to derive the
DMO convergence, hϵ, as shown in Equation 4.32. When DMO convergence reaches the value
one, i.e., all elements in the mesh are converged according to Equation 4.31, the optimization
is considered to have successfully converged.

hϵ = Nc

N
(4.32)

Where Nc is the number of converged elements. So, in our case, if the DMO convergence
denoted by h95 achieves total convergence, i.e. h95 = 1, it means that each element in the
mesh has a single material weight that contributes more than 95% to the Euclidean norm of
all the material weight factors for that element. This implies that only one material is selected
for each element, ensuring multi-material convergence.

Defining CC1 and CC2 lays the ground for the primary stopping conditions that we employ
for our framework. Another criterion for convergence, convergence criterion 3 (CC3), is used
to check discreteness, i.e., if the penalization has sufficiently pushed intermediate densities to
0-1. Discreteness in this work is defined as a quantitative evaluation of the 0-1 nature of the
design. For instance, if the total number of elements with filtered densities greater than 0.2
and less than 0.9 is lower than 30 % or 0.3, the design is considered acceptable greyness. To
express it as the design’s discreteness or Dg, we can use Equation 4.33.

Dg =
∑N

i=1

(
0.9 ≤ ∑m

j=1 x̃
matj
i ≤ 0.2

)
N

× 100% (4.33)

A penalty continuation approach is used in this work to allow for a smooth transformation
of the design space from convex to non-convex, which addresses the non-convexity resulting
from the penalization of intermediate densities [58]. The optimization, as a result, starts with
a penalty factor of one and keeps continuing in step sizes of 1 or 0.3 until all the convergence
criteria, CC1, CC2, and CC3, are met. Since we start at low penalization values, which might
be insufficient, CC1 is expected to be met at the end of each penalty step, but CC2 and
CC3 are not. As a result, only when sufficient penalization step has been reached, and most
intermediate densities are penalised enough to reach 0-1 densities, is the DMO convergence
criterion close to one and/or discreteness convergence criterion CC3 met.

As a result, when implementing the convergence criteria for penalty continuation in MAT-
LAB, the design variables are updated every iteration based on the soft convergence criteria
CC1. When CC1 is met, a fixed penalty step size updates the penalty, and only at the end
of each penalty step or before the start of a new penalty step are the design variables checked
for CC2 and CC3.

Such an approach gives some flexibility in case no penalty continuation is implemented. Where
the same implementation holds except for the continuation of the penalty step when CC1 is
met. As a result, once CC1 is met, CC2 and CC3 are also determined, but most certainly,
CC2 and CC3 might not be met when using a fixed penalty step. Nonetheless, for high enough
penalty factors, high discreteness can still be achieved.
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4.2. Evaluating Discreteness Post-Convergence
Using a density filter means that a significant number of intermediate values in the final design
are still persistent along the perimeter of the optimized structure. Since the projection ap-
proach for discrete designs does not work well during optimization, in this work the preferred
approach is the continuous reduction of the filter to improve discreteness. The density filter
radius is reduced by 10% of the original value after CC2 or CC3 is met and till the value of
the filter radius reaches one [47].

For the filter radius reduction approach, at every step of filtering, only CC1 is evaluated.
If it is met, the density radius value is reduced by 0.1, and the optimization process is re-
peated using the new filter radius. Once the filter radius reaches a value of one, thresholding
of the density design variables can be applied where elements with density values less than 0.5
are assigned a value of zero, and elements with density values greater than 0.5 are assigned a
value of one. This approach can result in significantly higher discreteness while ensuring the
overall convergence of all design variables within the design space.

However, this continuation approach to filter radius reduction adds many additional itera-
tions to the optimization process. Provided sufficient convergence of density design variables
is achieved, turning off the filter directly at the end instead of reducing it could also lead
to the attainment of discrete designs with a significantly lower number of iterations. This
was also done by Sanders et al. [42]. However, The same was found insufficient for many
MM-FATO cases during a preliminary assessment. Removing the filter directly resulted in
some unexpected void elements in unexpected regions. These void elements were observed
in random topology regions surrounded by fully dense elements, which is undesirable. Hence,
such an approach is not recommended to obtain discrete results with MM-FATO.

As an alternative, the Heaviside Projection method or HSM is also proposed to be imple-
mented as a post-convergence update scheme. It can potentially provide more discrete designs
than those obtained with the use of only a density filter and its subsequent reduction. For this
work, the Heaviside projection parameter β in Equation 4.2 is applied using a continuation
approach, starting from 1 and increasing by a factor of 2 each time CC1 is met [47], [48].
However, the value of β is limited to 16. For a number of trials on the MMA-modified version
of PolyMat [42], 16 was found to be the most stable value for β. With any further increase,
significant instabilities in the optimization process were observed. A comparative study to
assess the performance and suitability of both discretization schemes for obtaining discrete
results with MM-FATO is carried out later in Section 6.2.2.

4.3. Overview of Optimization
The MM-FATO framework developed in this work is depicted in Figure 4.6. The optimization
process involves the following steps:

1. User provides parameters required for optimization.
2. An initial guess solution is generated using an array with a random or uniform angle

field and equally weighted material density design variables.
3. Box constraints are assembled as an array with respect to the design variables.
4. Material density design variables are filtered to obtain mesh-independent results and

prevent numerical instabilities like checkered boarding.
5. DMO multi-material interpolation scheme is used to determine the contribution of each

material to the element constitutive matrix. This data, along with the FEM data for
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the input load case, is used to calculate the compliance of the design domain.
6. MMA then uses the sensitivities of the objectives and volume constraints, the design

variable array, compliance value, and all the constraints to determine the updated design
variables that minimize the objective function. The sensitivity heat map in Figure 4.6
shows the process of determining which elemental design variables will reduce compliance
the most.

7. The MMA results are then checked for convergence criteria CC1, CC2, and CC3. If CC1
is not met, the process is rerun with the current iteration’s results as an updated design
for the next iteration.

8. Once CC2 or CC3 is met, the filter reduction scheme for better discreteness highlighted
in Section 4.2 is implemented. These steps are shown in the block of steps on the right
side of Figure 4.6.

9. Lastly, if all convergence criteria are met, the results are post-processed for material
mixing and smoothing fibre orientation, the latter of which is discussed in Section 4.1.3.
The final illustration in Figure 4.6 visualizes this process.

Figure 4.6: Flowchart illustrating the iterative process of MM-FATO. Important steps include user input,
design initialization, filtering, FEA analysis for objective calculation, calculating sensitivities for MMA

update, checking convergence criteria, discreteness improvement step, and lastly, post-processing of results.



5
Framework Verification Tests

The MM-FATO framework discussed in the previous chapter is implemented in MATLAB.
However, to test the framework’s robustness, an extensive parametric study is conducted as
a verification test. The goal is to assess the quality of optimized topologies and convergence
achieved for varying input parameters and variations in the framework. All the different
experiments designed for the parametric study, along with the methodology for assessing eco-
efficiency, are detailed in this chapter. The results of both parametric and eco-efficiency studies
are then detailed in the next Chapter 6.

5.1. Baseline Setup
A standard baseline setup is designed and described in this section. Unless stated otherwise,
this is used for all the experiments and their results detailed in the upcoming sections. This
setup evaluates an MBB beam with length, L = 100 mm and width, W = 20 mm. However,
given the symmetry of the design domain, only the symmetric right half, termed the half-MBB
beam load case, is solved to generate results. Symmetry causes the domain size to reduce to
L = 50 mm and W = 20 mm for further optimization. This implication with the load and
boundary conditions for the MBB beam can be seen in Figure 5.1a. As observed, a point load
F = 1000 N acts at the top-left corner of this symmetric simply supported beam. The design
domain is further discretized by 4-node quadrilateral mesh elements where each element has
a side length, elSize of 1 mm.

Figure 5.1: (a) A 50 x 20 mm design domain with loads and boundary condition used for result generation in
this section, (b) Discretized form of design domain with 50 x 20 elements or element size of 1 mm, and a

uniform angle field along with equal design volume fractions of the two materials of 0.2 as an initial guess.

As a standard, only two materials, carbon-fibre-reinforced polymer (CFRP) and glass-fibre-
reinforced polymer (GFRP), are considered for optimization. These properties are indicated
in Table 5.1 and are directly adapted from Duan et al., [32].

45
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Table 5.1: The standard material properties for unidirectional composite materials, CFRP and GFRP,
retrieved from existing literature. These properties have been utilized previously by Duan et al. [32] to
evaluate the MMCAP model and are adopted for the parametric analysis in the forthcoming sections.

Material Ex (MPa) Ey (MPa) νxy νyx Gxy (MPa) ρ (Kg/m3)

CFRP 90000 6500 0.30 0.0217 6500 1800
GFRP 30000 9500 0.28 0.0887 4500 2100

The occupied design volume fractions for CFRP and GFRP materials are fixed at Ω1 0.1 or
10% for CFRP and Ω2 0.2 or 20% for CFRP. An equal value of 0.2 is the initial guess for both
density design variables. A uniform angle field with an angle of 45◦ is the initial guess for
the two material design elements as seen in Figure 5.1b. However, a random orientation field
with each mesh element having randomly aligned fibre as an initial guess is also considered
for certain tests.

For filtering the density design variables, a density filter with radius rmin = 2 mm is used.
A penalty continuation approach is applied where the initial penalty is set to one, and the
penalty is increased until the maximum penalty of six is reached, with a step size of one. 500 is
the limit set for the maximum number of iterations per penalty step for stopping criteria. The
design variables are updated using the standard empirical MMA parameters from Svanberg
[56] and are used as a starting point for the parametric study. This implies a move limit move
of 0.5 and factors sinit, sslow, and sfast equal to 0.5, 0.7, and 1.2, respectively.

Furthermore, the optimization steps for density filter reduction to improve discreteness are
not considered for any of the presented results unless stated otherwise. For post-processing,
fibre-angle filtering is done with a filter radius 1.5 times the density filter radius rmin, and the
post-processing step mentioned in Section 4.2 is implemented to avoid material mixing.

An overview of all the standard input parameters used for the MM-FATO framework can be
seen from Table 5.2. All the computations reported in this work are performed on a 64-bit
Windows 11 laptop with an AMD Ryzen 7 5800H @ 3.2 GHz CPU and 16 GB of SSD RAM.

Table 5.2: Input parameters used for the MM-FATO implementation and their standard values

Input Parameter Default values used for the parameter
Ωf Allowed volume fraction to be occupied in the design domain by both materials.

Ω1,Ω2 Allowed volume fraction of material one and two in the design domain, 0.1 and 0.2 respectively.
evalIter Maximum Number of Iterations per penalty step = 500.

rmin rmin = 2 to limit the minimum feature size to 2 mm for an element size of 1mm.
rcur rcur = 3 to smooth fibre orientations, considered as 1.5 × rmin.
p DMO penalty factor, updated after soft convergence criteria is met,

(p0 = 1; ∆p = 1; pmax = 6).
nelx, nely (50, 20) finite mesh elements along x and y directions respectively.

elSize Single element side length along x = y = 1 mm.
ci Coefficient for the artificial variable y equal to 10000.

move Step size or move limit of 0.5 for design variables in the MMA solver.
sinit Initial factor of 0.5 for determining the lower and upper asymptote position.
sslow Factor of 0.7 to tighten the asymptotes post three major MMA iterations.
sfast Factor of 1.2 to relax the asymptotes post three major MMA iterations.

lambda Density filter reduction factor = 0.9 used for obtaining more 0-1 designs
voidThr Threshold for the percentage of elements below a filled density of 0.2

filledThr Threshold for the percentage of elements above a filled density of 0.9
thresh Overall greyness threshold of 0.3 below which obtained designs are acceptable

β Projection parameter for Heaviside projection of density variables
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5.2. Design of experiments for parametric study
MMA empirical parameters
As established previously, MMA requires a significant amount of input from the user to solve
the problem at hand. Several of these parameters need further tuning to obtain feasible so-
lutions and a numerically stable optimization process for this problem. Some guidelines to
fine-tune the MMA parameters have been laid down in the original [55] and subsequent modi-
fied [56] MMA documentation. These guidelines are used as a starting point to determine the
best parameter combination before further heuristic evaluation.

The input parameters that needed to be adapted for our work include the objective func-
tion, the index ci corresponding to the artificial variable y, and the empirical parameters
move, Sinit, Sfast, and Sslow. Following the guidelines stated in [56], the objective function in
this work is scaled by 1 × 10−3 to ensure that the condition 0 < f0 < 100 is satisfied. Simi-
larly, 1 × 106 as the value for ci was found suitable to achieve negligible values of the artificial
variable yi after a trial-and-error exercise.

However, implementing the baseline combination of MMA parameters, oscillations in the
order of 102 for the intermediate results were observed during the first 5-10 iterations. Such
an initial behaviour is undesirable because it can lead to optimization difficulties for certain
initial guesses. As a result, the baseline MMA parameters are not considered to create a
more robust framework. As a heuristic experiment in this work, the empirical parameters are
modified to see which combination gives the best possible solution for Equation 4.25. For this
hit-and-trial scheme, we define five combinations of the empirical MMA parameters.

In the first set, we only reduce the move parameter to limit the amount the design vari-
ables can move from their current value and not run into infeasible solutions. It is reduced to
a moderate 0.1 to see if a feasible solution can be achieved and to evaluate the quality of the
local optima. In the second set, we reduce the sinit factor to bring the asymptotes closer to
the design variable, creating a conservative bound only for the first few iterations. In the third
set, we reduce both the initial bound by taking asymptotes closer using sinit = 0.1 and the
step size by limiting the move limit of the design variable move to 0.1. For the fourth set, we
further reduce the move limit move to 0.05 to get a more conservative step size while keeping
the rest of the parameters the same as the baseline. For the most conservative combination,
which is the fifth and final set, all the parameters are set to a minimum where move = 0.05,
sinit = 0.1, sfast = 1.1 and sslow = 0.1.

For the CFAO approach chosen, the initial guess has a significant impact on the optimiza-
tion results. Hence, the five MMA parameter combinations are evaluated for two different
initial guesses, random orientation field and uniform orientation field. The results for this set
of experiments are reported in Section 6.1.1.

Material Property
To better understand the implications of using different material properties on the MM-FATO
framework, a parametric study for varying material properties that define the material’s
anisotropy is carried out. This is done on a single material fibre angle topology optimization
(SM-FATO) framework first to understand the isolated impact of the fibre angle optimization
approach on the results.
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To understand the limitations and the scope of the current CFAO implementation on the final
fibre orientations for the SM-FATO framework, we evaluate the effect of changing the ratio
of longitudinal to transverse stiffness (Ex/Ey) and the impact of varying the shear modulus
(Ex/Gxy) of the composite on the optimized results. To also consider the effect of material
stiffness in this evaluation, two materials, CFRP with higher stiffness and GFRP with lower
stiffness, from Table 5.1 are used as a baseline.

To further understand the influence of in-plane shear modulus Gxy on CFAO and the obtained
topology, we evaluate the shear stiffness of the material. The measure used to determine the
shear stiffness of the material is defined by ψ [59], [60], and can be expressed as shown in
Equation 5.1.

ψ = Ex

1 − νxyνyx

+ Ey

1 − νxyνyx

− 2 νxyEy

1 − νxyνyx

− 4Gxy (5.1)

Where, ψ ≥ 0: Shear weak material, ψ < 0: Shear strong material, & ψ = 0: Isotropic
material. An in-depth review of the parametric study results evaluated for variations in
material properties is reported in Section 6.1.2.

Convergence Study
To evaluate the convergence of the topologies obtained using MM-FATO, an investigation of
the convergence quality by examining the impact of fixed penalization scheme and penalty
continuation scheme on the convergence characteristics like DMO convergence h95 and dis-
creteness Dg is necessary.

An important parameter to assess for convergence study is the penalty step. The step size
dictates the increase in convexity during the optimization. Ideally, we want the penalty step
to be as small as possible to have a smooth convex to non-convex transformation. This is
per the recommendations underlined in the work of [58] as well. The study reiterates through
experiments how a smaller step size of 0.1-0.3 is beneficial when using penalty continuation.

However, when a very small step size is selected, it is often observed that the number of
iterations increases significantly. To avoid this, a balance between iterations and quality of
results in terms of topology, h95 and greyness must be maintained. Hence, we limit the mini-
mum step size that will be evaluated to a moderate value of 0.3. Results of the convergence
study are detailed in Section 6.1.4.

Mesh Dependency
The quality of the finite element mesh used directly impacts topology optimization results.
Finer meshes generate better results due to higher data points, contributing to more accu-
rately evaluating the objective function and state variables. However, refining the mesh be-
yond a certain point may not improve accuracy or local optima and increase computation costs.

With increasing mesh size, an increase in the computation time per iteration of the MMA
solver is expected, given that increased elemental stiffness matrix assemblies must be carried
out, which is one of the most computationally intensive tasks in the MATLAB implementation.
Therefore, it is imperative to determine a mesh size that balances computational efficiency and
accuracy.

The MM-FATO framework includes a density filter to ensure mesh-independent results, and
to test the efficacy of the same, results are evaluated for four mesh sizes with increasing re-
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finement. This includes mesh sizes of 50 x 20, 80 x 32, 100 x 40 and 200 x 80. The detailed
results obtained are detailed in Section 6.1.5.

5.3. MM-FATO and Eco-efficiency
To answer the second sub-research question from Section 2.7, an eco-efficiency assessment of
the optimized structures obtained from MM-FATO is carried out. Where the CO2 footprint
and compliance results for MM-FATO will be evaluated and compared to those from the
SM-FATO framework. This SM-FATO approach is similar to the one developed by Almeida
[6]. However, to achieve a meaningful comparison between both frameworks, we modify the
SM-FATO approach of Almeida [6] to use MMA instead of fmincon. This section details the
methodology for assessing the eco-efficiency of results achieved using the MM-FATO frame-
work.

5.3.1. Database for CO2 footprint evaluation
To assess the CO2 footprint of composite materials that can be created using AM, a database
similar to one by Almeida [6] is created. This database contains a mix of bio-based and
oil-derived matrices and natural and synthetic fibres. This study considers two matrices and
six fibres. Their properties are obtained and reported directly from "Granta Edupack." The
database of these constituent materials and their properties can be seen in Table 5.3.

Table 5.3: Material property table for a mix of natural and synthetic fibres that can be used with
two commonly available matrices for fabricating composites

Type Material ρ
(Kg/m3)

E
(GPa)

G
(GPa)

ν COmat
2

(Kg/Kg)

Fibres

Bamboo 700 17.5 1.29 0.39 1.0565
Flax 1470 53.5 1.41 0.355 0.44

Hemp 1490 62.5 1.6 0.275 1.6
Carbon High Modulus 2105 760 340 0.105 68.1
Carbon Low Modulus 1820 242.5 105 0.105 20.3

S-Glass 2495 89.5 33 0.22 2.905

Resins PLA 1260 3.45 1.245 0.39 2.28
Epoxy 1255 2.41 0.86 0.399 5.94

For all the possible combinations of matrix and fibres from Table 5.3, the equivalent composite
material properties are analytically calculated. Empirical formulas, such as the Rule of Mix-
tures (ROM) and Inverse Rule of Mixtures (IROM) for continuous fibre composites, are used
to determine mechanical properties like longitudinal and transverse tensile modulus, Ex and
Ey, shear modulus, Gxy, density, and major Poisson’s ratio, νxy. νyx or minor Poisson’s ratio
is calculated based on the correlation between longitudinal and transverse tensile modulus for
a transverse isotropic material, Ex ×νyx = Ey ×νxy. These calculations can be referred to from
Equations 5.2-5.3. Where the subscript m is used to indicate matrix property, the subscript
f is used to indicate fibre property and the volume fraction Vf is set to 0.4 in this study for
the fibres.

Rule of Mixtures for Ex = Longitudinal Stiffness, and νxy = Major Poisson’s Ratio,

Ey = EfVf + Em (1 − Vf ) ; νxy = νfVf + νm (1 − Vf ) (5.2)
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Inverse Rule of Mixtures for Ey = Transverse Stiffness, and Gxy = In-Plane Shear Modulus,

1
Ey

= Vf

Ef

+ (1 − Vf )
Em

; 1
Gxy

= Vf

Gf

+ (1 − Vf )
Gm

(5.3)

5.3.2. Calculating CO2 footprint
To calculate the carbon footprint of the resultant SM-FATO and MM-FATO designs, we make
use of the Ashby material index derived in the work of Duriez et al. [61]. In their work, it was
derived to evaluate the carbon footprint of a simple Asbhy beam. Like in [61], in this work
as well, we only consider the footprint of the material production and the use phase for the
optimized beam for simplicity. The calculations for the total CO2 footprint of the structure
with a given material combination, considering the two life-cycle phases, are detailed in this
section. However, it is important to note that the impacts of other phases, such as end-of-life
and manufacturing, are significant and must be considered for more representative results of
CO2 footprint.

For the embodied CO2 footprint of the material, we define COmat
2 , calculated as shown in

Equation 5.4.
COmat

2 = M × COi
2mat (5.4)

Where, COi
2mat is the CO2 intensity of the composite material derived using Equation 5.5.

COi
2mat =

COi
2,fρf + COi

2,mρm

ρmat

(5.5)

In Equation 5.4, M represents the structure’s mass under consideration, given by M = ve ×
xe ×ρmat. Where ve is the single mesh element volume, xe is the volume occupied by one of the
material density design variables, and ρmat is the density of the composite material implied
by the material density design variable occupying xe. ρmat can also be derived using ROM as
expressed by Equation 5.6.

ρmat = ρfVf + ρm (1 − Vf ) (5.6)

To evaluate the CO2 footprint of the structure concerning its use phase, COuse
2 is used. It

measures the carbon footprint in kg CO2 emissions generated to transport a structure with
mass M on a long-haul aircraft over its service life of 25 years. COuse

2 is defined according to
Equation 5.7 [61].

COuse
2 = M × COveh

2 = M × COfuel
2 × FRC (5.7)

Where COveh
2 represents the kilograms of CO2 emitted when transporting a kilogram of the

structure over the aircraft’s service lifetime of 25 years. Represented by COfuel
2 , which is

kilograms of CO2 emitted by burning a kilogram of jet fuel, and the fuel reduction coefficient
or FRC, which is the amount of jet fuel burnt to transport a kilogram of this structure over
its lifetime of 25 years. For this work, FRC is assumed to have a value of 4800 kilograms of
jet fuel consumption per kilogram of the structure over 25 years. This is based on the FRC
value reported in the LCA study by Deng [62], which equals 17.2-21.2 tons/(100kg*year) of
jet fuel for a long-haul aircraft. Similarly, a value of 3.16 kg CO2/kg jet-fuel was determined
for COfuel

2 [1].

In conclusion, when considering only the material and use phase of the structure, the total
CO2 footprint of the structure, COtot

2 , can be expressed as shown in Equation 5.8.

COtot
2 = CO2

mat + CO2
use = M ×

(
COi

2mat + COveh
2

)
(5.8)
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5.3.3. Design of experiments for CO2 impact study
A simple design of experiments is chosen to evaluate any possible improvement in the total CO2
footprint of a topology-optimized structure with multiple composite materials. For the two-
material optimization, one of the materials is fixed as the material with the desired compliance,
for instance, some volume fraction of carbon fibres in the PLA (poly-lactic acid) matrix. The
second material chosen is one of the natural fibres from the same Table 5.3 in the same matrix.

Two variations are considered for result generation with the current implementation of MM-
FATO. The first includes MM-FATO results obtained by varying the fibre volume fraction of
the multi-material system. The second includes MM-FATO results obtained by varying the
ratio occupied fraction by materials 1 and 2 in the design domain, Ω1/Ω2. The first variation
is intended to improve the structure’s compliance by increasing the fibre volume fraction. The
second variation is intended to achieve a profile of how the different ratios of the volume oc-
cupied in the design domain by the two materials affect the carbon footprint and compliance.
In all cases, the total occupied volume fraction by both materials is kept the same, i.e., Ωf =
0.3. The MM-FATO results are then compared with the SM-FATO ones that were achieved
using the same fixed value for the occupied volume fraction, Ωf .

Lastly, the MM-FATO results are compared to the SM-FATO results obtained using the Ωf

values that give the lowest CO2 footprint. A lower Ωf would imply lower mass, leading to a
lower overall CO2 footprint for the optimized structure when Equation 5.8 is used. The results
for these experiments and their implication on the eco-efficiency of optimized structures are
detailed in Section 6.4.2.



6
Results and Analysis

In this section, the framework is verified for robustness. This is done by assessing how varia-
tions in the input parameters affect the optimization results obtained. The output parameters
evaluated primarily include the obtained topology and objective function values for each com-
bination of input parameters tested. Intermediate outputs are also evaluated for preliminary
analysis results but are specific to the test case and not generalized here.

Once we have verified the framework for robustness, the framework’s performance is also
analyzed. One of the objectives was to test the hypothesis that using multiple composite
materials can produce structures with more rigidity and a lower overall CO2 footprint. To
assess this objective, the achieved compliance and CO2 footprint results are compared to the
results of the modified filtered-CFAO framework of Almeida [6].

6.1. Parametric Study for Input Parameters
For the parametric study, we first evaluate the MMA empirical parameters. The influence
of these parameters is evaluated for two different initial guesses, namely, uniform orientation
field initial guess and random orientation field initial guess. Once we have finalized a set of
MMA parameters, we assess the frameworks sensitivity to material properties. This is done
by evaluating the impact of varying Ex,Ey and Gxy values on the optimized topologies. We
also determine the limiting occupied volume fractions Ω1/Ω2 of each material that can be
used for the MM-FATO framework. Next, convergence parameters like discreteness and DMO
convergence are evaluated for varying penalization parameters such as step size and maximum
penalty factor. Lastly, we conduct a mesh-refinement study to see the effectiveness of the
filtering scheme in reducing mesh dependency.

6.1.1. Influence of MMA Solver Parameters
Uniform Orientation Field as Initial Guess
To ascertain which MMA empirical parameter combination works the best for the MM-FATO
framework, the impact of varying the parameters for a uniform orientation field is studied
first. For the five combinations stated earlier, the compliance before and after post-processing
and the iterations taken for each combination for an initial angle of 45◦ is reported in Table 6.1.

For trial 1, results in Table 6.1 show that changing the move parameter to 0.1 gives the
best result in terms of compliance or objective function achieved, with a value of 17.0 N.m.
However, the number of iterations taken is higher compared to other trials. Specifically, trial
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4 has the lowest number of iterations for a smaller move limit of 0.05. This lower iteration can
be attributed to the limited step size of the fibre angle design variables, which leads to more
controlled convergence to a local minimum.

Table 6.1: Values for compliance and iterations for MM-FATO framework using the MMA empirical
parameter combinations 1-5, and a uniform orientation field with θ = 45◦ as an initial guess.

Trial move Sinit Sfast Sslow f(x) (N.m) f̃(x) (N.m) Iterations
1 0.10 0.5 1.2 0.7 17.0 20.2 1487
2 0.50 0.1 1.2 0.7 26.3 33.7 1285
3 0.10 0.1 1.2 0.7 24.1 29.9 1578
4 0.05 0.5 1.2 0.7 24.1 30.1 1270
5 0.05 0.1 1.1 0.1 26.4 32.3 1315

* f(x) are compliance results before post-processing, and f̃(x) are compliance values after post-
processing

However, to avoid premature convergence, a moderate step size should be considered for the
design variables. Another reason to avoid smaller step sizes is to prevent the over-influence
of initial angle guesses on the optimized results. Due to the small initial step size, the solver
may follow a sub-optimal local minimum path. Hence, always reducing step size is not ideal.
However, for this framework, both the move limit values of 0.1 and 0.05 give acceptable results.

Having established the MMA parameter combination 1 as the one that gives the lowest com-
pliance for an initial angle of 45◦, we also assess other uniform angle field values as initial
guesses. The non-convexity of the CFAO optimization results in different local minima based
on the initial guess. This makes it imperative to determine if a better local minima exists
for the same MMA parameter combination. If it does exist, then we must also determine the
improvement in the optimized results. The same MMA parameter combination 1 is further
evaluated for eight other initial uniform angle fields to assess this. The results for compliance
before and after post-processing are reported for all the nine angles, including 45◦, which can
be seen in Table 6.2.

Table 6.2: Values for compliance and iterations for MM-FATO framework for different uniform
orientation fields, with angles between -90◦ and +90◦ as an initial guess. All results are

generated using MMA empirical parameter combinations 1. Where, move = 0.1, Sinit = 0.5,
Sfast = 1.2, and Sslow = 0.7.

Parameters −90◦ −70◦ −45◦ −30◦ 0◦ 30◦ 45◦ 70◦ 90◦

f(x) (N.m) 18.88 17.58 16.78 16.68 16.57 17.86 17.05 19.33 17.82
f̃(x) (N.m) 24.19 21.56 19.62 19.96 19.52 21.90 20.20 23.31 21.88
Iterations 1365 1311 1608 1487 1503 1197 1487 1604 1856

As seen in Table 6.2, with varying initial angles, the compliance varies but is still overall lower
than what is achieved using other MMA parameter combinations. Of all the limited initial
angles tested, the initial angle field with all the angles assigned a value of zero gives the lowest
compliance. For a simple load case like the one once considered, it is easier to trace a load
path for loads and support and have an average initial orientation along the same lines, which
could potentially give better results. However, for more complex load cases, a multi-start or
global search strategy with multiple runs with different initial guesses is the only viable option
when considering a uniform angle field.
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A better local optimum can be obtained by simultaneously evaluating more varied initial
guesses. This would mean increased computational costs for such a global search. However,
using parallelization and clusters can significantly reduce computational time.

Evaluating the post-processed results
As observed in the results so far, the values of compliance obtained after post-processing are
higher than before post-processing. To understand the difference between the compliance
achieved before and after post-processing, we determine what contributes more significantly,
namely, the fibre smoothing or the removal of material mixing at the interface. The same can
be visualized in Figure 6.1.

Figure 6.1: Post-processing the obtained topology at the end of convergence for material mixing and
smoothing the fibre angles adds to the compliance. A total increase in compliance of 17.8 % is observed, of
which the fibre smoothing contributes the most due to changes in the optimal orientations for less-optimal

but more continuous ones.

As expected, the material mixing does not increase the compliance significantly. It was ex-
pected to increase the stiffness overall, given that removing material mixing is penalised in
the DMO2 approach according to Figure 3.3, causing a less stiff interface. However, The
slight increase can be attributed to a slight lowering in the design volume fraction of the two
materials by approximately 6.4 % and 3 %. This is due to a decrease in the value of elemental
densities from greater than one in the interface elements to one. Fibre smoothing, on the other
hand, majorly causes the increase in compliance. This can be explained by the modification of
fibre orientations at the intersection of individual beams with material loaded in shear, where
the optimizer oriented fibres such that the structure has the lowest compliance. When slight
modifications to many such fibres are done to obtain continuity, the intersections probably
become weaker in shear, reducing the stiffness of the overall structure.

Random Orientation Field as Initial Guess
To gain further insights into the characteristics of the move parameter for this framework, we
repeat the trials for a random angle field as an initial guess. Such an initial guess reduces the
high dependence of CFAO on initial orientations. Further, it can obtain more repeatable results
every new optimization run, as discussed in Section 4.1.2. This exercise will use three different
random orientation fields as starting points. The compliance and iterations to convergence for
the three optimizations with different starting points at each empirical parameter combination
are averaged and reported in Table 6.3.

We can observe from Table 6.3 how, as the more conservative the MMA parameters get,
the less standard deviation in the compliance results is achieved. The obtained compliance



6.1. Parametric Study for Input Parameters 55

Table 6.3: Values for averaged compliance and iterations and the standard deviations for MM-FATO using the
five MMA empirical parameter combinations 1-5. Three different instances of the random initial field for fibre

orientations were used for averaging per trial 6-10, corresponding to the parameter combinations 1-5.

Trial move Sinit Sfast Sslow Average f(x) (N.m) Average Iterations ±SD f(x)

6 0.10 0.5 1.2 0.7 18.9 1850 1.5
7 0.50 0.1 1.2 0.7 19.3 1386 2.3
8 0.10 0.1 1.2 0.7 17.8 1535 1.7
9 0.05 0.5 1.2 0.7 18.2 1698 0.7
10 0.05 0.1 1.1 0.1 18.3 1605 0.4

* f(x) or compliance results are reported for unfiltered fibre angles, i.e., before post-processing.

is observed to have a standard deviation in the range of ±2.3 to ±0.4 over different MMA
empirical parameter combinations, from the least to the most conservative. Keeping in line
with the requirements of robustness and less sensitivity to initial guess, the more conservative
combination of MMA empirical parameters might be a better solution. Furthermore, using a
more conservative combination does not influence the number of iterations as per the results
in Table 6.3, which is beneficial in terms of the computational efficiency of the framework.
However, too small of a step size can be detrimental to the quality of local optima achieved
[7]. Hence, it should not be reduced below 0.1 or 0.05 as a recommendation.

Figure 6.2: Comparing the topologies and compliance obtained for the three trials with random orientation
field as an initial guess to the topology for the uniform orientation field initial guess at 0◦. 0◦ uniform angle

field gives the lowest compliance overall using a different MMA parameter combination.

On further evaluating the results for Trial 6-10, it was found that the topology obtained for the
three different random orientations trials, at the same MMA parameter combination, differ to
some extent. To provide a better understanding of the topologies obtained from three different
initial guesses for the MMA empirical parameter combination, please refer to Figure 6.2. For
this exercise, combination one, which had the lowest compliance in the previous trial at a
starting angle of 0◦, and the most conservative combination five for the random orientation
field are illustrated.

The difference in topologies for even the most conservative approach when using random
starting angles can be attributed to the non-convexity in the fibre optimization framework
itself. This could occur when penalty continuation is applied to reduce starting non-convexity,
but filtering or regularising the fibre orientation design variables is not done as recommended
[52].
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However, as observed in Figure 6.2, the topology obtained with random orientation for a mod-
erate maximum penalty size of six gives manufacturable topologies with slightly sub-optimal
local minima compared to a uniform guess design, i.e. an increase in -8.34% in the objective
value. The benefit, however, is in the computational time, where three trails with random
orientation angles with average iterations per run of 1605 compared to nine optimization runs
for uniform orientation filed as an initial guess with iterations per run of 1504 are required.

Hence, in the context of this work, the more conservative empirical parameter combination
where move = 0.05, Sinit = 0.1, Sfast = 1.1, and Sslow = 0.1 for a convergence tolerance of
1%, with random orientations as initial guess is deemed satisfactory to provide more robust
and computationally efficient optimization results. However, ways to reduce the variation in
topology and compliance when using random starting guesses must be explored.

6.1.2. Material Property Influence
Five different ratios are considered for each material when evaluating the Ex/Ey ratio for the
two materials. Table 6.4 reports the compliance obtained for these five ratios.

Table 6.4: Compliance obtained for five Ex/Ey ratios each for two base materials, CFRP and GFRP with
different shears stiffness and longitudinal stiffness

Material Ex

(GPa)
Ey

(GPa)
Ex : Ey f(x)

(N.m)
Material Ex

(GPa)
Ey

(GPa)
Ex : Ey f(x)

(N.m)

CFRP

90 6.5 13.9:1 5.7

GFRP

30 2 15:1 16.3
90 15 6:1 6.9 30 5 6:1 23.5
90 30 3:1 8.3 30 9.5 3.2:1 25.0
90 45 2:1 9.8 30 15 2:1 22.0
90 90 1:1 5.5 30 30 1:1 16.6

Ex : Gxy = 13.9:1 for CFRP and Ex : Gxy=6.7:1 for GFRP, and f(x) or compliance results are reported
for unfiltered fibre angles, i.e., before post-processing.

From the table, we have two ratios that give significantly lower compliance than other ratios for
CFRP and GFRP. One of them is with the highest ratio between Ex and Ey. This aligns with
better results for the transverse isotropic model, where the longitudinal stiffness is significantly
higher than the transverse stiffness. Figure 6.3 (Left) shows the topologies obtained for this
case for both materials. On the other extreme, for the ratio of 1:1, lower compliance is achieved
despite the fibre orientations being not continuous and alternatively aligned 90◦ to one other
throughout, as seen in Figure 6.3 (Right). This results from the non-convexity of achieving a
minimum with fibres aligned at ±90◦ given that the axial and transverse stiffness are equal.

For Ex/Ey of 3.2:1 for GFRP, we see that the fibre orientations are primarily aligned along the
principal stress direction in most places or along the topology features in general. However,
for CFRP with Ex/Ey of 3:1, the fibre orientations are not aligned too well. This explains
the high compliance for ratios of 3:1 and 2:1 of Ex/Ey for CFRP due to the disoriented fibres
stuck in local minima. For CFRP, only Ex/Ey of 6:1 and higher ratios give acceptable results
for optimized fibre orientations.

From this limited data, it is seen that the ratio of transverse Young’s modulus to the shear
modulus has some influence on the ratio of Ex/Ey that can be used for effective results with
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Figure 6.3: From (Left) to (Right), for both CFRP and GFRP, three topologies with increasing stiffness in
the transverse direction are illustrated. An increasing trend in fibre misalignment is observed.

CFAO. For CFRP, Ex/Gxy of 13.9 is almost twice as large as GFRP with Ex/Gxy 6.7. It could
be hypothesized that a minimum ratio for Ex/Ey, 6:1 for CFRP, 3.2:1 for CFRP, which is
close to half the Ex/Gxy value, 13.9:1 for CFRP, 6.7 for GFRP, is required to have meaningful
and manufacturable results from the CFAO approach used in this work. However, the same
can not be generalized for all materials and is assumed to be true for this particular material
combination and material property used in this study.

Evaluating the impact of different Gxy values for the two materials on the final topology
and fibre orientations, we chose four different ratios of Ex/Gxy for a constant Ex/Ey ratio of
13.9:1 for CFRP and 3.2:1 for GFRP. By doing so, we obtain two weak shear materials, i.e.
ψ ≥ 0, one with isotropic material-like properties, i.e., ψ = 0 and one strong shear material
with ψ < 0. The results of this experiment can be seen in Figure 6.5 and Table 6.5.

Figure 6.4: From (Left) to (Right), for both CFRP and GFRP, four topologies with increasing shear stiffness
indicated by ψ are illustrated, highlighting the importance of shear modulus properties on the fibre

orientation and optimized topologies.

From Table 6.5, it can be seen that as the material becomes shear strong, the Ex/Gxy ratio
comes closer to 1:1, and the compliance reduces until it reaches a minimum for the lowest
ratio of 3:1 and 2:1 for CFRP and GFRP respectively in this case. The topologies obtained
for these ratios look similar to those with Ex/Ey = 1:1 and every isotropic material topology
for a half-MBB beam in literature. This can also be seen in Figure 6.4.

For shear weak materials that have Ex/Gxy greater than twice the Ex/Ey ratio, in this case
15:1 for GFRP, the ±90◦ fibre misalignment can be seen again. This limit to the shear stiffness
ratio of a material required for the current implementation of CFAO with in-optimization fil-
tering, in relation to its Ex/Ey stiffness ratio, is again observed. Hence, if we were to calculate
the shear stiffness values for the topologies from previous parametric studies of varying Ex/Ey
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Table 6.5: Values for averaged compliance and iterations and the standard deviations for MM-FATO using the
five MMA empirical parameter combinations 1-5. Three different instances of the random initial field for fibre

orientations were used for averaging per trial 6-10, corresponding to the parameter combinations 1-5.

Material Gxy

(GPa)
Ex : Gxy

(GPa)
ψ f(x)

(N.m)
Material Gxy

(GPa)
Ex : Gxy

(GPa)
ψ f(x)

(N.m)

CFRP

6.5 13.9:1 67.2 5.7

GFRP

2 15:1 27.1 35.4
15 6:1 33.2 7.3 4.5 5.7:1 17.1 25.0

23.3 3.9 0 5.6 8.8 3.4:1 0 21.1
30 3:1 -26.8 5.6 15 2:1 -24.9 16.7

Ex : Ey = 13.9:1 for CFRP and Ex : Ey = 3.2:1 for GFRP, and f(x) or compliance results are reported for
unfiltered fibre angles, i.e., before post-processing.

ratios for Ex/Ey = 3:1 for CFRP, we have ψ = 76.7, and for ratios of 1:1 for GFRP we have a
ψ = 26.3. Again, a low shear stiffness, but this one could be said to result from the extremely
low Ex/Ey ratio without a correspondingly high shear modulus.

The issue of fibre-misalignment with lower Gxy values was also observed for multi-material
structures optimized using MM-FATO. For brevity, the detailed results are not discussed here.
Further discussion of this CFAO issue and its implication on multiple materials with non-
convexity corresponding to extremely shear weak materials is done later in Chapter 7. This
is, however, considered a limitation of the framework when optimizing fibre orientations.

6.1.3. Influence of material design volume fraction ratio
A simple study to determine the smallest and largest possible ratios of the two material design
volume fractions is reported here. Figure 6.5a,b and c show the obtained topology after
post-processing for three different design volume fraction ratios: 0.25:0.05, 0.005:0.295 and
0.299:0.001, respectively. Only the moderately low design volume fractions of 0.25:0.05 and
0.005:0.295 give an acceptable topology at the end of optimization. In the case of 0.005:0.295,
acceptable results are obtained, as the minimum design volume fraction mandated for the
stiffer material 1, CFRP, rightly optimizes the same at close to the region of load application
to minimise compliance.

Figure 6.5: An evaluation for the obtained topologies with varying ratios of design volume fractions of
material 1 and material 2, in this case, CFRP and GFRP from Table 5.1, shows (a) well-defined results for

Ω1 : Ω2 = 0.25:0.05, (b) results for Ω1 : Ω2 = 0.005:0.295, with somewhat well-defined topology, and (c)
results for Ω1 : Ω2 = 0.299:0.001, with an ill-defined topology.

As observed, extreme design volume fraction ratios of 0.299:0.001 and 0.005:0.295 for the two
materials show premature convergence. Such a behaviour can be attributed to the DMO
convergence criterion (h95 = 1) being met earlier at lower penalization values, i.e., p <=
4. This leaves final designs with many intermediate densities or grey elements. Hence, for
meaningful optimization results with the MM-FATO framework, a minimum design volume
fraction of 0.05 or similar for any material being considered is recommended.
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This behaviour for stopping criteria is in line with the material interpolation scheme, which
is specifically targeted to optimize for multiple materials. However, the convergence criteria
must be modified to maintain the framework’s applicability and robustness. This can be
achieved as follows. Once we ensure that h95 = 1 is adhered to, we must also ensure that the
convergence criterion for discreteness Dg (CC3) or the maximum penalty is met, whichever
comes earlier. This is different than either CC2 or CC3 being met, which is currently being
done. This is, however, not implemented for results reported in this work.

6.1.4. Convergence Study
Convergence Characteristics
A general evolution of the topology, objective values and h95 through different penalty steps
and iterations can be visualized in Figure 6.6, where a random orientation field is used as an
initial guess with pmax = 6. As seen in Figure 6.6, with increasing penalization, h95 or DMO
convergence keeps increasing till it reaches a very high value of 0.997. The compliance values
are seen to reduce monotonously in a stepped manner. The steep drop observed at p = 6 can
be attributed to the rapid redistribution of the intermediate features from the previous p = 5
step. Lastly, while a higher final objective than the initial design is observed, the initial guess,
unlike the final result, is not manufacturable.

Figure 6.6: An illustration showing the evolution of topology, compliance and DMO converged elements,
from the initial guess at iteration 0, through every ∆p = 1 change, until the optimization reaches pmax = 6.

Comparing this to a single penalty step approach in Figure 6.7a and b, the final value is
somewhat in the same range, i.e. 14.6 N.m vs 16.1 N.m, but the topologies obtained vary
significantly. However, as seen in Figure 6.7a, the fixed penalization approach also displays
an overall monotonous reduction in compliance like in penalty continuation but with fewer
iterations. A minimum penalty value of five is chosen for a single penalty step, as better
discreteness and quality of post-thresholding designs are achieved for a penalty of five and
greater. A detailed assessment with fixed penalty values ranging from three to five and their
post-processed and post-thresholding results can be referred to in Appendix C.
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Figure 6.7: (a) A typical convergence curve plotted for compliance or objective function vs the number of
iterations, and (b) a typical CFRP-CFRP multi-material fibre angle optimized topology, obtained with a

fixed penalty factor of p = 5

Penalty Step Size
Until this point, the results reported were generated using ∆p = 1. To see the effect of higher or
lower step size on the developed framework, a lower penalty step of 0.3 was experimented with.

Table 6.6 documents three trials each for ∆p = 0.3 and 1, using the MMA parameter com-
bination five, and with rmin = 2. All trials are carried out with a maximum penalty pmax of
15 to ensure the DMO convergence h95 value reaches one. From the results of this table, it is
evident that a smaller penalty step size of 0.3 leads to better-optimized results overall.

Table 6.6: Results of three trials each for two different penalty step sizes of 0.3 and 1 values are
reported, which includes the compliance before post-processing, discreteness Dg, DMO convergence h95

and the maximum penalty reached for all the cases.

∆p Trial f(x) (N.m) Iterations h95 Dg (%) Maximum p

1
1 24.2 1917 1.0 64.2 9
2 35.6 1743 1.0 59.1 9
3 38.2 1583 1.0 62.0 11

0.3
1 74.7 2741 1.0 60.7 13
2 18.3 3400 1.0 62.3 7.3
3 21.5 3133 1.0 62.8 8.5

As observed from the results, using a step size of 0.3, we can achieve h95 = 1 at lower maxi-
mum penalty values but at the cost of a higher number of total iterations. On the other hand,
∆p = 1 has a higher chance of overestimating compliance and taking more penalty updates
to reach h95 = 1. This overall higher compliance or a worse local minimum for the bigger
step size of ∆p = 1 could directly result from the quicker non-convexification of optimization
problems that arise from penalization. However, the compliance for trial 1 with ∆p = 0.3 is
also significantly higher. Based on the obtained topology, this discrepancy could result from
the optimization getting stuck in a bad local minimum. This shows that non-desirable results
can be obtained even with a smaller penalty step size when a random initial guess is used
without fibre angle filtering.

For practical purposes, though, the reason for any value significantly above 30 N.m obtained
for the given initial conditions and penalty step size can be attributed to quick jumps in
penalty factor as the optimization gets closer to meeting h95 = 1. This occurs due to the soft
convergence being met at those steps quickly without any further significant improvement in
the topology. This occurrence for ∆p = 1 at higher penalty values can be visualised from
Figure 6.8.
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Figure 6.8: An illustration of sudden jumps in penalty values causing a significant increase in the compliance
values without significant improvement in discreteness or DMO convergence values.

Through a crude analysis of the values in Table 6.6 and Figure 6.8, it is fair to assume that
in most of the above cases, penalty steps higher than 9-10 do not improve the discreteness Dg

values significantly, and the intermediate DMO convergence h95 do not change significantly
for the penalty steps showing quick convergence. While effective in making h95 reach one, the
higher penalization does not change the topology or discreteness. Given that the discreteness
is not as high for these results, increasing penalization values means that many intermediate
densities are raised to higher powers, leading to compliance being calculated, which is quite
high but not completely representative of the actual stiffness of the structure. As a result, the
compliance obtained for higher penalization values should not be used directly for comparison.
Based on this analysis, and to avoid such unpredictability in final results, the final compliance
is calculated using p = 1 to have a fair comparison of results from now on.

6.1.5. Mesh Independence Study
This study aims to see if mesh-independent results can be achieved for MM-FATO using only
a density filter. Results for this study are obtained by optimizing a two-material system with
CFRP and GFRP from Table 5.1 for four different mesh sizes, 50 × 20, 80 × 32, 100 × 40, and
200 × 80. This is done for a constant domain size of 50 mm × 20 mm for the half-MBB-beam
load case. The four mesh sizes are filtered using rmin = 2,3.2,4 and 8 elements, respectively,
resembling a 2 mm filter radius with reducing element size and a pmax of 15. The optimization
results for the four meshes evaluated for two different penalty step size values are reported in
Table 6.7.

As observed from the results in Table 6.7, mesh independence is not achieved for the frame-
work when random orientations are used as initial guesses and only the density filter is used
as the regularization scheme. This is irrespective of the penalty step size used. Since different
random guesses are used for each trial in Table 6.7, it is possible that different local minimums
are achieved. This difference in obtained topologies is further amplified by mesh refinement,
which reduces the non-convexity arising from the discretization of the design domain [52].
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On further investigation, another trend was observed from the convergence curves. With
increasing mesh refinement, the soft-convergence condition of CC1 was not met at each penalty
step update. The optimization for each penalty value terminated only due to the hard-stopping
criteria, i.e. when the maximum of 500 iterations per penalty step was reached. This implies
the need for more iterations per penalty step. However, if this were addressed directly by
modifying the maximum iterations, the user would be required to keep increasing the maximum
iterations to even higher values with mesh refinement. This would imply further slowing the
convergence, limiting the framework’s computational efficiency.

Table 6.7: Mesh-independence study for four different mesh sizes of 50x20, 80x32, 100x40 and 200x80 at two
different penalty step sizes of 0.3 and 1, illustrating the obtained topology and the respective compliance

obtained

Mesh Size Compliance (N.m)1 Iterations ∆p Final Topology

50 × 20 5.3 1602 1

5.0 3171 0.3

80 × 32 8.1 4284 1

6.0 7815 0.3

100 × 40 5.3 4626 1

8.9 10179 0.3

200 × 80 6.8 5587 1

6.7 11453 0.3

1Compliance reported with p = 1 generalization, is for compliance before post-processing step.
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It is clear from the topologies shown in Table 6.7 that the converged results obtained with a
mesh size of 50 × 20 exhibit additional truss-like features when compared to the achievable
topology with increased mesh refinement. This suggests that the given design space cannot
be effectively optimized with such a coarse mesh size. As a result, despite not achieving
mesh-independent designs, the minimum mesh size for evaluating MM-FATO as we advance
is increased to 80 × 32. This is done by using an element size elSize of 0.625 mm. This finer
mesh size could potentially give better results without a significantly higher computational
cost, which would otherwise occur for more finer meshes like 100 × 40 or 200 × 80.

This study shows that using only density filtering as a regularization scheme is not ideal
or enough for the current MM-FATO framework. It does not address mesh dependency. How-
ever, the same was sufficient for a simple DMO exercise in some other studies [59]. This
demonstrates the persistent issue of obtaining different local minima when CFAO is coupled
with DMO for MM-FATO without sufficient regularization schemes. As a result, an alternative
regularization scheme might be necessary to achieve mesh-independent results for the current
definition of the MM-FATO framework.

6.2. Influence of regularization and discreteness schemes
In this section, we evaluate the impact of alternative morphology-based filtering schemes and
discreteness approach discussed in Chapter 4 on achieving a more robust MM-FATO framework
that provides discrete designs.

6.2.1. Influence of using a combination of density and sensitivity filter
So far, all the evaluated results have only used a density filter as the regularization scheme.
Given the computational benefits of a density-plus-sensitivity filter seen earlier in Section 4.1.3,
in this section, the impact of the same on the current framework is evaluated to determine its
effectiveness.

Table 6.8: Material properties calculated for 40% flax and carbon fibres in epoxy

Material Ex

(MPa)
Ey

(MPa)
νxy νyx Gxy

(MPa)
ρ

(Kg/m3)

Epoxy & 0.4 Vf of Flax 22846 3899 0.38 0.06 2997 2998
Epoxy & 0.4 Vf of LM Carbon 98446 3990 0.28 0.01 3752 3753

A mesh independence study with the same mesh sizes used in the previous section, Section
6.1.5, is conducted for this new regularization scheme. Here, we primarily compare the changes
to topology as mesh size is refined. A random orientation field is used as the initial guess, with
40 % flax fibres in epoxy and 40 % Low Modulus (LM) carbon fibres in epoxy as alternate
material choices. Properties for both materials are tabulated in Table 6.8. The results of this
study are shown in Figure 6.9.

As observed, compared to using only a density filter in the previous section, the topological
changes with increased mesh refinement vary less in this case. This is true for mesh sizes of
80×32 and 100×40 with a small difference in mesh size. Meanwhile, mesh dependency persists
when superfine meshes like 200 x 80 are used. Such a deviation can again be attributed to
the absence of fibre angle filtering during optimization. This means that the non-convexity of
the objective function arising primarily from the orientation design variable is not sufficiently
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Figure 6.9: Largely similar topology and compliance obtained for three of four different mesh sizes of 50 x 20,
80 x 32, 100 x 40 and 200 x 80 when using a density plus density filter. A mesh size of 80 x 32 is the

minimum required to obtain somewhat mesh-independent results.

addressed. As a result, when different random orientations are chosen each time, the final
topologies vary to some extent, regardless of the filtering scheme applied for the material
density design variables. Nonetheless, Figure 6.9 shows that the coarser mesh size of 50 × 20
is too coarse for this optimization problem. It deviates the most from the overall topologies
obtained for other refined meshes. However, the 80 × 32 mesh can be used as a better option
to evaluate the results further despite not achieving complete mesh independence.

To compare the two approaches further, we evaluate the influence of different filter radii
on the obtained topology and compliance for the density filter and density plus sensitivity
filter combination. The objective is to see the minimum feature size control variation of both
approaches with different filter radii. This study uses three filter radii of 1.5 mm, 2 mm and 3
mm. The filter radii values are adjusted to the mesh size of 0.625 mm per element, resulting
in values of 2.4, 3.2 and 4.8, respectively. A random angle field is used as an initial guess, and
the optimization is carried out using a penalty continuation approach, where pmax = 15 and
∆p = 1.

Figure 6.10: Minimum feature size control achieved using density plus sensitivity filter and density filter for
three filter radii of 2.4, 3.2 and 4.8 mm. For the filter radii of 2.4 and 3.2, the density plus sensitivity filter

results in optimized topologies with lower or similar compliance. It also takes almost half the number of
iterations to obtain these topologies compared to the results using only a density filter.

Figure 6.10 shows that we can achieve the desired minimum feature size when using corre-
sponding filter radii. This is observed for both the density filter and density plus sensitivity
filter combination. However, it can be seen that the topologies and compliance obtained using
a density plus sensitivity filter are better overall than when only a density filter is used. Lastly,
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as expected, the number of iterations taken to convergence for three cases for the density plus
sensitivity filter case is substantially less than those required for optimization with only a
density filter.

Previous sections found that using only a density filter with a random angle field as an ini-
tial guess led to different outcomes for each new trial. Since this is a different regularization
scheme, the impact of the density plus sensitivity filter on topologies on the repeatability of
results over multiple trials using various random orientations must also be evaluated. Hence,
a comparative study is conducted to assess the influence of each regularization scheme on
obtaining reproducible topologies with different starting angles. The results of this evaluation
are presented in Figure 6.11, where a fixed penalty factor of p = 6 and a density filter radius
of rmin = 4.8 were used.

Figure 6.11: Comparing the results obtained for three trials with density filter and density plus sensitivity
filter when random initial guesses are used for a fixed penalty step of p = 6 and filter radius of 4.8 mm. The

density plus sensitivity filter gives more repeatable results with different random initial guesses. Whereas
using only a density filter gives a different topology every time.

It is evident from Figure 6.11 that the use of density plus sensitivity filter gives more repeat-
able topologies results even with a random orientation field as an initial guess. This was
impossible with only a density filter, even when penalty continuation was used. This is sig-
nificant in addressing the issue of non-repeatable topology with random initial orientations.
This combination filtering scheme thus reduces the number of trials and, subsequently, the
computation time required to assess the quality of the local minima obtained when using ran-
dom orientations as an initial guess. However, using only a density filter can result in lower
compliance for certain initial guesses, as observed in Figure 6.11 (Right) compared to using
a density plus sensitivity filter. This is despite similar-looking topologies for both cases. As
a result, some questions about such a filtering scheme’s efficacy in obtaining better solutions
still remain.

From this evaluation of the regularization scheme, it can be concluded that for a multi-
material topology optimization problem addressed using the DMO2 interpolation scheme, the
use of a density plus sensitivity filter is imperative to achieve better, if not completely, mesh-
independent results. In Sanders et al. [42], it was not the best solution when only material
density optimization was done. However, this filter combination is the better option when
fibre orientation is optimized as a separate variable and with a random orientation field as an
initial guess.
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6.2.2. Influence of discreteness improvement approaches
Both penalty steps of 1 and 0.3 in Section 6.1.4 gave similar results in terms of discreteness.
However, for AM fabrication, the results are not discrete enough. The proposed density filter
reduction scheme or "Approach 1" post-convergence can be applied to improve the Dg values
achieved. Alternatively, a projection-based post-processing scheme using the Equation 4.2
in Section 4.1.3, "Approach 2" can also be implemented. Comparative results for these two
approaches, when applied to the topology obtained for rmin = 3.2 in Section 6.2, Figure 6.10,
can be seen in Figure 6.12.

From Figure 6.12, "Approach 1" to improve discreteness is seen to give more discrete results
even before thresholding. This is expected since the filtering effect is reduced drastically, and
filtering is the reason for intermediate densities in the first place. However, a disadvantage of
this approach is the jagged topology obtained. This could be reduced by further increasing
the penalization step when reducing the filter radius at each step. Nonetheless, the number
of iterations taken is significantly higher for "Approach 1", with approximately 1000 extra
iterations. This is not the best outcome for computational efficiency.

Figure 6.12: The two discreteness improvement approaches, "Approach 1" with gradual filter reduction to
rmin = 1 post-convergence at the end of p = 15, and "Approach 2" with a Heaviside projection scheme

applied till β reaches 16, starting from 1. The discreteness and the compliance obtained with "Approach 1" is
better overall. However, a jagged topology is achieved. A topology with better-defined edges is achieved for

"Approach 2". Post thresholding, however, a discreteness of 100% can be achieved for both approaches
without a significant increase in compliance.

On the other hand, "Approach 2" gives slightly less discrete designs for an additional 250
iterations. Still, better-defined contours for the topology are obtained for this approach com-
pared to "Approach 1", which is suitable for manufacturing without any further excessive
post-processing. Some other disadvantages of "Approach 2" include the loss of minimum fea-
ture size after thresholding with a limit of 0.5 in some regions of the structure, as seen in
Figure 6.12. The thresholding also causes the design volume fraction of the materials to drop
to 0.099 and 0.179 from 0.1 and 0.2, respectively, for GFRP and CGRP.

A less aggressive value for thresholding of 0.3 for "Approach 2" was seen to improve the
feature size but increases Ω1 to 0.127 and Ω2 to 0.242. This change in volume fraction is not
desirable, given that it directly impacts the final mass of the structure. A change in mass
alters the expected CO2 footprint of the multi-material structure significantly. Nonetheless,
"Approach 2" is a better alternative for current work since it potentially gives more manu-
facturable designs. However, further investigation is necessary to assess the actual ease of
manufacturing for "Approach 2".
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6.3. Robustness of MM-FATO to alternate design domains
The previous assessment was used to determine the better filtering and post-optimization
discreteness improvement schemes. This assessment modified the MM-FATO framework to
include a density plus sensitivity filter and the Heaviside projection method, resulting in a
more robust and functional MM-FATO framework.

Two alternate load cases are considered to further assess the robustness of this modified
framework. One is an L-shaped beam, and the other is a cantilever beam with a pressure
load on its top edge. Both load cases are optimized for the baseline setup materials, CFRP
and GFRP, using the penalty continuation approach, where ∆p = 1 and pmax = 15. The
compliance and topologies obtained for both the load cases can be seen in Figure 6.13a and
b, respectively. Optimizing the L-shape and cantilever beam load cases for Ωf = 0.3 using
MM-FATO gives a compliance of 15.89 N.m and 9.465 N.m, respectively. Both the compliance
values are reported at p = 1.

Figure 6.13: For an L-shape beam with dimension 50 mm x 50 mm and a point load at the free tip in (a), a
well-defined multi-material topology with continuous and manufacturable fibre paths is obtained except at

the point of load application. Meanwhile, a well-defined multi-material topology and continuous fibre
orientations are also obtained for a cantilever beam with a pressure load on the top edge in (b).

As seen in Figure 6.13a and b, well-defined topologies are obtained for both the alternate
design space and load cases. This establishes the general applicability of the framework to
design domains with passive regions and alternate loading conditions. Furthermore, in Fig-
ure 6.13a and b, the resultant topologies show placement or stiffer material in locations with
highly loaded regions in tension and compression as expected. However, an island of CFRP
material at the region of load application is also observed in Figure 6.13a. This anomaly can
be attributed to the finite element definition, where the point load F of 1000 N acts solely on
one node in the finite element mesh.

The results for the L-shape beam in Figure 6.13a also highlight another limitation of the
framework to converge prematurely. It was observed that the DMO convergence or h95 is met
sooner at p = 4. This premature convergence caused by the convergence criteria definition
can lead to less-developed topologies. Such an effect is undesirable and unsuited for manu-
facturable designs. An alternative would be to modify the convergence criteria to always run
until the CC3 or discreteness condition is met and apply point loads to a group of nodes in
proximity to the actual point of load application.
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6.4. Framework performance assessment
Although computational efficiency is maximized despite the limitations of DMO formulation
and a lack of in-optimization fibre orientation filtering, it has not been quantitatively evaluated
so far. Hence, this, along with the objective values and CO2 footprint achievable with MM-
FATO, is analyzed in this section through comparative studies. However, given the MM-
FATO framework implementation limitations, only a simple computational efficacy study is
conducted without bench-marking the framework with other frameworks in the literature.

6.4.1. Evaluating Compliance Performance for MM-FATO
To assess the MM-FATO framework’s performance regarding the attainable computational effi-
ciency and objective values, we compare the results obtained with MM-FATO to those achieved
with the SM-FATO framework of Almeida [6] and an equivalent isotropic multi-material topol-
ogy optimization result. All the results use the same optimization algorithm, MMA, to enable
the comparison of iterations as a metric for computational costs. Furthermore, to obtain a
fair comparison, the SM-FATO framework without in-filter optimization is used.

Figure 6.14a,b and c show the results of topologies obtained using SM-FATO for CFRP and
GFRP, MMTO framework with isotropic equivalent of CFRP and GFRP materials, and the
MM-FATO framework developed in this work for the same set of materials respectively. For
figure 6.14b, the isotropic equivalent properties are evaluated using the MM-FATO framework
minus the fibre orientation optimization. To mimic the isotropy as randomly oriented metal
grains on the micro-scale, results are derived with a finer mesh of 200 × 80.

Figure 6.14: (a) Compliance and topology for CFRP and GFRP structures obtained using the SM-FATO
approach, (b) A higher overall compliance and topology for an equivalent isotropic multi-material structure
with CFRP and GFRP obtained using the MM-FATO approach, but without fibre angle optimization and a
random orientation field mimicking metals at micro-scale, (c) Compliance and topology obtained for CFRP

and GFRP simultaneously optimized using MM-FATO, with lower compliance compared to (b) and
intermediate to that of CFRP and CFRP structures in (a).

Comparing Figure 6.14a and c, we can see that the compliance obtained with MM-FATO of
CFRP and GFRP is in between that of SM-FATO for the individual materials and only 35.7%
greater than the stiffest material of the two. This comparison is done for the same Ωf = 0.3
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for SM-FATO and MM-FATO, without additional constraints. As seen from the iterations,
the computational efficacy for MM-FATO is not worse and is comparable to the SM-FATO ap-
proach. This is despite both approaches considering the same penalty continuation approach
with ∆p = 1 and equivalent convergence criteria of obtaining discreteness of 70% or pmax

whichever comes first.

To reiterate the benefit of optimizing fibre orientations compared to using equivalent isotropic
properties for topology optimization of composites, the compliance for the Isotropic MMTO
and anisotropic MMTO or MM-FATO can be compared in Figure 6.14b and c. A 58.3 %
improvement in compliance is achieved by using anisotropic materials and fibre orientation
optimization MM-FATO compared to MMTO with equivalent isotropic materials. The com-
putational efficacy, however, is not comparable in this case, given the different mesh sizes used
to generate the two results.

6.4.2. Evaluating CO2 Footprint Performance for MM-FATO
One of the main goals of this project was to evaluate the enhancement of compliance and
reduction of CO2 footprint in a composite structure consisting of multiple materials. For this
assessment, we first compare the impact of substituting different natural fibres in a CFRP
composite and optimizing it using MM-FATO.

For this study, results are generated for three Vf = 0.3, 0.4 and 0.5 and for three ratios
of design domain occupied by the two materials in the multi-material structure, i.e. Ω1/Ω2 =
0.2:0.1, 0.15:0.15 and 0.1:0.2. This is done in accordance to the design of experiments for CO2
evaluation detailed in Section 5.3.3. Table 6.9 shows the results for composites comprising 50
% Vf of four different fibres, bamboo, hemp, flax, and low-modulus (LM) carbon in PLA ma-
trix. These combinations are further referred to by their abbreviations, BFRP, HFRP, FFRP
and CFRP. Note that all the total CO2 footprint values reported in this section are uniformly
scaled by 6.5. This is done as a correction factor to account for a discrepancy in the LCA
data reported in the two reference studies [61], [62].

Table 6.9: Material properties and CO2 footprint of materials obtained when different fibres, both
synthetic and natural with a fibre volume fraction of 0.5, are combined with PLA matrix

Material Ex

(MPa)
Ey

(MPa)
νxy νyx Gxy

(MPa)
ρ

(Kg/m3)
COi

2mat

(KgCO2/kg)

PLA & 0.5 Vf of Bamboo 10475 5764 0.39 0.215 2912 980 3.69
PLA & 0.5 Vf of Flax 28475 6482 0.37 0.085 4639 1365 2.58

PLA & 0.5 Vf of Hemp 32975 6539 0.33 0.066 4916 1375 3.82
PLA & 0.5 Vf of LM-CF 122975 6803 0.25 0.014 6283 1540 25.86

When optimizing a multi-material composite structure comprising of CFRP and one of the
NFRPCs, namely, BFRP, FFRP or HFRP, resultant structures with much lower CO2 footprint
can be achieved at the cost of some stiffness, as seen in Figure 6.15. This reduction in carbon
footprint increases as the Ex

ρ
ratio of the natural fibre increases or the absolute value of

ρ decreases. Bamboo fibre has the highest Ex

ρ
ratio and the lowest ρ amongst all fibres

considered. Hence, the lowest carbon footprint values are observed for all CFRP-BFRP cases
with different fibre volume fractions and the CFRP to BFRP ratio in the optimized structure.
As also observed, since HFRP and FFRP have similar densities, they tend to show similar
results for achievable CO2 footprint and compliance when combined with CFRP.
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Figure 6.15: A plot of total CO2 footprint vs compliance achieved for various multi-material structures where
one material is LM carbon fibre in PLA matrix and the second is bamboo, hemp or flax fibre in PLA. Each
envelope for these combinations includes results for a fixed design volume faction Ωf = 0.3 but with three
different Ω1/Ω2 values (0.2:0.1, 0.15:0.15 and 0.1:0.2) for the two materials. These ratios are optimized for
three fibre volume fractions (Vf = 0.3, 0.4 and 0.5), resulting in nine data points per material combination.

Next, we evaluate the performance of SM-FATO structures of BFRP, HFRP and CFRP with
Vf = 0.5. The compliance and CO2 footprint values of the optimized CFRP, BFRP, and
HFRP structures for Ωf = 0.3 can be seen from Figure 6.16a and b. For MM-FATO, we can
now compare how the variations in fibre volume fraction and the ratio of the volume occupied
in the design domain by the two materials influence the obtained compliance and CO2 foot-
print.

As seen in Figure 6.16a, by substituting 33.33 % of the occupied fraction for an optimized
structure made up only of CFRP with BFRP, we can obtain a reduction of 16.2 % in CO2 foot-
print and an increase of 140.4 % in compliance. With any further increase in the total fraction
of BFRP occupied in the design domain to 15 % and beyond while maintaining Ωf = 0.3, a
reduction of CO2 footprint is observed. The rate of increase in compliance, however, is much
higher than the amount of reduction in CO2 footprint.

Since the density of BFRP is quite lower than that of CFRP, i.e., ρBF RP = 980 kg/m3

and ρCF RP = 1540 kg/m3, increasing its volume fraction adds less but a sufficient amount to
the total mass of the structure than what reducing the volume fraction of CFRP removes from
it. This leads to a slower reduction in the CO2 footprint that is dictated by the structure’s
mass. On the other hand, a reduction in the amount of LM carbon fibres in the resultant
structure, which contributes more to the stiffness amongst both the fibres in highly loaded
regions, affects compliance significantly and causes a sharper drop.

Furthermore, from Figure 6.16a and b, it can be observed that a higher fibre volume frac-
tion of 0.5 compared to 0.3 for both CFRP-HFRP and CFRP-BFRP shows a decrease in the
overall compliance. This is expected with the increase in directional stiffness. However, dif-
ferent trends are observed for the total CO2 footprint reduction. A not-so-significant increase
in the CO2 footprint for the CFRP-BFRP combination and a moderate increase in the CO2
footprint for the CFRP-HFRP combination.
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Figure 6.16: (a) LM carbon and bamboo fibre-reinforced PLA composite structures achieve intermediate
compliance and CO2 footprint to those achievable using only either of those materials. This is true for a

fixed Ωf = 0.3 for both SM-FATO and MM-FATO. However, the results for the CFRP-BFRP structures are
not necessarily better in terms of CO2 footprint when compared to a result for a reduced Ωf = 0.25 for only
the CFRP structure. (b) On the other hand, LM carbon and hemp fibre-reinforced PLA composites in the

two material systems also show a similar trend for the higher Vf of 0.5.

This again relates to the difference in density of the composites achieved with varying fibre
volume fractions from 0.5 to 0.3. This change for low-density BFRP increases the mass while
reducing it by a similar amount for CFRP. This negates any impact on mass savings when the
same volume fraction of 0.15 is occupied by both materials in the design domain for Vf = 0.5
and Vf = 0.3. For HFRP, on the other hand, the density increases with an increase in the
fibre volume fraction from 0.3 to 0.5 for all Ω1/Ω2 ratios. At the same time, the density of
CFRP also increases, causing the mass to increase. This eventually leads to an increase in the
overall CO2 footprint of the structure.

Figure 6.16a further shows that for an occupied volume fraction reduction from Ωf = 0.3
to 0.25 in the SM-FATO CFRP structure, a substantial reduction in the CO2 footprint of 16.6
% at the cost of a 24.84 % increase in compliance is observed. This is better than what was
achieved with multi-material TO structure with CFRP and BFRP. This reduction in CO2
footprint directly results from lower weight resulting from a lower volume fraction. However,
for the given filter radius of two, any further reduction in design volume fraction does not yield
any optimized structure, and 0.25 is the lowest value tried for which a result was obtained. Fur-
ther increasing Ωf from = 0.25 to 0.7 only resulted in a steady increase in CO2 footprint and
reduced compliance. This was accompanied by a reducing slope for each step of increase in Ωf .
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Results for an CFRP-BFRP structure with a lower Ωf = 0.25 and Ω1/Ω2 = 0.2 : 0.05 are
also plotted in Figure 6.16a. For this configuration, a 24 % reduction in CO2 footprint at
the cost of approximately 100 % increase in compliance compared to CFRP structure with
Ωf = 0.3 is observed. On the other hand, an CFRP-HFRP structure with a higher Ωf = 0.3,
and Ω1/Ω2 = 0.2 : 0.1 is plotted in Figure 6.16b. For this structure, it is seen that a 7.6 %
reduction in CO2 footprint at the cost of approximately 76 % increase in compliance can be
obtained. In a real-life application, depending on the stiffness requirements for the structure,
one can be a better option than the other. The reduction in CO2 emissions reported here
can be expected to scale with the size of the structure. Hence, even a 7.6 % saving in CO2
footprint or 4 kg of CO2 for a small 10 cm3 part is not negligible.

However, as expected, the results generated with fixed Ωf values are not better than a simple
SM-FATO structure with an optimum design volume fraction on the Pareto front. This is the
inherent limitation of what can be achieved with MMTO or multi-objective TO for such prob-
lems. Nonetheless, it allows for a better-optimized compromise between the desired properties.
The obtained results for MM-FATO in this study for the same design volume fraction as the
SM-FATO results can be seen to form a Pareto front of sorts in Figure 6.16a and b, which
fills the gap between already existing Pareto fronts for the individual materials with varying
design volume fractions. This allows designers to tap into the potential for structures that can
best compromise between each material’s desired properties, CO2 footprint and compliance.

Hence, further creation of a database of CO2 footprint and compliance for all the multi-material
material combinations for various ratios of material can be used for preliminary assessment
for choosing what ratio of two materials can potentially give the best compromise in CO2
reduction and compliance to carry designed loads while being more eco-efficient.

Limitation of the CO2 impact study
A limitation of this evaluation is that a fixed total volume occupied in the design domain by
both the materials of Ωf = 0.3 is used. As expected, this results in limited information, and
more optimal solutions can be achieved by including results for arbitrarily varying volume
constraints for each material. Ideally, we should have the Pareto front with CO2 footprint
and compliance data for all combinations of composite materials under consideration for dif-
ferent design volume fraction ratios. This can then be compared with the optimal Pareto
front obtained for plotting results of SM-FATO structures at different design volume fractions
to see if any improvement is possible. However, the same was not done owing to the high
computational times and efforts, which included 4000 to 7000 major iterations per optimiza-
tion with times upward of 5400 seconds on average with smaller penalty steps of ∆p = 0.3.
Hence, a computing cluster is recommended when creating a database with different material
combinations for varying Ωf and Ω1/Ω2 values.

Furthermore, with an alternative optimization routine incorporating the free selection of vol-
ume fractions of individual materials with a constraint on compliance, equal to CFRP with
Vf = 0.5, more optimal results could be achieved [13]. However, only if the Ex

ρ
ratio of the

second composite material to be used is high enough does the optimization in such a case
result in the presence of both materials in the optimized structure [35]. This is true only
when the co-existence of both materials in the design space is not explicitly mandated using
individual volume constraints. If both materials are mandated to co-exist, the solver might
result in an unsuccessful optimization attempt for a potentially over-constrained design space.
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Discussion

To obtain continuous fibre paths, the orthotropic material approximation for shear modulus,
shown in Equation 7.1, was implemented for all the results in this work. This was done
instead of the more suitable transverse isotropic material approximation for shear modulus in
Equation 7.2.

Gxy = ExEy

Ex + Ey + 2Eyνxy
(7.1)

Gmatrix
xy = Gfibre

xy = Ex

2(1 + νxy)
; Gcomposite

xy =
Gmatrix

xy ×Gfibre
xy

VfGmatrix
xy × (1 − Vf )Gfibre

xy
(7.2)

For topologies optimized using Equation 7.2, the issue of non-convexity in fibre angle opti-
mization was observed to be quite high due to extremely shear weak materials. In Figure 7.1a
and b, results for the same combination of flax-reinforced epoxy composite with two different
shear modulus values from Table 7.1, calculated using the approaches in Equation 7.1 and 7.2
can be seen. For Figure 7.1b, it can be seen that the fibre orientation in elements with FFRP
material shows a similar result to what was obtained for GFRP on reducing its shear modulus
when evaluating the sensitivity of material properties in Section 6.1.2.

Figure 7.1: (a) Multi-material topology with well-aligned fibre orientations obtained by using the orthotropic
definition for shear modulus Gxy in Equation 7.1 (b) Multi-material topology with misaligned fibres,

obtained with by using the transverse isotropic definition for shear modulus Gxy in Equation 7.2

In general, fibre irregularities and fibre orientation misalignment by approximately 90◦, as
seen in Figure 7.1b, result from the non-convexity for the process of optimizing orthotropic
materials. These elements in tension and compression regions have "multiple orthogonal local
minima" for each principal direction [37]. For highly shear-weak materials especially, multiple
local minima can exist for the same loading direction, as seen for the case of Epoxy and 0.4
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Table 7.1: Shear modulus properties obtained for two combinations of matrix and fibres, flax and epoxy and
low modulus carbon and epoxy with fibre volume fraction 0.4, calculated using two different approaches 1 and 2

Material Ex (MPa) Ey (MPa) νxy νyx G1
xy (MPa) G2

xy (MPa)

Epoxy & 0.4 of Flax 22846 3899 0.381 0.065 2997 1358
Epoxy & 0.4 of LM Carbon 98446 3990 0.281 0.011 3752 1421

Flax with G2
xy = 1358 MPa or FFRP 2 also shown in Figure 7.2b. This could explain the

behaviour of the design variables getting trapped in local minima for this material in Figure
7.1b when using random orientations as an initial guess.

Figure 7.2: (a) A simple load-case to test the influence of loading direction on fibre orientations for materials
with different shear stiffness, (b) plot for 3 materials obtained at various uniform orientations of fibres in the
design domain and loads shown in (a). The materials include two variations of "Epoxy and 0.4 Vf of Flax"

composite using G1
xy and G2

xy (FFRP 1, FFRP 2), and "Epoxy and 0.4 Vf of LM Carbon" using G1
xy

(CFRP1). The graph in (b) is not to scale. it is recreated and adapted directly from Qiu et al. [21] as a
demonstration of a potential cause for misaligned fibre orientations.

In-optimization filtering is a promising solution to address the anomaly, as demonstrated in
Schmidt et al. [37]. If in-optimization filtering is not used, a strategy similar to that de-
scribed in Qiu et al. [21] can be employed to deal with the non-convexity issue in shear-weak
materials. The authors used a two-sub-interval discrete-continuous parameterization (DCP)
approach, which enabled them to achieve continuous fibres without encountering the issue of
local minima for shear-weak materials. This was done by introducing two orthogonal angles
as design variables for each element and interpolating the material properties using both values.

Nonetheless, without any fibre angle filtering scheme during optimization, feasible topolo-
gies in terms of fabrication were only achieved when considering the highly non-conservative
shear modulus properties calculated using Equation 7.1. This is, however, not representative
of the micro-mechanical model or the actual shear modulus of these UD composites being
modelled. As a result, a more accurate micro-mechanical representation for the UD composite
material properties must be used with a working implementation of fibre angle filtering to
obtain reproducible objective functions using AM.



8
Conclusions

In this thesis, we established the potential and limitations for a new framework that can con-
currently optimize the fibre orientations of multiple composites in the same structure while
producing AM manufacturable designs. This gradient-based topology optimization framework
has the potential to optimize any number of orthotropic materials with complementary prop-
erties within any regular 2D design domains despite the current MATLAB implementation
being limited to optimising two composite materials. The designs obtained post-optimization
from this framework have the potential to generate continuous fibre paths for creating G-codes
compared to previous studies in literature like that of Duan et al. [32]. Thus making it eas-
ier to 3D print these multi-material structures using the Fused Deposition Modelling technique.

A simple yet effective solution to solve the combined non-convexity from the extended design
space due to the continuous fibre angle optimization (CFAO) and the DMO multi-material
interpolation scheme was proposed in this work. The issue of variability in final results when
optimizing using random fibre orientation as an initial guess has not been addressed well in the
existing literature. However, this work established that using a density plus sensitivity filter
as a regularization scheme for density design variables could significantly reduce the variance
in topologies obtained with a random orientation field as an initial guess.

A rigorous sensitivity study of material properties suitable for this framework established
limitations concerning the CFAO implementation in this framework for highly shear-weak ma-
terials. With the current CFAO implementation, the susceptibility of such material properties
to cause the local fibre orientations to fall into local minima was deemed unavoidable. This is
unless fibre orientation regularization schemes can be implemented throughout the optimiza-
tion like done in Schmidt et al. [37], or a different formulation (DCP) for fibre orientation
optimization that accounts for the local minima issue for shear weak materials using like done
in Qiu et al. [21].

Once the study’s limitations are addressed, this framework is proposed to serve as a start-
ing point for all future 3D printing exercises for multi-material composite structures. The
eco-efficiency assessment saw a successful generation of intermediate designs with a good com-
promise between CO2 emissions and mechanical performance. As a result, such a framework is
also envisioned to be used as a tool for developing an eco-design database for various material
combinations. Such a database would enable users to make sustainable material choices for
their parts that best meet the application requirements regarding stiffness while minimizing
CO2 emissions.
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9
Recommendations and Future Work

Based on the insights and results gathered in this study, it is evident that there are implica-
tions for future research. For instance, it is recommended to include in-optimization filtering
and a more representative constitutive model for material optimization. However, since this
study did not validate the designs and stiffness obtained using MM-FATO through FDM print-
ing and testing, the primary recommendation for future work is to print the multi-material
composite structures obtained in this study.

For creating more discrete and manufacturable designs without excessive post-processing, it
was seen that the use of Heaviside projection plus thresholding post-optimization resulted in
more discrete results than without. However, the projection parameter was limited to 16,
providing insufficient discreteness without thresholding. Furthermore, HSM and thresholding
together significantly modified the occupied volume fraction of the two materials in the design
domain. This is not ideal and can impact the structure’s total mass, which can be difficult to
predict. Hence, a better projection-based discretization strategy must be integrated in future
studies which is more robust, i.e., without requiring thresholding and is volume-preserving like
proposed in the work of Sigmund [47], and Li and Khandelwal [63].

Furthermore, in this thesis, only two materials were studied, which limits the possible de-
signs that can be achieved using the developed framework. Therefore, an extension to include
more candidate materials must be implemented, and the CO2 impact results evaluated for
further changes in the design objectives. Additionally, the thin 2D structure optimized for
single loads in this work should be expanded to 3D optimization for multiple load cases. This
would demonstrate the framework’s applicability in optimizing structures for real-life load case
scenarios with multiple loads acting in three dimensions.

The current work also does not assess the stress profile of the optimized topologies or the
multi-material interfaces or joints. This limits the model’s capabilities to reduce stress con-
centrations and have a designed failure mode. Since the joints are assumed to be perfectly
bonded, or simply a uniform stress transfer across the interfaces is considered, the chances
of failure during testing at the joints due to stress concentrations are quite high. Hence, the
same must be considered for future work by using a stress-based optimization model or stress
constraints.

After reviewing the state-of-the-art, it is suggested that the optimization routine should con-
sider the multi-material interface through the use of compression-tension stress constraints
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as done by Hu et al. [64]. Additionally, it is proposed to adapt the design of multi-material
joints explicitly as functionally graded interfaces in order to improve stress transfer between
materials and prevent joint failure [65]. Subsequently, the printing of the multi-material struc-
tures is also recommended to accommodate the tested approach of mechanical interlocking
as a means for creating the functionally graded interfaces assumed during optimization [66],
[67]. As a result, when creating the G-code for continuous fibre paths of composite material,
considering individual printing heads for each of the two materials and including functionally
graded material at the interfaces is a must.

Lastly, unlike the NN-based TO approach of Chandrasekhar et al. [33] that optimized multi-
material structures with both isotropic and anisotropic materials using CFAO, this work is
limited to using all anisotropic materials. This is often not the case for real-world structures
that could benefit from a multi-material topology optimization approach. Such an optimiza-
tion approach could help obtain better stress-optimized structures through the distribution
of isotropic materials in regions with multi-axial load paths. This can reduce stress concen-
trations at such intersections as also observed in the works of Schmidt et al. [37] and Kundu
and Zhang [50]. Hence, a promising future direction to broaden the scope of this framework
and incorporate more real-world applicability includes consideration of both anisotropic and
isotropic materials in the same gradient-based framework.
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A
Impact of fibre filtering scheme on

domains with passive regions

Figure A.1 shows the effect of using two different filtering definitions on the fibre smoothening
of an L-shape beam. Figure A.1a shows the design domain and the passive region definition
for this L-shape beam. Figure A.1b shows the results obtained using the unmodified Gaussian
filter defined in the work of Stragiotti [10]. In this case, the filtered fibre angles are influenced
by the angles in the passive region. This causes fibres to not align along the load path followed
by the topology. The modifications to this filter, which were necessary to consider the effect
of passive regions, could not be generalized in this work. However, better filtering results are
obtained with a simple convolution-type filtering, as defined in Equation 4.5 in Section 4.1.3.
This can be seen in Figure A.1c, where the fibres are better aligned and without influence
from the passive regions after filtering.

Figure A.1: (a) Design domain definition for an L-shape beam with the passive region. (b) When the
Gaussian filter from [10] is used, the fibre angles along the passive region are no longer aligned along the

optimized topological features post-filtering. (c) When a simple convolution type filter from [21] is used, the
fibre angles along the passive region are still mostly aligned along the optimized topological features

post-filtering.

84



B
Implementating gradient calculation in

MM-FATO

For the template-based approach also used by Chandrasekhar et al. [33] in their work, we
assume the elemental stiffness matrix [Ke] as being divided into six components, one each for
the six unique entries of the constitutive matrix defined in Equation 4.10. This can be seen
from the expression shown in Equation B.1. Where K̂i is a constant that is calculated once
at the beginning of the optimization using expressions B.2 and B.3.

Ke = D11K̂1 +D22K̂2 +D33K̂3

+D12K̂4 +D13K̂5 +D23K̂6 (B.1)

K̂i =
∫

Ωe

BTD̂iBdΩe, i = 1, 2, . . . 6 (B.2)

D̂1 =

 1 0 0
0 0 0
0 0 0

 D̂2 =

 0 0 0
0 1 0
0 0 0

 D̂3 =

 0 0 0
0 0 0
0 0 1


D̂4 =

 0 1 0
1 0 0
0 0 0

 D̂5 =

 0 0 1
0 0 0
1 0 0

 D̂6 =

 0 0 0
0 0 1
0 1 0


(B.3)

Then, during the material interpolation calculations in the MATLAB implementation, consti-
tutive matrix elements D11, D12,D22,D13,D23 and D33 are calculated for each material and the
D1

e and D2
e in Equation 4.18 and 4.19 are treated individually as D1,k

e and D2,k
e respectively.

As a result, we have six different terms for ∂De
∂xmatj

e
. Finally, the sensitivities can be assembled

by incorporating the relation for Ke (Equation B.1) to Equation 4.16. As a result, the calcu-
lation of the derivative of the objective function with respect to the material selection design
variables xmat1

e and xmat2
e can be modified as shown in Equation B.4.

∂C
∂xmatj

e

=
∫ 6

k=1

∂Dk
e

∂xmatj
e

(
UT

e

(∫
Ωe

BTK̂iBdΩe

)
Ue

)
; j = 1, 2 (B.4)
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C
Fixed Penalty Approach for MM-FATO

In lieu of penalty continuation, to obtain feasible topology optimized topology while keeping
computation costs to a minimum, a fixed penalty approach can be used for MM-FATO frame-
work as well. Figure C.1 illustrates how different penalty values affect the obtained topology.
We observe that a fixed penalty of three and four is not enough to penalise the intermedi-
ate densities and generate more discrete designs, and a lot of interfaces are created between
the two materials. Thresholding is used to demonstrate how the topologies evolve when the
intermediate densities are pushed to 0-1 based on the threshold value, i.e., ρe ≥ 0.5 = 1, else 0.

Figure C.1: Topologies obtained for varying fixed penalty values of p = 3,4 and 5. When thresholding is
applied, such that densities ≥ 0.5 are equated to 1 and the rest to zero, p = 5 emerges as a minimum penalty

value required to attain manufacturable topologies on direct thresholding of optimized topologies.
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