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Abstract

In recent years, the rapid increase in energy demand and the threat of climate change have pushed the

energy sector towards electrification. Despite this being the first step to a more sustainable future, a new

problem arises with the growing demand: grid congestion. This project explores innovative strategies

within energy system design and operational framework to enhance operation efficiency in large urban

energy systems. A model was established that allows the optimization and analysis of the performance

of a residential energy community with energy systems supplied by renewable sources. The design

focuses on the flexibility of the system to operate with an integrated planning framework exploiting

batteries, thermal storage and shared Electric Vehicles (EVs). By investigating these technologies’ design

and operational conditions, the project seeks to optimize the system’s functioning and minimize its

impact on the electricity grid to mitigate congestion. Focusing on a new residential area in Utrecht (NL),

the study investigates the role of flexibility for new capacity connection challenges in a highly populated

urban area with a vulnerable infrastructure. This research provides useful insights that can guide the

development of more adaptable energy infrastructures capable of meeting the growing demands of

modern cities. The findings aim to inform future urban energy areas to facilitate the transition towards a

more sustainable residential landscape.
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1
Introduction

In recent years, renewable energy has become the centre of attention due to the escalation problem of

climate change. The rapid and continuous increase in energy demand, driven by technological evolution

and population growth, is straining the current energy infrastructure since more and more energy must

be provided and distributed.

The growing importance of sustainability in urban areas has become a critical focus in modern

urban planning and development. As cities continue to expand and populations increase, the need

for sustainable practices to minimize environmental impact and improve the quality of urban life is

fundamental. Renewable energy integration, efficient resource management and environmentally friendly

infrastructure have thus become top priorities on governmental agendas.

The introduction of Distributed Energy Resources (DERs) has proven to be an effective strategy for

increasing the penetration of renewables in total energy consumption. DERs, which include technologies

such as solar panels, district heating, energy storage and Electric Vehicles (EVs), allow power generation

and consumption at the consumer’s site, making the energy structure decentralized. While this brings

generation closer to the user, it also increases system complexity, making it challenging to define the

roles and responsibilities of each involved party.

However, the unpredictable nature of renewable energy sources and the fluctuating demand behaviour

require innovative solutions to ensure reliable and efficient grid operation. One of the primary challenges,

especially concerning low-voltage energy systems within urban areas, is grid congestion, particularly

during peak demand periods. Although the integration of DERs brings the generation closer to the

load, their fluctuating nature can worsen the problem as the network has to manage the variability

and intermittency of these resources. This can lead to situations where the grid is unable to efficiently

distribute electricity, resulting in increased operational costs and reduced reliability.

Additionally, expanding grid capacity and accommodating new connections in areas with limited

space and high population density brings in further significant challenges in managing congestion. The

increasing difficulty for new energy systems to find space on congested grids is becoming a pressing

issue, particularly in urban and industrial zones. This not only hinders societal development but also

presents a substantial governmental challenge, slowing the process of energy transition to meet the goals

stated in the 2015 Paris Agreement.

Concerning the issue of grid congestion, traditional energy systems present significant limitations

when confronted with the dynamic demands of modern urban environments. These systems were

originally designed for mono-directional power flow from large centralized power plants to consumers,

lacking the flexibility needed to efficiently manage the congested network.

As a result, the electricity grid is thus facing a dual problem: from one side, the integration of DERs

in decentralized energy systems to handle the fluctuating nature of generation and demand, and on

the other an outdated transmission and distribution infrastructure unable to handle this decentralized

structure.

This study aims to address the critical issue of grid congestion by exploring how the intrinsic flexibility

of DERs can be exploited to mitigate peak power demands in low-voltage urban energy systems. By

developing a comprehensive model to analyze a specific case study, this research investigates the potential

of various DERs in reducing peaks in the grid power withdrawal, to alleviate congestion and investigate

1
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new capacity connections. The findings of this study will contribute to a better understanding of how

to optimize the integration and operation of DERs in urban grids, ensuring a more stable and efficient

energy supply and assisting in the integration of new energy communities into existing grids. This

research includes important implications for grid operators and urban planners, providing insights that

can guide the development of more adaptable energy infrastructures capable of meeting the growing

demands of modern cities.

1.1. Research Questions
To provide structure and coherence to the project, the thesis aims to answer the following research question:

How can an integrated scheduling framework optimize the design of large urban neighbourhood
energy systems by utilizing the flexibility of Distributed Energy Resources (DERs) to mitigate grid
congestion?

To address the research question and meet the project’s objectives, different chapters of this mas-

ter’s thesis elaborate various sub-questions, allowing for a comprehensive examination of each aspect.

The main research question has been deconstructed into five sub-questions, allowing for a thorough

exploration of each aspect. These are:

• What is grid congestion and what are its implications?

• How can flexibility of DERs be modelled in a residential neighbourhood energy system?

• What are the different designs that can be employed for solving grid congestion in a general large urban living
space?

• How does the flexibility of the system assist in the final goal of peak power withdrawal reduction?

• To which extent can the flexibility be used to fit within power envelopes that can be agreed with a DSO?



2
Background

Concerns regarding the sustainability of present energy usage are spreading around the world. While

the impacts of various energy sources are increasingly recognized and researched, the growing energy

demand has not been matched by an equal focus on grid development, instead overlooking the essential

role of the energy grid. Recently, a revolution in the power grid sector has been driven primarily by the

urgent need to address climate change. However, this progress is jeopardized by the disparity between

the rising of energy demand and the slow grid infrastructure development.

Shifting towards renewable energy is critical for creating sustainable and resilient grid infrastructures

that can meet growing urban demands while mitigating environmental impacts. Given their lower costs

and longer lifespan, distributed renewable energy resources are becoming more and more common

in the urban sector [8]. Currently, numerous efforts are being made to address the pressing issue of

grid congestion, which the following chapter aims to explore. This literature review will introduce the

topics of grid congestion, how this affects energy communities and how these latter can be modelled and

studied.

2.1. Introduction to Grid Congestion
Facing the challenge of climate change, the whole world’s energy sector is transforming rapidly. On a

global level, scientists and policymakers are directing their efforts toward reducing carbon emissions and

minimizing environmental impact by upgrading technologies to sustainable alternatives, in particular

electrical energy. To achieve sustainability goals set by the Paris agreement in 2015, electrification emerges

as a primary strategy. By electrifying various sectors such as transportation, heating, and industrial

processes, societies aim to reduce reliance on fossil fuels and embrace cleaner energy sources [47].

However, as electricity demand continues to grow, the current transmission and distribution in-

frastructures are becoming outdated and incapable of meeting the power loads. When the technical

limitations of the grid hinder system operators in consistently delivering electricity to consumers, the

grid is defined as congested.

Chuang et al. [14] visualize this concept by comparing the grid to a funnel. In this analogy, the

outgoing flow, representing energy delivery, is limited to a much lower value than the incoming flow,

representing generation. As suppliers continuously feed the grid with electricity, similar to filling a funnel,

users can only receive a reduced portion due to the network’s limitations. As a result, if the demand

is higher than what the grid can deliver, part of the loads cannot rely on the electricity infrastructure

and therefore require an alternative source of power. Hence, the electricity grid emerges as the primary

bottleneck in the flow of energy.

2.1.1. Types of Grid Congestion
Power grid congestion can be divided into two categories. The first type is known as in-feed grid

congestion and is registered on the supply side of the grid. Due to outdated infrastructure, operational

decision framework and governmental policies, several energy generators may be forbidden from feeding

all or part of their capacity into the energy grid during certain periods.

Alternatively, grid congestion can be on the demand side of the grid, defining the so-called consumption
grid congestion. In this case, the energy requested by the connected load cannot be provided due to too

3
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Figure 2.1: Electricity capacity congestion map of the Netherlands, in-feed congestion (left) and consumption congestion (right).

Update: June 2024 [53].

high capacity or, again, due to the infrastructure of the transmission network.

This problem is particularly common in highly dense developed countries. Considering, for instance,

the case of the Netherlands, information about grid congestion is of public access by Netbeheer Nederland
(NBNL) [53], as shown in figure 2.1. The in-feed map on the left shows the grid connection availability

for new generation projects with significant connection requirements1, such as PV parks or wind farms.

In this map, coloured areas indicate locations where the grid has troubles or cannot accommodate

additional electricity supply. Conversely, the consumption map on the right displays the grid’s capacity to

accommodate large load connections1.

It is easy to notice the actual magnitude of the problem. The figures show only a few areas in the

country where capacity is available without congestion problems. This means that in all the remaining

zones, orange and red, the grid system operators cannot accommodate any energy system that desires to

establish or expand its connection.

2.1.2. The Causes of Grid Congestion
To effectively mitigate grid congestion, the first step is to understand its causes and mechanisms of

occurrence.

Renewable energy sources are currently driving the energy transition thanks to their reduced cost and

carbon footprint. However, the integration of intermittent generation, such as solar and wind, introduces

variability and unpredictability into the energy balancing system, particularly during periods of high

renewable generation and low electricity demand.

This irregularity can lead to periods where the energy supply exceeds the grid’s capacity, then

causing congestion. With the increasing popularity of DERs, renewable energy generation has become

geographically dispersed, with many small-scale projects, such as rooftop PV, connected to the distribution

network rather than the transmission network. When many small producers inject power into the grid

simultaneously, for instance during high solar penetration, midday production can surpass the local

grid’s capacity, leading to congestion and even potential outages in severe cases.

A study conducted by Shabbir et al. [73] investigated the effect of rooftop PV generation on the

low-voltage distribution grid, highlighting how exceeding capacity can overload the network and lead to

overvoltage and congestion issues. Hence, the current electricity network is not able to efficiently handle

the fluctuating nature of these renewable energy systems.

Schmietendorf et al. [71] argue the impact of variable renewable generation on grid stability and

electricity quality, proposing a mathematical procedure to generate realistic feed-in fluctuations with

temporal correlations. The study shows how the fluctuation of wind and solar power, which consists of

the largest share of renewable electricity in Germany and the Netherlands, challenges system operators

to successfully manage the electricity distribution due to excess of generation [36, 37].

1Connection larger than 3x80 A.
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Moreover, grid congestion can be influenced significantly by market dynamics. In markets where

electricity prices are set based on real-time supply and demand conditions, congestion can occur when

there is limited transmission capacity to deliver electricity from areas of surplus generation to areas of

high demand. This mismatch can lead to price disparities between regions and inefficient utilization of

generation resources.

As stated in Verzĳlbergh et al. [81], the variability of renewable energy generation makes the

correlation between the electricity market and electricity prices less strong since renewable energy

production does not follow the demand profile. The study argues a mutual correspondence between

grid congestion and energy markets: as imbalance occurs, the energy market responds amplifying the

congestion problem and vice versa. As a result, in periods with high supply and low demand, the

electricity price drops in order to redistribute the energy in excess.

This regional issue is then amplified within countries. Due to market transparency regulations, not

all information is equally available to the system operators in the various EU countries. Rausch et al.

[64] conduct an overview of the available data about transmission grid congestion and how this affects

feed-in management mechanisms, marking the importance of data quality and availability for an efficient

analysis of the market response to electricity imbalance.

Besides the economic mechanisms acting on the energy markets, grid congestion is related to the

physical limitation of the transmission technology. The electricity grid was primarily designed to support

centralized power generation from large power plants. Shifting this to a decentralized structure, the

current network infrastructure is incapable of handling the bi-directional and variable flow of energy. As

a result, the grid system operators struggle to efficiently distribute electricity to the user and congestion

is experienced.

Moreover, inadequate grid planning and geographic constraints can further lead to congestion,

especially in densely populated regions undergoing rapid population growth or significant renewable

energy deployment. Therefore, as supply and demand grow, the transmission grid must improve. Hoicka

et al. [33] give a broad overview of the electricity grid structure as it is and is expected to change, both in

technical and socio-political terms. The research highlights the importance of constant improvement in

the electricity infrastructure to keep up with the times and analyzes the foreseen impact on society that

this grid transformation will have.

Finally, a common cause of grid congestion is related to new Distributed Energy Resources (DERs)

that are becoming more and more popular at the consumer site. Besides the aforementioned distributed

generation, the integration of storage facilities, district heating systems and electric vehicles introduces

additional loads to the total electricity demand, pushing the distribution network closer to the designed

limits. These loads are characterized by high flexibility that can be exploited to module the final profile

and thus flatten the electricity demand curve.

However, a thorough scheduling framework must be implemented in order to efficiently exploit their

potential. If, for instance, a large number of consumers simultaneously shift their electricity consumption

to off-peak hours or respond to real-time pricing signals, the total distribution grid demand profile may

experience concentrated spikes and easily lead to localized grid congestion [85]. Hussain et al. [35] argue

the effect of large EV fleets on the distribution grid, highlighting how incorrect scheduling framework may

lead to line overload and consequently congestion. The study reviews different management strategies

implemented to minimize the impacts of the integration of EVs, highlighting the need for accurate EV

affluence forecasting in decentralized coordination.

2.1.3. Occurrence of Grid Congestion
The second challenge for efficiently designing congestion management mechanisms is to accurately

predict when and for how long the grid will be congested.

The occurrence of grid congestion can be attributed to a combination of different factors from the

electricity demand profile and the integration of intermittent renewable generation to limitations in grid

infrastructure and market dynamics. These factors interact with each other in complex ways, influencing

the probability and magnitude of congestion in different areas and contexts.

At the distribution grid level, grid congestion typically occurs during peaks in the electricity demand.

Depending on different factors, such as geographical location and type of loads, the occurrence of these

peaks can be more or less frequent, of different magnitudes and more or less difficult to manage.

In residential areas, for instance, the demand profile commonly follows the so-called duck curve,
registering a first hump in the morning and a larger one in the evening [63]. The first peak is usually
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registered around 08:00, when citizen turn on their appliances and the industries start to open, on

average until noon, while the evening one usually occurs between 18:00 - 22:00, coinciding with residents

returning home [56, 16]. Conversely, industrial areas’ demand is usually low during the night and high

and constant during the day shift. Hence, the prediction of such profiles becomes crucial for efficiently

mitigating congestion.

In their research, Gürses et al. [29] argue that this issue typically repeats with daily patterns, making it

possible to identify a sort of algorithm able to predict an approximated time range in which management

mechanisms will be required. The study offers a machine learning-based model for probabilistic

demand forecasting to assist Distributor System Operators (DSOs) to perform a more accurate congestion

management.

It is important to mention that these time ranges are not universal and each country, as well as each

different area, may experience different demand curves. This area is still open to research and DSOs are

experimenting with different methods to better define the concept of peak hour [77].

Alternatively, grid congestion can be caused due to large renewable generation at the consumer site.

During periods of high production, such as summer days for PV or winter for wind farms, the power

supply can easily exceed the grid capacity limits causing in-feed congestion.

To avoid this, advanced forecast methods can be developed and integrated into the system operators’

operational algorithms. In their study, Srivastava et al. [76] propose a thorough PV production forecast

based on sky images to foresee the overproduction of solar energy and consequently allow re-scheduling

of local DERs to avoid curtailment and losses, showing how this can potentially assist a better electricity

network functioning.

As mentioned in the previous section, grid congestion can be related to the energy markets. Indeed,

the fluctuation in price can influence both generation and consumption patterns.

For example, demand response programs, designed to shift electricity usage away from peak times,

can also contribute to congestion if not properly managed. These programs rely on price signals to

incentivize consumers to adjust their usage. However, if a large number of consumers respond to the

same price signal simultaneously, this can create new peaks in demand at different times, potentially

leading to congestion in other parts of the grid.

Attar et al. [7] argue how dislocated generation can exercise strong market power during periods of

congestion, discussing how market-based congestion management mechanisms can be effective at the

local level.

2.1.4. Implications of Grid Congestion
Besides understanding the nature of grid congestion, it is important to highlight why its mitigation is

crucial. Indeed, the implication of network unavailability poses significant challenges across various

sectors, including economic, environmental, technological, and social aspects.

Grid congestion has significant economic repercussions that affect both utilities and consumers. One

of the primary economic impacts is the increased cost of electricity. Considering different energy price

areas, between countries for instance, during peak congestion periods prices can spike dramatically,

leading to economic uncertainty for businesses and consumers as well as a drastic rise in the final energy

bills. Conversely, from a generation power plant point of view, the reduced transportation capacity may

lead to curtailment or negative price, resulting in losses for the supply firm.

Schermeyer et al. [70] investigate the effect of grid congestion on wind curtailment in Germany, which

has proven a steep growth in the past decade, pointing out the actuality of the problem. This suggests

that better management of the grid would avoid losses due to exceeded generation and consequently

their final income.

As previously mentioned, the current electricity grid infrastructure does not match the variable nature

of renewable energy generation plants. As a result, the integration of these becomes challenging, leading

to a smaller renewable penetration in the energy mix and therefore a generally higher carbon footprint.

Such problem concerns first the small-scale distributed generation but also affects large wind and solar

farms, hindering their connection to the electricity system. This problem is deeply analyzed by McAllister

et al. [49]. The study provides a broad overview of the procedure for obtaining new connections for large

solar parks in the European case, highlighting how the congested nature of the grid drastically slows

down the energy transition challenge. In addition, due to curtailment or power readjustments, renewable
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generation projects may encounter technological issues that compromise the efficiency of operation.

Millstein et al. [50] researched the impact of network congestion on wind and PV farm operations. The

study shows that besides the energy loss due to the incapability of grid feeding, the functioning of the

generators can be highly compromised depending on the region depending congestion occurs more or

less often.

In addition to the implication of grid congestion on existing connected loads and generation, another

significant issue concerns the new capacity connection. Referring again to figure 2.1, the consumption map
on the right-hand side shows that a large part of the territory of the Netherlands is currently unable to

welcome new large capacity connections. This means that new energy systems asking for connections

and connected parties willing to expand find themselves in an extremely long "waiting queue" with the

DSO [54]. As a result, the societal impact is significant for the general society development. Considering,

for instance, the lack of living spaces the Dutch case is currently facing, grid congestion indirectly affects

the rental pricing and the whole residential market. Such implication, as argued later in the report, is the

direct effect of the case study analyzed in this research, currently in the queue for reaching an agreement

for a new connection to the distribution grid.

2.1.5. Power Grid Congestion in Low-voltage Grids

As observed, among the different actors penalized, low-voltage energy grids are often the first to suffer

from grid congestion. This type of electricity grid is usually found in urban residential neighbourhoods

or industrial areas. It is characterized by single or multiple connections to other distribution grids or

directly to the transmission networks through medium voltage transformers, making the grid operate

at a range of 230/400 V [83]. These grids typically consider radial distribution and are susceptible to

localized congestion due to high demand density and variable power flow.

The latter can indeed be seen as a degree of freedom of the DSO for congestion management on the

demand side. Depending on the load nature, whether residential or industrial, the system operator may

invite the low-voltage grid to shift or avoid part of the demand, depending on its flexibility and the

agreement with the regulator. Such an approach is better known as Demand-Side Management (DSM),

which is proven to be significantly effective for local congestion management (CM) [74].

Furthermore, feed-in grid congestion can also be experienced in low-voltage networks. Consider, for

instance, a system with high production of solar energy. During periods of high renewable penetration,

curtailment may also be required on the user side, for, again, both technical and non-technical constraints

[73]. This is often experienced in industrial areas, where the rated PV capacity designed is higher than

the agreed capacity of the transformer.

As a result, low-voltage energy grids are the first to experience the implications related to grid

congestion from the demand side.

In their research, van Westering et al. [83] discuss the implication of grid congestion in low-voltage

electricity grids, exploring how these can be overcome with the integration of battery storage systems.

Their study provides theoretical insights and experimental validation, using a receding horizon charge

path optimizer to manage voltage and overload issues effectively.

2.1.6. Mitigating Grid Congestion in Low-Voltage Energy Systems
Despite the large variety of reasons and different kinds of nature for which grid congestion occurs, TSOs

and DSOs are constantly experimenting and researching mechanisms to efficiently address the problem

and relieve the electricity grid from these bottlenecks [27].

While engineers explore new technologies to reinforce the grid infrastructure, economists and

policymakers focus on designing and testing frameworks to prevent and manage power congestion

problems.

In their research, Hennig et al. [32] offer a broad overview of the most used mechanisms to mitigate

grid congestion. The study divides the CM methods into categories based on the load-controlling

party, meaning who has the responsibility to control and apply the framework, and the DSO position of

network access, meaning whether the control is included in the initial connection "offer" or the DSO has

to "buy-back" the capacity needed to resolve congestion. Following these two characteristics, the CM

methods can be classified in:
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• Network access prices, including all the mechanisms for which the DSO applies the CM based on

charges for network access. It can be further divided depending on the time frame considered,

identifying the sub-groups of static tariffs and dynamic tariffs;

• Local Flexibility Markets (LFMs). This category includes all CM methods controlled by the end

users and based on the DSO’s buy-back of network access;

• Direct Load Control (DLC) schemes, for which the DSO can directly control the non-critical loads

or maximum connection capacity allowed during peak hours.

The classification procedure can be visualized below in figure 2.2. Following the flowchart, the natural

differences of the various CM methods can be analyzed. For example, if the DSO is in control of the

operation of non-critical electrical loads, during peak hours, it can decide to reduce overall demand on

the grid and thus avoid congestion. Such a mechanism falls into the DLC category. Conversely, when

considering Demand-Side Management (DSM) methods, such as the critical peak pricing program, the

DSO sends an advance notice a few hours before the price spike occurs and the end-user is responsible

for adjusting its demand profile accordingly. In this case, the CM method falls is a dynamic network

access price mechanism.

Figure 2.2: Flowchart for classification of Congestion Management (CM) methods, based on [32].

The implementation of Congestion Management (CM) mechanisms is proven to successfully assist the

grid operators in providing electricity to the final user. However, identifying the most suitable method

to apply in each case depends on several factors. The local grid characteristics, such as line capacity or

voltage level, strictly constrain the size of available power. On the other side, different demand profiles,

which vary, for instance, from a residential to an industrial area, are expected to affect the peak hours

occurrence. Hence, it becomes challenging to predict which mechanism is more effective and which

other could penalize the involved parties.

When considering CM frameworks for mitigating grid congestion at the distribution level, it is

common to involve the Distributed Energy Resources (DERs) installed at the local user site. For this

purpose, Demand-Side Management (DSM) approach is very effective.

In their work, Paulus et al. [59] conducted a comparison between DSM and other mechanisms for

daily dispatch of generation, focusing on the uprising integration of variable renewable energy from

the supply side. The study investigates the impact of DSM on the German electricity grid showing the

potential of such a method on a large scale.

The integration of demand-side mechanisms often needs to be assisted by local management actors,

able to correctly forecast the demand and adjust the scheduling according to the congestion timing as

communicated by the DSO. Considering the load side, Siano et al. [74] argue the effects of demand

response frameworks at the small-medium grid scale. They point out how DSM requires the integration

of smart devices, such as smart meters, communication technologies and monitoring systems, for the

correct functioning of the energy system. It is thus proven that the implementation of CM mechanisms

on the user side asks for an efficient DER management system to efficiently mitigate grid congestion.
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2.1.7. New Connection Capacity Mechanisms in the Dutch Context
As mentioned earlier, besides the implication of congestion on the existing connected parties, the issue of

new connection capacity has emerged as a top priority.

For the case of the Netherlands, the current situation considers a single type of agreement between the

Distributor System Operator (DSO) and the party requesting connection: the so-called Firm - Connection

and Transmission Agreement (CTA), aansluit- en transportovereenkomst (ATO) in Dutch [42]. With this

contract, the connected party has the right to use the transmission capacity agreed with the system

operator, which is estimated based on the maximum peak load and the expected load profile [42]. Thus,

it figuratively owns a part of the electricity grid. When the sum of all agreed CTAs in a certain grid

section matches the maximum load capacity of the area, the grid is defined as "full" and no more CTAs,

and consequently new connections, can be signed.

However, as previously discussed, grid congestion does not occur continuously, and cases where all

connected parties simultaneously require their designated peak power are rare. This indicates that the

electricity grid is not being utilized optimally.

In order to overcome these problems and enable more CTAs, the Dutch Authority for Consumers and

Markets (ACM) recently announced the design of new types of connection contracts that will make the

electricity grid capable of accepting more parties and efficiently distributing the capacity during off-peak

hours.

In their article, Klapwĳk and van Bergeĳk [42] summarize the current situation regarding the Dutch

electricity grid future plans.

The first move towards a less congested grid was mentioned in the National Grid Congestion Action

Program, Landelĳk Actieprogramma Netcongestie (LAN) in Dutch, published on the 20th of December 2022.

With this program, the involved parties disclosed the intended actions of the Dutch electrification sector

for grid congestion mitigation and better use of the electricity grid. This was then confirmed by the

National Energy grid Plan (NPE) on the 1st of December 2023, which showed how the future energy

grid should look like. A few months later, on the 13th of March 2024, the Authority for Consumers

and Markets (ACM) published the Draft Decision ATR, following the proposal drafted by all the grid

operators united in Netbeheer Nederland (NBNL). This aimed to introduce three new flexible contract and

transmission agreements: Alternative Transmission Rights (ATR), Non-Firm ATO (NFA) and Group CTA,

or Groep ATO (G-ATO) in Dutch.

In ATR, the availability of transmission capacity to the connected party is not continuously guaranteed.

This means that during certain time periods, electricity power withdrawal (or grid in-feeding in the

case of prosumers) may not be available to the customer. In exchange, a discount is applied to the

transmission capacity consumption tariff. According to the draft, two types of ATRs are designed:

Time-based Transmission Rights (TTRs) and Time-Block-based Transmission Rights (TBTRs). Their

characteristics are summarized in table 2.1 below.
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Category Standard
CTA

Time-based
Transmission right
(TTR)

Time-Block-based
Transmission Right
(TBTR)

Non-Firm ATO
(NFA)

Groep ATO
(G-ATO)

Transmission

Guarantee

All time. 85% of the time (7446

h/yr).

During defined time

blocks.

During off-peak

hours.

All time.

Scheduling - Defined one day

ahead.

Time blocks are agreed

with the DSO when

signing the contract.

They must be during

off-peak hours.

Defined one day

ahead.

-

Pricing No

discounts.

Discount on the

transmission-

dependent

consumption.

Discount on the

transmission-

dependent

consumption.

Discount to zero. Discounts may be

available based

on group

negotiations.

Availability HV and LV

grids.

Only available on the

national HV grid

both in congested and

non-congested areas.

Time blocks may vary

depending on the area,

both on HV and MV

grids.

Available based

on connected

party-specific

conditions.

Available based

on group-specific

conditions.

Date Active. Estimated effective

date 1st of April 2026.

Estimated effective date

1st of April 2025.

Estimated

effective date 31st

of December 2024.

Active.

Table 2.1: Comparison of the different transmission agreements, based on [42, 54].

Non-Firm ATO (NFA) is defined as a fully variable transmission right, specifically designed for

customers with flexible transmission needs. This means that the connected party is only entitled to

transmission capacity during off-peak hours, while during peak hours the right of transmission is null.

The advantage of such a mechanism is that the tariff per 𝑘𝑊 contracted is zero. This means the connected

parties with an NFA do not pay for a reserved transport capacity, reflecting their non-guaranteed access

status [15].

In case of multiple neighbouring parties asking for connection, the Dutch system operators can

suggest a group CTA (G-ATO). By forming a group and making contractual agreements with the grid

operator, individual transmission rights are abolished. This allows individuals to use more transport

capacity than their original CTA, as long as the group remains within the contracted limit. The G-ATO

offers more certainty for the grid operator by optimizing grid capacity through coordinated group

behaviour. This concept can be visualized in figure 2.3 below.

Figure 2.3: Example of implementation of the Groep ATO agreement, based on [54].

In addition, the Dutch grid connection field provides two other possible ideas on top of the CTAs:
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Capacity Reduction Contract, capaciteitsbeperkingscontract (CBC) in Dutch, and UIOLI, which stands for

"Use It On time or Lose It".

CBC is an additional contract on top of the normal CTA that provides a payment to the connected

party in case of reduction during the peak hours activated at least one day ahead. The time window for

reduction can be either agreed the day before or predefined, depending whether the CBC includes or

not the "call-off" (afroep) option. This contract is designed as an incentive for consumers to reduce their

consumption during periods of high demand. The terms of the agreement, including the compensation

rates and the specific conditions under which capacity reductions will occur, are defined in the contract

between the connected party and the grid operator. CBC can be an attractive option depending on the

party’s activity of connection, when and how often the restriction is applied as well as how much time is

between two activations.

Differently, the UIOLI is an approach for avoiding unused connections. It aims to redistribute unused

but already contracted, hence "reserved", capacities to other potential customers, following the approach

of first come first served. This concept ensures that transmission capacity that has been reserved but is

not being utilized is made available to other users who may need it.

Despite the choice of the connection contract in a liberal market being free, the implementation of

ATR or NFA cannot be always defined as "voluntary" since the other option may be not obtaining a

connection at all. Moreover, the implementation of UIOLI mechanisms implies that parties that do not

use their full capacity risk losing it completely. Hence, political debate is still open regarding how to

limit the authority of system operators and preserve the connected parties’ rights.

It is important to mention that the different new connection agreements discussed, meaning CTA,

TTR, TBTR and NFA, differ from congestion management mechanisms. While the first are measures

applied with the primary goal of accommodating new parties, CM mechanisms are specifically designed

to actively manage and mitigate congestion on the grid in real time [42]. Hence, applying congestion

management does not directly empty the saturated grid. As a result, the two tools can co-exist and

operate in a complementary manner.

2.2. Energy Communities and Energy Hubs
As the energy field keeps changing, the general view of an energy system is experiencing a radical

revolution. The old centralized energy scheme as a mono-directional flow of energy from the power

plants to the consumers has become outdated and unpractical for the nowadays society, often leading to

congestion issues. As part of this change, the end consumers, once passive, are now encouraged to play

an active role by reducing their consumption, or by locally generating or storing energy. Therefore, a side

of producer and consumer, this concept defines the role of the prosumer. A prosumer is defined as a

consumer of energy vectors that also produces its own energy making it capable of covering at least a

fraction of its energy demand [8]. Consequently, the involvement of a new actor forces the energy system

to be reconfigured in a way in which both power and value streams can operate bi-directionally [26].

These new systems are commonly referred to as energy hubs or energy communities. Although these are

usually considered synonyms, they refer to two very different concepts.

The energy hub concept was presented for the first time in the "Vision Of Future Energy Networks

(VOFEN)” project, conducted by ETH Zurich in 2005 [22]. The project defined an energy hub as the

integration in a single unit of energy conversion and storage carriers [51].

In their research, Mohammadi et al. [51] provide an extensive literature review on the topic identifying

inputs, converters, storage systems and outputs as main components of an energy hub.

With inputs, we refer to the various energy carriers the system receives, for instance, solar and

wind power, biomass, hydrogen and geothermal heat. The incoming energy carriers are then converted

into different types of energy, such as electrical or heat. This category includes all the technologies

used for transforming energy, such as heat exchangers, fuel cells and electronic converters. The crucial

characteristic of energy hubs concerns the storage systems. This includes batteries, thermal storage,

compressed air and hydrogen. Finally, outputs are the various forms of energy delivered to consumers to

meet their demands, such as electricity, heat, cooling, water, and other energy products like compressed

air and hydrogen.

Energy hubs mainly focus on the technical interaction of different DERs within a defined energy

system. When designing these, the main objective is to achieve optimal design and enhance efficiency of

operation.
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Energy Communities (ECs) follow a different definition. According to the European Directive

2018/2001, a Renewable Energy Community is a legal entity based on open and voluntary participation.

It is autonomous and effectively controlled by shareholders (located in the proximity of the renewable

energy projects), operating based on the applicable national law [20].

According to Barabino et al. [8], energy communities can be classified depending on the energy uses,

such as electricity or heating, the type of users, for instance residential, public, industrial, commercial,

and the business model implemented. Focusing on the latter, the study highlights six main classes:

• Prosumers. The EC is exclusively formed by prosumers who produce and consume (part of) their

electricity selling and buying the extra needs from the electricity grid;

• Collective generation. EC based on a share generation system, usually PV, and (eventually) a

storage system. In this case, the members remain passive consumers except when generation

exceeds the demand;

• Aggregator. Producers, prosumers and consumers are grouped by an entity referred to as an

aggregator. This is responsible to manage the energy and value streams within the community and

to communicate with the external parties;

• Third party sponsored. The EC is created by the support of external entities, such as public

governmental actors or energy service companies. This business model typically sees the third

party maintaining the ownership while the users stay passive members;

• Local energy markets. The members of the EC share the self-generated energy through a local

market;

• Cooperatives. The EC members are shareholders and hold the governance over the community

system. The revenues and expenses are shared among the members depending on their level of

involvement.

As a result, unlike energy hubs, which consider the energy system solely in a technical manner,

energy communities integrate the socio-economic aspects of the system. The objective is to provide a

functioning system with responsibilities clearly defined among the shareholders.

Therefore, an energy system can potentially combine features of both an energy hub and an energy

community, addressing both technical efficiency and socio-economic integration perspectives.

The key characteristics and differences between the two concepts are summarized below in table 2.2.

Aspect Energy Hubs Energy Communities

Definition

Centralized system integrating various

energy sources and carriers for optimal

production, conversion, storage, and

distribution of energy.

Group of individuals or organizations

producing, distributing, and consum-

ing energy collectively.

Focus Technical optimization and efficiency.

Social, economic, and environmental

benefits for community members.

Objectives Improve energy efficiency, enhance flexi-

bility and reduce environmental impact.

Empower local communities, increase

renewable energy use, enhance energy

security and provide economic benefits.

Ownership and
Participation

(Typically) managed by utilities or spe-

cialized companies.

Owned and managed by community

members (in most of the cases).

Table 2.2: Comparison of Energy Hubs and Energy Communities, based on [8, 45].

Therefore, there exists a substantial difference between energy communities and energy hubs. For the

scope of this research, it is important to highlight the role of the energy system type, whether energy hub

or community, when discussing grid congestion.

In the context of optimizing large urban neighbourhood energy systems, the concepts of energy hubs

and energy communities play a crucial role. Energy hubs, with their integration of various energy sources

and carriers, provide the technical optimization and efficiency necessary for an effective scheduling

framework. This aligns well with the aim of utilizing Distributed Energy Resources (DERs) to mitigate

grid congestion and optimize the energy system’s functioning. On the other hand, energy communities
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emphasize the socio-economic aspects and explores the role of each involved party. This concept aligns

well with the research on CM methods and new capacity connection contracts mentioned in the previous

section.

As a result, this research aims to consider part of both energy community and energy hub concepts to

efficiently describe the whole energy system characteristics.

2.3. Energy system modelling
To effectively investigate how to exploit the flexibility of Distributed Energy Resources (DERs) for

managing grid congestion, it is crucial to employ robust modelling methods. Accurate models facilitate

simulations and optimizations across various scenarios, allowing the identification of effective strategies

to reduce grid dependency and manage peak demand depending on its timing and magnitude.

Energy system modelling, as defined by Keirstead et al. [40], consists of a formalized representation

of an energy system with internally consistent rules, which are integrated through computational tools

designed to simulate real system behaviour under different scenarios and objectives.

Different types of modelling techniques can be employed to describe the complexities and dynamics of

energy generation, distribution, and consumption. Based on this, energy system models can be grouped

into two main categories: simulations and optimization.

A simulation model can be defined as the representation of a system used to reproduce and predict

its behaviour under specific set conditions [84]. The goal is to analyze the system’s functioning and show

its behaviour when subjected to the same circumstances that could experience in reality.

In contrast, optimization seeks the optimal performance under certain conditions using a set of

decision variables, typically design characteristics of the energy system [44]. The objective is to determine

how the system can adjust its variables within given limits to achieve a specified goal, such as minimizing

costs or maximizing efficiency.

For the scope of the research, it is important to highlight the main differences between the two

modelling types. Lund et al. [44] and Tozzi et al [78] provide a comparison review between simulation

and optimization models highlighting the main differences as:

• Final solution: while optimizations seek a unique optimal solution, simulations are not expected

to converge to a single outcome;

• Economic involvement: Simulation modelling does not imply the monetisation of all consequences.

The implicit assumption is that decisions can be made rationally without common denominators;

• Scope of the research: optimization modelling aims to find an optimal design and operation of

the energy system while simulation modelling is a better fit for backcasting and forecasting for

political decision-makers and the need for major changes.

Another key difference is the practical modelling approach. Simulations often use Monte Carlo and

agent-based methods.

Monte Carlo simulation consists of probabilistic modelling where variables are assigned random

values based on their probability distributions, allowing analysts to assess a range of possible outcomes

and their probabilities. The final solution is found after a large number of iterations that converge to the

final value, requiring thus high computational cost.

Agent-based simulation, on the other hand, represents the behaviour of individual agents within a

system, each bounded by its own set of rules and interactions. This approach is particularly useful for

modelling decentralized systems or scenarios where individual decision-making affects system dynamics.

Monte Carlo simulations are largely used in the energy system simulation field. Focusing on

describing an energy system in Popova Island, Uwineza et al. [80] conduct a deep techno-economic

analysis, providing a valuable reference for stakeholders showing the potential of renewable energy

integration in reducing costs.

In another research, Akhatova et al. [4] discusses decarbonization in terms of policies, technologies,

processes, and the different stakeholder roles for a general urban energy system following an agent-based

simulation approach. The research highly emphasises the need for thorough specification of the agents’

characteristics for the correct functioning of the model.

Mathematically, similar approaches may be applied for optimization models as for simulation models,

though with the integration of decision parameters [44]. Vilen et al. [82] provide an overview of the most
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used tools for district-level optimization modelling, discussing the effectiveness of different optimization

approaches on district heating systems.

Depending on the level of detail and the goal of the research, energy system optimization can

address one or multiple objectives. Generally, the complexity and multi-dimensionality of district-level

energy systems often lead the model to have a set of optimal solutions. Hence, additional constraints

and boundaries must be included in order to get a single and unique optimal output. As a result,

multi-objective optimization is usually preferred in the field of energy system modelling. In their work,

Chen et al. [13] review the effectiveness of multi-objective optimization for long-term energy system

modelling, highlighting how this can effectively include economic, environmental and societal factors in

the mathematical problem statement.

However, representing these factors mathematically can be challenging. To address this, depending

on the case, different approaches can be employed. These can be divided into prior, posterior and

interactive models depending on when in the process the optimal is sought [13].

In prior methods, the decision maker prioritizes the objective functions and then converts multiple

objectives into a single objective. This can be done using the weighted-sum method, where each objective

is multiplied by a coefficient 𝑤𝑖 representing its priority weight, as represented in equation 2.1.

𝑂.𝐹. min

𝑁∑
𝑖=1

𝑤𝑖 · 𝑓𝑖(𝑥) (2.1)

Another approach is the 𝜀-constrained method, which highlights one main objective function while

treating the others as secondary constraints, as expressed in equation 2.3 below.

𝑂.𝐹. min 𝑓𝑚(𝑥)
𝑠.𝑡. 𝑓𝑖(𝑥) ≤ 𝜀𝑖 ∀𝑖 = 1, 2, ..., 𝑛 and 𝑖 ≠ 𝑚 (2.2)

𝑥 ∈ 𝐷

Alternatively, the Analytic Hierarchy Process (AHP) method can be implemented. This divides the target

objectives through a hierarchical tree based on their relative importance, proceeding then to solve each of

them accordingly.

The first two methods are characterized by relatively easy implementation, only requiring thorough

initialization of coefficients. In contrast, the AHP approach provides more accurate solutions in exchange

for a more intricate definition of each objective and its importance.

Prior methods are undoubtedly the most popular approach for energy system optimization thanks to

their low computational cost and sufficient precision [13, 82]. Their implementation is indeed efficient

for general modelling projects. In the research conducted by Alabi et al. [5], an emission-free multi-

energy system modelling investigates the potentiality of storage combined with comprehensive demand

response through the weighted sum method. When including multiple factors of different natures, the

𝜀-constrained method results efficient, as highlighted in Javadi et al. [39]. The research analyzes the

functioning of a home management energy system in a multi-objective optimization considering energy

price and user discomfort applied to a modern house case study. Zong et al. [87] proposed and applied

an AHP-improved entropy weight method to assign weights to the targets for performing multi-objective

optimization of a multi-energy flow coupling system.

When more accurate results are required, meaning deeper analysis of the optimal solutions and their

nature, posterior methods are typically employed. These approaches select the optimal solution from a

Pareto set that has been previously calculated. This method allows the system to identify all feasible

solutions and then narrow them down to the optimal one(s).

The solutions can be found through mathematical programming methods, typically Normal Boundary

Intersection (NBI), which resolve the problem generating uniformly distributed points on the Pareto

surface without being affected by the scale of the objective function [3]. Despite the high computational

cost, it often results in optimal choice for non-convex and high dimensional multi-objective problems.

Alternatively, Multi-Objective Evolutionary Algorithms (MOEAs) allow thorough research of the

optimal solution by implementing iterative algorithms capable of detecting solutions on non-convex

surfaces. A popular algorithm in this category is the NSGA-II [13]. Although MOEAs produce highly

accurate outcomes, their computational cost and complexity require deep knowledge of the problem,

making them less applicable to large energy systems.
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The implementation of posterior modelling approaches allows the modelling of non-linear problems

with highly complex physics. Unlike prior models, which often rely on fixed assumptions, posterior

modeling refines these assumptions based on findings and adapts parameters iteratively. This is shown,

for instance, in Secchi et al. [72]. The study implements the NSGA-II iterative algorithm to perform a

bi-objective optimization for maximising the self-sufficiency of an Energy Community (EC) from the

distribution grid while minimising the BESS capacity, showing how the MOEA approach allows a deep

sensitivity analysis for the EC’s energy system optimal design.

Finally, interactive methods allow the selection of optimal solutions during the optimization process itself.

These methods involve decision-makers, who interact with the optimization algorithm providing feedback

and adjusting settings as the optimization continues. This iterative process allows the decision-maker

to explore trade-offs between different objectives while the system is still solving, to then ultimately

converge to a solution that best meets their initial goals. However, due to their complexity, these are

hardly used in the field of energy modelling [13].

When focusing on low-voltage energy systems, modelling can be further divided into two categories:

district-level models, where a large group of DERs are interconnected to operate in an efficient manner,

and building-level system models, which focus on a smaller system scale but with higher precision and

accuracy of results [78]. The choice between these models depends on the scope of the research, with one

being preferred over the other based on specific research objectives.

A broad overview of the different tools for district-level simulations is argued in Allegrini et al. [6],

while Crawley et al. [17] highlight the most used for district-level and building-level energy system

optimization, discussing more than 230 modelling approach in their research.

Recalling the problem statement introduced in chapter 1, this research aims to investigate how the

flexibility of several DERs in an energy system can be exploited to achieve efficiency of design and

operation, given the goal of congestion mitigation. As a result, the modelling method used in this thesis

will follow an optimization approach at the district level.

In addition, further considerations regarding the uncertainty issue must be discussed before pro-

ceeding with the modelling part. As discussed in Feng et al. [23], uncertainties can be related to the

model parameters or to the model structure itself. For model parameters, this can include, for instance,

demand forecasting, renewable energy generation, electricity prices, weather forecast or unscheduled

maintenance. On the other hand, uncertainty can be related to the structure of the model, meaning the

incorrect definition of the objective or of the decision variables.

The impact of uncertainties on the final model results mainly concerns the reliability of the solution

found. This can dangerously affect decision-making, policy and strategy formulation as well as risk

assessment of the optimal found. As a result, it is crucial to address this problem to enhance the

correctness of results. Feng et al. [23] provide an overview of different methods used to mitigate

uncertainties, identifying three main categories of modelling: deterministic, stochastic and hybrid.

Deterministic modelling assumes the input data as fixed providing exact solutions based on the

specification given. Conversely, in stochastic models, part of the input data is characterized by a random

behaviour related to certain probability functions. Hence, these aim to address uncertainties through the

variability of the given data, resulting thus in a range of possible outcomes. Deterministic approaches,

on the other hand, assess uncertainties through the specified data and deliver a single solution for each

input given. Moreover, when the system in analysis is characterized by high uncertainty factors, such

as energy markets or high renewable fluctuation, stochastic modelling results in optimal for a correct

description of the system. In contrast, deterministic approaches are preferred when data is well-defined

and the system is characterized by reduced uncertainty, making the model sufficiently simple to be

implemented. As a result, deterministic methods are typically simpler to implement, while stochastic

analyses are generally more computationally expensive. As the name suggests, hybrid models consider a

combination of the stochastic and deterministic approaches.

In their work, Hu and Ryan [34] compare a two-stage stochastic programming and a deterministic

model with forecast-based wind reserves for short-term planning of a combined natural gas and power

system with uncertain wind energy. While the combined gas power plant is efficiently described by

the deterministic approach, the highly fluctuating behaviour of the wind farm makes the stochastic

programming more attractive despite its complexity. Hence, the research shows the advantages and

disadvantages of both approaches, concluding that the best method depends on many characteristics of

the problem in analysis.
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To address uncertainties, a common approach used in the literature associated with forecasting is

scenario analysis. Each scenario represents a storyline about how the system would perform in the

future along with a set of exogenous assumptions considered [18]. Scenario analysis allows researchers

and policymakers to explore a variety of possible options by considering different combinations of key

variables and assumptions, such as economic growth rates, technological advancements, policy changes,

and market dynamics. The most critical step in this analysis consists of the identification of scenarios,

which must be feasible and match the specification of the case study. Once this is defined, the model is

run for each case to simulate the system response and eventually optimize the functioning or design.

Scenario analysis improves the robustness of the research enabling a secondary analysis of parameters

that cannot be included in the mathematical model. However, as mentioned by Morgan and Keith [52],

scenarios with detailed storylines can contribute to cognitive biases by appearing more probable than

they are in reality. To overcome this, further analysis can be performed through iterative processes that

provide a broader view of the optimal solution found. In their research, DeCarolis et al. [18] aim to show

how an iterative approach computed through the technique of Modelling to Generate Alternatives (MGA)

can lead to insights that may not be achieved with normal optimization. Such a tool represents a useful

way to explore the decision landscape given the complexity and uncertainties associated with energy

systems. MGA can be seen as an extensive sensitivity analysis. While sensitivity analysis is performed on

a single decision variable to prove the robustness of a single solution, MGA explores multiple alternatives

to provide decision-makers with a variety of options that are significantly different from each other but

still meet the problem’s constraints [18]. An example of modelling to generate alternatives approach

is observed in Pedersen et al. [60], where the framework is applied to study a range of technical and

socioeconomic metrics on a model of the European electricity system. From the optimal solution found,

the research reveals that large variations are observed for the near-optimal solutions for small variations

in total system cost.

However, the existing modelling methods present limitations that may reduce the accuracy and

reliability of energy system modelling. Technical limitations include computational constraints, meaning

the time and density of the model in representing the real system, and model scalability, referring to the

size and type of information the model can handle. Moreover, methodological limitations are typically

an issue. These concerns, for instance, the oversimplification of complex physics and lack of real-world

validation. Additionally, the accuracy and availability of data are often a strong limitation. It is indeed

common for energy system modelling to consider data from different projects and adapt them to the case

study.

Being these limitations unique case by case, there is no single solution to the problem. However, by

acknowledging this challenge, engineering consideration can be made and a sufficiently accurate result

can be achieved.

In the past years, many modelling tools have been developed for the different approaches mentioned

in this chapter. Allegrini et al. [6] provide an extensive review of the most used software for energy

modelling in the last years, dividing them by modelled Distributed Energy Resource (DER).

For what concerns the modelling of energy community systems as in this research, the reference

summarizes the tools as in figure 2.4. For the scope of this research, the following groups are defined:

• High-level tools (Modelica libraries): KULeuven IDEAS lib and LBNL District lib;

• Heating network-focused models: Termis, Neplan, EnerGis and NetSim;

• Simulation of city quarters: CitySim and Solene;
• Techno-economic simulator: energyPRO and RETScreen;

• Microgrids design optimization: HOMER and EnergyPLAN;

• Programming language for model development: MatLab, Python and Java.

In order to focus the model functioning on the research question introduced in chapter 1, for this

research, a dedicated model is designed. In this way, the aforementioned technical and methodological

limitations can be better addressed.

To summarize, this chapter provided an in-depth overview of the problem of grid congestion and its

implications, specifically focusing on low-voltage energy systems at the urban level.

The research divided the problem into two sub-categories: congestion for existing connections

and issues related to new connection capacity. The first discusses the issue of the DSO in efficiently
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Figure 2.4: Table of common programs used for energy system modelling, based on [6].

distributing electricity to the connected parties and examines different methods for efficiently managing

it, while the second argues how highly congested networks are incapable of accommodating new projects

and how to overcome this.

Further discussion has then focused on the Dutch case, exploring the involved actors’ plans to mitigate

the problem of grid congestion in the Netherlands. The study suggested how the new connection capacity

congestion problem is of high priority in the country and how policymakers and governmental entities

are planning to address this issue.

Then, a brief overview of technical and socio-political aspects was explored through the concepts of

energy hubs and energy communities, highlighting the characteristic differences and how these may

apply to the research.

Finally, an overview of energy system modelling was presented, describing the different approaches

used in literature and identifying their strengths and weaknesses for solving the problem stated

in chapter 1. The literature review suggested that a deterministic approach, executed through an

optimization model, is the most suitable for this study.

To define the details for resolving the optimization problem, the modelling tool must be first

thoroughly explained. While existing modelling software offers a wide range of capabilities, their general

nature does not enable the effective implementation of DSM for mitigating grid congestion. Therefore, to

achieve more precise and effective results, a dedicated model is developed. In the next chapters, the

assumptions and approaches followed are argued to provide a clear idea of the energy system model

used in this research.



3
Methodology

As discussed in the previous chapter, energy system modelling can be approached using various

methodologies, each suited to different scenarios. There is no universally optimal method applicable to

all situations. This chapter describes the tools, the physics and the methodology followed to describe the

energy system in this research. First, section 3.1 discusses the scope of the model for this research. Then,

section 3.2 gives an overview of the optimization approach used in this research while section 3.3 gives

an overview of the software used. Next, section 3.4 explores the equations to model the functioning of

all energy resources. Finally, section 3.5 resumes the optimization structure and argues the different

scenarios computed to achieve the research goal.

3.1. Scope of the model
In order to explore the potential of Distributed Energy Resources (DERs), a comprehensive model has

been developed and implemented. The goal is to represent the operational dynamics of the energy

system such that each DER can function autonomously then interacting with the broader system. In

other words, the scope of the model is to accurately emulate the energy system’s response to specified

input parameters, to optimize the scheduling and utilization of various DERs.

The problem subject of the study consists of a small-medium energy system characterized by various

DERs and a grid connection. These include photovoltaic (PV) generation, Electric Vehicles (EVs), district

heating networks and possibly the installation of a battery storage system. The problem revolves around

the connection to the distribution grid as it may not be available during congestion periods. For this

reason, the optimization will focus on grid connection, while the different DER variables will be adjusted

to achieve the optimal solution. It is easy to expect several constraints for modelling each single resource,

resulting in a complex optimization problem with an important computational cost. To make the

modelling easier to implement, simplifications and linearization of constraints will be argued for each

DER modelling. The objective is to determine the optimal configuration to achieve peak power reduction

during defined peak hours. To ensure robustness and accuracy, hourly simulations are performed for

each day of the year, allowing a good representation of (most of) the different possible conditions the real

system may encounter.

3.2. Optimization method
Mathematical optimization is a broad and complicated subject that can be developed through many

different methodologies and strategies. In the previous chapter, an overview of the approaches used in

the field of low-voltage energy systems was discussed. The research highlights how the decision of the

type of optimization method is strictly dependent on the nature of the study case as well as the goal of

the research. Indeed, for the scope of this thesis, a few considerations can be argued.

Due to its multi-dimensional nature, the system is expected to be defined by several variables and

consequently multiple degrees of freedom. This may lead to an issue of non-unique solutions if the

objective of the optimization is not well defined. Following the trend in the literature, the energy system

modelling will consider a multi-objective optimization approach. Therefore, besides the primary goal of

peak power reduction, secondary goals will be specified.
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Furthermore, the integration of variable DERs, for instance, PV, introduces uncertainties to the

problem. In order to solve this issue, this research follows a deterministic prior resolution approach.

This is further elaborated in section 3.5.

3.3. Modelling tools
Among the different programs available for solving optimization problems, this research will use Pyomo
v6.7.0 (Python Optimization Modelling Objects), a package for Python, installed in v3.11.5. The reason

for this choice was led by the high versatility, efficiency and user-friendliness of Pyomo as well as the

fact of it being open-source. Moreover, Pyomo is largely used in industries in several fields, among

which also energy system modelling. Indeed, its functionalities are preferred over others by important

research entities such as the National Energy Technology Laboratory or the National Renewable Energy

Laboratory1.

Besides the easy interface that allows a simple implementation of the problem, Pyomo solve functions

depend on the type of solver used. Thanks to its multiple advantages, the software Gurobi was

chosen for the project. It is primarily a mathematical optimization solver, specifically focusing on

Linear Programming (LP), Mixed-Integer Linear Programming (MILP), Quadratic Programming (QP),

and convex optimization problems. This software uses different mathematical methods to perform

optimizations, including cutting-plane methods, branch-and-cut algorithms, and interior-point methods.

Unlike other types of solvers, such as heuristic or decision-rule based, Gurobi allows a full range analysis

able to find both optimal and sub-optimal solutions [28]. Finally, its speed and quality of performance fit

best the scope of the research.

To exploit the friendly user interface of Pyomo, the modelling part of the project was written in Python,

in which the optimization tool is an additional library available to import. Pyomo solves optimization

problems working on a model in which all characteristics are specified. First, the initialization of Sets, such

as the time set 𝒯 , allows the introduction of Parameters and Variables used then in the model. Secondly,

constraints are specified in order to generate the feasible region. Finally, the objective function is initialized

and through the use of a solver, as Gurobi in this case, the optimal solution is found.

3.4. Energy system resources and modelling
Modelling of energy systems can simply be seen as shaping the physics described in equations into

computational expressions that can be solved by a computer simulator. Therefore, in order to understand

the computation, the physics must be discussed first.

This chapter discusses the assumptions, equations and formulas used to describe the technical part of

a general energy community, focusing on the technologies considered in the case study. Every subsection

argues the physical principles and considerations of every side of the energy system to then explain

more in detail the method of modelling. Photovoltaic physics is described in subsection 3.4.1 while

subsection 3.4.2 carefully explains the methodology followed for district heating system modelling. Then,

subsection 3.4.3 and subsection 3.4.4 focus on equations used for the battery storage system and the EV

fleet, respectively. Finally, the general system balancing is modelled in subsection 3.4.5.

3.4.1. PV system
The integration of renewable energy resources into small-medium energy systems is proven to drastically

reduce the system’s carbon footprint as well as grid congestion issues. In particular, the installation of PV

panels allows the penetration of cheap and clean power that positively affects the system’s sustainability

[2]. On the other side, PV modules can be considered as a variable current source in the electrical layout

that may cause instability of voltage and power supply. Indeed, photovoltaic technology generates

electricity only when sun radiation is registered. Thus, the power produced is strongly dependent on

time and weather conditions. The output power properties depend on different factors, such as the solar

cell characteristics, its temperature and the irradiation it is posed. For the scope of this research, the

integration of a PV system will be defined by only one dimension of interest: the PV power output.

For simplicity of modelling, PV panels can be grouped in subgroups, identified as PV strings, identified

by the subscript 𝑝 from now on. A string, or array, is defined as a connection in series of two or more

1Reference: https://www.pyomo.org/impact
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panels, usually mounted with the same tilt and azimuth angles [75]. It can be assumed that all panels in

a string have the same power output. In reality, shading, cleanness and position of the modules affect

each other’s energy production. However, these details are outside the scope of the project and can be

neglected.

As well explained in Smets et al. [75] the total irradiance that a PV module experiences during

daylight is given by the sum of direct, diffuse and ground irradiance, respectively expressed as 𝐺𝑑𝑖𝑟𝑡,𝑝 , 𝐺
𝑑𝑖 𝑓

,𝑡 ,𝑝

and 𝐺
𝑔𝑟𝑜𝑢𝑛𝑑

𝑡,𝑝 in equation 3.1.

𝐺𝑡 ,𝑝 = 𝐺𝑑𝑖𝑟𝑡,𝑝 + 𝐺𝑑𝑖 𝑓𝑡 ,𝑝 + 𝐺𝑔𝑟𝑜𝑢𝑛𝑑

𝑡,𝑝 (3.1)

The highest contribution is given by the direct irradiance term, which expresses the solar energy that

reaches the surface of the solar panel directly from the source, the sun. It is computed as shown in

equation 3.2 below.

𝐺𝑑𝑖𝑟𝑡,𝑝 = 𝐷𝑁𝐼𝑡 · [𝑠𝑖𝑛(𝜃𝑝𝑎𝑛𝑒𝑙𝑝 ) · 𝑐𝑜𝑠(𝑎𝑠𝑢𝑛𝑡 ) · 𝑐𝑜𝑠(𝛾𝑝𝑎𝑛𝑒𝑙𝑝 − 𝛾𝑠𝑢𝑛𝑡 ) + 𝑐𝑜𝑠(𝜃𝑝𝑎𝑛𝑒𝑙𝑝 ) · 𝑠𝑖𝑛(𝑎𝑠𝑢𝑛𝑡 )] (3.2)

Here, 𝐷𝑁𝐼𝑡 represents the Direct Normal Irradiance, measured in
𝑘𝑊
𝑚2

, while 𝛾
𝑝𝑎𝑛𝑒𝑙
𝑝 and 𝜃

𝑝𝑎𝑛𝑒𝑙
𝑝 are the

module’s azimuth2 and tilt angles, both expressed in degrees. Similar parameters are defined for the

sun position, which depends on time 𝑡. These are expressed as 𝑎𝑠𝑢𝑛𝑡 and 𝛾𝑠𝑢𝑛𝑡 in the equation above and

represent sun elevation and azimuth respectively, again measured in degrees.

The second term of equation 3.1 is the diffuse irradiance term, which represents the scattered light

generated when sun rays enter the atmosphere. This can be described with the so-called sky models,
physics models that take into account clouds and particles floating in the air. For the scope of this

research, a good representation of the diffuse irradiance is obtained with the simplified model called

isotropic sky diffuse model, shown below in equation 3.3 [69].

𝐺
𝑑𝑖 𝑓

𝑡 ,𝑝 = 𝐷𝐼𝐹𝑡 · 𝑆𝑉𝐹𝑝 (3.3)

𝑆𝑉𝐹𝑝 =
1 + 𝑐𝑜𝑠(𝜃𝑝𝑎𝑛𝑒𝑙𝑝 )

2

(3.4)

in which 𝐷𝐼𝐹𝑡 is the Diffuse horizontal Irradiance, in
𝑘𝑊
𝑚2

. This component is strongly dependent to the

Sky View Factor (SVF), defined in equation 3.4 by the tilt angle of the panels mounting. Depending on the

installation tilt, the portion of the sun visible by the module changes drastically, hence, the importance of

designing the correct inclination depending on the location.

Finally, the last type of irradiance is given by the reflection of light from the building surfaces and the

ground. Indeed, depending on the surroundings of the PV module, the albedo coefficient 𝛼𝑝 of reflection

can vary and so affect the power output of the solar system. For urban areas, 𝛼𝑝 assumes values that can

vary between 0.05 and 0.2 [75]. Therefore, the final component of the total irradiance can be computed

through equation 3.5.

𝐺
𝑔𝑟𝑜𝑢𝑛𝑑

𝑡,𝑝 = 𝐺𝐻𝐼𝑡 · 𝛼𝑝 · (1 − 𝑆𝑉𝐹𝑝) (3.5)

𝐺𝐻𝐼𝑡 = 𝐷𝑁𝐼𝑡 · 𝑐𝑜𝑠(𝑎𝑠𝑢𝑛𝑡 ) + 𝐷𝐼𝐹𝑡 (3.6)

in which 𝐺𝐻𝐼𝑡 is known as Global Horizontal Irradiance, expressed in equation 3.6.

Once the total irradiance is defined, it is easy to calculate the power output of the PV system as in

equation 3.7:

𝑝𝑃𝑉𝑡,𝑝 = 𝐺𝑡 ,𝑝 · 𝜂𝑝𝑎𝑛𝑒𝑙𝑝 · 𝐴𝑝𝑎𝑛𝑒𝑙𝑝 · 𝑁𝑝𝑎𝑛𝑒𝑙
𝑝 (3.7)

𝜂
𝑝𝑎𝑛𝑒𝑙
𝑝 =

𝑃
𝑝𝑎𝑛𝑒𝑙
𝑚𝑝𝑝 (𝑆𝑇𝐶)

𝐺(𝑆𝑇𝐶) · 𝐴𝑝𝑎𝑛𝑒𝑙
(3.8)

2𝛾 = 0° (South), 𝛾 = + 90° (West), 𝛾 = - 90° (East) and 𝛾 = ± 180° (North)
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where 𝜂
𝑝𝑎𝑛𝑒𝑙
𝑝 represents the efficiency of the panel in use, 𝐴

𝑝𝑎𝑛𝑒𝑙
𝑝 is the module’s area 𝑚2

and 𝑁
𝑝𝑎𝑛𝑒𝑙
𝑝 is the

number of modules used.

It is important to mention that the module efficiency coefficient strongly depends on different factors,

both operational (cell temperature, irradiance) and technical (type of cell) [75]. For the scope of this

project, this parameter is estimated through equation 3.8, making results less precise but easier to

compute. The dimension 𝑃
𝑝𝑎𝑛𝑒𝑙
𝑚𝑝𝑝 is the maximum power output that can be achieved by the solar panel in

Standard Test Conditions (STC)3, measured in 𝑘𝑊𝑝, while 𝐺(𝑆𝑇𝐶) is the total irradiance in STC, assumed

as 1’000
𝑊
𝑚2

.

This concept can be applied to every string 𝑝, assuming that the converters are sized to process all

available power. As a result, when modelling a PV system composed of 𝒫 strings, the total PV power

production can be modelled by simply summing all the strings’ power outputs.

3.4.2. Heating system
Since the early 2000s, the shift to developing more sustainable systems with lower or zero carbon

emissions has been the main focus in relation to district heating system evolution [57]. The main driver of

this change is the increased availability of heat pumps, which allow heating by using only electric power.

A heat pump is defined as a thermodynamic machine that can transfer thermal energy from a cold

source to a hotter one, called sink, by the introduction of work. It can be theoretically idealized as shown

in figure 3.1. The heat 𝑄𝐶 is extracted from a cold source and through the assistance of external work𝑊 ,

electrical in the case of heat pumps, it is, indeed, pumped to the sink, again in form of thermal energy 𝑄𝐻 .

The efficiency of a heat pump is defined by the Coefficient of Performance (COP), theoretically computed

as shown in equation 3.9.

Figure 3.1: Thermodynamic scheme of an ideal heat pump.

𝐶𝑂𝑃(𝑡) = 𝑄𝐻(𝑡)
𝑊(𝑡) =

𝑊(𝑡) +𝑄𝐶(𝑡)
𝑊(𝑡) = 1 + 𝑄𝐶(𝑡)

𝑊(𝑡) (3.9)

As clear in the expression above, unlike the other most known thermodynamic machines, heat pumps

are characterized by an "efficiency" always greater than 1 and whose value depends both on the type

of HP as well as the external conditions [79]. As a result, it is easy to notice that the higher the HP’s

COP, the lower the electrical power needed for the same heating goal. Hence, this parameter plays a

crucial role in determining when it is optimal to use the heat pump. In reality, this parameter depends

on multiple factors such as the temperatures, type of source, type of sink and efficiency of the internal

technology used for transforming energy. Further consideration regarding the COP will be argued later

in section 4.2. Defining the group of heat pump ℎ ∈ ℋ , this concept is shown in equation 3.10.

𝐶𝑂𝑃𝑡 ,ℎ · 𝑝𝐻𝑃𝑡,ℎ = |𝑞𝐻𝑃
𝑡,ℎ

| (3.10)

Where 𝑝𝐻𝑃
𝑡,ℎ

is the heat pump electric power, bounded by its rated power 𝑃
𝐻𝑃

ℎ as in equation 3.11, while

𝑞𝐻𝑃
𝑡,ℎ

represents the HP power in the form of thermal energy. The expression includes the absolute value

3STC is characterized by 1’000
𝑊
𝑚2

of irradiance, AM1.5 spectrum and cell temperature of 25 °𝐶 as specified in the IEC 60904-3.
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Figure 3.2: Vapour compression heat pump scheme [79].

of thermal power to represent the case in which the heat pump operates as a cooling device, hence,

negative 𝑞𝐻𝑃
𝑡,ℎ

.

0 ≤ 𝑝𝐻𝑃
𝑡,ℎ

≤ 𝑃
𝐻𝑃

ℎ (3.11)

In reality, the theoretical thermodynamic cycle of a heat pump can be emulated by using the bi-phase

property of a fluid, usually water solutions or hydrofluorocarbons, which allows heat pumping thanks to

forced circulation. An example scheme of the primary loop functioning is shown in figure 3.2, while

figure 3.3 reports the respective thermodynamic cycle. The fluid is brought from the bi-phase state point

A to a super-heated vapour through an evaporator in point B. Then, the compressor brings the fluid to

a higher pressure state in point C, introducing the aforementioned external work𝑊 . The heat is thus

transferred to the condenser, which leads heat to the hot sink, bringing the flow to point D. Finally, an

expansion valve adjusts the pressure closing the cycle again in point A.

Nowadays, there are several types of heat pumps available in the industry. They can be distinguished

by the origin of cold and hot sources. These can be air, water, ground or waste heat for the source side

and air, water, steam or heated material for the sink side. When considering residential heating and

cooling, the optimized designs usually see Air-Source Heat Pumps (ASHPs) and/or Ground-Source Heat

Pumps (GSHPs) [11]. The first ones are usually preferred for single household installation, being smaller,

cheaper and easier to install. On the other hand, their COP is generally lower making them inadequate

for big residential areas with centralized heating systems. Furthermore, their functioning bases on a

ventilation fan that may result too loud for highly populated urban areas [79].

A more efficient and reliable heating system is provided by GSHPs, which fit best for district networks

of heating and cooling. Despite the cost and difficulty of installation may be crucial for already existing

areas, GSHPs are the optimal choice for new residential neighbourhoods [11]. Ground-source heat

pumps use earth, groundwater, or both as a source of heat during cold seasons and as a reservoir for

house cooling during summer. Their design includes a ground heat exchanger, usually a long metal pipe

installed in the soil that transfers heat to/from the circulating fluid (commonly an anti-freeze solution or

water).

Here there are two methods of operation. With a closed loop, the circulating fluid is constantly

pumped into the ground pipes to be warmed up (or cooled down). At the end of the cycle, heat transfer

happens in the so-called primary heat exchanger (the evaporator) inside the house, which transfers the

heat gained from the ground to the primary loop and thus to the dwelling.

Conversely, when considering an open loop, the heat source is a groundwater reservoir. The water

flowing in the ground is thus extracted from an aquifer, which is a more stable sink than the ground.

Hence, this latter configuration makes the system more efficient. A schematic of GSHP for both loops is

shown in figure 3.4.

Although GSHPs are the most efficient way to exploit geothermal energy in residential areas, limitations

regarding soil integrity must be considered. Indeed, it is important to mind the effects of extracting/in-

jecting heat on soil’s temperature, moisture and properties. Especially in the northern countries, heating

demand is abundantly higher than the designed cooling, meaning that the heat extracted from the soil is
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Figure 3.3: Thermodynamic cycle for vapour compression heat pumps [79].

Figure 3.4: Scheme of the secondary open-loop (left) and closed-loop (right) of ground-source heat pump for dwellings [11].

more than the one re-injected. As a result, many years of system operation will affect a decrease in the

heat pump 𝐶𝑂𝑃, as well as degradation of the earth [12]. For this reason, regulations are strictly applied

by governmental entities in ground heat usage. Besides permits for construction, it is often required to

periodically re-inject heat in the ground, resulting in higher cooling demand during the warm season.

More detailed considerations about the data used will be discussed later in section 4.2.

Modelling of heating systems is a complicated subject that often requires non-linear equations and a

high level of computation. However, the scope of this research is to describe the energy system from a

bigger picture and therefore some simplification can be considered.

A schematic design of the heating system model used in this project is shown in figure 3.5. It consists

of a flux of water that periodically circulates in a closed loop pipe. Along this, different heat exchangers

are placed to allow thermal energy transmission. To the left side of the picture, the pink arrow expresses

the heat transferred from the heat pumps to the water flow, defined as 𝑞𝐻𝑃
𝑡,ℎ

. As a result, the flow is

heated from temperature 𝑇4

𝑡 ,ℎ
to temperature 𝑇1

𝑡 ,ℎ
, according to equation 3.12. Similarly happens on the

right-hand side, where a heat exchanger passes heat from the water flow to the house heating, defined

as 𝑄𝑑
𝑡,ℎ

, cooling it from 𝑇2

𝑡 ,ℎ
to 𝑇3

𝑡 ,ℎ
as in equation 3.13. The mass flow ¤𝑚 and the specific heat 𝐶𝑝𝑤 are

assumed to be constant. This is a valid assumption if the district heating demands, meaning space

heating, hot water and space cooling, can be considered always required, and therefore circulation is

constantly needed.

𝑞𝐻𝑃
𝑡,ℎ

= ¤𝑚 · 𝐶𝑝𝑤 · (𝑇1

𝑡 ,ℎ
− 𝑇4

𝑡 ,ℎ
) (3.12)

𝑄𝑑
𝑡,ℎ

= ¤𝑚 · 𝐶𝑝𝑤 · (𝑇2

𝑡 ,ℎ
− 𝑇3

𝑡 ,ℎ
) (3.13)

Considering now more in-depth the physics of water flowing in the heating system pipes, it is important

to highlight the complexity of the problem due to losses. Indeed, depending on the chemical properties

and speed of the circulating water, as well as the material, size and condition of the pipe, energy losses

will be experienced during operation, mainly connected to friction. In addition to that, one or more
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Figure 3.5: Schematic representation of the ℎ-th heating system network.

water pumps are constantly needed in operation for the fluid to circulate. These devices’ efficiency is

usually difficult to estimate since it is proportional to the condition of operation, location and technology

involved. Hence, a detailed and precise analysis of the fluid system becomes very complex. Despite

the fact this may strongly affect the results, it is assumed that all aforementioned losses are taken into

account within the house heating demand 𝑄𝑑
𝑡,ℎ

, shown in equation 3.14, defined as the union of space

heating 𝑄𝑠ℎ
𝑡,ℎ

, hot water 𝑄ℎ𝑤
𝑡,ℎ

and space cooling 𝑄𝑐𝑜𝑜𝑙
𝑡 ,ℎ

demands at each time 𝑡. Such an assumption is valid

if the data used in simulations is measured at the user’s end.

𝑄𝑑
𝑡,ℎ

= 𝑄𝑠ℎ
𝑡,ℎ

+𝑄ℎ𝑤
𝑡,ℎ

−𝑄𝑐𝑜𝑜𝑙
𝑡 ,ℎ

(3.14)

Moreover, it is important to mention that in district heating networks, pipelines can reach up to

several kilometres in length and therefore the temperature changes in the water flow do not happen

instantaneously. For the scope of this project, though, a strong simplification will be considered in order to

avoid describing temperature transients over time. This can be assumed valid when the heating network

is relatively small, for instance, a single neighbourhood, and simulations consider a sufficiently large time

step 𝑡. Therefore, it is assumed that every infinitesimal volume of water circulating in the network is in

equilibrium with each other, such that every change happening in one section simultaneously affects the

others. This allows to treat the heating system as an electrical circuit, which is subject to instant changes.

Although this hypothesis may significantly affect the final results, the lack of information about the exact

dimensions of the heating system and pipe specifications makes such simplification valid for the final

goal of the research.

As described so far, such a heating system results in a simple demand-response network in which the

heating/cooling load pulls into operation the heat pumps right when needed. In residential households,

it is proved that the highest share of energy use is for space heating and hot water [24]. For this reason,

when addressing load shifting and demand management, it is crucial to include a flexibility term. As a

result, the heating system model shown before in figure 3.5 considers a Thermal Energy Storage (TES) as

a heat buffer, shown in blue.

Thermal energy storage (TES) technologies stand out as one of the most prevalent methods for

storing energy in residential areas. In district heating systems, two primary types of TES are typically

distinguished: domestic TES, also known as short-term buffers, and seasonal TES, alternatively referred

to as long-term buffers [57].

As the name suggests, domestic TES is frequently installed within individual houses and consists of

devices capable of storing heat at elevated temperatures for load-shifting purposes, typically for up to two

weeks. On the other hand, the integration of long-term thermal storage units is becoming increasingly

popular in new residential districts. These are usually installed close to the dwellings and designed to

store heat for several weeks.

Furthermore, besides the design purpose, thermal energy storage is categorized into three distinct

types based on the technology employed. The oldest and simplest unit is Sensitive Thermal Energy

Storage (STES), typically consisting of a well-insulated water tank. While its straightforward design
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Figure 3.6: Temperature of PCM function of the internal energy 𝑒𝑃𝐶𝑀
𝑡,ℎ

.

makes it relatively cheap and easy to install, it experiences losses making it less suitable for seasonal

storage applications. An improved version is the Phase-Change Material (PCM) thermal unit, which

exploits the bi-phase properties of the used composite to store heat in both sensitive and latent forms.

This allows for lower operating temperatures compared to STES, resulting in higher efficiency. Lastly,

thermochemical TESs take advantage of the composite material’s chemical properties and store heat

through chemical reactions. However, the materials used increase safety risks in domestic installations,

and their higher cost places this type of TES as the least popular choice for current district heating

systems [57].

Thanks to its lower average temperature and contained costs, a phase change material storage unit has

been included in the model design. PCM buffers are designed such that the bi-phase state is exploited

most of the time. This is because when in this state, the temperature of the whole composite is constant

and uniform, hence, temperature control becomes more simple. This latter characteristic results in a

non-linear temperature function, following three different equations depending on the state of energy

(and thus the phase). This concept is expressed mathematically in equation 3.15 and shown in figure 3.6.

𝑇𝑃𝐶𝑀
𝑡,ℎ

=


1

𝑐𝑃𝐶𝑀
ℎ

· 𝑒𝑃𝐶𝑀
𝑡,ℎ

· 3600

𝑚𝑃𝐶𝑀
ℎ

if 𝑒𝑃𝐶𝑀
𝑡,ℎ

≤ 𝐸𝑆
ℎ

𝑇𝑚𝑒𝑙𝑡
ℎ

if 𝐸𝑆
ℎ
< 𝑒𝑃𝐶𝑀

𝑡,ℎ
≤ 𝐸𝐿

ℎ
1

𝑐𝑃𝐶𝑀
ℎ

· (𝑒𝑃𝐶𝑀
𝑡,ℎ

· 3600

𝑚𝑃𝐶𝑀
ℎ

− ℎ𝑃𝐶𝑀
ℎ

) if 𝑒𝑃𝐶𝑀
𝑡,ℎ

> 𝐸𝐿
ℎ

(3.15)

Therefore, the internal temperature of the PCM, 𝑇𝑃𝐶𝑀
𝑡,ℎ

, expressed in Celsius, depends on the internal State

of Energy (SOE), 𝑒𝑃𝐶𝑀
𝑡,ℎ

, expressed in 𝑘𝑊ℎ. When in mono-phase, either liquid or solid, the temperature

follows a linear function in which slope depends on the specific heat 𝑐𝑃𝐶𝑀
ℎ

of the composite and intercept

defined through the specific latent heat ℎ𝑃𝐶𝑀
ℎ

, expressed in
𝑘𝐽
𝑘𝑔𝐾

and
𝑘𝐽
𝑘𝑔

respectively.

According to the thermodynamics principles, every object can be characterized with its internal

energy Δ𝑈 , strictly connected to its defined temperature 𝑇 [19]. As a result, for thermal energy storage, it

is convenient to define the SOE as relative to a set internal energy of reference. For simplicity of use, the

reference is set as SOE for zero degrees Celsius, allowing the expression of the temperature in Celsius

degrees instead of Kelvin. This concept is mathematically expressed in equation 3.16 and equation 3.17

below, in which 𝑇ℎ and 𝑇ℎ represent the bounding temperature of the heating system, and therefore of

the thermal buffer.

Furthermore, the phase-change thresholds, defined through 𝐸𝑆
ℎ

and 𝐸𝐿
ℎ

and also measured in 𝑘𝑊ℎ,

are inherent characteristics of the composite use and depend only on the PCM mass 𝑚𝑃𝐶𝑀
ℎ

, in 𝑘𝑔, and



3.4. Energy system resources and modelling 26

the melting temperature 𝑇𝑚𝑒𝑙𝑡
ℎ

. Hence, knowing these characteristics of the composite, the phase-change

SOE are determined as in equation 3.18 and equation 3.19.

𝐸
𝑃𝐶𝑀

ℎ = (𝑐𝑃𝐶𝑀
ℎ

· (𝑇ℎ − 𝑇(0°𝐶)) + ℎ𝑃𝐶𝑀
ℎ

) · 𝑚𝑃𝐶𝑀

3600

(3.16)

𝐸𝑃𝐶𝑀
ℎ

= (𝑇ℎ − 𝑇(0°𝐶)) ·
𝑐𝑃𝐶𝑀
ℎ

· 𝑚𝑃𝐶𝑀
ℎ

3600

(3.17)

𝐸𝑆
ℎ
= (𝑇𝑚𝑒𝑙𝑡

ℎ
− 𝑇(0°𝐶)) ·

𝑐𝑃𝐶𝑀
ℎ

· 𝑚𝑃𝐶𝑀
ℎ

3600

(3.18)

𝐸𝐿
ℎ
= (𝑐𝑃𝐶𝑀

ℎ
· (𝑇𝑚𝑒𝑙𝑡

ℎ
− 𝑇(0°𝐶)) + ℎ𝑃𝐶𝑀

ℎ
) ·
𝑚𝑃𝐶𝑀
ℎ

3600

(3.19)

In order to make the PCM storage model linear, the temperature gradient throughout the buffer is

assumed to be negligible during single-phase states. Hence, only one parameter, 𝑇𝑃𝐶𝑀
𝑡,ℎ

, communicates

with the water flow of the heating system. Referring again to equation 3.5, the charging and discharging

of the thermal storage happens on two fronts: after the water has been heated up by the heat pumps and

after it has been cooled down by the household heat exchangers. From now on in the report, these will be

referred to as hot side, between points 1 and 2, and cold side, between points 3 and 4, respectively. On both

sides, heat is transferred to and from the TES depending on the system’s defined internal temperature.

According to the second law of thermodynamics:

"Heat does not flow spontaneously from a colder region to a hotter region, or, equivalently, heat at a
given temperature cannot be converted entirely into work." [19].

As a result, if at a certain time 𝑡∗ the temperature of the composite, 𝑇𝑃𝐶𝑀
𝑡∗ ,ℎ , is higher than the

temperature of the water after being heated up by the HPs, 𝑇1

𝑡∗ ,ℎ , there will be a transfer of thermal

energy from the buffer to the water flow, which will result then warmer in section 2 than in section 1

(𝑇2

𝑡∗ ,ℎ ≥ 𝑇1

𝑡∗ ,ℎ), and vice versa. Therefore, the thermal energy transfer per unit of time 𝑞12

𝑡 ,ℎ
can be defined

positive when outgoing, or discharging, the TES and negative when ingoing, or charging, the thermal

storage. This concept is resumed below from equation 3.20 to equation 3.23.

𝑞12

𝑡 ,ℎ
= ¤𝑚 · 𝐶𝑝𝑤 · (𝑇2

𝑡 ,ℎ
− 𝑇1

𝑡 ,ℎ
) (3.20)

𝑞34

𝑡 ,ℎ
= ¤𝑚 · 𝐶𝑝𝑤 · (𝑇4

𝑡 ,ℎ
− 𝑇3

𝑡 ,ℎ
) (3.21)

𝑞12

𝑡 ,ℎ
≥ 0 if 𝑇1

𝑡 ,ℎ
≤ 𝑇𝑃𝐶𝑀

𝑡,ℎ
(3.22)

𝑞34

𝑡 ,ℎ
≥ 0 if 𝑇3

𝑡 ,ℎ
≤ 𝑇𝑃𝐶𝑀

𝑡,ℎ
(3.23)

𝑄𝑑
𝑡,ℎ

= 𝑞𝐻𝑃
𝑡,ℎ

+ 𝑞12

𝑡 ,ℎ
+ 𝑞34

𝑡 ,ℎ
(3.24)

It is important to mention that the thermal losses of charging and discharging are considered negligible for

the research goal, meaning that the heat exchangers can ideally transfer the whole energy instantaneously.

Although this is a significant simplification, the non-linearity of the heat transfer physics drastically

increases the model complexity, making the computational cost of the model out of the research scope

[57].

Moreover, for the same law of thermodynamics, the end temperature of the heat exchange process

must be between the values of the other two temperatures. This is explained in the following equation

3.25.

if 𝑇1

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ
then 𝑇1

𝑡 ,ℎ
≥ 𝑇2

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ

if 𝑇1

𝑡 ,ℎ
≤ 𝑇𝑃𝐶𝑀

𝑡,ℎ
then 𝑇1

𝑡 ,ℎ
≤ 𝑇2

𝑡 ,ℎ
≤ 𝑇𝑃𝐶𝑀

𝑡,ℎ

(3.25)

if 𝑇3

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ
then 𝑇3

𝑡 ,ℎ
≥ 𝑇4

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ

if 𝑇3

𝑡 ,ℎ
≤ 𝑇𝑃𝐶𝑀

𝑡,ℎ
then 𝑇3

𝑡 ,ℎ
≤ 𝑇4

𝑡 ,ℎ
≤ 𝑇𝑃𝐶𝑀

𝑡,ℎ
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Thermal storage can be considered to have a similar nature to a battery, meaning that a State of Energy

(SOE) can be defined and modelled to monitor the charging and discharging of the TES during operation.

Equation 3.26 shows the discrete expression for charging and discharging the thermal buffer. The

negative sign in front of the heat power exchanged is due to the definitions of 𝑞12

𝑡 ,ℎ
and 𝑞34

𝑡 ,ℎ
mentioned

before.

𝑒𝑃𝐶𝑀
𝑡,ℎ

= 𝐿𝑃𝐶𝑀
ℎ,𝑡

· 𝑒𝑃𝐶𝑀
𝑡−1,ℎ

− (𝑞12

𝑡 ,ℎ
+ 𝑞34

𝑡 ,ℎ
) · 𝛿𝑡 (3.26)

In order to consider thermal losses through the buffer walls, the coefficient 𝐿𝑃𝐶𝑀
ℎ,𝑡

∈ (0, 1] is introduced.

Although this parameter depends on the temperature difference between inside the buffer and outside, it

is possible to approximate it to a constant value. More detailed information can be found in section 4.2.

Finally, the union of equation 3.12 to equation 3.26 fully describes the heating system model. Despite

the problem appears linear and easily computable, the if conditions must be re-adapted in order to be

included as constraints in the optimization problem. This can be done with the introduction of binary

variables.

First, PCM temperature described in equation 3.15 is treated. By introduction the binary variables for

solid-state 𝑢𝑆
𝑡,ℎ

and liquid-state 𝑢𝐿
𝑡,ℎ

, as in equation 3.27, the composite’s temperature can be constrained

as in equation 3.28 to equation 3.31.

𝑢𝑆
𝑡,ℎ

=

{
1 if 𝑒𝑃𝐶𝑀

𝑡,ℎ
≤ 𝐸𝑆

𝑡,ℎ
(Solid-state)

0 otherwise

𝑢𝐿
𝑡,ℎ

=

{
1 if 𝑒𝑃𝐶𝑀

𝑡,ℎ
≥ 𝐸𝐿

𝑡,ℎ
(Liquid-state)

0 otherwise

(3.27)

𝑒𝑃𝐶𝑀
𝑡,ℎ

≤ 𝐸𝐿
ℎ
+ (𝐸𝑆

ℎ
− 𝐸𝐿

ℎ
) · 𝑢𝑆

𝑡,ℎ
+ (𝐸𝑃𝐶𝑀ℎ − 𝐸𝐿

ℎ
) · 𝑢𝐿

𝑡,ℎ
(3.28)

𝑒𝑃𝐶𝑀
𝑡,ℎ

≥ 𝐸𝑆
ℎ
+ (𝐸𝐿

ℎ
− 𝐸𝑆

ℎ
) · 𝑢𝐿

𝑡,ℎ
+ (𝐸𝑃𝐶𝑀

ℎ
− 𝐸𝑆

ℎ
) · 𝑢𝑆

𝑡,ℎ
(3.29)

𝑢𝑆
𝑡,ℎ

+ 𝑢𝐿
𝑡,ℎ

≤ 1 (3.30)

𝑇𝑃𝐶𝑀
𝑡,ℎ

=
1

𝑐𝑃𝐶𝑀
ℎ

·
(
3600 · 𝑒𝑃𝐶𝑀

𝑡,ℎ

𝑚𝑃𝐶𝑀
ℎ

− ℎ𝑃𝐶𝑀
ℎ

· 𝑢𝐿
𝑡,ℎ

)
· (𝑢𝑆

𝑡,ℎ
+ 𝑢𝐿

𝑡,ℎ
) + 𝑇𝑚𝑒𝑙𝑡

ℎ
· (1 − 𝑢𝑆

𝑡,ℎ
− 𝑢𝐿

𝑡,ℎ
) (3.31)

Accordingly, two more binary variables are defined for the condition expressed in equation 3.25,

respectively 𝑢12

𝑡 ,ℎ
and 𝑢34

𝑡 ,ℎ
, explained below in equation 3.32. These aim to represent the charging, when

equal to 1, and discharging, when equal to 0, of the thermal buffer. In addition, in equation 3.33 to

equation 3.40 eight more constraints are introduced to successfully model the physics shown before.

𝑢12

𝑡 ,ℎ
=

{
1 if 𝑇1

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ

0 otherwise

𝑢34

𝑡 ,ℎ
=

{
1 if 𝑇3

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ

0 otherwise

(3.32)

𝑇1

𝑡 ,ℎ
≤ 𝑇𝑃𝐶𝑀

𝑡,ℎ
+𝑄1 · 𝑢12

𝑡 ,ℎ
(3.33)

𝑇1

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ
−𝑄2 · (1 − 𝑢12

𝑡 ,ℎ
) (3.34)

𝑇2

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ
· 𝑢12

𝑡 ,ℎ
+ 𝑇1

𝑡 ,ℎ
· (1 − 𝑢12

𝑡 ,ℎ
) (3.35)

𝑇2

𝑡 ,ℎ
≤ 𝑇1

𝑡 ,ℎ
· 𝑢12

𝑡 ,ℎ
+ 𝑇𝑃𝐶𝑀

𝑡,ℎ
· (1 − 𝑢12

𝑡 ,ℎ
) (3.36)

𝑇3

𝑡 ,ℎ
≤ 𝑇𝑃𝐶𝑀

𝑡,ℎ
+𝑄1 · 𝑢34

𝑡 ,ℎ
(3.37)

𝑇3

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ
−𝑄2 · (1 − 𝑢34

𝑡 ,ℎ
) (3.38)

𝑇4

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ
· 𝑢34

𝑡 ,ℎ
+ 𝑇3

𝑡 ,ℎ
· (1 − 𝑢34

𝑡 ,ℎ
) (3.39)

𝑇4

𝑡 ,ℎ
≤ 𝑇4

𝑡 ,ℎ
· 𝑢34

𝑡 ,ℎ
+ 𝑇𝑃𝐶𝑀

𝑡,ℎ
· (1 − 𝑢34

𝑡 ,ℎ
) (3.40)
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The parameters 𝑄1 and 𝑄2 are defined to constraint the temperatures 𝑇1

𝑡 ,ℎ
and 𝑇3

𝑡 ,ℎ
within the bounds of

𝑇ℎ and 𝑇ℎ of the system and the temperature of the buffer 𝑇𝑃𝐶𝑀
𝑡,ℎ

by non-linear expressions. To avoid

further complications, coefficients 𝑄1 and 𝑄2 are set to 10
4

and the boundary conditions of the system

temperatures are then included through equation 3.41 to equation 3.45.

𝑇ℎ ≤ 𝑇1

𝑡 ,ℎ
≤ 𝑇ℎ (3.41)

𝑇ℎ ≤ 𝑇2

𝑡 ,ℎ
≤ 𝑇ℎ (3.42)

𝑇ℎ ≤ 𝑇3

𝑡 ,ℎ
≤ 𝑇ℎ (3.43)

𝑇ℎ ≤ 𝑇4

𝑡 ,ℎ
≤ 𝑇ℎ (3.44)

𝑇ℎ ≤ 𝑇𝑃𝐶𝑀
𝑡,ℎ

≤ 𝑇ℎ (3.45)

To summarize, the heating system is the DER that demands the highest computational level within the

overall energy system model described in this chapter. This section has outlined various assumptions

made to accurately represent the heating system’s physical behaviour. For clarity, these assumptions are

summarized below:

• The energy losses related to the water flow, pumping devices and fluid dynamical frictions are

included in the final heating and cooling demands;

• All points in the heating network are in constant equilibrium, meaning instant propagation is

assumed. This implies that within each time step 𝑡, the system experiences infinite speed and

infinitesimal mass of water, resulting in a constant mass flow rate ¤𝑚. As a result, temperature

changes are considered instantaneous;

• The heat exchanger is assumed to transfer thermal energy without any losses.

3.4.3. Battery energy storage system
In energy systems, the incorporation of PV energy systems introduces environmental benefits alongside

challenges due to weather-dependent fluctuations. While solar power offers green energy, its availability

strongly depends on weather conditions, resulting in variable output. This variability arises because

electrical energy must be consumed as soon as it’s generated and in the quantity it is produced. Hence,

integrating storage technology becomes imperative, enabling the buffering of surplus electricity generated

during peak sunlight for use during periods of scarcity.

In the context of on-grid energy systems, such concerns are no longer necessary thanks to the connection

to an "unlimited" source of power. However, integrating storage technologies still offers advantages such

as load shifting and maintaining consistent power draw throughout the day. During periods of high

solar production, grid power withdrawal decreases, only to rise again after sunset. Incorporating storage

technologies here ensures steadier grid power and facilitates the delayed consumption of PV-generated

energy.

One of the primary challenges facing the energy industry today is identifying the most efficient,

cost-effective, and sustainable methods for both short and long-term electricity storage. Concerning

residential district energy systems, the prevalent storage technologies included are batteries, thermal

energy storage, and hydrogen with fuel cells, ranked in order of popularity [45].

Batteries serve as devices enabling the storage of electrical energy in the form of chemical energy by

exploiting the chemical properties of their constituent materials. The most common types are lithium-ion

batteries thanks to their high energy capacity, long life cycles, low maintenance requirements and a

reduced environmental impact [10].

Although the battery functionality strongly depends on the internal physics, the modelling at the

scale of an energy system scale simplifies when only considering power flows.

The operational behaviour of a Battery Energy Storage System (BESS) depends mainly on the device’s

characteristics. First, the battery total capacity 𝐶𝐵𝐸𝑆𝑆, expressed in 𝑘𝑊ℎ, represents the size of the storage

unit. To preserve the battery lifetime, it is common to introduce limits for the maximum and minimum

state of energy, denoted respectively 𝐸
𝐵𝐸𝑆𝑆

and 𝐸𝐵𝐸𝑆𝑆 in 𝑘𝑊ℎ. These constraints define the operational

range within which the battery charges and discharges.
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Additionally, limitations in power exchange must be specified. By defining 𝑃
𝐵𝐸𝑆𝑆

and 𝑃𝐵𝐸𝑆𝑆, in 𝑘𝑊 ,

the charging and discharging power are bounded within physical limits. Therefore, the battery system

State of Energy (SOE), 𝑒𝐵𝐸𝑆𝑆𝑡 , charging power, 𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 , and discharging power, 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 , change within

these bounds, as shown in equation 3.46 to equation 3.48. It’s important to define that the battery can

only charge when not discharging. This is specified by the binary variable 𝑢𝐵𝐸𝑆𝑆𝑡 in equation 3.49. This is

computed through a non-linear constraint, as shown in equation 3.50 below. However, thanks to the

binary nature of 𝑢𝐵𝐸𝑆𝑆𝑡 , the problem can still be solved by the selected tools mentioned in section 3.3

despite the non-linearity.

𝐸𝐵𝐸𝑆𝑆 ≤ 𝑒𝐵𝐸𝑆𝑆𝑡 ≤ 𝐸
𝐵𝐸𝑆𝑆

(3.46)

0 ≤ 𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 ≤ 𝑃
𝐵𝐸𝑆𝑆

(3.47)

𝑃𝐵𝐸𝑆𝑆 ≤ 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 ≤ 0 (3.48)

𝑢𝐵𝐸𝑆𝑆𝑡 =

{
1 if BESS is charging

0 otherwise

(3.49)

𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 · (1 − 𝑢𝐵𝐸𝑆𝑆𝑡 ) = 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 · 𝑢𝐵𝐸𝑆𝑆𝑡 (3.50)

The State of Energy (SOE) of the battery reflects the dynamic changes in stored energy across time. As a

result, each time step is strictly dependent on the battery SOE at the time step before, and the difference

is implemented by the power exchange to the energy system. This concept is illustrated in equation 3.51.

𝑒𝐵𝐸𝑆𝑆𝑡 = 𝐿𝐵𝐸𝑆𝑆 · 𝑒𝐵𝐸𝑆𝑆𝑡−1
+ (𝜂𝐵𝐸𝑆𝑆,𝑐ℎ · 𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 + 1

𝜂𝐵𝐸𝑆𝑆,𝑑𝑐ℎ
· 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 ) · 𝛿𝑡 (3.51)

Here, the terms 𝐿𝐵𝐸𝑆𝑆, 𝜂𝐵𝐸𝑆𝑆,𝑐ℎ and 𝜂𝐵𝐸𝑆𝑆,𝑑𝑐ℎ express the loss of energy in time and the charging and

discharging efficiencies respectively. This is a complicated term that depends on the battery type and the

State of Charge (SOC). However, for the scope of the project, this term can be neglected as in equation

3.52 [21].

𝑒𝐵𝐸𝑆𝑆𝑡 = 𝑒𝐵𝐸𝑆𝑆𝑡−1
+ (𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 + 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 ) · 𝛿𝑡 (3.52)

As a result, the modelling of a BESS in the picture of an energy system can be resumed with equation

3.46 to equation 3.52.

3.4.4. Electric vehicle fleet
In recent years, electric vehicles have become one of the main points of focus for shifting the transportation

sector to a more and more sustainable design. Among the different research that universities and

companies are developing, residential car-sharing is the one that may have the greater benefit to the

energy grid. The concept was initially designed to reduce the ownership of cars in cities and lower

its expenses [43]. Nowadays, with the threat of climate change pushing for decarbonization, electric

vehicles have taken over, changing thus also the whole concept of fueling the car. However, as well

known, while a gasoline or diesel vehicle needs only a few minutes to completely fill the fuel tank, an

electric counterpart may require hours to reach the charge for the same driving range. This is one of the

crucial factors that make fuel vehicles still competitive.

When considering shared EVs, this issue becomes less significant. Thanks to the non-private

ownership of the vehicle, customers can choose the car with the highest battery SOC at the moment they

need it. This improves, from one side user satisfaction by having a shorter waiting time, and from the

other side the charging process by extending the time of connection of each vehicle.

Recent studies have shown the high potential of shared EV as a tool to mitigate grid congestion

[31]. In this section, the physical principles of EVs will be argued, focusing first on a general EV-grid

connection to move then to the potential of V2G.
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In energy terms, an electric vehicle can be easily represented by a union of a simple electric load and

battery storage. First, an EV is characterized by a schedule and an electric demand, making it considerable

as a non-critical load. Considering the vehicle 𝑠 in the EV fleet 𝒮, by the definition of an arrival time,

𝑇𝑎𝑟𝑟𝑠 , and a departure time, 𝑇
𝑑𝑒𝑝
𝑠 , a time slot of connection is defined. During this, the vehicle may or may

not charge with a certain power, initialized as 𝑝𝐸𝑉𝑡,𝑠 and bounded by 𝑃𝐸𝑉𝑠 and 𝑃
𝐸𝑉

𝑠 , all expressed in 𝑘𝑊 .

This concept is mathematically shown in equation 3.53. Here, 𝑃𝐸𝑉𝑠 is usually set to zero, it is changed to a

negative value in case V2G is implemented.
𝑃𝐸𝑉𝑠 ≤ 𝑝𝐸𝑉𝑡,𝑠 ≤ 𝑃

𝐸𝑉

𝑠 if 𝑇𝑎𝑟𝑟𝑠 ≤ 𝑡 ≤ 𝑇𝑑𝑒𝑝𝑠

𝑝𝐸𝑉𝑡,𝑠 = 0 otherwise

(3.53)

At the same time, an EV can be considered as a battery able to store energy. As a result, a State of Energy

(SOE), 𝑒𝐸𝑉𝑡,𝑠 , in 𝑘𝑊ℎ, can be defined. As already discussed for the heating system and the BESS, the same

physical principle of equation 3.26 and 3.52 can be applied to EVs as in equation 3.54.{
𝑒𝐸𝑉𝑡,𝑠 = 𝐿𝐸𝑉𝑠 · 𝑒𝐸𝑉

𝑡−1,𝑠
+ 𝜂𝐸𝑉𝑠 · 𝑝𝐸𝑉𝑡,𝑠 · 𝛿𝑡 if 𝑝𝐸𝑉𝑡,𝑠 ≥ 0 (charging)

𝑒𝐸𝑉𝑡,𝑠 = 𝐿𝐸𝑉𝑠 · 𝑒𝐸𝑉
𝑡−1,𝑠

+ 1

𝜂𝐸𝑉𝑠
· 𝑝𝐸𝑉𝑡,𝑠 · 𝛿𝑡 if 𝑝𝐸𝑉𝑡,𝑠 < 0 (discharging)

(3.54)

The terms 𝐿𝐸𝑉𝑠 and 𝜂𝐸𝑉𝑠 are again introduced to express the battery losses. As discussed in the previous

section, this term is set to one. As a result, the SOE expression can be merged into one as in equation 3.55

[21].

𝑒𝐸𝑉𝑡,𝑠 = 𝑒𝐸𝑉𝑡−1,𝑠 + 𝑝
𝐸𝑉
𝑡,𝑠 · 𝛿𝑡 (3.55)

In addition to equation 3.53 and equation 3.55, equation 3.56 allows expresses the charging behaviour of

the general vehicle 𝑠. 
𝑒𝐸𝑉𝑡,𝑠 = 0 if 𝑡 ≤ 𝑇𝑎𝑟𝑟𝑠

0 ≤ 𝑒𝐸𝑉𝑡,𝑠 ≤ 𝐸
𝐸𝑉

𝑠 if 𝑇𝑎𝑟𝑟𝑠 < 𝑡 ≤ 𝑇𝑑𝑒𝑝𝑠

𝑒𝐸𝑉𝑡,𝑠 = 𝐸
𝐸𝑉

𝑠 · 𝛾𝐸𝑉𝑠 if 𝑡 > 𝑇
𝑑𝑒𝑝
𝑠

(3.56)

where the initial state of energy at the time of connection 𝑇𝑎𝑟𝑟𝑠 is set to zero while 𝐸
𝐸𝑉

𝑠 expresses the

maximum energy of charge, or in other words 100% SOC.

It is important to mention that the SOE considered does not represent the real charging/discharging

of the EV. Indeed, the variable 𝑒𝐸𝑉𝑡,𝑠 expresses the EV’s battery behaviour only from the point of view

of the charger and the energy system, able to detect changes only when the car is connected. In other

words, when a vehicle connects, the charger registers only how much energy is needed to fully complete

the car battery. As a result, for the scope of the model, other information about the vehicle is not needed.

Moreover, as expressed in equation 3.56, the maximum EV battery capacity 𝐸
𝐸𝑉

𝑠 is multiplied by the

parameter 𝛾𝐸𝑉𝑠 , which represents the final minimum SOC that vehicles need to reach. This is introduced

in order to further increase flexibility in the system and make the charging boundaries a soft constraint.

This variable is thus bounded as in equation 3.57. If, for instance, Γ𝐸𝑉 = 0.7, all vehicles will be charged

at 70% minimum of the final state of charge.

Γ𝐸𝑉 ≤ 𝛾𝐸𝑉𝑠 ≤ 1 (3.57)

3.4.5. Energy system balance
Finally, the balancing of the system takes place. For every time step 𝑡, all electricity introduced in the

energy system must be consumed by the loads. As discussed in this chapter, this can be resumed as in

equation 3.58. ∑
𝑝∈𝒫

𝑝𝑃𝑉𝑡,𝑝 − 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 + 𝑝𝑔𝑟𝑖𝑑𝑡 =
∑
𝑠∈𝒮

𝑝𝐸𝑉𝑡,𝑠 +
∑
ℎ∈ℋ

𝑝𝐻𝑃
𝑡,ℎ

+ 𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 +
∑
𝑙∈ℒ

𝑝𝑒𝑙
𝑡 ,𝑙

(3.58)

in which the power supply is expressed on the left-hand side while the power demand is on the right-hand

side.
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The parameter 𝑝𝑒𝑙
𝑡 ,𝑙

represents the electrical demand of load 𝑙 at time 𝑡 in 𝑘𝑊 . As a result, the power

withdrawal from the grid at the generic time 𝑡 can be defined as:

𝑝
𝑔𝑟𝑖𝑑

𝑡 =
∑
𝑠∈𝒮

𝑝𝐸𝑉𝑡,𝑠 +
∑
ℎ∈ℋ

𝑝𝐻𝑃
𝑡,ℎ

+ 𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 + 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 +
∑
𝑙∈ℒ

𝑝𝑒𝑙
𝑡 ,𝑙

−
∑
𝑝∈𝒫

𝑝𝑃𝑉𝑡,𝑝 (3.59)

The energy system is designed to operate as an on-grid district-size system, characterized by one or

multiple Points of Connection (POC). Each POC represents the device that connects the low-voltage

energy feeder(s) of the energy system to the distribution grid. Accordingly, each of these must be

constrained by a maximum power, expressed as 𝑃
𝑡𝑟𝑎 𝑓 𝑜

in 𝑘𝑊 , which defines the maximum technical

or contracted limit of power withdrawal. This is expressed in equation 3.60. In the next chapter,

consideration regarding this parameter is further argued.

𝑝
𝑔𝑟𝑖𝑑

𝑡 ≤ 𝑃
𝑡𝑟𝑎 𝑓 𝑜

(3.60)

3.5. Model of the energy system
In this chapter, the different resources integrated into the energy system were analyzed in theory and

the respective models were argued. In the following section, the whole model design is summarized,

showing the constraints and the objectives.

As shown along section 3.5, each DER integrated into the energy system can be modelled independently.

However, these models must communicate with each other in order to describe the functioning of the full

energy system. As a result, all defined constraints must be connected. In the list of equations below, the

full base model constraints are gathered as mathematical expressions implemented in the Python code.

PV:

𝑝𝑃𝑉𝑡,𝑝 = 𝐺𝑡 ,𝑝 · 𝜂𝑝𝑎𝑛𝑒𝑙𝑝 · 𝐴𝑝𝑎𝑛𝑒𝑙𝑝 · 𝑁𝑝𝑎𝑛𝑒𝑙
𝑝 ∀𝑡 ∈ 𝒯 ,∀𝑝 ∈ 𝒫 (3.7)
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Heating system:

𝐶𝑂𝑃𝑡 ,ℎ · 𝑝𝐻𝑃𝑡,ℎ = |𝑞𝐻𝑃
𝑡,ℎ

| ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.10)

0 ≤ 𝑝𝐻𝑃
𝑡,ℎ

≤ 𝑃
𝐻𝑃

ℎ ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.11)

𝑞𝐻𝑃
𝑡,ℎ

=
.
𝑚 · 𝐶𝑝𝑤 · (𝑇1

𝑡 ,ℎ
− 𝑇4

𝑡 ,ℎ
) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.12)

𝑄𝑑
𝑡,ℎ

=
.
𝑚 · 𝐶𝑝𝑤 · (𝑇2

𝑡 ,ℎ
− 𝑇3

𝑡 ,ℎ
) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.13)

𝑄𝑑
𝑡,ℎ

= 𝑄𝑠ℎ
𝑡,ℎ

+𝑄ℎ𝑤
𝑡,ℎ

−𝑄𝑐𝑜𝑜𝑙
𝑡 ,ℎ

∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.14)

𝑞12

𝑡 ,ℎ
=

.
𝑚 · 𝐶𝑝𝑤 · (𝑇2

𝑡 ,ℎ
− 𝑇1

𝑡 ,ℎ
) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.20)

𝑞34

𝑡 ,ℎ
=

.
𝑚 · 𝐶𝑝𝑤 · (𝑇4

𝑡 ,ℎ
− 𝑇3

𝑡 ,ℎ
) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.21)

𝑄𝑑
𝑡,ℎ

= 𝑞𝐻𝑃
𝑡,ℎ

+ 𝑞12

𝑡 ,ℎ
+ 𝑞34

𝑡 ,ℎ
∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.24)

𝑒𝑃𝐶𝑀
𝑡,ℎ

= 𝐿𝑃𝐶𝑀
𝑡,ℎ

· 𝑒𝑃𝐶𝑀
𝑡−1,ℎ

− (𝑞12

𝑡 ,ℎ
+ 𝑞34

𝑡 ,ℎ
) · 𝛿𝑡 ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.26)

𝑒𝑃𝐶𝑀
𝑡,ℎ

≤ 𝐸𝐿
ℎ
+ (𝐸𝑆

ℎ
− 𝐸𝐿

ℎ
) · 𝑢𝑆

𝑡,ℎ
+ (𝐸𝑃𝐶𝑀ℎ − 𝐸𝐿

ℎ
) · 𝑢𝐿

𝑡,ℎ
∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.28)

𝑒𝑃𝐶𝑀
𝑡,ℎ

≥ 𝐸𝑆
ℎ
+ (𝐸𝐿

ℎ
− 𝐸𝑆

ℎ
) · 𝑢𝐿

𝑡,ℎ
+ (𝐸𝑃𝐶𝑀

ℎ
− 𝐸𝑆

ℎ
) · 𝑢𝑆

𝑡,ℎ
∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.29)

𝑢𝑆
𝑡,ℎ

+ 𝑢𝐿
𝑡,ℎ

≤ 1 ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.30)

𝑇𝑃𝐶𝑀
𝑡,ℎ

=

(
3600·𝑒𝑃𝐶𝑀

𝑡,ℎ

𝑚𝑃𝐶𝑀
ℎ

− ℎ𝑃𝐶𝑀
ℎ

· 𝑢𝐿
𝑡,ℎ

)
𝑐𝑃𝐶𝑀
ℎ

· (𝑢𝑆
𝑡,ℎ

+ 𝑢𝐿
𝑡,ℎ

) + 𝑇𝑚𝑒𝑙𝑡
ℎ

· (1 − 𝑢𝑆
𝑡,ℎ

− 𝑢𝐿
𝑡,ℎ

) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.31)

𝑇1

𝑡 ,ℎ
≤ 𝑇𝑃𝐶𝑀

𝑡,ℎ
+𝑄1 · 𝑢12

𝑡 ,ℎ
∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.33)

𝑇1

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ
−𝑄2 · (1 − 𝑢12

𝑡 ,ℎ
) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.34)

𝑇2

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ
· 𝑢12

𝑡 ,ℎ
+ 𝑇1

𝑡 ,ℎ
· (1 − 𝑢12

𝑡 ,ℎ
) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.35)

𝑇2

𝑡 ,ℎ
≤ 𝑇1

𝑡 ,ℎ
· 𝑢12

𝑡 ,ℎ
+ 𝑇𝑃𝐶𝑀

𝑡,ℎ
· (1 − 𝑢12

𝑡 ,ℎ
) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.36)

𝑇3

𝑡 ,ℎ
≤ 𝑇𝑃𝐶𝑀

𝑡,ℎ
+𝑄1 · 𝑢34

𝑡 ,ℎ
∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.37)

𝑇3

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ
−𝑄2 · (1 − 𝑢34

𝑡 ,ℎ
) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.38)

𝑇4

𝑡 ,ℎ
≥ 𝑇𝑃𝐶𝑀

𝑡,ℎ
· 𝑢34

𝑡 ,ℎ
+ 𝑇3

𝑡 ,ℎ
· (1 − 𝑢34

𝑡 ,ℎ
) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.39)

𝑇4

𝑡 ,ℎ
≤ 𝑇4

𝑡 ,ℎ
· 𝑢34

𝑡 ,ℎ
+ 𝑇𝑃𝐶𝑀

𝑡,ℎ
· (1 − 𝑢34

𝑡 ,ℎ
) ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.40)

𝑇ℎ ≤ 𝑇1

𝑡 ,ℎ
≤ 𝑇ℎ ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.41)

𝑇ℎ ≤ 𝑇2

𝑡 ,ℎ
≤ 𝑇ℎ ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.42)

𝑇ℎ ≤ 𝑇3

𝑡 ,ℎ
≤ 𝑇ℎ ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.43)

𝑇ℎ ≤ 𝑇4

𝑡 ,ℎ
≤ 𝑇ℎ ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.44)

𝑇ℎ ≤ 𝑇𝑃𝐶𝑀
𝑡,ℎ

≤ 𝑇ℎ ∀𝑡 ∈ 𝒯 ,∀ℎ ∈ ℋ (3.45)

BESS:

𝐸𝐵𝐸𝑆𝑆 ≤ 𝑒𝐵𝐸𝑆𝑆𝑡 ≤ 𝐸
𝐵𝐸𝑆𝑆 ∀𝑡 ∈ 𝒯 (3.46)

0 ≤ 𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 ≤ 𝑃
𝐵𝐸𝑆𝑆 ∀𝑡 ∈ 𝒯 (3.47)

𝑃𝐵𝐸𝑆𝑆 ≤ 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 ≤ 0 ∀𝑡 ∈ 𝒯 (3.48)

𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 · (1 − 𝑢𝐵𝐸𝑆𝑆𝑡 ) = 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 · 𝑢𝐵𝐸𝑆𝑆𝑡 ∀𝑡 ∈ 𝒯 (3.50)

𝑒𝐵𝐸𝑆𝑆𝑡 = 𝑒𝐵𝐸𝑆𝑆𝑡−1
+ (𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 + 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 ) · 𝛿𝑡 ∀𝑡 ∈ 𝒯 (3.52)
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EV fleet:

𝑝𝐸𝑉𝑡,𝑠 = 0 for 𝑡 < 𝑇𝑎𝑟𝑟𝑠 and 𝑡 > 𝑇
𝑑𝑒𝑝
𝑠 ,∀𝑠 ∈ 𝒮 (3.53)

𝑃𝐸𝑉𝑠 ≤ 𝑝𝐸𝑉𝑡,𝑠 ≤ 𝑃
𝐸𝑉

𝑠 for 𝑇𝑎𝑟𝑟𝑠 ≤ 𝑡 ≤ 𝑇𝑑𝑒𝑝𝑠 ,∀𝑠 ∈ 𝒮 (3.53)

𝑒𝐸𝑉𝑡,𝑠 = 𝑒𝐸𝑉𝑡−1,𝑠 + 𝑝
𝐸𝑉
𝑡,𝑠 · 𝛿𝑡 for 𝑇𝑎𝑟𝑟 < 𝑡 < 𝑇𝑑𝑒𝑝 ,∀𝑠 ∈ 𝒮 (3.55)

𝑒𝐸𝑉𝑡,𝑠 = 0 for 𝑡 ≤ 𝑇𝑎𝑟𝑟𝑠 ,∀𝑠 ∈ 𝒮 (3.56)

0 ≤ 𝑒𝐸𝑉𝑡,𝑠 ≤ 𝐸
𝐸𝑉

𝑠 for 𝑇𝑎𝑟𝑟𝑠 < 𝑡 ≤ 𝑇𝑑𝑒𝑝𝑠 ,∀𝑠 ∈ 𝒮 (3.56)

𝑒𝐸𝑉𝑡,𝑠 = 𝐸
𝐸𝑉

𝑠 · 𝛾𝐸𝑉 for 𝑡 > 𝑇𝑑𝑒𝑝 ,∀𝑠 ∈ 𝒮 (3.56)

Γ𝐸𝑉 ≤ 𝛾𝐸𝑉𝑆 ≤ 1 ∀𝑠 ∈ 𝒮 (3.57)

Balancing:

𝑝
𝑔𝑟𝑖𝑑

𝑡 =
∑
𝑠∈𝒮

𝑝𝐸𝑉𝑡,𝑠 +
∑
ℎ∈ℋ

𝑝𝐻𝑃
𝑡,ℎ

+ 𝑝𝐵𝐸𝑆𝑆,𝑐ℎ𝑡 + 𝑝𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑡 +
∑
𝑙∈ℒ

𝑝𝑒𝑙
𝑡 ,𝑙

−
∑
𝑝∈𝒫

𝑝𝑃𝑉𝑡,𝑝 ∀𝑡 ∈ 𝒯 (3.59)

𝑝
𝑔𝑟𝑖𝑑

𝑡 ≤ 𝑃
𝑡𝑟𝑎 𝑓 𝑜 ∀𝑡 ∈ 𝒯 (3.60)

On top of the above-listed constraints, an extra constraint is defined:

𝑝𝑝𝑒𝑎𝑘 ≥ 𝑝
𝑔𝑟𝑖𝑑

𝑡 ∀𝑡 ∈ 𝒯 𝑝𝑒𝑎𝑘
(3.61)

Depending on the definition of the peak hour set, 𝒯 𝑝𝑒𝑎𝑘
, this additional constraint specifies the time

period in which peak power reduction is performed, discussed further in the next chapter. Finally, the

optimization problem is characterized by an objective function. This is expressed below.

O.F. min[ 𝑝𝑝𝑒𝑎𝑘 − 𝜀 · (
∑
𝑠∈𝒮

𝛾𝐸𝑉𝑠 · 𝐸𝐸𝑉𝑠 +
∑
𝑠∈𝒮

∑
𝑡∈𝒯

𝑒𝐸𝑉𝑡,𝑠 −
∑
𝑡∈𝒯

(𝑆𝑂𝐸𝐵𝐸𝑆𝑆
𝑔𝑜𝑎𝑙

− 𝑒𝐵𝐸𝑆𝑆𝑡 )2 −
∑
ℎ∈ℋ

∑
𝑡∈𝒯

𝑝𝐻𝑃
𝑡,ℎ

) ] (3.62)

Therefore, the problem is defined as multi-objective optimization, implemented as a Mixed-Integer

Quadratic Programming (MIQP) and solved through a weighted-sum method. This is selected thanks to

its simplicity and due to the bi-objective nature of the problem. Indeed, besides the main objective of peak

power reduction, 𝑝𝑝𝑒𝑎𝑘 , secondary objectives must be included in order to obtain unique optimal solutions.

To compute this, the weight parameter 𝜀 is introduced in front of the secondary aims, making them

mathematically less important in the optimization objective. This is set to 10
−6

in order to differentiate

primary to secondary objectives. As expressed in equation 4.5, four secondary goals are introduce:

• Maximized final EV SOE. This is done through the variable 𝛾𝐸𝑉𝑠 , which represents the final

minimum state of charge and is bounded as equation 3.57;

• EV fast charging. By maximizing the area under the SOE curve, each vehicle aims to charge the

fastest possible;

• Minimized usage of the BESS. The battery storage is constrained to be used only if necessary for

the peak reduction. By minimizing the difference between the variable 𝑒𝐵𝐸𝑆𝑆𝑡 and a set state of

energy, 𝑆𝑂𝐸𝐵𝐸𝑆𝑆
𝑔𝑜𝑎𝑙

, the BESS will try to operate as close as possible to a defined SOC. For simplicity,

this set parameter is defined as 70% of the total battery capacity. This is selected to have a large

margin of discharge and a smaller freedom of charge, computed to reduce possible charging power

spikes right before the peak hours;

• Minimized heat pumps energy usage, done by minimizing the area under the curve of 𝑝𝐻𝑃
𝑡,ℎ

over

time for each heating network. This is expected to maximize the saving of energy and thus reduce

the losses of the heating system.



4
Description of the case study

In order to obtain concrete results for real implementations, a specific energy system has been studied

in the research. In this chapter, section 4.1 briefly describes the Energy Community of the case study,

showing the technologies involved and adding information to what is modelled in chapter 3. Then,

in section 4.2, all assumptions and reasoning followed during data acquisition are argued. Finally,

section 4.3 argue the different system designs in order to address grid congestion issues within various

scenarios according to the literature.

4.1. Case Study Description
The energy system of reference is a new residential area currently under construction in the city of

Utrecht, the Netherlands. It consists of a pilot project for a new era of sustainable urban construction,

including buildings with high energy classes.

The project’s energy system integrates multiple Distributed Energy Resources (DERs) and technologies

to meet the diverse energy demands. The primary sources of supply are the city electricity grid and

photovoltaic (PV) panels mounted on the rooftops of the buildings. The generated electricity is then

distributed to the various end-users, including residential houses, commercial spaces, and electric vehicle

chargers. To promote sustainable transportation and increase the system’s flexibility, EVs are part of

a shared fleet available to the residents. In addition, a large part of the electrical flow is directed to

a heating room where Ground-Source Heat Pumps (GSHPs) are installed. These are responsible for

meeting the heating, cooling and hot water demands of houses and community spaces through separate

heating networks. Finally, the system design considers a possible integration of battery storage solutions,

in order to again increase flexibility and assist congestion management. A general scheme of the energy

system considered in the research is shown in figure 4.1.

34
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Figure 4.1: Scheme of the energy system in study

For what concerns the heating system, a 4-pipe change-over design has been implemented for the case

study. It consists of two separate pipe networks that transport hot water at different temperatures. The

High-Temperature (HT) network is responsible for demands that require high supply temperatures, such

as hot water, while the Low-Temperature (LT) network is in charge of both space heating and cooling.

Thermal losses during hot water transport are proportional to the temperature difference between

the water and the surrounding environment. Therefore, to increase system efficiency, the change-over

mechanism is introduced in the LT network, allowing the system to provide low-temperature heating

and high-temperature cooling. Each network operates with dedicated heat pumps, making the system

more robust and reliable.

The heating system can then operate in two different modes:

• Heating mode. During cold seasons, when no space cooling is demanded and outdoor temperature

is below 15°𝐶 1, the system provides space heating through the LT network while hot water demand

is met through the HT water flow. In case of failure of low-temperature HPs, the HT network can

take over to provide the remaining space heating.

• Cooling mode. During warmer periods, when cooling is required and outdoor temperature

exceeds 15°𝐶 1 the system exploits the change-over design and the flow of water is reversed in the

Low-Temperature (LT) network. This is thus responsible for meeting the space cooling demand. In

parallel, space heating and hot water demands are fully met through the HT network. Since the

outdoor temperature is generally higher in these cases, thermal losses experienced with HT are

reduced compared to the winter months.

For simplicity, no interaction is considered between the two heating networks. This concept is

visualized in figure 4.2 below.

1Limit temperature is set to 15°𝐶 for the case study, but it can be easily re-adapted.
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Figure 4.2: 4-pipes change-over heating system

4.2. Data Description
This section describes the data collection process arguing and motivating assumptions in order to provide

a clear view of the energy model implemented.

As argued in subsection 3.4.1, the photovoltaic system is modelled based on historical data of

irradiance and relative position of PV modules and the sun. Two types of data can be distinguished

here: weather data, describing the variation of irradiance and sun position, and PV panel mounting

characteristics.

For what concerns the weather data, two sources were found and described in table 4.1

Reference Database Year Time in-

terval

Values Computation

Pfenninger et

al. [62]

MERRA-2

(Global)

2019 Hourly

• PV power output*

• DHI

• DIF

• Air temperature at 2

meters elevation

Ground-level

global irradi-

ance and top-

of-atmosphere

irradiance [62]

Pfeifroth et

al. [61]

PVGIS-

SARAH2

2020 Hourly

• PV power output*

• GHI

• DHI

• DIF

• Sun elevation

• Air temperature at 2

meters elevation

• Sun azimuth

Satellite-derived ir-

radiance [62]

*for 1 𝑘𝑊𝑝.

Table 4.1: References of weather data.
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Thanks to its longer timespan and more accurate data, the database PVGIS-SARAH2 was chosen [62].

In addition, the reference website provides a tool capable of effectively estimating the power output

of a PV system, given the tilt and azimuth angles of installations and estimated system losses. For the

solar system in the case study, data regarding the panel’s characteristics and mounting was implemented

with information given by the owner of the designed system. The module used in the whole system is a

JAM72S20 470/MR half-cell, monocrystalline c-Si module of 470𝑊𝑝 power rated.

For correctly defining the mounting parameters, different combinations of tilt and azimuth2 were

investigated and the total annual energy yield of data retrieved from the database was compared to the

one provided by the installer. The correct combination is found when the difference is negligible. The

selected mounting parameters are summarized below in table 4.2.

Parameter Building 00 Building 01 Building 05 Building 09

Tilt angle [°] 20 20 20 20

Azimuth [°] -40 -30 -40 -40

Table 4.2: Mounting parameters of PV systems.

Another set of data necessary to simulate the energy system’s functioning is the load demand. As

mentioned in section 4.1, the EC in analysis consists of an agglomerate of buildings in an urban envi-

ronment, which include dwellings, commercial activities and common areas. Based on the information

provided by the system’s project, the energy demand is divided into two categories: private households

and commercial spaces, each characterized by electrical, space heating, space cooling and hot water

demands.

The energy system used for the research considers 1’565 private households distributed in six

buildings, all connected to the energy system

The electrical load is expected to have an important impact on the final results and, therefore, the

accuracy of data is a crucial parameter. To have an hourly profile similar to what is expected in real

systems, the total electrical profile must be obtained with the superposition of single houses profiles and

preserve the general daily, weekly, seasonal and yearly patterns. To achieve this, five different household

load profiles provided in Quesada et al. [63] are used. This is selected since five different types of

dwellings are designed for the case study. This dataset provides the hourly measured electricity demand

of more than 20’000 Spanish buildings from 2014 to 2022. Due to the geographical difference, the data is

adapted to the case of The Netherlands by the coefficient 𝑐𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 as explained below:

𝑐𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =
𝐸𝑦∑

𝑡∈𝑌𝐸𝐴𝑅 𝑒𝑑𝑎𝑡𝑎
𝑡,𝑙

, (4.1)

where 𝑒𝑑𝑎𝑡𝑎
𝑡,𝑙

is the energy usage of house 𝑙 at time 𝑡 in 𝑘𝑊ℎ and 𝐸𝑦 is the annual average energy yield of a

general household in The Netherlands. According to Statistics Netherlands [1], this can be considered

2’860 𝑘𝑊ℎ/𝑦𝑟. This number was measured for the area of Zoetermeer in 2022 and can be generalized to

similar living spaces in the country [46]. Therefore, the coefficient 𝑐𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 is used to scale the electrical

profile of each household.

The same procedure is followed for the commercial space electrical profile. A general commercial

activity electrical profile is implemented and scaled from Quesada et al. [63]. The designer of the

residential area in the study includes a supermarket and other commercial spaces still undefined, for a

total area of 1’292𝑚2
. A study conducted by KTH [65] considers an average yearly electricity consumption

of 240
𝑘𝑊ℎ
𝑦𝑟 𝑚2

for supermarkets, resulting in a total yearly yield of 310’000 𝑘𝑊ℎ/𝑦𝑟. Table 4.3 below resumes

the scaling coefficients computed for each house type used.

2Basing on the technical drawing provided, azimuth was limited to a range between -10° and -60°
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Load type Scaling coefficient 𝑐𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐
House 1 0.808

House 2 1.076

House 3 2.694

House 4 2.386

House 5 1.285

Commercial spaces 30.060

Table 4.3: Scaling coefficient 𝑐𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 for electrical load obtained through equation 4.1, in

𝑘𝑊ℎ𝑚𝑜𝑑𝑒𝑙
𝑘𝑊ℎ𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒

.

Implementation of thermal demands are computed similarly. The data used is found in Ruhnau et al.

[67, 68], which provides hourly space heating and hot water demand profiles for a general residential

house and commercial space in The Netherlands from 2008 to 2022. In addition, the database provides

the Coefficient of Performance (COP) of GSHPs for the same location and timespan, which is then used

as discussed in subsection 3.4.2.

To fit the profiles to the case of study, the scaling factor 𝑐ℎ𝑒𝑎𝑡𝑖𝑛𝑔 is defined as:

𝑐ℎ𝑒𝑎𝑡𝑖𝑛𝑔 =
𝑄𝑟𝑎𝑡𝑒𝑑
𝑙

max

𝑡
(𝑄𝑑𝑎𝑡𝑎

𝑡,𝑙
)

(4.2)

in which 𝑄𝑟𝑎𝑡𝑒𝑑
𝑙

is the maximum power per house given by the local heating company, and 𝑄𝑑𝑎𝑡𝑎
𝑡,𝑙

is the

maximum heating power registered in the dataset, both in 𝑘𝑊/ℎ𝑜𝑢𝑠𝑒. Therefore, the scaling coefficient

𝑐ℎ𝑒𝑎𝑡𝑖𝑛𝑔 is used to obtain the correct profile of space heating and hot water for houses and commercial

spaces. These are resumed in table 4.4.

Load type Scaling coefficient 𝑐ℎ𝑒𝑎𝑡𝑖𝑛𝑔
Houses space heating 4.424

Houses hot water 5.609

Houses space cooling 1.057 · 10
−4

Commercial spaces space heating 0.254

Commercial spaces hot water 0.309

Commercial spaces space cooling 0.056

Table 4.4: Scaling coefficient 𝑐ℎ𝑒𝑎𝑡𝑖𝑛𝑔 for heating loads obtained through equation 4.2, in

𝑘𝑊𝑚𝑜𝑑𝑒𝑙
𝑘𝑊𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒

.

For what concerns space cooling, the used data refers to Mauree et al. [48], which provides demand

profiles adapted for the next decade based on records and climate change models for a neighbour energy

system. This dataset was chosen in order to obtain reliable results for the upcoming years. Since the

energy community in the analysis is still in the construction phase and aims to be an example to future

sustainable neighbourhoods, this assumption is valid considering the fast growth of cooling demand

predicted in the next years [38]. Therefore, the same procedure of equation 4.2 is followed to determine

the cooling scale coefficient, as shown in table 4.4.

The flexibility unit in the heating network is introduced by the Thermal Energy Storage (TES) device.

Thanks to its higher efficiency, reliability and controllability, phase-change material has been included in

the base system design in two different units, one for each pipe network. As explained in subsection 3.4.2,

every PCM TES is characterized by fixed parameters depending on the storage dimension and composite

used. Due to a lack of specific information from the system design, general paraffin PCMs are used for

the thermal storage units. This choice is related to the many chemical advantages of organic composites

over other types, and the relatively cheap cost of paraffin [86]. In order to maximally exploit the bi-phase

property of the paraffin, a closer look is given to the temperature constraints of the heating system.

According to the information available for the case study, the low-temperature network is limited to

delivering water at a temperature between 30°C and 40°C. As a result, the PCM chosen is the RT35HC ,

with melting temperature 𝑇𝑚𝑒𝑙𝑡
ℎ

of 35°C [66]. Similarly, since the high-temperature network must provide

hot water at temperatures higher than 58°C, the paraffin RT64HC is selected, with melting temperature

of 64°C [66]. Parameters are defined below in table 4.5.



4.2. Data Description 39

The design variable investigated in this research is the size of the PCM storage, which is determined

by the capacity of the composite in use and the time period of design. Following the design procedure

of Pans et al. [57], given the specified maximum and minimum temperatures of the heating system,

defined as 80°C and 10°C respectively, the total energy capacity per unit of mass results in 0.109 𝑘𝑊ℎ/𝑘𝑔,

computed through equation 4.3.

𝐸
𝑃𝐶𝑀

=
𝑇 · 𝑐𝑃𝐶𝑀

ℎ
+ ℎ𝑃𝐶𝑀

ℎ

3600

−
𝑇 · 𝑐𝑃𝐶𝑀

ℎ

3600

(4.3)

Considering then the heating and cooling demands described before, the peak values registered by the

system are 4’389 thermal 𝑘𝑊 . However, these numbers refer to the worst case in which the HPs cannot

be run for the whole selected time period and the demand is fixed to the maximum. Hence, the design

decisions for the TES are conservative.

According to the specification given from the current design, the TES has a defined capacity 𝐸
ℎ𝑒𝑎𝑡𝑖𝑛𝑔

of about 1’000 𝑘𝑊ℎ in the base design. As a result, the PCM mass is set to 9’174 𝑘𝑔 . Considering a

density of 880 𝑘𝑔/𝑚3
, the total volume occupied by a single thermal buffer is about 10.4 𝑚3

, which

corresponds to a 2.2x2.2x2.2 tank.

𝑚𝑃𝐶𝑀
ℎ

=
𝐸
ℎ𝑒𝑎𝑡𝑖𝑛𝑔

𝐸
𝑃𝐶𝑀

(4.4)

Parameter Low-temperature TES High-temperature TES

Specific heat [ 𝑘𝐽
𝑘𝑔𝐾

] 2 2

Latent heat [ 𝑘𝐽
𝑘𝑔
] 240 250

Melting temperature [°C] 35 64

Capacity [𝑘𝑊ℎ] 1’000 1’000

Density [𝑘𝑔/𝑚3] 880 880

Table 4.5: Properties of the phase-change material (PCM) thermal energy storage (TES) used in the analysis. Reference: [66].

Finally, the parameter 𝐿𝑃𝐶𝑀
𝑡,ℎ

represents the thermal losses of the TES in each time step. Following the

thermal storage described in Pans et al. [57], the PCM buffers can be designed under the conservative

assumption of 0.95 constant thermal efficiencies for the size mentioned above, meaning a thermal loss of

about 50 𝑘𝑊ℎ each time step for the selected size.

As discussed in section 4.1, the case of study’s energy system considers possible the installation

of a battery storage energy system in the energy community. The integration of such technology is

expected to have a strong impact on the final results, and therefore, data must be chosen thoroughly. On

a residential neighbourhood level, Pasqui et al. [58] argue that BESS design can go up to 1.5 𝑘𝑊ℎ/ℎ𝑜𝑢𝑠𝑒
for European dwellings. Considering an annual energy consumption of 2’860 𝑘𝑊ℎ per house, the total

EC residential load requires 12’364 𝑘𝑊ℎ per day. Since the TES was designed with a capacity of 1’000

𝑘𝑊ℎ, able to cover about one hour of the average total heating demand, the initial size of BESS analyzed

aims to have comparable results of the thermal counterpart, hence, 500 𝑘𝑊ℎ.

Furthermore, besides the battery capacity, other key parameters are the maximum and minimum

power of charge-discharge, the so-called C-rate, and the maximum and minimum SOC allowed for

preserving the device lifetime. The first is varied from 0.5 to 1, meaning that the BESS can fully

discharge 50% and 100% in an hour respectively. While a lower C-rate increases the battery efficiency of

operation and reliability, peak reduction can be more easily achieved by a higher value of discharge [25].

Furthermore, the state of charge range is defined to be between 15% and 85% in order to preserve the

battery efficiency throughout time [58]. As a result, the battery parameters will be chosen as described in

table 4.6.
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Parameter Value

Battery capacity [𝑘𝑊ℎ] 500

Maximum SOC [%] 85

Minimum SOC [%] 15

C-rate [%] 0.5

Table 4.6: Parameters of the battery energy storage system (BESS) used in the analysis.

Among the many innovations introduced in the energy system in analysis, flexibility is further

increased thanks to the shared EV fleet designed for the neighbourhood. The data used is a confidential

collection of records for shared EVs in the Netherlands. It provides the following parameters:

• EV charging volume;

• Time of arrival;

• Time of departure;

It’s important to mention that the EV charging volume is measured relatively to the car SOC at the

time of connection. In other words, when the EV connects at 𝑇𝑎𝑟𝑟𝑠 , the charger registers as charging

volume the difference between the maximum battery capacity of the vehicle and the initial state of charge.

As a result, the SOE profile does not express the whole EV range, but only what the charge is able to read.

To reconstruct the full SOC behaviour of each EV, further data is needed. However, this goes out of the

scope of the project and only considerations will be made in the results discussion.

Moreover, for what concerns the charger size, a standard level-2 11 𝑘𝑊 bi-directional charger is

chosen. This allows moderately fast charging (on average 4-6 hours) of the EV and makes it possible to

introduce vehicles-to-grid scenarios [41].

Finally, the energy system is connected to the public grid through medium-voltage transformers,

with a technical maximum power of withdrawal defined by the transformer type and the contract with

the distribution operator. Following the directives of the current system design, one grid connection is

planned for each building of the energy community. Hence, a 1 𝑀𝑊 point of connection per building

is defined, for a total of 6 𝑀𝑊 . This assumption can be adjusted according to what the DSO allows.

However, for the scope of this project, the maximum power available from the grid, which will be in

any case reduced during peak hours, is considered to not affect the congestion management study.

Furthermore, the energy system has been designed to be able to ideally operate without any congestion

management mechanism. As a result, the transformer limit is initialized high enough to provide feasible

solutions to the research.

4.3. Grid Connection Agreements: cases description
The literature analyzed in chapter 1 gave an overview of the existing congestion management mechanisms

and frameworks usually applied to energy communities affected by network congestion problems and

to projects requesting a new connection. Recalling the details of the case study, the energy system

considered falls into this latter category. As a result, given the recent updates on how the Dutch actors

are planning to overcome the problem of new connection capacity, we aim to integrate the literature with

the results of this research.

To recap, the potential new mechanisms offered in the recently published Draft Decision ATR facilitate

new connections if the requesting party can adapt to certain characteristics. By selecting a Time-based

Transmission Right (TTR) contract, transmission is guaranteed only during the off-peak hours defined

the day ahead. Despite the advantage of having a significant discount, the uncertainties related to this

flexible agreement are plenty and difficult to predict.

Conversely, by selecting a Time-Block-based Transmission Right (TBTR) contract, power withdrawal

is not guaranteed during predefined periods agreed with the DSO. As a result, the daily uncertainty is

relieved in this case.

With a Non-Firm ATO (NFA) contract, instead, the connected party must be able to operate fully

off-grid during peak hours, since transmission can be interrupted without prior notice.

Finally, a Capacity Reduction Contract (CBC) agreement invites the connected party to reduce its

consumption during peak hours with an economic benefit per 𝑘𝑊 reduced. However, it requires a

normal Connection and Transmission Agreement (CTA) to be applied.
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These transmission agreements hardly apply to residential loads, mainly due to the many critical

loads that cannot be easily shed. TTR, for instance, is so far applicable only for high-voltage connections,

and therefore cannot be considered in an urban environment. The TBTR instead, facilitate the primary

connection but requires the system to be able to operate fully off-grid in case no capacity is available.

An extended version is the NFA, which predictability is even more challenging. Hence, these contracts

appear more inviting for industrial areas or businesses that can easily shift their consumption according

to the DSO requirements. However, this problem can be overcome if an initial and reduced CTA is

established and a flexible contract is signed for the remaining required capacity. Another option that may

be attractive for urban projects is the CBC agreement. The implementation of such a mechanism, though,

requires the agreement on a normal full-capacity CTA first, which is currently of short availability. As

a result, in this research, we aim to show how the system flexibility can aid the EC to sign the CTA

exploiting the advantages introduced by the CBC, TBTR and NFA mechanisms.

Scenario 1: no flattening

Considering the case study’s energy system as designed now, the process of obtaining a connection is

expected to be challenging and long. To evaluate the improvements proposed in this research, a base

case scenario is introduced. This simulates the energy system’s current design without any congestion

management mechanism implemented. It is used for pure comparison to show the advantages of the

other cases. Therefore, it is expected to provide the worst result in terms of the research goal.

In order to set the optimization problem correctly, the base case aims to operate in a hypothetical case,

for which EVs are charged as fast as possible and the energy use of the heating system is minimized.

Furthermore, leaving degrees of freedom to the system easily leads to a non-unique solution, meaning

that the model may return different results every time. This issue is resolved through the secondary

objectives of EV fast charging and HP energy saving, as previously discussed in section 3.5.

It is thus crucial to integrate further information to obtain a single-solution optimization problem.

To explore the potential of the energy system flexibility, different scenarios are introduced:

Scenario 2: Day-long curve flattening

As mentioned, the first step is to obtain a Capacity Connection Agreement (CTA) with the DSO, which

is sized on the maximum estimated peak power. The lower its value the cheaper and the easier the

agreement is to obtain. To address this, the first objective is to reduce the general daily peak power. This

is explored in scenario 2, which, as the name suggests, aims to flatten the daily grid power withdrawal

curve to facilitate getting the CTA. Referring to the model described in the previous chapter, the peak

hours are then defined as 𝒯 𝑝𝑒𝑎𝑘 = [0, 24].

Scenario 3: Morning peak hours

In order to assist congestion management and possibly implement the TBTR or CBC contracts mentioned,

grid power withdrawal is then to be minimized during the expected peak hours. Therefore, the second

case narrows the peak reduction to the sole morning peak window, set as 𝒯 𝑝𝑒𝑎𝑘 = [8, 12].

Scenario 4: Evening peak hours

Accordingly, the solely evening peak power reduction is analyzed in the next scenario. Here, the peak

hours are defined as 𝒯 𝑝𝑒𝑎𝑘 = [18, 22].

Scenario 5: Morning and evening peak hours

Finally, in urban areas, it is likely that grid congestion occurs both in the morning and in the evening.

This case aims to explore how the system can adapt to a double peak hours window, defined as

𝒯 𝑝𝑒𝑎𝑘 = [8, 12] ∪ [18, 22].

In order to achieve these objectives, the flexibility of the energy system must be exploited. Therefore,

five different designs were identified in order to explore the potential of each integrated DER.
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4.3.1. Base case: no peak reduction
The base case scenario considers the current energy system without any congestion management approach

implemented. Therefore, the objective function aims to optimise the energy system’s functioning as in

equation 4.5 below.

O.F. min[ −𝜀 · (
∑
𝑠∈𝒮

∑
𝑡∈𝒯

𝑒𝐸𝑉𝑡,𝑠 −
∑
ℎ∈ℋ

∑
𝑡∈𝒯

𝑝𝐻𝑃
𝑡,ℎ

) ] (4.5)

It is important to mention that the minimum final EV SOC and the BESS secondary objectives can be

neglected since no batteries are included and 𝛾𝐸𝑉𝑠 is constrained to 1.

4.3.2. Current system case: simple peak reduction
The first system design that will be compared to the hypothetical solution shown in the base case

considers the simple integration of a demand-side management mechanism. Therefore, the flexibility of

the EC as it is designed now is investigated throughout the different scenarios. In this case, the objective

function becomes:

O.F. min[ 𝑝𝑝𝑒𝑎𝑘 − 𝜀 · (
∑
𝑠∈𝒮

∑
𝑡∈𝒯

𝑒𝐸𝑉𝑡,𝑠 −
∑
ℎ∈ℋ

∑
𝑡∈𝒯

𝑝𝐻𝑃
𝑡,ℎ

) ] (4.6)

Besides the implementation of a grid congestion mechanism, the system design may not be sufficiently

flexible to withstand the regulations forced by the DSO during peak hours. For this reason, the next cases

explore technical changes in the energy system to observe the impact of these on the goal of congestion

management.

4.3.3. Moderate EV charging case
The first design exploits the shared fleet of electric vehicles, aiming to increase their flexibility by softening

the final charging constraint. Thanks to their non-private nature, consumers in the energy community

are expected to prefer vehicles with higher SOC at the booking time. For this reason, the constraint of the

final state of charge 𝛾𝐸𝑉𝑠 is set free within 70-100%, exploring how decisive this constraint is on the final

results (Equation 4.8). As a result, the objective function follows the expression:

O.F. min[ 𝑝𝑝𝑒𝑎𝑘 − 𝜀 · (
∑
𝑠∈𝒮

𝛾𝐸𝑉𝑠 · 𝐸𝐸𝑉𝑠 +
∑
𝑠∈𝒮

∑
𝑡∈𝒯

𝑒𝐸𝑉𝑡,𝑠 −
∑
ℎ∈ℋ

∑
𝑡∈𝒯

𝑝𝐻𝑃
𝑡,ℎ

) ] (4.7)

Γ𝐸𝑉𝑠 = 70% (4.8)

4.3.4. V2G case: integration of vehicle-to-grid
The EC in analysis is expected to become fully inaugurated by the end of 2024 and act as an example to

future urban construction areas. Hence, innovative technologies are expected to be tested and integrated

into the system, first of all, vehicle-to-grid. This design considers the possible future case for which all EV

chargers can operate in a bi-directional manner, allowing the car to behave like a battery. It’s important

to mention that each vehicle is still subjected to the constraint of full charge by the time of departure. As

a result, no relevant negative result is expected compared to the current system design.

In this case, the objective function is once again the one expressed in equation 4.6. The only difference

concerns the charging power, 𝑝𝐸𝑉𝑡,𝑠 , which can now be both positive and negative (meaning grid feeding).

Hence, the lower bound 𝑃𝐸𝑉𝑠 of equation 3.53 is now set as negative 𝑃
𝐸𝑉

𝑠 :

𝑃𝐸𝑉𝑠 = −𝑃𝐸𝑉𝑠 (4.9)

4.3.5. TES case: increased size of the thermal storage
Another flexible technology included in the basic system design is Thermal Energy Storage (TES). This

design considers the possibility of increasing the capacity of such a device, investigating how this affects

the other resources in the system and assisting the primary goal of peak reduction.

In other words, the system design is the same as in the current system case, except for a larger size

thermal buffer, now set to 50’000 𝑘𝑔, or 5’450 𝑘𝑊ℎ. As a result, the objective function is again as shown

in equation 4.6.
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4.3.6. BESS case: integration of a battery storage system
Finally, the last design considered in this research includes the installation of battery storage. For the

scope of this research, this device is introduced and analyzed with the only scope of assisting grid

congestion management. Its characteristics are then set to 500 𝑘𝑊ℎ and 0.5 of C-rate. Although BESS

results in an optimal tool for normal rescheduling, the goal is again set for reducing power during peak

hours. As a result, the research output doesn’t exclude that there may be a more optimal operation

method for this device. To avoid this, another secondary objective is included in the objective function,

as shown below in equation 4.10. By minimizing the quadratic difference between the BESS SOC and its

set goal, the usage of the battery is minimized and a unique solution can be computed.

O.F. min[ 𝑝𝑝𝑒𝑎𝑘 − 𝜀 · (
∑
𝑠∈𝒮

∑
𝑡∈𝒯

𝑒𝐸𝑉𝑡,𝑠 −
∑
ℎ∈ℋ

∑
𝑡∈𝒯

𝑝𝐻𝑃
𝑡,ℎ

−
∑
𝑡∈𝒯

(𝑆𝑂𝐸𝐵𝐸𝑆𝑆
𝑔𝑜𝑎𝑙

− 𝑒𝐵𝐸𝑆𝑆𝑡 )2) ] (4.10)

To conclude, in order to make more clear what each design explores, table 4.7 below summarises the

different cases while table 4.8 resumes all the scenarios characteristics.

Case name Fixed final 𝑆𝑂𝐶𝐸𝑉 V2G Increased TES Integration of BESS Peak reduction
Base case ✓ x x x x

Current system ✓ x x x ✓
Moderate EV charging x x x x ✓

V2G ✓ ✓ x x ✓
TES ✓ x ✓ x ✓
BESS ✓ x x ✓ ✓

Table 4.7: Summary of differences between the designs.

Scenario: Peak hours
Base case -

Day-long curve flattening from 00:00 to 23:59

Morning peak hours from 08:00 to 12:00

Evening peak hours from 18:00 to 22:00

Morning and evening peak hours from 08:00 to 12:00 and from 18:00 to 22:00

Table 4.8: Summary of the different scenarios considered.
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Analysis of results

As initially stated in chapter 1, the main scope of the project is to investigate how the flexibility of an

energy system can be exploited to tackle the issues related to grid congestion. After having argued

the different system designs used for the case study, one-year hourly simulations were performed for

the defined scenarios. This chapter provides a deep analysis of the results discussing the findings and

comparing the various designs for the different scenarios selected.

In order to provide a clear and organized analysis of results, this section is structured in five subsections

as follows: section 5.1 argues the functioning of the base case providing an overview of the system

functioning if no congestion occurs. Next, section 5.2 examines the impact of a full-day power reduction

on the system behaviour as described in scenario 2. Then, section 5.3 explores the findings for peak

reduction during the morning peak while section 5.4 explores the evening counterpart. Finally section 5.5

discusses the results in the case where both morning and evening peaks are managed.

To prove the correct functionality of the model and describe the system behaviour in the real case,

the analysis of the results is organized by selecting four representative days, one per season, and the

worst-case day, meaning the day with the highest peak power registered. These will be further considered

in the report as follows:

• Winter day: for the winter season, 25/01 is chosen as sample day. In cold periods, the system

is expected to receive most of the electricity supply from the grid, due to low irradiation, and to

register high heating demand from the households. As a result, in terms of grid power demand,

this day is expected to plot the highest curve and therefore represent the worst case.

• Spring day: for the spring season, 04/05 is selected. Here, temperatures are expected to be higher

and therefore, lower heating demand. Moreover, the higher penetration of solar energy is expected

to reduce the dependency on the grid during the central day.

• Summer day: 09/07 is chosen as a sample day for the summer season. In this case, high production

of PV power and high temperatures are expected, making the heating system operate mainly in

cooling mode. Hence, the change-over heating system is expected to shift all the heating demand

to the HT network, while the LT one is responsible for cooling.

• Autumn day: for the fall, 13/10 is considered. Although the results may be similar to the spring

case, lower sun radiation is expected to occur. Moreover, being the beginning of October, the

heating demand is expected to be lower, resulting then in reduced total grid power withdrawal.

• Worst-case: the highest peak power registered in the base case is on the 23/10. This day is

considered thus the design base for the worst-case approach.

For all the scenarios investigated in this chapter, meaning the five cases described in section 4.3, the

selected days will have the same solar irradiation as well as the same electrical and thermal demands.

These are shown here in figure 5.1.

During each day, different influx of EVs is registered, as shown below in figure 5.2. While Spring day,

Summer day and Autumn day show a large fleet of vehicles connected, Winter day and Worst-case represent

anomalous cases, presenting only a few car connections for the whole day. This low influx of EVs can be
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attributed to the nature of the data used, which may be a wrong representation of the real case. However,

this is expected to strongly influence the results in the cases for which flexibility is attributed to the EV

charging plaza and assist in understanding better the role of the different DERs’ flexibility.

Figure 5.1: PV power generation and demands for the selected days.

Figure 5.2: Influx of EV in the analyzed days. The plot shows the arrival time on the horizontal axis and the departure time on the

vertical axis.
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5.1. Base case scenario
The base scenario describes the system operation without any congestion mechanisms integrated. The

goal is to describe an ideal case aiming to minimize the heating system energy usage and perform fast

charging of the EVs, as specified in the objective in equation 4.5. As a result, scheduling is expected to

organize the system behaviour such that a unique solution is found.

Figure 5.3: 𝑝𝑔𝑟𝑖𝑑𝑡 in the selected sample days for the base case.

Figure 5.3 shows the total grid power withdrawal during the selected days. Comparing these profiles

with the demands in figure 5.1, it is possible to notice that the system tends to follow the electrical and

heating demand curves, meaning that the EV charging is evenly spread throughout the day and the TES

is disconnected.

The EV fleet represents the additional flexible load that must be met during the day in analysis.

However, the fast charging objective specified for the base case drives the system to charge each vehicle

immediately after arrival. As a result, the grid power demand is expected to spike when many vehicles

connect to the system.

Figure 5.2 shows the electric vehicle fleet influx during the selected days. The plots allow us to divide

the EV into two groups (visible by the two columns of arrival time): those connected from the previous

day and those connecting on the day in analysis. Due to the fast charging objective, the system is expected

to mainly take care of the second group, while the first can typically be considered already fully charged

within the first few hours of the current day. As a result, the EV fleet charging profile results flat until the

start of the second group. This is confirmed in figure 5.4, which shows that the charging profile of the EV

fleet begins around the morning hours for the base case.

Figure 5.4: 𝑝𝐸𝑉𝑡,𝑠 in the selected sample days for the base case.

The second objective is to optimize the heat pump operation for minimal energy usage. Due to
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significant losses connected to the thermal energy storage unit, its use is minimized in the base case,

leading the heat pumps to directly follow the demand profiles.

However, observing the heat pump power profile, shown in figure 5.5, the Autumn day experiences a

drastic drop in the late morning to then maintain null their involvement for the low-temperature network.

This is because the heating system switches to cooling mode. Such behaviour suggests that the thermal

energy storage provides sufficient inertia for the heating system to meet the low space cooling demand

without need of heat pumps. This mode of operation is less energy-intensive for the low-temperature

heat pumps and is therefore preferred by the optimization model.

In addition, the change over system instantaneously transfers the space heating demand to the

high-temperature network, which power usage is accordingly increased for the Autumn day. This is

noticeable in the second half of the day, where the high-temperature heat pump power results higher

than the registered hot water demand.

Figure 5.5: 𝑝𝐻𝑃
𝑡,ℎ

in the selected sample days for the base case. The plot shows the high-temperature networks (in red) and the

low-temperature network (in blue) power profiles.

Finally, to generalize the observations from the five sample days, the yearly distribution of grid power

withdrawal is analyzed. Figure 5.6 below shows the quantile distribution for the year in analysis, from

the 5th, in blue, to the 95th percentile, in red, while the mean profile is shown in black. It can be observed

that the maximum peak generally occurs during the evening hours, aligning with the findings discussed

in the literature. Additionally, a smaller hump is experienced in the early morning, representing the

start of the day for residential loads. While the mean curve results quite flat around noon, it is possible

to observe that there are a few days in which spikes are experienced also during the middle of the

day, shown in red by the 95th percentile. As a result, although the general curve follows the expected

behaviour, a few anomalous cases will be registered during the analyzed year.

Figure 5.6: Quantile distribution of 𝑝
𝑔𝑟𝑖𝑑

𝑡 for the base case. The plot shows the daily maximum mean power on the left-hand side.

To conclude, the performance in scenario 1 confirms the correct functioning of the energy system

model, simulating the optimal operation of the current EC design as if no congestion is experienced.
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Morning and/or evening peaks are registered on all selected days. As a result, the different congestion

management methods discussed in this research are expected to significantly improve the system in the

next scenarios.

5.2. Scenario 2: day-long curve flattening
In scenario 2, a day-long minimization of grid power withdrawal is performed, aiming to flatten the

curve and extinguish the peaks regardless of when these occur. The goal is to observe how the system

flexibility can assist in minimizing the maximum power expected, which is used to design the Capacity

Transmission Agreement (CTA) with the DSO for primary connection.

To do so, the worst-case approach is followed. In figure 5.7 below the daily peak estimated for the

base case scenario is shown along the year. The graph shows the power in 𝑘𝑊 on the left axis while

on the right axis, in orange, the percentage of reduction compared to the maximum peak registered in

the base case scenario, resulting in 3’072.62 𝑘𝑊 . As expected, the days with the highest peak power

registered fall in the winter season, with the highest value registered on the 23rd of December. This day is

thus considered representative for the whole system and the following arguments will be referring to it.

Figure 5.7: Daily maximum peak power registered during the analyzed year. The figure shows the base case (black) compared to

the other five different designs for the day-long curve flattening scenario. On the left-hand axis, the power in 𝑘𝑊 is shown while on

the right-hand axis the percentage of reduction compared to the base case yearly maximum is expressed.

First, the Current system design explores the impact of the simple Demand-Side Management (DSM) on

the current system design without considering further investments. The goal is to observe the potential

of the project as it is currently drafted.

Figure 5.8 shows the grid power withdrawal profile compared to the base case scenario for the selected

worst-case. The plot clearly pictures that implementing peak power minimization helps reduce peaks

of a significant value. The maximum peak is experienced in the early afternoon and clearly stands out

compared to the rest of the curve. This can be attributed to an anomalous spike in the demands, which

generates a spike that accordingly requires high power supply from the grid. In the current system design,

the improvement is related to the two flexible energy resources: the EV fleet and the TES.

Figure 5.8: 𝑝𝑔𝑟𝑖𝑑𝑡 in the different system designs for day-long curve flattening (scenario 2) in the selected sample day (worst case).

The plot includes the maximum registered power (next to the yellow line) and the percentage of reduction compared to the base

case (on the bottom-left corner of each plot)
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First, looking at the charging power of electric vehicles, the primary objective of peak power reduction

overcomes the fast charging and therefore re-scheduling is performed. While in the base scenario, the

evening peak was strongly increased by the EV charging need, implementing simple DSM shows how the

same final goal can be achieved by shifting the charging schedule by a few hours. However, the day in

analysis registers only 3 vehicle connections, of which only one results connected during the mentioned

peak. Hence, the full reduction cannot be only attributed to the EV fleet flexibility.

As a result, it becomes evident that the main contribution to peak reduction comes from the flexibility

of the heating system, particularly thanks to thermal storage. Both High-Temperature (HT) and Low-

Temperature (LT) networks register higher power usage right before the peak occurrence, to then

drastically drop during the peak indicating charging and discharging the TES units. The reason why

charging occurs in the immediate previous time step of the peak is related to the thermal losses defined

in the TES model.

Despite the selected day representing the worst-case scenario, the spike behaviour observed in the

demand could be related to an incorrect value. If this is the case, the final peak power used for the CTA

agreement will result in overestimation. To overcome this problem, the analysis can be extended to

the yearly distribution of the grid power withdrawal throughout the whole considered year. This is

depicted in figure 5.9 below, which shows the registered yearly distribution for scenario 2. It is important

to mention that while the power of interest is detected in the Worst-case day in analysis, the probability of

occurrence of this is quite rare and can be considered an anomalous case.

Observing the plot, a clear overall improvement from the base case is evident, especially in the evening

peak. However, the limited flexibility of the current system does not provide enough room to efficiently

flatten the curve. Hence, further improvement can be achieved when flexibility is increased.

Figure 5.9: Quantile plots of 𝑝
𝑔𝑟𝑖𝑑

𝑡 for day-long curve flattening (scenario 2), including the highest power of the 95th percentile

(next to the green line) and the percentage of reduction compared to the base case (on the top-right corner of each plot)

To explore the role of EV flexibility, the second design case with moderated EV charging is analyzed.

Here, the final State Of Charge (SOC) constraint is softened to allow more freedom in the charging

rescheduling and thus further curve flattening.

However, the peak registered in the selected day does not prove any further improvement compared

to the previous case. Such a conclusion is then confirmed by the yearly distribution plot, which shows

only a very slight improvement by softening the EV final SOC constraint.

This narrow difference can be attributed to the nature of the data used in the energy system model.

As discussed in the literature, the average connection time of each vehicle significantly increases when

considering a shared EV fleet. This can be observed in figure 5.10, which shows an average dwell time of

24 hours for the used data. Coupled with an average EV charging volume of about 14 𝑘𝑊ℎ , as expressed

by the bottom plot in figure 5.10, the general EV can fully charge in less than 3 hours. As a result, the

soft-constrained final SOC introduced in this system design results ineffective for the shared EV business

model.

To conclude, the flexibility improvement introduced in the moderate EV charging case results in

negligible benefit and may even lead to a disadvantage for users than a benefit for curve flattening.
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Figure 5.10: EV fleet duration of connection (top) and charging volume distribution (bottom). In red, the second plot highlights the

average charging volume.

It is thus proven that the flexibility of EV fleet charging has limitations in flattening the grid power

curve. However, the increased time of connection resulting from shared vehicles can prove more effective

if vehicle-to-grid (V2G) integration is implemented. This is explored through the system design V2G,

shown in green in worst-case plot (figure 5.8).

As expected, further improvement is registered compared to the first two designs. The system now

utilizes the connected EV as a form of electrical storage, charging them before the peak occurs and thus

supplying power to the grid during it.

However, as noted for the Current system and Moderate EV charging designs, the extent of grid power

reduction is strictly related to the influx of vehicles during the selected day. For instance, when peak

management is required in the early morning, the connected EVs are typically close to their maximum

State Of Charge (SOC), since they charged during the previous night, and therefore provide good

potential for reduction. Conversely, if the peak occurs in the evening, the second group of EVs can

contribute by delaying their charging later in the night, thus providing a good potential for electricity

supply. Moreover, there might be some days when very low influx of EVs is registered, due to holidays

or weekends for instance, strongly reducing the power assistance V2G can provide. This is proven in the

selected day, which observes only a single vehicle during the peak. As a result, the maximum potential

improvement the V2G can provide is the size of a single charger, hence 11 𝑘𝑊 .

It is though expected that the magnitude of reduction is largely improved when higher EV influx is

registered. When looking at the yearly distribution of grid power withdrawal, the peak difference with

the simple DSM design is improved by a good 40 𝑘𝑊 , showing the potential of V2G for the goal in this

scenario.

Therefore, the flexibility introduced by vehicle-to-grid technology fully exploits the advantages of

the shared EV fleet business model. Thanks to the long average connection time of each vehicle, the EV

fleet can assist effectively in day-long curve flattening but providing only a small reduction. However,

the uncertainty related to the EV influx makes this case unreliable for strong peak reduction, hence
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inadequate for the goal in scenario 2.

Exploring the flexibility of the other distributed energy resource mentioned, the TES system design

aims to investigate the impact of increased thermal energy storage capacity on scheduling for grid power

curve flattening.

As mentioned earlier in section 4.2, the phase-change material mass is increased by a factor of five in

this case, thus extending the system’s operational range. The aim is to understand to what extent a larger

thermal buffer can assist in grid power flattening.

From the central graph in the worst-case power plot, the peak power reduction is observed significantly

improved, registering a drop of about 800 𝑘𝑊 compared to the base case.

Considering then the yearly distribution, the grid power withdrawal curve appears much flatter in

this case compared to the other designs. This suggests that the size of the TES significantly influences the

system’s response to the objective of day-long power reduction. As a result, it is possible to conclude that

for the goal curve flattening, the flexibility associated with the TES has a much greater impact compared

to that of the EVs.

Proven the potential of energy storage for the goal of curve flattening, integration of a Battery Energy

Storage System (BESS) is expected to overcome the EV influx fluctuation issue observed in the V2G case.

This is explored in the last BESS system design.

As mentioned in section 4.2, the BESS size and C-rate are selected to cover the electrical demand for a

few hours to have a comparable demand covering to what discussed for the TES design. Hence, for the

initial analysis, a battery unit of 500 𝑘𝑊ℎ with a C-rate of 0.5 is considered.

From the single-day grid power curve, we can observe that battery storage provides a smaller degree

of flexibility compared to the thermal energy storage counterpart. This is evident in the plot, which

shows a system behaviour in between the Current system design and the TES design.

Due to the secondary objective specified in equation 4.10, the usage of the battery storage system

is minimized and activated only for peak reduction. This is confirmed by the battery power profile,

depicted in figure 5.11, which shows charging and discharging occurring only around peak hours while

remaining at zero during the rest of the time.

Considering the yearly distribution, we can confirm that the fixed size and the C-rate of electricity

storage provided in the BESS design have a strong impact on the final peak reduction goal. Indeed, the

parameters specified in this case allow a maximum peak reduction of 250 𝑘𝑊 , which requires about 23

EVs to be connected at the same time for the V2G competitor design. Hence, a higher C-rate or higher

BESS size is expected to provide even further reduction.

Figure 5.11: Charging and discharging power of BESS in the selected days.

It is thus confirmed the dependency of the final peak power on the storage unit size. In order to

investigate this further, sensitivity analyses are conducted for the selected day.

The left plot in figure 5.12 below shows the relationship between peak power and Thermal Energy

Storage (TES) size. As expected, increasing storage capacity improves the final outcome, resulting in a

lower peak power value. It is possible to observe that the curve becomes flat after a certain TES capacity.

This suggests that there exists an optimal size after which no further improvement can be achieved.

Conversely, when observing the sensitivity analysis for the battery storage, on the right in figure 5.12,

also the electrical demand can be covered by the BESS unit, allowing thus further potential reduction

than in the TES design. Moreover, it is possible to notice that the difference between the two analyzed
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C-rates is visible only for low battery capacities. This is because the higher the BESS size, the larger the

maximum discharge power and consequently the peak reduction potential. For example, if the peak

reduction requires 500 𝑘𝑊 of battery supply, the rate of discharge will be no different for batteries larger

than 1’000 𝑘𝑊ℎ.

Figure 5.12: Sensitivity analysis for the day-long curve flattening case in the selected day (worst-case), for the TES design (left) and

for the BESS design (right).

In summary, The goal in scenario 2 is to minimize the CTA design parameter, the maximum peak

power, for the whole year. Hence, the worst-case approach was followed in this analysis. While EV

flexibility and V2G integration offer some benefits, fixed storage solutions such as BESS and increased

TES are more reliable and effective options for curve flattening. The sensitivity analysis highlights the

importance of optimizing storage size to achieve the best performance for achieving the goal. Hence, to

identify the optimal solution, further considerations must be considered. This will be discussed later in

chapter 6.

5.3. Scenario 3: morning peak hours
Although having a flat curve throughout the entire day strongly helps the energy community in obtaining

grid connection, the distribution grid experiences congestion especially during the morning and evening

peaks [16]. In this case, a more targeted approach is followed and the goal becomes to focus the

minimization of grid power withdrawal only to the morning hours. This has been defined from 08:00 to

12:00, as discussed previously in section 4.3.

Unlike the previous scenario, this and the next cases explore how the system flexibility may invite

the implementation of the Capacity Limitation Contract (CBC) or the Time-Block-based Transmission

Right (TBTR) agreements and assist the system in better operation than the simple CTA. As a result, the

following analysis aims to describe the typical system behaviour and therefore will consider the four

sample days, one per season, to investigate the effectiveness of each design throughout the whole year.

The Current system design applies a simple Demand-Side Management (DSM) mechanism for peak

power minimization to the base case energy system. The total power withdrawal for the four selected

days is shown in figure 5.13 below. Compared to the base case, the reduction provided by the system’s

flexibility is relatively narrow.

As discussed in the previous scenario, the current system design offers flexibility through the heating

system and EV fleet. However, due to the lower influx of EVs during the morning hours selected,

rescheduling cannot effectively contribute to power reduction. This is evident in the charging power

profile, which shows a minimal difference compared to the base case, resulting in a limited improvement

potential for this design. It is thus possible to conclude that the peak reduction potential related to the

EV fleet is extremely low for the morning peak hours scenario.

Observing the behaviour of the heating system, the flexibility introduced by the small Thermal Energy

Storage (TES) results helpful for shifting heat pump power usage from hour to hour. This can be observed

in the heat pump power profile, which shows high utilization of heat pumps just before the peak hour

window to then drop during it. Unlike the all-day minimization performed in scenario 2, the focused

peak reduction in this case relives limitations on power spikes outside the selected window. As a result,
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the system can rapidly charge the TES right before the start of peak hours without further restrictions on

off-peak periods.

Therefore, as discussed in the previous scenario, the nature of shared EVs is non-optimal for the

moderate EV charging case. Indeed, due to the long average connection time, it is rare to observe cases in

which this flexibility is used.

Such a conclusion is then confirmed by the yearly distribution plots of both Current system and moderate
EV charging designs in this morning peak scenario 3. As pictured in figure 5.14, the difference between

the two can be considered negligible, emphasising the limited potential of EVs in this scenario.

While scenario 2 demonstrated that integrating vehicle-to-grid was effective for flattening the grid

power curve, applying the V2G system design to morning peak reduction leads to different conclusions.

As mentioned previously, the number of vehicles connected during the morning peak is reduced

compared to the night and evening periods. In addition, the constraints set on the EV fleet, as defined in

section 3.5, require that vehicles must be fully charged by their departure time. Since many EVs register

the scheduled to disconnect during the morning peak, vehicle-to-grid cannot be performed for these

vehicles. As a result, the effectiveness of V2G is further reduced for morning peak reduction performed

in scenario 3.

Nevertheless, when observing the yearly distribution, final results register a further reduction of 5%

for the V2G design, although the final peak power value results quite close to the findings in Current
system and moderate EV charging cases. This suggests that even though a very slight help can be attributed

to the vehicle-to-grid technology, the EVs flexibility can be maximally exploited by its implementation.

On the other side, the thermal energy storage flexibility is proven to be optimal for this scenario. This

is confirmed by the results of implementing the TES design, which shows a clear flattening and reduction

in grid power withdrawal during the morning period. This trend is evident in both single-day analysis

and the yearly grid power withdrawal distribution. Moreover, the fast charging of the TES units becomes

clear in the latter. This means that shifting the heat pump usage from the peak hours to the immediately

before the TES provides longer autonomy when its size is increased.

Furthermore, the effectiveness of fast charging for TES units becomes more clear in the latter analysis,

which shows a spike right before the start of the peak hours. This indicates that shifting heat pump usage

to just before the TES charging period provides longer autonomy when the TES size is increased.

However, the slower response of the system becomes more clear in this case. Comparing the yearly

distribution of the TES design with the other, it is possible to notice that the curve behaviour is also

different for a few hours before and after the defined time window. This effect is related to the modelling of

the heating system, which is characterized by a complex relation between the flowing water temperatures

and the phase change material temperature.

To conclude, system design TES confirms the effectiveness of thermal energy storage. However, its

final result is once again related to the size.

Having discussed the disadvantages related to the EV fleet in this scenario, it is shown that integrating

electrical storage into the BESS system design leads to a significant improvement, comparable to the

thermal storage counterpart. The yearly distribution plot shows a flat behaviour during the peak time

window, resulting in a lower and more constant power interaction with the electricity grid. Additionally,

while the TES experiences a significant spike before the time window starts, the battery storage design

shows the reduced losses allow a more optimal behaviour in flattening the morning peak.

As discussed earlier for scenario 2, the effectiveness of both TES and BESS designs strongly depends

on the storage size. Hence, sensitivity analysis is once again needed for this case. Figure 5.15 and figure

5.16 below show in beige how the different storage capacity influences the final peak power value in this

scenario.

Considering first the thermal storage case, we observe that even a slight increase in capacity from the

base case leads to a strong power reduction for most of the cases. However, different behaviours can be

observed from the four different selected days. While on the winter day the curve decreases gradually,

the other plots show a much steeper drop followed by stabilization at relatively small TES sizes. This

suggests that the thermal buffer is much more effective for warm days, while winter days result more

challenging to manage. Therefore, sizing based on the winter season is expected to be sufficiently large

to cover also the other season’s average day.



5.3. Scenario 3: morning peak hours 54

Figure 5.13: 𝑝𝑔𝑟𝑖𝑑𝑡 for morning peak reduction (scenario 3), including the maximum average power (on the left-hand side of each

plot) and the percentage of reduction compared to the base case (at the bottom of each plot).



5.3. Scenario 3: morning peak hours 55

Figure 5.14: Quantile plots of 𝑝
𝑔𝑟𝑖𝑑

𝑡 for morning peak reduction (scenario 3), including the maximum power and the percentage of

reduction compared to the base case for both the mean (in black) and the 95th percentile (in blue).

Next, the BESS size and discharge rate are investigated in a figure 5.16. From the graphs, we

observe similar trends to what described earlier in the day-long curve flattening scenario, with a further

improvement for large BESS units. Besides the curve decreasing linearly in all the selected days, the plots

show that the grid power withdrawal can be potentially set to zero if the system integrates a certain

battery capacity. This is observed mainly on the days with the lowest demand and highest PV production.

Hence, sizing based on the winter season results once again convenient for covering the whole year.

In addition, when significant spikes are registered during peak hours, a higher C-rate shows a better

performance in power reduction. This is attributed to the battery’s capability to discharge faster and

thus cover a larger area of the peak. Such effect can be observed, for instance, in the Autumn day, where

changing the C-rate from 0.5 to 1 results in an additional reduction of 200 kW.

Figure 5.15: Sensitivity analysis for correlation between peak power and the thermal storage capacity for the TES design in the four

sample days.
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Figure 5.16: Sensitivity analysis for correlation between peak power and the battery storage capacity for the BESS design in the

four sample days.

In summary, when performing peak power reduction from 08:00 to 12:00, the EV fleet showed limited

potential and scarce results. This was attributed to the lower influx of EVs and the vicinity of the

connected ones to the departure time, unable to perform V2G. Conversely, the definition of a smaller

time window suggested the usage of TES, which allows great reduction with large sizes thanks to its

autonomy. However, the best results were found with the BESS design. Thanks to the relatively low

demand and the high PV integration, battery storage was proven to allow significant reduction during

the morning peak, potentially making the whole system fully independent from the electricity grid.

Similar conclusions can be drawn when considering the 95th percentile, showing how the different

designs equally treat the peak reduction regardless of the peak size.

5.4. Scenario 4: evening peak hours
Similarly, the arguments discussed for the morning peak can be extended to the evening peak. As

indicated in the literature and as observed from the base case scenario, residential loads typically

experience their highest demand during this second peak, making congestion in distribution more

probable to occur in this period. For this reason, this section discusses the results of target peak

minimization in the time window of 18:00 to 22:00.

When observing the grid power interaction in figure 5.17, the Current system design leads results very

close to what was observed in scenario 2. This similarity can be attributed to the nature of the base case

profile. Indeed, for all selected days, the maximum peak is always registered during the evening peak. As

a result, whether the focus is on the entire day or only on the evening time window, the system flexibility

will act on the maximum detected peak only. Therefore, applying simple demand-side management

results in the same peak power value as in scenario 2.

However, differences are noticeable for the Autumn day. Since the focus is set only on the evening

peak, the model has no incentive to apply reductions during the mid-day peak, which in fact remains

untouched. Consequently, by concentrating peak reduction on the evening window, the system behaviour

during off-peak hours will be driven by the secondary objectives, making it close to what observed in the

base case.

Therefore, this scenario reinforces the conclusion drawn from the day-long curve flattening. While
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Figure 5.17: 𝑝𝑔𝑟𝑖𝑑𝑡 for evening peak reduction (scenario 4), including the maximum average power (on the left-hand side of each

plot) and the percentage of reduction compared to the base case (at the bottom of each plot).
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the flexibility of the current system design offers considerable potential for peak power reduction, it

is limited to efficiently mitigating the evening peak. Therefore, further analysis on both EV fleet and

heating system flexibility is explored.

While poor EV influx is registered in the morning, the evening hours typically see residents returning

home and connecting vehicles to the chargers. Then, according to the registered EV influx, most of

the cars are expected to stay connected throughout the whole night, allowing the system to delay the

charging and thus reduce the evening peak. Despite this bringing an advantage for the EV fleet flexibility,

no further improvement can be introduced by the moderate EV charging system design. This is confirmed

by both single-day analysis and yearly distribution, shown in figure 5.18. The latter especially shows a

very slight improvement related to a few particular cases. Thus, the charging flexibility of the EV fleet

does not improve evening peak minimization, confirming the observations from previous scenarios.

Figure 5.18: Quantile plots of 𝑝
𝑔𝑟𝑖𝑑

𝑡 for evening peak reduction (scenario 4), including the maximum power and the percentage of

reduction compared to the base case for both the mean (in black) and the 95th percentile (in blue).

Furthermore, the large number of vehicles returning home before the peak hours and remaining

connected through it increases the EV storage capacity than compared to the morning peak.

The additional storage capacity provided by the connected EVs enables a more substantial reduction

in peak power withdrawal, as the system can utilize the stored energy in the vehicles to supply power to

the grid during peak hours. As a result, the V2G system design case can reduce further the grid power

withdrawal during the evening peak. This result is better observed in the yearly grid power profile

distribution, showing a potential average reduction of 40 𝑘𝑊 .

The TES design was proven to have a high potential for power reduction in both scenarios 2 and 3.

This can be extended also to the evening peak case, where the heating system efficiently charges the TES

units right before the start of peak hours to then flatten the curve during the selected window.

This is evident in the single-day analysis and becomes more clear in the yearly quantile distribution,

in figure 5.18. The latter expresses that the analyzed TES size provides results that can be generally

considered lower even than the morning peak. Having now more freedom during the early day,

the heating system can reschedule the heat pump functioning to reduce even more the evening grid

interaction. Therefore, despite the thermal buffer may experience more losses compared to the other

designs, the final peak reduction achieved is significantly improved.

However, the magnitude of such is again strictly related to the storage capacity, which invites further

investigation.

Observing thus the sensitivity analysis performed in figure 5.15, it is evident that the curve follows a

decreasing trend, becoming then constant after a certain TES capacity, as observed in scenario 2. The

only difference that can be pointed out is in the Winter day and Spring day, which registered a more or

less constant power interaction with the grid in scenario 2. As a result, when DSM is focused only on the

evening peak, further reduction can be achieved.

Lastly, the effectiveness of the BESS system design for the evening peak reduction is proven in the

single-day plot. Here, the size and more particularly the C-rate of the battery system are expected to

significantly affect the result.
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This can be observed in the trade-off offered in figure 5.16. This sensitivity analysis shows with higher

BESS capacity, the evening peak can be efficiently flattened and reduced.

In addition, the C-rate is observed to make a difference for small BESS, showing again a point after

which both discharge rates, 0.5 and 1, deliver the same result. This relates once again to the conclusions

drawn for the morning peak reduction scenario, discussed in the previous section.

In conclusion, the current energy system design showed good potential in evening peak reduction.

Even with the simple Current system case, an important evening flattening can be achieved when compared

to the base case. The implementation of vehicle-to-grid technology matches with the EV-shared business

best, significantly improving the result. Conversely, the moderate EV charging case proved once again

ineffective for achieving the set goal.

Both electrical and thermal storage designs showed strong potential in load shifting. While increasing

the TES capacity shows effectiveness in power reduction, it requires a significant spike right before the

start of the evening window. Conversely, thanks to the lower energy losses, the BESS design is able to

charge the battery for more hours, reducing the aforementioned spike.

5.5. Scenario 5: morning and evening peak hours
Finally, the last case considered in this research involves the combination of scenarios 3 and 4. Hence,

both morning and evening time windows are simultaneously considered in the minimization objective.

The results are expected to align with the findings discussed so far and confirm the correct functioning of

the model. However, due to the definition of two separate time windows, the operational schedule of

the energy system in the periods between the peaks may vary, potentially leading to different outcomes.

Therefore, the peak hours windows in this scenario are defined from 08:00 to 12:00 and from 18:00 to

22:00.

Considering the Current system design, the single-day analysis shown in figure 5.19 clearly shows

that rescheduling is applied mainly to the evening peak, as this results in the global maximum during

the selected days. Except for the Autumn day, which experiences a spike at the end of the morning time

window, it is possible to notice that the morning registers much lower gird power withdrawal compared

to the evening one for all the days in analysis. As a result, for this scenario, the single-day analysis can be

considered less relevant in highlighting the overall system performance.

Conversely, when observing the entire year, some days are expected to have the highest peak within

the morning peak hours. These cases are captured during the yearly distribution analysis as shown in

figure 5.20. However, the current system design observes a profile very similar to the base case scenario in

the first half of the day. This means that the flexibility of the existing system’s draft is not sufficient to

effectively reducing the average morning power withdrawal. On the other hand, improvement is clearly

shown for the higher and more probable evening peak reduction, leading to a very similar result as the

one discussed in the previous scenario. Therefore, we can conclude that there is no strong evidence that

the Current system case is generally effective for morning peak reduction, while, differently, it is for the

evening counterpart.

These conclusions are further confirmed by the moderate EV charging design. Hence, it is possible to

irrevocably state that this design does not introduce any significant improvement for the research.

Observing then the V2G system design, vehicle-to-grid technology is demonstrated effective primarily

during the evening peak. This is once again connected to the higher influx of EVs registered towards the

end of the day, as mentioned earlier.

Conversely, when considering the TES design, the strongly targeted reductions observed for morning-

only and evening-only peak scenarios efficiently combine in this scenario. Despite the minimization

mainly focusing on the evening peak, the morning time window is also reduced and flattened. This is

mainly observed in the rare cases that fall within the high percentiles. This suggests that the earlier peak

hours are efficiently managed only if the average evening peak is reduced to such an extent that the peak

power value intersects the morning curve.

Moreover, the rapid charging of the TES can be clearly observed in the hours right before the peak

window for both cases. This indicates that the system response is sufficiently fast to manage the two

windows more or less independently. However, when comparing these results to those found for the
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Figure 5.19: 𝑝𝑔𝑟𝑖𝑑𝑡 for morning and evening peak reduction (scenario 5), including the maximum average power (on the left-hand

side of each plot) and the percentage of reduction compared to the base case (at the bottom of each plot).
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Figure 5.20: Quantile plots of 𝑝
𝑔𝑟𝑖𝑑

𝑡 for morning and evening peak reduciton (scenario 5), including the maximum power and the

percentage of reduction compared to the base case for both the mean (in black) and the 95th percentile (in blue).

single peak reduction, a slightly higher average peak is observed. This suggests that having two peak

hours may be less effective than focusing on a single one.

When investigating the correlation between TES size and peak power value, in figure 5.15, similar

trends to those observed in scenario 4 are noted for the four selected days. This suggests that the

heating system responds sufficiently fast to efficiently address the evening peak without making worse

off the morning one. Furthermore, given that this scenario combines aspects of scenarios 3 and 4, and

considering that the average morning maximum is lower than the evening counterpart, the same optimal

TES size designed for evening minimization is expected to efficiently cover the morning one. As a result,

each TES capacity selected for evening minimization will work well for morning peak reduction as well.

Finally, considering the BESS design, the results observed suggest a similar but improved outcome

compared to the V2G case. Additionally, as discussed in the previous analysis, this gap is expected to

increase when the battery capacity increases. Indeed, the sensitivity analysis for scenario 5, proposed in

figure 5.16, shows the exact same profile to that observed for evening-only peak minimization, for all

four selected days. Hence, the rapid response of the electrical storage offered in BESS allows effective

reduction of both evening and morning peaks, similar to what was observed for the thermal counterpart.

Accordingly, the system design with BESS included is expected to efficiently work the other way around,

lowering the evening peak if the power results higher in the morning.

To conclude, scenario 5 aims to exploit the system’s DER flexibility for both morning and evening

peak minimization, combining the cases discussed in scenarios 3 and 4. While the effectiveness of the

Current system case for morning peak reduction remains inconclusive, the results are more clear for

evening peak reduction. The moderate EV charging design was once again proven ineffective for the shared

EV fleet considered in the case study, while the V2G one showed good potential by treating the morning

and evening peak completely separate, thanks to the EV influx nature. The TES design demonstrated

significant improvement for reducing both morning and evening peaks, highlighting how an accurate

size of the thermal buffer assists in achieving the final goal. Similarly, the BESS design showed how

integrating electrical storage results in an efficient tool for grid congestion management, especially when

targeting both morning and evening peaks, as it provides a rapid response for considering the two time

periods independently.

5.6. Conclusions of results analysis
To conclude, this chapter focused on describing the results and discussing the findings of the simulation

run for the energy system in the case study. The base case showed how the system would operate in the

optimal scenario where no grid congestion is experienced. The results showed that the system tends to

follow the thermal and electrical demands, avoiding the use of storage facilities and rapidly charging

the EVs close to their arrival. The grid power interaction was found following the expected duck curve,

showing a small hump in the morning and a bigger peak in the evening. To address the different nature

of congestion, four scenarios were analyzed and compared to the base case.
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First, scenario 2 performed a day-long power minimization, aiming to flatten the grid power

withdrawal curve and thus reduce the size of the Connection and Transmission Agreement (CTA) with

the DSO. In this case, the flexibility of the existing system proved a good capacity for peak reduction,

showing how the current system flexibility can already potentially assist in obtaining connection. The

reduction is then further improved by the integration of vehicle-to-grid technologies, which though are

strictly related to EV influx. The best performance was achieved by the integration of storage facilities.

Both large Thermal Energy Storage (TES) and Battery Energy System Storage (BESS) resulted in effective

curve flattening. However, the size of the reduction was found strongly dependent on the storage size,

which requires further consideration.

Secondly, targeted peak reduction was performed in the morning by scenario 3 and in the evening by

scenario 4. Here the goal was shifted to describe a more general case instead of considering the worst

day. It was observed that the limited influx of EVs in the morning time window strongly reduced the

peak reduction potential related to the flexibility of this part of the system. Conversely, its potential

was increased when only the evening peak was considered, making again the V2G design a good fit for

the grid congestion management in this period. However, the lowest values were again found with the

integration of thermal and electrical storage. While the first one was observed to strongly affect the hours

right before the peak window, the lower losses registered by battery storage showed a less fluctuating

grid interaction. Moreover, the sensitivity analysis conducted marked the potential of reducing to zero

the power interaction during the peak hours, especially in the already low morning period. Thus, the

BESS design emerged as optimal for these two scenarios. However, before drawing final conclusions,

techno-economic considerations must be added to the research.

Finally, reduction for both morning and evening peaks was investigated in scenario 5. Due to the

magnitude difference between the two, observed in the base case, the power reduction was performed

mainly only during the evening peak, leaving untouched the morning period. Such observation led to

the conclusion that the V2G system design has good potential for the selected objective, but struggled

in the few cases where low influx matched morning peaks. On the other hand, the TES design offered

results as a superposition of scenarios 3 and 4. However, the slower response of the large thermal buffer

proved dependency between the morning and the evening time windows. Conversely, the BESS case

showed a faster response and was able to manage the two periods independently.

However, while it is easy to identify the best system design based solely on simulation results, other

factors must be discussed before drawing definitive conclusions for the case study of this research.
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Discussions

In the previous chapter 5, the results obtained from the various simulations performed were discussed,

highlighting the advantages and disadvantages in all the scenarios studied.

Accordingly, this chapter discusses how the findings can answer the research questions. First, a brief

recap of the scope of the research is argued, showing how the analysis performed can contribute to the

research goal. Then, techno-economical considerations are discussed, providing a deeper view of the

problem in the case study. The chapter closes the thesis with considerations regarding limitations and

further research.

Recalling the main research question introduced in chapter 1, this study aims to explore how different

Distributed Energy Resources (DERs) integrated into an energy system can improve its flexibility and

thus support grid congestion management and thus reduce the system’s impact on the electricity grid.

Specifically, this project focused on investigating how to address the implications of congestion on

residential Energy Communities in the urban scene.

To prove the results found, a real case study is considered. The project involves a new residential area

in the city of Utrecht, which is currently considering different options for connection to the distribution

grid. This section provides an overview of potential solutions across the four different scenarios analyzed,

aiming to show how the findings can assist the case study in obtaining grid connection and mitigate the

congestion issues.

6.1. Techno-economic considerations
Chapter 5 showed how the different DERs integrated into the energy system respond to peak power

minimization for various definitions of peak hours explored in the different cases. It is then essential

to further explore each design to reveal additional factors to consider. Hence, each system design and

scenario will be technically and economically evaluated.

To briefly review the case study, the current energy system project has been designed to ensure that

the building’s electrical load is entirely met through direct grid interaction, supplemented by PV power

supply on days with high solar radiation. Additionally, the EV fleet charging operates independently,

aiming to minimize the waiting time for each vehicle to achieve a full charge. Space heating, cooling, and

hot water demands are satisfied through two separate heating networks, powered by dedicated heat

pumps and phase-change material thermal buffers. In the different designs explored, the congestion

management mechanism of demand-side management is applied, aiming to reduce the interaction with

the grid during peak periods.

6.1.1. Financial Considerations
The energy system was analyzed in five different designs, each focusing on a specific type of flexibility.

Besides the technological considerations, economic investment is expected to play a crucial role in the

final design decision. Regarding this, the following can be argued.

As discussed in the literature, the integration of congestion management mechanisms typically

requires the installation of smart meters and sensors near the load location [74]. These devices provide

accurate data to control the operation, enabling more efficient load shifting and rescheduling. However,

63
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given that the energy system under analysis is still in the design phase, the cost of implementing such

technologies is relatively small compared to the overall system realization expenses and can be considered

included in the project budget. Therefore, the technological investment required for the Current system
design, as well as for the moderate EV charging case, can be considered null.

Conversely, when introducing vehicle-to-grid into the energy system, two key factors must be

discussed. First, the charger that in the base design can operate only mono-directionally must now

enable grid feeding from the connected EVs. However, being the system still in the design phase, new

chargers would have to be installed in any case and the additional price for including V2G can be assumed

negligible if compared to the whole investment. Hence, the additional technology required for V2G can

be considered a limited cost. Similar can be concluded for what concerns the EV fleet. Nowadays, the EV

market considers only a few models that include V2G, indicating that the technology state of progress is

still in the development phase. However, their price is yet no much different compared to the average

cost of a normal EV and is expected to drop in the next decade [30]. As a result, also the integration of

the V2G for the design can be considered quite small for this case study.

Differently can be concluded for the last two designs. Increasing the Thermal Energy Storage (TES)

units as in the TES system design is expected to consider significant initial investment. This will be

mainly related to the mass of phase-change material selected, the insulated tank to contain it, the volume

the storage would occupy and the relative cost of realization, the pipes for connecting it to the water

system and the permits and regulations, for instance, for underground installation. Considering the

current system design, the PCM thermal buffer was sized according to the given details, enabling a total

capacity of about 1’000 𝑘𝑊ℎ for each heating network, as described in section 4.2. For such a design, the

data analysis performed estimated a total volume of about 10.4 cubic meters per TES, making its size

moderate and simple to install in the heating room, close to the heat pumps, reducing the connected

piping costs. However, the sensitivity analysis shown in figure 5.15 expressed a negative exponential

correlation between the final peak power and the TES mass employed, flattening after a certain saturation

value. Moreover, this was observed to give different results in all four selected days. Therefore, given the

costs and benefits of both peak power reduction and TES capacity as well as chosen a representative

sample day(s), an optimal solution can be found.

Due to a lack of detail, such estimation cannot be conducted in this research. However, indicative

considerations are argued in the following. For simplicity, we can consider that the DSO sets a fixed

price 𝐶𝑝𝑒𝑎𝑘 for each 𝑘𝑊 of power withdrawn during the peak hours and there exists a cost 𝐶𝑇𝐸𝑆 for each

𝑘𝑊ℎ of TES added, which includes both variable costs based on the size (PCM price, cost for expanded

volume, etc.) and semi-variable costs (piping, land allowance, security standards, etc.). Then, a trade-off

can be computed and the optimal design can be identified through equation 6.1 below, which identifies

the slope 𝑚 of the trade-off line to apply to figure 5.15 or a similar graph.

𝑚𝑇𝐸𝑆 = − 𝐶𝑇𝐸𝑆
𝐶𝑝𝑒𝑎𝑘

𝑚𝐵𝐸𝑆𝑆 = −𝐶𝐵𝐸𝑆𝑆
𝐶𝑝𝑒𝑎𝑘

(6.1)

If, for instance, the cost of a larger TES is much lower than the set cost of higher peak power, then it results

convenient to invest in a bigger thermal unit size. Conversely, if the higher peak power withdrawal is

relatively cheap, it is interesting to explore the return of investment rate, or payback time period in case

of benefit, before investing in expanding the heating system.

Similarly can be discussed for the BESS design. While the thermal storage cost per 𝑘𝑊ℎ can be

considered quite limited, about 20e/𝑘𝑊ℎ𝑇𝐸𝑆, battery storage is generally more expensive [9]. Depending

on the market and the type of battery, the price per 𝑘𝑊ℎ can go up to 130 e/𝑘𝑊ℎ𝐵𝐸𝑆𝑆 for Li-Ion battery

units [10]. Hence, BESS requires higher investment per unit of capacity added. On the other side,

electrical storage is proven to have a higher energy density per unit of volume. Indeed, while a battery

unit typically requires 0.005 𝑚3/𝑘𝑊ℎ𝐵𝐸𝑆𝑆, the PCM material counterpart registers an energy density of

0.01 𝑚3/𝑘𝑊ℎ𝑇𝐸𝑆 [55, 66].

Therefore, if from one side the TES design may offer a cheaper option, the BESS case proves to occupy

a smaller volume for the same energy content. Moreover, the size of storage needed for the same power

reduction may be different from the analysis of the results. Considering, for instance, the winter day
selected in the analysis for the day-long curve flattening, in figure 5.15 and figure 5.16, we can observe

that a final peak power of 2’000 𝑘𝑊 can be achieved either with 1’300 𝑘𝑊ℎ battery storage or with 3,000

𝑘𝑊ℎ of TES. According to the estimation mentioned before, this results in 169’000 e and 6.5 𝑚3
for the

BESS design and 60’000 e and 30 𝑚3
for the TES design. Therefore, this suggests that for what concerns
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the straightforward investment, the TES design is estimated cheaper than the BESS counterpart, although

the latter requires less space of installation.

However, such analysis must be further considered including marginal costs and potential constraints

set by the case study. For example, while the TES requires high insulation in order to minimize losses,

battery storage necessitates a ventilation system to reduce the room temperature and increase the device’s

efficiency and lifetime. In addition, while the heating system is expected to be concentrated in a single

heating room, in order to reduce the pipeline length and thus losses, the BESS design may consider

batteries spread around the residential area. Such design becomes interesting also considering the

potential vicinity to the electrical load, EV charging plaza or heat pumps.

To summarize, there is a very large room for discussion between the two TES and BESS designs,

making it difficult to estimate which result performs best in terms of techno-economical investment.

On the other hand, the system designs offered in Current system, moderate EV charging and V2G were

observed to provide quite small power reduction but with basically null investment.

6.1.2. Scenario Analysis
Besides the challenge of estimating the benefit of investment for each design proposed, it is essential to

make separate considerations for each scenario analyzed. As discussed in the literature, the Netherlands

is currently facing significant issues with new connection capacity due to grid congestion. Specifically,

the case in this research involves the urban area of Utrecht, strongly congested as mentioned in chapter 2

[53]. As a result, the case study project is currently in the queue with the local DSO to obtain a Connection

and Transmission Agreement (CTA) for then connecting to the distribution grid. Consequently, the initial

challenge for the case study is to demonstrate to the system operator that its system design is sufficiently

flexible to be eligible for connecting without increasing the congestion issue. In other words, to prove the

need for a smaller CTA. For this reason, the day-long optimization conducted in scenario 2 provides an

overview of how a flatter curve can be achieved, aiming to convince the system operator to provide the

first connection.

As discussed in chapter 5, the existing energy system design, explored through the current system
case, provided a good reduction compared to the base case. This flexibility was found to be connected to

both the heating system and the EV fleet.

The strategy of shifting EV charging to nighttime hours is performed in all the analyzed designs and

efficiently assisted the peak power reduction, showing, though, a maximum peak power reduction of

only 4%. However, the shared business case of the EV fleet integrated in the case study showed how

fragile its flexibility is, primarily due to the dependency on EV influx during the day. Despite a small

improvement is achieved through the V2G design, the final grid power profile remained similar to the

base case, suggesting that no efficient flattening can be provided by the current system design.

Additionally, the varying influx of EVs makes the sizing challenging. Following a worst-case approach,

the EV fleet is characterized by high uncertainty, making these designs unreliable for designing the CTA

contract.

Conversely, the thermal energy storage in the base design efficiently supports the heat pump in

meeting demand during the peaks. Thus, while the load profile remains unchanged, the generation of

thermal energy is shifted to the adjacent hours.

Furthermore, this research did not explore the potential of electrical and thermal load shifting,

considering these as fixed and essential loads that must be met under all circumstances. Therefore, there

is potential for further reduction if more data is provided, such as washing machine scheduling, common

space heating and cooling or potential storage units in proximity of the houses. The latter, in particular,

presents significant potential for flattening the demand curve, especially for hot water demand. In typical

dwellings, hot water is provided by privately owned boilers, whereas the system in analysis considers a

centralized heating system. Although this latter offers various advantages in terms of investment and

energy efficiency, it also reduces the overall flexibility of the heating system. Hence, further research

could be conducted exploring the decentralized heating system design.

As observed in the results analysis, a more constant and reliable grid interaction was achieved with

the TES and BESS designs. The first was observed to efficiently flatten the grid power withdrawal curve

in the winter days while showing a more oscillating behaviour during the warm days. This fluctuation is

attributed to the change-over nature of the heating system, which switches on and off the cooling mode.

As a result, the TES system proved to be more efficient on colder days, when overall demand is higher.

Two key observations can be discussed from these findings. First, if the system sizing is performed

following the worst-case approach, the highest grid power profile is chosen. This is expected to occur
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during the winter cases, due to high thermal demand, less daylight and consequently lower PV generation.

In such cases, the TES design responds efficiently and results in optimal curve flattening.

Secondly, the operational characteristics of the thermal buffer suggest a more balanced behaviour

compared to the BESS case. Indeed, unlike electrical storage, which can either charge or discharge at any

given time, the TES is modelled to charge and discharge simultaneously, as shown in chapter 3. This

perfectly matches the goal of making the grid power interaction as constant as possible throughout the

whole day.

On the other side, the trade-off between the thermal storage and the electrical counterpart showed

a much stronger reduction with the BESS case when considering the worst day, in figure 5.12. This

suggests that the difference in investment is much lower for the same magnitude of reduction. This is

due to the fact that, unlike TES, battery storage can act also on the electrical demand. However, this

is proven for single spikes with high values. For the other sample days considered, for instance, the

trade-off suggests the TES design as more convenient.

As a result, the final choice depends on the approach method followed as well as the accuracy of the

data used. If the sizing is investigated for the very worst day, which may be a wrong representation of

reality, the BESS case results optimal. Otherwise, the TES design becomes more and more attractive as

more days are considered. In any case, both designs provide a reliable tool to reduce the maximum peak

power and facilitate to obtain the CTA agreement with the local DSO.

The case explored in scenario 2 is expected to result effective primarily for obtaining the initial

connection, showing that the system can be considered as a constant base load from the grid perspective.

During normal daily operations, however, the energy grid is not expected to be congested for the whole

24 hours but, as viewed in the literature, research suggests that this event occurs mainly during the

morning and the evening. Hence, it is possible that the DSO requires power reduction only during the

selected periods instead of for the whole day. Such cases were discussed in scenarios 3 and 4, respectively.

Considering first the morning peak reduction case, the analysis showed how low influx of EVs directly

suggests that implementing moderate EV charging and V2G designs may be disadvantageous. However,

further consideration can be made for the latter. Given that the EV fleet in the case study is shared among

residents, it is not necessarily the case that all vehicles are used every day. Hence, the accuracy of data

becomes crucial in determining whether this design can effectively assist in reducing the morning peak.

Furthermore, thanks to the generally lower power value observed in the base case during this time

window, the integration of vehicle-to-grid technology could potentially reduce the peak power with the

EV fleet operating as a small battery system. However, the lack of connected vehicles during this period

makes such a design impractical. This challenge may be overcome by designating a few EVs to remain

stationary and cover the morning peak, thus increasing the storage system size. It becomes interesting to

compare such a case with the fixed storage designs proposed in TES and BESS.

While the increased thermal storage case showed good peak reduction, the nature of TES limits its

flexibility in meeting thermal demands only. Conversely, since the heating system is directly powered by

heat pumps, electrical battery storage was proven better since it can also meet the electrical demand and

potentially bring the grid power to zero. Furthermore, following the same sizing procedure discussed

before, the smaller the storage size the closer the difference between the cost of the two technologies.

Therefore, we can conclude that the BESS design is a more effective storage choice for morning peak

reduction.

Having selected electrical storage as a better option for morning peak reduction, the discussion

between the V2G and BESS designs is still open. To design an energy system capable of efficiently reducing

the morning peak throughout the entire year, the worst-case scenario procedure is recommended.

Considering, for instance, that the initial investment is chosen in a battery system, it is likely that this

will be oversized for summer days due to its generally lower demand compared to winter. Conversely,

investing in a few stationary EVs that remain stationary and provide storage assistance during winter,

but are available for use during summer, shows potential for maximizing the investment also when

grid congestion is not a concern. However, the cost per 𝑘𝑊ℎ in the V2G design is significantly higher

compared to the BESS option, since includes the whole vehicle.

The optimal solution can be achieved through accurate data on EV availability and demand forecasting

as well as clear costs of implementation of both designs. Hence, the installation of smart meters and data

collection devices is once again suggested. Moreover, the optimal design decision is expected to strongly

depend on the cost/benefit per reduced 𝑘𝑊 set by the system operator. If, for instance, this is very low,

implementing V2G is likely to be more effective. Otherwise, if the price of additional morning power

withdrawal is high, the integration of battery storage would make the BESS design more attractive.
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Therefore, depending on the level of reduction required, the V2G design combined with the

designation of stationary EVs for critical days is expected to compete against the BESS option for morning

peak minimization.

If, instead, the goal is to minimize grid power interaction during the evening peak, different conclusions

can be drawn.

While considerations discussed in the morning peak hours case also apply to this scenario, the

magnitude of power experienced during the evening peak is generally much higher than in the morning.

As a result, implementing the V2G design would require a significantly higher investment, as more

stationary EVs would be needed. In addition, while the difference in investment between the TES case

and the BESS case was estimated lower, when looking at the evening peak, both capital and space

required for such technologies become a crucial decision factor. More considerations can be discussed

for these two designs.

First, as viewed in the literature, grid congestion in urban areas is expected to occur more frequently

and with greater intensity during the evening. This means that on many days of the year, the power

withdrawal will exceed the hypothetical threshold set by the DSO, resulting in higher fees (or lower

benefits) for the case study. Hence, the optimal storage design is expected to be significantly large. In this

case, the design approach recommended is once again the worst-case scenario, with the winter season

being chosen for its typically higher demand.

In addition, as discussed in the analysis of results in section 5.4, the thermal energy storage experienced

an important spike just before the start of the peak hours. This represents the high demand from heat

pumps needed to sufficiently charge the TES units, for then being shut off in the next hours.

Here, the energy loss term plays a crucial role in distinguishing between electrical storage and its

thermal counterpart. Indeed, while the BESS can consider energy losses over time to be negligible, the

thermal buffer experiences significant heat dissipation through the tank shell, making it convenient to

charge it only the time step before the start of the evening window. Conversely, battery storage offers

higher flexibility, allowing charging to happen gradually from several hours earlier.

Although this is not an issue in the first place, considerations about the uncertainty of peak hours

definition must be brought into this case. Re-analysing the objective of scenario 4, the goal is to minimize

the evening peak in order to reduce congestion in the network. This concerns also the surrounding area.

Being in an urban environment, it is expected that the surrounding connections would follow a similar

profile to that of our case study. As a result, the DSO aims to flatten the curve during the whole evening

and avoid spikes. For simplicity of implementation, this research considered this time window fixed from

18:00 to 22:00. However, in reality, this window could shift earlier or later according to the forecasted

demand and system operator’s decision. As a result, the existence of the charging spike registered in the

TES scenario may cause problems for grid congestion management in this case. Although this is not a

direct economic problem for the EC, the system operator is likely to prefer a less fluctuating grid power

interaction.

Considering this, we can conclude that if the DSO sets a defined peak hours window in the evening

and what happens outside of this is no concern of the EC, the TES potentially offers a cheaper design.

However, for the goal of mitigating grid congestion, the system operator seeks a more constant power

curve. In this case, the BESS system results more attractive, although it may require larger initial

investments for the energy system planner. While the first case perfectly aligns with the contract of the

Time-Block-based Transmission Right (TBTR) discussed, the latter is better represented by the Non-Firm

ATO (NFA) agreement.

To recap, electrical storage emerged as the optimal tool for morning peak power minimization,

showing how the V2G design can be a better investment compared to the BESS case depending on the

magnitude of reduction. Conversely, for evening peak reduction, EV flexibility was discarded as a viable

solution due to limited effectiveness connected to the magnitude of power demand in this time period.

Instead, the BESS system emerged as optimal for managing evening grid congestion. Despite requiring

higher investment, it provided a more consistent grid power withdrawal profile compared to the TES
design.

When combining the two peak periods, as in scenario 5, it is assumed that the same weight is placed

on both the morning and evening peaks. In this case, due to its typically higher magnitude, the evening

peak drives the optimization process without affecting the morning peak in most of cases.

However, it is possible that the DSO requires minimization of both peak periods independently but

within the same day. Therefore, the results are expected to be a sort of superposition of the two single
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cases argued earlier. As a result, the system may consider implementing the V2G design with stationary

vehicles to mitigate congestion during the morning peak, while incorporating the BESS for managing the

evening peak. As observed earlier, the battery system provided better final results for the morning peak,

but its investment was not optimal due to limited use during summer days. However, with consideration

for both morning and evening peaks, this issue disappears, making the BESS design the best fit for

morning and evening peak reduction.

As a result, the BESS is confirmed as the best option for minimizing both evening and morning peak

loads.

6.2. Role of Flexibility in Different Connection Agreements
Recalling from the literature viewed in subsection 2.1.7, standard Connection and Transmission Agree-

ments (CTAs) soon will have more flexible versions in the Netherlands. The Alternative Transmission

Rights (ATR) and Non-Firm Agreement (NFA) agreements that will become active in the coming year

show great potential when targeted minimization is performed. These contracts stipulate that during

predefined peak hours, transmission is not guaranteed for the connected system, meaning that the

connected party may have reduced or no grid power supply at all [42]. Therefore, if the energy system

flexibility is such that islanded operation can be efficiently performed, these ATR and NFA become very

attractive, especially thanks to their discount in price. Applying this to the designs discussed, it was

observed that only the electrical storage options can potentially set the peak power to zero. As a result,

the potential of the V2G and BESS designs can be discussed.

Considering the case where the DSO defines peak hours only in the morning time block, the analysis

performed in scenario 3 shows how the electrical storage is a reliable tool that can potentially set the

power to zero if designed of the correct size. The first option considers an extended EV fleet with some

stationary cars to cover the winter days. However, when increasing the size, this latter appears more

expensive than the battery option. As a result, the decision becomes a three-dimensional trade-off with

the two considered designs competing against the benefit of implementing the flexible CTA contract.

Conversely, if the DSO defines peak also the evening time block, the BESS design emerged as most

optimal, mainly due to the high magnitude of reduction needed. In this case, though, installing a BESS

sufficiently large to ensure reliability to cover the whole district may become too expensive.

However, a further consideration must be discussed. While a CBC contract can be applied only after

a first CTA is signed, the implementation of TBTR or NFA does not require any existing connection. On

the other side, these two contracts do not ensure any grid power supply during the defined periods,

forcing the system to operate independently.

However, this problem can be solved by a combination of the two approaches. The findings of this

analysis show that reducing power during selected time windows allows the system to schedule the

DERs functioning to off-peak hours without affecting the final users. This suggests that, if possible,

signing a fixed CTA for the maximum reduced power and combining this with a TBTR or NFA contract

allows the system to have certain transmission rights capable of covering the minimized peak hours

demand and still meet the demands. As a result, obtaining a base load connection through a small CTA

and then the extra connection via a flexible contract allows the DSO to accommodate the system in the

distribution grid and optimally organize its usage. This concept is visualized in figure 6.1 below.
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Figure 6.1: Implementation of a full CTA contract to cover the grid power profile, shown in black (left) and implementation of a

reduced CTA contract and a TBTR / NFA contract for the remaining capacity to cover the re-scheduled demand, shown in red

(right).

Therefore, two options can be identified:

• Implementation of a full capacity CTA with the integration of a CBC contract;

• Implementation of a reduced capacity CTA and a flexible contract, TBTR or NFA, to cover the

remaining.

In the first option, the DSO agrees to provide the full right of transmission to the EC. It is then up to

the local system to reschedule its functioning and receive a monetary return. Depending on the CBC

details, meaning the hours, size and tariff of the reduction, the local system receives compensation.

In other words, the DSO incentivizes the connected party to reduce their connection, thus reducing

congestion. However, obtaining this kind of connection is expected to be more challenging and expensive.

To reduce the total initial cost, the V2G design with possible stationary vehicles offers the best investment.

Conversely, the second option results more attractive for the system operator, since the transmission

right during peak hours is no longer guaranteed. Hence, obtaining a connection will be easier and

cheaper, thanks to the discount provided by these types of contracts. However, no compensation is

stipulated for power reduction during these periods. This means that the local community is forced to

reschedule its operation according to the peak hours definition agreed with the DSO. As a result, the EC

must be fully sure of its DERs’ flexibility and reliability properties. If TBTR is chosen, the TES design

offers a strong reduction and reliable technology. Nonetheless, the charging spikes observed before peak

hours are incompatible with the uncertainty of the NFA contract, suggesting the BESS design as a better

alternative.

6.3. Limitations and data sensitivity
Before conclusions, it is important to mention that the results found are a rough estimation of the energy

system based on many assumptions.

First, the energy system has been modelled through a simplistic approach to maintain the optimization

problem linear and with low computational costs, possibly representing a system response far from real.

This especially applies to the thermal energy storage system, whose non-linear nature makes precise

modelling challenging and highly computationally expensive. Therefore, for more accurate results, more

detailed models can be designed and implemented in each DER included in the energy system.

In addition, the accuracy of data is identified as a crucial factor for the final results. Despite the

demands being thoroughly adjusted and shaped for describing the case in analysis, the system response

strongly depends on their profiles and patterns. For instance, the analysis performed in the day-long

curve flattening scenario focused on a day characterized by a huge spike in electrical demand. This

can be correlated, for instance, to a fault or an anomalous measurement that should not considered

representative of the whole year’s functioning. It is thus expected that much more precise results can be

achieved by implementing real measurements.
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Furthermore, the lack of information about techno-economical constraints leaves space for discussion

when applying the results to the case study. One example can be the space limitations for expanding the

storage facilities. Indeed, being a residential neighbourhood located in a highly dense populated area

thigh in space, as the one in analysis, the volume of DERs is expected to play a crucial role in the final

design method.

6.4. Further studies
The goal of this master thesis was to explore the role of flexibility in large capacity connection for urban

living spaces, aiming to exploit the DERs characteristics to address the problem of grid congestion.

However, as mentioned in the literature. This issue is too broad to be fully covered in a single project.

Considering the energy system modelling discussed in chapter 3, a simplistic and deterministic

approach was followed in this project. Such a method allows a fast and efficient representation of

the energy system but fails to carefully address the uncertainties and it is sensitive to the input data.

Therefore, further research could consider an improvement of the model, integrating more precise

constraints and larger simulations.

Moreover, the findings were proved to be strongly affected by the assumptions and data argued in

chapter 4. Due to a lack of specifications, some modelling parameters have been estimated and could be

largely improved. In addition, the data used have been scaled and adapted from the reference to the case

study, potentially missing to describe correctly the real system’s behaviour.

Besides the improvement of the current research, the research can be continued in different directions.

To address more in-depth the current problem of the case study, further techno-economic analysis can be

performed. First, the development of the flexible transmission agreements currently in progress may

vary or be redesigned in the next years. Hence, a more careful analysis of the policies and regulations

can better assist the residential community in obtaining grid connection faster.

Secondly, this research focused the research only on five system designs, describing the flexibility

of the different resources in a semi-independent way. Therefore, further analysis may consider the

implementation of hybrid systems, exploring, for instance, the potential of battery storage and vehicle-to-

grid together or integration of back-up generators.

Finally, potential research involves a closer collaboration with the Distributor System Operator (DSO),

exploring, for instance, the potential of grid feeding by PV or electrical storage and related subsidies or

discounts. In other words a deeper view of how the EC can cooperate with the grid operators to solve

grid congestion in exchange of easier connection and cheaper energy bills.
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Conclusions

The research presented in this master’s thesis aimed to explore the role of flexibility in grid connection

capacity planning for urban residential areas. The focus was specifically posed on how integrated

scheduling frameworks can optimize the design of neighbourhood energy systems through the flexibility

of its Distributed Energy Resources (DERs) to mitigate the issues related to grid congestion. The study

focused on a new residential area currently under construction in the city of Utrecht, the Netherlands,

characterized by a shared EV fleet and a district heating system. However, due to the congested nature

of the distribution network in the area, limited capacity is available for new large projects like the one

considered and the energy community is currently in the process of obtaining a grid connection. Through

the development and application of a comprehensive optimization model, several key results have been

found, providing valuable insights for both energy community and grid operator.

Grid congestion is a critical challenge in the context of urban energy systems. It occurs when the

electricity demand exceeds the capacity that the grid infrastructure can handle, leading to inefficiencies

and potential disruptions. This research clarified the implications of grid congestion, emphasizing its

impact on reliability, cost, and the overall sustainability of energy supply. By exploiting the flexibility of

integrated DERs, such as Electric Vehicles (EVs), Vehicle-to-Grid (V2G) systems, Thermal Energy Storage

(TES), and Battery Energy Storage Systems (BESS), it is possible to alleviate congestion and enhance grid

performance.

The modelling of DERs was computed through a mixed-integer linear optimization model, using

Python-based open-source optimization (Pyomo) as implementation tool. The research highlighted five

different scenarios: a base case for comparison, day-long curve flattening, morning peak hours, evening

peak hours, and combined morning and evening peak hours. For each scenario, five system designs were

evaluated: the current system, moderate EV charging, V2G, TES, and BESS designs. This comprehensive

approach enabled a thorough analysis of how different designs and their inherent flexibility affect the

energy system functioning for minimization of grid power withdrawal during peak hours.

From the analysis, it was evident that EV flexibility is highly dependent on the availability and usage

patterns of the shared EV fleet. Due to the long average time of connection, the moderate EV charging
design proved to be ineffective for all considered scenarios. Conversely, the shared EV business model

showed potential for vehicle-to-grid implementation. Integration of large storage facilities as in the TES
and BESS designs, demonstrated significant potential for peak reduction. While thermal storage units

provide more stable results for day-long curve flattening, battery storage systems stand out in targeted

peak hours thanks to their rapid response and minimal losses. However, the size of the reduction was

observed to be strongly related to the storage unit size and integrating these technical findings with

techno-economic considerations revealed important trade-offs. While the current system, moderate EV
charging, and V2G consider limited costs, TES and BESS are more expensive and require substantial

space. The analysis suggested thermal storage as the cheaper solution whereas battery storage as the

less cumbersome. This underscores the importance of balancing technical performance with economic

feasibility and spatial constraints in designing urban energy systems.

Given the case study’s primary challenge of obtaining a grid connection, the research identified two

viable options for managing grid capacity:
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• Standard full capacity CTA with CBC Contract: This option involves securing full connection

rights through a standard Connection Transmission Agreement (CTA) and compensating for peak

reduction via a Capacity Reduction Contract (CBC). While this approach makes it harder and more

expensive to obtain the initial connection, it provides monetary return to the local community. The

cheap V2G design is particularly attractive in this scenario, as it offers a cost-effective solution for

peak management;

• Reduced CTA with TBTR or NFA Contract: This alternative involves a reduced CTA agreement

supplemented by a Time-Block-based Transmission Right (TBTR) or a Non-Firm ATO (NFA)

contract for the remaining capacity. This option simplifies the connection process but requires the

energy system to rely heavily on its flexibility to meet demand during periods when grid supply

is limited. In this context, the TES and BESS designs emerge as the best option due to their high

flexibility and rapid response capabilities.

The findings of this thesis highlight the significant role of DER flexibility in mitigating grid congestion

and optimizing the design of urban energy systems. The research points out the need for a thorough

study that can consider technical performance, economic considerations, and spatial constraints. As

urban areas continue to grow and evolve, the insights provided in this thesis will be instrumental in

guiding the development of resilient, efficient, and sustainable energy systems.
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