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Abstract

In this paper, we propose a frequency independent approach, the
numerical steepest descent path method, for computing the physi-
cal optics scattered electromagnetic field on the quadratic parabolic
and saddle surfaces. Due to the highly oscillatory nature of the
physical optics integral in the high frequency regime, the proposed
method relies on deforming the integration path of the integral into
the numerical steepest descent path on the complex plane. Fur-
thermore, critical-point contributions which contain the stationary
phase point, boundary resonance points, and vertex points, are
comprehensively studied in terms of the numerical steepest descent
path method. To illustrate the efficiency of the proposed method,
some extensive numerical results for the physical optics integral
defined on arbitrary lines, triangles and polygonal domains are
demonstrated. Finally, numerical results on these quadratic sur-
faces illustrate that the proposed numerical steepest descent path
method is frequency independent in computational cost and error
controllable in accuracy.

1 Introduction

In electromagnetics (EM), when the product of the external wave fre-
quency k and the size of the considered object L, i.e., kL ranges from tens
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to thousands, the analysis of the scattered EM field belongs to the high
frequency regime problem. In this case, the classical physical optics (PO)
current approximation [1, 2], has been accepted as an efficient way to cap-
ture the scattered EM field. Given the incident magnetic field H(i)(r), the
induced PO current on the surface of the considered object ∂Ω ⊂ R

3 is
represented by

JPO(r) =

{
n̂(r)×H(i)(r), r ∈ ∂Ω1

0, r ∈ ∂Ω2
(1)

with ∂Ω = ∂Ω1
⋃
∂Ω2, ∂Ω1 and ∂Ω2 are the lit and shadow regions of ∂Ω,

respectively. The resultant PO scattered electric field E(s)(r) is

E(s)(r) = iωμ

∫
∂Ω

Ḡ(r, r′) · JPO(r
′) dS(r′) (2)

where Ḡ(r, r′) =
(
Ī + ∇∇

k2

) exp
(
ik|r−r′|

)

4π|r−r′| is the dyadic Green’s function [3]

for the electric field in an unbounded medium. Moreover, when kL is large
enough, E(s)(r) in (2) can be represented as three surface integrals [4]

I(r) =

∫
∂Ω

s(r, r′) exp
[
ikv(r′)

]
dS(r′). (3)

They are called the surface PO integrals. From the mathematical point of
view, the PO integrand contains the slowly varying amplitude term s(r, r′),
and the exponential of the phase function term exp [ikv(r′)] giving the highly
oscillatory behavior. It is quite changeling to efficiently calculate the PO
integral in the high frequency regime.

In computational electromagnetic (CEM) community, the traditional
method of moment method (MOM) [6] by Harrington via surface inte-
gral equation has a workload that grows dramatically with the working
frequency as O

[
(kL)4

]
. The efficient multi level fast multipole algorithm

(MLFMA) developed by Chew [7] makes the computational effort reduce
to O

[
(kL)2 log(kL)

]
. However, in the high frequency regime, the computa-

tional effort is still too high to afford. In contrast to these full wave methods
like MOM and MLFMA, the PO approximation in (1) has been adopted as
an efficient way to capture the scattered field from the large scale object [2,8].
The traditional high frequency asymptotic (HFA) approach [9–11], can pro-
vide the calculation of the PO scattered field with frequency independent
workload. By the HFA method, the PO integrand is approximated by sev-
eral leading terms. However, the generated PO results lose accuracy due
to that kind of approximation, especially when kL is not extremely large
but lies in the high frequency regime. The numerical steepest descent path
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(NSDP) approach [13–16], provides an efficient way to evaluate the highly
oscillatory PO integral. On invoking the NSDP method, the original PO real
integration path is deformed into the complex NSDPs on the complex plane.
In this manner, the PO integrands decay exponentially on the complex NS-
DPs, and it can be integrated with workload independent of frequency. In
contrast to the HFA method, the only approximation done is the numerical
integration of the exponential decay PO integrand. Hence, the proposed
NSDP method improves the PO scattered field accuracy.

2 PO surface integral formulation

When a perfect conducting object is excited by an external source, the
electromagnetic (EM) scattered fields can be expressed by the Stratton-Chu
integral formulas [3]. For the observation point far away from the considered
object, the far scattered electric field is expressed as

Es(r) ≈ − ikZ0 exp(ikr)

4πr

r̂ × r̂ ×
∫
∂Ω

[
n̂(r′)×H(r′)

]
exp

(
−ikr̂ · r′

)
dS(r′) (4)

where ∂Ω is the boundary of the object, k is the wave number outside Ω,
ω is the angular frequency, r is the observation point with the amplitude r
and unit vector r̂, r′ is the surface point on ∂Ω, n̂(r′) is the outward unit
normal vector of ∂Ω, Z0 is the free space intrinsic impedance constant. EM
fields are time harmonic with the time dependence exp(−iωt). For notation
simplification, in the following, we still use ∂Ω to represent the lit region
of the considered object. H(i)(r′) is the incident magnetic field on ∂Ω. In
particular, we choose the plane incident wave

E(i)(r) = E
(i)
0 exp

(
ikr̂(i) · r

)
(5)

H(i)(r) =
r̂(i) ×E

(i)
0

Z0
exp

(
ikr̂(i) · r

)
. (6)

Then, after substituting (1), (5) and (6) into (4), the far scattered electric
field can be represented by a surface integral

Es(r) ≈
∫
∂Ω

sbi(r
′) exp

[
ikvbi(r

′)
]
dS(r′) (7)
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with

sbi(r
′) = − ik exp(ikr)

2πr
r̂ × r̂ ×

[
n̂(r′)× r̂(i) ×E

(i)
0

]
(8)

vbi(r
′) =

(
r̂(i) − r̂

)
· r′. (9)

The equation above is the bistatic scattered electric field under the PO

approximation, which is called the PO integral. E
(i)
0 in (5) and (6) is the

incident electric polarization wave vector. In (8) and (9), sbi(r
′) is the vector

amplitude function which is usually slowly varying when the surface of the
object is smooth. The exponential of the phase function term, exp [ikvbi(r

′)],
will become highly oscillatory as the working frequency k increases.

In particular, for the monostatic case with r̂ = −r̂(i), the PO surface
integral in (7) can be represented as

Es(r) ≈ E
(i)
0 Ĩmono, (10)

with

Ĩmono =

∫
∂Ω

smono(r
′) exp

[
ikvmono(r

′)
]
dS(r′), (11)

smono(r
′) = − ik exp(ikr)

2πr
r̂(i) · n̂(r′) (12)

vmono(r
′) = 2r̂(i) · r′. (13)

Comparing (12) and (13) with (8), the amplitude function now is simplified
into a scalar function smono(r

′). Furthermore, from (7) and (10), Es(r)
under the PO approximation for both the bistatic and monostatic cases
takes the general form

Ĩ =

∫
∂Ω

s(r′) exp
[
ikv(r′)

]
dS(r′). (14)

Here, the amplitude and phase terms are denoted as s(r′) and v(r′), respec-
tively.

3 The quadratic polynomial approximation of the

amplitude and phase functions

We assume that the surface of the object ∂Ω is governed by equation
z = f(x, y), and its projection onto the x− y plane is ∂Ωxy. Then we use M
triangular patches to discretize the domain ∂Ωxy, that is, �1, �2, · · · , �M .
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To capture the stationary phase and resonance points of the PO integrand
in (3), we approximate the amplitude and phase functions by the second
order polynomials on these triangular patches. Hence, the PO integral Ĩ in
(3) can be expressed as

Ĩ =

∫
∂Ωxy

s̃(x, y) exp [ikṽ(x, y)] t(x, y) dxdy

=
M∑
n=1

∫
	n

d̃(x, y) exp [ikṽ(x, y)] dxdy �
M∑
n=1

Ĩn, (15)

Furthermore, after some affine transformations, the quadratic phase func-
tion ṽn(x, y) in each summation integral term in (15) has the simplified
canonical form. In this manner, each summation integral term in (15) can
be reformulated as

In =

∫
	′

n

p̃n(x
′, y′) exp

{
ik
[
±(x′)2 ± (y′)2

]}
dx′dy′ (16)

where

p̃n(x
′, y′) = d̃n[x(x

′, y′), y(x′, y′)] exp
(
ikG̃n|Qn|

)
(17)

is also a second order polynomial in the x′ − y′ coordinate system, and

Qn =
[

∂(x,y)
∂(x′,y′)

]
(	n→	′

n)
is the Jacobi coordinate transform matrix between

two coordinate systems x − y and x′ − y′. The above canonical expression
(16) is valid for both monostatic and bistatic cases.

Due to the highly oscillatory behavior of the canonical form PO integral
In in (16), if one evaluates it accurately by the direct numerical scheme, such
as the adaptive Simpson’s rule, the number of discretized triangle meshes in
(15) shall increase as M = M(k) ∼ O(k2). In the following, we will propose
a NSDP method to k-independently evaluate the canonical PO integral In
in (16).

4 The numerical steepest descent path method for
the PO scattered field

We assume D as the trapezoidal domain, as shown in Fig. 1. We denote
the x−values of vertex points V 1 and V 2 as L1 and L2, respectively. The
governing line equation for edge V 3V 4 is y = ax + b, with a > 0. The
amplitude phase function p(x, y) has the similar form as q(x, y) except with
coefficients αj instead, j = 1, 2, . . . , 6.
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Figure 1: (a) The integration domain is defined on V 1V 2V 3V 4, [L1, L2] ×
[ax + b, 0] for integrand eik(−x2+y2) with a = 0.25, b = −0.5; (b) highly

oscillatory PO type integrand, f(x) = (5 − 3x − x2)eik(−x2+(ax+b)2), with
k = 500.

4.1 Reduction of the PO surface integral into highly oscilla-
tory line integrals

I(a,b) =

∫ L2

L1

∫ 0

ax+b
p(x, y) exp

[
ik
(
−x2 + y2

)]
dydx

=

∫ L2

L1

[
J
(0,0)
2 (x)− J

(a,b)
2 (x)

]
exp

(
−ikx2

)
dx (18)

with J
(0,0)
2 (x) and J

(a,b)
2 (x) expressed as

J
(0,0)
2 (x) = j1(x) + j

(0,0)
2 (x) (19)

J
(a,b)
2 (x) = j1(x) erfc

[√
−ik(ax+ b)

]
+ j

(a,b)
2 (x) exp

(
ik(ax+ b)2

)
(20)

and

j1(x) = −
√
π

2
√
−ik

(
α1 + α2x+ α4x

2 − α5

2ik

)
(21)

j
(a,b)
2 (x) =

α3 + α6x+ α5(ax+ b)

2ik
(22)

j
(0,0)
2 (x) =

α3 + α6x

2ik
. (23)

Hence, the original PO integral I(a,b) in (18) can be rewritten as

I(a,b) = I
(0,0)
2 − I

(a,b)
2 (24)
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where

I
(a,b)
2 =

∫ L2

L1

J
(a,b)
2 (x) exp

(
−ikx2

)
dx (25)

I
(0,0)
2 =

∫ L2

L1

J
(0,0)
2 (x) exp

(
−ikx2

)
dx. (26)

Here, I
(a,b)
2 and I

(0,0)
2 are line integrals associated with edges V 1V 2 and

V 3V 4, respectively.

4.2 Phase behavior of I
(a,b)
2 and its stationary phase point

As a result, the integrand J
(a,b)
2 (x) in (20) has the following asymptotic

behavior

J
(a,b)
2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
j1(x)ν1(x) exp

[
ik(ax+ b)2

]
+j

(a,b)
2 (x) exp

[
ik(ax+ b)2

]
, x ∈ D1,

2j1(x) + j1(x)ν2(x) exp
[
ik(ax+ b)2

]
+j

(a,b)
2 (x) exp

[
ik(ax+ b)2

]
, x ∈ D2

=

{
ς1(x) exp

[
ik(ax+ b)2

]
, x ∈ D1,

2j1(x) + ς2(x) exp
[
ik(ax+ b)2

]
, x ∈ D2

(27)

with ς1(x), ς2(x) denoted as slowly varying functions. D1 and D2 are the
domains separated by the Stokes’ line on the complex plane, with the ex-
pressions

lStokes(x) : Im(x) = −Re(x)− b

a
(28)

D1 := a [Re(x) + Im(x)] + b > 0 (29)

D2 := a [Re(x) + Im(x)] + b < 0. (30)

For the case x ∈ D2 in (27), the first term 2j1(x) comes from the Stokes’
phenomenon of the complementary error function.

After substituting (27) into (25), we get two phase function terms for

I
(a,b)
2 . They are

g1(x) = −x2 + (ax+ b)2 (31)

g2(x) = −x2. (32)

The above equations indicate that the Stokes’ phenomenon of complemen-

tary error function makes the phase behaviors of the PO integrand I
(a,b)
2 be

discontinuous.
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4.3 Numerical steepest descent paths for I
(a,b)
2

Firstly, we consider the first phase function g1(x) of I
(a,b)
2 in (31) and

(32). Physically, there may exist a point xs, at which the phase behavior of
g1(x) is different from others. It is called the stationary phase point (SPP).
SPP corresponds to the point at which the specular reflection occurs in the
high frequency ray physics regime. Mathematically, the SPP xs satisfies the
condition g′1(xs) = 0. As a result, we have the mathematical expression of
xs as

xs =

{
ab

1−a2
, |a| �= 1

no stationary phase point, |a| = 1
(33)

Now we see the term exp [ikg1(x)] in the PO integrand

exp [ikg1(x)] = exp (ik {Re[g1(x)] + i Im[g1(x)]})
= exp {−k Im[g1(x)] + ikRe[g1(x)]} . (34)

The NSDP method relies on the transformation of the above highly oscilla-
tory functions to exponential decay functions on the complex plane.

To achieve this, for a starting point L∗, we define a complex path function
x = ϕL∗(p) as that in [3], satisfying the following identity

−ϕL∗(p)
2 + [aϕL∗(p) + b]2 = −L2

∗ + (aL∗ + b)2 + ipl, (35)

with l = 1 for integration end points L1 and L2, and l = 2 for the SPP xs.
After substituting L1, L2 and xs into (35), the corresponding NSDPs are

ϕLm(p) =

⎧⎪⎪⎨
⎪⎪⎩

sgn(L′
m)√

a2−1

√
L′
m
2
+ ip+ xs, |a| > 1, p ∈ [0,∞)

sgn(L′
m)√

1−a2

√
L′
m
2 − ip+ xs, |a| < 1, p ∈ [0,∞)

Lm + ip
2ab , |a| = 1, p ∈ [0,∞)

(36)

ϕxs(p) =

⎧⎪⎪⎨
⎪⎪⎩

p
√
i√

|1−a2| + xs, |a| > 1, p ∈ (−∞,∞)

p
√−i√
|1−a2| + xs, |a| > 1, p ∈ (−∞,∞)

no NSDP, |a| = 1, p ∈ (−∞,∞)

(37)

Here,

L′
m =

√
|1− a2|

(
Lm − ab

1− a2

)
=
√

|1− a2|(Lm − xs), m = 1, 2. (38)

In Fig. 2, we demonstrate the diagrams of the NSDPs expressed in (36)
and (37), with cases a > 1 and a = 1. Possible cases of NSDP occur when a
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changes to the negative sign. However, for the brevity of this paper, we skip
those cases here.

Figure 2: Sub-figures (a) and (b): I
(a,b)
2 defined on the integration do-

main [L1, L2] with L1 < xs < L2, and its numerical steepest descent paths

ϕL1(p)
⋃

ϕxs(p)
⋃
ϕL2(p); sub-figures (c) and (d): I

(a,b)
2 defined on the inte-

gration domain [L1, L2] with xs > L2, and its numerical steepest descent
paths ϕL1(p)

⋃
ϕL2(p).

With the above expressions for NSDPs, we give the following main the-
orem in this paper.

Theorem 4.1 (Frequency independent theorem by the NSDP method).

The highly oscillatory integrand of I
(a,b)
2 in (25), (26), i.e., J

(a,b)
2 (x) exp

(
−ikx2

)
defined on the real integration domain [L1, L2] can be transformed to that de-
fined on several complex NSDPs on the complex plane, denoted as ϕNSDPs(p),
that takes the formulation

ϕNSDPs(p) =

{
ϕL1(p)

⋃
ϕxs(p)

⋃
ϕL2(p), L1 < xs < L2

ϕL1(p)
⋃

ϕL2(p), L2 < xs
(39)
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with these two cases shown in Fig. 2. Then, I
(a,b)
2 takes the formulation

I
(a,b)
2 =

{
I
(a,b)
2,L1

+ I
(a,b)
2,xs

− I
(a,b)
2,L2

+K2(A)−K2(L1, 0), L1 < xs < L2

I
(a,b)
2,L1

− I
(a,b)
2,L2

+K2(L2, 0)−K2(L1, 0), L2 < xs
. (40)

Here, I
(a,b)
2,L1

, I
(a,b)
2,L2

and I
(a,b)
2,xs

are integrals with exponential decay integrands
defined on ϕL1(p), ϕL2(p) and ϕxs(p), respectively. The complex point A
corresponds to the intersection point in Fig. 2, and K2(x) is the primitive
function of kernel 2j1(x) exp

(
−ikx2

)
in (21), with the formula

K2(x) =
( π

2k
α1 +

π

4ik2
α4 −

π

4ik2
α5

)
erfc

(√
ik x

)

+

( √
π

2ik
√
−ik

α2 +

√
πx

2ik
√
−ik

α4

)
exp

(
−ikx2

)
. (41)

Furthermore, on invoking the Gauss-Laguerre quadrature rule, the PO in-

tegrand J
(a,b)
2 (x) exp

(
−ikx2

)
defined on ϕNSDPs(p) can be integrated with

workload independent of frequency k, as k � 1.

The detailed proof is given in [17].

5 Numerical results

To illustrate the efficiency of the proposed NSDP method, first, we con-

duct some numerical experiments for the PO line integral I
(a,b)
2 . Next, we

Figure 3: (a) PO surface integral I	1 , defined on the triangular patch–Δ1;
(b) the electromagnetic wave impinges on the quadratic saddle surface ∂Ω,
governed by equation z = f(x, y).
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extend the PO surface integral on the triangular patch. Finally, the RCS
values of the PO scattered electric field on the saddle surface are generated
via the proposed NSDP method.

5.1 PO surface integral on the triangular patch

In this subsection, we consider the triangular patch �1, as shown in
Fig. 3. The critical points in �1 contain the SPP Xs, two RSPs Xr,m and
three vertex points V n, m = 2, 3, n = 1, 2, 3.

In contrast to the HFA method, Fig. 4 depicts that the PO results by
the NSDP method can be significantly improved by one to two orders when

k ∈ [10, 100], as expressed by E
(NSDP)
Δ1

(k) and E
(HFA)
Δ1

(k). Meanwhile, the
computational effort for the PO integral by the NSDP method is also O(1).
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Figure 4: (a) The relative errors of the PO results by using the NSDP and

HFA methods relative to the BF method on Δ1, denoted by E
(NSDP)
Δ1

(k) and

E
(HFA)
Δ1

(k); (b) CPU time comparisons by using NSDP and BF methods.

5.2 PO scattered field on the saddle surface

Finally, we apply the NSDP method to analyze the PO scattered field
on the saddle surface in Fig. 3. The incident wave propagates along r̂(i) =[
0.5, 0.5,−

√
2/2

]
direction, and the observation point is set along the direc-

tion r̂ =
[√

2/4,
√
6/4,

√
2/2

]
.

Figure 5 gives comparisons of the errors of Es(r) produced by NSDP
and HFA methods relative to the BF method. Compared with the HFA
method, the advantage on improving the scattered electric field accuracy by
the NSDP method is again confirmed in Fig. 5.
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Figure 5: (a) The relative errors of the bistatic scattered electric field Es(r)
results by using NSDP and HFA methods relative to the BF method on the
saddle surface; (b) comparisons of the CPU time (second unit) for the PO
scattered electric field by using NSDP and BF methods.

On invoking the NSDP method, the various critical-point contributions
to Es(r) are compared in Fig. 6. Also, we see that the SPP point contri-
bution dominates Es(r) when k is large. Again, Fig. 5 demonstrates the
frequency independent computational effort for the scattered electric field.
Finally, we apply the NSDP method to calculate the bistatic RCS values of
Es(r), which are in good agreement with the results generated by the BF
method.

In summary, the proposed NSDP method for calculating the PO scat-
tered field on the quadratic saddle surface is frequency independent and error
controllable.

6 Conclusion

In this paper, we propose the NSDP method to calculate the scattered
field on the quadratic saddle surface in the high frequency regime. The
scattered electric field can be reduced to several highly oscillatory PO sur-
face integrals. By applying the NSDP method, high frequency critical-point
contributions are rigorously expressed on these NSDPs. Finally, extensive
numerical experiments are given to show the efficiency of the NSDP method.
In conclusion, the NSDP method for calculating the electric scattered field on
the quadratic saddle surface is frequency independent and error controllable.
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Figure 6: (a) Critical points contributions to Es(r) in (7) in terms of the
NSDP method; (b) comparisons of the RCS (dBsm unit) values of the PO
scattered electric field on the saddle surface by using NSDP and BF methods.
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