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Abstract

The world of molecular biology is composed by a complex network of interactions that
are analogous to electric circuits. They govern the functions required for life, from
metabolism to locomotion. In these networks, the presence of network motifs were
identified, recurring elements supposedly kept by evolution. One of them is called the
feedforward loop and has the function of a sign-sensitive delay element or noise-filter.
Moreover, different combinations of several types of feedforward loops were identified
in the transcription networks of Escherichia coli and Saccharomyces cerevisiae, called
complex feedforward loops. From this finding a question arises: do different types of
combined feedforward loops have a specific function? Would this identified function
be useful in synthetic biology applications? Answering these questions is the ultimate
goal of a research direction in systems biology, studied at the Institute of Complex
Molecular Systems (ICMS) at Eindhoven University of Technology. However, biological
experiments are difficult to setup and conduct in a suitable manner to generate relevant
results. Therefore, it would be highly effective to be able to predict the nonlinear dy-
namical behaviour of these (combined) feedforward loops. Nevertheless, in order to be
able to achieve this, first a single feedforward loop must be fully modelled, calibrated and
analysed. This master thesis focuses on this goal and is composed of three main elements:
modelling, parameter estimation and structural analysis. The modelling section com-
prises of the methodology derived in order to transpose the biochemical reactions into
equations and perform model reduction on the feedforward loop built at ICMS. Then,
a hybrid parameter estimation method was applied successfully and made it possible to
perform numerical simulations of the system. Lastly, the focus was directed to structural
analysis and obtaining insights about the behaviour of the network without knowledge
of the parameters. This included the adaptation of metabolic network analysis tools,
elementary flux mode analysis and flux balance analysis to be used on gene expres-
sion networks. As a result, it was possible to link the nonlinearity of the steady-states
observed in the experimental data with the accumulation of certain compounds.

Master of Science Thesis Julia Smeu



ii

Julia Smeu Master of Science Thesis



Contents

Acknowledgements xi

1 Introduction 1
1-1 The Field of Systems Biology . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 The Coherent Feedforward Loop . . . . . . . . . . . . . . . . . . . . . . . . 3

1-2-1 Coherent Feedforward Loop built at ICMS . . . . . . . . . . . . . . . 4
1-2-2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 5

1-3 Master Thesis Project Description . . . . . . . . . . . . . . . . . . . . . . . 7
1-3-1 Research Direction at the Institute for Complex Molecular Systems at

Eindhoven University of Technology . . . . . . . . . . . . . . . . . . 8
1-3-2 Master Thesis Research Objective . . . . . . . . . . . . . . . . . . . 8
1-3-3 Organization of the Thesis Report . . . . . . . . . . . . . . . . . . . 9

2 Modelling of the Coherent Feedforward Loop 11
2-1 Deterministic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2-2 From Reactions to Ordinary Differential Equations . . . . . . . . . . . . . . . 13
2-3 Conservation Laws from Stoichiometry . . . . . . . . . . . . . . . . . . . . . 14

2-3-1 Transcription and Translation Modelling - Model Reduction . . . . . . 16
2-3-2 Maturation of eGFPdark and degradations . . . . . . . . . . . . . . 21

2-4 The Full Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2-5 Adding inflow and outflow term . . . . . . . . . . . . . . . . . . . . . . . . . 23
2-6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Master of Science Thesis Julia Smeu



iv Contents

3 Parameter Estimation 27
3-1 Structural Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3-2 Components of the Parameter Estimation . . . . . . . . . . . . . . . . . . . 30

3-2-1 Experimental Data and Mathematical Model . . . . . . . . . . . . . 30
3-2-2 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3-2-3 Parameter Estimation Algorithms . . . . . . . . . . . . . . . . . . . . 31

3-3 Procedure Description and Results . . . . . . . . . . . . . . . . . . . . . . . 34
3-4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Structural Analysis 41
4-1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4-2 Steady State Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4-2-1 Graph-theoretic Approach . . . . . . . . . . . . . . . . . . . . . . . . 45
4-2-2 P Matrix Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4-2-3 Identification of Equilibria from Mathematical Model . . . . . . . . . 48

4-3 Tools Applied on Metabolic Networks . . . . . . . . . . . . . . . . . . . . . 49
4-3-1 Elementary Flux Modes . . . . . . . . . . . . . . . . . . . . . . . . . 50
4-3-2 Flux Balance Analysis (FBA) . . . . . . . . . . . . . . . . . . . . . . 53

4-4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Conclusion and Future Work 59
5-1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5-2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A Modelling 63
A-1 CFFL Biological Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A-2 Stoichiometric Matrix of CFFL . . . . . . . . . . . . . . . . . . . . . . . . . 64
A-3 Right and Left Null space of Stoichiometric Matrix . . . . . . . . . . . . . . 64
A-4 Mathematical Model - Flow Experiment . . . . . . . . . . . . . . . . . . . . 66

B Parameter Estimation 67
B-1 Limits used during Parameter Estimation . . . . . . . . . . . . . . . . . . . . 67
B-2 Results from PSO on the individual datasets . . . . . . . . . . . . . . . . . . 68
B-3 Final Estimated parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C Structural Analysis 71
C-1 The identified EFMs from METATOOL . . . . . . . . . . . . . . . . . . . . 71
C-2 FBA Results - Single Objective Function . . . . . . . . . . . . . . . . . . . . 72
C-3 Single Objective Function Vectors . . . . . . . . . . . . . . . . . . . . . . . 73
C-4 FBA Results - Complex Objective Function . . . . . . . . . . . . . . . . . . 74
C-5 Complex Objective Function Vectors . . . . . . . . . . . . . . . . . . . . . . 75

Julia Smeu Master of Science Thesis



Contents v

Glossary 83
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Master of Science Thesis Julia Smeu



vi Contents

Julia Smeu Master of Science Thesis



List of Figures

1-1 The feedforward loop network motif structure and its noise-filtering behaviour
visualised [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1-2 CFFL used in the thesis project - schematic made by Pascal Pieters from
Eindhoven University of Technology . . . . . . . . . . . . . . . . . . . . . . 5

1-3 Extended schematic of coherent feedforward loop (CFFL) . . . . . . . . . . . 6
1-4 Data from Batch Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 7

2-1 The biochemical reaction network of the CFFL . . . . . . . . . . . . . . . . 12
2-2 Top-view diagram and schematic of flushing, loading and mixing of reagents

inside a reactor [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3-1 General Structure of Optimization Code . . . . . . . . . . . . . . . . . . . . 31
3-2 Configuration of Parameter Estimation Process . . . . . . . . . . . . . . . . 33
3-3 Resulting Decrease in Cost from PSO - applied on dataset 4 . . . . . . . . . 35
3-4 Results of simultaneous parameter estimation . . . . . . . . . . . . . . . . . 38
3-5 Results of initial conditions refinement . . . . . . . . . . . . . . . . . . . . . 39

4-1 Dynamics of the intermediate chemical complexes . . . . . . . . . . . . . . . 43
4-2 Steady-state values of S28 and RNAeGFP . . . . . . . . . . . . . . . . . . . 44
4-3 DSR graph of CFFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4-4 Processes in a Cell [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4-5 Flux cone in 3 dimensional visualisation . . . . . . . . . . . . . . . . . . . . 51
4-6 Visualisation of Constraints Based Modelling [4] . . . . . . . . . . . . . . . . 53
4-7 CFFL network structure for FBA . . . . . . . . . . . . . . . . . . . . . . . . 56

Master of Science Thesis Julia Smeu



viii List of Figures

4-8 FBA - Flux distribution resulting from maximising the production of eGFP
and S28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5-1 The 12 unique motif clustering types for two feedforward loops [5] . . . . . . 59

Julia Smeu Master of Science Thesis



List of Tables

1-1 Ranges of initial concentrations - batch experiment . . . . . . . . . . . . . . 6

3-1 Estimated Parameters From Pattern Search . . . . . . . . . . . . . . . . . . 36
3-2 Bounds on the estimation of initial conditions . . . . . . . . . . . . . . . . . 37

C-1 FBA Results - Single Objective Function . . . . . . . . . . . . . . . . . . . . 72
C-2 FBA Results - Complex Objective Function . . . . . . . . . . . . . . . . . . 74

Master of Science Thesis Julia Smeu



x List of Tables

Julia Smeu Master of Science Thesis



Acknowledgements

I could describe these past two years in many ways: difficult and mentally challenging,
inspiring and helping me to develop tremendously. I have learned a lot, both about the
field I chose and about myself during this master’s degree. However, all of this could
not have been possible without the following people.

First of all, I would like to thank my supervisor dr.ir. Erik Steur for all the invaluable
help I was given during the thesis work and for all the reassurance I got when I was full
of self-doubt.

I am wholeheartedly grateful to dr. Carlos Robles Rodriguez whom I was lucky enough
to meet halfway through my thesis. I have really enjoyed working together with you
and I would like to thank you for managing to change my negative thoughts about my
project into positive ones.

Lastly, I would like to thank all the people that kept me going in difficult times and
supported me all the steps of the way. My parents, who were and will always be my
strong pillars. The friends with whom I have sweated together during this master’s
degree and formed my family in Delft: Ola, Karol, Leo, Patrick, Máté, Daniel, Bart,
Barbara and Nirmal. I have learnt so much from all of you.

Delft, University of Technology Julia Smeu
September 11, 2019

Master of Science Thesis Julia Smeu



xii Acknowledgements

Julia Smeu Master of Science Thesis



Chapter 1

Introduction

“Every object that biology studies is a system of systems.”
— Francois Jacob (1974)

This chapter provides a brief introduction to the field of systems biology. More pre-
cisely, the origin of the research area, the theory and applications related to it and the
connection with the field of systems and control. Subsequently, the focus will be put on
the project work that was completed during the master thesis and an overview of it is
presented in continuation. Moreover, concepts central to the project will be introduced,
jointly with the main components of the work completed. In addition, an overview of
the experimental process is described together with the analysis of the experimental
data provided by the Institute of Complex Molecular Systems (ICMS) at Eindhoven
University of Technology.

1-1 The Field of Systems Biology

Systems biology is considered to have two historical roots [6], both originating from
molecular biology. One of them is represented by the discovery and study of the genetic
material and the second one is made up of nonequilibrium thermodynamics theory. Both
of them emerged from the first half of the 19th century and prior to their development
biology was an isolated field of research, not linked to mathematics, systems theory
and engineering. However, as a result of the pioneering work of Alan Turing published
in the paper "The Chemical Basis of Morphogenesis" [7], mathematical modelling was
introduced to the world of molecular biology. Another important figure to mention is
Ludwig von Bertalanffy who is considered to be the father of general systems theory [8]
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2 Introduction

and focused on studying organisms as a ’whole’ [9], also applying modelling principles on
self-regulating systems. In addition, another notable milestone in the history of systems
biology is the discovery of the lac operon’s regulation in bacteria Escherichia coli (E.Coli)
by Jacob and Monod in 1961 [10]. This was revolutionary as it showed that the gene
expression process can be seen as a dynamical system with inputs and outputs [11].
Systems biology has come a long way since then, encompassing a research field on its own
and uniting researchers from multiple disciplines: biology, systems and control, chem-
istry, computer science and engineering. An accurate definition of the research direction
was formulated in the paper [12] in the following way:

“Systems biology studies biological systems by systematically perturbing them (biologi-
cally, genetically, or chemically); monitoring the gene, protein, and informational path-
way responses integrating these data; and ultimately, formulating mathematical models
that describe the structure of the system and its response to individual perturbations.”

Therefore, one of the significant aims of this field is to describe the behaviour of biolog-
ical systems using mathematical laws. Having achieved this, some researchers started
a new direction of pioneering work resulting from the theory developed from systems
biology. In 1994, Leonard M. Adleman put all the theory in practice and developed
the first DNA-based computer. This triggered the construction of de novo synthetic
gene circuits like the oscillator [13] and the toggle switch [14]. These constitute one of
the first big milestones in synthetic biology, an engineering field that focuses on the de-
sign and manipulation of artificial biological systems with specific application purposes.
As a result, the first real-world applications were developed which were environmental
biosensors and biofuel production pathways [11].

The two research fields of systems biology and synthetic biology have a ’symbiotic rela-
tionship’: advances in one help the development of the second one and vice-versa [15].
The products of synthetic biology are considered to be analogous to electrical circuits,
hence the term genetic circuits. The development of these has enormous potential in
energy, environmental and medical applications. However, in order to get major break-
throughs, challenges outside the sphere of molecular biology have to be tackled. One
category of challenges are ’system-level’ problems and represent the necessity of applica-
tion of concepts from control theory. In paper [11] there were three main challenges iden-
tified that are encountered during the development of synthetic biological systems: lack
of modularity and compositionality, emergent behaviours from stochasticity and inter-
actions between spatially distributed dynamics. In response to this challenges, research
opportunities were identified for systems and control field. These include directions like
developing a proper system identification methodology for biomolecular systems, ex-
ploiting time-scale separation for simplifying dynamics and increasing modularity and
development of modelling frameworks.
The work completed and presented in the master thesis report has as its base the appli-
cation of systems and control theory tools to the modelling and analysis of a biological
system. More precisely, it tackles the above mentioned challenges by deriving a mod-
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1-2 The Coherent Feedforward Loop 3

elling method for gene expression, implementing system identification using different
parameter estimation methods and performing structural analysis using mathematical
tools.

1-2 The Coherent Feedforward Loop

Before presenting an overview of the master thesis, the biological network motif of
coherent feedforward loop (CFFL) has to be introduced. In the following its function
and general structure will be presented. This bio-chemical reaction network constitutes
the central element of the project. It is defined to be a network motif as its appearance
number is higher in the transcription networks of bacteria E.Coli [16] and Saccharomyces
cerevisiae [17] than in randomised networks. The main identified function of the CFFL
is of a sign-sensitive delay element or noise-filtering device. This function is considered
to represent one possible explanation for the reason why evolution kept this motif in
biological networks [1].

The feedforward loop is usually illustrated as a 3-node network. The exact chemical
complexes that represent these nodes usually differ, alternative variations of it can be
found in transcription networks or built in laboratories. In literature [1] [18] usually
one of the nodes is represented by transcription factor X, that regulates a second node,
transcription factor Y. Both X and Y regulate the third element which is represented by
gene Z (fig. 1-1). As a consequence, the network contains two regulation paths, a direct
one from X to Z and an indirect one through Y. Similarly to the nodes variation, the way
this combined regulation by X and Y is implemented also can differ from one feedforward
loop to another. Moreover, according to the nature of the regulation paths (activating
or inhibiting), the feedforward loop can be of different types. The project focuses only
on type 1 CFFL in which all paths are of activating nature. A more detailed description
of these types and the breakthrough experiment that was conducted to prove the noise-
filtering behaviour of the biological system can be found in the literature study written
prior to this thesis report [19]. In addition, the functioning of the device is illustrated in
fig. 1-1. The input to the system is the signal Sx that activates transcription factor X.
For a short perturbation of transcription factor X, only a limited amount of transcription
factor Y is produced, which is not enough to reach the threshold in order to start the
production of Z. However, if the impulse for transcription factor X has longer time
period, then Y is produced in higher quantities and surpasses the threshold. Therefore,
gene Z production starts as well.

The present master thesis project is based on the CFFL built at ICMS at Eindhoven
University of Technology. In order to have a better understanding of the modelling and
analysis of this specific genetic circuit, in the following subsection a thorough description
of it will be presented.
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4 Introduction

Figure 1-1: The feedforward loop network motif structure and its noise-filtering behaviour
visualised [1]

1-2-1 Coherent Feedforward Loop built at ICMS

The type of feedforward loops found in literature [1] [18] are structurally the same
as the CFFL analysed in the current report. However, component-wise they differ.
More specifically, this can be observed by the composition of the nodes. The three
nodes are represented σ-factor 70 (S70) and σ-factor 28 (S28) and the green fluorescent
protein (eGFP). This biological system has one input, specifically the DNA template
called, DNAtrigger and one output, eGFP. These elements can be seen in fig. 1-2 and
fig. 1-3.

The core reactions making up the CFFL are based on the process of protein synthesis.
All of the three mentioned nodes are proteins, two of them (S28 and eGFP) are produced
during the functioning of the network. The protein synthesis process can be divided into
two main reaction sets: transcription and translation. During transcription, RNA is
produced and then it is used as an input to translation which has the corresponding
protein as its end-product. Therefore, the schematic from fig. 1-2 is extended to fig. 1-3
according to the processes of protein synthesis. From this it can be seen that there is
one input to the network, DNAtrigger and it is varied during the experimental process. In
order for the network to start functioning there are also five other chemical species added
to the mixture: RNAP, S70, DNAS28, DNAeGFP and Ribo. However the concentration
of these species stays constant. Therefore, DNAtrigger is considered as the single input
to the network. In the first stage of transcription reactions, RNAtrigger and RNAS28 are
produced. These two species are the inputs to the translation reaction to output S28,
the intermediate protein and also second node of the CFFL. Then, in the next step S28
is used in the third transcription reaction to produce RNAeGFP. This in turn is used as
input to the second translation reaction to output eGFP.
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1-2 The Coherent Feedforward Loop 5

Figure 1-2: CFFL used in the thesis project - schematic made by Pascal Pieters from
Eindhoven University of Technology

Moreover, there is a second significant difference in the composition of the CFFL from
the project compared to the feedforward loops found in literature. This is represented by
the structure of the AND gate combining the direct and indirect path from the network.
In order to make sure that both the first two nodes regulate the output protein, a toe-
hold switch is used. This is an RNA-based AND gate that requires the binding of the
different RNA elements in order to start translation. A more detailed description of this
mechanism can be found in [19].

1-2-2 Experimental Procedure

In the following section a short overview and the significant aspects of the experimental
procedure will be presented. Firstly, the experiments are completed in vitro. Therefore,
the reactions taking place in the CFFL are not influenced by any external processes
that would be happening in a cell. Secondly, at the ICMS at Eindhoven University
of Technology there are two types of experimental procedures used: batch and flow
experiments.

Batch experiments represented the first stage of the research work. The required chemical
species for the gene expression process were loaded into a microfluidic reactor that did
not use the flow inlet/outlets. Then the trigger or input DNA template was added to the
mixture and the reactions were let to take place without adding any inflow or outflow.
The transcription and translation processes use up all the input chemical species and
the reactions halt after a specific time. During the process, the fluorescence level of the
output eGFP protein was measured. This is proportional to the concentration of the

Master of Science Thesis Julia Smeu
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TX Reactions 1&2

TL Reaction 1

RNAeGFP RNAtrigger RNAS28S28

eGFP

DNAtrigger

TX Reaction 3

TL Reaction 2

Figure 1-3: Extended schematic of CFFL

compound, therefore fluorescence is translated into concentration values which build up
the experimental data. This is used for parameter estimation later on and it is visualized
in fig. 1-4. The five different datasets were acquired from five different experiments.
Therefore, it is likely that the initial conditions of the experiments differed from one to
another. Also, it is possible to have slightly different reaction rate constants because of
changes in temperature or any other discrepancy in the setup of the experiment. The
initial concentrations of three chemical species are not known precisely, a range of values
were given and can be found in table 1-1.

Parameters Cell-free Reaction

RNAP [nM] 60-75 nM
S70 [nM] <35 nM
Ribosomes [nM] <2300 nM

Table 1-1: Ranges of initial concentrations - batch experiment

So far, successful batch experiments were completed and yielded the results that can
be seen in fig. 1-4. This shows the production of the output protein, eGFP, according
to the amount of input DNAtrigger added to the experimental process. The behaviour
that corresponds to the sign-sensitive delay element can be recognised: the start time
of the production of eGFP is the largest when the input concentration of DNAtrigger is
the lowest. In addition, an important observation to make is the non-linearity in the
amplitudes of the datasets. For the first three inputs, the amplitude increases as the
input value increases as well. However, for the fourth and fifth dataset, this is not valid
any more and the output settles at lower values. The noise-filter function was not verified
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1-3 Master Thesis Project Description 7

yet as it is dynamic in character which can only be validated using flow experiments.

Therefore, the second stage comprises of adding an inflow and outflow to the reaction
mixture. In this way it is made sure that the reactions don’t halt and the noise-filtering
behaviour of the CFFL can be experimentally tested. The researchers at the ICMS
are currently working on successfully conducting flow experiments of the CFFL. More
details about the technical setup of the flow experiments can be found in [19] and a
schematic of the microfluidic reactor with the inlets and outlets can be seen in fig. 2-2.

Figure 1-4: Data from Batch Experiments

1-3 Master Thesis Project Description

So far the background research field of the project and its centre element, the CFFL, was
described. Moreover, the experimental procedure followed at the ICMS was also pre-
sented. In the following the research direction that guided this project will be discussed.
In addition, the research objective of the master thesis will be presented, together with
an overview of thesis work that was completed during the project.

Master of Science Thesis Julia Smeu



8 Introduction

1-3-1 Research Direction at the Institute for Complex Molecular Systems
at Eindhoven University of Technology

As mentioned in section 1-1, the main research objective of synthetic biology is to de-
velop de novo genetic circuits for specific application purposes. At ICMS at Eindhoven
University of Technology, researchers are achieving this by focusing their work on devel-
oping combined feedforward loops. There is no knowledge available on how will these
genetic circuits behave and which one of them will have potential for synthetic biology
applications. Nevertheless, developing these biological circuits and conducting successful
experiments in order to observe its behaviour is a cumbersome process that requires a
lot of time and meticulous work in setting up the experiments. Therefore, finding a way
to model and simulate these genetic circuits in advance would be a tremendous help in
conducting the research work more efficiently.

1-3-2 Master Thesis Research Objective

As described in the previous subsection, there are several challenges that molecular
biologists from Eindhoven University of Technology face during conducting the batch
and flow experiments for a single biological network. However, their aim is to develop
multiple of these genetic circuits. Accordingly, a range of solutions have to be found in
order to make this entire procedure more efficient and to be able to conduct in silico
experiments that already provide insights about biological networks.

Therefore, the master thesis titled ’Modelling, Analysis and Verification of Biological
Coherent Feedforward Loop Network’ provides a collection of tools that are implemented
in different stages of the process of studying a biological network motif.

Firstly, a modelling methodology was developed to apply on the CFFL. This was specif-
ically tailored to the type of chemical complexes (holoenzymes) used in the configuration
of the network motif built at the ICMS. Nevertheless, in case of different structure, the
modelling strategy could still be applied with a few modifications.

Secondly, a parameter estimation process was designed to conduct system identification
on the CFFL. A hybrid method was applied which combined the performance of several
optimization algorithms. Moreover, a complete calibration procedure is shown together
with the analysis of the results.

Thirdly, theory and tools were studied and implemented from structural analysis of bio-
chemical reaction networks. These are represented by methods that are applied in case
knowledge about the parameters of the model is not available at all. All insights are
generated based on the structure and stoichiometry of the network. Moreover, two tools
used in the analysis of metabolic networks were implemented on transcription reactions
successfully. These generated results about the static dynamics of the CFFL.

As a consequence, combining all these elements the aim was to develop a framework for
modelling and analysing biological systems. Moreover, the goal was to make it possible

Julia Smeu Master of Science Thesis



1-3 Master Thesis Project Description 9

for it to be applied in order to perform functional analysis not only on a single network
motif but also on combined ones.
In summary, the following are the contributions of the master thesis:

1. Development of the mathematical model of the CFFL. The result is a set
of ordinary differential equations describing the dynamics of the studied network
motif. With the help of it, not only the behaviour of the output can be observed
but also the dynamics of the other state variables, the other chemical species
taking part in the reaction network. During this process, model reduction was also
implemented.

2. Implementation of a hybrid parameter estimation method to calibrate
the CFFL. There is only a limited amount of insights that can be gained by
analysing the bio-chemical reaction network without the knowledge of the param-
eters. In order to be able to simulate the model, it is necessary to estimate the
parameters which are represented by reaction rates and Michaelis-Menten con-
stants. The system identification procedure was completed by using a particle
swarm optimization algorithm in combination with patternsearch method.

3. Development of a set of structural analysis tools and implementation
on the CFFL. It was desired to study what information can be deducted from
the structural characteristics of the biological network. Therefore, the capacity
to admit multiple equilibria was confirmed by two software packages developed
for chemical reaction network analysis. Moreover, software tools used for analysis
of metabolic networks were implemented and provided insights about the static
dynamics of the network. The results were confirmed by the numerical simulations
resulting from the parameter estimation procedure

4. Implementation of metabolic network analysis tools on gene expres-
sion networks. Elementary flux mode analysis and flux balance analysis are two
commonly used methods in the analysis of metabolic networks. However, the re-
actions composing gene expression networks differ from the reactions constituting
metabolic networks. As a result, a way had to be found to input the transcrip-
tion/translation reactions to generate suitable results.

1-3-3 Organization of the Thesis Report

The remainder of this master thesis report comprises of the project work completed that
resulted in the contributions described above. It was structured based on the three main
components that build up the thesis: mathematical modelling, parameter estimation
and structural analysis. In the following, the subsequent chapters of the report will be
summarised.
The first part, encompassed by the second chapter of this master thesis report, com-
prises of the derivation of the mathematical model of the CFFL. Modelling of biological
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networks was identified as a challenge in systems biology that requires systems and con-
trol theory. One relevant reason for this is that biological systems are highly complex
therefore in most of the cases even the biochemical reactions representing the network
are an approximation of the actual system. As a consequence, mathematical modelling
in this case significantly differs from the usual process found in physical sciences and
engineering. In these fields models play a primary role and is possible to use them to
perform full analysis and make hypothesis based on them. In biology however, math-
ematical models are merely used to ’document’ experimental results and are actually
derived based on the data available. In contrast, during this project a mathematical
model is derived based on the chemical reaction network given by the researchers from
the ICMS from Eindhoven University of Technology. The derivation is split into sev-
eral parts and the details of how the reactions are transposed into ordinary differential
equations are presented.

The second part comprises of completing system identification and it is the main topic of
the third chapter. The biological model contains unknown reaction rates and Michaelis-
Menten constants. However, having an estimation of the parameters makes it possible
to perform numerical simulation of the CFFL to predict its behaviour. It also aids in
input-output relationship analysis and gives an insight into the dynamics of the other
chemical species represented by the other states of the model. These can not be observed
during the experimental procedure. Therefore, in this way there is information about
the underlying dynamics.

The fourth chapter encompasses the dynamics analysis of the network motif. In the
previous chapter, one of the goals was to analyse the system dynamics for specific sets of
parameter values. However, in this part the aim is to gain insights about the behaviour
of the CFFL without the knowledge of the parameters. This will be achieved by using
structural analysis methods to confirm the capacity for multiple equilibria. Moreover, a
novel way of applying metabolic network analysis tools (elementary flux modes analysis
and flux balance analysis) on transcription network will be demonstrated. In addition,
the results from it will be discussed.

Lastly, the results and findings of the project work will be summarised and discussed in
the final chapter of the master thesis report. Moreover, suggestions for further work will
be given.
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Chapter 2

Modelling of the Coherent
Feedforward Loop

A relevant challenge in research fields that comprises of multidisciplinary work is un-
derstanding the discrepancies present between researchers coming from different back-
grounds. A good example of this is the concept of model. For molecular biologists,
the model of a biological network is represented by a set of biochemical reactions. On
the other hand, systems and control researchers associate the term model with a set of
ordinary differential equations that describe the system’s dynamics. However, in order
to get to this mathematical model, the biochemical reaction model has to be transposed
into mathematical equations. There is no set methodology to do this, there are dif-
ferent directions that can result in different results. However, what is important is to
understand the assumptions that can be formulated and identify the required level of
complexity in order to get a model that is suitable for further work.

The following chapter encompasses the first part of the project work that corresponds to
the mathematical modelling of the network motif of coherent feedforward loop (CFFL).
This is a fundamental part of the thesis as the subsequent parameter estimation and
dynamics analysis will have the derived model as their basis. Firstly, a few choices
prior to the derivation of the equations will be motivated. Taking these into account,
the method of modelling the transcription and translation processes will be presented.
Lastly, an overview of the model will be given.
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Figure 2-1: The biochemical reaction network of the CFFL

2-1 Deterministic Modelling

There are two separate starting directions when it comes to modelling of biochemical
networks. One is called stochastic modelling which takes into account different possibil-
ities to include the different microstates of the system [3]. In addition to this, there is
the choice of deterministic modelling which is less complex however also less accurate.
Prior to the actual process of modelling, a choice had to be made between these two
frameworks. During the project deterministic modelling was chosen. The motivation for
this is that there is no need for a higher-dimensional representation of the dynamics of
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2-2 From Reactions to Ordinary Differential Equations 13

the system. Even on the contrary, one of the aim is to have as simple representation
of the dynamics as possible without compromising too much on accuracy by applying
model reduction. Moreover, the given reaction network from the Institute of Complex
Molecular Systems (ICMS) is an approximation of the highly complex chemical reaction
network that corresponds to the coherent feedforward loop. For example, at a higher
detail level perspective, transcription consists of the conversion of nucleotides to messen-
ger RNA [20]. However, the several types of nucleotides are not included into the model.
Therefore, choosing deterministic modelling was a suitable choice in order to transpose
the bio-chemical reactions into ordinary differential equations.

2-2 From Reactions to Ordinary Differential Equations

The following section will focus on the methodology developed that transposes the chem-
ical reactions forming the bio-chemical network into ordinary differential equations. A
set of reactions was made available by the ICMS. Using these, mass-action modelling is
applied. Subsequently, model reduction is achieved by using conservation laws derived
from the stoichiometry matrix and by applying temporal differentiation of the reactions.
The biological model provided by ICMS can be found in appendix A-1.
The first step is to convert the reactions composing the biological model into ordinary
differential equations. This will be achieved by applying deterministic modelling, more
specifically mass-action law. More details about this can be found in the literature study
report accompanying the master thesis [19]. Therefore, the following system of ordinary
differential equations is derived:

˙[RNAP ] =k−1[RNAP : S70]− k1[RNAP ][S70] + k−6[RNAP : S28]−
− k6[RNAP ][S28]

˙[S70] =k−1[RNAP : S70]− k1[RNAP ][S70]
˙[DNAt] =− k2[RNAP : S70][DNAt] + k3[RNAP : S70 : DNAt]

˙[DNAS28] =− k4[RNAP : S70][DNAS28] + k5[RNAP : S70 : DNAS28]
˙[DNAeGFP ] =− k7[RNAP : S28][DNAeGFP ] + k8[RNAP : S28 : DNAeGFP ]

˙[RNAP : S70] =− k−1[RNAP : S70] + k1[RNAP ][S70]−
− k2[RNAP : S70][DNAt] + k3[RNAP : S70 : DNAt]−
− k4[RNAP : S70][DNAS28] + k5[RNAP : S70 : DNAS28]

˙[RNAP : S70 : DNAt] =k2[RNAP : S70][DNAt]− k3[RNAP : S70 : DNAt]
˙[RNAt] =k3[RNAP : S70 : DNAt]− k9[RNAt][RNAS28]+

+ k−9[RNAt : RNAS28]− k12[RNAt][RNAeGFP ]+
+ k−12[RNAt : RNAeGFP ]

(2-1)
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14 Modelling of the Coherent Feedforward Loop

˙[RNAP : S70 : DNAS28] =k4[RNAP : S70][DNAS28]− k5[RNAP : S70 : DNAS28]
˙[RNAS28] =k5[RNAP : S70 : DNAS28]− k9[RNAt][RNAS28]+

+ k−9[RNAt : RNAS28]
˙[RNAP : S28] =− k−6[RNAP : S28] + k6[RNAP ][S28]−

− k7[RNAP : S28][DNAeGFP ] + k8[RNAP : S28 : DNAeGFP ]
˙[RNAP : S28 : DNAt] =k7[RNAP : S28][DNAeGFP ]− k8[RNAP : S28 : DNAeGFP ]

˙[RNAeGFP ] =k8[RNAP : S28 : DNAeGFP ]− k12[RNAt][RNAeGFP ]+
+ k−12[RNAt : RNAeGFP ]

˙[Ribo] = −k10[RNAt : RNAS28][Ribo] + k11[RNAt : RNAS28 : Ribo]−
− k13[RNAt : RNAeGFP ][Ribo] + k14[RNAt : RNAeGFP : Ribo]

˙[RNAt : RNAS28] = k9[RNAt][RNAS28]− k−9[RNAt : RNAS28]−
− k10[RNAt : RNAS28][Ribo] + k11[RNAt : RNAS28 : Ribo]

˙[RNAt : RNAS28 : Ribo] = k10[RNAt : RNAS28][Ribo]− k11[RNAt : RNAS28 : Ribo]
˙[S28] = k11[RNAt : RNAS28 : Ribo] + k−6[RNAP : S28]−
− k6[RNAP ][S28]

˙[RNAt : RNAeGFP ] = k12[RNAt][RNAeGFP ]− k−12[RNAt : RNAeGFP ]−
− k13[RNAt : RNAeGFP ][Ribo] + k14[RNAt : RNAeGFP : Ribo]

˙[RNAt : RNAeGFP : Ribo] = k13[RNAt : RNAeGFP ][Ribo]− k14[RNAt : RNAeGFP : Ribo]
˙[eGFPdark] = k14[RNAt : RNAeGFP : Ribo]−mat[eGFPdark]

˙[eGFP ] = mat[eGFPdark]
(2-2)

The resulting system is composed of 21 states and 19 unknown parameters. In the
following, model reduction techniques will be applied to eliminate some of the states
and simplify the system. However, a priori to this, conservations laws of the CFFL will
be derived.

2-3 Conservation Laws from Stoichiometry

A step necessary for model reduction is analysing the stoichiometric matrix. More
specifically, it can be used to identify the conservation laws of the CFFL. Prior to this,
a concise way of representing the biochemical network is introduced in the following
form:

ẋ = Sv(x) (2-3)

where Sn×m is the stoichiometric matrix, x ∈ Rn+ is the non-negative vector of concen-
trations of n chemical species, and v(x) ∈ Rm represents the reaction flux vector of m
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2-3 Conservation Laws from Stoichiometry 15

reactions. Without considering the nature of the dynamics found in v(x) yet, the stoi-
chiometric matrix is built by using the stoichiometric coefficients of the reactions and it
is organised such that every column corresponds to a reaction and every row corresponds
to a chemical species. In order to obtain a better understanding of the composition of
the stoichiometric matrix the following example is introduced:

A + B
k+−−⇀↽−−
k−

C (2-4)

This represents two reactions, a forward and reverse one and contains 3 species. There-
fore, the stoichiometric matrix will be 3 × 2. The mass-action model corresponding to
it is the following:

d[A]
dt

= k−[C]− k+[A][B]

d[B]
dt

= k−[C]− k+[A][B]

d[C]
dt

= k+[A][B]− k−[C]

(2-5)

Therefore, the sample system can be written up in the following way:

Sv(x) =

−1 1
−1 1
1 −1

 [
k+[A][B]
k−[C]

]
(2-6)

As mentioned, each row corresponds to a compound. In this example first two rows
represent concentrations of A and B, while the third row corresponds to the product
C. Therefore, matrix entry -1 represents the corresponding chemical species being con-
sumed. On the other hand, matrix entry 1 corresponds to the production of the com-
pound.

The CFFL is initially built by considering every chemical compound from the biochem-
ical reaction network that is visualised in fig. 2-1. The resulting stoichiometric matrix
can be found in appendix A-2.
Computing the right null space of the matrix results in finding the steady-state flux
distributions through the network while the left null space results in the conservation
laws. In order to achieve this, a MATLAB toolbox called METATOOL [21] was used.
The computed right-null space and left-null space can be seen in appendix A-3.

The left null-space of the stoichiometry matrix gives the following conservation laws:

[DNAt] + [RNAP : S70 : DNAt] = C1 (2-7)

[DNAS28] + [DNAt]− [S70]− [RNAP : S70] = C2 (2-8)

[S70] + [RNAP : S70]− [DNAt] + [RNAP : S70 : DNAS28] = C3 (2-9)

[RNAP]− [S70] + [RNAP : S28] + [RNAP : S28 : DNAeGFP] = C4 (2-10)
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16 Modelling of the Coherent Feedforward Loop

[S70]− [RNAP]− [RNAP : S28] + [DNAeGFP] = C5 (2-11)

[Ribo] + [RNAt : RNAS28 : Ribo] + [RNAt : RNAeGFP : Ribo] = C6 (2-12)

The last conservation law eq. (2-12) is straightforward, it contains all chemical com-
pounds that include Ribo in it. This was expected as the concentration of ribosomes
that is added to the reaction mixture is fixed, therefore the sum of concentrations of the
chemical complexes containing it is constant. The other conservation laws have to be
grouped in a way that it reflects the same logic as in the case of the ribosomes. This
was achieved by adding up eq. (2-7), eq. (2-9) and eq. (2-10). Therefore, this results in
a concentration law that comprises of every complex that contains RNAP:

[RNAP] + [RNAP : S70] + [RNAP : S70 : DNAt] + [RNAP : S70 : DNAS28] +
+ [RNAP : S28] + [RNAP : S28 : DNAeGFP] = C

(2-13)

The two conservations laws formed around the concentration of RNAP and Ribo are
used in the subsequent modelling process to apply model reduction.

2-3-1 Transcription and Translation Modelling - Model Reduction

The CFFL is a 3-node biological motif, with the three nodes being represented by σ-
factor 70 (S70), σ-factor 28 (S28) and green fluorescent protein (eGFP) (fig. 1-2). All
of these chemical compounds are proteins, therefore the process of protein synthesis lies
at the base of the CFFL’s functioning. Therefore, the large reaction set can be grouped
in reaction subsets that take part or in the transcription, or in the translation process
(fig. 1-3). From the three proteins, S70 is added to the reaction mixture. The other
two, S28 and eGFP are produced. As a consequence, there are two protein synthesis
processes happening, which means two sets of transcription and translation reactions.
In addition, there is one additional transcription reaction that has the product of an
RNA element, RNAtrigger, that is needed for the functioning of the toe-hold switch.
In summary, there are three sets of transcription reactions and two sets of translation
reactions.

The first step was to understand the exact processes that are undergoing during tran-
scription. More specifically, it had to be identified which chemical species bind with each
other, which are the end-products and on what time-scale is the process completed. In
addition, the kinetics of the reactions had to be identified as well, for example if it con-
tains enzyme kinetics or just mass-action kinetics suffices. A more detailed description
of the transcription process can be found in [19].

In literature there were several ways used to model transcription [20] [22] [23]. However,
no source was found that specifically dealt with the the initialization of transcription
using σ-factors. Therefore this represented a challenge in the modelling process. The
next issue to consider was the identification of the type of dynamics: mass-action or
Michaelis-Menten kinetics. The way to approach this, was to identify if the reactions
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are catalysed by an enzyme and have enzymatic kinetics. In [19] it was identified that
transcription in the CFFL is initiated by the holoenzyme RNAP:S70 or RNAP:S28, using
DNA templates as substrates and having RNA species for end-products. In addition, the
publications used for the literature study of the master thesis, all implemented enzymatic
kinetics in order to model transcription.

In order to simplify the derivation process the reactions found in appendix A-1 and
parts of the mass action model found in eq. (2-1) and eq. (2-2) are rewritten. In the
following, the different chemical species will be denoted by letters in order to simplify
the derivation. Capital letters denote chemical species and the matching small case
letters represent the corresponding concentrations. The simplified reactions depicting
the transcription from the CFFL, are written in the following way:

A + B1
k1−−⇀↽−−

k−1
C1

C1 + D1
k2−−→ E1

k3−−→ M1 + D1 + C1

C1 + D2
k4−−→ E2

k5−−→ M2 + D2 + C1

(2-14)

where A is RNAP, B1 is S70, B2 is S28, C1 is RNAP : S70, D1 is DNAtrigger, D2 is
DNAS28, E1 is RNAP : S70 : DNAtrigger, E2 is RNAP : S70 : DNAS28, M1 is RNAtrigger and
M2 is RNAS28. The above reaction set represents the first two transcription processes
grouped as they use the same enzyme-sigma-factor complex for catalysis. Subsequently,
the third transcription reaction set is the following:

A + B2
k6−−⇀↽−−

k−6
C2

C2 + D3
k7−−→ E3

k8−−→ M3 + D3 + C2

(2-15)

where A is RNAP,B2 is S28, C2 is RNAP : S28,D3 is DNAeGFP, E3 is RNAP : S28 : DNAeGFP
and M3 is RNAeGFP.

The next step is to write up the partial mass-action model that corresponds to the
reactions from eq. (2-14) and eq. (2-15):
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18 Modelling of the Coherent Feedforward Loop

ȧ = k−1c− k1ab1 + k−6c2 − k6ab2

ḃ1 = k−1c1 − k1ab1

ċ1 = k1ab1 − k−1c1 + k−2e1 − k2c1d1 + k3e1 − k4c1d2 + k5e2

ḋ1 = k−2e1 − k2c1d1 + k3e1

ė1 = k2c1d1 − k−2e1 − k3e1

ṁ1 = k3e1

ḋ2 = −k4c1d2 + k5e2

ė2 = k4c1d2 − k5e2

ṁ2 = k5e2

ḃ2 = k−6c2 − k6ab2

ċ2 = k6ab2 − k−6c2 − k7c2d3 + k8e3

ḋ3 = −k7c2d3 + k8e3

ė3 = k7c2d3 − k8e3

ṁ3 = k8e3

(2-16)

In the next step there are two important details to consider: difference in velocity (time-
scales) of different reactions and competitive binding. Regarding the temporal differenti-
ation of the different reactions, the modelling strategy used in [3] was used: the reactions
that contain the binding of the RNAP to the σ-factor and the binding of this complex to
the DNA template are considered to be much faster than the production of RNA. There-
fore the concentrations of RNAP:S70, RNAP:S28, RNAP:S70:DNAt, RNAP:S70:DNAs28
and RNAP:S28:DNAeGFP are approximated at their quasi-steady state. This translates
into setting the ordinary differential equations corresponding to these states to 0. The
next step is to find an expression for the mentioned concentrations and replace them
into the set of equations eq. (2-16). In order to do this, a conservation law is required.
Therefore, the next step is to go back to the earlier found conservation laws using the
stoichiometric matrix. The Equation (2-13) is applied in the subsequent derivation and
it is written up in the simplified way:

Atot = a+ c1 + e1 + c2 + e2 + e3 (2-17)

In addition, it has to be mentioned that using this conservation law makes it possible to
include competitive binding of RNAP with S70 and S28 respectively. The next step is
to express concentration of RNAP (a) from eq. (2-17):

a = Atot − c1 − e1 − c2 − e2 − e3 (2-18)

In addition, the concentrations of E1, E2 and E3 are expressed with the concentrations
of C1 and C2:

e1 = (d1/Ke1)c1

e2 = (d3/Ke2)c1

e3 = (d3/Ke3)c2

(2-19)
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WhereKe1 = k3
k2
, Ke2 = k5

k4
andKe3 = k8

k7
. The aim was achieved, everything is expressed

in terms of c1 and c2, the inclusion in equations from eq. (2-16) can be completed. After
arranging the terms in the desired way the following expressions are found:

c1 = Atot(b1/K1)
1 + (1 + d1/Ke1 + d2/Ke2)(b1/K1) + (1 + d3/Ke3)(b2/K6)

c2 = Atot(b2/K6)
1 + (1 + d1/Ke1 + d2/Ke2)(b1/K1) + (1 + d3/Ke3)(b2/K6)

(2-20)

where K1 = k−1
k1

and K6 = k−6
k6

Therefore, the expression for concentrations of E1, E2 and E3 are written up in the
following way:

e1 = Atot(b1/K1)(d1/Ke1)
1 + (1 + d1/Ke1 + d2/Ke2)(b1/K1) + (1 + d3/Ke3)(b2/K6)

e2 = Atot(b1/K1)(d2/Ke2)
1 + (1 + d1/Ke1 + d2/Ke2)(b1/K1) + (1 + d3/Ke3)(b2/K6)

e3 = Atot(b2/K6)(d3/Ke3)
1 + (1 + d1/Ke1 + d2/Ke2)(b1/K1) + (1 + d3/Ke3)(b2/K6)

(2-21)

Having the concentrations expressed in eq. (2-21), these are replaced in the equations
that depict the production rate of the three RNA species produced during transcription:
M1, M2 and M3 (RNAtrigger, RNAS28 and RNAeGFP) from eq. (2-16). By applying this
quasi-steady-state approximation the model was simplified by eliminating 5 chemical
complexes as states from the final model. This represents the end of the transcription
modelling.

In the following the second part of the modelling process is presented: generating the
equations for the translation reactions, expressing the production rates of the proteins
S28 and eGFP. In the case of transcription, RNAP was catalysing the RNA produc-
tion process. Similarly, during the translation process, ribosomes catalyse the protein
production process. Therefore, it should be modelled with Michaelis-Menten kinetics.
However, in literature, two modelling strategies were found to be used: some sources
chose Michaelis-Menten kinetics [24] [20] [22] while others resorted to applying simple
translation rate with mass-action [3] [23]. In this master thesis, it was chosen to use
Michaelis-Menten kinetics in order to be able to include the concentration of ribosomes
as a state and for keeping the consistency of the modelling strategy applied so far. More-
over, this also makes it possible to include competitive binding of RNAtrigger with the
other two RNA species.

Similarly to transcription, the translation reactions are also rewritten by denoting the
different chemical species with a capital letter and the corresponding concentrations with
small case letters:
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20 Modelling of the Coherent Feedforward Loop

M1 + M2
k9−−⇀↽−−

k−9
N1

N1 + R k10−−→ S1

S1
k11−−→ P1 + N1 + R

(2-22)

M1 + M3
k12−−−⇀↽−−−
k−12

N2

N2 + R k13−−→ S2

S2
k14−−→ P2 + N2 + R

(2-23)

Where M1, M2 and M3 are the three RNA species that were produced during transcrip-
tion, RNAtrigger, RNAS28 and RNAeGFP respectively. N1 is RNAtrigger : RNAS28, N2 is
RNAtrigger : RNAeGFP, S1 is RNAtrigger : RNAS28 : Ribo, S2 is RNAtrigger : RNAeGFP : Ribo.
P1 and P2 are the protein produced during translation, S28 and eGFPdark respectively.
It can be observed that the structure of the reactions is similar to the transcription
reactions from eq. (2-14) and eq. (2-15). The same modelling strategy is applied in this
case as well. Previously mentioned conservation law is used from eq. (2-12) and the
quasi-steady state approximation applied in modelling of the transcription reactions.
Firstly, the partial symbolic mass-action model is written up:

ṁ1 = −k9m1m2 − k12m1m3 + k−9n1 + k−12n2

ṁ2 = −k9m1m2 + k−9n1

ṅ1 = k9m1m2 − k−9n1 − k10n1r + k11s1

ṡ1 = k10n1r − k11s1

ṗ1 = k11s1

ṁ2 = −k12m1m3 + k−12n2

ṅ2 = k12m1m3 − k−12n2 − k13n2r + k14s2

ṡ2 = k13n2r − k14s2

ṗ2 = k14s2

ṙ = −k10n1r + k11s1 − k13n2r + k14s2

(2-24)

The reactions that contain the binding of Ribo to the RNA complex pairs are considered
to be faster than the production of the proteins. Therefore, the concentrations of S1 and
S2 are approximated at their quasi-steady-state and the ordinary differential equations
corresponding to these complexes are set to 0. As a result the following expressions for
the two concentrations is written up:

s1 = k10
k11

n1r

s2 = k13
k14

n2r

(2-25)
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In the next step, the relevant conservation law, eq. (2-12), is presented in the following
form:

r = Rtot − s1 − s2 (2-26)

Where Rtot is the total ribosome concentration. Equation (2-26) is used to express the
concentrations of S1 and S2 and implement the quasi-steady state approximation. It has
to be mentioned, that this will also make it possible to include the competitive binding
of Ribo with the two RNA complex pairs. In the next step the substitution of eq. (2-26)
into eq. (2-25) is completed. Subsequently, the system of equations is solved for deriving
an expression for concentrations s1 and s2:

s1 = Rtot(n1/KTL1)
1 + (n1/KTL1) + (n2/KTL2)

s2 = Rtot(n2/KTL2)
1 + (n1/KTL1) + (n2/KTL2)

(2-27)

Where KTL1 = k11
k10

and KTL2 = k14
k13

.The expressions from eq. (2-27) are substituted into
the ordinary differential equations that correspond to the production rate of the two
proteins, S28 and eGFP. By applying this modelling strategy, 2 states were eliminated
from the model and the translation process has been mathematically modelled. Apart
from transcription and translation reactions, there were two other chemical processes
that are required to be modelled as well: maturation of eGFPdark and degradations of
specific chemical complexes. The modelling of these will be presented in the subsequent
subsection.

2-3-2 Maturation of eGFPdark and degradations

Two processes were not mentioned in the modelling work presented so far in this chapter:
the maturation of eGFPdark in order to get the final output, eGFP and the degradations
of some of the species. Maturation of eGFPdark is described with the reaction below:

eGFPdark
mat−−→ eGFP (2-28)

It suffices to model the maturation with mass-action kinetics in the following way:

d[eGFPdark]
dt

= k14Rtot(n2/KTL2)
1 + (n1/KTL1) + (n2/KTL2) −mat · eGFPdark

d[eGFP ]
dt

= mat · eGFPdark
(2-29)

The Michaelis-Menten term from eq. (2-29) is the one resulting from the previously
derived equations. The focus in this subsection is on the term mat · eGFPdark. It
is subtracted from the production rate equation of eGFPdark, as it represents being
consumed. Moreover, it is added to the production of eGFP.
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22 Modelling of the Coherent Feedforward Loop

Degradations are modelled similarly to maturation, with mass-action kinetics. The only
difference is that instead of a maturation rate mat, a degradation rate deg is used.
There were in total 5 chemical complexes identified by ICMS that required to include
degradation reactions: the three RNA species and the two RNA binding pairs. The
rest of the compounds’ degradations are considered to be insignificant. An example of
degradation term inclusion from the model is given below:

ẋ10 = k12x6x8 − k−12x10 − k13x10x14 + k14Rtot(x10/KTL2)
1 + (x9/KTL1) + (x10/KTL2) − deg · x10 (2-30)

2-4 The Full Mathematical Model

The modelling framework presented in this chapter so far was applied on the CFFL and
a full mathematical model was derived for it. This is composed of 14 ordinary differential
equations containing 14 state variables and 24 parameters. Four of the state variables
maintain a constant concentration value during the batch experiment, the reason why
their production rate equals 0. The model is presented below:

ẋ1 = + k−1RNAPtot(x2/K1)
1 + (1 + x4/Ke3)(x11/K6) + (1 + x3/Ke1 + x4/Ke2)(x2/K1) − k1x1x2+

+ k−6RNAPtot(x11/K6)
1 + (1 + x4/Ke3)(x11/K6) + (1 + x3/Ke1 + x4/Ke2)(x2/K1) − k6x1x11

ẋ2 = k−1RNAPtot(x2/K1)
1 + (1 + x4/Ke3)(x11/K6) + (1 + x3/Ke1 + x4/Ke2)(x2/K1)−

− k1x1x2

ẋ3 =0
ẋ4 =0
ẋ5 =0

ẋ6 = k3RNAPtot(x2/K1)([DNAt]/Ke1)
1 + (1 + x5/Ke3)(x11/K6) + (1 + x3/Ke1 + x4/Ke2)(x2/K1)−

− k9x6x7 − k12x6x8 + k−9x9 + k−12x10 − deg6 · x6

ẋ7 = k5RNAPtot(x2/K1)(x4/Ke2)
1 + (1 + x5/Ke3)(x11/K6) + (1 + x3/Ke1 + x4/Ke2)(x2/K1) − k9x6x7+

+ k−9x9 − deg7 · x7

ẋ8 = k8RNAPtot(x11/K6)(x5/Ke3)
1 + (1 + x5/Ke3)(x11/K6) + (1 + x3/Ke1 + x4/Ke2)(x2/K1)−

− k12x6x8 + k−12x10 − deg8 · x8
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ẋ9 =k9x6x7 − k−9x9 − k10x9x14 + k11Rtot(x9/KTL1)
1 + (x9/KTL1) + (x10/KTL2) − deg9 · x9

˙x10 =k12x6x8 − k−12x10 − k13x10x14 + k14Rtot(x10/KTL2)
1 + (x9/KTL1) + (x10/KTL2) − deg10 · x10

˙x11 = k−6RNAPtot(x11/K6)
1 + (1 + x5/Ke3)(x11/K6) + (1 + x3/Ke1 + x4/Ke2)(x2/K1)−

− k6x1x11 + k11Rtot(x9/KTL1)
1 + (x9/KTL1) + (x10/KTL2)

˙x12 = k14Rtot(x10/KTL2)
1 + (x9/KTL1) + (x10/KTL2) −mat · x12

˙x13 =mat · x12

˙x14 =0

Where the states correspond to the following chemical species’ concentration:

x1 − RNAP
x2 − S70
x3 −DNAt

x4 −DNAS28

x5 −DNAeGFP

x6 − RNAt

x7 − RNAS28

x8 − RNAeGFP

x9 − RNAt:RNAS28

x10 − RNAt:RNAeGFP

x11 − S28
x12 − eGFPdark

x13 − eGFP
x14 − Ribo

2-5 Adding inflow and outflow term

The full modelling theory presented in this chapter was focused on developing a math-
ematical model for simulating the batch experiment. However, in order to be able to
simulate the dynamic characteristic of the CFFL which is the noise-filtering function, the
experimental process has to include an inflow and outflow. This way the resources are
not depleted and it is possible to apply an input that has the shape of a square-wave and
observe the production of eGFP. This is achieved experimentally by using a microfluidic
reactor that has multiple inlets and outlets in order to be able to load chemical species
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and flush out a fraction of the reaction mixture. The structure of the microfluidic chip
can be seen in fig. 2-2. Another important piece of information is the time periods at
which the inflow and outflow is initiated. The experiments at the ICMS are based on
experimental methodology derived in [24], where the loading and flushing is completed
at every 15 minutes.

Figure 2-2: Top-view diagram and schematic of flushing, loading and mixing of reagents
inside a reactor [2]

A generalized way to include inflow and outflow to the model is by expanding the ex-
pression from eq. (2-3) in the following way:

ẋ = dil(xin − x) + Sv(x) (2-31)

Where dil is the dilution fraction which corresponds to the rate the specific chemical
species are flown in or respectively flown out, xin is the vector of species that are flown
in and x is the vector of all the species as the whole reaction mixture is flushed out.
In the next step, the structure of vector xin is discussed. There are in total six species
that are flown in. Five of them, more precisely RNAP, S70, DNAS28, DNAeGFP and
Ribo are constant inputs: a specific concentration of each of them is inputted to the
experiment. On the other hand, DNAtrigger represents the input to the system and
it is represented by a square-wave function to test the behaviour of the CFFL. In the
following, a few equations from the mathematical model will be included to show how

Julia Smeu Master of Science Thesis



2-6 Summary 25

the dilution fraction term dil got incorporated into the ODE system:

ẋ1 = + k−1RNAPtot(x2/K1)
1 + (1 + x4/Ke3)(x11/K6) + (1 + x3/Ke1 + x4/Ke2)(x2/K1) − k1x1x2+

+ k−6RNAPtot(x11/K6)
1 + (1 + x4/Ke3)(x11/K6) + (1 + x3/Ke1 + x4/Ke2)(x2/K1) − k6x1x11

+ dil ·RNAP0 − dil · x1

ẋ3 =dil · c · g(x3)− dil · x3

ẋ13 =mat · x12 − dil · x13

The first equation represents the dynamics of RNAP. This is a complex needed in
order for the reactions in the CFFL to occur, therefore there is an inflow of a constant
concentration denoted by the term dil · RNAP0. The second equation corresponds to
DNAtrigger, the input of the system. The inflow term in this case is composed by the
dilution fraction, the constant c that is used for scaling the input value and a function
g(x3) that stands for the square-wave input. The last equation shows the dynamics of
the output of the system, eGFP, and only contains an outflow which is represented by
the term dil ·x13. The same outflow term can be also observed in the first two equations.
The full model with inflow-outflow modelling is included in appendix A-4.

2-6 Summary

In summary, this chapter encompassed the full description of a modelling strategy that
was applied on the CFFL. First, the choice of deterministic modelling was presented
and motivated. Then prior to the model reduction, the conservation laws were identi-
fied from the left-null space of the stoichiometric matrix. Subsequently, the modelling
methodology for the transcription and translation reactions was presented. Both of
them are modelled using Michaelis-Menten kinetics and include the competitive binding
present in the network implemented with the help of the conservation laws. Moreover,
the modelling of maturation and degradation was described. Lastly, the extension to a
flow model was presented by incorporating the dilution fraction into the batch model.
The ordinary differential equations resulting from this chapter are used in the following
parts of the thesis work. Specifically, it is one of the main components of the parameter
estimation process. With the correct estimated parameters, the mathematical model
can be used to do in silico experiments and observe the dynamics of the other chemical
species composing the network.
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Chapter 3

Parameter Estimation

The noise-filtering property of the coherent feedforward loop (CFFL) is dynamic in na-
ture. Therefore, one of the aims is to gain knowledge about the CFFL’s dynamics. For
this, it is necessary to know the values of the parameters of the mathematical model.
There are a number of tools that can be applied to gain insights about biological systems
without knowledge of these parameters, however they are mainly static analysis tools.
In other word, they provide information about the steady-state operation of the system.
These tools will be presented in Chapter 4. However, in order to be able to predict how
the CFFL handles a pulse input, the parameters of the mathematical model have to be
estimated from experimental data.

The following chapter will present the challenge of estimating the parameters of the
mathematical model, more precisely the reaction rate constants, Michaelis Menten ki-
netics and initial concentrations used for the experiments. A priori of diving into the
details of this stage of the project work, the notion of structural identifiability is in-
troduced. Subsequently, the main components of the parameter estimation process are
presented. Firstly, it is required to have experimental data that is suitable for system
identification. Secondly, a mathematical model containing the unknown parameters has
to be developed. This step was completed and presented in Chapter 2. The third com-
ponent is a cost function or distance between the experimental data and the model
prediction. And the last element is a specific optimization algorithm and procedure
of implementation. The last part of the chapter comprises of the specific parameter
estimation strategy applied and the discussion of the results.

Master of Science Thesis Julia Smeu



28 Parameter Estimation

3-1 Structural Identifiability

Before the tedious process of parameter estimation is initiated, there is an important
issue that must be raised regarding the derived mathematical model of the biochem-
ical reaction network. This issue is represented by the question if there is a unique
combination of parameter values that generate an appropriate fit for the experimental
data. If the answer is yes, then the mathematical model is said to be structurally iden-
tifiable. This is an important detail that is often overlooked in papers presenting the
model and parameter estimation of a biological model [25]. The reason for this might
be that the mathematical theory behind the tools used for verifying identifiability are
out of the scope of the knowledge possessed by biology researchers. However, structural
identifiability is commonly used in systems and control theory [26], another reason why
researchers from this field should help advancing the multidisciplinary research area of
systems biology. Ideally the structural identifiability or a priori identifiability is per-
formed on a mathematical model before the experiments are conducted. Consequently,
it is made sure that the way the experimental data is collected is optimal for parameter
estimation procedure. For example, in some cases this would mean observing the pro-
duction of an intermediate protein, therefore having another state as an output. This
was not possible in the case of the master thesis project, therefore the tools for verifying
structural identifiability were implemented and the parameters were identified that need
to be fixed in order to obtain the desired uniqueness.

Even though it is not a strict requirement to prove structural identifiability of a biologi-
cal model, there are strong arguments in favour of it presented in [25] and correspond to
the aims set for this master thesis. Firstly, one of the goals is to predict the behaviour
of the other chemical species taking part in the reaction network. These are not observ-
able from the experimental data therefore their dynamics are presented by the derived
model. Secondly, the modelling of the single CFFL comprises as a base for determining
the behaviour of combined feedforward loops. This means that the aim is to use the
model to test hypotheses that will not be tested experimentally, only in case the func-
tion of the combined feedforward loop is predicted to be interesting for synthetic biology
applications. In summary, in order to ensure accurate results, structural identifiability
should be proven.

In the following the definition of structural identifiability will be presented from [25].
Let θ = (θ1, θ2, . . . , θnp) be a set of parameters and M(θ) the corresponding set of
ordinary differential equations containing the parameters. A parameter θi is defined to
be structurally identifiable if the following is true:

M(θ) = M(θ∗)⇒ θi = θ∗i (3-1)

Subsequently, an example is given that helps demonstrate the concept of structural
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identifiability. The following model is considered:

y = a · b · x (3-2)

Where x is the input, y is the output, a and b the unknown parameters. Both x and
y are available from experimental data. It can be observed that parameters a and
b individually are non-identifiable. Only, their product a · b taken as one parameter is
considered to be identifiable. Therefore, as a solution these can be combined to represent
one parameter.
In order to determine structural identifiability there are several software tools that are
available. The three main ones are DAISY (Differential Algebra for Identifiability of
SYstems) [27], GenSSI (Generating Series for testing Structural Identifiability) [28] and
IdentifiabilityAnalysis [29]. All of them use different mathematical methods and were
tested on the mathematical model derived for the CFFL. However, the first two men-
tioned, DAISY and GenSSI, required an extensive time to run and were not successfully
applied. The third tool, IdentifiabilityAnalysis was successfully implemented as it was
developed to be computationally efficient for complex and large models. The method
used is implemented in Mathematica and comprises of a probabilistic semi-numerical
algorithm described in [30].
In the following, the application and results from the analysis of the CFFL model’s pa-
rameters structural identifiability will be described. The algorithm was implemented in
Mathematica and it requires the following inputs: a list of differential equations that
build up the model, a list of initial conditions (in case there are), the outputs of the
model and separate lists of the inputs, parameters, state variables. The user has to
determine which values are unknown and input them as symbolic variables to the algo-
rithm. These can include both parameters and initial values. In the case of the CFFL,
the initial conditions were assumed to be known and also the parameters that are related
to the initial concentrations of RNAP and ribosomes. The rest of the parameters were
all set to symbolic variables.
The initial run of the algorithm confirmed the expected results that the model is struc-
turally unidentifiable. Moreover, it returned a list of parameters that were the ones
identified to be the reason for this result: k5, k8, Ke1, Ke2, Ke3, k−1 and k−6. All of
these are a part of the transcription reactions. This result was expected as one of the
big disadvantages of biological models is that they comprise of a large number of pa-
rameters and in many cases they prove to be structurally unidentifiable [25]. However,
the CFFL model was further tested and two parameters, k5 and k8, were set to constant
values. The reason for this is that these two parameters are only present in two of the
ordinary differential equations building up the model. Therefore, they do not influence
the trajectories of the other states and it will be possible to find a way to fix them to a
value during parameter estimation. This resulted in a positive result, meaning the model
became structurally identifiable. Therefore, focus was put on parameters k5 and k8 in
the subsequent parameter estimation process in order to not allow large change in the
estimated values of these parameters and have them fixed for simultaneous calibration
of the datasets.
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3-2 Components of the Parameter Estimation

Parameter estimation applied on biological models is a cumbersome process. First of all,
most of the times the model is structurally unidentifiable. Secondly, the ODE system
representing the CFFL is nonlinear which imposes additional challenges. Thirdly, the
input species like RNAP or S70 are given as ranges, not exact values. In addition, the
kinetic parameters can vary from one experiment to the other. In conclusion, there are
a multitude of hurdles in estimating the reaction rate and Michaelis Menten constants.
Hence. it is really important to approach this part of the project strategically, and
find the best choice for each element of the model calibration process. As a result, the
following section will present the main components of the parameter estimation and
motivate the choices that were made during this process.

3-2-1 Experimental Data and Mathematical Model

Firstly, the starting point of the calibration is presented, more specifically the experi-
mental data and the derived mathematical model used for estimation. The experimental
data is the one that was plotted in fig. 1-4 and described briefly in Chapter 1. There are
in total 5 output datasets, each corresponding to one constant value of input concentra-
tion of DNAtrigger (0.5, 1, 2, 5 and 10 nM). Each experiment was completed individually.
Therefore, the initial conditions most probably vary and also the kinetic parameters
as well. The length of the experiments were 16 hours and measurements were taken
every 5 minutes. As a consequence there are 193 data points per dataset. The output
is measured in µM which during the estimation and simulation algorithms is converted
into nM . There is one main input that was mentioned above, the concentration of
DNAtrigger. Apart from this, there are 5 chemical species that are constant inputs to the
batch experiment: RNAP, S70, DNAS28, DNAeGFP and Ribo. The two DNA templates
have a specified input concentration of 10 nM each. The rest of the species’ input value
is not known exactly, however a range of values were given that can be found in [2] and
presented in table 1-1.

Even though the three species present in the table were not given with a fixed concen-
tration, during most of the parameter estimation process they were set to have a specific
fixed value. The reason for this is to combat the problem of structural identifiability.

The mathematical model required for system identification is the batch model derived
and presented in section 2-4. It is made up of 14 ordinary differential equations with the
corresponding 14 states and 24 unknown parameters. It contains both mass-action and
Michaelis-Menten kinetics.
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3-2-2 Cost function

In order to apply an optimization algorithm, it is required to calculate a cost that has to
be minimised. In this case, this is represented by the difference between the experimental
data and the estimated output data. In order to compute this difference, the normalized
Mean of the Squared Errors (MSE) is used. The formula used for computing is the
following:

MSEy = 1
n

n∑
i=1

( yexp,i − ŷi
max(yexp,i)

)2 (3-3)

Where yexp,i represents a point in the experimental data, ŷi is the corresponding esti-
mated point and max(yexp,i) is the maximum value taken from the experimental data.
The formula was implemented in a script as a function where a single or multiple datasets
could be used in order to calculate the value of MSE. The cost function could be used
by any of the optimization algorithms presented below.

θ0

J(θ̂)

Integrate model equations
ẋ = f(x, θ)
y = x13

Minimize the cost function
and get new estimates

min J(θ)

Compute the residuals between
the model prediction and the

experimental data
ε1(θ̂) = y(t1)− x13(t1, θ̂)

...
εM (θ̂) = y(tM )− x13(tM , θ̂)

Figure 3-1: General Structure of Optimization Code

3-2-3 Parameter Estimation Algorithms

Literature presents many different ways of implementing parameter estimation of biolog-
ical models using several different algorithms [31][32][33]. However, all of them followed
a similar line of thought, which was presented in [34] where the most frequent approaches
to calibration of biological models are described. Two classes of parameter estimation
algorithms are presented: global and local methods. Global optimization includes algo-
rithms like simulated annealing, evolutionary algorithms, particle swarm optimization
and pattern search. Local optimization is mainly composed of gradient-based methods.
In [34], another category of optimization strategy is mentioned, called hybrid methods.
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This comprises of combining at least two optimization algorithms in a certain way to
reach global minimum. A hybrid method was chosen to be applied in the parameter
estimation of the CFFL. Specifically, the particle swarm optimization algorithm is used
with pattern search method. In the following there will be brief description of global
and local methods. Subsequently, the algorithms chosen for system identification will be
presented together with their implementation.

The starting point in the application of parameter estimation of biological models in
literature [31][33][35] is the motivation of using global optimization or hybrid methods
that include global methods. The reason for this is that biochemical reaction networks
usually are described by a set of nonlinear ordinary differential equations. As a con-
sequence stochastic or derivative-free optimization strategies are more desired. This is
explained by the fact that gradient-based methods converge to the local minima which
is to be avoided. This is especially the case for biological models where there are a
high number of parameters and limited experimental data [32]. Taken this into account,
there were three different optimization methods used during the parameter estimation.
Two of them are derivative-free: particle swarm optimization and pattern search; the
third one on the other hand is a gradient-based method called interior point algorithm.
This was only used for refinement of the estimated results or in some cases helped in
speeding up the estimation process. However, the two main optimization algorithms
in this project are considered to be Particle Swarm Optimization (PSO) and pattern
search. The choice for this hybrid method to perform model calibration was based on
the successful application of it in [33][35]. In the following the different algorithms will
be briefly described.

Particle Swarm Optimization (PSO)

Particle swarm optimization was used as a first step in the parameter estimation process.
Initially there is little knowledge about the dimensions of the constants and also the
ranges they could vary in. PSO does not require starting estimation points of the
parameter values. Therefore it is useful to narrow down initially the ranges of the
parameters and see an initial direction of each one, meaning which ones are really close
to 0 while which ones are much larger than expected.
In the following, the implementation of PSO is briefly presented. It is a population-
based stochastic algorithm and it was developed specifically for optimization of nonlinear
functions [36]. A numerical vector of the dimension of the number of the parameters
to be optimized is randomly initialized in the first step. This can be seen as a point
in a higher-dimensional space which during the optimization moves around to test new
parameter values. More precisely, a defined number of these points are initialized and
moved around at the same time. As a result, they tend to cluster together in regions of
the space corresponding to optimal values, hence the name particle swarm. In addition
to the moving around operation, each particle is connected bidirectionally to its assigned
neighbours. The next question is how do these particles move around? There are two
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Mathematical Model

Cost Function

PSO

Initial Estimated
Parameters

Pattern Search Method

Initial Estimated
Parameters

Interior Point Algorithm
(fmincon)

Results

Figure 3-2: Configuration of Parameter Estimation Process

stages to it: first velocity or step size is chosen, then the particle is moved according to
the following formula [37]:

vn = wvn + c1rand()(pbest,n − xn) + c2rand()(gbest,n − xn)
xn = xn + ∆t · vn

(3-4)

where vn is the velocity of the particle in the nth dimension, xn is the particle’s coordi-
nate, w is the inertial weight and has an influence on to what extent does the particle
maintains its original course. Scaling factors c1 and c2 control the relative pull of pbest
and gbest, the first one being the best location found so far in the parameter space for
a specific agent and the latter the best location found so far for the entire swarm. The
rand() function returns a random number between 0 and 1. The specific PSO algorithm
used was adapted from [38].

Pattern Search Algorithm

The second algorithm used was a pattern search method, more specifically the Nelder-
Mead simplex algorithm and it was implemented in MATLAB using the patternsearch
function. It represents the final estimation stage and it is used to get the closest to the

Master of Science Thesis Julia Smeu



34 Parameter Estimation

optimal values as possible.
First, it requires a vector of initial points, xj , for each parameter to be estimated that
are within the set limits of the optimization. In the next step the algorithm takes into
consideration a pattern Pj and a step length ∆j . The product of these two, sj = ∆jPj
is added to the vector of initial points, xj+1 = xj + sj . The resulting parameter vectors
are used to calculate the cost function. Subsequently, the values are compared and
if one of them is lower than the initial value evaluated at the initial starting point
(f(xj+1) < f(xj)), then the considered vector of parameters is replaced by the more
optimal one and the polling is considered to be successful. As a result the step size is
doubled and the procedure is repeated. In case the polling fails and none of the values
return a lower cost then the step size is decreased [33] [39] [40].

Interior-Point Algorithm

An additional element to parameter estimation consisted of using an interior-point al-
gorithm. This was implemented in MATLAB by using the fmincon function.
As it is gradient-based and prone to get stuck in local minima, it is used just as an ad-
ditional and optional step to refine the final results or to use between PSO and pattern
search to speed up the estimation process.

3-3 Procedure Description and Results

So far, all of the main components of the parameter estimation process were presented.
Nevertheless, a good choice of cost function or optimization algorithm is not enough to
have successful results calibrating the model. Parameter estimation is an iterative pro-
cess that requires often rerunning the optimization, varying limits if it is admitted and
finding ways to use the available dataset in the most efficient way possible. Therefore,
in the following section an overview of the parameter estimation process of the CFFL is
described combined with the analysis of the results

There were several approaches identified in literature corresponding to biological model
calibration [31] [32] [34] [35]. The first step is, most of the times, finding initial values for
the parameters from literature. This was not possible for the CFFL, however this issue
was dealt with by implementing PSO. Subsequently, there were two directions: either
parameter sensitivity analysis or start of parameter estimation (individual or simulta-
neous). The subsequent steps were usually chosen based on the results given from the
previous stage and on how accurate were the initial parameters found from biological
databases.

As values for the parameters were not found in literature for the reactions building up
the CFFL, the first step in the system identification was to apply PSO to all datasets
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Figure 3-3: Resulting Decrease in Cost from PSO - applied on dataset 4

individually. However, the next challenge comprised of determining the appropriate
bounds for the estimated parameters. This proved to be a very important detail in
the entire process, as many times appropriate results were not obtained due to the fact
that some parameters’ values were too limited. More specifically, the mistake of having
a too small range for the Michaelis-Menten constants limited the performance of the
optimization in the first trials. Therefore, the first step was to consult [2] and use the
limits implemented in the system identification of a genetic oscillator tuned with the
help of a σ-factor. The limits used in the parameter estimation procedure of the CFFL
can be found in appendix B-1. Moreover, an overall understanding of the parameters’
dimension could be formulated: all reaction rate constants involved in the reversible
reactions were identified to have a significantly wider range (0-200) than the reaction
rate constants involved in transcription or translation (0-3.5). The Michaelis-Menten
constants were allowed to have a wider range of 0-500. Moreover, the degradation
constants were identified to have an even narrower range (0-1). In addition, the values
corresponding to the initial concentrations of RNAP, S70 and Ribo were fixed to 70, 30
and 2000 nM.

After implementing the previously described limits and constant initial conditions, the
PSO was implemented on the 5 datasets individually. The resulting parameters can be
found in appendix B-2. Even though PSO provides a fast computation time, it does not
perform well at a finer grain of search [41]. In other words, the algorithm is let to run
until it reaches a point where a decrease in the value of the cost function stalls. This is
visually presented in fig. 3-3.
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In the following step of the calibration process, the estimated parameters resulting from
PSO are used as initial estimation values for pattern search method. This as well was
applied individually on the datasets. The results can be seen in table table 3-1.

PS dataset 1 PS dataset 2 PS dataset 3 PS dataset 4 PS dataset 5
1 k1 0.066370612 99.999 99.999 69.90039289 99.9873748
2 k_1 0.026688265 4.656803792 45.51060126 27.32026335 0.019434147
3 Ke2 1908.486237 6287.536001 3890.92503 6613.277272 1054.662851
4 k5 3.499 3.462434054 3.389904116 3.255340061 1.428108283
5 Ke1 1.25419814 0.886635586 0.447372727 5.089642913 17.23004853
6 k3 2.881959969 3.139670488 3.406222474 3.390549044 3.415741412
7 k6 99.99871118 7.61679787 11.69312901 1.902723311 2.249834567
8 k_6 1.015590016 36.04443243 14.99521812 7.087545522 27.30217389
9 Ke3 123.4546645 30.34966799 30.19231883 27.55400473 22.24803405
10 k8 3.499 2.719444233 3.499 3.477040022 3.499
11 k9 99.99304062 99.98663769 99.98455995 89.21678093 99.99768327
12 k_9 0.013428897 0.023271717 0.020472816 6.924737122 30.08427429
13 k10 0.13730839 0.033070718 0.025783267 3.493206563 3.499
14 k11 0.214078859 0.055870859 0.039151565 0.68931565 2.742449472
15 k12 8.972694708 46.58067232 5.002268227 9.939995079 22.35169632
16 k_12 99.98574112 99.99885659 99.98770952 57.11375626 99.94757621
17 k13 0.219808053 0.126792238 0.768194229 3.492017895 1.957840303
18 k14 3.499 3.499 3.499 3.49829486 3.499
19 mat 0.999 0.999 0.999 0.996611215 0.999
20 deg6 0.369359321 0.187104414 0.098016699 0.030302341 0.092096917
21 deg7 0.013713422 0.004867992 0.037933202 0.025808642 0.039780184
22 deg8 0.994916383 0.997974695 0.998335219 0.945001413 0.905668818
23 deg9 0.019111305 0.144120237 0.07542438 0.9994226 0.175746768
24 deg10 0.999 0.999 0.999 0.00417736 0.094421948
25 atot 70 70 70 70 70
26 Rtot 2000 2000 2000 2000 2000
27 S70_0 30 30 30 30 30

Table 3-1: Estimated Parameters From Pattern Search

An important observation can be made from the results above. The values for the
parameters k3, k5 and k8 across all 5 datasets are similar, with the exception of one
value having a lower value compared to the rest in the case of each parameter. As a
consequence these will be fixed for the next step of the parameter estimation process in
the following way:

k3 = 3.1441
k5 = 3.4445
k8 = 3.499

This step was desired because by fixing k5 and k8 the structural identifiability of the
model is ensured and the final set of estimated parameters will represent the only com-
bination of values that generate the appropriate fit.
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So far there are 5 datasets that have few parameters that differ significantly like k6
and k_6. Therefore, cross-validation with simultaneous parameter estimation will be
implemented in continuation. In other words, datasets 1, 3 and 5 will be included in
the cost function jointly to estimate parameters that result in an output that fits all of
them. Then, the results will be used to validate the parameters on dataset 2 and 4. The
simultaneous parameter estimation is completed by using the pattern search method.
The initial values of the parameters used are given by the average of the parameters
estimated from datasets 1, 3 and 5 from table 3-1. Another important detail that has
to be mentioned that the data is cut up until 10 hours. The reason for this is that the
aim of the calibration is to fit the initial dynamics as well as possible, to capture the
delay function. When the entire data length is used (16 hours), it was observed that the
fitting then was heavily focused on the ’plateau’ region of the data. As a consequence,
the start of the production and shape of the slope was neglected.
The estimated parameters can be seen in appendix B-3 and the results of the fitting
and validation can be observed in fig. 3-4. The output of the system with the estimated
parameters corresponding to datasets 3 and 5 is appropriately calibrated, it follows the
slope of the experimental data properly. However, a compromise can be seen in the
calibration curve corresponding to dataset 1. The production of the output starts faster,
therefore exhibiting a shorter delay period. Subsequently, the validation results are
discussed. This is really interesting to observe as it gives an indication on how accurate
the estimated parameters are. In the CFFL’s case the most significant detail to observe
was the nonlinearity of the steady states of the experimental data. The validation on
dataset 2 and 4 reflected this property. Even though the estimated output of dataset 4
did not perform well in the ’plateau’ region, it still had a steady state that was less than
the one corresponding to dataset 2. Therefore, validation was identified to be successful.

The last part of the parameter estimation process is composed of the final refinement of
the results. This is achieved by estimating the initial parameters for each dataset indi-
vidually. This is possible, as the batch experiments were conducted separately, therefore
there is a high chance that the initial conditions differed for each experiment. However,
the estimation bounds were set to be strict, as the variation should not be large. More-
over, only the initial concentrations of RNAP and ribosomes were estimated. These
compounds were set to have the following bounds:

Parameters Ranges

RNAP [nM] 66-75 nM
Ribosomes [nM] 1900 - 2100 nM

Table 3-2: Bounds on the estimation of initial conditions

The results of the refinement can be seen in fig. 3-5. The steady-state of the curve
corresponding to dataset 4 was lowered in value and resulted in a better fit after the
refinement of the results.
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(a) Calibration Results

(b) Validation Results

Figure 3-4: Results of simultaneous parameter estimation
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(a) Fitting of datasets 1,3 and 5 with individual initial conditions

(b) Fitting of datasets 2 and 4 with individual initial condition

Figure 3-5: Results of initial conditions refinement
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3-4 Summary

In summary, this chapter comprised of the system identification performed on the CFFL.
In the case of biological models this was identified as a process that comprises of many
challenges. The first one was found by performing identifiability analysis on the math-
ematical model of the network motif. This resulted in the diagnostic that the model
is unidentifiable. As a consequence, this was taken into account in the subsequent pa-
rameter estimation process. However, first the individual elements of the calibration
were presented: experimental data, mathematical model, cost function and the chosen
parameter estimation algorithms. The latter included also the motivation for the choice
of a hybrid method that combined the performance of two global optimization algo-
rithms, PSO and pattern search method. Additionally, a gradient-based method was
used to refine the results. Lastly, the calibration process was presented jointly with the
results. The parameter estimation was successfully completed and a set of parameters
was identified, that can be used to perform numerical analysis of the CFFL.
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Chapter 4

Structural Analysis

Previous chapter heavily focused on the process of finding the suitable parameters for
the derived mathematical model representing the coherent feedforward loop (CFFL).
However, it is a difficult and lengthy procedure. Moreover, it requires additional ex-
periments in many cases to have a better fitting of the data or to ensure structural
identifiability. Therefore, another research direction in systems biology is to consider
only the biochemical reaction network’s structure and try to derive insights about the
behaviour of the genetic circuit from it. In the following, some tools from structural
analysis of biochemical networks will be presented and applied to gain insights about
the behaviour of the CFFL. Specifically, it will be proven that the network has the
capacity for multiple equilibria. Secondly, a method usually used for metabolic network
analysis will be applied to the CFFL. This is called flux balance analysis and will be
used to study the steady state fluxes corresponding to different objectives. All of these
will help explain the source of the nonlinearity arising in the steady states of the experi-
mental data. Moreover, it represents a set of tools that can be used to perform structural
analysis on other biochemical reaction networks.

4-1 Numerical Simulations

Before discussing the insights available from the structure of the biochemical network,
the CFFL is simulated with the estimated parameters from Chapter 3. The reason for
this is to find the characteristics of the network that are both seen from the numerical
simulations and the structural analysis of the network and find the connecting bridge
between the two.
In the following section, the analysis of the dynamics of the other states of the model
are discussed. As these are not available to have as experimental output, the only way
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to observe them is by simulating the biological model with the estimated parameters.
This way it is possible to see which chemical species end up being accumulated, from
which node of the network the delay kicks in, what is getting consumed rapidly etc. The
evolution of the intermediate compounds that build the network of the CFFL can be
seen in fig. 4-1.

The first observations that can be made based on the numerical simulations is that two
species accumulate: RNAeGFP and S28. In addition RNAP is not fully consumed either
and as expected the concentration of green fluorescent protein (eGFP) increases until
reaches steady-state.. The rest of the states are all converging to 0. The delay in the
output is mirrored in several of the chemical compounds’ behaviour. Lower input con-
centrations of DNAt results in smaller concentrations of RNAt but larger production of
RNAS28. Moreover, it also means slower production of RNAeGFP and S28. As the latter
two are directly responsible for the translation of eGFP, it is straightforward that the
delay will be exhibited in the output as well.
In the following the focus is put on the nonlinearity of the final concentration values that
are exhibited in the experimental data. As this is a characteristic observed at steady-
state, the attention is directed to the species that accumulate during the functioning
of the CFFL (fig. 4-2). Moreover, the timespan of the simulation is extended up to 50
hours in order to capture the steady-state. Both have different order corresponding to
the respective input, therefore it is not possible to conclude that one of them specifically
affects directly the steady-state values of eGFP. In fig. 4-2a it can be observed that
the steady-state corresponding to the highest input has by far the highest value. In the
output steady-state concentrations this is reflected by eGFP having a significant lower
value than the rest. As a consequence, it was determined that the higher concentration
of S28 and RNAeGFP is produced, the lower value will eGFP reach. It is consistent with
the logic governing the functioning of the bio-chemical reaction network as both species
are needed in order for the output to be produced. However RNAt is depleted too fast
and the production of eGFP halts.

In the subsequent sections of this chapter the focus will be put on the applications of
structural analysis tools that will result in specific insights about the behaviour of the
CFFL without using the knowledge of the parameter values. These will be connected
with the dynamics presented from the numerical analysis of the network motif.

4-2 Steady State Analysis

A significant research branch is dedicated to infer insights about the number and types
of steady-states a biochemical reaction network possesses. As the biological processes
are inherently nonlinear and complex, it is a challenge to determine the type and num-
ber of steady-states as the initial conditions of the system can vary. Moreover, the only
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Figure 4-1: Dynamics of the intermediate chemical complexes
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(a) Accumulation of S28 (b) Accumulation of RNAeGF P

Figure 4-2: Steady-state values of S28 and RNAeGF P

steady-states that are possible to observe experimentally, are the stable ones. This line
of theory was developed and applied on the reaction networks’ structure, without the
additional step of mathematical modelling and specifications of the kinetics. This is
possible as the equilibria are relative to the stoichiometry class. In some cases, little
knowledge about the type of kinetics is required, for example if it is only mass action
or it includes also Michaelis-Menten kinetics. The reason for this is that large part
of the chemical reaction network theory was developed first on biological models only
comprising of mass action dynamics. However, in many cases the theoretical tools were
extended to include Michaelis-Menten kinetics as well.

An overview of the background theory and methods were presented in the literature
study report [19]. Deficiency theory was the starting point and first direction in chemi-
cal reaction theory and made it possible to prove that certain networks’ structure have
deficiency zero and consequently have a locally stable equilibrium [42] [43]. In addition
to this, graph theoretic approaches were developed [44] and also methods that are based
on P matrix properties of the system [45]. Some of these mathematical proofs are im-
plemented into algorithms that run tests on a specific network the user inputs. Three of
these were applied to the CFFL: CoNtRol, chemical reaction network analysis tool [46];
ERNEST, a toolbox for chemical reaction network theory [47]; and CRNT, chemical
reaction network toolbox [48].

Before presenting the results it must be mentioned that the CFFL network is considered
to be non-autocatalytic (N1C). A system with stoichiometric matrix S and flux vector
v(x) has a corresponding matrix V (x) defined by Vij(x) ≡ δvi

δxj
, that represents the

dependence of the reaction rates on the concentrations [45]. The product SV corresponds
to the Jacobian of the system. In order for a system to be N1C, it must fulfil the following
condition:
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Condition 4-2.1. A reaction system is N1C if SijVij ≤ 0 for all i and j, and Sij = 0⇒
Vij = 0

Put simply, it means that the reactants do not occur on both sides of the reactions.
This is true in the case of the CFFL if the network includes the intermediate complexes
of RNAP:S70:DNAt, RNAP:S70:DNAs28, RNAP:S28:DNAeGFP, RNAt:RNAS28:Rib and
RNAt:RNAeGFP:Rib. Therefore, in this way it is avoided to have the holoenzymes, DNA
templates or ribosomes on both sides of the reactions. For the subsequent analysis it
is important for the network to be N1C as it is a condition for the proofs to be valid
[44] [49]. In the following the results from the mentioned algorithms will be presented
combined with the mathematical theory that accompanies them. Main objective of this
analysis is to gain knowledge about the steady-states of the CFFL.

4-2-1 Graph-theoretic Approach

Firstly, CoNtRol was used and the main finding from the analysis resulting from it that
the CFFL network does not exclude multiple steady-states. The algorithm implemented
in the software tool uses graph-theoretic approaches to analyse chemical reaction net-
works and the background theory behind it is presented in [50] [44]. The first step is the
derivation of a directed species-reaction (DSR) graph representing the network, this can
be seen in fig. 4-3. A species-reaction (SR) graph is a bipartite undirected graph with
nodes being represented by both species and reactions. A DSR graph is a SR graph with
directed edges, depending on the reversibility or irreversibility of the reactions. Based
on this, the term cycle is defined as the minimal directed path starting and ending at
the same vertex [50]. Cycles can be split into two categories: e-cycles and o-cycles. This
is done by checking whether the parity of the cycle is negative or positive. The parity is
defined in the following way:

P (C) = (−1)|C|/2sign(C) (4-1)

Where |C| is the length of the cycle (number of edges) and sign(C) represents the sign
of the cycle which is the product of the signs of the individual edges. Negative edges
correspond to dashed lines while positive edges correspond to continuous lines in fig. 4-3.
In case the parity of a cycle is positive, then it is classified as en e-cycle. However, if the
parity results to be negative, then it is an o-cycle. Moreover, two cycles have an S-to-R
intersection if each shared path corresponds to a S-to-R path.
Having all these important elements defined, the following condition is presented which
can be easily verified on the DSR graph of any network:

Condition 4-2.2. All e-cycles are s-cycles, and no two e-cycles have S-to-R intersection.

The first part of condition 4-2.2 is fulfilled by the CFFL as the DSR graph corresponding
to it has edges labelled with 1 only. The second part has to be verified in order to be
able to exclude multiple equilibria.
From condition 4-2.2, the following proposition was introduced in [44]i:
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Proposition 4-2.1. An N1C reaction system with DSR graph satisfying condition 4-2.2
is injective.

From injectivity it follows that the chemical reaction network admits only one steady-
state. The application CoNtRol was not able to run on the full CFFL network to verify
if condition 4-2.2 is fulfilled by it. However, it did run on a subset of the graph, more
specifically until the production of S28 and confirmed that the graph fulfils condition 4-
2.2. From this point, the remaining part of the full CFFL graph was verified manually.
Nevertheless, the result was negative, the possibility of multiple equilibria was not ex-
cluded. The reason for this that an S-to-R intersection was found. There were in total
4 cycles that had to be verified additionally in order to check condition 4-2.2. Two of
them are illustrated by 2 different colours: cycle 1 - blue and cycle 2 - green. Both of
them are e-cycles. As mentioned, all e-cycles are s-cycles in the CFFL network. How-
ever, an S-to-R intersection can be attributed to them. The location of it can be seen in
fig. 4-3 where the two highlighted cycles overlap between reaction number 14 and Ribo.
Therefore, the admittance of multiple steady states is not excluded.
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4-2-2 P Matrix Properties

Another way of attempting to exclude the admittance of multiple steady-states is to
verify if the stoichiometric matrix is strongly-sign-determined (SSD). The mathematical
theory that connects injectivity to properties of the stoichiometric matrix can be found
in [45] and will be presented briefly in this subsection. The condition is implemented as
an algorithm in ERNEST toolbox and was verified on the CFFL network.

The main analysis starting point is the Jacobian of the biological system described by
eq. (2-3). However, first the class of P matrices has to be introduced. P matrices are
square matrices that have the property that all of the principal minors are positive. If
all the principal minors are nonnegative, then it is said to be a P0 matrix. Consequently,
P matrices are nonsingular and the corresponding eigenvalues are restricted to a range
[51]. In case a matrix -A is a P matrix, then A is said to be a P (−) matrix. The next
step is to connect the previously described class of matrices and the model representing
a bio-chemical reaction network. This is achieved by analysing the stoichiometry matrix
and verify if it is SSD. This property is fulfilled, if all of the square submatrices are
either sign-nonsingular or singular. As a consequence, the Jacobian of the system is a
P

(−)
0 matrix (Theorem 3.1 from [45]). From this, injectivity of the function results and

the admittance of multiple equilibria is excluded.

The same results as in section 4-2-2 were obtained by implementing ERNEST toolbox on
the CFFL. The stoichiometry matrix was identified as not SSD. Therefore, the network
has the capacity for multiple steady states, i.e. multiple steady states might exist.

4-2-3 Identification of Equilibria from Mathematical Model

The previous two subsections attempted to gain insights about the steady states of the
network without knowledge of the type of kinetics present in the network and kinetic
constants. However, it was not possible to derive a significant amount of information,
apart from the fact that the network has capacity of multiple equilibria. In the next
step, the type of kinetics will be assumed to be known. This means that the derived
model from Chapter 2 will be used but without knowledge of the parameters.

The first step was to set the ordinary differential equation (ODE) system to be at steady-
state. The equations corresponding to the DNA templates’ and ribosomes’ concentration
were taken out as their value stays constant. Moreover, the ODE corresponding to the
output, eGFP is taken out as well. Therefore, there are 9 ODEs left for analysis. From
these two types of steady states were identified.

1. [x1,ss 0 0 0 0 0 0 0 0]

2. [x1,ss 0 0 0 x8,ss 0 0 x11,ss 0]
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The state variables present above are the ones corresponding to the species shown in
Section 2-4. The steady state of x1,ss can have any value (equal or less than its initial
value, RNAPtot). In the second type of steady state x8,ss and x11,ss can have any value
as long as the following conditions are fulfilled:

k−6RNAPtot(x11,ss/K6)
1 + (1 + x5,ss/Ke3)(x11,ss/K6) + (1 + x3,ss/Ke1 + x4,ss/Ke2)(x2,ss/K1)−

− k6x1,ssx11,ss = 0
k8RNAPtot(x11,ss/K6)(x5,ss/Ke3)

1 + (1 + x5,ss/Ke3)(x11,ss/K6) + (1 + x3,ss/Ke1 + x4,ss/Ke2)(x2,ss/K1) − deg8x8,ss = 0

(4-2)

As a conclusion, it can be seen that there is an infinite number of steady-states. However,
it would be useful to investigate the stability of them, specifically what conditions have to
be fulfilled in order to have stable equilibria. This is achieved by computing the Jacobian
of the mathematical model, linearising it and deriving the corresponding eigenvalues.
The Jacobian was computed symbolically using Mathematica. It was observed that by
linearising the Jacobian with the two steady-states mentioned above, the eigenvalues can
be identified being located on the diagonal of the matrix. Therefore, it was identified that
by linearising with the first type of steady-state enlisted above, one of the eigenvalues
will always be positive. Therefore, it is an unstable steady-state. Using the second type
of steady state, it results in negative eigenvalues as long as the inequality from eq. (4-3)
is fulfilled, but it also has one zero eigenvalue. Therefore, the stability of the steady-state
cannot be determined.

RNAPtot − x1,ss(0.0014x11,ss + 1) < 0 (4-3)

4-3 Tools Applied on Metabolic Networks

The processes occurring in the cells can be categorised into four groups: sensing, sig-
nalling, regulation and metabolism [3]. All of them are constituted by biochemical
reactions, however the structure of the networks and products can be different, and also
distinct modelling is usually applied.

A set of tools were developed with the aim to be used on metabolic networks in order to
determine ways to maximize production of certain biochemicals like amino acids, lactic
acid, ethanol etc. [52]. These tools include elementary modes analysis and flux balance
analysis. Both of the approaches have the starting point the network dynamics being
described by the product of the stoichiometry matrix and the vector of reaction rates
from eq. (2-3). The CFFL network can be also written up in this way even though it
represents a transcription network. Therefore, tools developed for metabolic networks
can be applied on to the CFFL in order to gain insights about the system at steady
state.
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Figure 4-4: Processes in a Cell [3]

4-3-1 Elementary Flux Modes

The first analysis tool described is based on elementary modes analysis. This process
starts by computing the right null-space of the stoichiometry matrix. As mentioned
in Chapter 2, this results in finding the steady-state flux distributions. Therefore, the
way chemical species are produced in a biochemical reaction network, specifically which
reactions are activated in order to get the output, can be determined by a set of basis
vectors in the null-space. A difficulty with these is that they are not unique. A way of
reducing this space of solutions is to consider the irreversibility of the relevant reactions.
As a result, the flux vectors that are admitted as steady-state occupy only a subset of
the null-space. Therefore, in case of a stoichiometry matrix S and vector of reaction
rates v, there are two conditions that have to be fulfilled:

Condition 4-3.1. Sv = 0

Condition 4-3.2. virr ≥ 0

where virr is the subvector of v and represents the fluxes of the irreversible reactions
[53]. As a consequence of applying the above presented conditions, the region of admit-
ted solutions will be represented by a convex polyhedral cone, called flux cone. This is
illustrated in fig. 4-5.
In the following, the mathematical background will be succinctly summarised from pa-
per [53]. In case the reactions of the network are all irreversible, the flux cone is pointed.
As a result, proven in [54], pointed polyhedral cones are made up of a finite set of unique
vectors. Moreover, these can be found on the edges of the cone. However, in most cases
there are reversible reactions, meaning the flux cone is not pointed. Nevertheless, in
[53] it is shown that is still possible to determine an unique set of generating vectors
that spans the polyhedral cone. The vectors that cannot be decomposed into two other
vectors spanning the cone are defined as elementary flux modes (EFM). These can be
seen as the minimal pathways in the system in order ’to get from’ the external input
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vi

vj

vk

Figure 4-5: Flux cone in 3 dimensional visualisation

chemical species to the external output protein. By combining EFMs it is possible to
generate all possible pathways in the network.

Several algorithms were developed to identify EFMs [55]. The software package used for
the CFFL is called METATOOL, one of the first tools that was developed for elementary
modes analysis [21]. It is ran in the MATLAB environment and requires a specific input
file to complete the analysis. As elementary mode analysis was developed for metabolic
networks, a challenge is encountered in using the METATOOL on transcription networks.
Therefore, the structure of metabolic reactions have to be compared to the transcription
and translation reactions in order to find a way to use METATOOL on the CFFL.
Firstly, the external and internal species are chosen. The external ones are represented by
RNAP, S70, RNAtrigger, RNAS28, RNAeGFP, S28 and eGFP. The reason why the RNA
species are considered to be external complexes is that they represent the intermediate
output of the transcription reactions. It is identified that without the presence of any
of the RNA species, the output protein cannot be produced. Moreover, in order for
this metabolic network analysis tool to be applied on transcription networks, they must
be defined as external species. The rest of the complexes taking part in the CFFL
are declared as internal ’metabolites’. The next step is to write up the reactions. A
significant difference was identified between the structure of the metabolic reactions and
gene expression processes. The metabolic reactions are represented by the conventional
enzymatic reactions that constitute the base of biochemical reactions modelling. Hence,
their structure is the following:

S + E −−→ P + E (4-4)
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Where S is the substrate, E is the enzyme and P is the product. In words, a substrate
in the presence of an enzyme is transformed into a product. However, in the case of the
translation or transcription reactions, the following structure is present:

A + B −−→ P + A + B (4-5)

Where in case of transcription A is the holoenzyme, B is the DNA template and P is
the RNA species. In case of translation, A is the RNA species, B is ribosome and P is
the output protein. Therefore, in order to have the reactions in a similar manner as in
eq. (4-4), it was decided to modify eq. (4-5) in the following way:

A + B −−→ P + B
A + B −−→ A + B

(4-6)

This method of defining the reactions and with the correct specification of the external
metabolites the algorithm used by METATOOL can be run correctly on the CFFL net-
work.
In the following, the results of the algorithm are presented. There were ten elemen-
tary flux modes identified and they can be found in appendix C-1. The output file of
METATOOL presented them in the following way:

1 : RNAP + S70 −−⇀↽−− RNAS28

2 : RNAP + S70 −−⇀↽−− RNAt

3 : no net transformation of external metabolites
4 : RNAt + RNAeGFP −−⇀↽−− eGFP
5 : no net transformation of external metabolites
6 : RNAP + S28 −−⇀↽−− RNAeGFP

7 : no net transformation of external metabolites
8 : RNAt + RNAS28 −−⇀↽−− S28

9 : no net transformation of external metabolites
10 : no net transformation of external metabolites

(4-7)

Each row above corresponds to a column in the elementary modes matrix from ap-
pendix C-1. As the RNA species were identified as intermediate ’external metabolites’,
the total pathway from S70 to eGFP is segmented. However, it is observed that the com-
bination of the identified elementary flux modes gives the total pathway to the production
of eGFP. Therefore, there is only one way of getting from S70 to eGFP as expected
from the chain of reactions building up the CFFL. Therefore, the METATOOL was
applied successfully to a transcription network. In the following, to be able to gain more
useful insights from the structure of the network, flux balance analysis (FBA) is applied.
The knowledge acquired from application of METATOOL is transferred subsequently,
as FBA is usually applied on metabolic networks and not gene expression models.
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Figure 4-6: Visualisation of Constraints Based Modelling [4]

4-3-2 Flux Balance Analysis (FBA)

In the following, the static modelling tool called FBA will be briefly presented, in com-
bination with the implementation of it. Similarly to the elementary modes analysis, it
is a method applied to metabolic networks and it is used widely for applications like op-
timization of bio-processes in industries [56]. Its advantage is that it does not need any
kinetic parameter nor species concentration in order to apply it. However, this means
that the system is only studied at steady state. Moreover, it concentrates on the fluxes
distributed in the network which cannot be directly connected to the concentrations of
the chemical species involved in the biochemical reaction network. Nevertheless, FBA
offers the possibility to infer some conclusions about the system at steady state and also
explain the nonlinearity of the batch data regarding the steady-state concentrations of
the output, eGFP.

FBA is made up of four parts: system definition, deriving the stoichiometric matrix,
determining the relevant objective function and choosing the correct constraints and
optimization [56]. The first step is constituted by determining the chemical reaction set
that builds up the CFFL. These were provided by the Institute of Complex Molecular
Systems (ICMS) at Eindhoven University of Technology and are presented in Chapter 2.
The second step is to generate the stoichiometric matrix. This was also described in
Chapter 2. The next step is to determine the relevant objective function. In the case of
the CFFL several different objective functions will be applied, in other words different
species’ production will be chosen to be maximised. This way it will be possible to
study the resulting effect on the output flux of eGFP. The constraints will be applied
by taking into account the speed of the different reactions. And lastly, the optimization
will be implemented using a software package.

In the following, it will be briefly presented how the optimization problem is formulated.
The starting point is the derivation of the stoichiometric matrix. Steady-state is achieved
by setting the product of the stoichiometric matrix with the reaction rate vector to equal
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0. Therefore, all the solutions lie in the null-space of the stoichiometric matrix S. This
is visualized in fig. 4-6. In order to reduce the number of solutions, constraints are
defined. The first set of constraints is represented by the conservation laws originating
from the stoichiometry. This makes sure that the amount produced in the network is also
consumed in order for the system to be at steady state. The second set of constraints
arise from setting limits to the fluxes of each reaction. As a consequence, the solution
space ’shrinks’ to a flux cone, the same one mentioned in section 4-3-1. In order to get
to a single vector solution, the implementation of an objective function c is introduced
and the following optimization problem is formulated [56]:

max
v

cT v s.t. Sv = 0 (4-8)

This represents a linear programming problem and solving it results in a single optimal
distribution of fluxes.
There are several software tools available to implement FBA. The one used in this
project is a MATLAB toolbox called COBRA [57]. The first step in the implementation
of FBA using the COBRA toolbox is to define the reactions building up the CFFL. The
same strategy is applied as in Section 4-3-1. First of all, like before, the external species
are chosen to be represented by RNAP, S70, RNAt, RNAS28, RNAeGFP, S28 and eGFP.
Secondly, the transcription and translation reactions are separated into two reactions,
eq. (4-6), having the structure of metabolic process. As a result, in total there are 20
reactions. In addition to this, the external species are required to have a corresponding
inflow/outflow reaction. Therefore, the model which serves as an input to the FBA is
comprised of 27 reactions in total. The next step is to set the bounds on the fluxes
corresponding to each reaction. In this case the attention is directed to the reactions
corresponding to the external species. Values that are negative represent fluxes that
are flown into the network while values that are positive correspond to fluxes of species
consumed/flown out. RNAP and S70 are only flown into the network, therefore their
upper bound must be set to 0. The other chosen external species are only consumed,
accumulated or flown out. Therefore, their lower bound are set to 0.

In the following the resulting flux distributions from FBA will be analysed. First the
biochemical reaction network is visualized in fig. 4-7. The 20 modified reactions com-
posing the CFFL can be seen noted on the edges connecting the chemical species. The 7
inflow/outflow reactions are also illustrated: R21, R22 correspond to the inflow of RNAP
and S70 respectively and from R23 to R27 the outflow of RNAt, RNAS28, RNAeGFP, S28
and eGFP are denoted. In the first round of FBA implementation, 5 different objective
functions were tested, meaning 5 different species were chosen to be maximised. The
results are shown in appendix C-2 jointly with the objective function vectors used for
each optimization in appendix C-3. It is important to mention that the flux values do
not represent concentrations. In the first case, the production of the output protein,
eGFP is maximised. This results in an output flux of 0.333 for R27 reaction for a value
of 1 for input flux of R22. However, in case the objective function is set to maximise any
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of the RNA species’ production or the intermediate protein’s (S28) production, then the
output flux of R27 is close to 0, which means that no output is produced. The reason
for this is that the maximised species are accumulating, however not consumed. Hence,
no output protein will be produced.

In the next step the objective function will be more complex. Two species’ production
will be chosen to be maximised at the same time, the production of eGFP will be set
to 1, and the production of a chosen second species will be set to 0.5. This way, the
priority is still to produce as much eGFP as possible but it is simulated the case when
one of the intermediate species is accumulating. The results of the second round of FBA
can be seen in appendix C-4 jointly with the objective function vectors used for each
optimization in appendix C-5. In case the production of RNAt or RNAS28 is maximised
next to eGFP the results show that no output will be produced. On the other hand, if
RNAeGFP is chosen then the resulting output flux for eGFP is the maximum. These three
cases are not really of interest as the behaviour of the CFFL from the batch experiment
can not be linked to any of them. However, in case S28 is chosen to be included in
the objective function, the output flux drops from 0.333 to 0.315. The flux distribution
corresponding to this case is visualised in fig. 4-8. The drop in the output flux shows that
the nonlinearity of the produced eGFP concentrations can be linked to the accumulation
of S28. In other words, a higher input concentration of DNAt results in an accumulation
of S28 protein and consequently a lower output concentration of eGFP. This behaviour
can be linked to the results of the numerical simulations of the CFFL. The intermediate
protein, S28, was shown to accumulate which is the reason for the resulting nonlinearity
of the steady-states. Therefore, insights provided by a structural analysis tool were
reflected in the simulations of the model with the estimated parameters.

4-4 Summary

This chapter focused mainly on deriving insights about the behaviour of the CFFL
strictly from the biochemical network structure, without any knowledge about the pa-
rameters. Firstly, the numerical analysis of the network motif was presented. This way
it was possible to observe the dynamics of the other chemical species, not only the out-
put. Then, the steady-states of the system were analysed, only based on stoichiometry.
However, the only result that could be derived was the fact that multiple steady-states
cannot be excluded, Therefore, the mathematical model without parameters was studied
and it was found that admits an infinite number of steady-states. The last two sections
of this chapter encompassed the application of two static analysis tools, usually applied
on metabolic networks: EFM analysis and FBA. The latter was able to explain the
nonlinearity of the steady-states by connecting the accumulation of S28 to lower concen-
trations of eGFP produced. This was also confirmed by the numerical analysis where
the same behaviour was observed.
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Figure 4-7: CFFL network structure for FBA
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Chapter 5

Conclusion and Future Work

5-1 Conclusion

This thesis represents a multidisciplinary approach to a research problem that emerged
from the field of systems biology. It combines knowledge from biology, optimization,
mathematics and systems and control theory in order to fully analyse the biological
network motif of coherent feedforward loop (CFFL). Moreover, during the project work,
a complete modelling and analysis framework was developed that can be applied on
more complex networks. More specifically, on the combined feedforward loops that
are the centre of one of the research directions at the Institute of Complex Molecular
Systems (ICMS) from Eindhoven University of Technology (fig. 5-1).

Figure 5-1: The 12 unique motif clustering types for two feedforward loops [5]

In the following the thesis work is presented together with the contributions achieved.
The thesis comprises of three main parts: modelling, parameter estimation and struc-
tural analysis of the CFFL. Firstly, a modelling framework was developed that can be
applied on transcription networks using σ-factors to initiate protein synthesis. It is a de-
terministic modelling method that includes mass-action and Michaelis-Menten kinetics.
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Moreover, it presents how can the competitive binding of certain species be incorporated
into the model. In addition, model reduction was also applied by implementing quasi-
steady state approximation on the transcription and translation reactions. This resulted
in a nonlinear ordinary differential equations system with 14 states and 27 unknown
parameters.

The next part of the thesis is comprised of the parameter estimation process. The
parameters of the model are unknown, hence this represents an obstacle in analysing
the dynamics of the CFFL and simulate it. First an a priori identifiability test was
conducted to verify if the model is identifiable or not. The result was negative, however
it was identified that in case two parameters are fixed, the model becomes structurally
identifiable. The next step consisted of choosing the right optimization algorithms for
calibration of the model. A hybrid optimization strategy composed of particle swarm
optimization and pattern search method was implemented. This made it possible to
obtain suitable estimated values of the parameters of the model. Subsequently, numerical
simulations were conducted to analyse the dynamics of not only the output but also the
other states of the model that represent the other compounds of the CFFL.

The last part of the thesis work includes the structural analysis applied on the CFFL.
These is comprised of tools that can be applied on bio-chemical reaction networks that
offer insights about its static dynamics. First, the capacity for multiple equilibria was
confirmed by using two different methods, one base don graph theory and the other
on stoichiometry. In addition, a novel way of applying metabolic network analysis tool
on gene expression networks was presented. First the reactions’ structure had to be
slightly changed in order to be able to implement elementary flux modes analysis and
flux balance analysis on the network. Moreover, the results originating from the latter
method confirm the accumulation of some specific compounds that were identified during
the numerical simulations completed.

5-2 Future Work

In the following section opportunities for future work are presented, in order to extend
and improve the modelling and analysis framework for biological models developed in
this master thesis.

Firstly, the modelling methodology presented was derived based on the CFFL. Other
types of feedforward loops have paths that are not activating but inhibiting, for example
type 1 incoherent feedforward loop. In addition, these network motifs also are present
in the composition of the combined feedforward loops. Therefore, the modelling tools
have to be extended to include kinetics that represent inhibition.

An alternative way of improvement would be comprised of further model reduction. One
way this could be achieved by observing the estimated parameter values to decide which
rate constants are close to 0. As a result, these kinetic parameters are insignificant and
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the terms corresponding to them could be eliminated from the model. However, this has
to be verified subsequently with further simulations.

The parameter estimation part of the project is significantly dependent of the availabil-
ity of experimental data provided by ICMS. As a consequence, calibration was only
conducted based on the batch experiment results. However, when successful flow exper-
iments will be completed at Eindhoven University of Technology, then it will be possible
to perform system identification on the flow model. This way it would be really inter-
esting to observe the differences of the parameter values. Moreover, in order to have a
more efficient parameter estimation process, the intermediate’s protein output could be
measured as well, in our case this would be σ-factor 28 (S28). In addition, a posteriori
identifiability could be performed on the model with the estimated parameters in order
to calculate confidence intervals of the estimated values [25]. Lastly, different optimiza-
tion algorithms could be implemented in order to observe the difference in performance.
In literature the successful application of optimization methods like simulated anneal-
ing and evolutionary algorithm could be identified. Implementing these methods on
the CFFL could help in comparing the performance of different optimization algorithms
applied on gene expression models.
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Appendix A

Modelling

A-1 CFFL Biological Model

RNAP + S70
k1−−⇀↽−−

k−1
RNAP : S70

RNAP : S70 + DNAt
k2−−→ RNAP : S70 : DNAt

RNAP : S70 : DNAt
k3−−→ DNAt + RNAP : S70 + RNAt

RNAP : S70 + DNAS28
k4−−→ RNAP : S70 : DNAS28

RNAP : S70 : DNAS28
k5−−→ DNAt + RNAP : S70 + RNAS28

RNAP + S28
k6−−⇀↽−−

k−6
RNAP : S28

RNAP : S28 + DNAeGFP
k7−−→ RNAP : S28 : DNAeGFP

RNAP : S28 : DNAeGFP
k8−−→ DNAeGFP + RNAP : S28 + RNAeGFP

RNAt + RNAS28
k9−−⇀↽−−

k−9
(RNAt : RNAS28)

(RNAt : RNAS28) + Ribo k10−−→ RNAt : RNAS28 : Ribo

RNAt : RNAS28 : Ribo k11−−→ (RNAt : RNAS28) + Ribo + S28

RNAt + RNAeGFP
k12−−−⇀↽−−−
k−12

(RNAt : RNAeGFP)

(RNAt : RNAeGFP) + Ribo k13−−→ RNAt : RNAeGFP : Ribo

RNAt : RNAeGFP : Ribo k14−−→ (RNAt : RNAeGFP) + Ribo + eGFPdark

eGFPdark
mat−−→ eGFP
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A-2 Stoichiometric Matrix of CFFL

S =



−1 1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −1 1 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



A-3 Right and Left Null space of Stoichiometric Matrix

The right null-space from METATOOL:

1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
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The left null-space from METATOOL:

0 0 0 1 −1 0
0 −1 1 −1 1 0
0 −1 1 0 0 0
1 1 −1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 −1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
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Appendix B

Parameter Estimation

B-1 Limits used during Parameter Estimation

Parameters Lower Limit Upper Limit

k1 0 250
k_1 0 150
Ke2 50 200
k5 0 3.5
Ke1 50 200
k3 0 3.5
k6 0 150
k_6 0 150
Ke3 0 500
k8 0 3.5
k9 0 250
k_9 0 150
k10 0 3.5
k11 0 1000
k12 0 100
k_12 0 100
k13 0 3.5
k14 0 1000
mat 0 1
deg6 0 1
deg7 0 1
deg8 0 1
deg9 0 1
deg10 0 1
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B-3 Final Estimated parameters

k1 k_1 Ke2 k5 Ke1 k3 k6 k_6 Ke3 k8 k9
249.995 1.88 51.264 3.4445 55.7946 3.1441 0.0390 28.837 296.2375 3.499 72.3162

k_9 k10 k11 k12 k_12 k13 k14 mat deg6 deg7 deg8
149.94 0.361 49.944 99.951 25.414 3.4906 494.256 0.999 0.997 0.0477 0.997

deg9 deg10
0.0037 2.86E-5
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Appendix C

Structural Analysis

C-1 The identified EFMs from METATOOL


1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
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C-2 FBA Results - Single Objective Function

Reactions max eGFP max RNAt max RNAS28 max RNAeGFP max S28
R1 1.0000E0 1.0000E0 1.0000E0 1.0000E0 1.0000E0
R2 6.9094E-01 1.0000E0 1.5934E-01 6.1619E-01 5.5547E-01
R3 6.6666E-01 9.9999E-01 7.8966E-06 5.0000E-01 5.0000E-01
R4 3.8977E-01 1.3761E-01 1.0000E3 6.1901E-01 5.5750E-01
R5 3.3334E-01 7.4484E-06 9.9999E-01 5.0000E-01 5.0000E-01
R6 3.3333E-01 4.6169E-06 3.8878E-06 4.9998E-01 4.9999E-01
R7 3.9204E-01 1.3694E-01 1.5779E-01 6.2347E-01 5.5951E-01
R8 3.3333E-01 4.6174E-06 3.8883E-06 4.9998E-01 4.9999E-01
R9 3.3333E-01 3.4005E-06 2.9500E-06 4.9998E-01 7.3422E-06
R10 3.9334E-01 1.3673E-01 1.5751E-01 6.2576E-01 1.9303E-01
R11 3.3333E-01 3.4011E-06 2.9505E-06 4.9998E-01 7.3426E-06
R12 3.3333E-01 2.0799E-06 1.9760E-06 8.4204E-06 4.8481E-06
R13 3.9410E-01 1.3652E-01 1.5723E-01 2.8825E-01 1.9270E-01
R14 3.3333E-01 2.0806E-06 1.9766E-06 8.4211E-06 4.8487E-06
R15 3.3333E-01 2.0809E-06 1.9769E-06 8.4215E-06 4.8489E-06
R16 2.4275E-02 7.5993E-06 1.5933E-01 1.1619E-01 5.5467E-02
R17 5.6436E-02 1.3760E-01 7.0846E-06 1.1902E-01 5.7498E-02
R18 5.8713E-02 1.3694E-01 1.5779E-01 1.2348E-01 5.9521E-02
R19 6.0012E-02 1.3673E-01 1.5751E-01 1.2578E-01 1.9302E-01
R20 6.0775E-02 1.3652E-01 1.5723E-01 2.8825E-01 1.9270E-01
R21 -1.3333 -1.0000 -1.0000 -1.5000 -1.0000
R22 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
R23 6.4783E-06 9.9999E-01 2.0330E-06 1.1229E-05 4.5883E-06
R24 6.4802E-06 2.8316E-06 9.9999E-01 1.1231E-05 4.5897E-06
R25 2.1600E-06 1.3215E-06 9.7484E-07 4.9997E-01 2.4947E-06
R26 3.2382E-06 1.2171E-06 9.3862E-07 5.6123E-06 4.9999E-01
R27 3.3333E-01 2.0811E-06 1.9770E-06 8.4216E-06 4.8490E-06

Table C-1: FBA Results - Single Objective Function
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C-3 Single Objective Function Vectors

ceGFP =



0
0
0
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cRNAt =
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cRNAeGF P
=



0
0
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C-4 FBA Results - Complex Objective Function

Reactions max RNAt max RNAS28 max RNAeGFP max S28
R1 1 1 1 1
R2 1.0000E1 1.3083E-01 6.8901E-01 6.8390E-01
R3 9.9999E-01 3.7616E-05 6.6666E-01 6.5791E-01
R4 1.0316E-01 9.9999E-01 3.8604E-01 4.0125E-01
R5 1.4958E-05 9.9996E-01 3.3334E-01 3.4209E-01
R6 1.1741E-05 1.8528E-05 3.3333E-01 3.4208E-01
R7 1.0268E-01 1.2907E-01 3.8810E-01 4.0333E-01
R8 1.1741E-05 1.8528E-05 3.3333E-01 3.4208E-01
R9 1.0324E-05 1.6551E-05 3.3333E-01 3.1583E-01
R10 1.0251E-01 1.2886E-01 3.8927E-01 3.7851E-01
R11 1.0324E-05 1.6551E-05 3.3333E-01 3.1583E-01
R12 9.1453E-06 1.4944E-05 3.3332E-01 3.1583E-01
R13 1.0235E-01 1.2867E-01 3.9060E-01 3.7918E-01
R14 9.1458E-06 1.4945E-05 3.3332E-01 3.1583E-01
R15 9.1461E-06 1.4945E-05 3.3332E-01 3.1583E-01
R16 1.4706E-05 1.3079E-01 2.2347E-02 2.5992E-02
R17 1.0315E-01 2.9800E-05 5.2701E-02 5.9164E-02
R18 1.0266E-01 1.2905E-01 5.4773E-02 6.1254E-02
R19 1.0250E-01 1.2885E-01 5.5942E-02 6.2683E-02
R20 1.0234E-01 1.2866E-01 5.7276E-02 6.3350E-02
R21 -1.0000 -1.0000 -1.3333 -1.3158
R22 -1.0000 -1.0000 -1.0000 -1.0000
R23 9.9996E-01 4.1432E-06 5.8029E-06 6.8783E-06
R24 3.2171E-06 9.9994E-01 5.8049E-06 6.8807E-06
R25 1.1791E-06 1.6068E-06 5.8098E-06 2.2932E-06
R26 1.4173E-06 1.9777E-06 2.9007E-06 2.6251E-02
R27 9.1464E-06 1.4946E-05 3.3332E-01 3.1583E-01

Table C-2: FBA Results - Complex Objective Function
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C-5 Complex Objective Function Vectors

cRNAt =



0
0
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0
0
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0
0
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0
0
0
0
0
0
0
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Glossary

List of Acronyms

CFFL coherent feedforward loop

DSR directed species-reaction

E.Coli Escherichia coli

EFM elementary flux modes

eGFP green fluorescent protein

FBA flux balance analysis

ICMS Institute of Complex Molecular Systems

MSE Mean of the Squared Errors

ODE ordinary differential equation

PSO Particle Swarm Optimization

S28 σ-factor 28

S70 σ-factor 70

SR species-reaction

SSD strongly-sign-determined
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