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Abstract

The Airborne Wind Energy industry is evolving rapidly, aiming to establish its position among the major
players in the conventional renewable energy sector. Since this industry is relatively young, it faces
various challenges with scaling and integration into society. One aspect that can be improved is the
design process of soft-wing kites. The aim is to shift from design iterations based on experience-based
hardware modifications and experimental testing to design iterations based on optimization strategies
using computational simulations. For optimization-based design to be a feasible option, it requires
computationally efficient underlying models. This report presents the results of thesis research that
aimed to develop a fast and reasonably accurate framework for structural modeling of soft-wing kites
and connected tethers.

Deformation of leading-edge inflatable kites is essential for steering and controlling aerodynamic
loads. Modeling of deformation is therefore indispensable, resulting in a highly non-linear fluid-structure
interaction problem. Currently, a particle system model (PSM) is the preferred choice for modeling
soft-wing kites because it can simulate deformations while converging faster than other methods. The
existing PSM code in Java is outdated and the current academic preference has switched to developing
in Python. This led to the central research question: “Can the PSM be implemented in Python, using a
mix of Object-Oriented (OO) and non-OO programming techniques, to efficiently predict deformation?”.

While a framework was implemented based on the original Java code, it was also investigated
whether it is possible to modify the solution-finding method for the structural model to improve con-
vergence times without loss of accuracy. The aeroelastic problem can be simplified into a series of
form-finding problems by assuming a quasi-steady flow. Three main families of form-finding method-
ologies are presented that are capable of finding solutions. Based on their properties and computational
efficiency, the kinetic damping algorithm was selected as having the most potential for improving the
current particle system implementation.
The kinetic algorithm was originally developed for a dynamic relaxation method that used an explicit
integration scheme. Kinetic damping has never been combined with an implicit integration scheme.
Slight adjustments needed to be made to the algorithm’s implementation as the current particle sys-
tem employs an implicit scheme. Analysis of verification tests revealed characteristics of the utilized
implicit Euler scheme. One notable effect was numerical damping, which hurt the performance of the
kinetic damping algorithm. It was discovered that the algorithm’s performance was more consistent by
disabling the quadratic correction.

Validation testing showed that each method is capable of accurately predicting the shape of tether
and bridle line systems. To accurately simulate the deformation of membranes, more consideration
must be given to the development of the PSM that represents the considered membrane continuum.
Next, the runtimes of the self-coded solver with explicit computation of Jacobian matrices and the frame-
work with kinetic damping algorithm were compared to the performance of a black-box solver. It was
found that the framework outperformed a black-box solver in runtime, demonstrating the advantage of
using the self-coded solver.
Finally, benchmarking results indicated that themodified kinetic damping algorithm, despite some limita-
tions, generally improved runtimes. Further investigation of the scaling of the runtime against increasing
amounts of DOF indicated that the current framework could be fast enough for simulation in the range
of 15 to 60 particles, despite the framework’s current non-optimized state.
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ûi,j Unit vector pointing from particle j to particle i m
va Apparent velocity vector m/s
vi Velocity vector of particle i m/s
vk Kite velocity vector m/s
vn Velocity state vector at timestep n m/s



Contents vii

vs,a Apparent velocity vector of spring element m/s
vt Apparent velocity vector of tether segment m/s
vw Wind velocity vector m/s
xi Position vector of particle i m
xn Position state vector at timestep n m

Greek symbols

Symbol Definition Unit

α Angle of attack °
α Explicit integration scheme coefficient -
γ Damping term N s/m/kg
ϵ Strain -
ϵ̇ Strain rate s-1
η Viscosity Pa s
λ Eigenvalue -
ν Poisson’s ratio -
ρ Density kg/m3

σ Standard deviation -
ω Natural frequency s-1

Vector definitions
Throughout this report, kinematic relations and mathematical derivations will be shown. This requires
a set of vector relations between particles i and j, which are defined in Equations 2 - 6. Equation 6 can
be derived and simplified by making use of the quotient rule and equation 5 [45].

v = ẋ, a = ẍ (1)
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1
Introduction

To contribute to a solution to the current climate crisis, numerous technologies are being developed
to improve the energy yield from renewable resources. Several of those technologies belong to the
airborne wind energy (AWE) system category.
AWE systems use kites to harvest energy from altitudes beyond the reach of conventional wind tur-
bines. Generally speaking, wind speed increases with altitude. The power density of the wind is a
function of the cube of the wind speed. The average available power increases with altitude in most
places, as explained more in-depth in [6]. Archer and Caldeira [5] identified the global potential of wind
energy at altitudes of 500 m and above, an operational altitude as envisioned by the developers of the
first AWE systems. An analysis of the resource potential at these altitudes and typical turbine heights
was conducted by Bechtle et al. [9]. They found that the resources at the altitude that AWE systems
operate in are more consistent, and an increase in locations where these resources can be harvested
compared to typical cut-in wind speeds for turbines. A more recent study by Schelbergen et al. [61]
presented a methodology based on empirical data that offers a better representation of wind conditions
at potential site locations. They showed that their method identified more realistic wind profile shapes
at these locations, addressing the uncertainties involved with extrapolating ground-level wind data to
higher altitudes. While harvesting resources at high altitudes is still challenging itself, the promise that
AWE holds is driving the search for solutions in this relatively young industry. A more in-depth intro-
duction to the current state of AWE research and its advantages over conventional wind harvesting
devices can be found in [62, 63].
To summarize, there is an untapped resource potential in wind energy AWE systems can be the key to
unlocking it.

There are several AWE technologies currently in development, several of which are presented con-
cisely in the Airborne Wind Energy Conference (AWEC) book of abstracts by Schmehl and Tulloch [64].
The present research focuses on soft-wing kites that fly cross-wind patterns in a so-called pumping
cycle. They rely on tether traction to drive a ground-based generator which converts the mechanical
energy into electricity.
Unlike a wind turbine’s nacelle and rotor that rely on a static structure to provide support, kites, and
thus AWE systems, are for the largest part highly dynamic. For soft-wing kites, the ability to deform
the aerodynamically loaded tensile membrane structure is a requirement for steering and changing
the wing’s pitch angle to modulate the generated pulling force. This makes modeling the system very
complex, and a trade-off needs to be considered between accuracy and simulation time. Simulating
structural deformation accurately and quickly is necessary to optimize design, performance, and con-
trol, among others. Historically, a particle system model (PSM) has been the option of choice as it
elegantly combines the speed and ease of implementation of lumped mass models with the possibility
of modeling the deformation of tensile membrane structures [15, 22, 25, 35, 36, 39, 51, 52, 55, 71]. A
visual example of a particle system model of a kite is illustrated in Figure 1.1.

A particle system (PS) framework for a flexible-wing kite was implemented by Van der Knaap [39],
based on a generic processing Java code developed by Simon Greenwold [66] at Massachusetts In-
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Figure 1.1: Particle system model of the TU Delft V3 LEI kite [52].

stitute of Technology (MIT). The Java code is currently outdated and the coding language of choice at
Delft University of Technology (TUD) has shifted to Python, which forms a roadblock to further develop-
ment. Combining different languages has been tried, but resulted in problems with coupling modules
and performance issues [25]. For efficient future development, implementing the code in Python is a
requirement. The primary goal of this thesis research is to implement, validate, and benchmark a PS
framework in Python for further development as a structural model for soft-wing kites.

The computational efficiency of the PS framework was also tested by Van der Knaap [39]. He found
that by adding rotational springs to the particle system framework, the inflatable support structures of
the kite can be accurately modeled but at a high computational cost.
To simplify the simulation, a quasi-steady flow can be assumed. Leuthold [40] found that the validity of
this assumption is justified. External conditions are kept constant, while the new position and shape of
the kite are found by dynamic simulation of the PS until an equilibrium position is reached. Efficiently
calculating the equilibrium position of comparable cable-net and membrane structures is exactly what
the research field of structural form-finding tries to achieve. The literature in this field discusses vari-
ous potential improvements to the PS framework and other methods used to find equilibrium positions.
Many of these methods have not yet been tested for application in the structural modeling of soft-wing
kites. Occasionally, researchers might find casual references to one of these methods in AWE litera-
ture, but the connection between the two subject areas has not yet been made. A review of form-finding
literature has been conducted to identify methods or algorithms that show the potential of improving
the framework.

The report begins with a literature review on the structural modeling of soft-wing kites and the quasi-
steady-state assumption, which be read in Chapter 2. The chapter concludes by stating the main
research question and several sub-questions. It is followed by a review of form-finding methods in
Chapter 3. Chapter 4 describes and illustrates the physics behind and the development of the frame-
work. It also covers external forces, which are not part of the inner workings, but paint a complete
picture of all of the involved forces. Finally, the implementation of the kinetic damping algorithm that
has the potential to improve the framework is explained. Chapter 5 follows and contains a justification
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for the choice of solver with a derivation of the system of equations. To solve the system of equations,
Jacobians are required, which are treated next. An analysis of the stability and accuracy of the cho-
sen methods concludes the chapter. The implemented framework was verified with trivial test cases,
which revealed characteristics specific to the implicit Euler scheme. These results are presented in
Chapter 6. A selection of test cases was used to validate the PS, which are explained in detail and
illustrated in Chapter 7. In Chapter 8 the benchmarking results of the framework are presented and
analyzed. Finally, Chapter 9 concludes the report by answering the research questions and making
recommendations for future researchers and developers of the framework.



2
Literature study

Miles L. Loyd [44] was the first to publish about the potential of harvesting wind energy by flying kites
crosswind and presented his findings as two analytical models. The two concepts, called ’lift mode’
and ’drag mode’, rely on either aerodynamic drag or lift to generate electricity, and realizations for both
can be seen in Figure 2.1.
Figure 2.1a shows the M600, a 600 kW fixed-wing kite developed by Makani, based on the ’drag-mode’
concept. The kite flies in a circular trajectory to continuously generate electricity. The onboard rotors
act as turbines and induce high aerodynamic drag forces on the kite. The tether also acts as the wiring
to transfer the generated electricity to the ground station. Makani was a subsidiary of Google until the
company was dissolved in 2020.
Figure 2.1b shows the Falcon, a 100 kW soft-wing AWE system by Kitepower, based on the ’lift-mode’
concept. During the reel-out phase, soft-wing kites fly crosswind in typical figures of eight, illustrated by
the black dashed line. The kite repeatedly flies these patterns while its radial distance in the downwind
direction from the ground station simultaneously increases by reeling out of the tether. The tether is
attached to a drum at the ground station, which, in turn, drives a generator to produce electricity.

This research project will focus on the structural model and simulation of leading-edge inflatable
(LEI) soft-wing kite systems. The following sections present the results of the literature study on the
requirements of an efficient computer model with reasonable fidelity and explain the need for such
a model. An opportunity to develop a framework to aid future research is recognized and used to
formulate a research statement with three sub-questions.

(a) M600 Prototype in Norwegian water [83] during the
first offshore test flight of an AWE system.

(b) The Falcon harvesting electricity in former naval airbase Valkenburg [38] with
an added figure of eight illustration.

Figure 2.1: Examples of realized AWE systems based on the two analytical models presented by Miles Loyd

4
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2.1. Soft-wing kite system
Figure 2.2 identifies typical components in soft-wing kite systems. Bridle lines connected to the front
of the kite, called leading edge (LE), support and transfer most of the aerodynamic load generated by
the airfoil. Bridle lines connected to the rear, called trailing edge (TE), can be actuated to steer and
(de)power the kite. The current theory regarding steering of soft-wing kites was devised by Breukels [14]
and states that steering is achieved by a combination of roll and asymmetric deformation of the soft
membrane structure. By deforming asymmetrically, the aerodynamic force vectors rotate, which cre-
ates an arm to the center of mass of the kite and results in a yawing moment. Actuating the amount of
tension in the TE bridle lines, and thus the amount of asymmetrical deformation, allows the kite to be
precisely controlled. This actuation can be performed at the kite control unit (KCU) or from the ground
station, requiring an additional tether.

Powering or depowering the kite means adjusting the aerodynamic load that the kite experiences
and can be achieved by (a combination of) several options. Altering the kite’s velocity vk results in a
change in the apparent wind velocity va that the kite experiences, which directly influences the aerody-
namic load as can be directly seen from Equations 2.1 and 2.2. The lift-to-drag ratio is, among others,
a function of the membrane shape and the angle between the kite and the wind flow, called the angle
of attack α. As the shape of the airfoil and α can be controlled by the actuation of the TE bridle lines,
the lift-to-drag ratio of the kite can be adjusted. Finally, during flight, the aerodynamic properties of the
kite can be modified by changing its structure, e.g. by introducing bleed-air spoilers.

va = vw − vk (2.1)

FL =
1

2
ρairACl|va|2, FD =

1

2
ρairACd|va|2 (2.2)

Flying the kite in a crosswind pattern, e.g. the before-mentioned figure of eight, increases apparent
wind speed. The lift force that the kite experiences scales with the magnitude of the apparent wind
speed cubed, resulting in a tether tension that is orders of magnitude larger than could be achieved
by flying directly into the wind. While the kite is in this powered state, the tether is reeled out and is
consequently called the reel-out phase. After the reel-out phase, when the drum is fully unwound and
the tether has reached its maximum length, the kite is depowered and transitions to the reel-in phase.
By depowering, the reeling-in of the kite consumes less energy than the powered kite can generate
during reel-out, which makes a net positive energy cycle possible. The process of reeling in and out
and transitioning between these phases is referred to as a pumping cycle, as illustrated in Figure 2.3.

Figure 2.2: Identification of AWE system components, with communication and sensor locations (red numbered dots) [77].
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Figure 2.3: Flight path of a soft-wing kite system, with the distinct phases of a pumping cycle indicated [21]

Optimizing the ratio between energy yield and expenditure is one of the challenges that the industry
currently faces. As Poland [51] argues, transitioning from experience-based design to simulation-based
design that allows for optimization algorithms would accelerate the current design process of the indus-
try. This would require a simulation framework that must at least be accurate enough to capture the
main interactions between wind and kite but also must converge to results in a reasonable time. Gener-
ally, real-time or even faster simulation is set as a goal, since the design process is likely to take many
iterations [51, 52, 58]. Designing a fast and accurate enough model requires the interaction between
the airfoil and wind flow to be dissected to justify whether the problem should be modeled fully dynamic
or quasi-steady.

2.2. Kite deformation modes
Having a high lift-to-weight ratio is advantageous for kites as it makes flight at lower wind speeds possi-
ble and lowers the energy expenditure to keep the kite airborne. LEI kites are made up of pressurized
tubular chambers, called struts, that determine the shape of the kite. These struts are joined by fabric,
called the canopy, to provide structure to the kite. Generally, savings in kite weight are coupled with re-
duced structural strength. Soft-wing kites are therefore easily deformed, which is advantageously used
for steering and (de)powering. However, during flight, the kite is also deformed by the aerodynamic
load that it experiences. In turn, this deformation affects the aerodynamics of the kite. This strong
two-way coupled effect between structural deformation and the wind flow around the structure is called
aeroelasticity, a subset of fluid-structure interaction (FSI). The various modes of unintentional deforma-
tion that occur during operation are illustrated in Figure 2.4 and were divided by Leuthold [40] into local
sub-scale and global large-scale deformation modes. While subscale deformations can be neglected
as they have no significant effects on flight dynamics, as stated by Bosch et al. [12] and Breukels [14],
the opposite is true for large-scale deformations. The ability of the model to capture large-scale de-
formations is required for accurate results. This was also further substantiated by Leuthold [40], who
estimated a typical frequency band for each of the deformation modes as well as for the flight path
frequencies, which are sorted in Figure 2.5. The frequencies subscript are abbreviated as follows:
trailing-edge flutter (TEF), seam-rippling (SR), canopy buckling (CB), jellyfishing (JF), bunny earing
(BE), leading-edge indentation (IDM), figure eight flight (8), flight dynamic (FD) and aerodynamic (a).

2.2.1. Quasi-steady flow
The reduced aerodynamic frequency (fr) serves as an indicator to categorize fluid dynamic problems as
quasi-steady or unsteady. The dimensionless quantity depends on two frequencies: the characteristic
aerodynamics frequency (fa∗), which represents the inverse of the time it takes for the airflow to traverse
the kite’s chord, and the frequency at which the kite responds to the change in force (fF ). The latter
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Figure 2.4: LEI kite deformation modes, grouped by scale and ranked according to characteristic frequency [40].

encompasses the sub-scale, large-scale, and flight path frequency modes.
Equation 2.3 shows the definition of fr. If f∗

a is much larger than fF (fr ≪ 1), the problem can
be considered quasi-steady, as the fluid element effectively experiences a steady kite while it passes
over the airfoil. Conversely, if f∗

a isn’t much larger than fF (fr ̸≪ 1), the problem must be treated as
unsteady, signifying that the kite deforms as the fluid element is passing over it.

fr =
fF
f∗
a

(2.3)

Leuthold [40] found that the large-scale deformations could be resolved with a quasi-steady model,
illustrated in Figure 2.5. These findings are in line with the results of Kappel [34], who neglected the sub-
scale deformation in his model and generated results similar to the experimental data. Based on these
findings, assuming a quasi-steady-state model is deemed acceptable, which simplifies implementation
and, additionally lowers computational cost in comparison to a fully dynamic model [13].

Figure 2.5: Characteristic frequencies of operational modes (black and white tones) and deformation modes (coloured) [40].
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2.3. Simulation framework
The field of FSI solvers can be divided into two categories: monolithic and partitioned. Monolithic
solvers represent the aeroelastic behavior of the system, including structural deformations influenced
by aerodynamic forces, in a single set of equations. On the other hand, partitioned FSI solvers separate
the aeroelastic model into aerodynamic and structural components, which is graphically illustrated in
Figure 2.6. These models interact at their interfaces, but their mechanics do not directly interfere with
each other. The aerodynamic model calculates the pressure distribution for a given body shape, while
the structural model computes the deformation for a given aerodynamic loading. Consistent boundary
conditions are applied through the coupling between the fluid and structural solvers to ensure accuracy
and stability.

Monolithic solvers have the advantage of customization for specific problems and accuratemodeling
of all interface effects. However, their application to arbitrary physical problems can be challenging, and
updating them to incorporate field-specific advancements may also prove difficult and time-consuming.
On the contrary, partitioned FSI solvers offer modularity between the fluid and structural models. This
allows developers to modify either or both models to improve accuracy and efficiency or explore new
concepts. This flexibility is particularly valuable during earlier stages of development, as the tradeoff
between accuracy and speed can be explored and reviewed, guiding future development effectively.

In 2020, Folkersma, Schmehl, and Viré [24] built a two-way coupled aeroelastic solver for ram-air
kites, based on a computational fluid dynamics (CFD) solver and a finite element (FE) solver. Similar
success has not yet been achieved for LEI kites, despite the fact that research efforts have been de-
voted to developing a similar solver approach. Poland [51] concluded that for design optimization of LEI
kites a solver based on the combination of CFD and FE is too computationally expensive, due to their
intricate geometry and attachment points. One of the issues with existing FSI models is the trade-off

Figure 2.6: Diagram of a possible partitioned FSI solver, where the aerodynamic and structural models are modularly
implemented
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between computational cost and level of detail. Some models use rigid body assumptions, which do
not accurately represent the in-flight behavior of systems with significant deformations, such as LEI
kites. Therefore, to accurately study the aerodynamic performance of kites and efficiently develop de-
signs to enhance it, a less accurate but faster structural and aerodynamic model is needed. Additionally,
including the tether and bridle lines separately is essential for simulating a pumping cycle operation [25].

In brief, using a partitioned FSI solver offers benefits when research and development are still in an
early stage. To ensure an accurate representation of the interaction between wind and airfoil, it is es-
sential to have a structural model that can simulate deformation. Existing combinations of aerodynamic
and structural models are either not accurate enough or not fast enough.

2.3.1. Aerodynamic model
As the aerodynamic model is not the main topic of this investigation, its implementation will be limited.
The aerodynamic model is the subject of a separate research paper by Watchorn [80]. Due to a lack
of experimentally determined data on kite deformation, no kite model will be implemented and thus no
model for its aerodynamic load is required. Regarding the aerodynamics of the tether, the calculation
of forces and distribution to the particles follow the model that Geschiere [25] presented.

2.3.2. Structural Model
Ruppert [58] reviewed the options for structural modeling, in efforts to develop a model for LEI inflatable
kites, which can be seen in Figure 2.7. To this day, unless for specific reasons higher-fidelity models
are required, most studies on LEI kite modeling have argued for the use of a PSM [15, 22, 25, 35,
36, 39, 51, 52, 55, 71] because its computational efficiency while still being capable of simulating kite
deformation. The open-source Java PSM library, developed by Simon Greenwold [66], was utilized by
the Kite Power research group at TUD to develop the KiteSim framework, which was capable of simu-
lating crosswind LEI kite power systems. Currently, both the library and framework are outdated and
do not run anymore. An open-source kite simulator was written in Python by Uwe Fechner [73], but the
code was translated to the Julia programming language [74] and thus the Python version also became
outdated. Having a structural model written in Python would be a merit, as it currently is the language
that students learn and thus simplifies further development. In terms of programming languages, as
Python is a general-purpose language it is more versatile than Julia, and it has been around for much
longer, solidifying its robustness.

A PSM approximates the structure by discretizing it into lumped masses, in this context more often
called particles, which are connected by weightless spring-damper systems. To find the quasi-steady
equilibrium position, i.e. ẍ and ẋ are 0, the system is dynamically simulated over a pseudo-time, i.e.
numerical integration steps, until convergence criteria are met. This solution-finding method is based
on Newton’s second law, where the imposed forces on the particles can be coupled to the internal
forces and resulting accelerations (Eq. 2.4). This dynamic solution is computationally expensive when
considering that only the steady-state solution is of importance. The data between the initial condition
and steady-state solution has no physical meaning and therefore no value. A solution-finding method
that applies this knowledge in an intelligent algorithm or even completely skips the dynamic phase
would increase the computational efficiency, which is an obvious advantage.

ΣF = Mẍ

Mẍ+ cdẋ+ ksx = Fext

(2.4)

To dynamically reach a steady-state solution, numerical integration of stiff differential equations is
required, which limits the value of the spring stiffness ks and can result in stability issues [43]. This is
also reported by Poland and Schmehl [52] and Cayon, Gaunaa, and Schmehl [15], who determine the
value of ks by limiting the elongation to around 2-3 %. Improving the solution-finding method to where
the true material stiffness can be used would be of value, as no more trial-and-error search would be
required to stabilize the simulation based on an estimated strain limit.
An effort by Poland [51] to develop a novel geometric structural model required additional empirical
relations between bridle line actuation and kite deformation to fully geometrically define the shape with-
out the use of forces. Although the geometric-based model had a runtime of three orders of magnitude
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Figure 2.7: Overview of structural modeling options [58].

smaller than that of his implemented PSM with a black-box solver, he determined that the latter is better
suited as a structural model because it can simulate asymmetric deformation without relying on empir-
ical relations. Recent research using a PSM as the structural model reinforced its suitability to predict
asymmetric deformation [15, 52].

A PSM is the preferred structural modeling method for LEI kite research, despite its associated
drawbacks. Improving its computational efficiency would be of great value, as would implementing
alternative solution-finding methods that could speed up convergence times. As Julia is a fairly new
programming language a more robust and established language is preferred, but currently no function-
ing open-source code exists in such a coding language. To enable future research and development,
coding a new framework is necessary. Python will be utilized for this purpose, as it is presently the
most widely used programming language.

2.3.3. Coding architecture
The existing Java implementation of the PSM follows an object-oriented architecture. This architecture
is used because it is very suitable to build a problem from basic building blocks, in this case, massless
spring-damper elements and lumped mass elements. On the other hand, the core of the program uses
a one-dimensional vector data structure for the most efficient solution finding. The one-dimensional
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vector data structure is ideal for numerically solving the linear system of equations with a sparsely
populated system matrix and is capable of achieving faster than real-time simulation speeds. The
reason for this efficiency gain is avoiding time-consuming traversing of deeply nested object-oriented
data structures. For these reasons, this basic code architecture will be reused. A repository for the
code and resulting figures was made and can be found online [3]. A copy of the developed framework
can be found in appendix A.1.

2.4. Simulation validation
The conventional method for assessing the aerodynamic properties and resulting shapes of airfoils in-
volves conducting wind tunnel tests using scaled-down models or employing high-fidelity simulations.
Wind tunnel tests can be expensive, and because of the complex interaction between fluid dynamics
and structural properties, the results from scaled models often can’t be directly applied to full-sized
systems. Additionally, accurately simulating the aerodynamics of flexible membrane wings that include
the aeroelastic effects is still quite tricky for current computational methods [78]. Therefore, the results
of the simulation usually are validated with specific test cases.
Several test cases can be found in literature for validation and benchmarking the particle system frame-
work of springs, dampers, and masses. The selected test cases isolate as much as possible a specific
functionality of the developed software. While for some cases experimental measurements exist, other
cases have to be compared to the theoretical expected outcome. The following test cases are selected
for validating the framework.

1. A hanging tether, fixed at its top end, that exhibits longitudinal elastic vibrations as a result of an
attached mass being dropped from a certain height.

2. A tether, fixed at both ends, that is deflected by a perpendicular air flow and experiences no
gravity.

3. A horizontally suspended tether, fixed at both ends, that is deflected by gravity in the vertical
direction.

4. Hencky’s problem, where a flat circular membrane is subjected to uniform pressure at one side,
resulting in nonlinear forces.

These validation tests can be performed with meshes that vary in coarseness by discretizing the
structure into varying amounts of particles, which essentially determine the degrees of freedom (DOF)
in the system. This methodology will be used to benchmark the performance of the framework. The
convergence criteria are based on the sum of residual forces in the system. Furthermore, the parame-
ters that govern the dynamic formulation (M , cd, ks) can be varied to analyze how they affect accuracy,
stability, and runtime.

2.5. Research questions
To accurately simulate LEI kites the model has to be capable of predicting shape. Assuming quasi-
steady state flow conditions is justified and simplifies the model and lowers computational cost. In this
context a PSM is the model of choice, as it is capable of simulating deformation while having a low
computational cost. The existing PSM code in Java is outdated and academic preference has shifted
to Python. This leads to the central research question:

Can the PSM be implemented in Python, using a combination of Object-Oriented (OO) and non-OO
programming techniques, to efficiently predict deformation?.

Three sub-questions are defined, listed as follows.

1. Is it possible to modify the existing PS framework to improve convergence times, without loss of
accuracy?

2. How does a black-box solver perform compared to the self-coded solver with explicit computation
of Jacobian matrices?

3. How does the runtime scale when increasing the amount of DOF?

https://github.com/ARBatchelor/Msc_Alexander_Batchelor
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To answer these research questions, four distinct research objectives are identified and listed below.

1. Implementation of PSM framework in Python.
2. Incorporating kinetic damping into the PSM.
3. Validating the framework with the identified test cases.
4. Conducting performance testing of the implemented framework for an increasing number of DOF.



3
Structural form finding

The ambitious designs for the Munich Olympic complex triggered the need for computational models
of shell structures and ushered in a new era for the science of structural form-finding. Structural form-
finding is concerned with developing methods that can efficiently and accurately calculate the shape, or
static equilibrium, of thin structures that transfer load through axial forces. A distinction can be made be-
tween unstrained gridshells when the elements of the structure solely experience compressive forces,
cable-nets when solely tensile forces are experienced, and tensegrity when both compressive and ten-
sile forces are present.
Part of the built complex and one of the design drawings are visible in Figures 3.1a and 3.1b respectively.
These images serve to illustrate the similarities between this particular problem and the deformation
modeling of LEI soft-wing kites. Both are concerned with finding the equilibrium position of a membrane
structure held together by (for the most part) tensile elements. Quasi-steady simulation of an LEI kite
system can be seen as a chain of form-finding solutions, with imposed forces varying from step to step.
Note that this comparison only holds when quasi-steady state is assumed, a fully dynamic simulation
of a kite system requires a different approach.

The field of structural form-finding is characterized by researchers directing their efforts at individ-
ual methods. An absence of standardization resulted in a branch of science that uses a multitude of
nomenclatures, mathematical structuring, and symbolic notation. Impartial comparisons of the perfor-
mance of methods in one mathematical framework didn’t exist. To this day this complicates research
on the topic and the selection of optimal methods for specific applications. Precisely for this reason
Veenendaal and Block [76] conducted a review, improving accessibility and clarity on structural form-
finding methods.

(a) Plexiglas canopy and suspension system formed by cables and masts [31]. (b) Design of the suspension system of the canopy [46].

Figure 3.1: Detailed view of the roof of the Munich Olympic complex and design drawing of shown roof.

13
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Figure 3.2: Categorized timeline of the development of form-finding methods including key references. Circles denote
methods, arrows denote descendence, triangles denote an extension of the method to surface elements, and blue dotted lines

link related but independent methods [76].

Veenendaal and Block classified form-finding methods into one of three main families and structured
the chronology accordingly, shown in Figure 3.2. Notably, a PSM based on Simon Greenwold’s Java
code library was used for form-finding by Kilian and Ochsendorf [37] and is listed as a distinct method
in the review. Next to the main methods many more variations exist, specifically adapted to the needs
of certain applications.

3.1. Form-finding methods
Structural form-finding is closely related to techniques for structural analysis such as FEM and, as
such, often requires the use of similar properties. The elastic and geometric stiffness matrices, Ke

and Kg respectively, are examples of such properties and are used to categorize families in the sug-
gested classification. Elastic stiffness is derived from Hooke’s law which links applied forces or stress
with deformation based on material properties. It is the dominant factor when structural deformations
are small. Geometric stiffness stems from geometric nonlinearity in a structure, meaning that as the
structure deforms, it also affects the distribution of forces and the stiffness of the structure. This is
primarily the case when structural deformations are large. Tether dynamics and sag are an example of
non-linear behavior in a structure. Sagging of the structure affects the direction of resistance, and the
aerodynamic forces are a function of orientation as described in Chapter 4. This means that finding an
analytical solution for its form is extremely challenging, if not impossible. Kite deformation has even
more sources of non-linear behavior. Similar to tether and bridle lines, the aerodynamic load and struc-
tural stiffness change as the structure deforms. Furthermore, the inflatable struts are characterized by
non-linear bending stiffness [11]. In theory, each family of methods should be able to accurately predict
non-linear behavior and converge, but in practice, they have their limitations. According to the classi-
fication proposed by Veenendaal and Block [76], the families can be characterized and distinguished
as follows.

The stiffness matrix (SM) methods rely on the use of both elastic and geometric stiffness matrices.
From these matrices, a global stiffness matrix K is assembled, representing the stiffness of the whole
structure. Equation 3.1 is used to find the displacements of the structural nodes u from their starting
position. The equation does this by balancing internal stress with the residual load vector R. Then,
from the current geometry, for small fractions of the residual force vector ∆R intermediate solutions
∆u are found. This way small displacement is preserved, which is an underlying assumption of SM.
Convergence is reached by iterating until u is found. It may be clear that this family of methods has a
historical foundation in structural analysis.
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(Ke +Kg)u = Ku = R (3.1)

Although SM methods utilize physical material properties, a drawback is that these properties are
not required to find a solution and are computationally expensive [41, 48]. Experience is required in
convergence control, as small or even zero stiffness in certain directions can cause large displacements
or divergence.

Geometric stiffness methods disregard the material properties and rely solely on the geometric
stiffness of the structure. These techniques stem from the force density method (FDM) [60], which,
as its name suggests, employs force densities. The FDM attempts to find the shape of a structure by
resolving a set of non-linear equations that balances tension force Ti for each element in the three
primary directions of a Cartesian coordinate system (CS) (Eq. 3.2). The force density q is not a unit,
but a concept used to describe the distribution of force in the structure. It is a measure of force per unit
of dimensionality of the problem, used to linearize the set of equations that determine the position of
the nodes. For the given example qi =

T
L with L being the element length, where the operator will set

the value of qi to control the outcome surface. Subsequent studies [10, 28, 50] present methods that
prescribe forces rather than non-intuitive force densities, as the resulting shapes are difficult to predict.∑ Ti(u)uex

Li
= 0,

∑ Ti(u)uey

Li
= 0,

∑ Ti(u)uez

Li
= 0 (3.2)

Lewis [41] states that the linear application of geometric stiffness methods may produce results with
stresses that are beyond material limits and can serve only as a preliminary result. These results are
also dependent on the anisotropy of the considered material and meshing strategy. Additional con-
straints or different formulations are required to produce results with practicable internal stresses. This
changes the set of equations to a non-linear form, for which additional iterations are necessary.

Dynamic equilibriummethods solve a dynamic formulation over a (pseudo-)time to arrive at a steady-
state solution, rather than using stiffness matrices. The steady-state solution is equivalent to the static
equilibrium solution. The stiffness is embedded in the geometry of the structure, which updates every
iteration. This makes these methods particularly well-suited for problems with high degrees of bending,
which is the case for LEI kites. The kinetic damping algorithm has proven to be inherently stable for
highly nonlinear problems.
Nouri-Baranger [48] Noted a few criticisms on DR as follows. These methods require many parame-
ters, such as the time step, to control stability and convergence. The mass and damping parameters
are fictitious, have no physical representation, and may therefore not be meaningful. The latter is ex-
plained more in-depth in chapter 4, and doesn’t necessarily constitute a disadvantage. The formerly
stated disadvantage depends on the method of numerical integration and control may be reduced to a
singular parameter. The author would argue that the largest disadvantage of DR would be the dynamic
process required to reach the steady-state solution. It is an iteration-heavy process, and therefore
time-consuming, when the transient phase isn’t of value, which is the case when the quasi-steady
state approximation is assumed.

3.2. Computational performance
Veenendaal and Block [76] tested the performance of the distinct methods that they identified in their
framework, the results of which are listed in table 3.1. Convergence times are normalized relative to
the convergence time of the fastest method tmin. The tested methods are abbreviated as follows: stiff-
ness method (SM), multi-step force density method with force adjustment (MFDF), geometric stiffness
method (GSM), updated reference strategy (URS), dynamic relaxation (DR), and particle spring sys-
tem (PS). The corresponding subscripts are abbreviated as follows: updated Lagrangian formulation
(ULF), homotopy mapping (HM), viscous damping (vis), kinetic damping (kin), Runge-Kutta 4 integra-
tion scheme (RK4), and backward-Euler integration scheme (BE).

From this table, several observations can be made. The standard SM could not converge at higher
amounts of DOF, emphasizing the difficulty with convergence control. ULF is a framework where inter-
mediate solutions are found and used as new reference shapes for which a new stiffness matrix needs
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Table 3.1: Solution times of implemented methods for increasing DOF, normalized with respect to the fastest method in bold,
and number of iterations in parenthesis. Adapted from [76].

DOF 75 183 339 543
SM 1.25 (8) N/A N/A N/A
SMULF 1.44 (13) 4.22 (16) 6.26 (18) 9.93 (17)

MFDF 1.00 (14) 1.00 (16) 1.00 (18) 1.00 (17)
GSM 1.52 (16) 2.64 (15) 3.77 (14) 3.73 (13)
URSHM 1.38 (10) 3.13 (8) 4.31 (9) 5.36 (8)

DRvis 1.22 (8) 5.40 (34) 15.54 (63) 24.66 (96)
DRkin 1.41 (16) 5.19 (32) 10.36 (42) 13.16 (50)
PSRK4,vis 1.78 (17) 3.68 (22) 6.74 (28) 11.30 (50)
PSRK4 4.10 (39) 6.58 (39) 13.57 (60) 22.73 (67)
PSBE 6.31 (37) 11.30 (32) 14.44 (30) 20.33 (30)

tmin [s] 0.007 0.015 0.026 0.040

to be calculated. Although this framework made convergence possible, it could also be a reason for
the longer convergence times.
The performance of the geometric stiffness methods (middle three) is prevalent, with MFDF in par-
ticular. Veenendaal and Block [76] state that its performance can be explained by the fact that the
algorithm begins with a force density-controlled iteration before switching to force control. The other
methods begin iteration from prescribed forces, which makes their performance more dependent on
the initial geometry. The relative performance of the MFDF method may decrease considering that
in quasi-steady kite simulation, the consecutively found shapes are near each other, instead of being
found from an arbitrary initial geometry.
Dynamic equilibrium methods (bottom five) are among the worst in terms of performance, certainly at
higher amounts of DOF. The addition of the kinetic damping algorithm to DR seems to worsen perfor-
mance at lower amounts of DOF. The change appears to lower the scaling coefficient, as the method
has lower runtimes from the 183 DOF mark. The PS with an implicit BE scheme also scales better
with increasing DOF. The number of iterations remains relatively constant, while computational cost
per iteration doesn’t grow as much compared to the increase of iterations that methods with implicit
schemes experience. This is in line with the findings of Baraff and Witkin [7] who reported that implicit
schemes outperformed explicit based on examples with 7806 DOF. Reducing the number of iterations
would benefit methods with implicit schemes, which might be achieved as the transient phase holds no
value.

3.3. Method selection
Considering the time constraints of a single thesis project, a choice in which method to implement and
test was made based on applicability, difficulty of implementation, and computational efficiency. The
reasoning behind this choice is as follows.

Implementing a LEI model based on SM has been attempted (successfully) by Bosch, Thedens [13,
71]. Thedens [71] used a FE formulation in a curvilinear CS, but couldn’t find a stable solution with the
static Newton-Rhapson method. As such he had to resort to DR for which he included kinetic damp-
ing. The FE analysis that Bosch [13] performed on LEI kites was based on the direct stiffness method
(DSM). He had to develop a control algorithm to get the method to converge, as out-of-plane forces
cause large deformations with low bending stiffness or singular matrices with zero bending stiffness.
The author encountered similar problems in an attempt to implement the DSM, also noting that in cer-
tain cases multiple solutions might be possible, adding a layer of difficulty. Implementing an SM is time-
and resource-intensive and combined with its mediocre performance-wise scaling it is not considered
as a feasible option for optimization-based design.
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Although the geometric stiffness methods are a promising topic to pursue, they demand additional
effort on the side of researchers and developers. Familiarity and expertise in force-density control or
force control need to be gained and extra steps are required to make sure that the results are practi-
cable. This unfortunately requires too much time for the current research project, but it could be an
interesting topic for a future thesis project. An open-source FDM-based code in Python was imple-
mented by Vahid Moosavi [75] and could be used as a starting point.

That leaves the DR methods, of which the addition of a kinetic damping algorithm to the frame-
work is a promising option that could potentially speed up runtimes. This algorithm has been used in
combination with explicit integration schemes, but to the author’s knowledge not yet with an implicit
scheme. In the following chapter, readers can find the theory behind the algorithm, its application in
the developed framework and the anticipated effects.



4
Particle System Framework

In the early stages of their application, particle systems relied mainly on the internal properties of par-
ticles to simulate the dynamic characteristics of ”fuzzy objects” such as fire or smoke [56]. In an effort
to achieve an accurate simulation of collective animal behavior using a particle system, Reynolds [57]
introduced the concept of particles that could also be influenced by external factors, including other
particles. Over time, this idea transformed the particle system into a tool for cloth simulation and form-
finding of net structures and membrane surfaces.
This chapter opens with a brief high-level summary of setting up a PSM and simulating it in a PS frame-
work. This is followed by a more in-depth explanation of the objects that hold the structure together,
namely the springs and dampers. Next, the externally imposed forces are described that drive the
shape in the selected test cases, as per the form follows force principle. Finally, the kinetic damping
algorithm intended to improve the performance of the framework is explained.

4.1. Particle System
The first step in setting up a PSM is to discretize the structure of interest into lumped masses or par-
ticles of infinitesimal size. These particles are then connected by massless springs and dampers, the
data of which is stored in a connectivity matrix. This way, a larger structure can be split up into a finite
amount of particles n that can be described by idealized fundamental equations, which makes analysis
of the structure more manageable. The absence of a body of any size or shape for the particles means
that they can be fully described by a position vector xi, a velocity vector vi in the case of dynamic
simulation, and a mass mi. Here, the subscript i denotes the index of the corresponding particle. De-
pending on the requirements and applicability the model can coupled with either a dynamic or direct
solution-finding method.
During its initial stages, the PS was simulated dynamically with explicit integration schemes. Later,
preference shifted when Baraff and Witkin [7] presented the advantages of using implicit schemes as
explicit integration schemes run into stability issues when certain limits to the step size are exceeded.
The consideration between explicit and implicit integration schemes will be covered in Chapter 5. Dia-
grams that visualize the structure and the behavior of the implemented PS framework can be found in
Appendix B.2.

4.2. Internal Forces
The aim of connecting particles with massless spring-damper systems is to accurately recreate material
properties and behavior. There is a multitude of spring-damper configurations that try to replicate
material behavior, but an energy-dissipating component is required as the system otherwise would
keep oscillating indefinitely after initial excitation. In the developed PS framework the connection is
formed by one spring element and one damper element in parallel, which is also known as a Kelvin-
Voigt material [82]. In this configuration, the strain is equal for both spring and damper elements. The
resulting constitutive relation (Eq. 4.1) dictates that the stress on the material σ is a sum of the product
of Young’s modulus E and the strain ϵ and the product of the viscosity η and the strain rate ϵ̇.

18
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σ = Eϵ+ ηϵ̇ (4.1)

The strain terms on the right-hand side of Equation 4.1 can be related to the state (x, v) of connected
particles. This is how the framework calculates the values for the internal spring and damping forces,
which are described in the following subsections.

4.2.1. Spring force
Linear springs are used, with the spring force Fs calculated according to Hooke’s law (Eq. 4.2) that
relates force and strain. Here, A is the cross-sectional area of the material, l0 the initial- or rest length,
and ∆l the elongation. The equation can be rewritten to a vector form as in Equation 4.3. Here the
spring force between particles i and j, as felt by particle i is a function of their respective position
vectors. The equation follows the convention that elongation of the spring results in a negative force
and a positive force when the spring is compressed. For the modeling of a LEI kite, it is also assumed
that tether, bridle lines, and membrane do not have any resistance against compression. Therefore an
additional conditional statement is added to the code that nullifies the spring force when springs are
compressed beyond their initial length l0.

Fs =
EA∆l

l0
= ksϵ (4.2)

Fs,i = −ks(|xi,j | − l0)ûi,j (4.3)

A graphical representation for arbitrary positions of particles i and j can be seen in Figure 4.1. As
spring force is a conservative force, when particle i moves to a new position x∗

i = xi + dl, the energy
potential stored is independent of what path is taken to reach this position. To add bending resistance
when out-of-plane forces are applied, rotational springs could be added. Van der Knaap [39] found that
including rotational springs generated very accurate results, but they came with a computational cost
that was deemed too much. Therefore, this framework only uses three translational DOF ex, ey, and
ez, and no rotational DOF are considered.

Figure 4.1: Visual representation of the variables used to calculate the spring force between particles

4.2.2. Material damping
From Equation 4.1 it can be understood that the material damping specifically acts on the strain rate or
elongation velocity of the cable. Breukels [14] evaluated the effects of both external aerodynamic damp-
ing and internal material damping. He found that internal damping mostly affects the high-frequency
oscillations that occur due to numerical instabilities, while external aerodynamic damping mostly affects
low-frequency modes.
The damping force vector Fd,i between particles i and j, as felt by particle i is a function of their re-
spective position and velocity vectors (Eq. 4.4).

Fd,i = −cd(vi,j · ûi,j)ûi,j (4.4)
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Figure 4.2: Schematic representation of damper between particles with arbitrary velocity vectors and vector calculations
required to determine Fd.

The orientation of the damping force vector is always opposite to that of the relative velocity between
particles. As the damper elements are assumed to only have resistance in the axial direction, the
relative velocity is projected on the relative position between particles. This calculation is illustrated
in Figure 4.2. When the simulation reaches a steady-state solution, the velocity approaches zero and
consequently, the damping force diminishes. Because the damping force doesn’t affect the final shape,
which can also be interpreted from Equation 2.4, the damping coefficient cd can be used as a tuning
parameter for stability and convergence speed.

4.3. External Forces
To drive the simulation of part of the test cases two external forces are required, namely gravity and
tether drag. Gravity is the only force that is a function of mass and is calculated before the simulation
runs. It is combined into the external force constant Fext (Eq. 2.4). Again, for the steady-state solution
of the simulation, the acceleration is near zero. This means that changing the mass matrix during the
simulation won’t affect the steady-state position and therefore the inertia can be used as a tuning pa-
rameter.

The computation of the tether drag follows the methodology that Geschiere [25] presented. First,
the velocity of a tether segment vt between particles i and j is approximated by the average velocity
of the two respective particles (Eq. 4.5). Then it is used to calculate the apparent velocity vs,a of the
spring element with respect to the wind velocity vw (Eq. 4.6). The effective tether area Aeff that faces
perpendicular to the wind vector is calculated with Equation 4.7, and is visualized in Figure 4.3. Finally,
the tether drag force vector Fd can be determined (Eq. 4.8). Its value is divided by two and then added
to the external force vectors that work on the respective particles.

vt =
vi + vj

2
(4.5)

vs,a = vw − vt (4.6)

Aeff = ds · leff = dt · Lspring(1− |ûi,j
vs,a

|vs,a|
|) (4.7)
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Fd = CD
1

2
ρair|vs,a|Aeffvs,a (4.8)

Figure 4.3: Visualization of parameters used to calculate the tether area faced perpendicular to the wind velocity vector [25].

4.4. Kinetic damping
The concept of applying kinetic damping to DR was first introduced by Barnes [8]. Kinetic damping
stems from the idea that a system’s kinetic energy (KE) peaks when it is on, or near, its equilibrium
position. This is best illustrated with a simple undamped harmonic oscillator (Fig. 4.4), where the KE
(green) peaks at the exact moment when the particle reaches its equilibrium position (indicated by blue
dashed lines). The equilibrium position can be found by resetting the velocity of the system to zero
at the peak of the kinetic energy. For a system with more than one spring multiple of these resets
are required as it is unrealistic to assume that the springs oscillate perfectly in phase. However, by
resetting the velocities of the particles, a large portion of the internal energy is instantly ”dissipated”
as it were. Implementing material damping in parallel would be possible, but it isn’t clear if this has
any advantages. Considering that the system simulates inertia, adding material damping decreases
the acceleration from a standstill at resets, slowing down convergence and thus increasing runtime.
Based on the results of Veenendaal and Block [76], the algorithm should outperform regular material
damping when a certain amount of DOF is reached.
In his effort to develop an FSI model for ram-air kite simulations, Thedens [71] followed the implementa-
tion of the kinetic damping algorithm as presented by Barnes [8]. He found that the method accurately
determines membrane shapes and internal stress, but while the shape of the structure stabilizes, force
equilibrium is not reached. This highlights a limitation of the algorithm, which cannot resolve cases
where the system loops by resetting at two KE peaks and bouncing back and forth between them.

The KE energy curve of the systemWkin is assumed to behave as a quadratic function to estimate at
which moment it peaked. Other functions, e.g. cubic, could be assumed to base estimations on, but are
disregarded for the sake of simplicity. Predicting where the KE would peak, based on the assumption
that the curve is shaped a certain way would likely result in unstable simulations. Equation 4.9 is used
to calculate Wkin at time t, where v is the velocity state vector of the system [v1, ..., vn].

W t
kin = (vt)TMvt (4.9)

If the algorithm detects that the value of W t
kin is less than W t−h

kin , the quadratic correction factor q is
calculated (Eq. 4.10). Barnes [8] and Thedens [71] both used a 2nd-order leap-frog explicit integration
scheme, also known as centered finite difference form, which uses estimates of the system’s state at
times t− 1

2h and t+ 1
2h to find a solution for t+h. Here, h is the value of the timestep h = ∆t = tn+1−tn

with n the simulation step number. As the implicit Euler scheme only evaluates the state of the system
at integer multiples of h, the calculation and application of q were slightly modified.
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Figure 4.4: Graph illustrating normalized energies for position of a simple harmonic oscillator system

q =
W t−h

kin −W t
kin

2W t−h
kin −W t−2h

kin −W t
kin

(4.10)

The value of q is in essence the ratio of the slopes between points t − 2h and t − h and between
t− h and t, illustrated by Figure 4.5. As this correction factor is calculated over a time span of 2h, the
KE peakW ∗ at time t∗ is either positioned between t− 2h and t− h, between t− h and t, or exactly at
t − h (Eq. 4.11). The new state of the system is determined through linear interpolation between the
corresponding states. When the state of the system at t∗ is calculated and updated, regular integration
with stepsize h is resumed until a following reset occurs or convergence criteria are satisfied.

q < 0.5 : t− 2h < t∗ < t− h

q = 0.5 : t∗ = t− h

q > 0.5 : t− h < t∗ < t

(4.11)
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Figure 4.5: Illustrating showing how the KE peak is likely to be positioned between discrete timesteps of the simulation



5
Numerical Simulation

Nature Portfolio describes numerical simulation as “A numerical simulation is a calculation that is run
on a computer following a program that implements a mathematical model for a physical system. Nu-
merical simulations are required to study the behavior of systems whose mathematical models are too
complex to provide analytical solutions, as in most nonlinear systems.” [67].
This chapter will formulate a set of equations that model the kite’s physics to simulate its behavior over
time and present the methodology used to find solutions to these equations. Even though the problem
is described by a system of linearized equations, a solver is required to efficiently calculate solutions. A
solver is considered to be a combination of a numerical integration scheme with either direct or iterative
method, which need to be chosen based on the properties of the problem. The chapter ends with an
stability analysis of the chosen integration scheme.

5.1. Solver
An Initial Value Problem (IVP) is a process that has a solution that evolves over time and that usually
can be described mathematically, e.g. as a differential equation. The solution f(t = t0) = x0 at the
starting time t0 is known, and from this initial state, solutions f(t = t0 + nh) = xt are calculated. The
Python programming language has a library of IVP solvers that can calculate solutions x(t) for Equa-
tion 5.6, and requires little rewriting. However, it is crucial to analyze and reformulate the problem as
that should lead to better performance over using a highly optimized library to brute-force solutions for
a nonlinear kite and tether model. Therefore this section breaks the problem down to make a choice in
numerical integration scheme, used to approximate solutions to the problem over time, and numerical
technique, that calculates the values of these solutions.

Griffiths and Higham describe schemes used for solving IVPs that fall into one of two categories:
one-step methods and multistep methods [27]. These families can again be sub-categorized into im-
plicit and explicit schemes. Explicit schemes approximate the solution at the next timestep based on
the solution of the current timestep: f(xn+1, tn+1) = f(xn, tn). Implicit schemes also use an approxima-
tion of the future state(s) to find the solution at the next timestep: f(xn+1, tn+1) = f(xn, tn, xn+1, tn+1).
This requires extra computational steps and makes their implementation less straightforward than ex-
plicit schemes. However, previous research on particle systems argued the necessity and proved the
advantage of using implicit methods for time integration of a PSM [7, 65]. Implicit methods come with
a higher computational cost per timestep, but their improved stability with respect to explicit methods
makes larger timesteps possible, resulting in overall faster simulation. Explicit methods have their
timestep h bounded inversely proportional to the natural frequency ω of the particles, which makes
them unfeasible to use for cables that have very high material stiffness and thus very high frequencies,
as shown in Equations 5.1 and 5.2 [65]. Here, α is a coefficient depending on the scheme that is con-
sidered. Discretizing the cables with an increasing number of particles n lowers h, which can be seen
by plugging Equation 5.2 into Equation 5.1. Implicit schemes are therefore not considered as a feasible
option to utilize in the framework.
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h <
α

ω
(5.1)

ω(n) =

√
nE

l0ρ
(5.2)

The equations that model the problem remain nonlinear when using an implicit scheme. To find
forces at a future state a linear approximation is used, consequently resulting in a linear set of equations
that accelerates calculations. However, linearization generally is paired with a loss in accuracy. As the
accuracy of the transient phase is not of interest and the steady-state solution isn’t affected, linearization
is only considered beneficial. To solve a linear set of equations expressed as a matrix-vector product,
either a direct method involving matrix inversion or an iterative method can be employed. The choice
depends on the properties of the matrix.

5.1.1. Integration scheme
Certain differential equations can be classified as stiff. There is no set of precise conditions to classify
a differential equation as such, but there are general descriptions.

• A problem that, for certain numerical schemes, has its stepsize limited by stability issues rather
than being determined by a required accuracy.

• A problem with a sought solution that varies on a large timescale, while intermediate solutions
vary on lower timescales.

• A problem where the eigenvalues of the Jacobian(s) of the force vector have a large ratio between
the lowest and highest value.

Generally, implicit schemes are suited for finding solutions to stiff problems, in particular the family
of backward differentiation formula (BDF). They belong to the family of linear multistep methods and
were developed specifically for solving stiff equations by Curtiss and Hirschfelder [19]. As the set of
equations that describe the particles’ motion has been identified as stiff [7], a BDF will be used.

Implicit Euler
The first order BDF is also known as the implicit or backward Euler integration scheme, which uses a
single future state in its approximation. The current state is estimated from the perspective of the future
state, i.e. looking backward. The integration scheme is found by rewriting the future state as a first two
exponents of its Taylor series (Eq. 5.3). By formulating this equation in discrete terms (Eq. 5.4) and
rearranging for xn+1, the integration scheme is found (Eq. 5.5).

xn ≈ x(tn+1 −∆t) = x(tn+1)−∆t
dx(tn+1)

dt
+O(∆t2) (5.3)

xn = xn+1 − hẋn+1 (5.4)

xn+1 = xn + hẋn+1

xn+1 = xn + hvn+1

(5.5)

From this derivation, it can also be seen that the local truncation error O(hp+1) of the scheme is
of order two. A visual example of this error can be seen in Figure 5.1. The scheme approximates a
solution by estimating the derivative of the next time step and using that gradient to find a solution. Choi
and Ko [17] used a second-order BDF for their PSM-based cloth simulation. Higher-order methods are
more accurate but come with an increase in computational cost and difficulty in implementation. As
accuracy during the transient phase is not required, higher-order methods are disregarded and the
Implicit Euler scheme will be used for numerical integration.
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Figure 5.1: Visual example of a linear estimate of the state at the next time step using implicit Euler [68].

5.1.2. Linear system of equations
To find a value for vn+1 and thus find xn+1, Van der Knaap [39] presented the following derivation.
Newton’s second law of motion describes the change in motion that a body with mass m experiences
when force is applied to it. Equation 2.4 is rewritten as Equation 5.6 to isolate ẍ(t). Here x is the
position state vector, describing the position of each particle in three dimensions: [x1, ...,xn]. M is
a square and sparse matrix of size 3n, containing the masses of each particle in each dimension on
the diagonal: [m1,x, m1,y, m1,z, ...,mn,x, mn,y, mn,z]. As mass can be used as a tuning parameter, it
doesn’t need to be kept constant or be the same value in each direction. For the sake of simplicity, the
masses of a particle are kept constant with the same value in all directions. Lastly, the force vector F
holds the sum of internal and external force acting on each particle for all dimensions of motion. These
are the forces that were covered in Chapter 4.

ẍ(t) = M−1ΣF (x(t), ẋ(t), t) (5.6)

This compactly written second-order, non-homogeneous, ordinary differential equation (ODE) can
be rewritten to a set of coupled first-order ODEs, shown in Equation 5.7.(

ẋ
ẍ

)
=

(
x
v

)
d

dt
=

(
v(t)

M−1F (x(t), ẋ(t), t)

)
(5.7)

The derivatives from Equation 5.7 are approximated by the implicit Euler scheme in discrete form
as Equation 5.8. Using these approximations, Equation 5.7 is rewritten to its discrete form, as shown
in Equation 5.9.

dx

dt
≈ ∆x

h
=

xn+1 − xn

h
dv

dt
≈ ∆v

h
=

vn+1 − vn

h

(5.8)

(
∆x
∆v

)
= h

(
vn

M−1F (xn+1,vn+1)

)
(5.9)

Looking at the bottom half of the equation, the only nonlinear term is F (xn+1,vn+1, ). To find a value
for this term a linear approximation is used, i.e. by approximating the term with the first two exponents
of its Taylor series (Eq. 5.10).

F (xn+1,vn+1) = F (xn +∆x,vn +∆v) = Fn +
∂F

∂x
∆x+

∂F

∂v
∆v (5.10)

The partial derivatives of the force vector with respect to the position or velocity vectors are also
known as Jacobians. Their respective symbolic notations are Jx and Jv. With this approximation of F
the bottom half of Equation 5.9 can now be written out to a new expression sorted for ∆v (Eq. 5.11).

(I − hM−1Jv − h2M−1Jx)∆v = hM−1(Fn + hJxvn) (5.11)
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By evaluating the force vector and Jacobians at time n the only unknown left is∆v, from which vn+1

can be calculated, as vn+1 = ∆v + vn.

5.1.3. Jacobians
Jacobians are mathematical objects which can be used for sensitivity analysis in multiple disciplines,
e.g. in economics, since they give a measure of change of one vector with respect to change in another
vector. In this context, they can in a sense be interpreted as a geometrical stiffness. The analytically
worked out solution provides the problem with the sensitivity of nodal forces with respect to their posi-
tions which is the geometry of the model.

Position Jacobian
With use of vector Equation 6 the equation for the position Jacobian can be derived. Between the
internal forces, only the spring force is a function of position. The derivation is done for the change in
force of a spring between particles i and j by moving particle i, as felt by particle i. A shortened version
of the derivation as presented by Macklin [45] can be seen in Equation 5.12. This can be simplified
further to Equation 5.13, by using the product rule and setting ûi,jû

T
i,j = T as suggested by E. van der

Knaap [39].

∂Fs,i

∂xi,j
= −ks

[
(|xi,j | − l0)

∂ûi,j

∂xi,j
+

(∂|xi,j | − l0)

∂xi,j
ûi,j

]
= −ks

[
(|xi,j | − l0)

I − ûi,jû
T
i,j

|xi,j |
+ ûi,jû

T
i,j

] (5.12)

Jx = −ks

[
(1− l0

|xi,j |
)(I − T ) + T

]
(5.13)

From Figure 4.1 it can be seen that if the perspective between particles j and i is reversed, the
change in force felt by particle j by moving particle j results in the same Jacobian as derived above.
When the opposite particle is moved, it results in a change of force that is equal in magnitude, but
opposite in direction, i.e. Jx,i,i = Jx,j,j = −Jx,i,j = −Jx,j,i. Conveniently, this means only one sub-
Jacobian has to be calculated per spring. The sparse Jacobian matrix that contains the results for each
spring in the system can be constructed by placing these sub-Jacobians at their respective indices. A
typical resulting sparse Jacobian matrix can be seen in Equation 5.14, for a tether where particles are
connected to only direct neighboring particles. Here, Jx,i,j denotes the Jacobian for the spring between
particles i and j. 

Jx,1,2 −Jx,1,2 0 · · · 0

−Jx,1,2 Jx,1,2 + Jx,2,3
...

0
. . . 0

... Jx,n−2,n−1 + Jx,n−1,n −Jx,n−1,n

0 · · · 0 −Jx,n−1,n Jx,n−1,n


(5.14)

Velocity Jacobian
The derivation of the velocity Jacobian of the internal forces is more straightforward since only the
damping force is a function of velocity. The partial derivative of Equation 4.4 with respect to velocity
results in Equation 5.15, which subsequently can be simplified into Equation 5.16.

∂Fd,i

∂vi,j
= −cd(û

T
i,j · ûi,j) (5.15)

Jv = −cdI (5.16)
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5.1.4. Iterative method
Section 5.1.2 ended with the derivation of Equation 5.11 from the system of equations. With every
variable now known, except for ∆v, the linear system can be reduced to the form shown in Equation
5.17. Here, the matrix A is a known, sparse, square, and positive-definite matrix. Vector b is also
known. Vector x represents ∆v, which is the unknown to solve the system for.

Ax = b (5.17)
The iterative biconjugate gradient stabilizedmethod (BiCGSTAB) was developed by Vorst [79] and is

part of the family of biconjugate gradient (BiCG) algorithms. This family of algorithms is used for solving
linear systems of equations. He found that the BiCGSTAB method has more stable convergence be-
havior, while also converging faster in most situations than regular conjugate squared methods (CGS).
Therefore the BiCGSTAB is used to find numerical solutions for ∆v.

To save development time, the BiCGSTAB module from the Scipy Python library was used. The
exact algorithm can be found in the online documentation [70] and is also added to Appendix A.2. The
method is executed without preconditioning. The addition of preconditioning could lead to lower runtime
[69] if in future research the BiCGSTAB algorithm is shown to have a relatively large share in the overall
computational cost.

5.2. Stability analysis
A numerical integration scheme is called stable if the global error doesn’t increase over time. Stability of
a scheme is an important factor in ensuring convergence. As a test, Equation 5.18 is used to analyze
the stability of the BE integration scheme. It is an ODE known as Dahlquist’s equation, with initial
condition y(0) = y0 and eigenvalue λ ∈ C. The analytical solution for this problem is shown in Equation
5.19. From this solution, it can be seen that the real part a of λ should be negative for the solution to
be bounded when t approaches infinity.

ẏ = λy(t) (5.18)

y(t) = y0e
λt = y0e

at(cos(bt)− i sin(bt)) (5.19)
The derivation shown in Equation 5.20 starts by plugging Equation 5.18 into the numerical scheme

(Eq. 5.3). By rearranging for the term yn+1 and substituting the initial condition, a recurrence relation
can be determined.

yn+1 = yn + hλyn+1

yn+1 =
1

1− hλ
yn

yk =
1

1− hλ

k

y0

(5.20)

From this relation, the requirements for stability can be deduced. The timestep h is always greater
than 0. When combined with the condition that the real part of λ is negative, it follows that | 1

1+hλ | ≤ 1.
This leads to the conclusion that with any real λ the implicit BE integration scheme is unconditionally
stable for any value of h. However, it is important to note that stable results are not the same as accurate
results.

5.2.1. Matrix conditioning
Backward stable integration schemes such as BE are expected to find accurate results for systems in
the form of Equation 5.17, when matrix A is well-conditioned. The condition number k is a measure
of sensitivity, giving insight into how much the found solution x varies for changes in the input. It is
defined in Equation 5.21. A certain threshold value is used to define if the problem is well-conditioned
or ill-conditioned. Numbers in literature vary but are usually in an order of magnitude of 1e3 1000 1000
As a rule of thumb: the larger the condition number of the matrix, the less well-conditioned the problem.

k(A) = |A| |A−1| (5.21)
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For a given geometry, timestep, and mass matrix, it can be seen from Equation 5.11 that matrix A
is a function of ks and cd.

For the test case where the tether is deflected by a perpendicular flow, a change of the spring
coefficient from 1000N/m to a realistic material value of 6720N/m for a tether of 10m resulted in a change
of the condition number from 32 to ∼ 2000. This result indicates that the conditioning of the problem
could be (one of the) causes that realistic values of spring stiffness cause problems with accurate
simulation.



6
Verification

Four intermediate tests were used to verify the correct implementation of individual components before
running the more complex validation tests. The first three tests focus on isolating imposed load and
internal spring and damping forces as much as possible. Trivial cases are used as they allow for
comparison to analytical solutions, which simplifies analysis. They also serve to provide insight into
the numerical effects of simulation with an integration scheme. These test cases are in essence one-
dimensional problems that are simulated in three dimensions. The results showed that the framework
didn’t introduce any errors by doing this. The fourth verification case is used as an indication that the
framework is capable of handling a more complex mesh in 3D space. No adjustments were made to
the framework to run these cases.

6.1. External load
The first case imposes a constant external load, namely gravity. Internal spring- and damping forces are
excluded by setting their respective coefficients to zero. The position of a falling body can be derived
by integrating the gravitational acceleration twice with respect to time and using the particle’s initial
position x0 and initial velocity v0 as boundary conditions (Eq. 6.1).

x(t) = x0 + v0t− 0.5gt2 (6.1)

The initial position and velocity vector components are all set to zero. The framework requires a
minimum of two particles with one connection to run. Therefore, one particle was anchored at the origin,
and the other particle was free to accelerate. The result of three simulations and the analytical solution
(green) can be seen in Figure 6.1, with gravity accelerating in the −ez direction. No movement of the
particle in either the ex or ey direction occurred. The simulations were run with time steps of 0.01 s
(dashed black), 0.1 s (blue), and 1 s (orange). With an increase in the value of h, a clear decrease
in precision can be observed. This is an expected effect for the BE scheme, where the local error is
proportional to the square of h. The error also shows growth over time, as the local error occurs every
iteration. This growth over time can most clearly be seen by comparing the difference between the
simulation with a time step of 1 s and the analytical solution.

Figure 6.2 visualizes both observations more clearly. The effect of local error can be visualized by
taking the absolute error after one iteration for each simulation and normalizing, as shown in the graph
on the left. The measured errors exactly match the curve of h squared. The graph on the right shows
that the absolute error of the simulation with a time step of 1 s grows linearly.

6.2. Spring force
To test the spring force, and in the next section the internal damping, a system that is well-known
is simulated, namely the simple harmonic oscillator. This system consists of a particle with mass m
that is connected by a spring to an anchored particle. No external loads are imposed on the particle.
With the rest length of the spring set to 0, releasing the particle from any nonzero distance results in

30
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Figure 6.1: Analytical solution and particle position over time for varying values of time step

Figure 6.2: Normalized errors after one simulation step against the curve of h2 (L) and absolute error growth over time for a
simulation with a time step of 1 s (R).
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the oscillatory motion of the particle around its equilibrium position. The damping coefficient is set to
zero, so there is no energy dissipated from the system. The derivations of [18, 72] are followed to find
the analytical solution for this system. It starts with a second-order homogeneous differential equation,
again based on Newton’s second law (Eq. 6.2). The natural angular frequency ω0 is defined in Equation
6.3. A solution over time in the form of Equation 6.4 is proposed. The values of coefficients A and B
can be found by calculating the first derivative of this solution (Eq. 6.5) and satisfying the boundary
conditions in Equation 6.6. Solving for these boundary conditions leads to the general solution (Eq.
6.7). As the initial velocity for the particles is set to 0, only the cosine term remains on the right-hand
side of the equation.

ẍ+ ω2
0x = 0 (6.2)

ω0 ≡
√

k

m
(6.3)

x(t) = A cos(ω0t) +B sin(ω0t) (6.4)

v(t) ≡ dx(t)

dt
= −ω0A sin(ω0t) + ω0B cos(ω0t) (6.5)

x(t0) = x0, v(t0) = v0 (6.6)

x(t) = x0 cos(ω0t) +
v0

ω0
sin(ω0t) (6.7)

To simulate this system, the anchored particle is fixed at the origin, and the second particle is re-
leased from x0 = [1, 0, 0]. This results in oscillations purely along the ex axis. A simulation of this
system (blue) with parameters set to h = 1×10−3 s,m = 1 kg, and ks = 2×105 N/m can be seen together
with the analytical solution (green) in Figure 6.3. Remarkable is the amount of energy that seems to
be dissipated from the simulated system, despite the absence of damping. This is an effect known as
numerical damping and can be explained as follows.

First, Equation 6.2 is rewritten to a system of first-order ODEs (Eq. 6.8). Then, by using equation
5.8 this system is rewritten to its discrete BE approximation (Eq. 6.9). The eigenvalues of the matrix on
the right side of the equation are λ1,2 = 1± ihω. Assuming the initial vector is exactly the eigenvector
belonging to the eigenvalue λ = 1 + ihω, and by sorting terms the recurrence relation is found (Eq.
6.10). (

x
ẋ

)
d

dt
=

(
0 1

−ω2 0

)(
x
ẋ

)
(6.8)

(
x
ẋ

)
n+1

−
(
x
ẋ

)
n

= h

(
0 1

−ω2 0

)(
x
ẋ

)
n+1

(6.9)

(
x
ẋ

)
n

= (1− ihω)−n

(
x
ẋ

)
0

(6.10)

So far, this is relatively similar to the derivation in Section 5.2. By examining the coefficient in more
detail, some characteristic properties of the BE Euler scheme can be revealed. A phase shift is found
when comparing the phase of the coefficient against that of the analytical solution (Eq. 6.11).

phase((1− ihω)−n) = −n ∗ phase(1− ihω) = −n ∗ arctan(−hω) = n ∗ arctan(hω) < nhω = tω (6.11)

The coefficient can be rewritten to a product of two exponents, where one exponent contains the
imaginary terms with i and the other purely real numbers (Eq. 6.12). This result can be found by
approximating the exponent by a Taylor series around the point ihω = 0. A more detailed derivation
can be viewed in Appendix B.1. The exponent including i reveals that a frequency reduction occurs,
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Figure 6.3: Plot of exact solution of harmonic oscillator (green) and simulation (orange)

consistent with the earlier observation. The exponent with real number reveals the effect of numerical
damping, which varies with the size of the time step h. Both effects can be plotted as functions of t as
an estimate of the phase shift over time and the decay rate that Implicit Euler introduces.(

x
ẋ

)
n

= e−itω(1− 1
3ω

2)e−
1
2∗thω

(
x
ẋ

)
0

(6.12)

The system was simulated with the same values for h and ks as before (green), together with the
estimated decay rate (red), and a corrected simulation (dotted black) (Fig. 6.4). The estimated decay
decreases in accuracy over time. The increase of the phase shift over time can also be seen more
clearly.

6.3. Internal damping
The same system, a harmonic oscillator, is used to check the correct implementation of internal damp-
ing. The addition of a damping term γ to the differential equation (Eq. 6.13) makes the derivation of
its analytical solution slightly more complicated. The analytical solution over time varies, depending
on whether the system is under-, over-, or critically damped (Eq. 6.15) [18]. The steady-state solution
can be calculated by setting ẍ and ẋ to zero. Without imposed forces, the steady-state solution of x
is 0, which the methods should converge to. As an alternative to the analytical solution, the differential
equation can be split into a system of coupled first-order ODEs (Eq. 6.16).

ẍ+ γẋ+ ω2x = 0 (6.13)

γ ≡ cd
2m

(6.14)
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Figure 6.4: Simulation corrected for decay rate

Underdamped : ω2
0 > γ2

Critically damped : ω2
0 = γ2

Overdamped : ω2
0 < γ2

(6.15)

(
x
ẋ

)
d

dt
=

(
0 1

−ω2 −γ

)(
x
ẋ

)
(6.16)

This system will be solved with a built-in function, solve_ivp(), from the Python Scipy library. This
is meant to serve as a demonstration of the computational cost of this methodology to find solutions.
This test also introduces kinetic damping, since the algorithm doesn’t apply to previous cases. The
algorithm has been split into two versions, one version where the system’s state is recalculated based
on the value of q, whereas the other version disregards recalculation. These versions will be denoted
by with- or without q-correction, respectively.

The results of simulating a critically damped system can be seen in Figure 6.5. Parameter values
were set to ks = 1×103 N/m , cd = 63.2Ns/m,m = 1 kg and h = 0.1 s. The value of h was set lower than
1 s, since the simulation otherwise converges in a single step, which would not allow differences to be
distinguished.

The classic PS with viscous damping (blue) and PS with kinetic damping without q-correction al-
gorithm (red) converged before the kinetic damping with q-correction algorithm (yellow). The kinetic
damping algorithm is implemented such that the user can decide whether to use the correction factor
q to calculate the new geometry x∗ at reset. If q is not used, the algorithm sets the velocity to zero
without correcting the geometry. As the BE scheme introduces numerical damping, the peak of the
kinetic energy is not aligned with the equilibrium position. The peak is shifted to an earlier moment,
which can be seen in the graph where the yellow and red lines split. The algorithm takes effect at this
time step before the equilibrium is reached. Because q-correction assumes the equilibrium position has
already been reached, it ends up placing the system further from the steady state, which introduces
more energy into the system. This is the reason that the kinetic damping with q-correction takes longer
to converge than the other methods. It was found that not using q-correction and only setting velocity
to 0 led to better results. Each method did eventually converge to the correct steady-state solution.
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Figure 6.5: Simulation of a critically damped harmonic oscillator (cd = 63.2Ns/m), without external load

Figure 6.6: Simulation of an underdamped harmonic oscillator (cd = 10Ns/m), without external load

The simulation was repeated for both an underdamped and overdamped system. The results can
be seen in Figures 6.6 and 6.7, respectively. The IVP function (green) was set to solve up to the time
step that the classic PS converged on. The IVP function took 9.7 × 10−3 to 1.23 × 10−2 s to run while
the classic PS took 5 × 10−3 to 7 × 10−3 s. This is a reduction factor of 1.4 to 2.5 for a very basic
system with only 6 DOF and sub-optimal tuning for the PS. Overdamping slows the convergence of
classic PS, while the simulations with kinetic damping are unaffected by varying the viscous damping
parameter. This reduces the amount of tuning parameters, which is considered advantageous since it
either requires less user tuning or simplifies the development of an automated tuning algorithm.

6.4. Complex meshing
A final case was simulated, similar to the test that Veenendaal and Block [76] used to compare the
performance of the distinct methods they identified. Here, its use is mostly to confirm that the imple-
mented framework is capable of handling nodes that have connections other than with their two direct
neighbors, as in the previous benchmarks. The test case is to find the shape of a self-stressed network
(no imposed loads), where the boundary conditions are displaced to a slanted line. The initial problem
(L) and the found solution (R) can be seen in Figure 6.8.
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Figure 6.7: Simulation of an overdamped harmonic oscillator (cd = 100Ns/m), without external load

The result was visually inspected, as no exact data was provided on the final shape. The simulated
membrane appears to converge to the expected shape, which is the case for varying mesh densities.
No instabilities or other unexpected problemswere encountered during test simulations. This concludes
the verification process, as the implemented framework behaves as expected.
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Figure 6.8: Flat net-structure with displaced boundary conditions (L) and found shape (R)



7
Validation

Four main test cases are used to validate that the framework can simulate tether behavior and mem-
brane deformation accurately. The first three cases target different modes of tether and bridle line
loading. Namely, longitudinal loading, perpendicular loading, and nonlinear loading. The final case
is meant to serve as a substitute for kite deformation, as there is little to no experimental data avail-
able that can be used as a comparison. The material continuum within either the tether or membrane
is represented by a PSM using a finite mesh of connected springs and dampers. It is expected that
increasing mesh density results in increasingly precise outcomes.

7.1. Modeling
Figure 7.1 illustrates how discrete elements of tether and membrane continuum are translated into a
PSM. The tether is discretized into segments of length L, where it’s Young’s modulus E, diameter dt,
and length L are used to calculate the spring stiffness of the PS spring element. Equation 7.1 shows
the relation between these parameters. Each particle is also assigned half of the mass of the tether
segment.
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Figure 7.1: Translation of rope and membrane continuum elements into particle system representation.
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ktether =
EtetherA

L
=

Etether
1
4πd

2
t

L
(7.1)

For a membrane of a certain size and thickness w, the choice was made to discretize the material
into quadrilateral elements. To calculate spring stiffness for the spring between particles 5 and 6, the
average height and length of the quadrilateral membrane area around the spring are calculated (Eq.
7.2).
The Poisson’s ratio ν is set to 0 in Hencky’s problem since strain in one of the primary directions of the
utilized mesh doesn’t affect strain in a perpendicular direction. Also, no masses are calculated from
the quadrilateral elements as gravity is disregarded in this validation case.

kmembrane =
EmembraneA

L
=

Emembranew
1
2 (H1 +H2)

1
4 (

1
4L3,4 +

1
2L5,6 +

1
4L7,8)

(7.2)

7.2. Validation test 1
The tether and bridle line systems are usually made from Dyneema®. The first validation test case
is based on the experimental setup of Ruppert [59], used to determine the properties of this material.
Here, the tether was hung vertically, with a mass M attached to its bottom end. The tether was left
to rest for an hour to let the effects of material creep reside. The experiment was then carried out by
lifting part of the mass m to a height of 10 cm, dropping it, and measuring the longitudinal vibrations of
the mass. A visualization of the PSM of this validation case can be seen in Figure 7.2. The stiffness
value for each spring element is calculated according to Equation 7.3.

kspring = (n− 1)ktether (7.3)

The additional mass M + m is added to the bottom particle. To simulate the effect of a dropped
mass, the linear impulse-momentum relation is used (Eq. 7.4). It is assumed that the dropped mass
experiences zero air resistance. This simplifies the calculation of the time t that the mass took to drop
from its initial condition x0 = 0.1 m (Eq. 6.1). The velocity at impact v can be found by multiplying t
with g, as the mass is dropped from a stationary position. Perfect energy transfer is assumed, which
is added to the bottom particle by imposing an equivalent load over the course of one simulation step
(Eq. 7.5).

P = mv (7.4)

Ftransfer =
∆P

∆t
(7.5)

To find an analytical steady-state solution, the validation case is viewed as a superposition of har-
monic oscillator systems. The individual converged positions of the particles can then be compared to
their respective harmonic oscillation steady-state positions. The results of a simulation for the particle
system with material damping can be seen in Figure 7.3. Similar graphs for both kinetic algorithms can
be viewed in Appendix B.4. Every method converged to the calculated analytical values. The parame-
ter values for the current and following validation tests are listed in Table A.1 in Appendix A.3.

A simulation was conducted with parameter values matching those of Ruppert’s experiment and
a small time step (h = 1 × 10−4 s). This minimizes numerical damping making it possible to check if
oscillations match physical behavior. A fast-Fourier transform (FFT) analysis of the resulting simulation
revealed a peak for the primary frequency at 3.000 06Hz (Fig. 7.4). No secondary frequencies were
found, as the initial impulse diminished quickly and there was no introduction of artificial noise during
the simulation. Due to some remaining numerical damping, the primary frequency of the simulation is
slightly decreased compared to the 3.0041 to 3.0518Hz found in the experiment. The largest absolute
error found between the steady-state and analytical position of a particle is 1.9 × 10−6m. For this
validation case, it appears that the use of the physical material stiffness doesn’t result in instability or
inaccuracy.
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Figure 7.2: PSM model for simulation of validation case 1
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Figure 7.3: Particle ez positions over time for PS with material damping, simulating validation case 1

7.3. Validation test 2
In validation case 2 the tether is suspended from both ends and experiences a perpendicular and
constant external load, namely gravity. Under these idealized conditions, the resulting shape is known
as a catenary. It is proven that a catenary is the state with the lowest potential energy and thus the shape
that the tether will assume [53]. The resulting parabola is purely a function of geometrical parameters,
material properties do not affect the shape (Eq. 7.6) [81]. Here, h is the vertical sag of the line and L
is the total length of the arc.

y(x) = a cosh(x
a
)

a =
1
4L

2 − h2

2h

(7.6)

The PSM of this validation case can be seen in Figure 7.5. Figure 7.6 shows the result of PS
with material damping, where the number of particles is increased from n = 5 for the left graph to n
= 20 in the right graph. The shapes found by the kinetic damping algorithms are indistinguishable
from this result and can be seen in Appendix B.4. By simulating with a finer mesh, the shape of the
tether is more accurately approximated. For both levels of discretization, the particles converged to the
analytical steady-state position. The difference between kinetic damping algorithms becomes clear by
plotting the particle displacement over time (Fig. 7.7). The length of the x-axis reveals at what time
step either algorithm converged. For the same reasons as stated in Section 6.3, the kinetic damping
with q-correction (right graph) requires more iterations to converge and thus takes longer to simulate.
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Figure 7.4: Particle positions of PS with material damping, simulation with a low timestep of h = 0.01 s (upper) and FFT of
simulated longitudinal tether oscillations (lower).

7.4. Validation test 3
In validation test 3 the shape of a tether that is deflected by a perpendicular wind flow without being
affected by gravity is sought. The PSM for this validation case can be viewed in Figure 7.8. Although
this might appear as a rotated case of validation case 2 at first glance, they differ in their loading. The
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Figure 7.5: PSM model for simulation of validation case 2

tether drag is a function of the angle that the tether makes with respect to the wind field. The load is
thus dependent on the geometry of the tether and the resulting problem is non-linear. The calculation
of the tether drag is explained earlier, in Section 4.3. The drag forces are recalculated each iteration,
and imposed on the respective particles. There does not exist an analytical solution for this problem,
and to the author’s knowledge, no experimental wind tunnel data exist for the tether shape. Therefore
the resulting shape is compared to the simulation results of J. H. Baayen [30]. The value of the tether
drag coefficient CD,t was taken from Jung [33] for a smooth cylinder at an attack angle of 90 degrees.
The wind field vector was directed purely in the ex direction with a value of 6m/s.

The resulting shapes can be seen in Figure 7.9. The methods converged to a consistent shape with
slight deviations on the cm scale, which is considered negligible. The maximum deflection, however,
is approximately 5.8m compared to the 4.5m found by J. H. Baayen [30]. This 1.3m discrepancy
could be caused by differently calculated force values, as the found solutions visually appear similar in
shape. Interestingly, the non-linear problem converges about twice as fast compared to cases where
the imposed forces were kept constant. This is considered a side effect of the external viscous damping
that opposes too much momentum since the overshoot in the linear problem is visibly larger.

7.5. Hencky's case
Hencky’s problem can be used to evaluate how accurately the developed framework can predict mem-
brane deformation under nonlinear loading conditions. The benefit of this test is that an analytical
solution exists, which is rare for boundary value problems of nonlinear equations [42]. In this problem,
a circular flat membrane with isotropic material properties is subjected to uniform pressure from one
side. The uniform pressure results in nodal forces that are oriented in the transverse direction of the
membrane, also known as a follower force. An analytical solution for the final deformed shape was
first presented by Hencky [29] with an error in the computations later corrected by Chien [16] and Alek-
seev [2]. The analytical solution equations and parameter values can be found in Appendix B.3.

As mentioned in Section 7.1, the choice was made to discretize membrane-like material in quadri-
lateral elements. This choice was made because utilizing triangular elements results in a mesh with
a particle in the center of the membrane, which might result in a more cone-like final shape. It was
also thought that the use of quadrilateral elements would make for a simpler calculation of material
properties for the translation to PSM.
Figure 7.10 illustrates how the forces evolve and how the direction and value of the forces in the prob-
lem are calculated. The four particles enclosing a quadrilateral element do not necessarily lie on a
single plane, since three points in space define a plane. The direction of the force vector is calculated
by taking the cross-product of the vectors between diagonal nodes (Eq. 7.7). The magnitude of the
force is equivalent to the pressure times the area of the parallelogram formed by the two vectors. After
calculation, the force is equally distributed amongst the four cornering particles.
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Figure 7.6: Found shapes of PS with material damping compared to analytically determined catenary, validation case 2.
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Figure 7.7: Particle ez positions over time for PS with kinetic damping algorithms, simulating validation case 2
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Figure 7.8: PSM model for simulation of validation case 3

Figure 7.9: Found tether shapes with n = 25, simulation of validation case 3
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Figure 7.10: Cross-section of the Hencky problem (L) [1] and calculation of follower force for quadrilateral elements (R).

Fp = pAxf = p |x1,4 × x3,2|
x1,4 × x3,2

|x1,4 × x3,2|
= p(x1,4 × x3,2) (7.7)

Two PSMs were used for the simulation of the Hencky problem, one with a coarser mesh and one
with a finer mesh (Fig 7.11). The open-source software Gmsh was used to generate the meshes [26].
The dimensions and material properties, except for the Poisson’s ratio ν, were kept the same as in the
validation test performed by Adam [1].

The results of simulations with material damping and kinetic damping can be seen in Figures 7.12
and 7.13, respectively. Both systems converged to the same shape, which had a center deflection of
around 0.0218m. As the deflection of the analytical solution is 0.017m, there is a difference of 0.0048m
which is a large relative error of 28 %. After inspection, it was found that the method to determine the
forces resulted in orientations that were not perpendicular to their respective surfaces (Fig. 7.14). At
least part of the error could be attributed to this faulty approximation. The lack of bending and shearing
resistance could also be factors that add to this discrepancy in deflection. The simulations with a finer
mesh converged to a similar shape and deflection (Fig. 7.15 and 7.16). The error is therefore not a
result of using a PSM with too few particles. For this increased amount of particles, the runtime of the
PSM with kinetic damping was about 4 times faster than that of the PSM with material damping ( 12̃s
compared to 60̃s).

7.6. Conclusion
Based on the results of the validation cases, it can be concluded that the implemented framework can
accurately predict the shape of a tether. While making a PSM for cables works naturally well, the
Hencky case highlights one of the drawbacks of using a PS to simulate membrane deformation. Trans-
lating membrane-like material to a PSM needs a more thoughtful approach for accurate results. While
the Hencky problem can be adjusted to facilitate the lack of Poisson’s effect in the applied PSM, this
approach wouldn’t be accurate for actual canopy materials. Eischen et al. [20] showed that by adding
shearing and out-of-plane bending relations to quadrilateral elements their PS implementation could
predict cloth shape with similar accuracy to a FEM simulation, without the use of rotational springs.
This reinforces the notion that sufficient accuracy can be achieved whilst preserving the computational
efficiency of the framework by devoting additional efforts towards developing a PSM beforehand.
It was also found that q-correction as initially conceived for explicit schemes doesn’t function as effec-
tively for the BE scheme. This is attributed to the presence of numerical damping. For these validation
cases, convergence speed was improved by skipping q-correction altogether. The accuracy of the
framework wasn’t affected by the addition of either kinetic damping algorithm.
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Figure 7.11: Meshes used to simulate the Hencky problem. A coarser mesh with 96 particles (upper) and a finer mesh with 361
particles (lower).
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Figure 7.12: Resulting 3D shape of PS with material damping (upper) and 2D projection of the found shape (lower), for PSM
with 96 particles.
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Figure 7.13: Resulting 3D shape of PS with kinetic damping (upper) and 2D projection of the found shape (lower), for PSM
with 96 particles.
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Figure 7.14: Scaled force vectors after convergence.
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Figure 7.15: Resulting 3D shape of PS with material damping (upper) and 2D projection of the found shape (lower), for PSM
with 361 particles.
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Figure 7.16: Resulting 3D shape of PS with kinetic damping (upper) and 2D projection of the found shape (lower), for PSM
with 361 particles.
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During testing with material stiffness values, no instabilities or decrease in accuracy were found. How-
ever, further experimentation is needed to determine the precise boundaries and conditions at which
stiffness values affect the outcome of the framework.
Finally, the numerical damping effect grows with increasing values of timestep. This affects the PS with
material damping most, as the system gets overdamped quickly, resulting in worse runtimes. The best
performance is achieved with slightly underdamped systems.



8
Benchmarking results

The standard Python timemodule offers±16 ms precision on aWindows system, which is not sufficient
for simulations that will converge in only a few milliseconds. Therefore, the timeit module will be used,
which offers improved precision by selecting the most accurate timer compatible with your operating
system. Furthermore, it disables the garbage collector to prevent it from influencing the results by
running at inopportune moments [54]. The instancing of the PS object is done outside of the timing
function, as this is regarded as a one-time cost and therefore not important to include in the resulting
runtimes. The results presented in this chapter are average convergence times of 10 simulation runs
unless specified otherwise.
For reference, the specifics of the software and hardware used to run the simulations are listed below.

• Laptop: HP ZBook Studio G5
• Processor: Intel Core i7-9750H ( 2.60 Ghz clock speed)
• RAM memory: 24 GB SSD
• Operating System: Windows 11 Home (64-bit version)
• Integrated Development Environment (IDE): PyCharm 2023.1.4 (Community Edition)
• Python v3.10.1

8.1. Black box solver comparison
The runtimes of the framework and a black-box solver scipy.integrate.solve_ivp()were tested to confirm
that the former offers improved performance. The test was performed by increasing the number of
particles for the validation case where a hanging tether was given an initial impulse and measuring
convergence times. The results are shown in Figure 8.1. The graphs show that the framework performs
better at low amounts of particles, and scales better when increasing the amount of particles. This
confirmed the suspicions arising from the initial results obtained in Section 6.3. It is expected that the
performance difference increases for membrane problems with non-linear loading. Furthermore, it can
be seen that both kinetic damping algorithms outperform the framework with material damping and
scale better. As this particular problem suits the kinetic damping algorithm, this is not indicative of the
relative performance in other test cases.

8.2. Benchmarking
Benchmarking is conducted with three selected tests. Validation case 2, in which the tether experiences
deflection due to perpendicular gravity, serves as an example of constant imposed loads. Validation
case 3, in which the tether is deflected by perpendicular wind flow, illustrates nonlinear imposed loads.
Lastly, the additional test case where the shape of a self-stressed net structure was sought, represent-
ing a case more similar to how the canopy could be modeled. In the following tables, these benchmarks
are abbreviated as b2, b3, and b4, respectively. Hencky’s problem is not used, as it is difficult to specify
the amount of particles used to discretize the membrane.
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Figure 8.1: Comparison of runtimes for the implemented framework and a black-box solver.

The three methods that will be evaluated are denoted by PSvis, PSkin, and PSkin, q for the PS with ma-
terial damping, for the PS with kinetic damping without the q-correction, and for the PS with kinetic
damping and q-correction, respectively.

The main variable that will be varied to evaluate runtimes is the amount of DOF, which can be de-
termined by the number of particles n. The value of n is not expected to be in the single digits when
modeling a kite including tether and bridle lines. For example, the PSM of the V3 LEI kite shown in
Figure 1.1 including tether and bridle lines consists of 37 particles. That is why performance testing
starts with values of n in the double digits. In the results the amount of DOF is specified first, followed
by n in parenthesis.
The spring stiffness ks will also be varied to examine whether it affects performance and, more impor-
tantly, to check if the models are capable of converging for high stiffness values. Four values were
chosen, two extreme values of 1N/m and 1× 106 N/m, one realistic material value of 6× 104 N/m and
a value between the lower extreme and realistic stiffness, of 100N/m.
Finally, h, cd and m are set to one and the number of simulation steps is limited to 1000. The fastest
runtimes for each benchmark case and the combination of stiffness and DOF are highlighted in bold. If
any simulations couldn’t converge, either due to instability or surpassing the number of permitted steps,
their time will be denoted with N/A. An extensive overview of results can be seen in Table 8.1.

The first observation is that the PSkin, q performed worst on almost every test case and combination
of DOF and k. Additionally, in five cases the method failed to converge, some of which were due to the
algorithm being trapped in a loop between states as Thedens [71] described. Given these results, it can
not be justified to use the algorithm in combination with the BE scheme and it is henceforth disregarded.
The following analysis and results will only include the two remaining methods.

The PSvis outperforms the PSkin on b3 with k = 1N/m, although both methods couldn’t converge for
the lowest amount of particles. Upon closer examination, it was discovered that the increased runtime
of the PSkin was an indirect result of the low stiffness. The kinetic damping algorithm was activated
due to the particles accelerating and decelerating quickly from a standstill. This cycle repeats, which
can be seen as the bumpy trajectory of the particle positions in Figure 8.2, resulting in a slowed-down
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Table 8.1: Resulting runtimes for varying DOF and k, with h = 1 s, cd = 1Ns/m, m = 1 kg. The best runtimes of each
combination of DOF and k are highlighted in bold.

DOF (n) k = 1N/m k = 100N/m
PSvis b2 b3 b4 b2 b3 b4
39 (13) 0.051 N/A 0.053 1.068 N/A 0.375
123 (41) 0.489 0.650 0.308 0.216 0.643 0.138
255 (85) 2.454 1.828 1.444 0.328 1.035 0.320
543 (181) 10.366 3.110 3.533 10.433 5.098 0.607
PSkin b2 b3 b4 b2 b3 b4
39 (13) 0.022 N/A 0.022 0.199 0.670 0.122
123 (41) 0.191 0.931 0.106 0.140 0.482 0.086
255 (85) 0.499 2.090 0.331 0.748 1.079 0.237
543 (181) 1.782 5.146 1.060 17.491 3.900 0.535
PSkin, q b2 b3 b4 b2 b3 b4
39 (13) N/A N/A 0.030 0.274 0.780 6.882
123 (41) 0.946 3.114 0.234 0.188 0.946 0.761
255 (85) 1.937 2.879 N/A 0.433 1.550 0.307
543 (181) 2.429 6.890 N/A 1.917 5.918 0.538

DOF (n) k = 6× 104 N/m k = 1× 106 N/m
PSvis b2 b3 b4 b2 b3 b4
39 (13) 1.117 0.633 0.073 0.571 6.511 0.046
123 (41) 0.487 1.381 0.054 0.740 3.424 0.051
255 (85) 0.649 6.950 0.201 2.026 10.899 0.153
543 (181) 3.008 63.818 0.336 5.135 N/A 0.402
PSkin b2 b3 b4 b2 b3 b4
39 (13) 1.791 0.467 0.067 0.302 1.267 0.038
123 (41) 0.491 1.343 0.055 0.827 2.933 0.047
255 (85) 2.530 4.481 0.153 1.133 12.034 0.151
543 (181) 2.479 11.807 0.270 4.280 143.754 0.271
PSkin, q b2 b3 b4 b2 b3 b4
39 (13) 0.279 0.707 0.064 0.607 5.312 0.038
123 (41) 0.869 4.225 0.058 1.646 17.037 0.055
255 (85) 1.469 10.784 0.157 4.614 26.056 0.154
543 (181) 5.181 51.851 0.275 9.474 N/A 0.282

convergence.
On the other hand, at higher stiffness values the kinetic damping algorithm performs the best for b3.

In this specific test, a large stiffness in the system functions as a resistance against acceleration in this
test case, which benefits the PSkin. Further testing was conducted of b2 with k = 1N/m, where particle
masses were varied. This produced results that were in line with the aforementioned theory. Lower
particle masses, and thus lower inertia caused the kinetic damping algorithm to activate more frequently
than with higher particle masses. The other benchmark tests b2 and b4 with k = 1N/m aren’t subject
to this effect, as there the particles aren’t both accelerated and decelerated by the imposed force. In
practice, it isn’t likely that a stiffness value of 1N/m will be used. However, it is important to note that in
simulations where high accelerations and external damping are present, the PSkin may perform worse
than the PSvis.

The performance comparison between the two remaining methods can made more clear by normal-
izing runtimes with the fastest time for each combination, tnorm = t

tmin
(Table 8.2). It was found that

in 77% of combinations where either method performed best, the PSkin outperformed the PSvis. When
the PSkin outperformed the PSvis, it converged on average a factor 2.3 faster with a standard deviation
of sigma = 1.49. The variation is significant, as evidenced by the normalized times ranging from 1.01 to
5.82.
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Figure 8.2: Particle position over time for b3 with low stiffness, illustrating the kinetic damping algorithm activating at each
bump.

The method used to measure the runtimes is not without flaws, as the measured times are consider-
ably affected by other processes that are concurrently running on the device that runs the simulations.
Nonetheless, there were ten runs averaged and conducted for four stiffness values, four amounts of
DOF, three benchmark cases, and two methods, resulting in a total of 960 simulations. For this quantity
of simulations, it is highly unlikely that the found improvement of a factor 2.3 ±1.49 faster in 77% of the
cases is entirely random.

One possibility that has not yet been considered is that the improved convergence times of PSkin
can be attributed to the absence of material damping. Therefore, the benchmark tests were repeated
with cd set to zero, thus solely relying on numerical damping. The resulting runtimes can be viewed in
Table 8.3. Other than an additional case where the PS with material damping couldn’t converge, the
outcome is nearly identical to previously obtained results. Therefore it is concluded that the addition of
kinetic damping does predominantly affect runtimes beneficially. However, further analysis should be
carried out to define more precisely the circumstances in which the kinetic damping algorithm provides
a significant improvement.

8.3. Runtime scaling
As a final result, Figure 8.3 shows the runtimes of both PSvis and PSkin against increasing DOF for
benchmark b4. To obtain this result, the stiffness was set to the value that is estimated to most closely
resemble what will be used for kite simulation, namely k = 6× 104 N/m. Other parameters were again
set to one, dt = 1 s, m = 1 kg, cd = 1Ns/m. Benchmark b4 was chosen, as is the closest proxy for
membrane deformation that could easily be varied in DOF.
It can be seen that both methods follow a similar path, but the curve of the kinetic damping algorithm
is shifted to lower runtimes. This is believed to be due to the effect of the kinetic damping algorithm
initially removing a large amount of the KE from the system, after which it converges in a similar manner
to the viscous method.
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Table 8.2: Normalized resulting runtimes for varying DOF and k, with h = 1 s, cd = 1Ns/m, m = 1 kg. The best runtimes of
each combination of DOF and k are highlighted in bold.

DOF (n) k = 1N/m k = 100N/m
PSvis b2 b3 b4 b2 b3 b4
39 (13) 2.32 N/A 2.41 5.37 N/A 3.07
123 (41) 2.56 1.00 2.91 1.54 1.33 1.60
255 (85) 4.92 1.00 4.36 1.00 1.00 1.35
543 (181) 5.82 1.00 3.33 5.44 1.31 1.13
PSkin b2 b3 b4 b2 b3 b4
39 (13) 1.00 N/A 1.00 1.00 1.00 1.00
123 (41) 1.00 1.43 1.00 1.00 1.00 1.00
255 (85) 1.00 1.14 1.00 2.28 1.04 1.00
543 (181) 1.00 1.65 1.00 9.12 1.00 1.00

DOF (n) k = 6× 104 N/m k = 1× 106 N/m
PSvis b2 b3 b4 b2 b3 b4
39 (13) 4.00 1.36 1.14 1.89 5.14 1.21
123 (41) 1.00 1.03 1.00 1.00 1.17 1.09
255 (85) 1.00 1.55 1.31 1.79 1.00 1.01
543 (181) 1.21 5.41 1.24 1.20 N/A 1.48
PSkin b2 b3 b4 b2 b3 b4
39 (13) 6.42 1.00 1.05 1.00 1.00 1.00
123 (41) 1.01 1.00 1.02 1.12 1.00 1.00
255 (85) 3.90 1.00 1.00 1.00 1.10 1.00
543 (181) 1.00 1.00 1.00 1.00 1.00 1.00

Table 8.3: Resulting runtimes for varying DOF and k, with h = 1 s, cd = 0Ns/m, m = 1 kg. The best runtimes of each
combination of DOF and k are highlighted in bold.

DOF (n) k = 1N/m k = 100N/m
PSvis b2 b3 b4 b2 b3 b4
39 (13) 0.057 N/A 0.056 1.507 N/A 0.349
123 (41) 0.654 0.751 0.356 0.313 0.579 0.134
255 (85) 4.377 1.922 1.606 0.882 1.015 0.326
543 (181) 14.712 3.778 3.273 18.534 4.680 0.604
PSkin b2 b3 b4 b2 b3 b4
39 (13) 0.023 N/A 0.022 0.303 0.691 0.128
123 (41) 0.332 1.032 0.139 0.186 0.420 0.092
255 (85) 0.955 2.218 0.409 0.922 1.037 0.249
543 (181) 2.744 5.618 1.118 14.865 3.622 0.556

DOF (n) k = 6× 104 N/m k = 1× 106 N/m
PSvis b2 b3 b4 b2 b3 b4
39 (13) 1.904 0.583 0.075 0.280 4.077 0.049
123 (41) 0.478 1.112 0.055 0.651 3.222 0.053
255 (85) 0.856 4.496 0.195 1.647 14.354 0.161
543 (181) 2.131 N/A 0.357 5.362 N/A 0.441
PSkin b2 b3 b4 b2 b3 b4
39 (13) 1.526 0.446 0.068 0.267 1.556 0.041
123 (41) 0.447 1.202 0.056 0.794 2.872 0.053
255 (85) 2.107 4.879 0.164 1.016 17.251 0.161
543 (181) 2.139 14.620 0.291 4.340 123.532 0.279
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Figure 8.3: Semi-logarithmic plot showing the increase in runtime for increasing DOF

A quasi-steady modeling framework was developed by vlugt et al. [78] to predict generated power
during pumping cycles. They found that the error between the resulting power prediction and reference
converged to less than 3% if the time-step between the quasi-steady states was smaller than 0.1 s. They
opted to use a value of 0.01 s to be on the safe side. If these values are taken as a range to indicate
efficient runtime, the current framework should be able to simulate from 15 up to 60 particles given
the values used for the scaling shown in Figure 8.3. Referring to the 37 particles used in the PSM of
the V3 LEI kite, using the current developed framework appears feasible. Further optimization of the
framework could be achieved, as memory allocation is not optimized, and no optimal tuning for masses,
damping, and timestep was executed.
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Conclusion and recommendations

9.1. Conclusions
The aim of the research was to develop a fast and reasonably accurate structural model of soft-wing
kites and connected tethers. Various options were examined and weighed, leading to the choice of a
previously used PS framework. It was revealed that incorporating a kinetic damping algorithm into the
framework has the potential to enhance runtime, without affecting accuracy. Thus, a PS framework
was developed in Python and the option to run simulations with a kinetic damping algorithm was added.
During verification testing, it was observed that the kinetic damping algorithm in combination with the
BE scheme did not work as anticipated due to numerical damping. Therefore, a slight modification was
made to the algorithm, to bypass the q-correction.

Next, the framework and kinetic damping algorithms were validated with four selected test cases.
Three cases isolated tether functionalities and one case tested the accuracy of membrane deformation.
It was found that each method is capable of accurately predicting the shape of tether and bridle line sys-
tems. This partially addressed one of the sub-research questions, demonstrating that the framework
could be modified without affecting accuracy. A noteworthy conclusion is that to accurately simulate
the deformation of membranes, more consideration must be given to the development of the PSM that
represents the considered membrane continuum.

Benchmark testing was carried out for three cases with varying values of k, c, and most importantly
with increasing DOF of the system by increasing the number of particles n. The three test cases that
were utilized for evaluation were chosen for their loading conditions. The tether deflected by gravity
is an example where imposed loads are constant, the tether deflected by wind flow is an example of
nonconstant imposed loads, and finally the shape-finding case for unloaded self-stressed networks.
A comparison between the framework and a black-box solver demonstrated that the framework out-
performs the latter in terms of runtime. This showed the advantage of using the self-coded solver with
explicit computation of Jacobian matrices over a black-box solver.
Benchmarking revealed that the kinetic damping algorithm with q-correction underperformed in almost
any condition. This variant of the kinetic damping algorithm was subsequently disregarded. Further-
more, it was found that normalized runtimes between the PSvis and PSkin vary widely. Part of the
random nature and variance in result is believed to be a consequence of the methodology used to
measure performance. A specific set of conditions was discovered where the PSkin adversely affected
runtime. This is the case when the system has low inertia and is subjected to external forces that cause
both high acceleration and deceleration of particles. Except for these specific conditions, in most in-
stances, the PSkin offered improved runtimes. Further analysis should be performed to identify the
conditions for which the kinetic damping algorithm does and does not offer improvement.
Finally, the scaling of runtime against increasing DOF was plotted for representative conditions of kite
simulation. The PSkin showed similar scaling to the PSvis but shifted to lower runtimes. This is expected
to be due to the algorithm removing a large fraction of energy from the system, and subsequently fol-
lowing regular convergence of the framework. Benchmarking resulted in strong indications in favor of
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using the kinetic damping algorithm with the PS, especially for the settings that are believed to best
represent the kite model. Combining these results, an answer can be formulated to the main research
question: “Can the PSM be implemented in Python, using a mix of Object-Oriented (OO) and non-OO
programming techniques, to efficiently predict deformation?”.

The validation tests demonstrated that the utilized PSM can predict tether shapes accurately in the
developed framework. However, to achieve sufficient accuracy for non-linear, asymmetrical membrane
deformation, a more thoughtful approach is required. By doing this, the advantage of utilizing the PS
framework as opposed to, for example, FEM is maintained. Benchmarking results indicated that the
current framework could be fast enough for simulation in the range of 15 to 60 particles. Considering
the current V3 LEI kite PSM is discretized by 37 particles and the developed framework is far from
optimized, the PS framework is considered fast enough, and further development is encouraged.

9.2. Recomendations
In the broader context of research on structural models, it would be worthwhile investigating whether
a variant of FDM could achieve faster runtimes while maintaining accuracy. Implementation as a sole
method for solution-finding could be possible, but if this isn’t feasible due to for example unpracticable
results, a hybrid methodology such as the implementation of Veenendaal and Block [76] could lead to
improved convergence times. A good starting point would be the open-source FDM implemented by
Vahid Moosavi [75] in Python.

The implemented framework and algorithms have undergone comprehensive testing for the se-
lected validation cases, but it is clear that membrane PSMs require further examination. While linear
springs are used, any form of mesh that approximates membrane-like material will exhibit non-linear
behavior. Comparison against empirical data on deformation would be preferred, but proxy cases are
the next best option in the absence of such data. The Hencky problem is not the most suitable test
case as it assumes isotropic material properties, which is incredibly challenging, if not impossible, to
achieve when developing a PSM. A potential alternative could be a validation case where anisotropic
fabric is tested for tensile strength, as performed by Anton et al. [4]. The results could then directly be
compared to their developed non-linear model.
This ties into the next recommendation, namely the option of adding additional relations or elements
to the framework. For example, non-linear springs based on either physical equations or empirically
determined stress-strain relations for certain ranges of strain. Other relations, such as the shear resis-
tance and out-of-plane bending resistance as implemented by Eischen et al. [20], could also increase
accuracy, without significantly affecting runtime.

Regarding optimization of the developed framework, the most promising suggestion for lowering
runtimes would be to integrate an automated tuning parameter algorithm. Papadrakakis [49] described
an algorithm to evaluate tuning parameter values for DR methods with either viscous or kinetic damp-
ing. Other methods, such as adaptive time-stepping [32] could be considered if automatic parameter
control can’t be applied to the framework.
The relative share of the BiCGSTAB iterative method used to solve the linear system of equations could
be investigated. If it amounts to a large portion of the floating point operations, performance could be
improved by making use of preconditioning. Notably, the preconditioning technique developed by [84]
provides the added benefit of addressing inaccuracy related to the conditioning of matrix A.
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A
Code and settings

Appendix containing a copy of the source code, settings for test cases, and other relevant information
required to reproduce the PS framework and results.
The code can also be found online at https://github.com/ARBatchelor/3D_PS.git.

A.1. Source code
The PS framework source code particleSystem is comprised of 6 Python files, which are presented
below.

Force.py
1 """
2 Child Abstract Base Class 'Force', for force objects to be instantiated in ParticleSystem
3 """
4 from Msc_Alexander_Batchelor.src.particleSystem.SystemObject import SystemObject
5 from abc import abstractmethod
6

7

8 class Force(SystemObject):
9

10 def __init__(self):
11 super().__init__()
12 return
13

14 def __str__(self):
15 return
16

17 @abstractmethod
18 def force_value(self):
19 return

ImplicitForce.py
1 """
2 Child Abstract Base Class 'ImplicitForce', for implicit force objects to be instantiated in

ParticleSystem
3 """
4 from Msc_Alexander_Batchelor.src.particleSystem.Force import Force
5 from Msc_Alexander_Batchelor.src.particleSystem.Particle import Particle
6 from abc import abstractmethod
7 from abc import abstractproperty
8

9 class ImplicitForce(Force):
10

11 def __init__(self, p1: Particle, p2: Particle):
12 self.__p1 = p1
13 self.__p2 = p2
14 super().__init__()
15 return

68
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16

17 def __str__(self):
18 return
19

20 @abstractmethod
21 def calculate_jacobian(self):
22 return
23

24 @property
25 def p1(self):
26 return self.__p1
27

28 @property
29 def p2(self):
30 return self.__p2

Particle.py
1 """
2 Child Class 'Particle', for particle objects to be instantiated in ParticleSystem
3 """
4 from Msc_Alexander_Batchelor.src.particleSystem.SystemObject import SystemObject
5 import numpy as np
6 import numpy.typing as npt
7

8

9 class Particle(SystemObject):
10

11 def __init__(self, x: npt.ArrayLike, v: npt.ArrayLike, m: float, fixed: bool):
12 self.__x = np.array(x)
13 self.__v = np.array(v)
14 self.__m = m
15 self.__fixed = fixed
16 super().__init__()
17 return
18

19 def __str__(self):
20 return f"Particle Object, position [m]: [{self.__x[0]}, {self.__x[1]}, {self.__x

[2]}], " \
21 f"velocity [m/s]: [{self.__v[0]}, {self.__v[1]}, {self.__v[2]}], mass [kg]: {

self.__m}" \
22 f", fixed: {self.__fixed}"
23

24 def update_pos(self, new_pos: npt.ArrayLike):
25 if not self.__fixed:
26 self.__x = np.array(new_pos)
27 return
28

29 def update_vel(self, new_vel: npt.ArrayLike):
30 if not self.__fixed:
31 self.__v = np.array(new_vel)
32 return
33

34 @property
35 def x(self):
36 return self.__x
37

38 @property
39 def v(self):
40 return self.__v
41

42 @property
43 def m(self):
44 return self.__m
45

46 @property
47 def fixed(self):
48 return self.__fixed

ParticleSystem.py
1 """
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2 ParticleSystem framework
3 ...
4 """
5 import numpy as np
6 import numpy.typing as npt
7 from Msc_Alexander_Batchelor.src.particleSystem.Particle import Particle
8 from Msc_Alexander_Batchelor.src.particleSystem.SpringDamper import SpringDamper
9 from scipy.sparse.linalg import bicgstab
10

11

12 class ParticleSystem:
13 def __init__(self, connectivity_matrix: npt.ArrayLike, initial_conditions: npt.ArrayLike,
14 sim_param: dict):
15 """
16 Constructor for ParticleSystem object, model made up of n particles
17 :param connectivity_matrix: sparse n-by-n matrix, where an 1 at index (i,j) means
18 that particle i and j are connected
19 :param initial_conditions: Array of n arrays to instantiate particles. Each array

must contain the information
20 required for the particle constructor: [initial_pos,

initial_vel, mass, fixed: bool]
21 :param sim_param: Dictionary of other parameters required (k, l0, dt, ...)
22 """
23 self.__connectivity_matrix = np.array(connectivity_matrix)
24 self.__k = sim_param["k"]
25 self.__l0 = sim_param["l0"]
26 self.__c = sim_param["c"]
27 self.__dt = sim_param["dt"]
28 self.__g = sim_param["g"]
29 self.__n = sim_param["n"]
30

31 self.__rtol = sim_param["rel_tol"]
32 self.__atol = sim_param["abs_tol"]
33 self.__maxiter = sim_param["max_iter"]
34

35 # allocate memory
36 self.__particles = []
37 self.__springdampers = []
38 self.__f = np.zeros((self.__n * 3, ))
39 self.__jx = np.zeros((self.__n * 3, self.__n * 3))
40 self.__jv = np.zeros((self.__n * 3, self.__n * 3))
41

42 self.__instantiate_particles(initial_conditions)
43 self.__m_matrix = self.__construct_m_matrix()
44 self.__instantiate_springdampers()
45

46 # Variables required for kinetic damping
47 self.__w_kin = self.__calc_kin_energy()
48 self.__w_kin_min1 = self.__calc_kin_energy()
49 self.__w_kin_min2 = self.__calc_kin_energy()
50 self.__vis_damp = True
51 self.__x_min1 = np.zeros(self.__n, )
52 self.__x_min2 = np.zeros(self.__n, )
53

54 return
55

56 def __str__(self):
57 print("ParticleSystem object instantiated with attributes\nConnectivity matrix:")
58 print(self.__connectivity_matrix)
59 print("Instantiated particles:")
60 n = 1
61 for particle in self.__particles:
62 print(f" p{n}: ", particle)
63 n += 1
64 return ""
65

66 def __instantiate_particles(self, initial_conditions):
67 for set_of_initial_cond in initial_conditions:
68 x = set_of_initial_cond[0]
69 v = set_of_initial_cond[1]
70 m = set_of_initial_cond[2]
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71 f = set_of_initial_cond[3]
72 self.__particles.append(Particle(x, v, m, f))
73 return
74

75 def __instantiate_springdampers(self):
76 b = np.nonzero(np.triu(self.__connectivity_matrix))
77 self.__b = np.column_stack((b[0], b[1]))
78 for index in self.__b:
79 self.__springdampers.append(SpringDamper(self.__particles[index[0]], self.

__particles[index[1]],
80 self.__k, self.__l0, self.__c, self.__dt))
81 return
82

83 def __construct_m_matrix(self):
84 matrix = np.zeros((self.__n * 3, self.__n * 3))
85

86 for i in range(self.__n):
87 matrix[i*3:i*3+3, i*3:i*3+3] += np.identity(3)*self.__particles[i].m
88

89 return matrix
90

91 def __calc_kin_energy(self):
92 v = self.__pack_v_current()
93 w_kin = np.matmul(np.matmul(v, self.__m_matrix), v) # Kinetic energy, 0.5

constant can be neglected
94 return w_kin
95

96 def simulate(self, f_external: npt.ArrayLike = ()):
97 if not len(f_external):
98 f_external = np.zeros(self.__n * 3, )
99 f = self.__one_d_force_vector() + f_external
100

101 v_current = self.__pack_v_current()
102 x_current = self.__pack_x_current()
103

104 jx, jv = self.__system_jacobians()
105

106 # constructing A matrix and b vector for solver
107 A = self.__m_matrix - self.__dt * jv - self.__dt ** 2 * jx
108 b = self.__dt * f + self.__dt ** 2 * np.matmul(jx, v_current)
109

110 # checking conditioning of A and b
111 # print("conditioning A:", np.linalg.cond(A))
112

113 for i in range(self.__n):
114 if self.__particles[i].fixed:
115 A[i * 3: (i + 1) * 3] = 0 # zeroes out row i to i + 3
116 A[:, i * 3: (i + 1) * 3] = 0 # zeroes out column i to i + 3
117 b[i * 3: (i + 1) * 3] = 0 # zeroes out row i
118

119 # BiCGSTAB from scipy library
120 dv, _ = bicgstab(A, b, tol=self.__rtol, atol=self.__atol, maxiter=self.__maxiter)
121

122 v_next = v_current + dv
123 x_next = x_current + self.__dt * v_next
124

125 # function returns the pos. and vel. for the next timestep, but for fixed particles
this value doesn't update!

126 self.__update_x_v(x_next, v_next)
127 return x_next, v_next
128

129 def kin_damp_sim(self, f_ext: npt.ArrayLike, q_correction: bool = False): # kinetic
damping alghorithm

130 if self.__vis_damp: # Condition resetting viscous damping to 0
131 self.__c = 0
132 self.__springdampers = []
133 self.__instantiate_springdampers()
134 self.__vis_damp = False
135

136 if len(f_ext): # condition checking if an f_ext is passed as argument
137 self.__save_state()
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138 x_next, v_next = self.simulate(f_ext)
139 else:
140 self.__save_state()
141 x_next, v_next = self.simulate()
142

143 w_kin_new = self.__calc_kin_energy()
144

145 if w_kin_new > self.__w_kin: # kin damping algorithm, takes effect when decrease
in kin energy is detected

146 self.__update_w_kin(w_kin_new)
147 else:
148 v_next = np.zeros(self.__n*3, )
149

150 if q_correction: # statement to check if q_correction is desired,
standard is turned off

151 q = (self.__w_kin - w_kin_new)/(2*self.__w_kin - self.__w_kin_min1 -
w_kin_new)

152 # print(q)
153 # print(self.__w_kin, w_kin_new)
154 # !!! Not sure if linear interpolation between states is the way to determine

new x_next !!!
155 if q < 0.5:
156 x_next = self.__x_min2 + (q / 0.5) * (self.__x_min1 - self.__x_min2)
157 elif q == 0.5:
158 x_next = self.__x_min1
159 elif q < 1:
160 x_next = self.__x_min1 + ((q - 0.5) / 0.5) * (x_next - self.__x_min1)
161

162 # Can also use this q factor to recalculate the state for certain timestep h
163

164 self.__update_x_v(x_next, v_next)
165 self.__update_w_kin(0)
166

167

168 return x_next, v_next
169

170 def __pack_v_current(self):
171 return np.array([particle.v for particle in self.__particles]).flatten()
172

173 def __pack_x_current(self):
174 return np.array([particle.x for particle in self.__particles]).flatten()
175

176 def __one_d_force_vector(self):
177 self.__f[self.__f != 0] = 0
178

179 for n in range(len(self.__springdampers)):
180 fs, fd = self.__springdampers[n].force_value()
181 i, j = self.__b[n]
182

183 self.__f[i*3: i*3 + 3] += fs + fd
184 self.__f[j*3: j*3 + 3] -= fs + fd
185

186 return self.__f
187

188 def __system_jacobians(self):
189 self.__jx[self.__jx != 0] = 0
190 self.__jv[self.__jv != 0] = 0
191

192 for n in range(len(self.__springdampers)):
193 jx, jv = self.__springdampers[n].calculate_jacobian()
194 i, j = self.__b[n]
195

196 self.__jx[i * 3:i * 3 + 3, i * 3:i * 3 + 3] += jx
197 self.__jx[j * 3:j * 3 + 3, j * 3:j * 3 + 3] += jx
198 self.__jx[i * 3:i * 3 + 3, j * 3:j * 3 + 3] -= jx
199 self.__jx[j * 3:j * 3 + 3, i * 3:i * 3 + 3] -= jx
200

201 self.__jv[i * 3:i * 3 + 3, i * 3:i * 3 + 3] += jv
202 self.__jv[j * 3:j * 3 + 3, j * 3:j * 3 + 3] += jv
203 self.__jv[i * 3:i * 3 + 3, j * 3:j * 3 + 3] -= jv
204 self.__jv[j * 3:j * 3 + 3, i * 3:i * 3 + 3] -= jv
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205

206 return self.__jx, self.__jv
207

208 def __update_x_v(self, x_next: npt.ArrayLike, v_next: npt.ArrayLike):
209 for i in range(self.__n):
210 self.__particles[i].update_pos(x_next[i * 3:i * 3 + 3])
211 self.__particles[i].update_vel(v_next[i * 3:i * 3 + 3])
212 return
213

214 def __update_w_kin(self, w_kin_new: float):
215 self.__w_kin_min2 = self.__w_kin_min1
216 self.__w_kin_min1 = self.__w_kin
217 self.__w_kin = w_kin_new
218 return
219

220 def __save_state(self):
221 self.__x_min2 = self.__x_min1
222 self.__x_min1 = self.__pack_x_current()
223 return
224

225 @property
226 def particles(self): # Temporary solution to calculate external aerodynamic

forces
227 return self.__particles
228

229 @property
230 def springdampers(self):
231 return self.__springdampers
232

233 @property
234 def stiffness_m(self):
235 self.__system_jacobians()
236 return self.__jx
237

238 @property
239 def f_int(self):
240 f_int = self.__f.copy()
241 for i in range(len(self.__particles)):
242 if self.__particles[i].fixed:
243 f_int[i*3:(i+1)*3] = 0
244

245 return f_int
246

247 @property
248 def x_v_current(self):
249 return self.__pack_x_current(), self.__pack_v_current()

SpringDamper.py
1 """
2 Child Class 'SpringDamper', for spring-damper objects to be instantiated in ParticleSystem
3 """
4 from Msc_Alexander_Batchelor.src.particleSystem.ImplicitForce import ImplicitForce
5 from Msc_Alexander_Batchelor.src.particleSystem.Particle import Particle
6 import numpy as np
7

8

9 class SpringDamper(ImplicitForce):
10

11 def __init__(self, p1: Particle, p2: Particle, k: float, l0: float, c: float, dt: float):
12 self.__k = k
13 self.__c = c
14 self.__l0 = l0
15 self.__dt = dt
16 super().__init__(p1, p2)
17 return
18

19 def __str__(self):
20 return f"SpringDamper object, spring stiffness [n/m]: {self.__k}, rest length [m]: {

self.__l0}\n" \
21 f"Damping coefficient [N s/m]: {self.__c}" \
22 f"Assigned particles\n  p1: {self.p1}\n  p2: {self.p2}"
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23

24 def __relative_pos(self):
25 return np.array([self.p1.x - self.p2.x])
26

27 def __relative_vel(self):
28 return np.array([self.p1.v - self.p2.v])
29

30 def force_value(self):
31 return self.__calculate_f_spring(), self.__calculate_f_damping()
32

33 def __calculate_f_spring(self):
34 relative_pos = self.__relative_pos()
35 norm_pos = np.linalg.norm(relative_pos)
36

37 if norm_pos != 0:
38 unit_vector = relative_pos / norm_pos
39 else:
40 unit_vector = np.array([0, 0, 0])
41

42 f_spring = -self.__k * (norm_pos - self.__l0) * unit_vector
43 return np.squeeze(f_spring)
44

45 def __calculate_f_damping(self):
46 relative_pos = self.__relative_pos()
47 relative_vel = np.squeeze(self.__relative_vel())
48 norm_pos = np.linalg.norm(relative_pos)
49

50 if norm_pos != 0:
51 unit_vector = np.squeeze(relative_pos / norm_pos)
52 else:
53 unit_vector = np.squeeze(np.array([0, 0, 0]))
54

55 f_damping = -self.__c * np.dot(relative_vel, unit_vector) * unit_vector
56 return np.squeeze(f_damping)
57

58 def calculate_jacobian(self):
59 relative_pos = self.__relative_pos()
60 norm_pos = np.linalg.norm(relative_pos)
61

62 if norm_pos != 0:
63 unit_vector = relative_pos / norm_pos
64 else:
65 norm_pos = 1
66 unit_vector = np.array([0, 0, 0])
67

68 i = np.identity(3)
69 T = np.matmul(np.transpose(unit_vector), unit_vector)
70 jx = -self.__k * ((self.__l0 / norm_pos - 1) * (T - i) + T)
71

72 jv = -self.__c*i
73

74 return jx, jv

SystemObject.py
1 """
2 Parent Abstract Base Class 'SystemObject', for objects to be instantiated in ParticleSystem
3 """
4 from abc import ABC
5

6

7 class SystemObject(ABC):
8

9 def __init__(self):
10 return
11

12 def __str__(self):
13 return
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A.2. BiCGSTAB Alghorithm
Unpreconditioned Bi-CGStAB alghorithm [79].

1: Compute r0 = b−Ax0, choose r′0 such that r0 · r′0 ̸= 0

2: Set p0 = r0

3: for j = 0, 1, · · · do
4: αj = (rj · r′0) / ((Apj) · r′0)
5: sj = rj − αjApj

6: ωj = ((Asj) · sj) / ((Asj) · (Asj))

7: xj+1 = xj + αjpj + ωjsj

8: rj+1 = sj − ωjAsj

9: if ∥rj+1∥ < ε0 then
10: Break;
11: end if
12: βj = (αj/ωj)× (rj+1 · r′0) / (rj · r′0)
13: pj+1 = rj+1 + βj (pj − ωjApj)

14: end for
15: Set x = xj+1

A.3. Simulation input parameters
Settings used for validation tests.

Table A.1: Input parameter values for shown simulations of validation cases

Parameter Validation case 1 Validation case 2 Validation case 3
n [-] 5 5, 20 25
kS [N/m] 119575.9 2e3 2933.3
cd [N s/m] 92 100 100
ltether [m] 5.14 10 300
ρtether [kg/m] 0.012 0.1 0.012
g [m/s2] 9.807 9.807 N/A
mblock [kg] 327.8 N/A N/A
CD,t [-] N/A N/A 1.22
h [s] 0.1, 0.0001 0.1 0.01
nsteps [-] 1000, 1000000 1000 10000
abs_tol [m/s] 1e-5 1e-5 1e-5
rel_tol [-] 1e-4 1e-5 1e-5
max_iter [-] 1e5 1e5 1e5
Fres [N] 1e-3 1e-3 1e-3
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Additional results

B.1. Full derivations
Decay rate and phase shift for undamped harmonic oscillator
1. From second order differential equation tot system of two first order differential equations.
2. Approximation of this systems solution over time with implicit Euler scheme.
3. Rewrite to a recursive formulation (i.e. express xn as a function of initial values x0).
4. Find eigenvalues of the matrix (λ = 1 ± ihω) and use the property Av = λv, to find the scalar

value. Note that this assumes that the initial value is equal to the eigenvector belonging to the
eigenvalue λ = 1− ihω.

5. Raise the term before the initial value to an exponent.
6. Use ln(1−a) =

∫
1

1+a , and a Taylor expansion around the point a = b to approximate the integral
as a series: f(a) +

∑
n≥0

−1n(a−b)n+1

(n+1)(1+b)n . With b=0, this simplifies to
∑

n≥0
−1nan+1

(n+1) .
7. Use t = hn and split the term into exponents with and without i.

ẍ+ ω2x = 0, ω ≡
√

k

m
(B.1)

(
x
ẋ
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B.2. Code visualization
A behavioral diagram of the code can be seen in Figure B.1. A structural diagram is presented in Figure
B.2. Both diagrams were made with the Mermaid Chart software [47].

Figure B.1: Functional flow block diagram of the PS framework
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Figure B.2: UML class diagram of the PS framework
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B.3. Hencky problem
Fichter [23] presented a solution for Hencky’s problem in the form of Equation B.9.

W = q
1
3

∞∑
0

a2n(1− ρ2n+2) (B.9)

The dimensionless quantities W and ρ can be related to the displacement w and radial coordinate c,
respectively, with Equation B.10. Here, r is the radius of the membrane.

W =
w

r
, ρ =

c

r
(B.10)

The loading parameter q depends on the radius of the membrane, the Young’s modulus of the
material and the pressure p (Eq. B.11).

q =
pa

Ew
(B.11)

To approximate a solution for W , the coefficients a2n for n up to 10 were calculated by Fichter and
can be seen in Equation B.12.

a0 =
1

b0

a2 =
1

2 b40

a4 =
5

9 b70

a6 =
55

72 b100

a8 =
7

6 b130

a10 =
205

108 b160

a12 =
17051

5292 b190

a14 =
2864485

508032 b220

a16 =
103863265

10287648 b250

a18 =
27047983

1469664 b280

a20 =
42367613873

1244805408 b310

(B.12)

The following Matlab code was used to calculate numerical values of b0, which depends on the
Poisson’s ratio of the material. In table B.1 resulting values of b0 for a range of ν are listed.

1 clear all
2 clc
3
4 syms b_0
5 nu = 0; % [-] Poisson's ratio
6 eqn = 0 == (1-nu) * b_0 - (3-nu) / (b_0 ^ 2) - (5 - nu) * 2 / (3 * b_0

^ 5) - (7 - nu) * 13 / (18 * b_0 ^ 8) - (9 - nu) * 17 / (18 *
b_0 ^ 11) - (11 - nu) * 37 / (27 * b_0 ^ 14) - (13 - nu) * 1205 /
(567 * b_0 ^ 17) - (15 - nu) * 219241 / (63504 * b_0 ^ 20) -
(17 - nu) * 6634069 / (1143072 * b_0 ^ 23) - (19 - nu) * 51523763 /
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(5143824 * b_0 ^ 26) - (21 - nu) * 998796305 / (56582064 * b_0 ^
29);

7 sol = solve(eqn, b_0);
8
9 numeric_sol = double(sol);
10 tolerance = 1e-10; % Filter out solutions with an imaginary part

defined as 0
11 real_solutions = numeric_sol(abs(imag(numeric_sol)) < tolerance)

Table B.1: Calculated values of b0 for a range of ν

ν b0
0.0 1.6204
0.1 1.6487
0.2 1.6827
0.3 1.7244
0.34 1.7439
0.4 1.7769

Finally, the values of the material properties and geometry, except for ν, were taken from [1]. They
are listed in Table B.2.

Table B.2: Remaining parameter values to fully define the Hencky problem

parameter value
p 100 kPa
E 311 488Pa
a 0.1425m
ν 0
w 0.01m

B.4. Additional figures
Validation cases
Additional results of validation case 1.

Additional results of validation case 2.
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Figure B.3: Simulation of kinetically damped PS without q correction

Figure B.4: Simulation of kinetically damped PS with q correction
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Figure B.5: Found catenary shape of PS with kinetic damping without q correction compared to analytical shape for 5 particles
(upper) and 20 particles (lower).
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Figure B.6: Found catenary shape of PS with kinetic damping and q correction compared to analytical shape for 5 particles
(upper) and 20 particles (lower).
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